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Classical Error Correction
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Sources of Errors

- Parameters of quantum register
differ from the ideal ones

- Control fields have finite - Coupling to environment
precision — errors — decoherence

= e

Coherence
decays
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Fighting Errors

* Optimize the classical apparatus that controls the quantum
system to make the gate operations as perfect as possible.

* Design gate operations in such a-way t
experimental parameters tend gce
amplify.

. USe GA\XM%Q Chemes \ﬂed\

« Store the in Q S of the Hilbert space that are
least aﬁectem mteractlon between the system and
its environment.

» Use active schemes for decoupling the system from the
environment, such as dynamical decoupling.
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Phenomenology of Decoherence

Superposition state |¥(0)) = a|0) + b|1)
Coherence = a’b

From chapter 4: if qubit gets entangled with the
environment, its partial density operator becomes mixed

FID = Description of environment

O pFree Induction Decay - classical : fluctuations
S - quantum : entanglement
O IF;
C
3

.

/ Time
pure

mixed

10



Proton 1H nuclel

« Mass

. Charge

° SPIN s =1/2




Proton 1H nuclel

 Mass

. Charge

o SPIN s =1/2

. (1) Angular Momentum

. (i) Magnetic Moment




Proton 1H nuclel

 Mass

. Charge

o SPIN s =1/2

. (1) Angular Momentum

. (i) Magnetic Moment




Changing magnetic flux induces
a signal in our coil!

https://www.youtube.com/@thepirl903




Detected Signal
S(t) = cos(wt)

‘Larmor Equation’

w="1B

. v magnetic
precession frequency —— £
eld




Detected Signal
185 (wsb)




https://www.youtube.com/@thepirl903




S(t) = N sin(f)yB.cos(wt)

number of spins
flip angle

Id

A magnetic fie ;

S(t) = Acos(wt)
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https://www.youtube.com/@thepirl903
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S(t) = Acos(wt)
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S(t) = Acos(wt)
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“17 Relaxation”

https://www.youtube.com/@thepirl903




Semiclassical Description

U (0)) = al0) + b1) m
(1)) = a|0)e 0t/ 4 p|1)eH1t/h i
X

w(t)
relative phase: ¢ = (&1 — &)t/h
y
X
\J additional perturbations: & (1))
0

additional precession: y
1 t
5(t) = - / (5g, — b, )dt” \J
h Jo
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Random Process

The coupling is in general time dependent

Single qubit : diffusion process

Phase ¢-0

Time ¢
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Ensemble Average

In an ensemble, different qubits have different
couplings and therefore different precession angles

The average polarization is therefore
smaller than that of the individuals

13



Time Dependence

The coupling is in general time dependent

Single qubit : diffusion process Ensemble, time-average,

entangled system: decay

>

Coherence

Phase qb>

>

Time t

Time ¢

The observed polarization therefore decays
pij () = pij(0) e~ & &) Rt/ T2

14



Relaxation of Populations

PIP

Population difference

|©

Time ¢
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Phenomenology of Decoherence

Superposition state |¥(0)) = a|0) + b|1)
Coherence = @™ b

From chapter 4: if qubit gets entangled with the
environment, its partial density operator becomes mixed

EID = Description of environment
O AFree Induction Decay - classical : fluctuations
S - quantum : entanglement
g T2

T
O g ’

| Time
pure

.
mixed



Semiclassical Description

T(0)) = al0) + b|1) m I

W (t)) = a|0)e 0t/ 4 p[1)ert/R t
X

e [T()
relative phase: ¢ = (&1 — &o)t/h
y
X
KJ additional perturbations:éf?q%t)>
0

additional precession: y
1 t
&wL/<&1&aﬁ’\\\\////
h Jo
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Time Dependence

The coupling is in general time dependent

Single qubit : diffusion process Ensemble, time-average,

entangled system: decay

>

Coherence

Phase qb>

>

Time ¢

The observed polarization therefore decays
pij(t) = pij(0) e &Rt



The Spin-Boson Model

Coupling Hamiltonian System Bath
for pure dephasing: 1)
Bath
» 0) ——

Hr = Zgz(gkb;; + g5,b1)
k

|




The Spin-Boson Model

Coupling Hamiltonian
for pure dephasing:

Bath

”le:I \

System

1y furlctiorle_F(j)

peca

Palma et al., Proc. Roy. Soc. A452, 567-584 (19906).

