7 Errors and Decoherence

7.1 Motivation

While the above chapters were mostly concerned
with the potentials offered by quantum informa-
tion, the present chapter introduces some of the
obstacles that have prevented large-scale imple-
mentations of quantum information so far. A
simple-minded summary of this is that quantum
information is generally more fragile than classi-
cal information. It is therefore essential to pro-
tect quantum information and to eliminate errors
that occur during the computational process. An
additional complication was that the no-cloning
theorem initially appeared to prevent error cor-
rection and therefore make large-scale reliable
quantum computing impossible. However the
introduction of the principle of quantum error
correction in 1995 showed that active techniques
can be employed to circumvent this problem and
the threshold theorem finally showed that reli-
able quantum information processing is indeed
possible - at least in theory. The combination of
difficulty and promise has made this area a very
active field that has generated a number of excit-
ing results over the two decades of its existence.

7.1.1 Quantum vs. classical errors

Any physical implementation of a computational
process is designed to transform an input infor-
mation into the desired output by applying ap-
propriate operations as prescribed by the algo-
rithm. These algorithms break the computation
into suitable elements that can be handled by
the available hardware. The goal of the hard-
ware design is therefore to build a device that
implements the mathematical operations as pre-
cisely and efficiently as possible. Unfortunately,
any real physical device deviates to some degree
from the idealized mathematical operation; this

holds true for classical as well as for quantum
computers. We will refer to these differences be-
tween targeted and actual evolution as errors.

While one tries to approximate the mathemati-
cally ideal operations with a suitably engineered
device, it is not possible to completely avoid all
such deviations between the mathematically pre-
dicted result and the physically executed com-
putation. Some of the most important goals of
computer architectures and implementations is
therefore to avoid, recognize and correct errors
occurring during the computation.

Ideal

Real

Recalibrate

Figure 7.1: Calibration of digitally encoded

data.

In classical computers, the most important de-
sign element for this purpose is the use of digital
representation of information. As a result, ev-
ery bit of information can be re-adjusted after
every computational step to match the voltage
corresponding to either the “0” or “1” state of
the respective hardware, as shown in figure

This elementary error correction scheme can not
be used in quantum computers, where the qubits
can be in arbitrary superpositions of the rele-
vant quantum mechanical states. As discussed
in other parts of this lecture, the input of a
quantum computation is encoded in the expo-
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7 Errors and Decoherence

nentially many complex amplitudes of an initial
state. They are continuous, rather than discrete.
During the computation, they must be steered
along a specific path in Hilbert space, whose di-
mension grows exponentially with the number of
qubits. The final state contains the result of the
computation, again in the continuous variables
of the amplitudes and phases of the components.
It is absolutely vital to maintain the phase co-
herence between the components of the state in
order to perform a genuine quantum computa-
tion.

7.1.2 Sources of errors

We distinguish three effects that cause the re-
sults of a quantum computation to deviate from
the ideal result:

e The gate operations are not perfect.

e The isolation between the quantum mechan-
ical system (the quantum register) and the
environment is not perfect. The spurious
interactions with the environment cause un-
wanted transitions (=relaxation) and decay
of the phase coherence (=dephasing or de-
coherence).

The quantum system itself differs from the
idealized model system considered in the de-
sign of the quantum computer. This in-
cludes, e.g. coupling constants that are
slightly different from the ideal ones, and
quantum states that are not included in the
computational Hilbert space.

Section[7.2]summarizes the processes that lead to
the loss of coherence in the system and therefore
to the loss of quantum information.

7.1.3 Characterization of errors

Understanding the errors starts with differenti-
ating between various categories. If only a sin-
gle qubit is affected, the result is a single-qubit
error. For obvious reasons, this is the most be-
nign version of error, and the most thoroughly

studied one. If the probability of single qubit er-
rors is p1, the probability that one error occurs
in a system of N qubits is Np;. If the individ-
ual errors are independent, then the probability
that two errors occur on two different qubits is
N(N —1)p?. However, depending on the type of
interactions between system and environments,
it is also possible that two qubits are affected as
a pair; this is the case of two-qubit errors. For
schemes that try to avoid or correct errors, it is
essential to consider the type of errors that the
scheme is trying to address.

In addition to classifying the type of error, it is
also important to measure the deviation of the
state, to obtain quantitative information about
the deviation between the targeted evolution and
the actual evolution. Measures for the overlap
of the actual state with the targeted state in-
clude the fidelity (— ch. and measures for
the agreement between two evolutions, such as
the process fidelity. Even more detailed infor-
mation can be obtained by tomographic analysis

of quantum states (— ch. and processes
(—> ch. [73).

7.1.4 A counterstrategy

While one can (and should!) try to minimize
these errors, it is important to realize that there
are technical, financial as well as fundamental
limits to the precision that can be achieved. It
is, e.g., not possible to shield gravitational in-
teractions between the system and the environ-
ment, or the quantum fluctuations in the appa-
ratus that controls the gate operations and reads
out the result. In addition, interactions with the
environment must exist, to allow the application
of control fields driving the gate operations.

To combat the detrimental effect of these im-
perfections on the results of computational pro-
cesses, a number of options exist [77].

e Optimize the classical apparatus that con-
trols the quantum system to make the gate
operations as perfect as possible.
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7 Errors and Decoherence

Use robust gate operations, which are de-
signed such that errors in experimental pa-
rameters tend to cancel rather than amplify.
A typical example for this approach is the
use of composite pulses in NMR [78§].

Use error correction schemes. (— ch. [7.4)

Store the information in areas of the Hilbert
space that are least affected by the inter-
action between the system and its environ-

ment. (— ch.

Use active schemes for decoupling the sys-
tem from the environment, such as dynam-

ical decoupling. (— ch.

It appears likely that any useful implementation
of a quantum computer will require the imple-
mentation of all of these principles (and more)
into its design. We discuss possible approaches
to recognize and correct errors in quantum com-
puters in Section [7.4] How information can be
protected against decoherence will be discussed

in Sections [7.5] and [7.6]

7.2 Errors and Decoherence

7.2.1 Phenomenology

Interference between two or more quantum
states lies at the heart of the most striking quan-
tum phenomena. As in classical wave optics, in-
terference is possible only if the states keep a def-
inite phase relationship, that is, if they are coher-
ent. The destruction of coherence by uncontrol-
lable interactions with environmental degrees of
freedom is called decoherence. If decoherence oc-
curs so fast that no interference phenomena can
be observed, the resulting behavior can often be
described in terms of classical physics.

If two states behave in the same way under the
influence of the environment, they can stay co-
herent in spite of the coupling to the environ-
ment. If, on the other hand, they behave very
differently, that is, if they can be easily distin-
guished from each other by the environment,

they will lose coherence rapidly. This simple in-
tuitive observation is important for quantum er-
ror correction and decoherence-free subspaces, to
be discussed in later sections.

In this section we shall illustrate, by means of
simple examples, how decoherence induced by in-
teraction with the environment affects the state
of a system, for example, a quantum information
processing device. In the beginning the system
is in a carefully prepared pure state; for a single
qubit, this is

[W(0)) = al0) +b[1)
[W(0)) = (al0) +b[1)) @ [We),

where |¥.) summarizes the complete state of the
environment (which is always unknown). System
and environment therefore form a product state.
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Figure 7.2: Decay of coherence by environmental
perturbations.

The (complex) amplitudes of the initial state
with respect to some basis in Hilbert space rep-
resent the quantum information to be processed.
Classically, the uncontrollable interactions be-
tween system and environment cause the sys-
tem evolution to deviate from the ideal evolution.
Particularly fragile is the coherence a*b, i.e. the
relative phase of the two amplitudes. As shown
in figure this coherence will normally un-
dergo a coherent evolution, which is often mea-
sured as an oscillation. Superimposed on the
oscillation, there is also an overall decay of the
coherence amplitude, as indicated by the red ex-
ponential curve.
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7 Errors and Decoherence

If the environment is itself a quantum mechani-
cal system, the interaction between system and
environment builds up correlations between the
system and environmental degrees of freedom (—
ch. . For the ideally prepared initial state,
the environment also can be described as an (un-
known) pure state |¥.), which does not depend
on the state of the system: system and envi-
ronment factorize. The total quantum system,
consisting of the quantum register and its envi-
ronment, is then in a product state. Of course
the preparation of the system’s state requires in-
teraction with other degrees of freedom; for the
sake of simplicity we assume that those degrees
of freedom can be separated sufficiently well from
both system and environment once the prepara-
tion of the system’s initial state is accomplished.
Similarly, the gate operations require interac-
tions with external degrees of freedom. We al-
ways treat these interactions as classical fields.
This can be well motivated by noting that, e.g.,
the currents generating magnetic fields are gen-
erated by typically > 10'® electrons, which are
highly correlated, and therefore cannot possibly
be described quantum mechanically.

The interaction between system and environ-
ment transforms this product state into a corre-
lated state, which can be highly entangled. The
state of the system alone (as represented by its
density matrix) then in general is no longer pure,
but mixed, as discussed in Chapter

7.2.2 Semiclassical perturbation

The simplest description of the spurious inter-
action between system and environment uses a
single spin-1/2 to describe the quantum register
and a magnetic field for the environment. Since
we discuss errors, we may restrict the analysis
to the case when this field is weak compared to
the static field that defines the energy of the ba-
sis states |0) and |1). In this limit, the most
important effect of the error field is due to the
component along the static field, which is usually
chosen to be oriented along the z axis.

