
9 How to Build a Quantum Computer

9.1 Fundamentals

9.1.1 Terminology

The term quantum computer refers to a device
that processes quantum information, according
to the rules outlined in Chapter 5. As one tries
to build such a device, one has to make a num-
ber of decisions that depend on each other. On
the physical side, one needs some hardware ba-
sis to represent the quantum information, as well
as the means to perform logical operations on
this information and read out the result. We re-
view some of the existing and proposed hardware
for building quantum computers in the following
chapters.

Before one gets down to the details of actual
implementations, there are some considerations
that are relevant for all of them, independent of
the specific hardware basis. The first question
that we start to discuss here, is how the infor-
mation flows into and through the computational
device; we refer to this as the architecture of the
quantum computer. The oldest and so far most
successful architecture is commonly referred to
as the network model of quantum computation
[168]. This is the model that we had in mind
when we discussed quantum gates in Chapter 5,
and we will use it as the model for discussing
existing and possible implementation. For com-
pleteness, we list some alternatives to the net-
work model in Section 9.4 at the end of this chap-
ter.

The present chapter is about fundamental con-
sideration, which apply to all possible implemen-
tations. The subsequent chapters then highlight
some of the many physical systems, whose capa-
bilities are currently explored by di!erent players
in the field.

9.1.2 History
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Figure 9.1: Number of controlled qubits as a
function of time for di!erent types
of QIP hardware. [Adapted from
Michael Mandelberg]

Over the first thirty years (from 1985) of quan-
tum computing research, a number of di!erent
technologies have been developed that can imple-
ment quantum algorithms. As the expertise in
the di!erent fields improves, the power of these
implementations increases. One measure of their
capabilities is the number of qubits that can be
controlled. Figure 9.1 compares graphically the
evolution of di!erent types of hardware. The in-
dividual approaches will be discussed in the sub-
sequent chapters. Another measure is, e.g., how
precisely the gates can be implemented and how
many gate operations can be performed before
the information is lost.

The situation changed from about 2015, when
the field quantum computing moved from a

162
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Figure 9.2: Exponential increase in the number
of qubits after 2015.

purely academic endeavor to an emerging indus-
try. The commercial actors include small startup
companies as well as research departments of es-
tablished technology companies. Instead of small
academic research groups focusing on proofs of
principle, they consist of large teams of scientists
and engineers with a diverse background, with
the common goal of developing a commercially
viable product. This implies that their systems
will have to be scaled to much larger numbers of
qubits. As shown in figure 9.2, the pace acceler-
ated significantly, potentially showing exponen-
tial scaling, similar to Moore’s law.

9.1.3 The network model
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Figure 9.3: Network model of quantum compu-
tation.

We now concentrate on the usual network model

1 for constructing a quantum computer, repre-
sented schematically in figure 9.3. This is also
the model that we used for the discussion of
quantum algorithms. Any such implementation
has to define a number of components that han-
dle the di!erent steps required for quantum in-
formation processing. The first and probably
most obvious step is to define how the quan-
tum information is stored. In analogy to a classi-
cal computer, where information is stored in ar-
rays of bits called registers, quantum computers
may use arrays of qubits called quantum regis-
ters. The requirements on these qubits will be
discussed in more detail in Section 9.2.2. In the
ideal case of a pure state, the information stored
in the quantum register can then be described
by the state vector !.

Once the qubits are defined, the architecture
must provide means of operating on this quan-
tum register. The first step of any quantum algo-
rithm is to initialize the quantum register, i.e., to
bring the qubits into a well defined state !0, in-
dependent of its previous history. In many cases,
this will be the ground state |0→. Since such an
initialization cannot be performed by unitary op-
erations, it is necessarily a dissipative process.

The implementation must then provide a mech-
anism for applying computational steps to the
quantum register:

|ω0→
U1

→→→→→↑|ω1→
U2

→→→→→↑|ω2→ · · · Uω
→→→→→→↑|ωω→,

where the unitary operations Ui implement the
di!erent computational gate operations. Each of
these transformations is driven by a Hamiltonian
Hi that acts on the system for a time εi:

Ui = e→iHiεi .

After the last processing step, the resulting state
|!ω→ must be converted into classical information
that yields the actual computational result. This
typically corresponds to an ideal quantum me-
chanical measurement, i.e., the projection onto
an eigenstate of the corresponding observable.

1
also known as Quantum Circuit Model
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9 How to Build a Quantum Computer

9.1.4 Some existing and proposed
implementations

For the first demonstrations of quantum infor-
mation processing, the information was encoded
in nuclear spin degrees of freedom. Processing
was achieved by pulses of radio frequency radi-
ation, applied with nuclear magnetic resonance
(NMR) spectrometers. More details on this im-
plementation will be given in chapter 10.

The next type of system that became available
for storing and manipulating quantum informa-
tion consists of atomic ions trapped by electro-
magnetic potentials [12, 11, 134]. Since trapped
ions are quite well isolated from their environ-
ment, decoherence can be controlled quite well,
and there is some prospect that this approach
can be scaled to relatively large size [169, 170].
Similarly, it is possible to trap neutral atoms in
the electromagnetic potential of standing optical
waves. More details on these approaches will be
given in Chapter 11.

While these two types of implementations have
made the biggest progress so far, it is generally
believed that systems with hundreds or thou-
sands of qubits will be based on solid state
qubits. A number of suggestions have been pub-
lished so far that are based on solid-state ma-
terials. Initial demonstrations showed some po-
tential for semiconductor materials [171], as well
as electronic spins in solids. The strongest con-
tenders from the field of solid-state systems are
currently using Josephson junctions, i.e. many-
body quantum states consisting of paired elec-
trons. Some of the proposed systems are based
on collective excitations in solids, including so-
called Majorana fermions. Some additional de-
tails on these proposals and implementations will
be discussed in Chapter 12.

Individual quantum gates and simple algorithms
have also been demonstrated with photons as
qubits [172, 173, 142]. Similar to liquid state
NMR, this approach has no direct extension to
larger numbers of qubits, unless some nonlinear
elements are introduced [174, 175, 176]. Details
are discussed in chapter 13.

This brief and very incomplete summary shows
how diverse the approaches are, that are cur-
rently being pursued to build a quantum com-
puter. Each of them has its specific proper-
ties that will make its operation unique in some
respect. Nevertheless there are some common
properties for all of them. In particular, they will
all have to fulfill some stringent requirements to
become useful devices [8], which we discuss in
the following section.

9.1.5 Status and current trends

The progress in quantum computing is often
measured by the number of qubits that are built
into the processing unit and can be e!ectively
controlled and read. Another important aspect
it the number and size of the players entering
the race to build commerically viable quantum
computers. Figure 9.4 shows some of the major
companies involved in the development of quan-
tum computers at the end of 2024.

Figure 9.5 summarizes the Performance charac-
teristics of the current generation of quantum
processors. Apart from the number of qubits,
the fidelity of the gate operations in one of the
most important parameters.
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9 How to Build a Quantum Computer

Table 1 | Illustrative selection of quantum hardware companies, current achievements and plans

Company Technology Current status Future plans (if publicly known)

IBM Superconducting 
circuits

Condor processor (1,121 qubits) and the serial Heron processors 
(133 qubits), which can be connected using classical communication.

