8 Quantum Algorithms

8.1 Quantum versus classical
algorithms

8.1.1 Why Quantum?

Quantum computers can be built as universal
computers, i.e., such that they can perform all
tasks that can be executed on any other (classi-
cal or quantum) computer. However, as long as
they use the same algorithms for these tasks as
classical computers, they also need roughly the
same amount of time for completing the task.
As discussed in Chapter [3| “roughly the same
amount of time” refers mostly to the scaling is-
sues, i.e., how quickly the required time increases
with the size of the problem. Only when algo-
rithms are implemented that use specific prop-
erties of quantum mechanical systems can quan-
tum computers outperform classical computers.
Such algorithms, which are known as “quantum
algorithms”, require hardware that is designed as
a quantum computer. The Gottesman-Knill the-
orem [125] gives a precise description of a class
of quantum algorithms that can be simulated ef-
ficiently (i.e. polynomially) on a classical com-
puter. That class comprises all quantum compu-
tations beginning with computational-basis state
preparation and involving Hadamard, phase,
CNOT, and Pauli gates and measurements of
observables from the Pauli group (including, for
example, measurements of the computational ba-
sis).

Problems where quantum algorithms are more
efficient than classical algorithms typically in-
clude many repetitions of some task on a large
number of input values. A prototypical example
is the search through an unstructured database,
e.g., the search for a person of whom one only
knows the phone number. Classical computers
then have to look through all entries of the phone

book in turn, comparing the listed number with
the given number. As shown in the upper part
of Figure this procedure involves many rep-
etitions of the simple task (read item - compare
- decide if numbers are identical).

Input Output
omputation
Classical %
computer =
£
repetitions
Input Output
Superposition ' Computation
Quantum Dedede) | => ‘
computer N steps 1 step

Figure 8.1: Differences in classical and quantum
algorithms.

For a number of similar problems, quantum com-
puters can search the database more efficiently.
As shown in the lower part of Figure these
algorithms typically involve the following steps.
The system is initially in a well defined state,
which we take to be the ground state |0). Start-
ing from this state, a superposition of all possi-
ble basis states is established. For a system of
N qubits, the number of basis states is 2/V. The
process of creating these superpositions can be
completed in O(N) steps; it is therefore efficient
in the computational sense. The next step is the
application of a transformation to this superpo-
sition state. This step is in some cases equivalent
to performing the same operation on each of the
2V states sequentially. Since this step replaces
2N operations, it is largely responsible for the
high efficiency of quantum computers compared

139

8 Quantum Algorithms

to classical computers. This feature is often re-
ferred to as quantum parallelism. After this cen-
tral computational step, another transformation
is usually required to arrange the relevant infor-
mation in the output qubits in such a way that
it can be read out during the final step.

8.1.2 Classes of quantum algorithms

If we consider simple numerical tasks like mul-
tiplication for the central transformation oper-
ation, it will transform the superposition state
into a superposition of the results of the multi-
plication. While the operation is fast, such an
algorithm cannot be considered efficient, since
the time for readout of the 2%V individual results
would still grow exponentially with the number
of qubits. The advantages of “quantum paral-
lelism” can therefore only be exploited in cases
where one is not interested in all answers to all
possible inputs. Instead, quantum algorithms
concentrate on two key issues: finding something
(e.g., a result to a query) or determining global
properties of some functions, such as the period
of a function, the median of a sequence, etc.,
rather than individual details [126]. Accordingly,
the quantum algorithms that have been intro-
duced so far can be broadly classified into two
kinds:

e Order-finding algorithms, based, e.g., on
the quantum Fourier transform. The most
prominent member of this class is Shor’s [14]
algorithm with its exponential speedup of
number factoring as compared to classical
algorithms.

e Quantum searching algorithms, for exam-
ple the one by Grover [127, [128] with
its quadratic speedup for a “needle in
a haystack”
database.

search in an unstructured

Figure [8.2] illustrates the quantum parallelism
at the example of a search algorithm. In the
quantum algorithm (right), all possible paths are
searched simultaneously, in parallel. It therefore
finishes much faster than the classical algorithm

Figure 8.2: Graphical comparison between a
classical (left) and a quantum search
(right) algorithm.

on the left, which must search the different paths
sequentially.

While some of the proposed algorithms involve
advanced mathematical tools, others are quite
easy to understand intuitively. We first discuss
the relatively simple Deutsch algorithm, as an
example of an order-finding algorithm. It de-
termines global properties of certain classes of
functions.

8.2 The Deutsch algorithm:
Looking at both sides of a
coin at the same time

8.2.1 Functions and their properties

The Deutsch (—Jozsa) algorithm provides a pos-
sibility for computing global properties of cer-
tain functions in exponentially less time than any
classical algorithm. It was originally put forward
by Deutsch |11] and generalized to several input
qubits by Deutsch and Jozsa [12]. The algorithm
has been implemented experimentally on both
ion-trap [129] and NMR quantum information
processing systems [130].

While the properties of some functions are easy
to describe (e.g., increasing monotonically, os-
cillating ...), one may also encounter functions
that are too complex for such an analysis or for
which no analytical expression is available. This
includes also functions that can only be called in

140

8 Quantum Algorithms

the form of a "black box’. In such cases, one may
still be interested in finding global properties of
the functions, e.g., determining if the function is
constant (it’s output does not depend on the in-
put) or if it includes all possible numbers among
the possible results. The Deutsch algorithm [11]
and its extensions (see Section provide an
efficient way of answering these questions. With
a single function evaluation, this algorithm dis-
tinguishes between two types of functions

f:x—{0,1}

that take positive integers as input and yield the
output zero or one. The two types of functions
considered are balanced (i.e., outputs zero and
one occur with equal frequency) or constant (i.e.,
the output is either always zero or always one).

Quantum mechanically, function evaluations are
implemented as unitary transformations Uy act-
ing on the states that represent the information

Uylz) = |f(2)).

Clearly, not every function can be represented
as a unitary transformation (e.g., constant func-
tions are manifestly non-invertible and hence
non-unitary), but it is always possible to find an
enlarged state space, in which a unitary opera-
tor exists that maps the possible inputs into the
correct output states.

8.2.2 Example : one-qubit functions

As the simplest example, consider a one-bit-to-
one-bit function f(z). There are four possible
one-bit-to-one-bit functions:

fi:0=-0,1—=1
fo:0—-1,1—=0
f3:0—=0,1—=0
f1:0—-1,1—>1
which can be encoded as 2 x 2 matrices (compare
Section [4.3):
fi = 1,
f3 = P+

f2:X7

1
7S+7

1
=P_4+ -S_.
5 fa + =S

h

The first two functions are balanced (both out-
puts 0 and 1 occur with equal frequency), the
other two are constant. In the original algorithm
by Deutsch [11], an additional qubit y is required
to implement these functions on a quantum com-
puter. On this quantum register (consisting of
the two qubits = and y), the function evaluation
is implemented as an addition without carry on
the second qubit:

Uylz,y) = |2,y @ f(2))

where @ means addition modulo 2, or XOR.

In the actual computational basis
(|00},]01),]10),|11)) that includes the addi-
tional bit, the first function (the one-qubit
identity) corresponds to the mapping

Uf1 : ’0,0> —
1,0) —

|0,0),10,1) —10,1),
1, 1), [1,1) = [1,0),

which can be written as the matrix

100 0
0o100]| (10
0001 _<0X>‘
0010

The blocks 1, 0, and X represent 2 x 2 matrices.
The other three one-bit-to-one-bit functions can
similarly be represented in the form

X 0
0 1
10
X 0
0 X
Each of these real symmetric matrices Uy is its
own inverse. Hence the matrices are unitary, as

required for their implementation by a quantum
mechanical evolution.

141

8 Quantum Algorithms

8.2.3 Evaluation

To compute f(x) we initialize y to zero and apply
Us to |z,0):

Uy, 0) = [z, f(x)).

Note that storing the input qubit x makes even
constant functions invertible.

To use the advantage of quantum parallelism, we
use the Hadamard gate

(1)

to put the first qubit into a superposition state:
1 1
V2 V2

This allows us to perform the function f on both
input states simultaneously:

H|0) = —=(|0)+[1)); HJ1) = —(|0) —[1)).

1
V2
1
- ﬁ(\o,f(o)>+\1,f(1)>),

UsH,[00) = U (]00) + [10))

where H, means the Hadamard gate applied to
the o qubit. By applying Uy just once to a su-
perposition of two input states, we have thus ob-
tained information about f for both possible in-
put values; this is the simplest example of quan-
tum parallelism.

8.2.4 The Deutsch algorithm

The original Deutsch algorithm uses a 2-qubit
system that is initially in the state |¢g) = |0, 1).
Applying Hadamard gates to both qubits brings
it into the superposition state

1) = HmHy’071>:%(‘0>+’1>)(’0>_‘1>)

=5 (100) +]10) — [01) — [11)).

Applying the function operator Uy to this state
yields

[2) = Upglehr)
= 5000, £O) +11, £}
=0, 1@ £(0)) — [1, 1@ £(1))).
As is often the case in quantum algorithms, the

input values are now entangled with the function
results.