Figure 7.3: Evolution of a spin-qubit in a mag-
netic field.

To illustrate its effect, we consider a system that
is initially in a superposition state

[W(0)) = al0) + b[1).

If the two states |0) and |1) are eigenstates of the
driving Hamiltonian H with eigenvalues & and
&1, an ideal evolution transforms this state into

|U(t)) = al0)e Eot/h 4 p|1)e W (7.1)

As shown in figure this corresponds to a pre-
cession of the Bloch vector of the qubit around
the z-Axis.

Individual Ensemble
1 1%@®)
0,

Figure 7.4: Coherent and incoherent contribu-
tion to the evolution.

Figure (Lh.s.) represents this state as a spin-
vector in the zy-plane. This corresponds to the
case |a| = |b| = . Evolution corresponds to

ﬁ .

precession around the z-axis, and the resulting
phase angle is ¢ = (&1 — &)t/

Dephasing is due to additional (uncontrollable)
interactions, which shift the energy of these
eigenstates by a small (and in general time-
dependent) amount Jg,. As a result, the average
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7 Errors and Decoherence

energy level shift difference changes the relative
phase between the states by an angle

1 t
i(t) = h/g (g, — 550)dt/.

The state then becomes
W)(t» — a|0>6—i50t/h6i6/2 + b|1>€_i81t/h6_i5/2.

In the example of Figure this corresponds to
a stochastic change of the orientation of the spin
vector.

7.2.3 Ensemble average

Within the present picture of a single spin in a
classical magnetic field, this additional phase in-
crement arises from the fluctuating external field.
The magnetic field has a well-defined value at
all times, thereby causing a well-defined Larmor
precession. However, the resulting precession an-
gle differs between computational runs and it de-
viates from the mathematically correct represen-
tation by the random function §(¢). As shown in
Figure the resulting evolution of the spin
corresponds to Brownian motion of the individ-
ual spin orientation.

Single qubit : diffusion process Ensemble, time-average,

entangled system: decay

Phase

Phase

-
Time

-
Time

Figure 7.5: The left-hand part of the figure
shows the evolution of a spin in a ran-
domly varying magnetic field, which
corresponds effectively to a diffusion
process. The right-hand part shows
how the average magnetization of an
ensemble of spins decays when the in-
dividual spins evolve in random mag-
netic fields.

If we now consider an ensemble instead of a sin-
gle quantum system, the random evolution of the

individual members means that the average mag-
netization vector differs from that of the individ-
ual spins. Since the orientation of the individual
spins (qubits) is progressively randomized as a
function of time, the average magnetization vec-
tor becomes smaller, as shown in the right-hand
part of Fig. The decrease of the average
magnetization can be obtained by taking the en-
semble average

. . 1
(S5(1)) = Tr{e ®®% g 015 g 1 — 5 08 0(t),

where we have assumed that the system is ini-
tially oriented along the z-axis and we use an
interaction representation where the evolution
due to the unperturbed Hamiltonian has
been removed. This is generally known as the
rotating frame.

In an ensemble, the evolution of each member
may differ and we have to average the (cosd(t))
term:

(cos 8(¢)) = %<ei5 ey

and using the general property

<eiX> _ ei(X)f<X2)/2
for a Gaussian random variable X to get

(cosd(t)) = e 0)/2, (7.2)

For a random walk, (6%(t)) is a linear function of
time and the coherence decreases exponentially,
as shown in the right-hand part of Figure
This simplified description becomes exact if the
interaction that generates the random kicks does
not have a memory (Markovian limit). It is then
possible to describe their average effect by an
exponential decay process. For the off-diagonal
elements of a general density operator, one writes

pij (1) = pij(0) e 1 E—EN Rt/ T2

Here, the first part describes the Hamiltonian
evolution, in close analogy to eq. . The
dephasing time 75 is related to the RMS strength
(62(t)) of the error field according to eq. (7.2).
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Figure 7.6: Relaxation of population difference.

More detailed descriptions of these effects can be
found in the NMR literature, where the effect is
discussed as relaxation [79].

Different relaxation processes also cause the di-
agonal density operator elements to approach
thermal equilibrium with a time constant 77.
These longitudinal relaxation processes also af-
fect the quantum computation, causing a de-
cay of the information. However, they are
also needed, since they bring the system to the
ground state, as required for initialization.

The ensemble consideration is relevant not only
for ensemble quantum computers, but also
to quantum computers consisting of individual
quantum systems. Even in these cases, a typical
quantum computation will involve repeated runs
of the computational process and the ensemble
average corresponds then to the temporal aver-
age over the different runs.

7.2.4 Spin-boson model

We now move to models where the environment
is quantum mechanical, rather than a classi-
cal field. In a quantum mechanical model, the
phase-kicks are correlated to states of the ex-
ternal system, which is referred to as the bath.
Typical examples for relevant degrees of freedom
in the environment are phonons passing through
the system or modes of the radiation field caus-
ing, e.g., spontaneous emission. For every state
of this external system, the quantum register re-
mains in a pure state, but the phase § for this
realization will be different from those for other

states of the environment.

Since it is never possible to know exactly the
state of the external system or to control it, one
has to average over all accessible states of the
external system. This averaging process changes
the situation qualitatively: the vector represent-
ing the system is no longer only rotated by these
additional phase kicks, it also becomes shorter.
Technically, it is no longer in a pure state, but
rather in a mixed state. In the simple picture
given above, the vector no longer ends on the
unit circle (or sphere), but remains inside it, in
close analogy to the situation depicted in the

right-hand part of figure

System

10>

Bath

11>

Figure 7.7: Spin-boson model: the system qubit
is coupled to a bath of harmonic os-
cillators.

Such a situation can be represented, e.g., in the
form of the so-called spin-boson model where the
system is represented as a spin 1/2 (=qubit), and
the environment as a system of bosonic modes,
such as phonons or photons. Figure shows
a schematic representation of this model. In the
case of pure dephasing, the interaction Hamilto-
nian between the two parts is

Hy = Z o (grbl + gibr)
%

Here, gi represent coupling constants, o, is the
spin operator of the system qubit and b, and b,t,
ladder operators acting on the k' bath mode.

According to this model, the system thermal-
izes |80] in a process that can be split into a
“quiet” regime, where the system remains almost
coherent, a quantum regime where the interac-
tion with the bath mode dephases the qubit and
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Figure 7.8: Decay of coherence in the spin-boson
model. [80]

the thermal regime where it returns to equilib-
rium.

7.2.5 Spin-spin model

An even simpler quantum mechanical model is
the spin-spin model, where the environment is
reduced to a single spin 1/2. A more sophisti-
cated version of this is the central-spin model
[81], where the environment is represented by
several spins, which can be coupled amongst each
other.

Here, we consider two interacting qubits: A (the
system) and B (the environment). Each qubit is
represented by a spin—%, and we assume that the
two spins are coupled by an exchange interaction

w = N
H:ﬁSA-SB. (7.3)
For w > 0 the ground state of this Hamiltonian
is the singlet, with energy eigenvalue —%hw, the
triplet states have energy —i—ihw (see Appendix,

ch. . The initial state is the most general
product state (compare (4.25))

B0y = (ar 1+ b ¢>)A @ (cr 1 +d ¢>)B
— el 1) + bel 11 + ad| 14) + bd] 14).

|1(0)) can be expressed in terms of the singlet
and triplet states whose time evolution is simple.

The two terms | 11) and | |]) are eigenstates of
the system and their evolution is therefore triv-
ial.

L1 1T+ 14 1D .
w/4 Triplet

1) =11

0

-3w/4 Singlet

Energy [A]

Figure 7.9: Eigenstates of the coupled 2-qubit
system.

The other two states with antiparallel spin ori-
entation correspond to superpositions of eigen-
states,

1
1 = 5 s+l
1
1) = (=l + 1)),
where
) = —=(Th+141)

1
V2
are the singlet and triplet states of this subspace.

They are also eigenstates of the Hamiltonian and
therefore evolve as

) = (1) = 141)

’t0> (0)€fiwt/4
]$> (0)€+3iwt/4_

Ito) ()
ls)(t) =

The resulting time-dependent state |¢(t)) is

()
= el M)+ bd] 1) (7.4)
+%[ad(1 + et 4+ be(1 — D)) 1)

g lad(1 - ) + be(1+ €] 11).

This state is strictly periodic because the ex-
tremely simple model (7.3]) contains only a single
energy or frequency scale, w. More complicated
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models of a system coupled to an environment
of course will show more complex behavior. The
general timescale on which decoherence phenom-
ena happen, is inversely proportional to the cou-
pling between system and environment (in our
case, w), as long as the different bath degrees
of freedom interact independently with the sys-
tem. If this is no longer the case, the system-bath
interaction becomes effectively time-dependent
[82]. This changes the effective strength as well
as the characteristic behavior of the decoherence
process.