Delivering 200 logical error-corrected qubits, 
capable of executing 10 8 gates by 2029; further 
upscaling to 2,000 logical qubits in the 2030s 65.

Google Quantum AI Superconducting 
circuits

Claim of demonstration of quantum advantage on the Sycamore 
processor (54 physical qubits) in 2019 66 ; current work directed 
towards a logical qubit capable of executing 10 6 gates by 2025.

Upscaling to achieve 10 6 physical qubits as a basis 
for an error-corrected quantum computer within 
the next decade 67.

Atom Computing Neutral atoms Announcement of creation of a 1,180-qubit processor based on 
nuclear spins of optically trapped neutral atoms in 2023 68 .

—

Rigetti Superconducting 
circuits

Efforts focused on improving the idelity of gates for a 
84-physical-qubit processor, followed by the development of the 
Lyra 336-physical-qubit processor in 2024 69 .

—

QuEra Neutral atoms In 2023, demonstration of a programmable quantum processor 
based on 48 encoded logical qubits operating with up to 
280 physical qubits 61 in recon igurable neutral-atom arrays.

Upscaling the processors to more than 
104 physical qubits and encoding more than 
100 logical qubits therein 70.

Quantinuum Trapped ions Current H2 processors offer 32 fully connected qubits. Achieving 10 logical error-corrected qubits by 2025 
with the perspective of upscaling the technology to 
1,000 logical qubits in the long term 71.

Pasqal Neutral atoms In 2024, development of quantum processors with about 100 qubits. Building a processor with 10,000 physical qubits 
and scalable logical qubits architecture by 2026 72.

IonQ Trapped ions IonQ measures the performance of its quantum processors in terms 
of algorithmic qubits (AQs), which are benchmarked by use-cases in 
optimization, quantum simulation and quantum machine learning.

Increasing the current value of 32 AQs to 1,024 
AQs by 2028 73.

The table shows future plans that could become important for future quantum-algorithm-powered simulations of nonlinear dynamics.

Figure 9.4: Major companies developing quantum computers.[146]

Parameter Superconducting 
QC

Trapped-ion 
QC

Neutral-atom 
QC

Qubit lifetime ~100 µs Several 
minutes

Several 
seconds

Single-qubit and 
two-qubit gate idelity F

0.9999, 0.99 0.999999, 
0.998

0.996–0.999, 
0.955–0.995

Gate execution time ~10−100  ns ~10−100  µs 400  ns to 2  µs

Connectivity 4:1 40:1 10:1 to 20:1

Number of physical 
qubits

~1,000 ~40 ~1,000

Figure 9.5: Performance characteristics of the
current generation of quantum
processors.[146]
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9 How to Build a Quantum Computer

9.2 Requirements for quantum
information processing
hardware

9.2.1 DiVincenzo criteria

In principle, any system that follows the laws
of quantum mechanics is a potential candidate
for designing a quantum information processing
system. This chapter is a first step towards dif-
ferentiating between “in principle” and the real
world of physical objects and implementations,
where the systems are actually usable.

In practice, the number of systems that can be
used for quantum information purposes is still
very much finite, although expanding continu-
ously. A good starting point for discussions
about potentially useful systems are the five
criteria put forward by David DiVincenzo [8].
These criteria are quite universally accepted as a
kind of gold standard for verifying the suitability
of a system. Briefly, the conditions are

1. Well characterized qubits, scalable system.

2. Initialization into a well defined state.

3. Long decoherence times.

4. Universal set of quantum gates.

5. Qubit-selective readout.

Mostly, these criteria are self-explanatory, but
the consequences and the degree to which they
are fulfilled by specific systems will be discussed
below.

9.2.2 Qubits

The central part of any quantum computer is the
collection of qubits that contain the quantum in-
formation being processed. Together, they form
the quantum register.

While it is, in principle, possible to identify
qubit states with any pair of quantum mechan-
ical states, most of the possible choices will be
impossible to implement. This is unfortunate

1

0

E
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E2

....

qubits (in principle)

Choice

Generic qubit Physical qubit (atom)

Figure 9.6: Choice of qubit in a generic quantum
system.

since even a single atom has an infinite number of
states and could therefore, in principle, form the
basis of a very large quantum register. However,
most of these states have lifetimes that are much
too short for quantum computing. Therefore the
lifetime of a state is an important parameter, not
only for atoms.

Another important aspect is that the states must
be distinguishable from each other, i.e. it must
be possible to selectively target individual states
or pairs of states. This excludes most eigenstates
of an atom (infinitely many), since they lie in
an energy range that is arbitrarily close to the
ionization limit. As a result, they are not only
unstable, but virtually impossible to distinguish.

To be useful for information processing, the rele-
vant physical parameters of the individual qubits
must be well known. This is necessary in or-
der to be able to predict and control their evo-
lution during logical operations. While this is
(at least in principle) relatively straightforward
in the generic case of spins S = 1/2, where the
only possible interaction is the Zeeman coupling
Hz = ϑ ϖB ·ϖI, it becomes a rather nontrivial task
in solid state systems, where the internal Hamil-
tonian of the system and its coupling to the
environment are not known a priori, but must
be determined by measurements and optimized
through the available degrees of freedom of the
design. The relevant physical parameters include
the internal Hamiltonian, the interaction of the
system with external fields (electric and mag-
netic), the couplings between di!erent qubits,
and the relevant decoherence rates. Other sys-
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9 How to Build a Quantum Computer

tems, like spins in solids, are intermediate be-
tween these two cases: their system parameters
are nominally identical, but modulated by im-
perfections of the lattice, like dislocations and
strain.

Scalability is an important issue if quantum com-
puters are to become more powerful than classi-
cal computers. In the simplest sense this means
that one should be able to place as many qubits
as one wishes in the register without a!ecting
the operation of the device in a significant man-
ner. More precisely, this means that while the
dimension of the Hilbert space grows exponen-
tially with the number of qubits, the computa-
tional costs (in time, energy, space etc.) are not
allowed to grow exponentially, but at most poly-
nomially. Besides just adding qubits, scalability
also implies that one is able to maintain and im-
prove the precision of addressing the qubits, the
precision of the individual quantum gates, and
to reduce the decoherence rate.

As discussed in section 9.1.2, the number of
qubits has been rising significantly for some
systems and is likely to increase further. For
some problems, e.g., factorization by Shor’s al-
gorithm, even larger registers, with several thou-
sand qubits will be required.

One of the less obvious requirements for the
identification of qubits with individual quantum
states is that it must be possible to create arbi-
trary superpositions |!→ = c0|0→ + c1|1→ of these
states. This is usually possible unless there is a
selection rule that prevents it. As an example, we
consider two neighboring quantum dots, where
an electron can tunnel from one dot to the other.
It is then possible to identify the qubit state |0→
with the electron being in dot 1, and qubit state
|1→ with the electron being in dot 2. However, it
is not possible to identify a qubit with each quan-
tum dot, e.g., with the assignment that the pres-
ence of an electron corresponds to |1→, while its
absence would correspond to |0→. The superpo-
sition of these two states would then correspond
to a superposition between states with di!erent
particle numbers, which is usually impossible to
achieve for massive particles like electrons. This

situation is di!erent if the quantum dots are em-
bedded in a reservoir of electrons, whose poten-
tial can be adjusted such that electrons can be
exchanged between the reservoir and the quan-
tum dot.