0. (gxb} + grbe)

System
1)

Bath

0) —

"quiet”
3 regime
6 |
quantum
4| regime
2| thermal
regime
ol e SN
0.0001  0.001 0.01 0.1 1 10 100
Time ¢ 8




Spin-Spin Model

Simpler model : 2 spins S = 1/2
Interaction Hamiltonian:

W = —
_“§,-S
H 74 OB

¢y

System Environment

A — S—

Eigenstates:

I ————

A

< It +H D |

g 0 w/4 ——— Triplet
5 1) = | 41) |

T —-3w/4 — Singlet




Evolution

Initial state : general product state

5(0)) = (a\ M+ ¢>>A g (c\ N +d ¢>)B
— ac| 1) + bel 11) + ad| 14) + bd] 11

Time evolution

1wt
exp ( ) () = ac| 1) + bd| 1)

4 lad(1 4+ ") + be(1 — €] 1)

ad 1 — ™) 4 be(1 + e™H)]| I1)

W Concurrence: C = |ad — bc|? \smwt\



Entanglement and Mixing

No entanglement for [¥(0)) = | 1) or |¥(0)) =| )

]Ic\c/l)fximum entanglement W(0)) = | 41) or |W(0)) = | |1)
1

Time evolutione™ 4|1 (t)) = 5[(1 + e 1) + (1 — )| 4]

" =TT 81 ' ‘
t=-: V(o)) =e TSI+ 1) + (1 =) 1)

The corresponding system density operator is
70

pa(ao) = Tralv (NG = (1 + ] 1D

(1o
200 1

11



Several Degrees of Freedom

different degrees of freedom
I different interaction strengths

<l

otar Signay

Coherence

/

/ Time
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Example 2

Start in superposition state

W) = 5 (1)1 DA ® (1)~ 1)

Evolution till t=rr/2w
[P(r20)> = e ™IS, @ (1> -i[ID)g-i 1>, ® (1> +il{>)p]
= /8 % [\’|‘>A X |—>>B -1 \\|,>A X \<—>B]

System density operator:

pam20) = 2A<+ <4 = 1[0

01
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Theorem of Decoherence

Final state: {
5 I THWa®| =) —1l)a®]|<)B
If two mutually orthogonal states of the system
of interest become correlated to two mutually
orthogonal states of the environment,
all effects of phase coherence between the two

system states become lost.

I—

A. J. Leggett, in D. Heiss, editor, Fundamentals of Quantum Information, volume
587 of Lecture Notes in Physics, pages 3—46, Berlin, 2002. Springer Verlag.

The environment has "measured” the system,,



Scaling

FID = Free Relaxation =
nduction Decay Decoherence

>

Coherence

- .
. ) N
N - e ey
] 4 -y -
m (, ) SRR/ . ’*4" r
I e ‘- ’ "“ -

EIOTY

Involves coherence
of many qubits

|How fast will a “useful” quantum register lose information ’?!

observable
magnetization =
single qubit coherence




Scaling of Decoherence

Decoherence time [s]
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)
b
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Multiqubit Systems

=coherence)
& e — o o
b 'Y 28 5 =

Normalized signal (

=
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7
Q
@00/7
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%/éy
{
146 spins N
//7
$
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Decoherence Rates

600-

|

linear

Decoherence rate [103/s]

1000 2000 3000

Number of correlated spins K

4000
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7.3 Quality Measures

Ideal evolution

actual evolution

19



Quantum State Tomography

Theory Experiment

Density operator after a single iteration of the Grover operator

Chuang, Gershenfeld, Kubinec, Phys. Rev. Lett., 80, 3408 (39.



Quantum Process Tomography

Theory Experiment

Hadamard gate

32



Quantum Process Tomography

A

1.0 - o .

G, R
0Samn ara
5 v“‘ \ _ AVera
SO 0 - O ge el’rgr
08-1 & 3 — per gate )
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— O 6 a — .-
o v O
I Y
= v
- v
U:) v  Rectangular pulses without DD protection v
O BB1 without DD protection
0.4- g -
¢ Protected gates sequence (a)
o Protected gates sequence (c)
| | | | | | | |

0 10 20 30 40 50 60 70 80

Number of Gates 2



Fighting Errors

» Optimize the classical apparatus that controls the quantum

system to make the gate operations as perfect as possible.

* Design gate operations in such a-way {
experimental parameters tend { gce
amplify.

e Use eP“rr%gh chemes. b\“ed\
« Store the In m n@Qg\f the Hilbert space that are

least affecte e Interaction between the system and
its environment.

« Use active schemes for decoupling the system from the
environment, such as dynamical decoupling.

34



7.4 Quantum Error Correction

Classical error correction|. . .
Quantum error correction
Single spin-flip error| . . . . .