7.2.6 Entanglement and mixing

The degree of entanglement between system A
and environment B can be measured by the con-
currence discussed in section 4.6l A short calcu-
lation leads to the compact result

C = |ad — be|?| sinwt|. (7.5)
The concurrence is a periodic function of time, as
it should be for a periodically varying quantum
state. The maximum value of C'is determined by
the initial state. If |a| = |d| =1 or [b] = |¢| =1
the state can become maximally entangled; on
the other hand, if |a] = |¢|] =1or |b| = |d| =1
the state can never become entangled at all. In
fact, in these two cases [1(0)) is a triplet state,
| 1) or | 1)), which is an eigenstate of H and
thus remains unaffected by the coupling between
the two qubits. All other cases where C'(t) = 0
are equivalent to this one, since ad = bc only if A
and B initially are in the same pure state, which
can always be written as | 1) in an appropriate
spin-space coordinate system.

It appears tempting to exploit these states,
which are not affected by the
environment interaction, as long-lived quantum
information. Unfortunately, this is not possible:
preparing the system in such a state would
require to prepare not only the system, but
also the environment. Without such control, it
is impossible to prepare system and environ-
ment into identical states. Not being able to

system-

control the corresponding degrees of freedom
can be considered as a defining property of the
environment. In addition, the environmental
degrees of freedom are usually strongly coupled
to additional degrees of freedom.

As an example for the time evolution of strongly
entangled states, we consider the initial state

W(0)) = | 1) = ¢1§

corresponding toa =d =1, b = ¢ = 0. Accord-
ing to eq. ((7.4) it evolves as

(1))
_ !

= SlA+e)th+ 0

At t = 5, this becomes

m im/gr L0 1—4
(o)) = e Pl 1)+ = 1D (7.6)
In this state, the system is maximally entangled
with the environment. This can be seen, e.g., by
calculating the system density operator by trac-
ing over the environmental degree of freedom:
T

) = Tralv(o (o)l
= AN+

_ L1
—2\0 1)

As usual, Trp denotes the trace over the Hilbert
space of the environment B (see Chapter. Ap-
parently this density operator is now diagonal.
The spin has equal probabilities for being in the
1 and | states, but the phase information has
been lost. The state is now a maximally mixed
one, whereas the initial density operator p(0)
was pure.

(Ito) +1s)),

— N[ 1)].

™

pA(ﬂ

(7.7)

7.2.7 Time dependence

The simple example discussed here is useful for
demonstrating how the system becomes entan-
gled with the environment and that this entan-
glement results in loss of coherence and therefore
loss of information for the system.
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Figure 7.10: Oscillation of the coherence for dif-
ferent interaction strengths and to-
tal coherence for average over many
couplings (green).

On the other hand, this model is much simpler
than any realistic situation. In particular, within
this trivial model, the pure state could be re-
covered by simply letting the combined system-
environment evolve for an identical period of
time. This would recover the full coherence and
information content of the system qubit, appar-
ently contradicting the second law of thermo-
dynamics. This is corrected in more realistic
models of the environment that have (infinitely)
many degrees of freedom. The resulting evolu-
tion is then no longer periodic and it becomes im-
possible to recover the pure state from the mixed
state.

This effect occurs also for other initial conditions,
e.g., when the system is initially in a superposi-
tion state. As an example, we consider the case

a:b:c:—d:%,suchthat

[¥(0)) = %(I DI —1H)p- (78)

Note that the A part of this initial state is an
eigenstate of S, . A measurement of the
x component of the system spin at ¢ = 0 thus
would clearly reveal the coherent nature of the
state. At ¢ = = this state evolves into the fol-

2w
lowing maximally entangled state

e p(50))

= 3tae(in-iv)
—uwA®(¢v+uw)J

(7.9)

Using the notation
=) = D=l

| <) [ 1)+l

the final state can be written as
SINa®] )5 =il Dy sl

The corresponding density matrix of A is again
and a measurement of S, (of A) would yield
zero. The initial information about the relative
phase between | 1) 4, and | |) 4 is lost.

The common feature of the two states [¢(55))
and is the fact that the two basis
states | T) 4 and | |) 4 of the system in both cases
are strictly correlated to two mutually orthogo-
nal states of the environment B. For these
are the eigenstates of S, and for the eigen-
states of S,. This observation is an example of
what was called “the fundamental theorem of de-
coherence” by Leggett [83]:

If two mutually orthogonal states of the sys-
tem of interest become correlated to two
mutually orthogonal states of the environ-
ment, all effects of phase coherence between
the two system states become lost.

In the situation just described, the final state of
the system can be inferred from the final state
of the environment; that is, the environment has
“measured” the state of the system. This kind
of reasoning can be applied to many instances of
the quantum mechanical measurement problem,
for example, the disappearance of the interfer-
ence pattern in the standard two-slit experiment
of quantum mechanics which occurs as soon as
one measures through which of the two slits each
single electron has passed.

7.2.8 Decoherence in large systems

The rate at which decoherence occurs in a given
system is one of the most important parameters
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for assessing the viability of a quantum computer
implementation. However, it is important to re-
alize that the rate at which quantum informa-
tion is lost is not identical to the rate at which a
single qubit undergoes decoherence. The differ-
ence is that during a typical computational pro-
cess, information is spread over all qubits of the
quantum register. It is therefore affected by de-
coherence processes acting on all qubits and de-
cays correspondingly faster. The ultimate limit
of this scaling process would be Schrodinger’s cat
[84]: in “classical” systems, the decoherence pro-
cesses become so fast that it is no longer possible
to observe quantum interference.

While it is generally assumed that the decay will
be faster in larger quantum registers, there have
been few experimental data to verify this predic-
tion. While sufficiently large quantum comput-
ers are not available yet to test this, it is possi-
ble to measure the decoherence in model quan-
tum registers consisting of correlated multi-qubit
states. Nuclear spins in solids provide a particu-
larly useful system for studying these processes,
since correlated states of several thousand spins
can be generated by suitable sequences of radio-
frequency pulses.
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Figure 7.11: Decay of the coherence of quantum
registers of different size.

Fig. [7.11 shows the decay of coherence in quan-
tum registers of different sizes. Each model
quantum register consists of a cluster of nuclear
spins (*H). Clearly, the larger quantum registers
consisting of larger numbers of spins decay more

rapidly, indicating that they are more fragile.
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Figure 7.12: Decay rates of quantum registers of
different size.

As shown in Fig. [7.12] the decoherence rate in
this system grows approximately with the square
root of the number of qubits [85, [86]. This is
considerably less than what one would expect if
each qubit interacted independently with the en-
vironment. If this behavior can be reproduced in
other systems, the prospects for large-scale quan-
tum computing may be brighter than one would
expect from simple linear extrapolations.

How the decoherence rate increases with the
number of qubits depends on the type of coupling
to the environment that is responsible for the
decoherence as well as on the encoding scheme
used. In particular, large quantum systems con-
tain many states that are relatively immune to
environmental noise. These regions of Hilbert
space are known as decoherence-free subspaces
(— ch. [7.5.4). While decoherence-free sub-
spaces are a useful concept, we should not expect
to find regions of Hilbert space that are com-
pletely immune to decoherence. Rather, these
subspaces will be “sub-decoherent”, i.e. the deco-
herence of states completely contained in them
will be slower than for average quantum states.

In realistic systems, the external fields acting on
the different qubits are usually correlated to a
finite degree. Depending on the degree of cor-
relation, it should be possible to identify “clus-
ters” of qubits for which the couplings are more
strongly correlated than on average. The average

105



7 Errors and Decoherence

rate at which information is lost from the quan-
tum register can then be significantly reduced by
suitable encoding schemes within such clusters of
correlated spins [87].

7.3 Quality Measures

Quantum mechanical states encode information.
Errors tend to degrade this information. The
goal of error prevention is to reduce this degrada-
tion and the goal of error correction is to restore
the information.

Pt (t)

t=0

p(t)

Figure 7.13: The distance between actual and
targeted ideal evolution increases
with time.

In order to assess the need for countermeasures,
it is necessary to quantify deviations between the
actual and the ideal information. Such distance
measures correspond to the establishment of a
metric and they can be used not only to follow
the decay of information, but also to assess and
optimize the success of the different countermea-
sures.

7.3.1 Distance and Fidelity

Measures of distance between different states ex-
ist also in classical information theory. A widely
used measure is the Hamming distance between
two bit-strings, which is defined by the number
of bits that must be flipped to transform one into
the other. As an example, the Hamming distance
between the strings 00110 and 00101 is 2.

A distance metric for quantum states should
specify how well a state |¥) agrees with the ref-

erence state |Ws). In the case of pure states, it
is possible to measure this by the scalar prod-
uct (U1|Wsy). The scalar product has many of
the properties that a useful distance measure
should have: it is, e.g., independent of the coor-
dinate system and therefore invariant under uni-
tary transformations:

(UW1|UWg) = (| Wy).

It corresponds to an inverse distance in the sense
that it is maximized if the two states are identical
and it vanishes for orthogonal states.

Mixed states must be described by density opera-
tors, thus requiring different measures. One pos-
sible measure of the distance between two states
(and thus of the error) is the trace-norm distance

1
D(p17p2) = 5 le - PQH )

where
|All = TrvV At A.