9.2.3 Initialization

Before the actual computation starts, the sys-
tem must be put into a well defined initial state.
Which state this should be is determined by the
algorithm, but in many cases, it corresponds to
the state

|!0→ = |0→ ↑ |0→|0→ · · · ↑ |0→ = |00 . . . 0→,

where all qubits are in the logical state |0→.

|1i

|0i

Figure 9.7: Initialization of the system into the
ground state.

If this is the ground state of the system, it is in
principle possible to let relaxation perform the
initialization by cooling until the system reaches
the ground state. This is only possible, if the
thermal energy kBT is small compared to the en-
ergy di!erence ⊋ϱ0 between the two qubit states.
As a specific example, we consider electron spins
in a magnetic field of B0 = 2T, the magnetic
energy is

⊋”L ↓ 10→342ς 56 · 109 J ↓ 3.5 · 10→23 J.

This can be compared to the thermal energy. At
a temperature of T = 0.1 K, the thermal energy
is

kBT ↓ 0.1 · 1.4 · 10→23 J ↓ 1.4 · 10→24 J.

This is significantly less than the Zeeman energy.
Accordingly, under these conditions, the equilib-
rium spin polarization approaches unity,

n↓ ↔ n↔

n↓ + n↔

↓ 1.
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For nuclear spins, the Larmor frequency is ↓
1000 times smaller and the resulting spin polar-
isation is

n↓ ↔ n↔

n↓ + n↔

↓ 5 · 10→3,

i.e. small compared to unity: a nuclear spin sys-
tem at room temperature is usually in a highly
mixed state.

For a nuclear spin system with a Larmor fre-
quency ϱ0 = 500 MHz, this would imply that the
temperature has to be significantly lower than
T = ⊋ω0

kB
= 3 mK. Such temperatures can be

reached today, and it is then possible, in princi-
ple, to cool also nuclear spin systems into their
ground states. However, at these low tempera-
tures, the time that the system requires to reach
thermal equilibrium (i.e. to condense into the
ground state) becomes often very long, up to
many years, which makes this approach almost
useless for practical applications.

9.2.4 Initialization time

Like the gate operations, initialization always re-
quires a finite time to complete. If thermal re-
laxation is used, this time can be quite long, par-
ticularly in nuclear spin systems. The reason is
the weak interaction between system and envi-
ronment, which is a desired e!ect for the com-
putation, but undesired for initialization.

Readout

|0i
|1i

Quantum-
register

Initiali-
zation

0
0
0
0
0
0
0
0
0

step 1 step 2 step N

Processor

U1 = e�iH1⌧1 U2 = e�iH2⌧2 UN = e�iHN ⌧N

....
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0
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0
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0
0
0
0

0
0
0
0

Error correction
re-initialization

Error correction
re-initialization

Error correction
re-initialization

Figure 9.8: Repetitive initialization of ancilla
qubits for error correction.

A slow initialization process is not critical for the
computation process itself: it occurs before the
actual computation and does not a!ect the time

it takes to execute the algorithm. However, it
will become a significant issue for any quantum
computer that is more powerful than a classical
computer: such a system will have to rely on
an error correction scheme. All error correction
schemes known to date require an input in the
form of freshly initialized qubits. These error
correction qubits must be initialized at a rate
that is large compared to the dephasing rate.

If we write T2 for the time during which the fi-
delity of the quantum state decays to 1/e, the
threshold condition requires that error correction
cycles are no longer than

εEC ↗ [10→4T2 . . . 10→2T2],

where the numerical prefactor depends on the
error correction scheme used. Since the re-
initialization is part of the error correction cy-
cle, it must therefore be significantly faster than
εEC :

εinit < εEC ↗ 10→3T2.

This is not fulfilled by thermal relaxation, since
it’s time-constant T1 is at best of the same order
of magnitude as the dephasing rate,

T1 ↘ T2.

Laser

T1 ~ s

T1 ~ 10-8 s

|0�
|1�

|e�

Figure 9.9: Initialization of atomic qubit by a
laser pulse.

The requirement can be met, however, in many
atomic or optical systems, such as ion traps,
where the initialization procedures use optical
excitation (see Fig 9.9), which may be performed
over a time of the order of nanoseconds, while
the coherence time of ground-state qubits can
be of the order of seconds. In other systems,
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9 How to Build a Quantum Computer

particularly in solid state systems, future imple-
mentations will probably rely on switching on
some strong coupling to a “cold” system, which
brings the qubit to its ground state, and can
be switched o! during the actual computation.
Switching it o! is essential, since such a strong
interaction would invariably give rise to a fast
decoherence process.

9.2.5 Decoherence time

T2

time

pure mixed

Figure 9.10: Dephasing of a superposition state
due to decoherence.

The information in the quantum register is sub-
ject to decay through the interaction with exter-
nal degrees of freedom. The computation must
therefore be completed before this decay has sig-
nificantly degraded the information. For most
physical systems being considered for quantum
information processing, estimates for the deco-
herence times vary by many orders of magnitude.
This is partly due to the di"culty of performing
such measurements; in addition, the decoherence
that one can attain in a specific device is usu-
ally many orders of magnitude shorter than for
an ideal isolated system and varies with many
parameters of the fabrication process that can
only partially be controlled. This is particularly
true for solid state systems where the qubits are
either defects embedded into a macroscopic en-
vironment consisting of thousands of atoms, or
they themselves consist of mesoscopic structures
with thousands or millions of particles. Accord-
ingly this field has invested heavily into improv-
ing the properties of their qubits and has seen
enormous progress in increasing the lifetime of
their qubits by many orders of magnitude by im-
proving all aspects of design and fabrication.

The e!ect of decoherence can partly be elimi-

nated by quantum error correction or error pre-
vention schemes like dynamical decoupling, as
discussed in Section 7.4. However, error correc-
tion also increases the duration of the computa-
tion and introduces additional errors. Theoreti-
cal analysis shows [95, 96] that computations can
proceed for an arbitrary duration provided that
quantum error correction is used and the error
probability for individual (uncorrected) gate op-
erations is below some threshold, which can be
of the order of 10→2 . . . 10→4. The relevant figure
of merit for the viability of a particular imple-
mentation will therefore eventually be whether it
can reach this threshold where reliable quantum
computing can proceed for arbitrary duration.

When estimating the prospects for achieving this
threshold, one has to take into account that the
relevant dephasing time is not that of the indi-
vidual qubits, but that of the total information
stored in the quantum register. While details for
the decoherence in such highly entangled quan-
tum systems are not known, it is generally ex-
pected (and verified for some specific systems)
that decoherence processes are much faster for
the total quantum register than for the individ-
ual qubits. Details are discussed in section 7.2.8.