We now distinguish the two cases where the func-
tion is either constant (f(0) = f(1)) or balanced
(f(1) = 1@ f(0) # f(0)). In the first case the
quantum register is in the state

va) = 5 (10.£O) + |1, £O)) ~ [0, 19 £(0))
1@ £0)

= 500 +11) (17(0)) ~ 1 FO))).

—~

In the second (balanced) case, the state is

[¥2) = 5 (10, £(0) +[1,1@ f(0))
—10,1& £(0)) = [1, f(0)))
= %(\0> = 1) (1f(0)) = 1 £(0))).
Comparing these two states we see that the an-
swer to our question (function constant or bal-

anced) is now encoded in the relative phase of
the = qubit. A measurement of X will therefore

%=

N =

reveal the answer.
0) {E, HE
1y gl

Figure 8.3: Summary of the Deutsch algorithm.

Alternatively, the information can be converted
into the populations of that qubit by a second
application of the Hadamard gate:

|¢3> = H$|¢2>
- |f(0)69f(1)><

£(0)) — \169f(0)>>
7 :

142

8 Quantum Algorithms

The x qubit contains now the sum (modulo 2)
of the two possible function values. It is there-
fore zero if they are equal, i.e., the function
is constant, and 1 if the function is balanced

(f(0) ® f(1) = 1). Figure summarizes the
algorithm.

One function evaluation is thus enough to deter-
mine whether f is balanced or constant. A pic-
torial way of describing this is “looking at both
sides of a coin at the same time”: if the two sides
of a coin are equal, it is forged (not too cleverly,
however), if not, chances are that it is good.

8.2.5 Many qubits

The one-qubit Deutsch algorithm is not too im-
pressive, but consider now a function with n in-
put qubits, and still only one output qubit. Now,
we try to answer the question if a function

a={

is constant or balanced.

Ix) Ix)

/n /n

fan, ...

U | f(x) @ y)

Figure 8.4: Summary of the Deutsch-Jozsa algo-
rithm.

The initial state of the quantum register is now

%) = 10,1) = [0)1]0)2 - - [0)—1]0)n| L 41-

Applying the n-qubit Hadamard transformation
n+1

H:H, = [[Hi=HieHy®... H,®H, 1,

=1

(with H; the Hadamard gate acting on qubit)

to this state yields
v HgM%?)+ 11
_ + +
RS
(5. (%50,

T 2 (0 - 1),

a superposition of all possible input states. The
sum runs over all possible n-bit vectors Z. This
step is extremely efficient: it takes only n+1 op-
erations (which often can be performed in par-
allel) to create an equal-weight superposition of
the 2”1 input states.

The functions to be examined are again imple-
mented by the unitary operation

Us|7,y) = |7,y © f(T)).

Applying this transformation to the superposi-
tion of all input states yields

[2) = Uglihr).

Using

U (12)(10) = 1))
= [D(f(@) - 1o f(2)))
_ L 1D(0) = 1)) for f(&) =0
7)([1) = 10)) for f(Z) =1

we find

N qyv@ B (10 -1
[g) = (1) \/27(7% >

—

The possible function values are now stored in
the signs of the amplitudes in the superposition
state.

The final step of the algorithm is another
Hadamard transformation, as in the one-qubit

143

8 Quantum Algorithms

case. To understand its effect, consider a
Hadamard gate applied to a single qubit |z):

}<|0> +(-

:\fz

Hlz) — 1)7[1))

iEZ’Z

Here, z represents the possible values of the out-
put qubit.

This generalizes to the n-qubit case:

H;|7) =

\/272 1)74)3)

where ¥-7 =), x;; is the bitwise scalar product
of the two m-qubit vectors ¥ and z. The final
state of the n-qubit algorithm is therefore

lvs3) = Hzlya)

=ZZ

To decide if the function is constant or balanced,
one has to measure the population of the ground
state |Z) = |0), whose amplitude is

9—n Z(_l)f(f) —

T

+1 for f constant
0 for f balanced ’

and obviously some intermediate value if f is nei-
ther balanced nor constant.

8.2.6 Extensions and generalizations

The Deutsch—Jozsa algorithm performs the test
(balanced or constant) on a n-bit function f(Z).
If one imagines that n may be large and f may
be costly to evaluate, then the advantage of hav-
ing only one function evaluation (as compared
to O(2")) is clear. It is, however, important to
stress that the function must be promised to be
either balanced or constant; for a more general
function the Deutsch—Jozsa algorithm will give
an ambiguous answer.

The algorithm was improved in [131] and gen-
eralized to mixed (thermal) states in [130]. An
interesting generalization was published by Chi,
Kim and Lee [132]: they showed that the scheme
can be extended to functions whose results are
integers rather than bits. Furthermore, their
modification does not require the auxiliary qubit
ly), which is modified in the Deutsch-Jozsa algo-
rithm, but whose state is not needed for readout.

All these algorithms do not have a great prac-
tical value as compared to the Shor and Grover
algorithms but they are easy to understand and
they illustrate how interference, and in a way,
the Fourier transform (which is related to the
Hadamard transform), are employed in quantum
information processing. Another Fourier-based
algorithm which is more difficult, and potentially
much more interesting, is Shor’s algorithm for
finding prime factors.

8.3 The Shor algorithm: It’s
prime time

Shor’s algorithm draws from two main sources.
One source is number theory, which we will not
treat too deeply, and which shows that factoring
can be reduced to finding the period of certain
functions. Finding a period is of course related
to the physicist’s everyday business of Fourier
transformation, which is the second source of
Shor’s algorithm. A quantum computer can very
effectively compute the desired number-theoretic
function for many input values in parallel, and it
can also perform certain aspects of the Fourier
transform so efficiently that already the term
“quantum Fourier transformation” (QFT) has
been coined.

Why is it interesting to find prime factors of large
numbers? The scientist’s motivation is, because
it is a hard problem. It turns out that this is
one of the extremely rare cases where the same
motivation is shared by scientists, bankers, and
the military. The reason is cryptography, the se-
cret transmission of (for example financial or mil-
itary) data by so-called public key cryptographic

144

8 Quantum Algorithms

schemes. In these schemes a large number (the
public key of the recipient) is used to generate
a coded message which is then sent to a recip-
ient. The message can only be decoded using
the prime factors of the public key. These prime
factors (the private key) are only known to the
recipient (bank, chief of staff,...). An extremely
low-level example is the number 29083=127-229.
With pencil and paper only it will probably take
you some time to find the prime factors, whereas
the inverse operation (the multiplication) should
not take you more than about a minute. In the
present section we discuss Shor’s algorithm the-
oretically. The experimental implementation by
means of liquid-state NMR will be treated in Sec-

tion [10.3]

In general, public key cryptographic systems rely
on functions

fa(fi)

Yi; X; € message text,

y; € encrypted text, a integer, the key

The inverse function

foaWi) =i, pg=a

depends on the prime factors p and ¢ of a, which
are not easy to ﬁnd This makes code breaking
expensive: the number of computational steps
grows as

steps e/ (log N)*/3

In contrast, the number of steps in the quantum
algorithm of Peter Shor is polynomial:

#steps o« N2(log N)(loglog N).

8.3.1 Some number theory
Finding a gcd

Let N > 3 be the large odd integer which we
want to factorize, and a < N some other integer.

'Find the prime factors of 29083 or 137703491 without
electronic devices!

Let us assume that the greatest common divisor
ged(N,a) =1, that is, N and a are coprime. (If
they are not coprime, f = ged(V, a) is already a
nontrivial prime factor of N and we restart with
N/f in place of N.)

To determine the gcd we can employ a nice lit-
tle piece of classical Greek culture, Euclid’s al-
gorithm, which is, by modern terms, an efficient
algorithm. It works as follows: Let x and y be
two integers, z > y, and z = ged(x,y). Then
both z and y as well as the numbers x—y, x —2y,

are multiples of z, and so is the remainder
r = x — ky < y obtained in the integer division
of x by y. If r is zero, z = y and the problem is
solved. If r # 0, the problem is transformed to
a similar one involving smaller numbers:

z = ged(z,y) = ged(y, r). (8.1)

The above argument can be repeated with the
pair of numbers (y, r) in place of (x,y), etc. Thus
z is expressed as the gcd of pairs of ever smaller
numbers. The last nonzero remainder obtained
in this procedure is the desired number z.

Modular exponentiation

To proceed in our attempt at factorizing the
number N we need another building block from
number theory, which is modular exponentiation.
Remembering that a and N are coprime, we con-
sider the powers a® of a, modulo N (that is, we
calculate the remainder of a” with respect to di-
vision by N). The smallest positive integer r
such that

a"mod N =1

is called the order of @ mod N. This means that
a"=k-N+1

for some k, and consequently
T =k-N-a+a

such that

a" ™' mod N =amod N

145

8 Quantum Algorithms

which shows that r is the period of the modular
exponential function

Fy(xz) = a” mod N. (8.2)

Incidentally, this shows that » < N because
Fy(x) (being the remainder of a division by V)
cannot assume more than N different values be-
fore repeating.