Clearly, D(p, p) = 0 and for two pure orthogonal
states p1, pe, the distance D(p1, p2) = 1 reaches
the maximum possible value. If the two opera-
tors commute, the trace distance is equal to the
sum over the differences between the eigenvalues.

Instead of measuring the distance, it is possible
to measure how closely two states agree. The
corresponding quantity is generally called the fi-
delity, and it can be considered as a generaliza-
tion of overlap. Desirable properties for fidelity
measures are

e [ should be normalized: F' =1 if and only
if p1 = p2.

e F should be symmetric, i.e. F(p1,p2) =
F(p2, p1).

e [ should be invariant under unitary trans-
formation, F(Up U, UpUT) =
F(p1, p2).

1.e.

e If one of the states is pure, F' should be
F(p1, [W)(®]) = (¥|p2|¥)/Tr{p}}.
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Different definitions of the fidelity are used, in-
cluding

Fi(p1,p2) = |Vp1v/p2ll-

Other definitions are [88]

Fy(p1, p2) = Try/\/p1p2v/pP1

F3(p1,p2) = Tr{pip2}
/1= Tr{p?y\ /1 - Tr{pd)
1—7r 1+7r

Fy(p1,p2) = 5 5 F3(p1, p2),

with 7 = 1/(d — 1) and d the dimension of the
Hilbert space. In all these cases, the fidelity of
a state with itself is unity, F'(p,p) = 1, but the
fidelity of general and orthogonal states may dif-
fer. Another fidelity measure is|88§|

B |Tr{p1p2}|
Fs(p1,p2) = VIr{p}/Trip3}

This specific measure has the advantage that it
does not require the evaluation of square roots of
operators. Furthermore, it can be applied to de-
viation density operators (— ch. , which
is not possible for some other measures. It is
quite similar to the expectation value of one den-
sity operator for the other state.

7.3.2 Process fidelity

The quality of an information processor can not
be specified by the agreement between a specific
final state and the targeted state, since this is
specific to one particular input state. Instead,
it needs to maintain high quality independent of
the input state. Accordingly, a suitable quality
measure must compare the actual transforma-
tions with to the desired unitary transformation.
This state-independent measure is called process
fidelity. The evolutions may be described by two
propagators Uy, Us, where one might be a target
operator, such as a quantum gate operation, and

the other the actual propagator implemented in
an experiment. The corresponding propagator
fidelity can be defined in close analogy to Fj:

Tr{U{ U2}
\/Tr{UfUl}\/Tr{UgUg}

Again, this fidelity measure satisfies F(U,U) =
1.

F(Uy,Us) = . (7.10)

As an example, we consider the Hadamard gate

me G4

and compare it to the pseudo-Hadamard gate

sl

If we apply these gates to the initial state

|‘I’0>=((1))7

which is oriented along the z-axis, it is rotated
to the z-axis,

1) = Hlwo) = hlwo) = - (1 ).

for both operators. However, if we apply the
operations again, now to |¥;), we obtain

(1)
(V)

Clearly, the two operators do not represent the
same process. This is verified if we calculate the

process fidelity (7.10). Using

1/2 0\ _ (1 0
2\ 0 -2) {0 -1

we find the fidelity
10
o 5 )|-e

H[W) =

[h|¥y) =

H'h =

1
F(Ul,Ug) = 5 ‘TT <
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7.3.3 Quantum state tomography

Determining the state of a quantum system is
a very general problem. Clearly, this can not be
done in a single measurement, since no procedure
exists for distinguishing with certainty between
non-orthogonal states in a single measurement.
Repeated identical measurements can determine
the amplitudes of the expansion coefficients in
the chosen basis, but not the phases. The im-
possibility of doing a complete determination of
a quantum state in a single measurement also
follows directly from the no-cloning theorem: if
it were possible, we could measure the state of
the system and then prepare as many clones as
required. It is therefore necessary to perform a
series of measurements on identically prepared
systems to extract the full quantum state. This
is the scope of quantum state tomography.

If the system is not in a pure, but in a mixed state
(to which it unavoidably evolves in the course
of a computation process), a density operator is
needed to fully describe the state. The density
operator contains (2V)2 = 22V clements. De-
termining all these numbers requires many mea-
surements. The individual measurements must
be designed to measure n? components of the
density operator in an n?-dimensional space of
operators (the Liouville-space) acting on an n-
dimensional Hilbert space.

For a single qubit, where n = 2 and n? = 4, four
basis operators are needed. A convenient basis
consists of the operators 1,S,,S,,S.. Measur-
ing these observables allows us to reconstruct the
density operator as

1
p=3 (Tr{p}1 + Tr{pS;}S.
+ Tr{pSy}Sy + Tr{pS.}S.).

The individual results require in principle an av-
erage over an infinitely large sequence of mea-
surements, but in practice, one will be satisfied
with finite precision, which can be achieved by a
finite number of measurements.

For a system of N qubits, the density operator
can be expanded in an operator basis that con-
sists of all possible (tensor) products of the op-
erators

117 SZx? Sép Slz7

where ¢ = 1..N runs over all qubits. This results
in a total of 4V = 22N operators that are orthog-
onal and form a complete basis for the expansion
of the density operator.

To determine the expansion coefficients of the
density operator in this basis, we have to mea-
sure 22V independent expectation values. This
requires in principle the same number of inde-
pendent observables. In general, nature does not
provide a sufficient number of observables. As an
example, operators of the type

1'91’®.--Sl g -1V, (7.11)

where a single spin (qubit) undergoes a transi-
tion between its states, is directly measurable.

However, products of spin operators like Sfl,S]yC ,

11®12®...S;®...SZ®...1N7

are not directly observable. In the case of mag-
netic resonance, e.g., it is possible to measure
the transverse components S7 and S}, of individ-
ual spins, which yields 2N < 22V observables.
In the case of optical systems (e.g. ions, atoms,
quantum dots), the same operators can be mea-
sured as electric dipole moments and populations
can also be measured. In other cases, it is more
practical to measure the populations p; of spe-
cific eigenstates.

A significant extension if possible if one takes
the time evolution and the couplings between the
spins into account, which must be present in a
quantum computer executing multi-qubit opera-
tions. For an Ising-type Hamiltonian, the evolu-
tion under a Hamiltonian term

ok L Qk
H™ = dS’S?
drives an evolution

7 i Qk
St < sisk.
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As a result, not only operators of the type (7.11)
are observable, but also

'g’®--- 80 --0sfe o1V

More precisely, the terms that are obtained in
this way include all products that include exactly
one transverse (z or y) term, while all other fac-
tors are either unity or S¥ operators. This term
represents so-called anti-phase transverse mag-
netization. It’s expectation value (Sj) vanishes,
i.e. it is also not directly observable. However,
during free precession, the Hamiltonian term
S2S¥ turns it into observable S7 magnetization,
which contributes to the observed FID signal. In
the spectrum (i.e. after Fourier transformation),
it is observed as two lines with opposite ampli-
tudes. The number of such terms is N2V - more
than the single spin terms, but still not enough
for a full state tomography.

To measure the other components of the density
operator, it is necessary to use unitary trans-
formations that turn them into observable op-
erators as listed above. This can be achieved
by selective § rotations applied to single qubits.
Such a rotation of qubit k£ around the z-axis, e.g.,
turns the (unobservable) operator

1'91’®--8i@ - 08fe - 01V
into
11®12®"'S‘;®"'®S]§®"’®1N7

which is observable, as discussed above. Since
we have now four orthogonal operators (1, S,,
Sy, S.) for every spin, we have a complete set of
basis operators whose measurement allows the
complete reconstruction of the density operator.

This procedure is called “quantum
tomography”[89) [90], in reference to X-ray to-
mography, where a sequence of two-dimensional
pictures (or projections) is used to reconstruct
the three-dimensional body being imaged. Fig-
ure(7.14 shows an example of such a tomographic
analysis of the 2-qubit density operator that re-
sulted from applying the Grover algorithm to a
two-spin system [89]. The largest density opera-
tor element corresponds to the population of the
|11) state.

state

Experiment

Figure 7.14: Theoretical and experimental den-
sity operator components during a
Grover experiment [89].

7.3.4 Quantum process tomography

Quantum state tomography thus provides a com-
plete characterization of a quantum state p. This
is an essential prerequisite for the characteriza-
tion of a quantum computer, but it is not suf-
ficient. Since a general-purpose quantum com-
puter must operate on arbitrary (possibly un-
known) input states, its operation must be char-
acterized with respect to every possible input.
The algorithms require it to apply a (unitary)
transformation to these input states. Accord-
ingly, assessing its operation characteristics can
only be done through an analysis of the cor-
responding (unitary) transformations. Further-
more, the effect of decoherence is to make the
actual transformation non-unitary. The scope
of quantum process tomography is a full deter-
mination of the actual (unitary or non-unitary)
transformation for all possible input states.

The goal of quantum process tomography is the
reconstruction of the evolution operator that
transforms the unknown input state into the cor-
responding output state. In the case of unitary
operations, this can be written in the form

p(T) = U(T) p(0) UN(T).