Error detection and correction

Continuous errors|. . . . . . .
Decoding| . . . . . .. . ...
Phase errors|. . . . . . . . ..
Projection errors, . . . . . . .
General single qubit errors|. .
Perfect 5-qubit code| . . . . .
Stabilizer codes| . . . . . . ..
Fault-tolerant computing

35



7.4 Quantum Error Correction

DD cannot completely eliminate errors

G) | -
Pin o |~ S I Pout eodout
(@) (D)

36



Threshold Theorem

Decoherence (=loss of information) leads to errors

.. but ...

-

A quantum computation can be as long as
required with any desired accuracy as long
as the noise level is below a threshold value

37



Quantum Error Correction Sonnet

We cannot clone, perforce; instead, we split
Coherence to protect it from that wrong
That would destroy our valued quantum bit
And make our computation take too long.

Correct a flip and phase - that will suffice.
If in our code another error's bred,

We simply measure it, then God plays dice,
Collapsing it to X or Y or Zed.

We start with noisy seven, nine, or five

And end with perfect one. To better spot

Those flaws we must avoid, we first must strive
To find which ones commute and which do not.

With group and eigenstate, we've learned to fix
Your quantum errors with our quantum tricks.

Daniel Gottesmgy



Classical Digital Information

Digital Information is inherently stable
A TTL signal is defined as "low" or L when between 0V and

0.8V with respect to the ground terminal, and "high" or H
when between 2V and 5V.

4

@ Small voltage error does not affect information
@ Only possible error : bit flip 0 & 1

39



Classical Error Correction

|deal
+ —
0O 1 0O 1 1 O
Real
-+ —
—
0 1 0 1 0.9 0.1
Recalibrate

0 1 0 1 1.0 0.0
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Classical Error Correction

Use redundancy, e.g. 0 =0,=000 1=1, =111
Single bit error probability 0 <p <1

Probability for  ( error (1-p)* ~ 1-3p
1error 3p(1-p)* ~ 3p
2 errors  3p*(1-p) ~ 3p?
3 errors p° = p3

After transmission / calculation:
check if all bits identical; if not : flip the one that differs
001, 010, 100 — 000 110, 101, 011 — 111

:> remaining error probability ~ 3p? .



Quantum Error Correction

|deal:

o \Pzn\ﬁ_\ \Ijout

t=0 =T

Main difficulties:

- # possible states increases exponentially
- Cannot measure qubits during computation

- Must maintain phase coherence

42



Quantum vs. Classical

Quantum information "more valuable"

FEETETTT
e

but more fragile

.f{; “‘.

No cloning theorem

Cannot measure qubits
during calculation alt>+b|[|>

yet there is hope!!

Threshold theorem

43



Quantum Error Correction

Challenges:
Measurements must not perturb information
Continuum of errors

"Redundancy” : Use larger Hilbert space

Effect of perturbations

Error Correction : purge "forbidden" areas of Hilbert space

44



Encoding

@ @

s a|000) + b|111)
4 A
U/

46



Single Spin-Flip Error

for Quantum Communication
Alice Bob

'/ ———

W>=al0>+Db[1>
use 2 ancilla bits
in state [0>

'@,> =2 000>+ b [100>

Possible error
probability : p
CNOT? 2 ~
@ 6\,‘,&\\9_0?7 W >=al010>+b [101>
- -

W >=al000>+Db 111> = W, >=2al[000>+b 111>
Perfect transmission 47



Detection and Correction

W >=2a|000>+b [111>

} are eigenstates of 2,7, and Z,7.,
Y.>=a|[010>+b [101>

7.7, 1.7,
a (000> + b [111> 1 1
al(100>+Db (011D> -1 -1 flip1:
a 010>+ Db 101> -1 1 flip 2 : X
a 001>+ b |[110> 1 -1 = flip 3 : X,
Alternative error detection: ?

use 2 ancilla qubits in |00> state

A
¢V
A
V

100>




Excercises

1. Qubit Projector in the Pauli Basis

Given a general single-qubit state:

[¥) = al0) +b]1)

where a and b are complex numbers satisfying |a|? + |b|2 = 1, express the projector [) (1| as a linear
combination of Pauli matrices:

) W] = el +c X +¢,Y +c.Z

66



Excercises

2. Decoherence: Pure Dephasing from a Stochastic Phase Semiclassical Description

Consider a spin-% particle initially polarized along the z-axis, i.e.,
1 |W(0)) = al0) + 1)
p(0) = (I +52),

and subject to a time-dependent stochastic phase 4(¢) accumulated due to a fluctuating magnetic field

