Universitaet Dortmund

Dieter Suter, Joachim Stolze
Quantum Computing WS13 / SS14
Quantum computers use quantum mechanical systems to store and process information. By processing superpositions of states in parallel, their computing power is exponentially larger than that of classical computers for certain problems.

The lecture is be based on the book 'Quantum Computing - A Short Course from Theory to Experiment'
Topics
1) Introduction
2) Physics of computation
3) Elements of classical computer science
4) Quantum mechanics
4.4) Entanglement measures
5) Quantum bits and quantum gates
6) Feynman's contribution
7) Errors and decoherence
8) Tasks for quantum computers
9) How to build a quantum computer
10) Liquid-state NMR quantum computers
11) Trapped ions and atoms
12) Solid state quantum computers
13) Quantum communication

This is a list of errors in the book - Please let us know if you discover more !
Additional literature on the subject
Links:
Physics department TuDO
E3 homepage
J. Stolze's homepage
Lecture notes and tutorials
Lecture notes of John Preskill (Caltech)
Lecture notes of Umesh Vazirani (UC Berkeley)
Tutorial by Samuel Braunstein
Mini-Course by Andre Berthiaume
Los Alamos Science Information, Science, and Technology in a Quantum World
QI research in Europe
Websites
Quantensimulator
The age of the qubit (IOP)
Journals
Annalen der Physik: Topical issue on quantum simulations
Quantum Information Processing
Quantum Information and Computation
International Journal of Quantum Information
Natural Computing
International Journal of Nanoscience
Journals
CT article on Quantum Computing (in German)
Jobs
Todd Brun's site at USC