This can be achieved by preparing in subsequent
experiments a complete set of basis states as in-
put, applying the transformation and then per-
forming density operator tomography on the fi-
nal state p(T).
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In the context of quantum error correction, the
relevant processes are often non-unitary. One
possible approach to describe non-unitary evolu-
tions uses a linear superposition of unitary pro-
cesses:

B(p) = >_ Uil (7.12)

where E(p) is the general evolution operator act-
ing on the state p. If we expand the unknown op-
erators U; in some convenient basis { £y, }, equa-

tion ([7.12)) can be rewritten as

E(p) = Z EmpE);Xmm

mn

where the y,,, are the expansion coefficients that
need to be determined for a given process E.
They form a Hermitian matrix and this repre-
sentation is known as the ‘chi matrix representa-
tion’ [91]. The conventional choice of the opera-
tor basis {E,, } is {1, X, —iY, Z} for each qubit.
For a quantum register with N qubits, the total
set of basis operators is then {1, X, —iY, Z}®V,
which consists of 4V = 22V members and the -
matrix has dimension 22V x 22V,

Theory

Experiment

Hadamard gate

Figure 7.15: Theoretical and experimental pro-
cess tomography for the Hadamard
gate.

Figure [7.15] shows one example of such a chi-
matrix, comparing the theoretical and experi-
mental values.

One practical difficulty is that the measurement
scheme itself is not error-free. If one tries to mea-
sure the process fidelity for a quantum gate that
is close to an ideal one, the errors introduced by

the measurement may be close to the errors of
the gate operations. To obtain useful data, it is
necessary to distinguish between the two types
of errors. This can be done by measuring not
the fidelity (or tomogram) of a single gate, but
of a suitable combination of gate operations, pro-
vided their errors are independent of each other.
Performing a series of such measurements that
determine the fidelity of sequences of gate op-
erations thus yields an average fidelity for the
gate sequence. Provided the assumption of in-
dependent gate errors is valid, this allows one
to calculate the fidelities of the individual gate
operations.

1.0- fagg
A
2 €92 error g 4,
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Figure 7.16: Fidelity decay during a randomized
benchmarking experiment, compar-
ing different types of gate opera-
tions |92].

Figure[7.16 compares the decay of fidelity during
randomized benchmarking experiments for dif-
ferent types of gates. Comparison between these
curves shows that the average fidelity for all of
them is above 99%. In the uppermost curve, the
fidelity per gate reaches 99.8 %.

Quantum process tomography is extremely use-
ful for determining the actual dynamics of a
quantum system. Applying it to large systems
with many qubits, however, quickly becomes in-
tractable, since the number of required opera-
tions grows exponentially with the size of the
system. For N qubits, the Hilbert space has di-
mension 2V and the number of density operator
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elements is 22V, For a unitary process, the pro-
cess can also be written as a 2% x 2V matrix, but
since decoherence results in deviations from uni-
tarity, the total number of free parameters for a
full characterization of the process grows as 24V,
Determining these parameters requires a corre-
sponding number of measurements:

N [ 1] 2 3 4
24N 116 | 256 | 4096 | 65536

Clearly, such efforts quickly become impractical.
It is then worth considering if the full informa-
tion is really necessary. In many cases, it will
be sufficient to measure not the full parameter
set, but create ‘summaries’. This is the purpose
of reduced tomographic schemes, e.g. by sym-
metrizing the system [93]. The result consists,
e.g., of the average probability of independent
qubit flips.

7.4 Error correction

[94]

7.4.1 Basics

As errors are unavoidable in quantum as well as
in classical computing, one must devise strate-
gies for fighting them. Error-correcting codes do
this by detecting erroneous qubits and correct-
ing them. As in classical computation, redun-
dancy is an indispensable ingredient here, and
other than in classical computation, extreme care
must be exerted not to garble the quantum in-
formation by the measurements involved in error
detection.

Quantum information is not only potentially
more ‘“valuable” than classical information, but
unfortunately also more vulnerable, because a
qubit can be modified in more subtle ways than a
classical bit, which can just be flipped from 0 to
1 or vice versa. Furthermore a classical bit can
be protected against errors by basically copying

it several times before transmission or process-
ing and comparing the (different) results, an ac-
cidental simultaneous flip of many copies being
extremely improbable. This is the basis of clas-
sical error correction.

No such procedure was in sight during the early
years of quantum computing, and thus many sci-
entists were very skeptical whether the attractive
prospects of quantum computing could ever be-
come a reality. Fortunately, methods for quan-
tum error correction were soon discovered, based
on coding schemes that permit detection of the
presence and nature of an error (by converting
it into a “syndrome” coded in ancillary qubits)
without affecting the information stored in the
encoded qubit. As we will discuss below these
quantum error-correcting codes protect quantum
information against large classes of errors. For
simplicity we will focus on errors that occur when
information is transmitted through space (com-
munication) or time (data storage) without be-
ing modified. The detection and correction of er-
rors during the processing of data is the subject
of fault-tolerant computing which we will only
briefly mention at the end of the section.

The development of quantum error correction
has culminated in the threshold theorem |95, 96]
97] stating that

A quantum computation can be as long as
required with any desired accuracy as long
as the noise level is below a threshold value.

This result can be considered as a proof that re-
liable quantum computing is possible, at least in
principle. How large this threshold is depends
on the details of the error correction scheme and
exact results are not available. Estimates for
the admissible infidelity range from 102 to 10~*
for the different schemes. Achieving such levels
of precision remains a challenging goal, but has
been demonstrated in a few cases.

Several review articles cover the recent develop-
ments in this area [98].
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7.4.2 Classical error correction

To correct an error in a classical environment,
one needs to detect it. The simplest way to do
this is to generate copies of the input information
to be protected from errors and to compare the
outputs. More generally, the information must
be encoded in some redundant way, which allows
for reconstruction of the original data after par-
tial destruction or loss. Of course, completely lost
data cannot be recovered at all, but depending
on the effort invested, the probability of complete
loss can be made as small as desired.

The kind of error correction used and its proba-
bility of success depend on the kind of error ex-
pected. To keep things simple, suppose we want
to transmit single classical bits 0 or 1, where each
bit is transmitted successfully with probability
1 — p and is flipped (once) with probability p,
neglecting the possibility of multiple flips. In the
simplest possible case, we encode the logical bit
0z in the code word 00 consisting of two physical
bits, and likewise 17, — 11. If the receiver of the
message detects that the two bits are identical,
he may assume that the transmission is correct
and accept it. If one of the two bits was flipped,
the detected state is 01 or 10, which are outside
of the set of legal codewords. The receiver will
therefore detect that an error has occurred and
may request re-transmission of the data. If the
probability that one of the two bits flips is p,
there is a probability of 2p(1 — p) ~ 2p that a
transmission error occurs and the transmission
has to be repeated. In addition, there is a prob-
ability of p? that both bits have flipped. In this
case, the error would go undetected.

If we do not want to only detect the presence of
an error, but want (or must) also correct it, we
can encode the logical bit in three physical bits.
We choose for the logical state 0y, the code word
000 and 17, + 111. Thus 000 and 111 are the
only two legal code words of the present coding
scheme. If the error probabilities for the three
bits are identical and independent of each other,
the probability for error-free transmission of the
logical bit is (1 — p)3, the probability that one

of the three physical bits has flipped is 3p(1 —
p)?, and so on. After transmission we check if
all three bits of the code word are equal, and if
they are not, we flip the one bit which does not
conform to the other two. This leads to a wrong
result if two or three bits were flipped during
transmission, and the total probability for this
to happen is p?(3 — 2p), which is much smaller
than p for sufficiently small p.

Usually the bit-flip probability p grows with the
distance (in space or time) of transmission, so
that error correction must be repeated suffi-
ciently frequently (but not too frequently, since
copying and measuring operations may them-
selves introduce additional errors, which we have
neglected here for simplicity). A larger number
of physical bits per logical bit can be employed,
increasing the probability of success, but also in-
creasing the cost in terms of storage space or
transmission time, as well as the complexity of
the encoding and decoding schemes.

Of course in today’s mature communication
technology, far more sophisticated error correc-
tion schemes are in use than the one just pre-
sented, but they all rely on checking for damage
and reconstructing the original information with
the help of redundancy.

7.4.3 Quantum error correction

The classical error correction scheme discussed
above is useless in the quantum regime, because
it involves a measurement of every single bit
transmitted. In the quantum case this entails
a collapse of the qubit state to one of the mea-
surement basis states, so that any information
stored in the coefficients a and b of a superposi-
tion state a|0) + b|1) is lost.

\PZ”\/U_\’ Wour
t=0 t=t

Figure 7.17: Evolution of the quantum state dur-
ing a gate operation.
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A quantum gate operation U, including the NOP
operation is designed to drive the input state
U,, to the output state ¥,,; along a well-defined
path in Hilbert space. In the case of a large
quantum register, the dimension of Hilbert space
is extremely large and deviations form this path
can occur in all directions. Errors (from decoher-
ence or from experimental imperfections) corre-
spond to deviations from this path. One of the
central ideas of quantum error correction is to de-
tect the kind of error that has occurred (if any)
without touching the information stored, and to
subsequently reconstruct the original qubit state.
Additional (or ancillary) qubits are needed in
this process to store the kind of error (or error
syndrome). Not every conceivable error is de-
tectable or correctable; examples include multi-
bit errors converting one code word into a dif-
ferent legal code word in a classical redundant
coding scheme. The more kinds of errors one
wants to be able to correct, the more resources
one needs. The code to be used must be chosen
on the basis of a specific error model, which may
have been determined from quantum process to-
mography. The chosen encoding and correction
scheme decides which errors can be detected and
/ or corrected.