9.2.6 Quantum gates

If one wishes to build a “universal” quantum com-
puter, i.e., one that can process arbitrary algo-
rithms, one needs a universal set of quantum
gates, as discussed in section 5.3. The unitary
operations that act as gates on the qubits must
be implemented by Hamiltonians that act on the
system for a specified time.

Generating the single-qubit Hamiltonians is in
general relatively straightforward: typically they
correspond to external fields acting on the qubits
for a specified duration. As we have shown in sec-
tion 5.1, single-qubit gate operations correspond
to rotations. It is thus best to visualize them as
being driven by a magnetic field acting on a spin
1/2. In the example shown in Figure 9.11, the
field is applied at 45↗ between the x and z axis

169



9 How to Build a Quantum Computer

z
πj

k

H

Hj = ei⇡(X+Z)/
p

2

Figure 9.11: Hadamard gate on qubit j as a rep-
resentative example of a single qubit
gate.

of qubit j to generate a Hadamard gate:

Hj = eiϑ(Xj+Zj)/
↘
2.

A nontrivial requirement is, in many systems,
that these gates must be applied selectively, i.e.,
it must be possible to apply a logic gate to qubit
j in such a way that no other qubit is a!ected
by it:

Ui = 11 ↑ 12 ↑ · · · ↑ Hj ↑ · · · ↑ 1N .

This addressing problem is not significantly dif-
ferent from classical computers, where the gate
operations are typically applied by changing lo-
cal potentials using voltages in conducting wires.
The same principle can be applied to many solid-
state qubits, like semiconductors and supercon-
ductors, which are controlled by nanostructured
electronic circuits.

50 100 150 200
Position [µm]

Figure 9.12: Fluorescence of trapped 40Ca+ ions.
Addressing is possible by focusing a
laser on the selected ion.

In the case of ion trap quantum computers, it is
possible to apply laser pulses that are so tightly
focused that the interaction with all but one ion
can be neglected. This means that the ions can
be addressed individually if they are separated

by a distance that is large compared to the opti-
cal wavelength.

9.2.7 Frequency-domain addressing

The situation is di!erent for spin-based quantum
computers. In liquid state NMR, e.g., the wave-
length of the applied radio frequency field is of
the order of 1 meter; all qubits therefore expe-
rience roughly the same coupling to the radio-
frequency (RF) field.

{frequency-selection

qubit i-1 i i+1

Resonance frequency

Figure 9.13: Addressing in frequency-space.

Nevertheless it is possible to address individual
qubits independently of each other, since the ex-
citation is a resonant process: only spins whose
magnetic resonance transitions are close to the
frequency of the RF field interact strongly with
the field. The selection process occurs in this
case in frequency space.

In solid state systems, the selective addressing
of individual qubits will typically be achieved by
nanometer-sized electrodes that must reach close
to each qubit. While the technology of building
these circuits is maturing rapidly, the e!ect that
these structures and the applied fields have on
the decoherence of the qubits will have to be an-
alyzed in more detail.

j

k

Φ

Ujk = e
i�(Zj+Zk�ZjZk)
j

Figure 9.14: Controlled phase gate as a represen-
tative example of a two-qubit gate.
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In many systems, the two-qubit operations are
more di"cult to implement, since they also re-
quire, apart from external fields, interactions be-
tween qubits. In the example of Figure 9.14, the
controlled phase gate

Ujk = eiϖ(Zj+Zk→ZjZk)

acting on qubits j and k includes external fields
Zj,k along the z-axis of qubits j and k, in addi-
tion to a bilinear coupling ZjZk between these
qubits. Such interactions exist in all systems pro-
posed for quantum computing. A typical case is
the exchange interaction

HE = JϖIj · ϖIk,

which is found, e.g., in the case of electrons
in semiconductors. However, 2-qubit gates re-
quire not static interactions, but the interactions
should be o! for most of the time. Only when a
two-qubit gate is to be applied to the qubit-pair
j, k, the interaction between qubit j and k must
be switched on for a well defined duration. In
some systems, this procedure cannot be imple-
mented directly: in liquid state NMR, e.g., the
couplings are determined by the structure of the
molecule, which remains constant during an ex-
periment. A possible alternative is then to use
static interactions and eliminate the unwanted
ones by a procedure called refocusing. This pro-
cedure is applied routinely in NMR quantum
computers and will be discussed in Chapter 10.
The concept has also been generalized to other
systems [177].

9.2.8 Imperfections

Every experimentally realizable gate includes im-
perfections, i.e., deviations from the ideal behav-
ior. They can be quantified, e.g., by the gate
fidelity defined in section 7.3.2:

F (Ue, Ut) =
|Tr{U †

eUt}|√
Tr{U †

eUe}
√

Tr{U †

t
Ut}

.

Here, Ue is the experimentally generated gate op-
eration while Ut represents the target operation.

| ini

Figure 9.15: Di!erent evolutions resulting from
finite precision of gate potentials.

For single-qubit gates, whose ideal form
U(φ, ↼,↽) may be parametrized with three an-
gles, deviations may correspond to errors in these
angles. In systems, where the qubits are only
part of a larger Hilbert space, leakage may be
a problem: the real operation may take part of
the state out of the qubit space. As an exam-
ple, consider a harmonic oscillator, where the
states |n = 0→ and |n = 1→ have been chosen to
represent a qubit [178, 134]. Since the energy
level separations between all states are identical,
there is always a tendency to excite higher ly-
ing vibrational states. In addition, addressing is
usually not perfect: Any excitation of a single
qubit j will always excite neighboring qubits to
some degree.

The e!ect of most errors is a degrading of the in-
formation in the quantum register and is there-
fore similar to an additional source of decoher-
ence. Consequently, these errors can also be
eliminated by error correction schemes, provided
they are small enough.

9.3 Converting quantum to
classical information

At the end of the computation process, the re-
sult of the computation must be retrieved from
the final state of the quantum register: The re-
sult of the quantum computation is not the final
quantum state, but rather classical information
that may consist of a sequence of (classical) bits.
Converting the quantum state into classical bits
is achieved by the readout process. What exactly
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has to be read out is determined by the quantum
algorithm being considered.

While the analysis of the result is, in principle,
similar to the corresponding procedure in a clas-
sical computer, where one reads the logical state
of the individual classical bits, it involves here
measurements on a quantum mechanical system.
The quantum mechanical measurement process
(see chapter 4.5) is a highly nontrivial topic, and
quantum computers touch some of its central is-
sues. We therefore discuss some of these issues
in this separate section.

9.3.1 Principle and strategies

After the last logical operation of a quantum al-
gorithm, the quantum register is left in its final
state

|ωfin→ = c0|0, 0, 0...0→ + c1|0, 0, 0...1→ + c2...,

which contains the solution of the problem be-
ing investigated. The sum runs over all 2N basis
states, where N is the number of qubits. Ac-
cording to this formal analysis, the result of the
computation is contained in the 2N coe"cients ci
that determine the final state. It is thus possible
to extract the result by determining these coe"-
cients, e.g. by state tomography (≃ 7.3.3). How-
ever, determining 2N coe"cients clearly scales
exponentially with the number of qubits and is
therefore not an e"cient process. Furthermore,
in almost all situations, we are not interested in
all these values. The useful final result should
have a numerical or Boolean logical value, such
as true or false or 422. We therefore discuss
here how to convert the final state of the uni-
tary transformation into the desired classical in-
formation.

