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Motivation

5

Physical systems 
behave 
differently

Readout

|0i
|1i

Quantum-
register

Initiali-
zation

0
0
0
0
0
0
0
0
0

Processor

step 1

U1 = e�iH1⌧1

step 2 step N
...  .

U2 = e�iH2⌧2 UN = e�iHN⌧N



Classical Error Correction
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Ideal

0 1 0 1 1 0

+ =

Recalibrate

0 1 0 1 1.0 0.0

+ =

Real

0 1 0 1 0.9 0.1

+ =



qubit

Sources of Errors

7

- Coupling to environment

  → decoherence

- Control fields have finite 
precision → errors

Bath

Bath
Coherence 

decays

ideal

-	 Parameters of quantum register 
differ from the ideal ones



Fighting Errors
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• Optimize the classical apparatus that controls the quantum 
system to make the gate operations as perfect as possible. 

• Design gate operations in such a way that errors in 
experimental parameters tend to cancel rather than 
amplify. 

• Use error correction schemes. 

• Store the information in areas of the Hilbert space that are 
least affected by the interaction between the system and 
its environment. 

• Use active schemes for decoupling the system from the 
environment, such as dynamical decoupling.

All schemes must 

be combined!



Literature
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D. Suter and G. A. Álvarez, 

"Protecting quantum information against environmental noise", 

Rev. Mod. Phys. 88, 041001 (2016).



Phenomenology of Decoherence
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Superposition state | (0)i = a|0i+ b|1i
Coherence = a⇤b

From chapter 4: if qubit gets entangled with the 
environment, its partial density operator becomes mixed

Description of environment

- classical : fluctuations


- quantum : entanglement

T2

FID =

Free Induction Decay

Time

C
oh

er
en

ce

pure
mixed



Proton 1H nuclei
l Mass

l Charge

l SPIN s =1/2



l Mass

l Charge

l SPIN s =1/2

l (i) Angular Momentum

l (ii) Magnetic Moment

Proton 1H nuclei𝜇⃗ = 𝛾𝐼



l Mass

l Charge

l SPIN s =1/2

l (i) Angular Momentum

l (ii) Magnetic Moment

Proton 1H nuclei
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https://www.youtube.com/@thepirl903



https://www.youtube.com/@thepirl903



https://www.youtube.com/@thepirl903



https://www.youtube.com/@thepirl903



https://www.youtube.com/@thepirl903



https://www.youtube.com/@thepirl903

∝ 𝑀𝑥
, 𝑦



https://www.youtube.com/@thepirl903
𝑧

𝑧



Semiclassical Description
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additional precession:

�(t) =
1

~

Z t

0
(�E1 � �E0)dt

0

z

Magnetic field

' = (E1 � E0)t/~relative phase:
| (t)i

x

y

φ

additional perturbations: δ
b

| (t)ix

y

φ



Single qubit : diffusion process

Random Process

12

Time t

P
ha

se
 φ
-δ

The coupling is in general time dependent



b�b�

Ensemble Average

13

In an ensemble, different qubits have different 
couplings and therefore different precession angles

Mean

The average polarization is therefore 
smaller than that of the individuals



Single qubit : diffusion process

Time Dependence
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The coupling is in general time dependent

The observed polarization therefore decays

Time t
C

oh
er

en
ce

Ensemble, time-average, 
entangled system: decay

Time t

P
ha

se
 φ

⇢ij(t) = ⇢ij(0) e
�i(Ei�Ej)t/~e�t/T2



Relaxation of Populations
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Phenomenology of Decoherence
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Superposition state | (0)i = a|0i+ b|1i
Coherence = a⇤b

From chapter 4: if qubit gets entangled with the 
environment, its partial density operator becomes mixed

Description of environment

- classical : fluctuations


- quantum : entanglement

T2

FID =

Free Induction Decay

Time
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additional precession:
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Single qubit : diffusion process

Time Dependence
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The coupling is in general time dependent

The observed polarization therefore decays

Time t
C

oh
er

en
ce

Ensemble, time-average, 
entangled system: decay

Time t

P
ha

se
 φ

⇢ij(t) = ⇢ij(0) e
�i(Ei�Ej)t/~e�t/T2



Coupling Hamiltonian 
for pure dephasing:

The Spin-Boson Model

7

BathSystem
|1〉

|0〉

Bath

HI =
X

k

�z(gkb
†
k + g⇤kbk)

System

b�b�

Mean

7



Coupling Hamiltonian 
for pure dephasing:

The Spin-Boson Model

8Time t
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(t
)

0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1 10 100

"quiet"
regime

quantum
regime

thermal
regime

Palma et al., Proc. Roy. Soc. A 452, 567-584 (1996).