Three cases may arise:
1) ris odd,
2) ris even and a”/?2 mod N = —1,
3) ris even and a’/? mod N # —1.

Cases 1) and 2) are irrelevant for the factoriza-
tion of N, but in case 3) at least one of the two
numbers ged(N, a”/? £1) is a nontrivial factor of
N, as we shall show below.

8.3.2 Factoring strategy

We now show that case 3) above leads to a non-
trivial factor of V. For ease of notation let us
call @'/?2 = z. From z2 mod N = 1 it follows
that 22 — 1 = (z+ 1)(z — 1) is divided by N and
thus N must have a common factor with =z + 1
or x — 1. That common factor cannot be N it-
self, since z mod N # —1 and thus = + 1 is not
a multiple of IV; neither can z — 1 be a multiple
of N since if it were, a’/2 mod N = 1 and the
order would be r/2, not r. (Remember that the
order was defined as the smallest number such
that " mod N = 1.) The common factor we
are looking for must then be one of the numbers
gcd(N,a™/? £ 1), and the ged can be efficiently
computed by Euclid’s algorithm.

Next we must make sure that case 3) above has
a fair chance to occur if we randomly try some
numbers a. The following facts give us hope:

e If N is a pure prime power N = p° (s > 2),
this can be detected efficiently, because then
the condition s = ggTN (with integer p) must
hold, which can be checked for all possible

values of s. (Note that s can be at most
log N)
log?2 -

e If N is an odd composite number N =
pit - pdm (m > 2) and a a randomly cho-
sen integer 1 < a < N — 1 coprime to N,
and " = 1 mod N (that is, r is the order of
a mod N), then the probability

prob(r even and a’/? mod N # —1)

1 3

> 1——>-.

- 2m = 4
This means that for each time we calculate the
order of @ mod N we have a chance of better than
75% to find a nontrivial prime factor of N. Com-
puting the order m times reduces the chance of
failure to 47", The chance of finding a prime
factor (if one exists!) can thus be brought arbi-
trarily close to 1, but it is important to note that

Shor’s is a probabilistic algorithm.

The proof of this number-theoretic result can be
found in [35], Appendix 4. It is not difficult, but
it involves a few more pieces of classical culture,
such as the Chinese Remainder Theorem, which
is more than 750 years old. The proof can also be
found in Appendix B of the excellent 1996 paper
[133] by Ekert and Jozsa.

We are now able to give an algorithm which (with
high probability) returns a non-trivial factor of
any composite N. All steps can be performed
efficiently on a classical computer, except for
the task of computing the order, which is where
quantum computing comes in.

1) If N is even, return the factor 2.

2) Determine whether N = p® for integers p >
3 and s > 2, and if so return the factor p.

3) Randomly choose @ in the range 1 to N —
1. If ged(a, N) > 1 then return the factor
ged(a, N).

4) Use the order-finding subroutine to find the
order of @ modulo N.

5) If 7 is even and a’/?2 mod N # N — 1 then
compute ged(a’/? + 1, N) and test to see
which one of these is a non-trivial factor, re-
turning that factor if so. Otherwise, the al-
gorithm fails in which case one must restart
at step 3).

146

8 Quantum Algorithms

In Section VI of [133] the authors discuss the
complete application of the algorithm to the
smallest odd composite number which is not a
power of a prime, N = 15. That number was
also factorized in the first liquid-state NMR im-
plementation of Shor’s algorithm, compare Sec-

tion [10.3.

8.3.3 The core of Shor’s algorithm

The centerpiece of Shor’s algorithm is the calcu-
lation of the order of @ mod IV, that is, the period
of the modular exponential function . The
strategy for doing this is to calculate the func-
tion F(z) for many values of x in parallel and
to use Fourier techniques to detect the period in
the sequence of function values.

5 10>
g" 0> —{H] QF'I;I
=R [~
3. /10> —{H]
£ \ |0o>—{H]

Ur

aN

g o>
1Z]
B\ 0>
he a‘mod(N)
s /10>
(=2}
= \ 0>

Figure 8.5: Circuit diagram of the oder-finding
algorithm.

Figure[8.5|illustrates the order-finding algorithm.
For a given N, two quantum registers are needed:

e a source register with K qubits such that
N2 <Q:= 2K < 9N? and

e a target register with N or more basis states,
that is, at least logy N qubits.

Step 1 of the algorithm is the initialization of
both registers

[¥1) = 10)0).

1% Quantum-Fouriertransform

Step 2 is the “Quantum Fourier transformation”
of the source register. The quantum Fourier

transformation is nothing but the ordinary dis-
crete Fourier transformation of a set of data of
length @ (details will be discussed in the next
section). The corresponding unitary operator on
the source register Hilbert space is defined by

Q-1 /
1) ,
Up, 1 lg) — \/@qgoexp <2m$> lq').

The number ¢ between 0 and @ — 1 has the bi-
nary expansion q = EJK:_OI ¢;j27, and |q) is short-
hand for |gx—1...q1q0). The target register is
not modified, so the state after step 2 is

0-1
[2) = (Up, @ 1)|vn) = Q72> [g)[0);
q=0

all the Fourier phase factors are equal to unity
since all source qubits were initially zero. Note
that this particular output can also be generated
by a Hadamard transform of the source register.

Modular Exponentiation

Step & is the application of the gate U,
which implements the modular exponentiation
g+ f(q) = a? mod N (we will not discuss in de-
tail how to build this gate). The result is

Q-1
Y3) = Uglihe) = Q71/2 Z |g)|a? mod N).

q=0

Here Q > N? function values of the function
Fn(q) are computed in parallel in one step, and
since 7 < N the period r must show up some-
where in this sequence of function values. The
implementation of the modular exponential is an
efficient computation, using powers x, of some
integer x. First generate the M + 1 numbers
x,xz,x4,...,x2M by M integer multiplications.
Using the binary expansion of p, P then can
be computed using only of the order of logyp
multiplications.

147

8 Quantum Algorithms

27! Quantum-Fouriertransform
Step 4: Apply the quantum Fourier transform
again to the source register. This leads to
|%4) (Urq ® 1)|¢3)
Q-1Q-1

-1 Z ZeQmQ ¢)]a? mod N)

q=0 ¢'=0

where f(q) is the function whose periodicity we
are looking for.

Measure Source Qubits

Step 5. Measure the source qubits in the com-
putational basis. The probability of finding the
source register in the state ¢ displays a pattern
(due to quantum interference) from the regulari-
ties of which the order r can be deduced. To see
how this comes about we assumd?| for the mo-
ment that @ is divisible by 7, that is,

Q =nr.

We introduce a shorthand notation for the state

|%4):
|14)

(8.3)

(8.4)

Zzaqq)| f(d

where both sums extend from zero to QQ — 1. The
probability of finding the source register in a par-
ticular basis state |go) is the expectation value of
P,, ®1 where Py, = |qo)(qo| is the projection op-
erator onto |go) and the unit operator 1 acts on
the target qubit:

(94[Pgo © 1]ha)

SN an o (plao){aola)

(F@OIf(d)) (8.5)
Zzaqop’aqoq OIf(d)). (8.6)

2Although this assumption is strictly impossible since
Q is a power of two it does not have major harmful
effects, as we will see below.

The modular exponential function f(p)
aP? mod N has period r, and the r function values
within a period are all distinct due to the nature
of the function. The scalar product (f(p')|f(q'))
of the target register states thus is periodic in
both variables p’ and ¢’ and we can sort the
terms in according to the nonzero values

of (f(P)If(d))-

We first consider the case p’ = 0. The scalar
product (f(0)|£(¢)) = (F(0)|£(0)) = 1 for ¢’ =

0,7,2r,...,(n — 1)r. For any of these ¢’ values
(fHIf(0)) =1 for p' = 0,7,2r,...,(n — 1)r.
The terms in containing the nonzero scalar
product (f(0)|f(0)) thus generate the following
contribution:

2
n—1ln—1

* _
E E aqo,llra‘JOal“" -

v=0 pu=0

(8.7)

n—1
E , CQqo,pur
pn=0

In a similar way we can collect the contribu-

tions associated with (f(1)[f(1)), (f(2)|f(2)), ...,
(f(r = 1)|f(r — 1)) to obtain the desired proba-
bility of finding the source register in the basis
state |qo):

r—1 |n—1

Z Z Qgo,pr+j

7=0 |u=0

(a|Pgy @ 1[ths) = (8.8)

The inner summation always comprises n terms,
independent of j. This is due to the simplify-
ing assumption . Without that assumption,
that is, for (n — 1)r < @ < nr the inner sum
would only have n — 1 terms for some j. Given
that we are typically discussing large numbers
this is not a big effect. Re-expanding the abbre-
viation agq introduced above, we obtain

2
n—1
E , Qo ur+j
pu=0

2

<2m‘(£(ur —i—j))
o))

n—1

1
@ Zexp

u=0

N n—1
52 exp (271_2(]57) Z

p=0

148

2

8 Quantum Algorithms

The phase factor in front of the sum is irrele-
vant. The (geometric) sum itself yields n if %r
is integer, and zero otherwise, independent of j.
The probability thus shows a regular pat-
tern of peaks of equal height from which r may
be deduced.

