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Nuclear Magnetic Resonance (NMR)




Why Spins?
‘ Simple, well isolated quantum system

‘ Long-decoherence times (~sec)

‘ Gate operations are "easy" to implement

‘ Mature Technology

+ M werks !




Ensemble Quantum Computing

Single spin detection difficult

4

use 10?9 identical copies

4

“Ensemble Quantum
Computing”




Liquid-state NMR Equipments

s Static Field
St e e N . ‘\ AN
I ‘ l BO NMR spectrum

T silica tube
ceramic paste . . .
G Static field: Superconductor coil
3] insulated 4K (He)
nichrome wire
| : RF field: Transverse coil
coil support cylinder ——

4
i to dc supply
to rf sn‘pply



10) Liquid-State NMR




10) Liquid-State NMR

. O

% 10.1 Basics of NMR

10.2 NMR as molecular
quantum computer

10.3 Examples



Other Equipments NMR & MR
MRI: Magnetic Resonance Imaging

Animal scanner 7T

Siemens 7T Philips 3T Ingenia GE 3T Discovery




Nuclear Magnetic Resonance (NMR)

Statlc field

how,/k,T ~107



10.1) Basics of NMR

Zeeman Interaction
I=1/2

?/ Spin operator
Magnetic moment H :/’}"I '

< Giromagnetic factor
$\ Interaction (Zeeman) Hamiltonian

with the magnetic field

2 = —l-B.
# = —yBol, .



10.1) Basics of NMR
Zeeman Interaction

: A — —yBol .
Magnetic field Bo)‘ IZ|I7 m> — hm|17 m>
~~ 1 h 1
V4 I, +—) = +— I, —+ —
& — ::h(x)()/Z. <] 2> 2| 2>
wo = B

Spins align with the field
(minimal energy)



Magnetic Resonance

Zeeman effect

A

E

2 = —U-B.
A —’}/B()IZ.
Principle

—

r

.

MR measures transitions
between spin states,
which are excited by a
radio-frequency field.

\

J




Applications of NMR

CH; Magnetic Resonance

Imaging
Resonante-
fr

TAN

........
-------
........




Connedctivities in the Brain




Equation of motion
BO Torque T — ﬁ X EO-

T
dt

Ensemble average M
magnetic moment o

laxbl|

t Cross product: [a X b| =a b sinf. =



Equation of motion
Larmor precession: Density Matrix evolution

Campo estatico

1
p=pogl+ pzls+ pyly + pz1.

General density matrix for a %2 spin ensemble

Liouville—.von Neumann equation:
Schrodinger equation version for density
matrix

dp 1

ot h o) % p(t) = U(t)p(0)UT(t)

Evolution operator of Zeeman interaction

U(t) = exp (—iHt/h) = exp (ivBol,t/h)



Equation of motion

Larmor precession: Density Matrix evolution

1
p=pogl+ pzls+ pyly + pz1.

General density matrix for a %2 spin ensemble

Liouville-von Neumann equation:
Schrodinger equation version for density
matrix

Campo estatico

T G~ o(t) = U(t)p(0)U (1)

po(t) =

pz(t) = p=(0) cos (wot) + py(0) sin (wot) i

py(£) = py(0) cos (wot) — p(0) sin (wot)
Pz (t) — Pz (0)




Measurements: Coherence

Larmor precession: Density Matrix evolution

Campo estatico

1
p=pogl+ pzls+ pyly + pz1.
General density matrix for a %2 spin ensemble

Liouville-von Neumann equation:
Schrodinger equation version for density

matrix
op '

o TS _veo)ut
p(t) = po(t) 3L + pu(t) I + py () Iy + p(t)1.

Ganzalg A Alvarez

Mx — Mxy COS(%t+ ¢> d]\? .
M, = —M,,sin(wot—+ ¢) g5 M X< @y .
M. — const.

20



Bloch Equations

d

Equation %<Sw> = ~wrSy
Of E(S?ﬂ = wL<Sw>
ti d _

motion E<Sz> — 0.