BathSystem
|1〉

|0〉

Bath

HI =
X

k

�z(gkb
†
k + g⇤kbk)

System



Spin-Spin Model
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Simpler model : 2 spins S = 1/2

A B

System Environment

Eigenstates:

Triplet

Singlet

0

E
ne

rg
y 

[ℏ
]

ω/4

-3ω/4

| "#i+ | #"i

| "#i � | #"i

| ""i | ##i

Interaction Hamiltonian:

H =
!

~
~SA · ~SB



Evolution
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Initial state : general product state

| (0)i =
✓
a| "i+ b| #i

◆

A

⌦
✓
c| "i+ d| #i

◆

B

= ac| ""i+ bc| #"i+ ad| "#i+ bd| ##i.

Time evolution

exp

✓
i!t

4

◆
| (t)i = ac| ""i+ bd| ##i

+
1

2
[ad(1 + ei!t) + bc(1� ei!t)]| "#i

+
1

2
[ad(1� ei!t) + bc(1 + ei!t)]| #"i

C = |ad� bc|2| sin!t|Concurrence:



Entanglement and Mixing
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No entanglement for | (0)i = | ""i or | (0)i = | ##i

Maximum entanglement 
for or| (0)i = | "#i | (0)i = | #"i

1

2
[(1 + ei!t)| "#i+ (1� ei!t)| #"i]ei!t/4| (t)i =Time evolution

t =
⇡

2! : | ( ⇡
2!

)i = e�i⇡/8 1

2
[(1 + i)| "#i+ (1� i)| #"i]

The corresponding system density operator is

⇢A(
⇡

2!
) = TrB | (

⇡

2!
)ih ( ⇡

2!
)| = 1

2
(| "ih" |+ | #ih# |)

=
1

2

✓
1 0
0 1

◆



Several Degrees of Freedom
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Time

Total signal

C
oh

er
en

ce
different degrees of freedom

different interaction strengths



Example 2
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|^(ʌ/2t)> = e-iʌ/8 [|B>A � (|B> - i |?>)B - i |?>A � (|B> + i |?>)B]1
2

= e-iʌ/8 [|B>A � |A>B - i |?>A � |@>B]1
2

lA(ʌ/2t) = (|B><B| + |?><?|)1
2

1
0
0
1 )(12=

Start in superposition state

Evolution till t=π/2ω

System density operator:

| (0)i = 1

2
(| "i+ | #i)A ⌦ (| "i � | #i)B



Theorem of Decoherence

14

If two mutually orthogonal states of the system 
of interest become correlated to two mutually 

orthogonal states of the environment, 

all effects of phase coherence between the two 

system states become lost.

A. J. Leggett, in D. Heiss, editor, Fundamentals of Quantum Information, volume 
587 of Lecture Notes in Physics, pages 3–46, Berlin, 2002. Springer Verlag.

Final state:

The environment has "measured" the system.

1

2
[| "iA ⌦ |!iB � i| #iA ⌦ | iB ]



Scaling
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How fast will a “useful” quantum register lose information ?