Without the simplifying assumption the
pattern is not quite as regular, but the proba-
bility for finding the source register in the state
|go) can still be expressed in terms of a few geo-
metric sums:

(4|Pgy ® Ltha) (8.9)
= it (2=1=1) o\ 2
= — exp <27Ti>> ,

where “int” denotes the integer part of a real
number. The function is shown in Figure
for @ = 256 and r = 10. From the regu-
larities of peak structures like the one in Figure
the order r can be deduced with a high prob-
ability (but not with certainty) if the positions
of a sufficiently large number of peaks are taken
into account. We do not reproduce the technical
details here and instead refer our readers to the
literature for the full discussion which requires
some additional mathematical tools.

0.1
§ .
> 0.05
E
©
o]
e
@
0 ‘ J L
0 100 4 200

Figure 8.6: Probability of measuring ¢, with Q) =
256 and r = 10.

Implementation of the Modular
Exponentiation

What remains to be understood is the implemen-
tation of modular exponentiation and of the dis-

crete Fourier transform. We skip all details of the
modular exponentiation except for one remark
related to the efficient computation of (high)
powers a” of some integer a. By M integer mul-
tiplications the M + 1 numbers a, a2, a*, . .. ,a2M
can be generated. Given the binary expansion
T = Eij\io 2;2° (x; = 0,1) of z, the desired power
can be written as

M

a® = H (a2i>xi .

=0

(8.10)

Since this product contains at most M +1 factors
the large power a” thus can be computed using
only of the order of log, multiplications. The
only other ingredient needed is an algorithm for
multiplying two integers by means of quantum
gates, which is available.

8.3.4 The Classical Fourier transform

We will first discuss the “classical” discrete
Fourier transform, with a short digression on the
fast Fourier transform (FFT) and then we will
turn to the quantum Fourier transform (QFT)
and see that it is even faster than the fast Fourier
transform.

Discrete Fourier transform

The usual discrete Fourier transform maps
a complex input vector with components
x0,%1,...,LN—1 to the output vector (the
Fourier coefficients) yo, y1,. .., yn—1 by means of

1 Nl 21
yy=N"2 Z exp (Nk:j> xj, (8.11)
7=0
and vice versa,
, N 2714
xp=N"2 exp (—Nkj> Yj (8.12)
=0

Note that both transformations can be inter-
preted as “matrix times vector” operations. That

149

8 Quantum Algorithms

the two matrices involved are in fact inverses of
each other, follows from the identity

N—

1
2
ex (Ly —Z)k> = N&j, (8.13)
k=0

which is nothing but a geometric sum. Obviously
the evaluation of the Fourier transform involves
roughly N? complex multiplications, and about
the same number of additions. Doubling the size
of the data set thus means quadrupling the op-
eration count.

Fast Fourier transform

The FFT (which can be traced back to work by
Gauf in 1805 [134]) rests on the observation that

by separating even and odd j in (8.11]) one ob-

tains

N4

-1

N[

Yy = N~

21
—kl

. eXp(Nm)”‘
21
—k

+exp<N >

81

211
O exp <N/2kl> Toja1 (8.14)

~
o

1=

where N was assumed to be even. Note that the
two sums are both again discrete Fourier trans-
forms of % data each, leading to an operation

count of 2 (%)2 = %NQ. The operation count
thus has been cut in half by a simple reorganiza-
tion of the Fourier sum, and there is no reason to
stop at this point if % is even. Continuation of
this process for N = 2" yields the FFT algorithm
(see, for example, [135] for details) which reduces
the operation count from O(N?) to O(N log N)
which for many applications, for example in im-
age processing, computerized tomography, etc.,
makes the difference between “possible in prin-
ciple only” and “practical and convenient for ev-
eryday use”.

8.3.5 The quantum Fourier transform

The quantum Fourier transform is an operator
defined by the following mapping of the basis
states of an N-dimensional Hilbert space:

™ |
N‘]k> |k>

1 i 2
i) N5 Y oo

k=0

(8.15)

An arbitrary quantum state with amplitudes z;
is then mapped as

N—-1 N—-1
S ali) e Y wilk) (8.16)
j=0 k=0

with y; given by the “classical” Fourier transform
formula (8.11). This transformation is unitary,
that is, it conserves the norm of a quantum state,

N-—1 N—-1|N-1 2
lyel> = N7 j exp (Jk>
k=0 k=0 | j=0
N—1N—-1N-1
= NI x]ac Dk
k=0 j—0 1=0
N—-1
= EZ1R
=0

where in the last step we have used the identity
(18.13).

Let us now assume that N = 2" such that the
basis states {|0)...]|2" — 1)} form the computa-
tional basis for a n-qubit quantum computer. We
will denote these basis states either by the integer
j, or by the sequence j1js...j, from the binary
representation of j

n

J=a2 20 =Y G2

v=1

We will also need the binary representation of a
fractional number (between 0 and 1) which we
write as a binary fraction

0.715141 -+ Jm

= 27 27 g2

150

8 Quantum Algorithms

We take another look at the quantum Fourier

transform
2] 27
gy 272 Z exp <2n1k’> L
k=0

and insert the binary expansion of k, which leads
to

k1=0 kn=0 =1
n 1

= 272 > exp(2mijki2 ") k)
I=1 | k=0
n

— 2% [|0>l—f—exp(2ﬂ'ij2_l)|1)l].
=1

In the first step |ky ... ky) has been decomposed
into an explicit tensor product)", |k;), and
in the following step sums have been rearranged
according to the familiar pattern -, >, a;b; =
(22;ai)(D2;b5). A closer look at the exponent
reveals a binary fraction

n

Z jy2n71/7l

v=1

= J1J2---Jn-l -jn—l—i—l e Jne

2 =

The integer part (left of the decimal point) is
irrelevant because e”?™ = 1 and we can write
the quantum Fourier transform as

5) = 272 (|0), + €700 (1),)
e (‘O>2 + eizﬂo-jn—ljn‘1>2)
... (‘0>n + €i2ﬂ'0~j1j2--~jn|1>n) _

8.3.6 Gates for the QFT

The quantum Fourier transform is thus noth-
ing but a simple qubit-wise phase shift: the |1)
state of each of the n qubits is given an extra
phase factor. That operation can be performed
efficiently by a quantum circuit combining some
simple quantum gates. Let us define the unitary
(phase shift) operator

1 0
Ry = (0 e2mi2k >

and the corresponding controlled-Rj, gate which
applies Ry, to the target qubit if the control qubit
is in state |1). In the corresponding symbol (Fig-
ure for the “wiring diagram” of a quantum
computer performing the quantum Fourier trans-
form, the upper wire denotes the target qubit,
the lower wire the control qubit, and data are
processed from left to right as usual.

Target R

Control l

Figure 8.7: The controlled-Ry, gate.

k

The controlled-Ry, gate (for various k values) and
the Hadamard gate are sufficient for the quan-
tum Fourier transform circuit shown in Figure

8.8l
M
> - l] i = O

lin-1> 1 d 1

li>

n

Figure 8.8: A circuit for the quantum Fourier
transform. Not shown are the swap
gates necessary to rearrange the out-
put into the desired form.

To analyze how the circuit of Figure 8.8 performs
the quantum Fourier transform, consider the in-

151

8 Quantum Algorithms

put state |jij2...Jn). The Hadamard gate ap-
plied to the first qubit generates the state

2712 (10) + € 091(1)) |2 . . . jin),

since €?™0J1 = (—1)J1. The controlled-Ry gate
produces

272 (0) + FOME) [.),

and the following controlled-R gates keep ap-
pending bits to the exponent of the phase factor
of |1),, leading finally to

27112 ([0) + €209z 1)) [y ... i),

The second qubit is treated in a similar way. The
Hadamard gate generates

271/2 (’0> + 627ri0.j1j2...jn|1>)
- (|0) + €™072(1)) |z . . jn)

and the controlled-Ro through R,,_; gates take
care of the lower-order bits in the exponent of
the phase factor of |1),, leading to

2—1/2 (|0> +62ﬂi0.j1j2...jn|1>)
(’0> + 627ri0.j2..,jn’1>) ‘.73 o .]n>

Continuing this process we obtain the final state

2% ([0 4 30 1)
(|0) + 2m0F2dn | 1)) .. (|0) + €2709n (1)) .

This is almost the desired result, except for the
order of the qubits which can be rearranged by
SWAP gates. This is similar to the classical
FFT, which also requires some rearrangement of
the numbers.

The total number of operations (gates) for the
quantum Fourier transform is easily counted.
The first qubit is acted on by a Hadamard gate
and n — 1 controlled-R gates, a total of n gates.
The next qubit needs one controlled-R. gate less,
and so on. The total number of gates shown (im-
plicitly) in Figure[B.§ thus is n+(n—1)+---+1 =

n(n 4+ 1)/2. In addition one needs about n/2
SWAP gates. The quantum Fourier transform
thus needs of the order of n? gates (operations)
to Fourier transform 2" input data. This is much
better than even the FFT which needs O(n2")
steps, as discussed above. Note, however, that it
is not possible to get out all of the amplitudes
of the final state of the quantum Fourier trans-
form, nor is it possible to efficiently prepare the
input state for arbitrary amplitudes. This re-
stricts application of the QFT to a special class
of applications, such as the Shor algorithm.