[T (t)) = al0)e~0l/M 4 p|1)e~iE1t/h

along the z-axis. That is, d(¢) incorporates the effect of the field over time, and represents the net X

phase difference acquired between the spin states |0) and |1). In the interaction (rotating) frame, the [T (t))

time evolution of the density matrix is given by relative phase: ¢ = (&1 — &o)t/h

p(t) — e—ié(t)Sz p(O) eié(t)Sz. y

X

We are interested in computing the ensemble-averaged magnetization along the z-axis, additional perturbations: & ¥ (8)

(Sz(t)) = Tr [p(t)Ss] )
(a) Show that additional precession: y
(Sz(t)) = (cos(8(2))), 5(t) = I (66, — 8¢, )dt
assuming that §(¢) is a real-valued stochastic variable with zero mean. R &7 %

(b) Suppose §(t) is a Gaussian random variable with zero mean and variance (6%(t)). Express (S, (t))
in terms of the real part of the characteristic function (e*®)).

Time Dependence

(c) Prove that for a zero-mean Gaussian random variable 4,

8y _ —(6%)/2 L .
(") =e ' The coupling is in general time dependent
Hint: Expand € in a Taylor series and use the known moments of a Gaussian variable: all odd

moments vanish, and even moments are given by Single qubit : diffusion process

Ensemble, time-average,

(627) = (2n — 1)1 (52)™. § entangled system: decay
o
(d) Use the result from part (c) to show that § %
2 © o
(S2(t)) = e~ ®)/2, i
(e) Consider the case where 6(t) arises from a random walk process (Markovian noise), such that
ot Time t Time ¢

(#(0) = 7
The observed polarization therefore decays

pij(t) = pi;j(0) e~ UE—Ej)t/h—t/T;

i.e., the phase variance grows linearly with time. Show that
(Sz(t)) = e/,

and interpret the physical meaning of the time constant 75. 67
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® ®

& a|000) + b|111)
/4 Y
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Single Spin-Flip Error

for Quantum Communication
Alice Bob

W>=a0>+Db|1>
use 2 ancilla bits
in state [0D>

W,> = a 000>+ b [100>

Possible error
probability : p
2 2 -
@ CNOT 6‘\"‘\\9 OE'V \‘II1> =a 010>+ Db (101>
A
W > = 20005 +b [111> = W > =2 [000>+b 111>
Perfect transmission 5



Detection and Correction

'@.>=2a [000>+b [111>

N } are eigenstates of 2,7, and Z,7.,
P >=a 010>+ b [101>

1,2, 71,1,
a 000>+ b (111> 1 1
a 100>+ b [011> -1 -1 => flip 1: X,
a 010>+ Db (101> -1 1 = flip 2 : X,
a 001>+ b |110> 1 -1 => flip 3 : X,



Continuous Phase Errors

Error : random z-rotation

P(e) : e = (10 ) = cos(eq)1 + i sin(e)2

0 ¢
initial state / \
w0)>=al0>+b|1>
use H to al0>+b[1> al0>-b|1>
x-basis ‘change basis "Phase flip"

WO)> = > = 7(10> £ [1>)

A@o>£11)  F0>F(1D)
"Bit flip"




Continuous Phase Error

Alice Bob

P> =a 0>+ b 1>

@ Check by X, X,, X, X,

[Wy> =2 000>+ b [100> Error correctionby Z,,Z,, Z,

@ CNOT®? Switch back to comp. basis by H®3
'W.>=2al000>+b [111>
@ H® etf°‘§7)q‘i’1> a|+-+>+b |-+
ppa e

W>=al+++>+b|-> = '@ >=a|+++>+b |->
8



Projection Errors

~ accidental measurement  a|t>+b[{> .
>

Projection operators:

0><0] = P, =3 (1+2) 1<1]=P, =5(1-2)

=% Projection errors can be corrected like phase errors

Any single qubit error can be expanded in the basis 1, X, Y, Z
"Discretization of errors™



Excercise

General single-qubit state  |V) = «|0) + b|1)
Write the projector onto |¥) as a linear combination

W (V| =c11+c;X+¢,Y +c.Z

10



Arbitrary Single Qubit Errors

Can be corrected by concatenating schemes for bit flip
(X) and phase errors (Z)

1) 3-qubit code 10> —1000>; [1>—[111> CNOT®*

2) switch to x-base

H®3: 000> — |[+++>; [111> — |--->
00> / ¥\ / 1\ cNOT®?