Quantum register 
involves coherence 

of many qubits

Relaxation = 
Decoherence

TimeC
oh

er
en

ce

FID = Free 
Induction  Decay

e�t/T2

observable 
magnetization =


single qubit coherence



available experimental data (liquid NMR)

# qubits

independent qubit
decoherence:
linear

majority vote:
exponential

Scaling of Decoherence
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More Data

D
ec

oh
er

en
ce

 ti
m

e 
[s

]

1

10-2

10-4

10-6

10-8
1 10 104103102

Needed for 
factorization
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Multiqubit Systems

17

23 spins

146 spins

FID

decoherence of individual spins

Time [µs]

N
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m
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ed
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en

ce
)



~ K

Decoherence Rates
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linear
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30000 1000 2000 4000
0

200

400

Number of correlated spins K
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7.3 Quality Measures
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⇢(t)

⇢t(t)

t=0

ideal evolution

actual evolution



Quantum State Tomography

31

Theory Experiment

Chuang, Gershenfeld, Kubinec, Phys. Rev. Lett., 80, 3408 (1998).

Density operator after a single iteration of the Grover operator



Quantum Process Tomography
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0

0.25

0.5

mz I mx
imy

mz

I
imy

mx

0

0.25

0.5

imy
mz

mxI

I mx
mz

imy

Theory Experiment

Hadamard gate



Quantum Process Tomography
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0 10 20 30 40 50 60 70 80

0.4

0.6

0.8

1.0

Number of Gates

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Rectangular pulses without DD protection

BB1 without DD protection

Protected gates sequence (a)

Protected gates sequence (c)

Average error per gate 0.002



Fighting Errors
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• Optimize the classical apparatus that controls the quantum 
system to make the gate operations as perfect as possible. 

• Design gate operations in such a way that errors in 
experimental parameters tend to cancel rather than 
amplify. 

• Use error correction schemes. 

• Store the information in areas of the Hilbert space that are 
least affected by the interaction between the system and 
its environment. 

• Use active schemes for decoupling the system from the 
environment, such as dynamical decoupling.

All schemes must 

be combined!



7.4 Quantum Error Correction
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7.4 Quantum Error Correction

36

Errors are hard to detect and correct in QIP

readout

ga
te

er
ro

r

DD cannot completely eliminate errors



Threshold Theorem
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Decoherence (=loss of information) leads to errors

... but ...

A quantum computation can be as long as 
required with any desired accuracy as long 

as the noise level is below a threshold value



Quantum Error Correction Sonnet
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We cannot clone, perforce; instead, we split 
Coherence to protect it from that wrong 
That would destroy our valued quantum bit 
And make our computation take too long. 

Correct a flip and phase - that will suffice. 
If in our code another error's bred, 
We simply measure it, then God plays dice, 
Collapsing it to X or Y or Zed. 

We start with noisy seven, nine, or five 
And end with perfect one. To better spot 
Those flaws we must avoid, we first must strive 
To find which ones commute and which do not. 

With group and eigenstate, we've learned to fix 
Your quantum errors with our quantum tricks.

Daniel Go!esman



Classical Digital Information

39

Digital Information is inherently stable

A TTL signal is defined as "low" or L when between 0V and 
0.8V with respect to the ground terminal, and "high" or H 
when between 2V and 5V.

Small voltage error does not affect information
Only possible error : bit flip 0 ⇔ 1



Classical Error Correction

40

Ideal

0 1 0 1 1 0

+ =

Recalibrate

0 1 0 1 1.0 0.0

+ =

Real

0 1 0 1 0.9 0.1

+ =



remaining error probability ~ 3p2

Classical Error Correction

41

Use redundancy, e.g. 0 � 0L = 000 1 � 1L = 111

Single bit error probability 0 < p < 1

Probability for 0 error (1-p)3 ~ 1-3p
1 error 3p(1-p)2 ~ 3p
2 errors 3p2(1-p) ~ 3p2

3 errors p3 = p3

After transmission / calculation:
check if all bits identical; if not : flip the one that differs

110, 101, 011A 111001, 010, 100A 000



Quantum Error Correction
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Main difficulties:

- # possible states increases exponentially

- Cannot measure qubits during computation

- Must maintain phase coherence

Ideal:
 out in U

t=0 t=τ



Quantum vs. Classical
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Quantum information "more valuable"  
  but more fragile

No cloning theorem

Threshold theorem
yet there is hope!!