8.4 The Grover algorithm:
Looking for a needle in a
haystack

Grover’s algorithm [127, [128] is useful for a
search in an unstructured database. This is a
very important problem in data processing be-
cause every database is an unstructured one if
the problem does not fit to the original design
Just think of try-
ing to find out the name of a person living at
a given street address from the usual alphabetic
phone directory of a big city. If the phone direc-
tory contains IV entries this will require checking
N/2 entries on average (provided there is only
one person who lives at the particular address).
Grover’s algorithm reduces the number of calls
to O(v/N), which is a significant reduction for
large .

structure of the data base.

In this section we will not deal with the practi-
cal implementation of Grover’s algorithm, that
is, how to couple an existing classical database
to this quantum algorithm, etc. We will only
outline how this beautiful algorithm allows the
solution to “grow” out of the noise by iterating
a simple procedure. As with all growing things,
however, it is important to do the harvesting at
the right time. It turns out that the same pro-
cedures can be used to grow the solution and to
determine the time for the harvest.

For an implementation of Grover’s algorithm em-

152

8 Quantum Algorithms

ploying NMR techniques, see [136]. An interest-
ing implementation of Grover’s algorithm based
purely on the Fourier transforming capabilities of
classical wave optics has also been demonstrated,
see [137].

8.4.1 Oracle functions

Let the search space of our problem have N ele-
ments (entries in the phone directory, in the in-
troductory example), indexed 0 to N —1, and for
simplicity, N = 2™. Let the search problem have
M solutions (persons living at the given street
address). The solutions can be characterized by
some function f with the property

ro={ g

We are able, by some kind of “detector” to recog-
nize a solution if we are confronted with the z!"
element of the database. In our example this is
simple: we just check the item “street address” in
the telephone directory entry number x and out-
put a 1 if it fits and a zero otherwise. In other
examples this step may be much more compli-
cated. Grover’s algorithm minimizes the num-
ber of calls to this “detector” function, or oracle
function as it is commonly called.

if z is a solution

if x is not a solution. (8.17)

Like other functions, the oracle function corre-
sponds in a quantum algorithm to a unitary op-
erator Q. This operator acts on the tensor prod-
uct of the quantum register holding the index =z
and a single oracle qubit |g) in the following way:

Olz)lg) = |)lg © f(x)),

that is, the oracle qubit is flipped when the
database item with the number z is a solution
of the search problem. If we initialize the oracle
qubit in the state

0) = 1)
N

application of the quantum oracle will lead to

Olz)lao) = (=1)'|)|ao).

|q0) =

Note that the oracle qubit is not changed, and
in fact remains in its initial state during the
whole calculation. We will henceforth omit it
from our calculations (without forgetting that it
is needed). So from now on we will abbreviate
the above equation in the following way:

Olz) = (-1)/@a).

The oracle marks the solutions of the search
problem by a minus sign. We will see that only

@) (1/ % calls to the quantum oracle will be

necessary to solve the search problem. We wish
to stress again that the oracle does not by some
magic know the solution, it is only able to rec-
ognize if a candidate is a solution. Think of the
prime factoring problem to note the difference: it
is easy to check if a proposed candidate divides a
number. An appropriate circuit performing test
divisions would be used as an oracle in that case.

8.4.2 The search algorithm

The key point of the search algorithm will be to
use the phase factors (minus signs) marking the
solutions to let the amplitudes of the solution
states grow out of the set of all possible states,
and to “harvest” them at the right time, as noted
above. We will now first list the steps of the
search algorithm and then analyze what these
steps do.
Step 1. Initialize the n-qubit index register

[41) = [0).
(All n qubits are set to their |0) states.)
Step 2. Apply the Hadamard transform

N-1
o) = HE™0) = N7V2 > " |2) (N =2"),
=0

to generate an equal-weight, equal-phase super-
position of all computational basis states.

Steps 8 and following. Iterate with the Grover
operator G

[Vr41) = Glg),

153

8 Quantum Algorithms

where the Grover operator consists of four sub-
steps:
Sub-step 1. Apply the oracle

[Vkt1/4) = Olthg)

(we use fractional indices to symbolize that these
are sub-steps of the Grover iteration step).
Sub-step 2. Apply the Hadamard transform

[Yrs1/2) = B [¥pp1)4)-

Sub-step 3. Apply a conditional « phase shift,
that is, reverse the signs of all computational ba-
sis states except |0):

[Vkt3/4) = Crltbpr1/2)s
where

Crla) = (=1)°°""|z).
Sub-step 4. Apply the Hadamard transform
again

| thrr1) = HE | p5/4).-

Sub-steps 2,3, and 4 can be efficiently imple-
mented on a quantum computer: remember that
H®" creates 2" states (in a superposition) with
just n operations; conditional phase shifts are
also easy to construct from a complete set of
quantum gates. The oracle may be computa-
tionally expensive, but we use it only once per
iteration step.

8.4.3 Geometrical analysis

Let us analyze what the Grover iteration step
does, other than calling the oracle. The condi-
tional phase shift may be written as

C7r =-1+ 2’6><6|)

where 1 is the n-qubit unit operator and |0)(0| is
the projection operator onto the basis state |0).
We know already that

H?"(0) = [¢)(and (12| = (0[H"),

where [19) is the equal-weight (and equal-phase)
superposition. The Grover operator thus can be
written as

G = H®"C,H®"0 = (2[¢2) (12| — 1) O

This operation has a nice algebraic interpreta-
tion; it turns out that the amplitudes of the com-
putational basis states are “inverted about their
average” (or mean) as is often said. However,
we will not employ this algebraic interpretation
(which is explained in Chapter 6 of [35]), because
it turns out that there is an even nicer geomet-
rical interpretation. The Grover iteration is a
rotation in the two-dimensional space spanned
by the starting vector |1¢2) (the uniform super-
position of all basis states) and the uniform su-
perposition of the states corresponding to the M
solutions of the search problem, and we will see
that the rotation moves the state into the right
direction.

To see this we define two normalized states:

) = z)

\/72 o)

1B) = ﬁ zx:f(ﬂﬁ)‘x),

with the function f(z) defined by (8.17). Obvi-
ously |53) is the uniform superposition of the de-
sired states and |a) that of the remaining states.
We can then write the state |1)2) in the search
algorithm as a superposition of |a) and |3):

[+ [

= cos ﬂa} + sin —]ﬁ)

lv2) =

which defines the angle §. Now recall that the
oracle marks solutions of the search problem with
a minus sign such that

Olyo) = cosg|a> - sing|ﬁ>.

The |B) component of the initial state thus gets
reversed, whereas the |«) component remains the

154

8 Quantum Algorithms

same. In the |a),|B) plane this is a reflection
about the |a) axis. (See Figure [8.9]) The re-
maining three sub-steps of G in fact perform an-
other reflection. Note that

[P2) (2| — (1 — [h2) (¥2])
= Py, Py,

2[1ha) (| — 1

where P9 is the projector onto the initial state
l)2) and Py is the projector onto the subspace
perpendicular to [¢2). The component perpen-
dicular to |12) thus gets reversed so that we have
performed a reflection about |1p2). A look at Fig-
ure [8.9 tells us that we have reached the state

30 30
Glyp2) = cos —|a) +sin —-[B),

that is, G has performed a 6 rotation. Iteration
then yields

2k +1
2

kE+1

2
GF|tpg) = cos 5

) + sin

015),

and we only have to choose k such that the |5)
component is as large as possible. Measurement
in the computational basis will then, with high
probability, produce one of the components of
|3), the solutions of the search problem.

A

Figure 8.9: The Grover iteration as a twofold re-
flection, or a rotation (see text for
details).

For a detailed description of the search algorithm
in a space with four states (admittedly not too
large), see [35] or the popular article [138] by
Grover.

How often do we have to apply the Grover oper-
ator? From Figure and the definition of the
angle 6 we see that the necessary number of iter-

ations is the closest integer (abbreviated CI) to
=0

20
1 1
R: = 01(2”0_2>ZCI T -3
4arcsin\/%
T | N
< ./
- 4V M

since arcsinz > x. This moves the state quite
close to the desired one: as each Grover iteration
rotates the state by 0, we end up at most 6/2
away from |3). For the interesting case & < 1
the error probability (given by the square of the
|o) component in the final state) is
< sin? b_M
P=s9 =N
It is important to note that:

e iterating more than R times worsens the re-
sult,

e in this version of the algorithm, it is neces-
sary to know M, the number of solutions.

8.4.4 Quantum counting

Here we discuss how the number M of solutions
to the search problem can be counted by a quan-
tum algorithm involving the Grover operator G
again. The idea is simple: recall that in a suit-
able two-dimensional subspace, G is just a ro-
tation and the rotation angle is related to M.
This rotation angle can be determined by quan-
tum Fourier transform techniques.