Solution

(Se)(t) = Szy(0) cos(wrt — @)
(Sy)(t) = Sey(0) sin(wrt — @)

Felix Bloch
(1905 - 1983)




Signal Detection

Static field Faradays Law of Induction

[ T Precessing spins =
] —_— rotating
sanple hoder 3 magnetisation

’ msulated
nichrome wire

n L

coil support cylinder - Vi

T todesupply
+4 4

to rf supply




Signal Detection

Campo estatico Faradays Law of Induction

Change of
flux induces
voltage

S(t) = (Sy cos Qrt + S, sin Qpt).

s(t) o< cos 1t



Excitation: spin state control

S

Q

2 magnetic radiofrequency field
qd__)A

—

=

),

c

< 1 cos(

c 0 COS\W -|-I-I-|.I.
(S JUVUVUVU

=

)

1
0
0
(cos(wt) ) ( cos(wt) )
= By | sin(wt) | + B; | —sin(wt)



Spin control
- RF magnetic fields

Spin evolution with a time dependent field (RF field)

0

Hiab = —vBol., — 2v By cos (wt) I,

2Bicos(mw?)

(V)4

Hiap = —yBol, — vB1 cos(wt) I, + vB; cos(wt)I, — vB; cos(wt)l, — vBy cos(wt) I,

Hiab = —vBol, — 7B exp (iwtl,) I, exp (—iwtl,) — vBj exp (—iwtl,) I, exp (iwtl,)

Hint !

N 0 0 exp {il,¢/h} I, exp{—il,¢/h} = I, cos ¢ — I, sin ¢
U(n, ) = e 009/2 = o5 5~ i(h-o)sin -,

2 exp {—il,¢/h} I, exp{il,¢/h} = I, cos ¢ + I, sin ¢




Spin control
- RF magnetic fields

Spin evolution with a time dependent field (RF field)

0

Hiab = —vBol., — 2v By cos (wt) I,
2Bicos(mw?)
wr 1
Hiab = —vBol, — vB1 exp (iwtl,) I, exp (—iwtl,) — vBy exp (—iwtl,) I, exp (iwtl,)
@ ..
Lab frame Rotating frame 4
: rot : H
W el P2 = [Huon o™
8t — h laby O 81; — h rots P cot4\,
e 24
R
Hoeor = —1 Hrot = —y (BO S w/’)/) Iz —_ ")/B]_Iw X (i2wtlz) (Dl‘*




Effective Field

z-component of magnetic field is

reduced by w .y

Hrot — — 7 (BO — (.U/’)/) Iz - /YB]_I:L‘

WL W, 1 |
e Defy BT T O O

)]
9 Ocpf =YBerr=| 0 |,
= A®
O 4

Arbitrary directions are
possible by adjusting
frequency and phase of RF
X (D] field

x-component given by RF field amplitude 27



Precession : Special Cases




Spin control
- RF magnetic fields

Spin evolution with a time dependent field (RF field)

= 7B PO (1) ~ exp (iwitly) I. oxp (—iwstly)
~ I, cos (wit) + I, sin (w;1t)

On resonance RF
l w = wo = vBp
\

Rotating frame
Lab frame

p'2P(t) ~ I cos (wit) + I, cos (wot) sin (w1 t) + I, sin (wot) sin (w1 t)



Spin control
- RF magnetic fields

Spin evolution in different frames

Bloch Equation

Nucleos:T,~seg, T*,~100us-Ims (solids), T,~500ms liquids @ _ 'YM w« B +Relaxation

dt



RF Pulses

7t/2 pulse 2

u U time

Choose weft = 71/2

e.g. (3),-rotation

31



Pulse sequences: 1 pulse

coherence Tz*

/ decay

‘ Oscillation = Quantum superposition:

Inhomogeneous Magnetic Field 2> (T7,)
Effective due to spin interactions (T,)
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10.2 NMR as a Molecular Quantum Computer
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Spin 1/2 as Qubit