Cannot measure qubits  
during calculation a |B> + b |?>

|B>
|?>



Quantum Error Correction
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|0iL |1iL

Effect of perturbations

Error Correction : purge "forbidden" areas of Hilbert space

Challenges: 
 Measurements must not perturb information  
 Continuum of errors
"Redundancy" : Use larger Hilbert space



Encoding
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}



Single Spin-Flip Error
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|^0> = a |0> + b |1>
use 2 ancilla bits
in state |0>

|^0> = a |000> + b |100>
CNOT2

|^1> = a |000> + b |111>

Possible error
probability : p

|^1> = a |010> + b |101>~
Bit-flip

 on 2

|^1> = a |000> + b |111>
Perfect transmission

Alice Bob
for Quantum Communication



Detection and Correction
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~
|^1> = a |000> + b |111>
|^1> = a |010> + b |101>

} are eigenstates of Z1Z2 and Z1Z3

a |000> + b |111>

a |010> + b |101>
a |100> + b |011>

a |001> + b |110>

Z1Z2 Z1Z3
1 1

-1 1
-1 -1

1 -1

flip 2 : X2

flip 1 : X1

flip 3 : X3

Alternative error detection:

use 2 ancilla qubits in |00> state
|00>



Excercises
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Excercises
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Encoding

4

}



Single Spin-Flip Error

5

|^0> = a |0> + b |1>
use 2 ancilla bits
in state |0>

|^0> = a |000> + b |100>
CNOT2

|^1> = a |000> + b |111>

Possible error
probability : p

|^1> = a |010> + b |101>~
Bit-flip

 on 2

|^1> = a |000> + b |111>
Perfect transmission

Alice Bob
for Quantum Communication



Detection and Correction
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~
|^1> = a |000> + b |111>
|^1> = a |010> + b |101>

} are eigenstates of Z1Z2 and Z1Z3

a |000> + b |111>

a |010> + b |101>
a |100> + b |011>

a |001> + b |110>

Z1Z2 Z1Z3
1 1

-1 1

-1 -1

1 -1

flip 2 : X2

flip 1 : X1

flip 3 : X3



Continuous Phase Errors

7

P(¡) : ei¡qZ = ( )ei¡q
0
0
e-i¡q

= cos(¡q)1 + i sin(¡q)Z

a |0> + b |1> a |0> - b |1>
"Phase flip"

(|0> |1>)1
2

±

"Bit flip"
(|0> ± |1>)1
2

initial state
|^(0)> = a |0> + b |1>

use H to
change basisx-basis

|^(0)> = |±X> = (|0> ± |1>)1
2

Error : random z-rotation



Continuous Phase Error
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|^0> = a |0> + b |1>

|^0> = a |000> + b |100>
CNOT�2

|^1> = a |000> + b |111>
H�3

|^1> = a |+++> + b |--->

Check by X1X2, X1X3
Error correction by Z1, Z2, Z3

Switch back to comp. basis by H�3

|^1> = a |+++> + b |--->
|^1> = a |+-+> + b |-+->~

Phas
e err

or (Z2
)

Alice Bob



Projection Errors
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a |B> + b |?>
|B>
|?>

|0><0| = PB = (1+Z)1
2 |1><1| = P? = (1-Z)1

2

Any single qubit error can be expanded in the basis 1, X, Y, Z
"Discretization of errors"

Projection errors can be corrected like phase errors

Projection operators:

~ accidental measurement



Excercise

10

General single-qubit state

Write the projector onto as a linear combination



H�3 : |000>A |+++> ; |111>A |--->
|00> CNOT�2

Arbitrary Single Qubit Errors

11

|1>A (|000> - |111>) (|000> - |111>) (|000> - |111>)1
2 2

|0>A (|000> + |111>)(|000> + |111>)(|000> + |111>)1
2 2

2) switch to x-base

1) 3-qubit code

Can be corrected by concatenating schemes for bit flip 
(X) and phase errors (Z)

|0>A |000> ; |1>A |111> CNOT�2

3) Encode each qubit again into 3



Arbitrary SingleQE - 9 qubits 

12



Concatenation corrects automatically Y = XZ errors

Syndrome Extraction

13

|0>A (|000> + |111>)(|000> + |111>)(|000> + |111>)1
2 2

|1>A (|000> - |111>) (|000> - |111>) (|000> - |111>)1
2 2

1) Check for bit-flip errors using Z1Z2, Z1Z3 etc.