The rotation matrix for G in the basis (|a), |5))
is

cosf —sinb
G_< sinf cos# >
The ei t f thi tri a1l
e eigenvectors of this matrix are —7(

with eigenvalues e*. Recall that sin% = \/%.

155

8 Quantum Algorithms

(Some problems may arise if M > N/2, because
then 6 > 7/2; however, these problems may al-
ways be circumvented by enlarging the search
space from N to 2N by adding some fictitious
directions to the Hilbert space, as discussed in
[35]. We will ignore these problems altogether
for simplicity.) The problem of (approximately)
counting the number M of solutions is thus re-
duced to estimating the phase 6 of the unitary
operator G, the Grover gate. This task of phase
estimation is very similar to the task of period-
finding involved in Shor’s algorithm as discussed

in Section [8.3.3!

8.4.5 Phase estimation

We consider the following problem: For a given
unitary operator U we are in possession of an
eigenvector |u):

Ulu) = €™u),

where ¢ (between 0 and 1) is to be estimated.
Let us assume we have available “black boxes” to

e prepare |u),

e perform controlled-U®") operations
(j=0,1,..).

The phase estimation algorithm needs two reg-
isters. The first register contains ¢ qubits, ini-
tially all in the state |0) (¢ depending on the de-
manded accuracy and success probability of the
algorithm). The second register holds the state
|u) initially.

The algorithm works as follows.
Step 1. Apply the Hadamard transform H®' to
the first register, to generate the state

2t
- 1
HY|0) = —= " |a),
\/?:1::1

which is the by now well-known equal-weight,
equal-phase superposition.

Step 2.k (k=0,....,t —1). Apply the controlled-
U operation to register 2, using qubit k of the

first register as control qubit. This puts register
2 in state

|u) if qubit & is |0)
and in state
62”i2k¢|u> if qubit & is |1).

Note that register 2 stays in the state |u) all the
time, up to phase factors which we can collect
next to the qubits of register 1 which control
them. The state of the first register thus can
be written

S (100279 (jo) + o)

(10) + 2o))

2t71

1 2mipk
k=0

(Remember that we have omitted the second reg-
ister which is in state |u) anyway.) For ease of
discussion, assume that ¢ is a t-bit binary frac-
tion, ¢ = 0.¢1¢2...¢; (remember ¢ < 1). The

state of register 1 is just

1 . .
2,57 (’0> _'_627r20.¢t’1>) (’0> +627r10.¢t_1¢t’1>)
. <‘0> n e2m0.¢1¢2...¢t‘1>>

2mim

since e = 1 for integer m.

We now recall the discussion of the quantum
Fourier transform from Shor’s algorithm in Sec-
tion . There we constructed a quantum
circuit performing the quantum Fourier trans-
formation

g1 -+ Jn)
7z 10 #7001 () + 200
.. (’0) 4 627ri0.j1j2...jn’1>))

156

8 Quantum Algorithms

8.4.6 Reading the Phase

The inverse quantum Fourier transform can be
performed by simply reversing the QFT circuit.
Applying the inverse QF'T to the state of register
1 leads to the state

61 0) (8.18)
and therefore we can measure ¢ exactly in this
example, where ¢ has exactly t bits.If the binary
expansion of ¢ is longer than ¢ bits, for example,
if ¢ is irrational so that its binary expansion does
not terminate at all, only an estimate is possible.
In that case the algorithm does not uniquely lead
to the single basis state but to a superpo-
sition of basis states with probabilities strongly
concentrated on ¢-bit binary fractions ¢’ approx-
imating ¢. The probabilities discussed in Section
for the period estimate are very similar to
this clustering: determining the period is essen-
tially equivalent to the phase estimate which we
are presently discussing.

To determine the reliability of this algorithm, we
assume that we want to achieve a certain preci-
sion ¢ in estimating ¢. The probability of failure
of the algorithm is then the cumulative probabil-
ity of all states with |¢' — ¢| > 0. That probabil-
ity can be estimated, see Section 5.2.1 of [35]. It
turns out that if ¢ qubits are available, an n-bit
approximation to ¢ may be found with probabil-
ity of success at least 1 — ¢, if

- (8.19)

1
t =n 4+ intlog, <1+ > .
Here, int denotes the integer part of a real num-
ber, as usual.

An important point that remains is the prepara-
tion of the eigenstate |u). In the worst case we
are not able to prepare a specific eigenstate, but
only some state |¢)) which can then be expanded
in U-eigenstates,

) = Zculu), where Ulu) = 2™ |y).

u

Running the phase estimation algorithm with in-
put |¢) in the second register leads (due to lin-
earity) to the output

S culdl),

u

where ¢!, is an approximation to the phase ¢,.
We thus obtain the possible phase values of U
with their respective probabilities |c,|? as given
by the initial state.

In the special case of the Grover algorithm it
turns out that we are lucky. Recall that the
starting vector of the Grover algorithm was a
combination of |a) and |3), or equivalently, of
the two eigenstates of the unitary operator G
(the Grover operator) so that the phase estima-
tion algorithm will give us approximations to ei-
ther 0 or (27) — 6 with both of which we will be
content, because knowing 6 will enable us to op-
timize the number of iterations of G and there-
fore find a solution of the search problem with
high probability.

We will not discuss how to really search an un-
structured data base etc., and we will also not
go into the detailed performance and probability
estimates. Some remarks on these topics may be
found in Chapter 6 of [35], and some generaliza-
tions and references to interesting applications
are in [126].

8.5 Other algorithms

8.5.1 Gradient estimation

Finding the gradient of a function is impor-
tant for many applications involving optimiza-
tion tasks, such as quantum mechanical calcula-
tions or artificial intelligence. Numerically find-
ing the gradient of a function f(Z) of d variables
x; requires on a classical computer the evalua-
tion of f for d + 1 arguments. In 2005, Jor-
dan proposed a quantum algorithm [139] that
achieves this task with a single function evalu-
ation. It was demonstrated experimentally the

157

8 Quantum Algorithms

following year [103]. Similar schemes can be used
to solve systems of equations [140], including
nonlinear differential equations [141] or the so-
lution of quantum chemical problems [142, [143].
This procedure is also an interesting candidate
for many optimization tasks [144, [145], such as
quantum machine learning, where quantum com-
puters are used to accelerate machine learning
schemes [146].

We consider a real scalar function f of d real vari-
ables, f : R* = R. The goal is to compute the
gradient v f numerically, with the smallest pos-
sible number of calls of the function f. On a
classical computer this requires a minimum of
d 4 1 function calls.

For the quantum algorithm, we need d binary
strings, each of length n, where n depends on the
desired precision. In addition, an ancilla register
is required for the output, which is first intialized
to zero. As usual in quantum function evalua-
tion, the black box implements the function call
by adding (modulo 2) the result to the output
register.

To implement the algorithm, one first performs
a Hadamard transform to the input register to
create a uniform superposition of the states, and
an inverse Fourier transform on the output reg-
ister (initially in state]6), to generate a plane
wave state. When the function evaluation is per-
formed, the result is added to the plane wave
state, interfering with it. This directly gener-
ates a binary representation of the gradient in

the output state. The input state is unchanged.

For an actual implementation, some additional
points must be considered. As an example,
the expected range of function values should be
known for properly choosing the number of re-
quired qubits and some factors for the encoding
/ decoding.

8.5.2 Image processing

Image processing is a major task in many con-
texts. Accordingly, processing images efficiently

Encoding Processinﬂ Decoding

ClaS§_ica' e.g. 16 Megapixel
2n =16-106

ie o
Mo @

e.g. 16 Megapixel
n=24

nqubits

Quantum

Figure 8.10: Comparison of classical and quan-
tum image processing.

has an enormous potential. Figure [8.10 com-
pares the classical with the quantum image pro-
cessing scheme. In the latter, the pixel data are
encoded in the amplitudes of the quantum state:
if we write the vector f = [FH,FQLFML], we
can encode the pixel values (suitably scaled) in
the coefficients of the computational basis states,

—

|f) =2k crlk) as

cr = Fig/y ZFlQJ

For certain tasks, very large gains are possible.
A nice example is edge detection, i.e. finding
the the boundaries between two areas of different
colors. This is a very important task, for which
our brain (and other biological computers) have
developed specialized hardwired circuits. Clas-
sical algorithms for edge detection in an M x L
image require of the order M x L operations in-
volving the comparison of neighbouring pixel val-
ues. Using the encoding and applying a
Hadamard gate to the Isb, the output state be-
comes

(8.20)

lg) = |co+ |c1,c0 —c1,y. ..),

i.e. it now contains sums and differences be-
tween neighbouring pixel values. The non-zero
differences therefore encode the boundary. Since
only a single Hadamard gate is needed, indepen-
dent of the image size, this is a highly efficient
algorithm.[147]

158

8 Quantum Algorithms

8.6 Quantum simulations

8.6.1 Potential and limitations

Most of the current work on implementations of
quantum algorithms concentrates on the algo-
rithms for factoring (Shor) and database search-
ing (Grover). From a physics perspective, how-
ever, the original suggestion by Feynman [9] (see
Section [E and Chapter @, that quantum pro-
cessors may be the only possibility for efficiently
simulating quantum mechanical systems, offers a
more exciting potential. If quantum computers
with 50-100 qubits can be built, they will open
a new window into the transition from individ-
ual particles to macroscopic bodies and help us
to understand the behavior of small particles like
quantum dots. The challenges of building such a
computer, while still formidable, are significantly
smaller than what one has to overcome to build
a computer that executes Shor’s algorithm on a
useful number of qubits: this would require at
least several thousand qubits.