Spin /2 Qubit

=

qubit |

(¢ )

10>

=

qubit 2

@)

|

1

Liquid-state NMR quantum computer

qubit 3

Q

’»

“monochromatic
excitation

frequency

—



Selective Excitation

Qubita Qubitb Condition for selective excitation:

— |wa-ws|T > |

Wa Wb

Nonselective excitation

Hard pulses —— ,A\ ,/\\

Selective Weak pulse

excitation J\\

Weak pulses —




Coupled spin systems

Coupling partner : spin |/2

positive
negative additional
additional field

1 field

smaller splitting
lower frequency higher frequency

T y (B, +0)

v
larger splitting

Splitting ~ coupling
strength
Vv



Coupling Hamiltonian

H=H,+Hax = —waA, —wxX, +dA,X,

| =
|
€
AN
_|_
&
P
|
N

82




Coupled Spin Systems

Coupled 2-spin system

AX fl'[=-(0AAz-(DXXZ+dAzXZ
i

f '

frequency f ;3




Pseudopure States

Ppp X PL+ap,

pure state

 Pseudopure states are (for all practical
purposes) equivalent to pure states

() Pp state preparation associated with
exponential signal loss

) Some algorithms can be applied directly
to mixed states

84



Single Qubit Gates

Time evolution of spins =
Larmor precession around effective field

[ — 6—i7‘[T/ﬁ
i&eff-gT/h

wef

— €

arbitrary rotations
are possible by
appropriate choice
of Weff, T

B, axis can be changes
by RF initial phase
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Two Qubit Gates

Required for universal quantum computer:
2-qubit gate, e.g. CNOT

00>
01>
10>
1>

1
0
0
0

000

& & -

— & &

0
1
0

Control Target

! leTl

'

NOT

TE>

I




1) Selective Pulses

Example: CNOT

%—P
—
:>—>
S
—
—

Frequency:

00> (1000 @¢¢—
01> (0100 0
10;(0001) = \i
Y9010

88



SWAP by Selective Pulses

SWAP = CNOT;2 - CNOT2,; - CNOT

Y ¢— ) 44
) M
Zi/ vy e




Conditional Dynamics: e.g. Conditional flip

d
Spin-spin coupling: Hax = + A X,

B2 Dynamics of Spin | depends on state of spin S

00) = [X =1, A =1),

10) = |X =], 4 =)



TOFFOLI Gate or CCNOT

A ®
n/2 pulse m pulse
/ | B ¢
y ) y ) -X % -X C <>
J | Soft pulse
1 : - : shaped pulse
A1HA2 A2H2A1HA2 A2H2A HAZ A2|—|f ( P P )
- 110) < |111)
—
. 1 0O 0 0 0 0 0 \
Tlme (u ‘1 0 0 0 1: () :: |
O 0O 1 0 0 0 0 {)
Pulses + free A110)[111) [ 0 0 0 1 0.0 0 0
. Y =l 00001 00 0O
precessmn O 000010 0
O 0 0 0 0 0 0 |

Mahesh, PhD thesis (2003) \0O 000001 0



Detection

Detection of precessing magnetisation by Faraday effect

Precessing spin
induces
voltage in coll

‘ voltage

time

Precessing spin =
rotating
magnetization

92



Measuring Populations

} 11> @t\ N\ [

Apply (-x)-rotation

Frequency

93



AX Detection

A

[l

o0




Multi-Spin Systems

| qubit _L
2 qubit ’\ A M

Paebie LU U U

Frequency'

total number of lines: n; = N2V—1

95



Qubit-selective Readout

A X
before pulse SPectrum  spectrum AX spectrum
selective pulse selective pulse :
nonselective pulse
AX 0) 1) 1 1) A