3) Encode each qubit again into 3

0> >2%(\000>+|111>)(\000> 1111>)(J000> + [111))

11> — 2%(\00(» - [111>) (000> - [111>) (|000> - [111>)

11



-
4
L/

L
N
L/

L]
N
L/

Arbitrary SingleQE - 9 qubits

= O O O O O O O Q

12



Syndrome Extraction

0> — 2%(\00(» + [1112)(|000> + [111>)(|000> + [111)

1> — 2}7(\00(» - [111>) (000> - [111>) (|000> - [111>)
1) Check for bit-flip errors using Z.Z,, Z.Z, etc.
Correct (if necessary) using X, .. X,.
2) Phase errors: (|000>+/111> — |000>-|111))

detect by comparing signs of blocks
using X, X, X, X X X, X, X, X, X XX, etc.
Correct (if necessary) using Z,Z,Z, etc.

Concatenation corrects automatically Y = XZ errors

13



Arbitrary Single Qubit Errors

9-bit code (see above):

P.W. Shor, 'Scheme for reducing decoherence in quantum computer memory’,
Phys. Rev. A 52, R2493 (1995).

Other encoding schemes
7-bit code:

A.M. Steane, 'Error Correcting Codes in Quantum Theory',
Phys. Rev. Lett. 77, 793 (1996).

5-bit code:

R. Laflamme, C. Miquel, J.P. Paz, and W.H. Zurek, 'Perfect Quantum Error
Correcting Code', Phys. Rev. Lett. 77, 198 (1996).

C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, and W.K. Wootters, "Mixed-state
entanglement and quantum error correction', Phys. Rev. A 54, 3824 (1996).

14



Quantum Error Correction

ajeb _

buipoous _

N ~—— ~~— ~~— ~~—
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Quantum Error Correction

N ~—— ~~— ~~— ~~—

16



9-Qubit Encoding

Encoded basis states:
1

0)f, = %(mooom — [10111) — |01011) + |11100) + |10010) + [00101) + |11001) + [01110))
1), = %(]11111> —01000) + |10100) — |00011) + |01101) + |[11010) — |00110) — |10001)).
Encoding scheme:
al0) + BI1) @)1 o o o B P 71
0)2— H . N
— @ L 9 E
O>3 H } +
~
O>4 — H ® » O O §
>
0)5 JHHZH—o—a& D—eo—|

17



Groups

Closure: For any pair of group elements a,b € G, the
result of the group operation must be in the group, a-b €

G.

Associativity: For all group elements a,b,c € G, (a - b) -
c=ua-(b-c).

Identity element: The group contains an element called
identity and often written as 1, the the group operation
yields 1-a=a-1 = a.

Inverse element: For every group element a, there is an
inverse element ¢!, such that a-a™' =a"!-a =1.

18



Stabilizer Codes

Pauli group for 1 qubit: {+1, -

X, -

Y, -

7, -

i1, -

X, -

Y, -

2

Subgroup S, e.q. (for 3 qubits) S = {1, Z1Z2, Z2Z3, Z1Z3}
stabilizer
Set of states invariant under all elements of S

e.g. Vi =1000>, [111>

Elements of S are syndrome extractors

stabilized by S

Codes characterized by [n, k, d]

n : # physical bits

Kk : # logical bits

d : minimum distance
(# differing qubits)



I Quantum Error Correction Sonnet

We cannot clone, perforce; instead, we split
Coherence to protect it from that wrong
That would destroy our valued quantum bit
And make our computation take too long.

Correct a flip and phase - that will suffice.
If in our code another error's bred,

We simply measure it, then God plays dice,
Collapsing it to X or Y or Zed.

We start with noisy seven, nine, or five

And end with perfect one. To better spot

hose flaws we must avoid, we first must strive
o find which ones commute and which do not.

With group and eigenstate, we've learned to fix
Your quantum errors with our quantum tricks.

Daniel Gottesmey



Fault-Tolerant Computing

B 5— Fault- |8 . ©

2 = |Encoding [T—= | —5—= Decoding, =

Or—— g 25| tolerant P = . -9

o 2 = 3 ates = o Correction | =

e o T g o T e
S S

Gate operations must operate on full redundant code
words, not only logical qubits

qubits

21



Quantum Error Correction

QEC for quigriRincigiaatgie with processing ?

Pin c Pout readout
0){0 SIS 5[]8[8
0)(0] — & 3 H s
0)(0 ®

must be applied to logical states

o T—— ,

5-qubit gate in the space of physical qubits

22



Quantum Error Correction

Process tomography of encoded gates

ldentity

Individual results: >
T—— T E
O

LL

16 possible outcomes:
NoErr

3-5 = 15 different errors

Phys. Rev. Lett.109:100503 (2012).