Feynman’s discussion of the computational dif-
ficulties associated with the simulation of quan-
tum mechanical systems hinges on the exponen-
tial growth of the size of Hilbert space with the
number of particles in the system. Keeping track
of all degrees of freedom is thus a computation-
ally expensive problem. Without proof, he sug-
gested that a quantum mechanical system might
not have this limitation. Other researchers, e.g.,
Benioff, Bennett, Deutsch, and Landauer con-
tributed to the discussion, but only in 1996 could
Lloyd |148| prove that universal computers can
be built from quantum mechanical systems.

The most straightforward type of quantum sim-
ulation is the calculation of eigenstates and
eigenvectors for given interactions (Hamiltoni-
ans). Even for sparse Hamiltonian matrices,
the computational resources required for ma-
trix diagonalization on classical computers grow
at least linearly with the dimension of Hilbert
space and thus exponentially with the num-
ber of particles. Besides these static problems,
quantum simulators should also be able to solve

problems from dynamics, such as the dynam-
ics of many-body systems. While small quan-
tum systems can be simulated by classical com-
puters, general systems corresponding to more
than ~ 20 qubits (dimension of Hilbert space
~ 10%) are too large for full numerical calcu-
lations. Mesoscopic systems with a few tens
to a few hundred particles would therefore be
the most interesting targets for quantum com-
puters. Relevant questions that could be tack-
led with future quantum computers include the
electronic state of small metal particles to im-
prove, e.g., the understanding of superconductiv-
ity. In systems with a finite particle number the
usual BCS (Bardeen—Cooper—Schrieffer) ansatz
is doubtful, and at the same time exact numeri-
cal diagonalization of the general BCS Hamilto-
nian is impractical beyond a few tens of electron
pairs. While true phase transitions occur only
in the thermodynamic limit, the properties of
nanometer-sized particles are attracting increas-
ing interest as nanotechnology is being developed
in research labs as well as for industrial applica-
tions.

8.6.2 Possible schemes

Examples where quantum computers can pro-
vide exponential increase in speed over classical
computers include the determination of eigenval-
ues and eigenvectors of quantum mechanical sys-
tems [149]. Drawing from mathematically sim-
ilar problems and using the quantum Fourier
transform, Abrams and Lloyd devised a quan-
tum algorithm that works exponentially faster
than classical algorithms. A closely related prob-
lem is the calculation of the time evolution of a
quantum system. For this purpose, the quantum
computer has to generate a time evolution that is
identical to that of the original physical system.

In addition to generating the appropriate Hamil-
tonian and time evolution, the states of the sys-
tem under investigation must be mapped into
states of the quantum computer, as shown in fig-
ure The quantum computer typically is a
system of qubits (spins-1/2) with a finite number

159

8 Quantum Algorithms

Target system § Physical system P

5) L)
Map S —» P
U e~ HsT Vi = /*iﬁPT
&1 effeptivg
|s(T)) |p(T)) Hamiltonian

Figure 8.11: Mapping of the target system S to
the physical system P and back.

of available states, while the physical system may
not be a spin system, but consist, e.g., of bosons
or fermions, with an infinite number of states.
The mapping process must therefore include the
selection of an area in Hilbert space that is to be
represented in the quantum simulator.

While the simulation of coherent evolution is
relatively straightforward, additional considera-
tions apply to the simulation of open systems.
Within certain limitations, this can be achieved
by adding a single qubit to the closed system
and using feedback from quantum mechanical
measurements [150|. Adiabatic evolution can be
an interesting basis for optimization problems
[151,[152]; this approach is closely related to sim-
ulated annealing. Here one relies on the quantum
adiabatic theorem that states that the system re-
mains in an eigenstate of the (non-degenerate)
Hamiltonian if the Hamiltonian changes suffi-
ciently slowly. Starting from the ground state
of the physical system one can therefore find the
ground state of a simulated system by changing
the Hamiltonian slowly from the initial to the
simulated one. The procedure can be used to find
an optimal state by formulating the optimization
problem in terms of a suitable Hamiltonian.

An important part of the theoretical work on
quantum simulation discusses the issue of which
kinds of physical systems can be efficiently sim-
ulated by which other systems. As an example,
it appears that the physical system consisting of
one boson in 2V modes is no more powerful than
classical wave mechanics and therefore unable to
simulate other quantum systems like a collection
of qubits [153]. Vice versa, it was possible to
prove that quantum computers based on qubits

can simulate fermionic as well as bosonic systems

I154].

8.6.3 Simulated evolution

Before one can implement a simulation, the map-
ping from the physical system onto the quantum
simulator has to be specified. The mapping must
specify which states are mapped onto each other
and at the same time which operators that can
be generated in the quantum computer represent
the relevant observables of the physical system.
On an algebraic level, the structures of the opera-
tor algebras that represent the different physical
systems are relevant: one system can be used to
simulate another if an isomorphic mapping of the
operator algebras is possible. However, only the
interactions available to effect the calculations
actually determine if the suggested mapping can
be implemented. Only if the real Hamiltonian of
the quantum computer system can be efficiently
mapped onto the target system Hamiltonian, will
quantum simulators become feasible. So far no
universal procedure exists to define such map-
pings.

The main task of the quantum simulator is to
generate a time evolution Ug that imitates the
time evolution of the real physical system as
closely as possible. In most cases, it will not
be possible to generate the exact Hamiltonian on
the quantum simulator in a single step. However,
a suitable general simulator can generate differ-
ent time evolutions for subsequent intervals in
such a way that the desired evolution is reached
after some time 7:

Ug = ¢ Hs7 = He_kak'
k

(8.21)

Finding such a decomposition is in general not
trivial. One is therefore often forced to use ap-
proximate methods. A useful standard technique
for calculating the overall propagator is the Av-
erage Hamiltonian Theory (AHT) developed for
multiple pulse experiments in solid state nuclear
magnetic resonance [155, [156]. It uses the fact

160

8 Quantum Algorithms

that for short enough times 7, the individual
propagators in equation are close to the
unity operator and therefore approximately com-
mute with each other. In the limit where they
commute, the total propagator can be written as

US _ e—iHavT _ e—izk ’Hkrk‘

Using suitable combinations of Hy and 7, it is
then possible to match the average Hamiltonian
with the desired system Hamiltonian, Hg = Hay.

8.6.4 Examples

In comparison with the rich theoretical work, rel-
atively little experimental work has been pub-
lished. The first example is the simulation of
a three-body interaction in an NMR quantum
computer [157]. As in most physical systems,
spin interactions are either one- or two body in-
teractions; however, a suitable concatenation of
two-qubit interactions generates the same evolu-
tion as a three-qubit Hamiltonian.

To realize such an effective Hamiltonian, one
starts from the usual two-spin interaction, which
easily generates propagators like

Uuap = e98:48:8
Using the interaction of spin B with a third spin
C, it is possible to generate one- and two-qubit
operators that convert this propagator into a
three-spin propagator:

UABC — e_iﬂ-SzBSzC ei%SzB ei¢SzASzB

e—1582B iTS.BS:0

Under the influence of such a coupling operator,
a single qubit becomes entangled with two oth-
ers.

Another example is due to Somaroo et al. [158].
They mapped the lowest four states of a quan-
tum mechanical harmonic oscillator onto the
states of a two-spin NMR system and let it evolve
under an effective Harmonic oscillator Hamilto-
nian. A crucial issue documented by this ex-
ample is that quantum simulations (like classi-
cal ones) map only a partial state space into the

quantum register; selection of this partial space
will become a critical issue when operating quan-
tum simulators.

The possibility of storing and manipulating neu-
tral atoms in optical lattices has led to some
excitement among physicists interested in sim-
ulating the properties of correlated many-body
systems in condensed matter (see Section m
While this system is not (yet) a general pur-
pose quantum computer, it can be considered
a special-purpose quantum simulator, which al-
lows one to continuously tune the strength of the
interaction between the particles and thereby in-
duce a quantum phase transition.

a
&
S
2
9
&
o
@ :
',—% 59 Delocalized |Localized ® ®
A | phase Iphas?
0.00 0.02 0.04 0.06 0.08 0.10

Perturbation strength p

Figure 8.12: Results of the quantum simulation
of a localization-delocalization tran-
sition [159].

Similar experimental quantum simulations can
also be implemented in NMR quantum comput-
ers [160, [161, [159, [162]. In the example shown
in figure @, a system of 'H nuclear spins was
used to model the evolution of a quantum sys-
tem that is subject to two types of interactions.
As shown by the blue insets, the size of a quan-
tum state that is initially localized spreads with
time. If a suitable perturbation is added to the
system Hamiltonian, the spreading of the state
slows down and eventually saturates at a finite
size. As the strength p of the perturbation in-
teraction is increased, the system undergoes a
quantum phase transition at the critical value
of 0.0266, from the delocalized phase (for p<
0.0266) to the localized phase (for p> 0.0266).