Like the initialization process, the readout is a
non-unitary operation that cannot be reversed.

2
Result given by the computer named Deep Thought

when asked to calculate the Answer to the Ultimate

Question of Life, the Universe, and Everything in the

Hitchhiker’s Guide to the Galaxy.

The wavefunction of the quantum register col-
lapses during readout. Many algorithms rely
on measuring the populations of the individ-
ual qubit states |0→ and |1→. In this case, the
relevant observables are the longitudinal com-
ponents Z of the pseudo-spin operators or the
projectors P|0≃ or P|1≃. Other algorithms, like
the Deutsch–Jozsa scheme, require readout of
the transverse component X, and some quantum
computer architectures, like the one-way quan-
tum computer (see section 9.4.5), require the
readout of arbitrary components of the pseudo-
spin. The relevant observable is then

O = ⇀X + ↽Y + ϑZ.

|!!0> = |0>

|!!1> = |1>

|""fin> =
a |0> + b |1>

Measurement

p0
= a
2

p
1 = b2

Figure 9.16: State reduction during the measure-
ment process.

According to the quantum mechanical projection
postulate discussed in Chapter 4, an ideal quan-
tum mechanical measurement collapses the state
|ω→ into an eigenstate |↼i→ of the observable be-
ing measured and returns the eigenvalue ⇁i of
the corresponding state with probability |ci|2,
where ci is the expansion coe"cient of the state
|ω→ =

∑
ci|↼i→. Assuming that such an ideal

measurement is possible, reading out the result
of a quantum computation is relatively straight-
forward - provided the measurements are ideal
and we only need the absolute value of the coef-
ficients.

Since the purpose of this chapter is to discuss is-
sues arising in real experimentally realizable sys-
tems, we have to consider the di!erent behav-
ior encountered in real measurements. In many
realistic systems, measurement attempts return
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no result. Typical cases are attempts to mea-
sure the state of a qubit by scattering a photon
from it. If the photon is not scattered, this is not
critical, as one may simply repeat the attempt.
If the photon is scattered but not detected, this
is more critical. In this case, an interaction of
the qubit with an external system (the photon)
has changed the state of the qubit, and a repeti-
tion of the measurement may produce a di!erent
result.

Several strategies are possible to circumvent this
problem: one can try to use a QND (=quantum
non-demolition) measurement [179, 180]. Such
a measurement arranges for the unavoidable in-
fluence that the measurement must have on the
qubit to be such that it does not a!ect later mea-
surements of the same variable. Not all variables
can be measured this way, but in most cases it
is possible to arrange the system in such a way
that QND measurements can be used at least
in principle. A good example is a free particle:
Its momentum is a QND variable, i.e. it can be
measured (in principle) repeatedly without com-
promising the measurement accuracy of the later
measurements. The position of a free particle,
however, is not a QND variable: if we measure
the position with any finite precision, we nec-
essarily increase the momentum uncertainty, as
required by the Heisenberg uncertainty relation.
Under the subsequent evolution driven by the
free particle Hamiltonian

Hf =
1

2m
ϖp2,

the momentum spread is translated into a spread
of the position and therefore reduces the accu-
racy of later measurements.

9.3.2 Repeated measurements
through ancilla qubits

Another possibility is to read out not the qubit
itself, but a copy of it. This has several advan-
tages: it allows one to

1. Repeat the measurement as often as needed

while minimizing the perturbation of the
output state.

2. Optimize the properties of these ancilla
qubits for readout, independently of the
properties of the computational qubits.

Read ancilla

|0>|0> or |1>|1>Reset ancilla

(a|0> + b|1>)|0> a’|0>|0> + b’|1>|1>
CNOT

Figure 9.17: Basis of repetitive readout proce-
dures.

As discussed in Chapter 4, copying quantum in-
formation is possible within limitations. The
copy process will not provide an exact copy of the
quantum state (no cloning theorem!), but it can
copy exactly the probabilities of obtaining cer-
tain measurement results. As long as the copy-
ing process is exact, one can therefore repeatedly
measure copies of the qubit. If the measurement
is not successful, or to check the validity of the
measurement result, one can then make an addi-
tional copy and read that out. Such a procedure
could be repeated many times to achieve very
reliable readout even with very unreliable single
measurements.

If the qubit that we want to read is in a super-
position state

|q→ = a|0→ + b|1→ =

(
a
b

)
,

and the measurement qubit is initially in state
|0→, the combined system is

(a|0→ + b|1→) ↑ |0→ = a|00→ + b|10→.

The copy (CNOT) operation changes the state
of the two qubits into the correlated state

(a|0→ + b|1→) ↑ |0→ ≃ (a|0→ ↑ |0→ + b|1→ ↑ |1→)
= a|00→ + b|11→.

If a measurement of the measurement qubit
yields a result (i.e., finds it in state |0→ or |1→),
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it collapses the wavefunction of both qubits si-
multaneously. If the measurement fails, i.e. it
does not collapse the state and does not provide
a result, one has the option of discarding the
measurement qubit and re-initialize it to state
|0→. The combined system is thus returned to a
product state. The register qubit is returned to
its original state if the measurement attempt did
not collapse the state or to a computational basis
state if the entangled state has collapsed without
providing a result. The measurement process can
then be repeated until a result is obtained.

9.3.3 Example: Deutsch–Jozsa
algorithm

As an example readout process consider a func-
tion evaluation, such as in the Deutsch–Jozsa
problem (see Section 8.2). Here the processing
can be written as

|ω0→ =
∑

x

|x, 0→ ⇐ |!fin→ =
∑

x

|x, f(x)→,

where the superposition of all possible input
states is transformed into a superposition of
all possible input states and function values.
As discussed in Chapter 8, the goal of the
Deutsch–Jozsa algorithm is to learn, with a sin-
gle function call, wether a function is constant or
balanced. For the simple case of a single qubit
(plus auxiliary qubit), we found that if the two
function values are the same, f(0) = f(1), then
the final state of the quantum register is

|ωeq→ = (|0→ + |1→) ↑ (|f(0)→ ↔ |f̄(0)→),

but if they are di!erent, f(0) ⇒= f(1) = f̄(0),

|ωne→ = (|0→ ↔ |1→) ↑ (|f(0)→ ↔ |f̄(0)→).

In this trivial example, the type of measurement
that must be performed is obvious. In both
cases, the input register is in an eigenstate of
X. Its eigenvalue is +1 if the two possible func-
tion values are di!erent (i.e., the function is bal-
anced) or ↔1 if the two values are the same (i.e.,

the function is constant). The result can be de-
termined from the single successful measurement
of the variable X of qubit 1.

An alternative to measuring X is to apply an-
other transformation to the first qubit, such as a
Hadamard gate or a ς/2 rotation around y. The
states (|0→±|1→) are then converted to |0→ and
|1→ and can be measured by using the more con-
ventional observable Z. The same principle can
be applied to other states, which require mea-
surements in a direction defined by the spherical
angles φ,ϕ.