NOT

~— QT
1 11 Ifi-ph sexfl
' B1 B2 B3 B4 B5 BS1 BS2 BS3 BS4 BS5 Si S2 S3 S4 S5

I e Identiti/ e

E BT B2 B3 B4 B5 BS1 BS2 BS3 BS4 BS5 S1 S2 S3 S4 S5
i S

—r

_Z H

;Illlllllllllllll

E BT B2 B3 B4 B5 BS1 BS2 BS3 BS4 BS5 S1 S2 S3 S4 S5

Error type 23



Threshold Theorem

-

A quantum computation can be as long as
required with any desired accuracy as long
as the noise level is below a threshold value

J. Preskill, 'Reliable quantum computers’,
Proc. R. Soc. Lond. A 454, 385 (1998).

E. Knill. Quantum computing with realistically noisy
devices. Nature 434, 39 (2005).

P. Aliferis, D. Gottesman, and J. Preskill. Accuracy
threshold for postselected quantum computation.
Quantum Information and Computation 8, 181 (2008).
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Fault-Tolerant Computing

S . B Fault
S-o— Encoding [T =1 tolerant
2 & s o gates
=< <

Decoding,
Correction

k logical

By

Gate operations must operate on full redundant code

words, not only logical qubits

qubits



Quantum Error Correction

QEC for quiarfRintaieiiatfie with processing ?

Pin —— t» t c Pout readout
0)(0] — 2 ol =
ol — B el e gL E
— O © ®
0)(0 ®

L .

must be applied to logical states

—

5-qubit gate in the space of physical qubits



Quantum Error Correction

Process tomography of encoded gates

_ ldentity
=05
T <>
LS
S
i Z . _
Y -iY - _
£ g X Z X . X
: |dentit
I <Ramgy o) A
16 possible outcomes: W o | I§-P S
NOErr '1 *Z BT B2 B3 B4 B5 BS1 BS2 BS3 BS4 BS5 S1 S2 S3 S4 S5

H

3-5 = 15 different errors ZZ:I ] | I

E Bt B2 B3 B4 B5 BS1 BS2 BS3 BS4 BS5 S1 S2 S3 S4 S5

Phys. Rev. Lett.109:100503 (2012). Error type 6




Threshold Theorem

-

A quantum computation can be as long as
required with any desired accuracy as long
as the noise level is below a threshold value

J. Preskill, 'Reliable quantum computers’,
Proc. R. Soc. Lond. A 454, 385 (1998).

E. Knill. Quantum computing with realistically noisy
devices. Nature 434, 39 (2005).

P. Aliferis, D. Gottesman, and J. PreskKill. Accuracy
threshold for postselected quantum computation.
Quantum Information and Computation 8, 181 (2008).



7.5 Avoiding Errors




Sources of Errors

- Spurious interactions : internal, environment

SQUID



Sources of Errors

Imperfect gate operations System-environement
— — interations
Fidelity of real laser pulse — m—

2 \ * System
o o % f —_—
c_C:D 1.0 @5 IO>
©
2 7
TH 11>

-0.4 0 0.4

10



Fighting Errors

Threshold must be reached: 102 .. 104

» Optimize the classical apparatus that controls the quantum
system to make the gate operations as perfect as possible.

* Design gate operations in such a way that errors in

experimental parameters tend to cancel rather than
amplify.

 Use error correction schemes.

 Store the information in areas of the Hilbert space that are
least affected by the interaction between the system and
Its environment.

» Use active schemes for decoupling the system from the
environment, such as dynamical decoupling.

11



Counter-Strategy

Design gate operations such that errors in experimental
parameters cancel rather than amplify each other

Simple pulse Composite pulse




Counter-Strategy

Design gate operations such that errors in experimental
parameters cancel rather than amplify each other

Simple pulse Composite pulse
HECHIE
04 00 04 04 0 .‘
Offset
hyperbolic

secant pulse

N\
7



Combination Therapy

General principle : need to combine all possible countermeasures
Specific example : decoherence in diamond NV centers

{2
C C
%’ [ GEJ Materials science Quantum control
O O . . | .
E mQ ourity Isotopic qubit dynamic
3 S engineering optimization decoupling
Q. > > > > >
>
()]
b7
=
LL
| | | | | | | >
1 ps 1ms 1s

Decoherence time T2

14



Error Compensation

Composite pulses = robust pulses = compensated pulses

. ~Z"
Effect of flip
angle erro
y | = |y yk gle errg
> > ;:_f'
Levitt and Freeman, J. Magn. Reson. 33,473 (1979). | | =~
Khodjasteh and Viola, Phys. Rev. A, 80, 032314 (2009). =
. X

Making DD sequences robust:

Time



Error Compensation

Design gate operations such that errors in experimental
parameters cancel rather than amplify each other

Simple pulse Composite pulse
2 /S \ | 12 7 \a
v R 1 56,
< e | _
S 10 (% [ 10
2 | Z
o | :
0.8 | O.BW /\
04 00 04 04 o0 |

Offset



Robust Optimal Control

Ideal operation “Strongly modulating pulse”

(T)

erturbations

()
e
-
:':
a
&
<
Q
%
qV)
c
al

Time

NMR example

L

_ X
O Offse Phys. Rev. A 74, 062312 (2006)



Effect of Flip Angle Errors

Fidelity

Fidelity after 20 pulses

T
—

KDD
1:

i ' ‘
I 1
I 1
0.1  CPMG "
; :
n 0
i ! :
. 0
0.01¢ . :
i : :
" 0
I 0

i . | | .