Correct (if necessary) using X1 .. X9.

2) Phase errors: (|000>+|111>A |000>-|111>)
detect by comparing signs of blocks
using X1X2X3X4X5X6, X1X2X3X7X8X9 etc.
Correct (if necessary) using Z1Z2Z3 etc.



Arbitrary Single Qubit Errors
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9-bit code (see above):
P.W. Shor, 'Scheme for reducing decoherence in quantum computer memory',
Phys. Rev. A 52, R2493 (1995).

Other encoding schemes

7-bit code:
A.M. Steane, 'Error Correcting Codes in Quantum Theory',
Phys. Rev. Lett. 77, 793 (1996).

5-bit code:
R. Laflamme, C. Miquel, J.P. Paz, and W.H. Zurek, 'Perfect Quantum Error
Correcting Code', Phys. Rev. Lett. 77, 198 (1996).
C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, and W.K. Wootters, 'Mixed-state
entanglement and quantum error correction', Phys. Rev. A 54, 3824 (1996).
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15

readout
en

co
di

ng

de
co

di
ng

er
ro

r c
or

re
ct

io
n

er
ro

r



H3

H2

H1

F2

F1

Quantum Error Correction
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5-Qubit Encoding

17

H

H

H

Z Z

Z

↵
|0
i L

+
�
|1
i L

↵|0i+ �|1i

|0iL =
1p
8
(|00000i � |10111i � |01011i+ |11100i+ |10010i+ |00101i+ |11001i+ |01110i)

|1iL =
1p
8
(|11111i � |01000i+ |10100i � |00011i+ |01101i+ |11010i � |00110i � |10001i).

Encoded basis states:

Encoding scheme:



Groups
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• Closure: For any pair of group elements a, b 2 G, the
result of the group operation must be in the group, a · b 2
G.

• Associativity: For all group elements a, b, c 2 G, (a · b) ·
c = a · (b · c).

• Identity element: The group contains an element called
identity and often written as 1, the the group operation
yields 1 · a = a · 1 = a.

• Inverse element: For every group element a, there is an
inverse element a�1, such that a · a�1 = a�1 · a = 1.

1



Stabilizer Codes

19

Pauli group for 1 qubit: {±1, ±X, ±Y, ±Z, ±i1, ±iX, ±iY, ±iZ}

Set of states invariant under all elements of S

e.g. VS = |000>, |111>stabilized by S

Elements of S are syndrome extractors

n : # physical bits
k : # logical bits
d : minimum distance
(# differing qubits)

Codes characterized by [n, k, d]

Subgroup S, e.g. (for 3 qubits) S = {1, Z1Z2, Z2Z3, Z1Z3} 
stabilizer



Quantum Error Correction Sonnet
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We cannot clone, perforce; instead, we split 
Coherence to protect it from that wrong 
That would destroy our valued quantum bit 
And make our computation take too long.


Correct a flip and phase - that will suffice. 
If in our code another error's bred, 
We simply measure it, then God plays dice, 
Collapsing it to X or Y or Zed.


We start with noisy seven, nine, or five 
And end with perfect one. To better spot 
Those flaws we must avoid, we first must strive 
To find which ones commute and which do not.


With group and eigenstate, we've learned to fix 
Your quantum errors with our quantum tricks.

Daniel Gottesman
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Encoding Decoding,

Correction

Fault-Tolerant Computing
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Gate operations must operate on full redundant code 
words, not only logical qubits
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Is QEC compatible with processing ?

must be applied to logical states

5-qubit gate in the space of physical qubits

QEC for quantum memoriesQEC for quantum computing



Quantum Error Correction
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Process tomography of encoded gates

Individual results:

E X ïL< Z
E

X
ïL<

Z

0

0.5

1

R
e{

}

E X ïL< Z
E

X
ïL<

Z

0

0.5

1

E X ïL< Z
E

X
ïL<

Z

ï���
�

���
���

Identity NOT H

16 possible outcomes: 

NoErr

3.5 = 15 different errors

Phys. Rev. Lett.109:100503 (2012).