100> /A\ /A M
101> A‘ M
W
W

\V,
110> /A\
\Vf

\V/
11> T

ML
Y
U
Ty



Multi-Qubit Readout

Nuclear magnetic resonance spectroscopy: An experimentally accessible

paradigm for quantum computing ? Physica D 120 (1998) 82—-101

David G. Cory , Mark D. Price , Timothy F. Havel

LI 1213 '

X Z Z X Z

A Py A LL‘
S W ey —n TR

97



diVincenzo’s Criteria

Initiali- Quantum- Processor Readout
Zation reglstfr - _/ ‘ \ -
. step | |- step2 - stepN H — |1>
= L = [ = = H —10)
H U = e—i'HlTl H Uy = e—?l’Hsz Uy = e—i’HNTN:

1) Well characterized qubits,

SCa €m

2) Initialization into a well defined state.
3) Long decoherence times.
4) Universal set of quantum gates.

5) Qubit-selective readout. o



diVincenzo #2

Initialization

Initialization into a well defined state.

Thermal relaxation

Peq=1 +¢1,

~10°

Problems:
- Not a pure state

- relaxation is slow
99




diVincenzo #3

Decoherence

3) Long decoherence times.

Typical relaxation times ~ | s in liquid state NMR
Typical gate duration ~ 10 ms = approx. 100 gates

100



diVincenzo #4

Gates

1) Well characterized qubits, scalable system .

2) Initialization into a well defined state. (s

3) Long decoherence times.

4) Universal set of quantum gates.

5) Qubit-selective readout.

iHt

gate = unitary transformation U=e

101



diVincenzo #5

Readout

S) Qubit-selective readout.

102



10.3 NMR Implementation of Shor's Algorithm

Experimental realization of Shor’s
quantum factoring algorithm
using nuclear magnetic resonance

Lieven M. K. Vandersypen* t, Matthias Steffen*{, Gregory Breyta*,
Costantino S. Yannoni*, Mark H. Sherwood* & Isaac L. Chuang*

*IBM Almaden Research Center, San Jose, California 95120, USA

T Solid State and Photonics Laboratory, Stanford University, Stanford,
California 94305-4075, USA

Nature 414, 883 (2001).

0.3.1 Qubit implementation
0.3.2 Initialization

0.3.3 Computation

0.3.4 Readout

0.3.5 Decoherence 103




Quantum Register

Frequencies, relaxation times

{ w,’/2ﬂ: T-| i Tz;

]

1 220520 560 1.3
2 4895 13.7 1.8
19F 3 25088.3 3.0 2.5
4 -49318.7 10.0 1.7
S 151866 2.8 1.8
13C 6 45191 454 2.0
7 42443 316 2.0

Coupling constants

1-221.0 377 6.6 -1143 145 2516
2 186 -39 25 799 3.8
3 1.0 —-135 416 1.2

4 541 5.7 2.1
2
6
7

. 194 595
Resonance frequencies @ 14 T:

13C 2 151 MHz, '’F > 565 MHz



Spectrum

Splnl T i Jy Jei  Js Jio Ju Jy

J,,=-221Hz —
A l 1-221.0 37.7 66 -1143 145 25.1€
=-114 Hz

Juu=- 5o 186 -38 25 799 39
3 10 —135 416 129
/\\ /\

M AN, spin 2 Spin 3

S ONCINE s My

-200 0 200 50 0 50 50 0 50
NMR frequency [Hz] 105

26 — 64 resonance lines




Algorithm: factoring 15

N 1 m must be at least 4 » 924 — 16 > 15
n in the general case 8 N2 < Q:=2K <aN?
—— reduced to 2 —— chose n = 3, to find additional periods.
0) (1) (2) (3) (4)
110> ffon N N Inverse i
" QFT S
mg |15
4 1 amodN i ——

1 QFT

pseudopure state

106



Initialization

Spectrum taken from thermal equilibrium

Qubit |

s

not 128-1)

' ‘

i

Qubit 2

MMMMW

J

J

)