1 n n n . .
30 -20  -10 0 10 20 3

Flip angle error (%) y



Active and Passive

Active : use error correction schemes Error
Cr Encoding Decoding ¢Prrection
> o R(90)| Decoher [Ry-90)—e >
-ence
0>_2 i v Ry(90) R(-90)| y i
Errors
jos3or % Ry(90) R(-90)
Toffoli gate

Passive : store information in "quiet” parts of Hilbert
Shace




Types of Decoherence

Total decoherence: "anything goes"
Independent qubit decoherence  Quantum Error Correction

Collective decoherence
coupling operator : ¥ = ) S(ix : full permutation symmetry
Use symmetry to minimize decoherence

Cluster decoherence
¢ D

! . ¥ -5 v F
I [ ¥ = —
' —
4 ‘ i " =,

20



Decoherence-free Subspaces

H=Hs®1p+1s ® Hp + Hint System —¢ ¥~ Bath

. . Hlnt — Z Fa ® Ba
Equation of motion for system only: o

~\

d i~ 1
ps =~ [Hs, ps|Hz D aas ([Fa. psFh] + Faps, FH ) |

decoherence
Decoherence-free subspace : states |i>

Relevant density operator : p = Z pil0)(J
2,J

Decoherence-free subspace exists if

>~ aas ([Fa, FL] + [Fap, FL]) =0
a?/B
Usefu‘l c>:ase: " (i.e. [i>are degenerate set of eigenstates)
F_ 1) =c,7
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Capacity of DFS

How much information can be stored in DFS?

Collective decoherence: F o= 2 Sa s O=X,Y,Z

DFS spanned by singlet states M =0

# states MZ=0 S>0
' - (xr2)- (kz1) ~ @R G
dim[DFSKOI= |k n )~ \Kkn2-1) = (K2)! (K72+1)!

# of qubits N =log, dim[DFS(K)] = K - 2log,K + O(1)

==> DFS asymptotically fill complete Hilbert space

Total decoherence } R N
—
Individual qubit decoherence tm] (Kl

22



DFS for Spins

Perturbation: H =h(t) 21

Dephasing :  ih g—t Pi; = b(t) Amijpij Am;; = <i|§ Il;|i> - <j|§ I';|j>

Example 2 spins 1/2

A
E

imi

A subspace of this is also immune to noise || x
23



Implementation

o
o

Entanglement fidelity F,
o
o

0.4

L. Viola, EEM. Fortunato, M.A. Pravia, E. Knill, R.
Laflamme, and D.G. Cory, 'Experimental Realization of

Noiseless Subsystems for Quantum Information
Processing', Science 293, 2059 (2001).

= -
*\
T
\

A Un-Encoded, y Noise
® NS-Encoded, y Noise
® NS-Encoded, z Noise

| | |

10 20 30

Noise strength 1/t (s™1) o4



Clock Transitions

Definition

1 second = 9192631770 periods of the
133Cs, F =3, mF =0 & F =4, mr = 0 hyperfine transition

mr=4
< 0
-4

9.192631770 GHz 9.192631770 GH.
/ 3
—— 0
— -3

Magnetic field

25



Clock Transition for Qubit

@ X-band =€= ESR-type CTs —6— NMR-type CTs Bi donor in Si
10 -
N “
5
=~ 0- \
(@)]
sq—) “
5
_’|O_

10 -

Transition
frequency (GHz)
Ul
|

1.0° 100
0.8 —— -80 'S
=06 o\ 60 3
b04— -40 8
502 Lo =2

o ¢ 0
200 400 600

Magnetic field [mT] Nature Nano. 8, 561 (2013)



Keeping a Photon Alive

store it in Pr3+:Lax(WQO4)s+ Ionger current record : 6 hours
1.0 iy Bo = (-1.8,8,0)mT

,-'_| i‘-‘

10 10 _ 10 10
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Zeno Effect

Zeno of Elea (ca. 490-430 b.c.)