One of the specific problems related to the
quantum nature of information was already ad-
dressed above: the fact that measurement may
destroy the very information that was to be pro-
tected. This problem cannot be circumvented by
just copying the information because of the no-
cloning theorem (Section [4.4.10). Furthermore,
in addition to the simple classical bit flip er-
ror, quantum mechanics allows for an entire con-
tinuum of possible errors, for example, continu-
ous amplitude and phase changes. Fortunately
the quantum error correction schemes developed
during the past decades can correct large classes
of qubit errors.

One way to present the basic principle of quan-
tum error correction is that the information is
encoded in a Hilbert space whose dimension is
larger than the minimum. Within this larger
Hilbert space, it is then possible to choose two

states as the basis states of the qubit in such a
way that the interactions that cause the error do
not transform one state directly into the other.
Error detection then checks if the system con-
tains contributions from other states and, if so,
forces the system back into that part of Hilbert
space that corresponds to the qubit.

7.4.4 Single spin-flip error

To begin with, let us discuss the transmission of
qubits between a source A (Alice) and a receiver
B (Bob). The transmission channel leaves each
transmitted qubit either unchanged (with prob-
ability 1 — p) or flips it by applying an X op-
erator (Section [4.3.1) (with probability p). The
situation is completely analogous to the classical
case discussed above. While quantum mechanics
prevents Alice from copying quantum states for
error protection, it provides her with other tools
to achieve similar goals. In order to safely trans-
mit the qubit state a|0) + b|1) Alice initializes
two further qubits in the state |0), so that the
initial state of the three qubits is

|10) = (a]0) + b|1)) ®]00) = a|000) + b|100).

These additional qubits are known as ancilla
qubits or ancillas.

al0y + b|1)

al000) + b[111)

=
L
L

Figure 7.18: Circuit for encoding the input qubit
in a logical qubit using three physi-
cal qubits.

Next she applies two CNOT gates, both with the
first qubit as control and with the second and
third qubits as targets, respectively. These two
steps transform the state to

|1) = CNOT13CNOT12]¢0)

= a|000) + b|111). (7.13)
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Alice thus encodes the information initially con-
tained in the state of a single qubit in an entan-
gled state of three qubits. This operation is not
cloning: cloning (if it were possible) would lead
to a product state of the three qubits with all of
them in the same single-qubit state. Finally Al-
ice sends the three qubits down the faulty chan-
nel, and relaxes.

Ideally, Bob receives the three-qubit state |¢1)
without damage; this happens with probabil-
ity (1 — p)® since the three qubits have been
transmitted independently. With probability
3p(1—p)? one of the three qubits has been acted
on by the “error operator” X, and with proba-
bility 3p?(1 — p) one of the three possible pairs
of two qubits have been flipped. Finally, with
probability p3 all three qubits have been flipped.
Note that this is the only case where in spite of
errors having occurred, Bob receives a combina-
tion of the legal “quantum code words” |000) and
|111) and thus is unable to detect the error. In all
other cases the entangled nature of Bob’s state
allows for error correction (which, however, is
not always successful, as we will see). Note that
the two components of Bob’s state are always
complements of each other; for example, if qubit
2 was flipped during transmission, Bob receives

instead of [¢)1) (7.13) the state

|4h1) = al010) + b[101). (7.14)

7.4.5 Error detection and correction

The goal of quantum error correction is to de-
tect that an error has occurred and to correct it
in such a way that the originally encoded quan-
tum information is recovered. For this purpose,
we need a measurement that detects the rele-
vant errors and does not generate a measurement
back-action that perturbs the correct states. For
the present choice of encoding, suitable observ-
ables are the operators Z1Zs and Z,Z3. Both
legal code words, |0)7, = |000) and |1); = |111)
are eigenstates of these operators with eigenvalue
+1. Also, both components of Bob’s erroneous
state Wﬁ are eigenstates of these operators with

the same eigenvalue of -1. Since both compo-
nents are eigenstates with the same eigenvalue,
their linear combination is also an eigenstate
with this eigenvalue,

Z1Z5|101) = —|11) = —al010) — b[101)

and analogously for Z;Z3. Bob’s state is thus
always an eigenstate of Z1Zo and ZiZ3, and
the action of these two observables does not af-
fect the state, apart from an unimportant global
phase. By measuring Z1Z- and Z;Z3 Bob can
detect what kind of error has occurred (if any)
and act accordingly. For the above example
Z17Z5 = —1 and Z1Z3 = 1 from which Bob con-
cludes that qubit 2 has been flipped. He applies
Xo and thus restores the state [i1), apart from
a sign.

> R,90)] Ry-90) >
\ \ A
10> Ry(90) R (-90)
3or H|
10>22 Ry(90) R (-90)
Toffoli gate

Figure 7.19: Error correction circuit for protec-
tion against a single-qubit-flip.

This procedure works for all cases where only one
qubit was flipped, as one can verify easily. If two
qubits are flipped, however, the error correction
fails (as it does in the classical case). If, e.g.,
bits 1 and 3 are flipped, the transmitted state is
a|101) +b]010). Applying the two measurements
yields the same values for Z1Zs and ZqZ3 as the
state [1) just discussed and is thus “corrected”
to a|111) + b/000).

There is a slightly different procedure for iden-
tifying the error which avoids any modification
of Bob’s state and which only employs CNOT
gates. For that procedure Bob needs two extra
(ancilla) qubits prepared in the state |00). He
then first carries out two CNOT operations with
qubits 1 and 2 of the message as controls, re-
spectively, and qubit 1 of the ancilla as target,
and then two CNOTs with qubits 1 and 3 of the
message as controls, respectively, and qubit 2 of
the ancilla as target. The two ancilla qubits then
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contain the error syndrome: the first qubit is 0
if the first and second qubits of the message are
equal, the second qubit of the ancilla compares
the first and third qubits of the message.

This procedure is an example for a more general
strategy of storing the error syndrome in addi-
tional dimensions of the Hilbert space provided
by ancillary qubits. This does not affect the in-
formation in the message, and the stored error
syndrome can be used to correct the error, or to
perform a fault-tolerant quantum computation
which directly processes the encoded message
and takes into account any errors which have
been detected and stored as error syndromes.
This eliminates (to some extent) the necessity
to repeatedly decode and re-encode information,
a procedure which is itself susceptible to errors.

7.4.6 Continuous errors

So far, we have assumed that a bit is either
flipped or left invariant. A more realistic error
model is a continuous error, which corresponds
to a rotation around the corresponding axis. We
start with the z-axis, which we have considered
so far. A rotation around the x-axis by an angle
0 corresponds to

Rm(g) _ efiQX/Z

0
=cos =1 — isin =X.

2 2
As in our above example, we apply this rotation
to the 2" qubit and obtain the state

0 0
cos 3 (a]000) + b|111))—i sin 3 (a010) + b|101)),

i.e. a superposition of the code word with no
error and the code word with the error. Since
these states have different eigenvalues for the
syndrome extractor ZjZo, performing a projec-
tive measurement with this operator will project
it either onto the legal code word or on the one
with the flipped bit. In the first case, we de-
tect no error (and there is none), in the second
case, we detect that the second bit has flipped
and correct it. The code therefore does not only
detect and let us correct discrete errors, but also

works for continuous errors. This mechanism is
referred to as discretization of errors and allows
us to consider only a small number of possible
eITors.

7.4.7 Decoding

The final step of the error correction protocol,
is the decoding step: the logical qubit states are
converted back to a single qubit. In our exam-
ple, Bob has recovered the correct encoded state
|t1) = a|000) + b|111). He can reconstruct Al-
ice’s original single-qubit state a|0) + b|1) by re-
peating Alice’s first two CNOT operations with
qubit 1 as control and qubits 2 and 3 as targets,
respectively:

= (al|0) + b[1)) ® |00).

The two ancilla qubits are no longer required and
can be discarded. The result for the first qubit
is a|0) + b|1), as required.

The probability for this outcome is 1 — 3p? — 2p3.

The deviation from unity is O(p?), which is much
smaller than the deviation O(p) without error
correction, provided p is sufficiently small. The
dominant contribution to the error now results
from undetected double spin flips.

7.4.8 Phase errors

Next we consider another continuous type of er-
ror, which corresponds to a rotation around the
z-axis. It turns out that this new error type can
be corrected for by basically the same mecha-
nism as for the rotation around the z-axis. The
error is a random z axis rotation given by

e
iedZ e 0
Pe) = e —< 0

e—zaqb

) (7.15)

= cos(e¢p)1 +isin(ed)Z.