H

E B1 B2 B3 B4 B5 BS1 BS2 BS3 BS4 BS5 S1 S2 S3 S4 S5
0.7

0.8

0.9

1

NOT

E B1 B2 B3 B4 B5 BS1 BS2 BS3 BS4 BS5 S1 S2 S3 S4 S5
0.7

0.8

0.9

1

Error type

Fi
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y

Identity

E B1 B2 B3 B4 B5 BS1 BS2 BS3 BS4 BS5 S1 S2 S3 S4 S5
0.7

0.8

0.9

1
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Bit-flip

{
Bit+phase

{

Phase-flip
N
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Threshold Theorem
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A quantum computation can be as long as 
required with any desired accuracy as long 

as the noise level is below a threshold value

J. Preskill, 'Reliable quantum computers',  
Proc. R. Soc. Lond. A 454, 385 (1998).


E. Knill. Quantum computing with realistically noisy 
devices. Nature 434, 39 (2005).


P. Aliferis, D. Gottesman, and J. Preskill. Accuracy 
threshold for postselected quantum computation. 

Quantum Information and Computation 8, 181 (2008).
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Quantum Error Correction
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Process tomography of encoded gates

Individual results:
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16 possible outcomes: 

NoErr

3.5 = 15 different errors

Phys. Rev. Lett.109:100503 (2012).

H

E B1 B2 B3 B4 B5 BS1 BS2 BS3 BS4 BS5 S1 S2 S3 S4 S5
0.7

0.8

0.9

1

NOT

E B1 B2 B3 B4 B5 BS1 BS2 BS3 BS4 BS5 S1 S2 S3 S4 S5
0.7

0.8

0.9

1

Error type

Fi
de

lit
y

Identity

E B1 B2 B3 B4 B5 BS1 BS2 BS3 BS4 BS5 S1 S2 S3 S4 S5
0.7

0.8

0.9

1

{
Bit-flip

{

Bit+phase

{

Phase-flip
N

o 
er

ro
r



Threshold Theorem
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A quantum computation can be as long as 
required with any desired accuracy as long 

as the noise level is below a threshold value

J. Preskill, 'Reliable quantum computers',  
Proc. R. Soc. Lond. A 454, 385 (1998).


E. Knill. Quantum computing with realistically noisy 
devices. Nature 434, 39 (2005).


P. Aliferis, D. Gottesman, and J. Preskill. Accuracy 
threshold for postselected quantum computation. 

Quantum Information and Computation 8, 181 (2008).



7.5 Avoiding Errors
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Sources of Errors

9

- Spurious interactions : internal, environment

Ion trap SQUID



|0>

|1>

System

Sources of Errors

10

0.99

0.9

0.999

Offset

Fl
ip

 a
ng

le
 / 
π

-0.4 0 0.4

0.8

1.0

1.2

System-environement 
interations

Bath

Imperfect gate operations

Fidelity of real laser pulse



Fighting Errors
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• Optimize the classical apparatus that controls the quantum 
system to make the gate operations as perfect as possible. 

• Design gate operations in such a way that errors in 
experimental parameters tend to cancel rather than 
amplify. 

• Use error correction schemes. 

• Store the information in areas of the Hilbert space that are 
least affected by the interaction between the system and 
its environment. 

• Use active schemes for decoupling the system from the 
environment, such as dynamical decoupling.

Threshold must be reached: 10-2 .. 10-4



Counter-Strategy
Design gate operations such that errors in experimental 
parameters cancel rather than amplify each other



Counter-Strategy
Design gate operations such that errors in experimental 
parameters cancel rather than amplify each other

hyperbolic 
secant pulse



Combination Therapy
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dynamic 
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Plans

Specific example : decoherence in diamond NV centers
General principle : need to combine all possible countermeasures



Composite pulses = robust pulses = compensated pulses

y
x

xy y

Error Compensation
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Making DD sequences robust:

Levitt and Freeman, J. Magn. Reson. 33, 473 (1979).