9.3.4 Complete state information

The example shows that (for a single qubit) a
single measurement is su"cient to determine the
result (constant or balanced). This power does
not come for free: while one gains this ability,
one loses the possibility to find out what these
values are, i.e., whether the (constant) results
are (0, 0) or (1, 1) or (for the case of a balanced
function) f(0) = 0 and f(1) = 1 or f(0) = 1 and
f(1) = 0. Answering such a question requires
measuring a di!erent observable, which does not
commute with X and is therefore not compatible
with this measurement.

The complete information that is contained in
the final state consists of the 2N coe"cients ci
that define the superposition. How this can be
done was discussed in section 7.3.3. However, to
determine all 2N coe"cients requires at least 2N

measurements, i.e., an e!ort that increases expo-
nentially with the number of qubits. Obviously
this is not possible without losing the scaling ad-
vantage, a major motivation for the implemen-
tation of quantum computing.

Furthermore, it can be di"cult to make measure-
ments that are state-selective, i.e., distinguish
state |i→ from the other 2N ↔ 1 states. Instead
one is usually content with measurements on sin-
gle qubits, which are often referred to as local
measurements. As discussed above, this will not
allow for a complete determination of the state.
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Consider, e.g., the two states

|ω1→ =
1⇑
2
(|00→ + |11→)

and

|ω2→ =
1

2
(|00→ + |01→ + |10→ + |11→).

If the two qubits described by this state are mea-
sured independently, one will obtain |0→ in 50%
of all cases and |1→ in the other 50% for each of
the qubits. Looking only at individual results,
the two states would then appear to be indistin-
guishable.

It is nevertheless possible to distinguish between
them by taking correlations into account. Cor-
relations are measured by two-qubit (or, in the
general case, multi-qubit) observables. For the
present case, the operator Z1Z2 is suitable: it
returns

⇓!1|Z1Z2|!1→ =
1

2
(+1 + 1) = 1

⇓!2|Z1Z2|!2→ =
1

4
(+1 ↔ 1 ↔ 1 + 1) = 0.

In the first case, measurements on the individual
spins always yield the same result; in the second
case, they are completely uncorrelated.

If not only the amplitudes (probabilities) of the
di!erent states are required, but also the (rel-
ative) phases, additional measurements must be
performed that are not compatible with the mea-
surements that determine the amplitudes. An
important example is given by the two states

|ω±→ =
1⇑
2
(|0→ ± |1→),

which distinguish the two outcomes of the DJ-
algorithm. Clearly, they are orthogonal states
and must be distinguished to determine the re-
sult of the DJ-algorithm. The absolute values of
the two coe"cients are the same, but they di!er
by the relative phase. They cannot be distin-
guished by measuring the operator Z, but they
can be distinguished by measuring the operator
X: The states |ω±→ are eigenstates of X, with
eigenvalues ±1.

9.3.5 Quantum state tomography

If the state of the system is not pure (which is
never truly the case), the system has to be de-
scribed by a density operator and the number of
coe"cients that have to be determined for a com-
plete characterization of the quantum state rises
from 2N to 22N (or 22N ↔ 1, if we take into ac-
count that the trace of the density operator is 1).
Determining all these numbers requires multiple
incompatible measurements. The corresponding
procedure is known as ‘quantum state tomogra-
phy’ (see also chapter≃7.3.3), in analogy to to-
mographic procedures in imaging, such as mag-
netic resonance tomography (MRT) of X-ray to-
mography (CT). With the appropriate combina-
tion of measurements and computational proce-
dures, it is possible to reconstruct the full density
operator.

1 3 4 5 6 7 8
2

1357
column index

row
index

Experiment Theory

Figure 9.18: Tomographic representation of the
real part of a density opera-
tor.Kampermann et al. [181]

Fig. (9.18) shows, as an example, the real part
of a density matrix measured experimentally by
a series of tomographic experiments [181]. The
state measured here is

ρBE =
1

N
[2|GHZ→⇓GHZ| + a1|001→⇓001|

+a2|010→⇓010|

+
1

a3
|011→⇓011| + a3|100→⇓100|

+
1

a2
|101→⇓101| +

1

a1
|110→⇓110|

]
,

which is a “bound entangled state”. A definition
of the GHZ-state is given, e.g., in section 4.6.6.

175



9 How to Build a Quantum Computer

The only method for verifying that the state is
really created is to perform full quantum state
tomography. Clearly, this is not an e"cient way
and does not scale well for large systems.

In some cases, a full tomography of a quantum
state is not necessary, but it is su"cient to per-
form partial state tomography, i.e. to determine
a subset of the density operator elements. An
important example is the so-called ‘population
tomography’, where one determines the diagonal
elements of the density operator.

9.4 Alternatives to the network
model

So far, we have always analyzed quantum com-
puting in terms of the so-called network model.
This is certainly the most frequently used com-
putational paradigm and it has the closest cor-
respondence to classical computational models.
However, there are some other models that have
some advantages - either in terms of o!ering ad-
ditional insight into the basic requirements for
computing or in terms of realization of large-
scale quantum computing. Here, we give a short
introduction into some of these concepts.

9.4.1 Local addressability

One requirement of the network model of quan-
tum computation is local addressing, i.e., the
ability to perform logical operations on arbitrary
individual qubits. This requirement is relatively
easy to satisfy for the present demonstration
models with only a few qubits. It is, however,
a major problem for increasing the number of
qubits. In liquid state NMR, e.g., the number of
resonance lines increases exponentially with the
number of coupled spins, making individual ad-
dressing virtually impossible for systems with 10
and more qubits.

In solid-state systems, the individual qubits can
be addressed by suitably designed control lines.
However, current systems are already facing
technical challenges in the number of such con-
trol lines: for each qubit, some 10 control- and
readout lines are typically required.

Figure 9.19: Wiring in a solid-state quantum
processor.

As figure 9.19 shows, this puts strain in current
quantum processors operating a few dozen qubits
at low temperature. Extending this to thou-
sands or millions of qubits will be highly chal-
lenging. Apart from the di"culty of construct-
ing such devices with su"ciently high precision,
the large number of control gates may introduce
too many channels for decoherence. These dif-
ficulties motivate a search for alternative archi-
tectures that do not require local addressing of
individual qubits.
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9.4.2 Cellular automata

Cellular automata (CAs) o!er a possible archi-
tecture that does not require local control. They
are known from classical information processing.
The term “cellular” refers to the fact that in
this model, the information is contained in cells,
which change their state on the basis of some
simple rules and the state of some neighboring
cells. In the simplest case, the system is a one-
dimensional register, in which each cell can take
the values 0 or 1. This is called a binary CA. A
processing step corresponds to each cell chang-
ing its state on the basis of the state of itself and
its immediate neighbors. This state change is
initiated for all cells simultaneously by a single
trigger signal.

Figure 9.20: An example of a simple classical cel-
lular automaton.