¢ is a random angle between 0 and 27, and € is
a “strength parameter” which controls the mean
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phase spread caused by P(g) on average. The
randomness in this operation is related to envi-
ronmental degrees of freedom, for example, the
random magnetic field discussed in Section[7.2.2]
After the usual average over that randomness, we
have a combination of no error and a “phase flip”
caused by the operator Z:
Z(a|0) + b|1)) = al0) — b|1). (7.16)
Now, consider the action of Z in a different basis,
given by the eigenstates |[+) and |—) of X:

_ O£ _ .
|£) = 7 ;o X)) =£[£): (7.17)
obviously
Z|+) = ), (7.18)

that is, Z causes a bit flip in the basis given by
the eigenstates of X, and we have already seen
how a bit flip can be corrected for. The ba-
sis change from Z eigenstates to X eigenstates
and back is accomplished by a Hadamard gate

H (4.16), formally

HZH = X. (7.19)

In order to achieve error correction for a phase-
flipping transmission channel, Alice prepares the

state [¢1) (7.13) as before, and then applies
I‘I®3 = H1H2H3 to ’¢1>Z

H ) = a +++) + b — ——)  (7.20)

before sending her 3-qubit message off. Bob can
use almost the same procedure as before; how-
ever, he has to use X1Xs and X;X3 for error
syndrome extraction and Z1, Zs, and Z3 for error
correction, before applying H®3 to switch back
to the computational basis.

7.4.9 Projection errors

Yet another kind of error that can happen to a
single qubit is an “accidental measurement” re-
sulting in a projection to |0) or |1). That kind

of error can be related to a phase flip (Z) by ob-
serving that the projectors to |0) and |1) (Section

4.3.1) can be written as

0] = Py=_01+2); (7.21)
i = Py = (1-2).

Projectors onto more general Hilbert space vec-
tors can be written as linear combinations of
1,X,Y, and Z. This is clear from the fact that
any 2 X 2 matrix can be written in terms of these
operators.

— Problem 1

The most general single-qubit error is given by a
general unitary 2 x 2 matrix, combined with a
projection to some axis, and can thus be written
in terms of 1,X,Y, and Z. We have seen that
errors caused by X and Z can be corrected for
by simple procedures, and given the fact that
ZX = 7Y, errors caused by Y should also be
correctable.

7.4.10 General single qubit errors

The simple code that does the trick is a com-
bination of the two procedures already discussed
and was invented by Peter Shor [99]. Shor’s code
involves the idea of concatenating two redundant
codes: the original logical qubit is redundantly
encoded in three qubits in order to fight one kind
of error, and then each of these three qubits is
again encoded in three qubits to take care of the
second type of error.

The encoding procedure consists of well-known
steps. Alice first applies two CNOT gates with
the original logical qubit as control and with the
two additional qubits initialized to the state |0)
as targets. Then she applies a Hadamard gate
to each of the three qubits. This maps the com-

116



7 Errors and Decoherence

putational basis states as follows:

0) — |+++)
1
= ﬁ(!w+\1>)(!0>+\1>)(!0>+\1>)
D

1

\/5(!0> [1)(10) = [1)(|0) = [1)).
Now Alice adds two fresh |0) qubits to each of the
three code qubits in her possession, for a total of
nine qubits, and again applies the two-CNOT en-
coding procedure to each of these qubit triplets.
This yields one logical qubit encoded in entan-
gled states of nine physical qubits:

0) — 2\1/5(\00(» + 111))(J000) + [111))
(|000) + [111))
1) = —(j000) — [111))(]000) — [111))

2v2
(|000Y — |111)).

Assuming (as usual) that the encoding procedure
is flawless, we discuss the correction of single-
qubit errors. In order to detect a bit flip on the
first qubit (or any qubit of the first triplet, in
fact), Bob may again use the operators Z;Zs and
Z173. Subsequent application of the appropriate
X operator then corrects the error.

A phase flip on one of the first three qubits
changes the sign within that block, that is, it
changes |000) + |111) to |000) — [111) and vice
versa. In order to detect such a sign change
and its location, Bob again only compares the
signs of the three-qubit blocks one and two, and
one and three. Since X1X3Xg3 is the opera-
tor for the simultaneous bit flip on qubits 1,
2, and 3, that is, it maps |000) — [111) and
vice versa, the sign comparisons between blocks
are performed by the somewhat clumsy oper-
ators X1X2X3X4X5X6 and X4X5X6X7X8X9.
A phase flip on any of the first three qubits can
then be repaired by applying ZZoZs.

If both a bit flip and a phase flip have occurred
on, say, qubit 1, the two procedures outlined

above will both detect and remove their respec-
tive “target errors”, so that indeed all single-qubit
errors caused by X, Z, or ZX =4Y can be cor-
rected. As argued above, this means that an en-
tire continuum of arbitrary single qubit errors is
kept at bay by really taking care of only a finite
(and very small) set of errors. This remarkable
fact is sometimes referred to as “discretization
of errors”, and it is instrumental to the whole
concept of quantum error correction. Note that
there is nothing similar for classical analog com-
puting.

The Shor code is conceptually simple and easy to
understand, but it needs nine physical qubits per
logical qubit to provide protection against arbi-
trary single-qubit errors. There are codes pro-
viding the same degree of protection with 7 [100]
and even 5 [101} [102] physical qubits per logical
qubit.

7.4.11 Perfect 5-qubit code

A single qubit has four possible error condi-
tions: no error, or a flip around the z-, y- or
z-axis. We can represent them by the opera-
tors {1,X,Y,Z}. Detecting the error condition
therefore requires 2 bits of information. If we re-
strict ourselves to single-qubit errors, a system
of 2 qubits has seven possible error conditions:
no error or six independent single-qubit flips. In
the general case of N qubits, the number of error
conditions is thus 1+ 3N.

Distinguishing between these error conditions re-
quires

n = logy(1 4 3N)

bits of information, which can be obtained, e.g.,
through measurements on syndrome qubits.

N 1121345 )| 6
1+ 3N 10 | 13| 16 | 19
n 213144145

EN{

The above table shows, that N = 5 is the small-
est number that allows to encode 1 bit with N —1
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ancilla bits and use them for differentiating be-
tween all possible error conditions. N = 5 is
therefore the smallest number of qubits required
for a perfect error correction code, a code that
can correct all possible single-qubit errors.

pin — L H o e freadout]
)0l — & . h2nsr—
0){0] — & SHShs—
10Y(0] — & THEH s —
10Y(0] — ==

Figure 7.20: The simplest perfect error
tion code uses 5 qubits.

correc-

A perfect 5-qubit code was proposed by
Laflamme and coworkers [101]. Its logical basis
states are

7.4.12 Stabilizer codes

After the first error-correcting quantum codes
were found, more general theoretical frameworks
for the analysis and classification of codes were
developed. One such framework is called sta-
bilizer formalism, and the associated codes are
stabilizer codes. We do not discuss the general
formalism here, but concentrate on examples.

The approach is based on group theory, and the
underlying group that we use here is the Pauli
group for n qubits. In mathematics, a group G
is defined as a set of elements that are combined
with a binary operation -, which is also called
the group law. They must fulfill the following
requirements

e Closure: For any pair of group elements
a,b € G, the result of the group operation
must be in the group, a-b € G.

1

0 = %QOOOOO) — [10111) — |01011) +|11100) e Associativity:  For all group elements
+[10010) + |00101) + |11001) + |01110)) @, b,c€G, (a-b)-c=a-(b-c).

), = L(|11111) ~101000) + 10100 — |00011) ® Identity element: The group contains an el-
V8 ement called identity and often written as 1,
+/01101) + |11010) — |00110) — [10001)).  the the group operation yields 1-a = a-1 =

(7.22) a
e Inverse element: For every group element a,
there is an inverse element ¢!, such that

al0) + B[1) [p)1 Z- a-al=a1l-a=1.

10)2 H] = For a single qubit the Pauli group consists of
10)3—{ H] § the unit matrix 1 and the three Pauli matrices
10y, [ = X,Y,Z, all with prefactors £1,+7. These ma-
S trices form a group under matrix multiplication:
0)s——ZHZ] a product of two group elements is again a group

Figure 7.21: Encoding scheme for the 5-qubit
QEC scheme. H are Hadamard
gates and Z are m-phase gates.

Fig. [7.21 shows the gate operations required for
encoding a single qubit in the five-qubit QEC
scheme. It transforms the input state

al0) + A1) = a|0)r + B1)L.

The decoding operation is its inverse, Uge = UeTn.

element. For n qubits, direct products of matri-
ces from the individual qubit Pauli groups form
a group in a completely analogous way.

Suppose now that S is a subgroup of the n-qubit
Pauli group and that a certain set Vg of n-qubit
states is invariant under the action of all elements
of S; then Vg is said to be the vector space sta-
bilized by S, and S is called the stabilizer. The
basis vectors of Vg can be used as code words for
a stabilizer code. A simple example for n = 3 is
provided by the set S = {1,Z1Z9,Z9Z3,7Z17Z3}.
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Here, Vg is spanned by |000) and [111), which
are both eigenstates of all four operators with
eigenvalue +1.

The nontrivial elements of the stabilizer for this
code work as error-syndrome extractors: they
leave all states containing only legal code words
intact and map all states affected by errors to
other states.
guishable by the syndrome extractors in order to
be correctable. We have seen earlier that for the
present simple three-qubit code only single-qubit
flip errors can be corrected, while two-qubit flips
lead to wrong transmission results and three-
qubit flips are not detected at all.