161

	Introduction and survey
	Information, computers and quantum mechanics
	History of computing
	General purpose digital computers
	The digital revolution
	Moore's law
	Emergence of quantum behavior
	Energy dissipation in computers

	Quantum computer basics
	Quantum information
	Quantum communication
	Basics of quantum information processing
	Decoherence
	The network model
	Physical implementation

	History of quantum information processing
	Initial ideas
	Quantum algorithms
	Potential Benefits and Risks

	About this course
	Literature
	Online resources

	Physics of Computation
	Physical laws and information processing
	Hardware representation
	Physical laws and ultimate limits
	Quantum vs. classical information processing

	Limitations on computer performance
	Switching energy
	Entropy generation and Maxwell's demon
	Reversible logic
	Reversible gates for universal computers
	Processing speed
	Information content and speed
	Additional details

	The ultimate laptop
	Processing speed
	Maximum storage density
	Monoatomic gas
	Massless particles
	Parallel / serial operation

	Elements of Classical Computer Science
	Bits of history
	Boolean algebra and logic gates
	Bits and gates
	2-bit logic gates
	Minimum set of irreversible gates
	Minimum set of reversible gates
	The CNOT gate
	The Toffoli gate
	The Fredkin gate

	Universal computers
	The Turing machine
	Example
	The Church–Turing hypothesis

	Complexity and algorithms
	Complexity classes
	Hard and impossible problems

	Quantum Mechanics
	History
	Before the quantum revolution
	Open questions
	The first quantum revolution
	Is quantum mechanics weird?
	Is quantum mechanics relevant?

	General structure
	Spectral lines and stationary states
	Vectors in Hilbert space
	Operators in Hilbert space
	The Schrödinger equation
	Time evolution
	Measurements

	Quantum states
	The two-dimensional Hilbert space: qubits, spins, and photons
	Hamiltonian and evolution
	Vector representation
	Coupling to environment
	Entangled with environment
	Density operator
	Product states

	Quantum vs. classical
	Entanglement and mixing
	Bell states
	Bloch sphere
	Purity
	Time-dependence
	EPR correlations
	Bell's theorem
	The quantum mechanical prediction
	The Aspect experiment
	CNOT as copy operator
	The no-cloning theorem

	Measurement revisited
	Quantum mechanical projection postulate
	The Copenhagen interpretation
	Von Neumann's model
	Discussion

	Entanglement measures
	General requirements
	Entropy of entanglement
	Concurrence : Definition
	Generating entanglement
	Concurrence : Properties
	Tangle
	Positive Partial Transpose (PPT)
	Examples
	Decay of entanglement
	Quantum discord
	Entanglement witnesses

	Quantum Bits and Quantum Gates
	Single-qubit gates
	Introduction
	Example gates
	General rotations
	Composite rotations

	Two-qubit gates
	Controlled gates
	Composite gates
	3-qubit gates

	Universal sets of gates
	Choice of set
	Unitary operations
	Two qubit operations
	Approximating single-qubit gates

	Resonant electromagnetic fields
	Radio frequency field
	Rotating frame
	Equation of motion
	Evolution

	Feynman' Contribution
	Simulating physics with computers
	Discrete system representations
	Probabilistic simulations

	Quantum mechanical computers
	Simple gates
	Adder circuits
	Qubit raising and lowering operators
	NOT and CNOT
	Adder Hamiltonian

	Errors and Decoherence
	Motivation
	Quantum vs. classical errors
	Sources of errors
	Characterization of errors
	A counterstrategy

	Errors and Decoherence
	Phenomenology
	Semiclassical perturbation
	Ensemble average
	Spin-boson model
	Spin-spin model
	Entanglement and mixing
	Time dependence
	Decoherence in large systems

	Quality Measures
	Distance and Fidelity
	Process fidelity
	Quantum state tomography
	Quantum process tomography

	Error correction
	Basics
	Classical error correction
	Quantum error correction
	Single spin-flip error
	Error detection and correction
	Continuous errors
	Decoding
	Phase errors
	Projection errors
	General single qubit errors
	Perfect 5-qubit code
	Stabilizer codes
	Fault-tolerant computing

	Avoiding errors
	Robust operations
	Robust sequences
	Protection against decoherence
	Decoherence-free subspaces
	Information capacity
	Example: spin qubits
	Clock transitions
	The quantum Zeno effect
	Repeated measurements
	Experimental example

	Fighting Decoherence
	Refocusing
	Fluctuations
	Dynamical Decoupling
	Imperfections
	Error compensation
	Robust DD
	DD for large systems

	Quantum Algorithms
	Quantum versus classical algorithms
	Why Quantum?
	Classes of quantum algorithms

	The Deutsch algorithm: Looking at both sides of a coin at the same time
	Functions and their properties
	Example : one-qubit functions
	Evaluation
	The Deutsch algorithm
	Many qubits
	Extensions and generalizations

	The Shor algorithm: It's prime time
	Some number theory
	Factoring strategy
	The core of Shor's algorithm
	The Classical Fourier transform
	The quantum Fourier transform
	Gates for the QFT

	The Grover algorithm: Looking for a needle in a haystack
	Oracle functions
	The search algorithm
	Geometrical analysis
	Quantum counting
	Phase estimation
	Reading the Phase

	Other algorithms
	Gradient estimation
	Image processing

	Quantum simulations
	Potential and limitations
	Possible schemes
	Simulated evolution
	Examples

	How to Build a Quantum Computer
	Fundamentals
	Terminology
	History
	The network model
	Some existing and proposed implementations
	Status and current trends

	Requirements for quantum information processing hardware
	DiVincenzo criteria
	Qubits
	Initialization
	Initialization time
	Decoherence time
	Quantum gates
	Frequency-domain addressing
	Imperfections

	Converting quantum to classical information
	Principle and strategies
	Repeated measurements through ancilla qubits
	Example: Deutsch–Jozsa algorithm
	Complete state information
	Quantum state tomography

	Alternatives to the network model
	Issues of local addressability
	Cellular automata
	Quantum cellular automata
	QCA with 2 types of cells
	One-way quantum computer
	Example : CNOT
	Adiabatic computation
	Adiabatic factoring

	Liquid-state NMR
	Basics of NMR
	System and interactions
	Radio frequency field
	Rotating frame
	Equation of motion
	Evolution
	NMR signals
	Resonance lines
	Refocusing

	NMR as a molecular quantum computer
	Spins as qubits
	Chemical shift
	Coupled spin systems
	Pseudo / effective pure states
	Single-qubit gates
	Two-qubit gates
	Two-qubit gates with nonselective pulses
	Qubit readout
	Readout in multi-qubit systems
	DiVincenzo's criteria

	NMR Implementation of Shor's algorithm
	Qubit implementation
	Initialization
	Computational steps
	Readout
	Decoherence

	Spin chains
	Quantum state transfer
	Two- and three-body interactions

	Trapped Ions and Atoms
	Trapping ions
	Ions, traps and light
	Linear traps

	Interaction with light
	Optical transitions
	Motional effects
	Basics of laser cooling

	Quantum information processing with trapped ions
	Qubits
	Single-qubit gates
	Two-qubit gates
	Readout

	Experimental implementations
	Systems
	Some results
	Challenges

	Neutral atoms
	Trapping neutral particles
	Manipulating neutral particles
	Gate operations

	Interacting atoms in optical lattices
	Interacting particles in a periodic potential: The Hubbard model
	(Observing) The Mott-Hubbard transition
	Universal optical lattice quantum computing?

	Solid State Quantum Computers
	Solid state NMR/EPR
	Scaling behavior of NMR quantum information processors
	Spins in solids
	31P in silicon
	Qubit operations
	Readout
	Si/Ge heterostructure
	N@C60
	Rare Earth Ions
	Photonic quantum memories
	Molecular Magnets
	The NV--center in diamond
	Single-spin readout

	Superconducting systems
	Basics
	Charge qubits
	Flux qubits
	Transmon
	Unimon
	Gate operations
	Readout
	Status of the field

	Semiconductor qubits
	Materials
	Quantum Dots
	Excitons in quantum dots
	Electron spin qubits
	Readout

	Others
	Majorana qubits
	Topological quantum computing

	Photons for Quantum Information
	Photons as qubits
	Photons
	Working with single photons
	Linear optics quantum computing
	Linear optics and measurements

	``Quantum only'' tasks
	Quantum teleportation
	(Super-) Dense coding
	Quantum key distribution

	A few bits of classical information theory
	Measuring Information
	Information content and entropy
	Mutual information and the data processing inequality
	Data compression and Shannon's noiseless channel coding theorem
	The binary symmetric channel and Shannon's noisy channel coding theorem

	A few bits of quantum information theory
	The von Neumann entropy
	The accessible information and Holevo's bound
	Schumacher's noiseless channel coding theorem
	Classical information over noisy quantum channels

	Appendix: Two spins-1/2: Singlet and triplet states
	Bibliography