Khodjasteh and Viola, Phys. Rev. A, 80, 032314 (2009).

y
Effect of flip 
angle error

Time

Z



Error Compensation
Design gate operations such that errors in experimental 
parameters cancel rather than amplify each other
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Effect of Flip Angle Errors
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CPMG

XY-4

KDD

Fidelity after 20 pulses
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Active and Passive
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Active : use error correction schemes
Encoding Decoding

Error 
correction

Decoher
-ence

Errors

Passive : store information in "quiet" parts of Hilbert 
space

“noisy” “quiet”
H



Types of Decoherence
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Total decoherence: "anything goes"

Independent qubit decoherence Quantum Error Correction

Collective decoherence

coupling operator : F_ = YS_ : full permutation symmetryi

i

Use symmetry to minimize decoherence

Cluster decoherence



Decoherence-free subspace : states |i>
decoherence

Decoherence-free Subspaces

21

H = HS ⌦ 1B + 1S ⌦HB +HInt

HInt =
X

↵

F↵ ⌦B↵

System Bath

+
1

2

X

↵,�

a↵�
⇣
[F↵,⇢SF

†
� ] + [F↵⇢S ,F

†
� ]
⌘
.

d

dt
⇢S = �

i

~ [H̃S ,⇢S ]

Equation of motion for system only:

Relevant density operator : ⇢̃ =
X

i,j

⇢̃i,j |iihj|

Decoherence-free subspace exists ifX

↵,�

a↵�
⇣
[F↵, ⇢̃F

†
� ] + [F↵⇢̃,F

†
� ]
⌘
= 0

Useful case:        (i.e. |i>are degenerate set of eigenstates)                                                                     
F↵|ii = c↵|ii



DFS asymptotically fill complete Hilbert space

Total decoherence
Individual qubit decoherence dim[DFS(K)]A 0}

Capacity of DFS
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How much information can be stored in DFS?

Collective decoherence: F_ = YS_ ; _ = x, y, zi
i

DFS spanned by singlet states
# states Mz=0

Mz=0
S > 0

dim[DFS(K)] = ( )KK/2( ) K
K/2-1( )- = K!

(K/2)! (K/2+1)!

# of qubits N = log2 dim[DFS(K)] = K - log2K +O(1)3
2



A subspace of this is also immune to noise || x

DFS for Spins
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Hz = b(t) Y Izi

iPerturbation :

Dephasing : lij = b(t) 6mijlijd
dtih 6mij = <i|Y Iz|i> - <j|Y Iz|j>k

k

k

k

Example 2 spins 1/2

B

E



Implementation
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L. Viola, E.M. Fortunato, M.A. Pravia, E. Knill, R.
Laflamme, and D.G. Cory, 'Experimental Realization of
Noiseless Subsystems for Quantum Information
Processing', Science 293, 2059 (2001).



Clock Transitions
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1 second = 9192631770 periods of the 

133Cs, F = 3, mF = 0 ↔ F = 4, mF = 0 hyperfine transition

Definition

6S1/2

F=3

F=4

9.192631770 GHz

Magnetic field

mF = 4
0

-4

0
-3

3
9.192631770 GHz
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Clock Transition for Qubit
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Nature Nano. 8, 561 (2013).
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+ longer; current record : 6 hours



Zeno Effect
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Zeno of Elea (ca. 490-430 b.c.)



Polarization of light 

Two level system (TLS)Two level system (TLS)

Kwiat, Winfurter, Zeilinger. Sci. Am. November 52 (1996).



Two level system

V

H

15º

TLS Dynamics

Step



Two level system

V

H

P(H)

P(V)

15º

Step

TLS Dynamics



Two level system

V

H

15º

Step

TLS Dynamics



Two level system

V

H

15º

Step

TLS Dynamics



Two level system

V

H

15º

Step

TLS Dynamics



Two level system

V

H

15º

Step

TLS Dynamics



Two level system

V

H

15º

Step

TLS Dynamics



Two level system

V

H

15º

TLS Dynamics



Two level system
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Two level system
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We can avoid the rotation evolution through 
measurements

P(H) = 0

TLS Dynamics
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Stroboscopically measured TLS Dynamics

Quantum Zeno Effect



Exercises
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