The top trace of Fig. 9.20 shows a simple ex-
ample: here, the new state of each cell depends
on the present state of itself and its two imme-
diate neighbors. For a binary CA, these three
cells can have 23 = 8 di!erent values on input.
The CA rule assigns a new state to each of these
eight initial states. This means that there are
28 = 256 possible rules. They can be numbered,
as shown in Fig. 9.20, by ordering the eight input
states sequentially and labelling the correspond-
ing output state by its binary value. The cor-
responding bit sequence defines a number in the
range [0..255]. In the example in Fig. 9.20, the
bit sequence 00011110 defines it as “rule 30”. The

lower half of Fig. 9.20 shows 16 generations of the
register, starting from an initial state where all
except one cell contain the value 0.

Figure 9.21: Picture of a Textile Cone Snail
showing a CA pattern [182].

Di!erent schemes, including di!erent dimen-
sions, di!erent geometries and di!erent number
of states are possible. Many natural systems like
the one shown in figure 9.21 operate as cellular
automata, changing their state in response to lo-
cal input from neighboring cells.

Figure 9.22: Snapshot from Convay’s game of
life.

A popular variant of this scheme is “Conway’s
game of life”, a CA that was invented by the
British mathematician John Horton Conway in
1970. As shown in figure 9.22, it generates inter-
esting patterns and may be considered a model
for the evolution of life in general.

9.4.3 Quantum cellular automata

Quantum cellular automata (QCAs) are the
quantum mechanical version of CA’s. Lloyd pro-
posed them as an alternative quantum computer
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architecture that does not need to address every
qubit individually in 1993, [183] i.e. before the
first experimental realizations of quantum com-
puters. In a QCA, each cell is characterized by
its quantum state and changes its value (i.e. it
evolves) in response to a global (i.e. identical for
all cells) control operation and the state of itself
and some neighboring states. As a result, only a
few control qubits are needed.

A B C A B C A B C

a1 b1 c1 a2 b2 c2 a3 b3 c3

q u b i t  1 q u b i t  2 q u b i t  3

Figure 9.23: Architecture of an ABC-type QCA.

In Lloyd’s QCA architecture, the quantum infor-
mation is stored in a chain of qubits that consists
of repeated units ABC of only three distinguish-
able physical qubits (see Fig. 9.23). Each group
of three physical qubits stores one logical qubit.

Logical operations acting on these qubits can be
broken down into operations that act on all A, B
or C physical qubits whose neighbors are in the
appropriate state. In addition, the units at the
end of the chain can be distinguished, since they
only have a single neighbor. For the following
discussion, we use the notation ϱA

01 to indicate
a ς-pulse that inverts all A spins provided that
the spin to the left (a C-type spin) is in the state
0 and the spin to its right (a B-type spin) is in
the state 1. The sequence

ϱA

01 ↔ ϱA

11 ↔ ϱB

10 ↔ ϱB

11 ↔ ϱA

01 ↔ ϱA

11

of global operations can then be analyzed by con-
sidering pairs of pulses: The first and the last
pair act on all A-type spins, irrespective of the
state of the left-hand neighbor, bot conditioned
on the right-hand neighbor (B) being in the state
1. Similarly, the middle pair acts on the B-spins
irrespective of the C-spin on its right, but con-
ditioned on the A-spin on its left being in the
state 1. Together, this sequence corresponds to
the following operations:

ϱA

01, ϱ
A

11 ϱB

10, ϱ
B

11 ϱA

01, ϱ
A

11

|aibi→ = 00 00 00 00
|aibi→ = 01 11 10 10
|aibi→ = 10 10 11 01
|aibi→ = 11 01 01 11

Here, the first column represents the input state
of spins AB, the second the state after the first
pair of operations etc. If we compare the in-
put and output state, the overall operation cor-
responds to a SWAP operation between A and
B. Sequences of SWAP operations can be used,
e.g., to move logical qubits through the quantum
register. This applies to all pairs AB, except
those at the end of the string. They can be ad-
dressed separately, e.g. to load information into
the register.

It was shown that this architecture is universal,
i.e., it can e"ciently run all algorithms that are
e"cient on a network quantum computer with
an overhead, compared to the network model,
that is polynomial in the number of qubits. This
motivates its consideration as an alternative to
the network model.

9.4.4 QCA with 2 types of cells

A modification of this scheme was proposed by
Simon Benjamin [184, 185, 186]. His scheme uses
only two distinguishable units ⇀, ↽. In addition,
some fixed units are used that are not a!ected
by the control pulses. The relevant operations
are then implemented by combining the appro-
priate two-dimensional arrangement of the phys-
ical qubits with global control operations.

Fig. 9.24 shows, as an example, how information
is transferred along a chain of physical qubits.
Again, each logical qubit xi is represented by
three physical qubits, two of type ⇀, the third
of type ↽. In the initial state represented by
the left-hand part of Fig. 9.24, the information
is stored in type ⇀ qubits. The required update
operations are represented as ⇀t↑u

v , which indi-
cates that all cells of type ⇀ are taken from state
t to state u, provided they experience a ‘net field’
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Update sequence

Figure 9.24: Shift of quantum information in
Benjamin’s QCA architecture.
Dashed cells have fixed values.

of v. Here, the term ‘net field’ is defined as the
number of neighbors in the state 1 minus the
number of neighbors in the state 0. As shown in
figure 9.24, each cell can have up to three neigh-
bors, so v can have values from -3 to +3. In
this architecture, the type or the location of the
neighboring cells is therefore not important.

If we consider the pair of cells marked in Fig.
9.24, the first two pulses of the update sequence
change their state as follows:

↽0↑1
0 ⇀1↑0

0

00 10 10
01 01 00

Apparently, the cell containing the qubit value
x2 has been inverted and moved by one place
down the string,

! = |0, x2→ ≃ !
→
= |NOT(x2), 0→.

Together, the combined e!ect of the update
pulses and the fixed cells is a transport of the
whole register by one logical qubit correspond-
ing to three cells.

The same update sequence can be used with dif-
ferent cell arrangements to implement di!erent
operations. Figure 9.25 shows some examples.

Although the overhead, in terms of physical
qubits and in terms of gate operations, is signifi-

Figure 9.25: Cell arrangements for a) shift oper-
ation, b) COPY operation, c) NOT
operation and d) NOR operation.

cantly larger with this scheme, it almost elim-
inates the problem of local addressing. The
model may be well suited for an implementation
based suitable physical qubits. As an example,
it was proposed to be implemented with endo-
hedral fullerenes as qubits [187]. Nitrogen and
phosphorous endohedral atoms have long deco-
herence times and are well distinguishable. They
could thus serve as type ⇀ and ↽ cells.