Qubit 3

b

Frequency
Pseudo-pure states for qubits -3 by temporal

averaging over 36 experiments using symetries, (if

»

o

Frequency



Adapted Algorithm

© (1) ) 5 @

'3 © H" X X Inverse ,f_"ﬁ‘
f' QFT ' Pl"l '
m |1)
s 1 2Zmod N|——
N al - H‘ ! * 'r".-d“: Isb
n 2 -1 vHH ® * 50| Al —e— 4|
Isb 3: —|m ? —H—*—® i 25090 H—T—Fl -
msb 4: — g a o 1,1, -
5: — r g faR _':’ é
m ' a rI] "'«.__.-"I"r___\-\ i ‘ e gmat aalae
% s | e R, ‘ ¢ B B
or a=7,N=15
Isb 7+~ ° ® . )

108



Experimental Results

qubit |

qublt 2

qubit 3

TV

|

fUJ

)I“WJ; Equilibrium spectrum

JU U

L

‘ PPS spectrum

Lt L\MM‘-«._‘_‘

[ :

__Ji | U )

J!ik

e
il

-

)'k
‘\/WL

: B model

Result for a=11
" lideal

naw
experlmental

Result for a=7

[T

|l !
.
|-

.

A

J

J

QMM
m lilhluill L

S T T —

X Wl"‘“v‘_“ ideal

I
_Ww ' ’r‘l "

.
Rt model

“experimental

F]'l:eque<rw\cy [Hz]

109



Results for a=11

Apply x-rotation

Readout;

measure populations ‘ 0> s N

Qubit | “,‘ “m 0)
| 0
Qubit 2 M >

Qubit 3 JLY\,AV_, ‘O>’|1>



Results for a=7

Qubit |

0) 11)
Qubit 2 ; g L

Qubit 3 ‘O>’|1>

111



Decoherence

Pulse sequence

Il|ll

il

77 ._lllI II_IIII.IAII_‘ I i _I...IJ. | ELE 4 i)

__IJIUIH”HIII M SR M LJI |l LI

ILII 7L N e 11| L.LIHL-III 11 s

B jl 111 II|I,_I___I____‘__‘I,______I._I___I__.I__.l___I.__I,__I_,_I___III_III_III_IIIj'I_I_I_I_IJ- _I_LI-LJ

.JiLJHJHJHJnnuuu LTI NRNTT T N
Do D 1w o T

I'JIIIIIII TRINERNIE |1 I AR

0 :
Total duration ~ 0.7 s



Decoherence Model

ideal

1 | |
| . experimental

| .

model

113
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Spin Chains

qubit I 2 3

115



State transfer in spin chains

, ; Il April 1997 —
CHEMICAL
3 = PHYSICS
B LETTERS
ELSEVIER Chemical Physics Letters 268 (1997) 300-305

Time-resolved observation of spin waves in a linear chain
of nuclear spins

Z.L. Madi, B. Brutscher, T. Schulte-Herbriiggen, R. Briischweiler, R.R. Emnst
Laboratorium fur Physikalische Chemie, ETH Zentrum, 8092 Ziirich, Switzerland

Received 30 January 1997; in final form 11 February 1997

fully '3C-labelled lysine

O
|

13¢ 13¢ 13¢
" 8e”” 18e” S

13¢ C OH

|
NH, *HCI



State transfer in spin chains

<l;,>
<lp,>
<l;,>
<ly>

<Is,>

43
S
v

<l7,>

<18Z>

A

B

1
J
0 N W W W N TV AN
0] .
1 —
0 s e Aol oan A A A A Asna M Ansdll
1 )
?* dad e hoh o N Noacan Aot M A AN
0] A&LMMAAMMAAM&AW
1 :
N BT ——_—. M .I]A.,MAA.MA_JAA AA,.,AM\AM\,..M_
1
0 10 20 30 40 50 0 30 50
Mixing time T, [1/J} Mixing time T, {1/J]
1 1
</ <lg,>
i O e — % 0 /\A : ,A/\
0 1 2 3 4 5 6 0 1 2 3 4 5 ' 6
Mixing time T, [1/]] Mixing time T, [1/]]
0 ..
Z'ITZJ‘II HJ _2172‘11'{]!1]}.1-*-11}1]»
ey i<j
i<y
:—_2172.] {IIIIJ\+[H'I +Ii,1j~} ___21.‘.2.]‘}{1:-1; _I,_I‘“I;'}/z’
1<y i<j

