

Literature

A wide range of textbooks is available on quantum information in general as well as any of its subtopics. A small selection of the general ones is:

- M. A. Nielsen and I. L. Chuang, "Quantum computation and quantum information", Cambridge (2001).
- P. Kaye, R. Laflamme, and M. Mosca, "An introduction to quantum computing", Oxford, (2007).
- D. Bruß and G. Leuchs, "Lectures on Quantum Information", Wiley-VCH (2007).
- M. Nakahara and T. Ohmi, "Quantum Computing: From Linear Algebra to Physical Realizations", CRC press (2008).
- J. Stolze and D. Suter, "Quantum Computing: A Short Course from Theory to Experiment", Wiley-VCH (2008).
- S. Aaronson, "Quantum Computing since Democritus", Cambridge (2013).

Online resources

Quantum information processing is an active field of research and reviews of important developments keep appearing in the literature. Perhaps the easiest way to keep in touch with new developments is to consult the "living document" type reports which have been prepared by expert panels in both the USA and Europe and which are (hopefully) updated on a regular basis. The European report "Quantum Information Processing and Communication: strategic report on current status, visions and goals for research in Europe" is available at www.europen.net or qist.ect.it and its US counterpart "A Quantum Information Science and Technology Roadmap" is available at qist.lanl.gov/qcomp_map.shtml.