9.4.5 One-way quantum computer

An even more radical deviation from the net-
work computational model was suggested by
Raussendorf and Briegel [188]. Their approach,
which is referred to either as one-way quan-
tum computer or cluster-state quantum computer
or measurement-based quantum computer, re-
places most unitary transformations by single-
qubit measurements. These measurements must
be performed in a specific sequence and in direc-
tions determined by the algorithm. Before these
measurements can be performed, the system has
to be brought into a highly entangled state (the
“cluster state”). This approach therefore shifts
the interactions between qubits from the process-
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ing stage to the preparation stage and explicitly
uses entanglement as a computational resource.
The cluster state can be generated by initializing
all qubits into the state

!0=
1

2N/2
(|0→ + |1→)

⇐N

und subsequently letting it evolve under an Ising-
type Hamiltonian

HI = J(t)
∑

jk

S(j)
z S(k)

z (9.1)

for a time ε such that
∫
ε

0 J(t)dt = ς. After this
evolution, the first set of measurements prepares
the state for the actual algorithm.

quantum gate

information flow

Figure 9.26: Two-dimensional cluster state. The
qubits in the yellow segments are
measured along the z-axis and
thereby e!ectively removed from
the cluster state. Vertical ar-
rows indicate measurements in x-
direction, tilted arrows in the xy-
plane. (Adapted from [188])

As shown in Fig. 9.26, some qubits (marked in
yellow) are measured along the z-axis, i.e. in
the computational basis. The collapse of these
qubits eliminates their entanglement with the
rest of the cluster. The resulting state con-
sists then of a tensor product of all measured
qubits with an entangled state of the unmeasured
qubits.

9.4.6 Example : CNOT

To process quantum information with this net-
work, the particles are measured in a certain or-

der and in a certain basis. Quantum information
is thereby propagated horizontally through the
cluster by measuring the qubits on the wire while
qubits on vertical connections are used to real-
ize two-bit quantum gates. The basis in which a
certain qubit is measured depends in general on
the results of the preceding measurements.

1 2 3

4

target in

control in

target out

Figure 9.27: CNOT gate in the cluster-state
computer.

Fig. 9.27 shows how a CNOT gate is imple-
mented in a measurement-based quantum com-
puter. The input state is encoded into the qubits
marked ‘target-in’ and ‘control-in’, while qubits
2 and 3 are initialized into the states

|+→ =
1⇑
2

(|0→ + |1→) .

The tensor product of these four qubit states is
then subjected to the entanglement operation
described above, i.e. the evolution under the
Hamiltonian (9.1). Then, measurements are per-
formed on qubits 1 and 2 along the x-axis, as
marked by the arrows. This puts the state of
qubit 3 into | (i1 + i4) mod2→, where |ik→ indi-
cates that qubit k is in state i = {0, 1}. For the
four possible values of the two input qubits, we
obtain

00 0
01 1
10 1
11 0

.

This corresponds to a CNOT operation.

The proposed device appears to be at least as
powerful as a network quantum computer and
for certain tasks it is more powerful [188, 189].
For a possible implementation, it was suggested
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to represent the qubits by atoms stored in an op-
tical lattice [190] formed by the electric field of
a standing light wave (≃ section 11.6). Alterna-
tively, photons can be prepared in cluster states
[191], using, e.g. active feed-forward techniques
[192].

9.4.7 Adiabatic computation

Another alternative computational model is the
adiabatic quantum computer, which was origi-
nally proposed by Farhi et al. [157]. As in the
case of the network model, the adiabatic model
represents the result of a computational task by
a quantum state !res. The main di!erence is
that one does not worry about gate operations
to generate this state from a chosen initial state.
Instead, one designs a Hamiltonian such that
its ground state corresponds to the target state
!res. The only remaining task is then to force
the system into its ground state. This can in
principle be achieved by cooling, but in many
systems, it is di"cult or impossible to reach the
ground state in finite time.

The solution for this problem is the adiabatic
theorem of quantum mechanics. It states that

A quantum mechanical system remains in
its instantaneous eigenstate if the Hamilto-
nian changes su"ciently slowly and there is
a gap between the eigenvalue and the rest
of the Hamiltonian’s spectrum.

To use this theorem, one first designs a system
Hamiltonian for which the ground state can be
prepared e"ciently. A possible example is the
initial Hamiltonian

H0 = ↔”0

∑

i

S(i)
z .

Clearly, the ground state of this Hamiltonian is

!0 = | ⇔⇔⇔ . . . ⇔→,

adiabatic 
transfer

initial Hamiltonian with 
accessbile ground state

problem Hamiltonian 
ground state = solution

Figure 9.28: Schematic representation of adia-
batic quantum computing.

which is often used as the initial state of an algo-
rithm in the network model and relatively easy
to prepare.

As shown in figure 9.28, the system Hamilto-
nian is then slowly transformed into the ‘problem
Hamiltonian’ HP :

H(t) = (1 ↔ t

T
)H0 +

t

T
HP .

According to the adiabatic theorem, the system
remains in the ground state of the instantaneous
Hamiltonian [193] throughout this process and
therefore encodes the solution when the system
Hamiltonian has become the problem Hamilto-
nian.

The main challenges of this scheme are the design
of the problem Hamiltonian and the adiabatic
transfer process, making sure that the conditions
for adiabaticity remain satisfied throughout.

9.4.8 Adiabatic factoring

As an example, we consider an adiabatic factor-
ing algorithm [194]. It allows one to determine
the prime factors of a number N by determining
the ground state of the Hamiltonian

HP =
∑

x,y

(N ↔ xy)2|x, y→⇓x, y|.

Here, |x, y→ = |x→ ↑ |y→ represents a quantum
register that encodes possible trial factors in two
partial registers. The Hamiltonian is diagonal in
this basis and the energy of each state is given by
the square of the di!erence between the product
xy of the trial factors and the number N to be
factorized. If the product of the two trial factors
is N , i.e. if they are the true factors, the energy
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becomes zero, which is the lowest possible value.
The ground state thus encodes the solution of
the factoring problem.

!
"

#
! " #

!"##

#

"##

$##

%##

Evolution time

En
er

gy

Figure 9.29: Energy levels during the adiabatic
factoring algorithm.

Fig. 9.29 shows, as an example, the energy levels
of this Hamiltonian as it changes slowly from H0

to HP . In this case, the initial Hamiltonian was
chosen as

H0 = ↔”0

∑

i

S(i)
x

and the number to be factorized was 21. Since
this number is odd, the possible factors must also
be odd. In a binary representation, the lowest-
order qubit is therefore always 1 and it is not
necessary to encode its value in the quantum reg-
ister. It is then su"cient to use 1 qubit for the
smaller of the two possible factors and 2 qubits
for the larger one.

000 111110101100011010001

5

2

3

4

6

1

St
ep Basis state

Figure 9.30: Measured probability distribution
of the states during the adiabatic
factoring algorithm. Blue bars show
the theoretical prediction, red ones
the experimental results.

Fig. 9.30 shows, how the ground state of this
Hamiltonian changes during the adiabatic evolu-
tion. Six time points of the evolution are marked
by the numbers 1-6 in Fig. 9.29. Initially, the sys-
tem is in an equal superposition of all computa-
tional basis states. As the algorithm progresses,
all the probability amplitudes decrease, except
for that of the |111→-state, which increases. The
first two qubits (plus the not encoded lsb) thus
represent the factor 7, while the third qubit, to-
gether with the implicit lsb, encode the second
factor 3.

Adiabatic quantum computing is also the basis of
the commercial quantum computer of the Cana-
dian company d-wave, which uses superconduct-
ing microchips for processing the quantum infor-
mation.
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