}



State transfer in spin chains

A
— :jjlg
T A
; 1 4k
;:l‘)ll ‘I llr
e L
:?q“::_::_ :
SR | D J\Lr I .y
60 50 40 30 20
13¢C chemical shift (ppm)
B D =
o
7t
prd
s i A
o w
Mixing time T, [s] Mixing time T, [s] /O =0
T O
¢ XL



State Transfer

H=2r Ty (SOSE + 550
1,k

qubit I 2 3

switchable

How can quantum information be transferred along the chain?



TR TR | > e
_Hl*t
11 a
S T (T y -
= | % (1
D X-*Q
m >~ X | e
—— e =
-
% 2 a o &
Tlv
@) ——t----|----4 |~
D > S
S DU. .vA "X .<T
>, > > | }
(), _ S
2 —t----|----+4 |~T
S - -
Dl _ NJ NJur
QZW_ o
L
o
Q
o
-
T

Time

120

Phys. Rev.A 76,012317 (2007).



Transfer Achieved

Fidelity F

O
o
I

O
N

o
o

,,,,,,,,, coherent evolution____
decoherence "< —
------------ ¥...lrgiin

coherent evolution
+ decoherence

e T=1/5J12
#"_ ‘l'=1/6J12 .
0 1 2 3 4 5

Iteration k

Phys. Rev.A 76,012317 (2007).



3-Body Interaction

1 g2
‘ SzS2 + 8,5, ‘ 525y + 5,5, ‘

I N /3

% (53528, + 5,5252)

™~z My y~MzMx

State transfer:

S

)

i 122

§ )




Transfer Speed

24 "
' W R =

-

£ -

)

5

2 {_o \

g £ ot ) 10 T

O I I I
8 6 4 -2 0 2 4 6 8
3-body coupling strength)\ 123



Implementation

“Half of Hamiltonian”

' ":::::::::::-lgl ” J'L”“‘HL'LUL




Evolution

A=14
di Lot
ERTH
A 1 l Timeét/to 3 4

Phys. Rev.A, 73, 062325 (2006).



Selective state transfer with global gates

Source
1/ 2 3 4
Nuclear spin %% - qubits ‘ ‘—I—O—'
5

Selective transfer ‘

G.A. Alvarez, et al. Phys. Rev.A (R) 81, 060302 (2010)



Selective state transfer with global gates

‘L-leucina‘
oe s A=A, 0,

5 ‘ The system Hamiltonian ‘

]—A[Z — Zh(Qo + AQZ. )[AZ.Z Zeeman Hamiltonian

Free evolution

N

Hy=Hy =Y J i+ D1)

Mixing Hamiltonian — Interaction Hamiltonian ‘
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Selective state transfer with global gates
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NMR quantum Simulator (liquid state)
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Directional Perfect State Transfer
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Directional Perfect State Transfer

Polarization
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Selective state transfer
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Directional Perfect State Transfer

Experiments
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Exercise

Show that the SWAP operation between two interacting spins governed by
the Hamiltonian H=-w, A, - wx X, +d A, X, can be implemented in liquid-
state NMR using selective m=pulses. Consider the ideal limit for the selective
pulses, i.e. the selective T rotations are ideal.

Use the following decomposition, discussed in class:
SWAP=CNOT(1,2)-CNOT(2,1)-CNOT(1,2)
Assume that each CNOT (a, b) denotes a CNOT gate with spin a as the

control and spin b as the target, and explain how each of these gates can be
implemented using NMR pulse sequences, based on selective m=pulses.