28



Two level system (TLS)

‘Polarization of light ‘

ORDINARY /" VERTICALLY HORIZONTALLY
LIGHT ¢ POLARIZED LIGHT POLARIZED LIGHT

Kwiat, Winfurter, Zeilinger. Sci. Am. November 52 (1996).



TLS Dynamics
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TLS Dynamics
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TLS Dynamics
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TLS Dynamics
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TLS Dynamics
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TLS Dynamics
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TLS Dynamics

& 2

POLARIZATION ROTATORS

? 4

HORIZONTAL POLARIZERS

"0 1 2 3 4 5 6
Step



TLS Dynamics
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POLARIZATION ROTATORS HORIZONTAL POLARIZERS

We can avoid the rotation evolution through
measurements
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Stroboscopically measured TLS Dynamics
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Stroboscopically measured TLS Dynamics
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Stroboscopically measured TLS Dynamics
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Stroboscopically measured TLS Dynamics
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Stroboscopically measured TLS Dynamics
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Stroboscopically measured TLS Dynamics
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Stroboscopically measured TLS Dynamics
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Stroboscopically measured TLS Dynamics
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Stroboscopically measured TLS Dynamics
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Stroboscopically measured TLS Dynamics
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Stroboscopically measured TLS Dynamics
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Stroboscopically measured TLS Dynamics
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Stroboscopically measured TLS Dynamics
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Stroboscopically measured TLS Dynamics
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Stroboscopically measured TLS Dynamics
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Stroboscopically measured TLS Dynamics
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Stroboscopically measured TLS Dynamics
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Exercises

2. Decoherence: Pure Dephasing from a Stochastic Phase
Consider a spin-3 particle initially polarized along the x-axis, i.e.,
1

assuming i = 1, and subject to a time-dependent stochastic phase §(t) accumulated due to a fluctuating
magnetic field along the z-axis. That is, 6(t) incorporates the effect of the field over time, and represents
the net phase difference acquired between the spin states |0) and |1). In the interaction (rotating) frame,
the time evolution of the density matrix is given by

p(t) — e—ié(t)Sz p(O) eié(t)Sz.
We are interested in computing the normalized ensemble-averaged magnetization along the z-axis,

_ Trip(t)S.]
SO BB

(a) Show that
(Sz(t)) = (cos(6(t))),

assuming that 6(t) is a real-valued stochastic variable with zero mean.
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Process Fidelity and Gate Comparison
1) Comparing Two Quantum Gates Consider
e U;: CNOT gate with control qubit 1 and target qubit 2.
e U,: a flipped CNOT gate with control qubit 2 and target qubit 1.

Both gates are represented by the following unitary matrices in the computational basis {|00), |01), |10}, [11)}:

0 0 0

U1 — CNOTl_)Q — U2 = CNOT2—)1 =

-0 O O
o OO =
-0 O O
O = OO

1

0 1 0 1
0 0 1 0
0 0 0 0

(a) Single-state analysis: Apply the gates U; and U, on the state |00). What can be concluded from
this about the gates?” Are they performing the same operation? Justify the answer, provide a counter-
example if needed.

(b) Global comparison: Demonstrate if U; and Uy are or are not equivalent quantum processes by
computing the process fidelity

m(uivy)|

) VI wio) /(v

Interpret the result and explain what it tells you about the two gates.

‘F

Note: For unitary gates Tr(UTU) = d, where d is the Hilbert space dimension.
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Quantum Error Correction: Bit Flip Code

2) Detecting and Correcting a Bit Flip Error Alice wants to transmit a qubit in the state |¢)) =
a|0) + b |1) to Bob using a noisy quantum channel that occasionally flips individual qubits with probability
p. To protect against a single bit-flip error, she encodes the logical qubit into three physical qubits as follows:

|10) = (a|0) +b|1)) ® |00) = a|000) + b|100) ,

|‘d)1> = CNOT1_>2 CNOTl_)g |'l/10> =a |OOO> +b |111> .

Here CNOT};_,; denote the CNOT gate with control qubit i and target qubit j. After transmission, Bob
receives the state: )
|) = a|001) + b|110) .

(a) Encoding. Explain why the state [11) = a|000) + b|111) is not a cloned state.

(b) Error Detection. Show that the operators Z;Zs and Z;Z3 can be used to detect which qubit (if

any) has flipped. Calculate the expectation values (1| Zy Z, [¢) and (4| Z1 Z3 ).

(c)Error Correction. Based on your results in (b), determine which qubit has flipped and apply the
appropriate Pauli X operation to correct the error. Show that you recover the encoded state [1).

(d) Decoding Describe how Bob can decode the state to recover Alice’s original qubit. Show the
operations needed and verify that the final state is (a [0) + b|1)) ® |00).
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