The phase flip code discussed in section [7.4.8
has the stabilizer generators XX1 and 1XX,
where we have omitted the indices. For the
9-qubit Shor code, the stabilizer set can be
generated by the 8 operators ZZ1111111,
1727111111, 111Z7Z1111, 111177111,
1111117271, 1111111727, XXXXXX111,
and 111XXXXXX.

Different errors must be distin-

For a code with n-qubit code words, one may
classify errors by their weight, that is, by the
number of nontrivial Pauli matrices applied to
the code words. It is desirable to construct a
code able to correct all errors up to a maxi-
mum weight w; such a code is called w-error-
correcting. The achievable w depends on the
similarity or distinguishability of the code words
employed. If the minimum distance (as ex-
pressed by the number of differing qubits) be-
tween any two code words is d, then the maxi-
mum w is given by the integer part of d/2. Of
course the minimum distance depends on the
number & of logical (qu)bits encoded (as 2¥ code
words) in the n physical (qu)bits. In our exam-
ple code for correcting single-qubit bit flips, the
distance between the code words |000) and |111)
was d = 3, which allowed us to correct 1 < d/2
flipped bits.

Classical as well as quantum codes are often
characterized by [n,k,d]. Our example of the
simple bit-flip correcting code was a [3,1,3] code,
which allowed to correct w = 1 bit flip errors.

There is an elaborate theory of classical error-
correcting codes, and in fact a class of quan-
tum error-correcting codes may be derived from
classical codes. These codes are called Calder-
bank—Shor—Steane (or CSS) codes [103, [104] af-
ter their inventors. They are a subclass of the
stabilizer codes, as discussed in Chapter 10 of
[40]. The codes with n =5 |101}[102] and n =7
[100] mentioned above both have k = 1 (that is,
two code words, or one logical bit) and d = 3. It
can be shown (see Chap 12 of [40]) that n =5 is
the minimum size for a l-error-correcting quan-
tum code. Nevertheless, the five-qubit code is of
limited practical use because it involves compli-
cated encoding and decoding procedures, and be-
cause fault-tolerant quantum logical operations
are difficult to implement in this code.

7.4.13 Fault-tolerant computing

We have only discussed simple transmission (in
space or time) of quantum information, without
considering any logical operations (except those
needed for quantum error correction). For quan-
tum computing to become practical, it is nec-
essary to perform logical operations in a fault-
tolerant way.

S Encoding =21 Faul-tolerant === Decoding, 3 3
or=a— = .

33 - gates == Correction |2 =
popicx g. o g o |~

Figure 7.22: Basics of fault-tolerant quantum
computing.

This means that all quantum gates (including
those used in quantum error correction) should
be implemented in such a way that they do not
assume the input qubits or the gate operations
to be perfectly free of errors. As a consequence
gates should not operate on single logical qubits
(which do not offer any possibility of detect-
ing and correcting errors), but on the redundant
code words of a quantum error-correcting code.
During these operations care must be taken to
keep errors from propagating too quickly through
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the set of qubits employed. Of course the details
of the implementations used in this field depend
on the operations as well as the codes employed.

The logical basis states ((7.22) of the 5-qubit code

are chosen such that
NOT, = NOT$?,

where NOT/, is the logical NOT operation and
NOT; are the NOT gates applied to the indi-
vidual physical qubits. Since they correspond to
rotations, the actual gate operations are

Other gate operations must be implemented such
that they generate a rotation within the subspace
spanned by the two logical basis states |0)7, and
|1);, while leaving the remaining Hilbert space
invariant. They can thus conveniently be written
in a basis {|0)z, |1)z, |k)}, where |k) refers to
the remaining basis states. In this basis, every
logical gate operation corresponds to the direct
sum of a two-qubit gate and a unit operator:

Sl
sl

H=Hp160 = 1

1

This representation is also useful for visualiz-
ing some properties of computing with QEC:
the first two basis states span the computational
space. Any ideal gate operation therefore has the
structure that it implements a unitary transfor-
mation U2 g 160),

Figure[7.23 shows the experimental tomographic
reconstruction of an experimental implementa-
tion of three single qubit gate operations encoded
in a five-qubit system, with error correction ap-
plied to each gate[105].

More details, including the fault-tolerant imple-
mentation of a standard set of universal quantum
gates for the 7-qubit Steane code is discussed in
Chapter 10 of |40]. This chapter also contains
references to more technical treatments.

Identity

Figure 7.23: Process tomography for three differ-
ent quantum gate operations on a
single logical qubit encoded in five
physical qubits. [105]

The techniques of quantum error-correction, em-
ploying concatenated multi-level encoding and
fault-tolerant quantum logic, ensure that non-
trivial quantum computations may become prac-
tical. Under physically reasonable assumptions
about the noise present, it has been shown that

Arbitrarily long quantum computations can
be performed reliably and effectively, that
is, with an affordable growth in resources
such as storage, circuit size, or time, pro-
vided that the failure probability in individ-
ual quantum gates is below a certain con-
stant threshold [95] (96| 97].

This important result is known as the thresh-
old theorem; additional references to the origi-
nal work may be found in [40]. A considerable
amount of work is currently devoted to estab-
lishing the values of the threshold for different
encoding and error correction schemes. Quali-
tatively, the tradeoff is clear: the lower the ad-
missible error per gate (and thus the higher the
challenge to implement it), the lower the neces-
sary overhead for quantum error correction.
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7.5 Avoiding errors

7.5.1 Robust operations

While error correction represents a necessary
part of any quantum computer, the thresholds
that have to be reached before error correction
can be applied are very high. To make scal-
able quantum computing feasible, it is there-
fore necessary to implement strategies that re-
duce the error probability of each gate. Such
efforts must encompass the complete hardware
(and software) design.

Making gate operations robust means that they
are designed such that deviations in the exper-
imental parameters have only a small effect on
the performance of the gate. As an example, a
relative deviation § < 1 of the amplitude of a
control field should have an effect on the fidelity
that is at least of second order, < §2. The princi-
ple of combining different rotations for eliminat-
ing imperfections was originally introduced into
NMR in 1979 by Malcolm Levitt [106, [107].

4

Time

different control
field amplitudes

Figure 7.24: Error compensation in a compos-
ite pulse by combining rotations
around orthogonal axes.

The principle of combining different rotations
can be used to eliminate different types of im-
perfections, as shown in Fig. [7.24] for a simple
composite pulse. Here three rotations are com-
bined:

(g> /2 (o (g)ﬂ/z ’

where ()3 is a rotation by an angle a around an
axis in the xy-plane, which is oriented at an angle
B from the x-axis. This combination achieves a
nearly perfect inversion even if the amplitude of
the gate differs by +10%. This is shown in Fig.
[7.24 by the trajectories that correspond to differ-
ent radio-frequency (RF) field strengths: They
all end up close to the south pole of the Bloch
sphere.

This effect can be analyzed, e.g., multiplying the
rotation matrices for the individual rotations:

1
Rg, = cosff —sinf
sinf cospf
cos 3 sin 3
Rgy = 1
—sin cos f3

Multiplying the rotation matrices for

(Fa+9) @+, (50+9)

/2 7r/2’

we obtain, to first order in §, the propagator

Here, the first term is the ideal m-rotation around
the y-axis, while the second term represents the
first-order correction. In this case, it corresponds
to a rotation around the z-axis. More compli-
cated expansion schemes are required to elimi-
nate also this term.

In many cases, non-ideal behavior results not
only from a single type of error, but from a com-
bination of different errors. The most important
errors are typically an error in the amplitude of
the control field and a deviation in the frequency,
which is generally called “offset error”.

Fig. [7.25 illustrates how suitable composite
pulses can compensate multiple error conditions
for the example of a m/2 -rotation. The col-
ored area indicates the range of parameters over
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Simple pulse Composite pulse
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Figure 7.25: Comparison of the robustness of a
simple rectangular pulse (left) with
that of a compensated composite
pulse (right).

which the actual rotation is sufficiently close to
the target operation. For the simple pulse repre-
sented in the left-hand side, this area is vanish-
ingly small; any significant deviation makes the
pulse useless. The composite pulse whose per-
formance is represented in the right hand panel
generates rotations that are close to the target
rotation even if the field strength, pulse dura-
tion or frequency offset deviate from their nom-
inal values.

“Strongly modulating pulse”
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Figure 7.26: Example of a robust pulse designed
by optimal control theory.|108§|

The simple example presented above can be ex-
tended to more robust, more efficient gate opera-
tions by considering not only three, but hundreds
to thousands of segments. The resulting large
number of parameters (amplitudes, frequencies,
phases) allows one to design almost arbitrary
gate operations that are highly robust and fi-
delities close to unity. The discipline of opti-

mal control theory offers the theoretical tools
for designing such pulses. Fig. [7.26 shows, as
an example, the amplitude and phase of such a
pulse, which was designed for robust excitation
of strongly coupled nuclear spins.

7.5.2 Robust sequences

Using robust gate operations goes a long way to-
wards making quantum computing reliable. This
goes at the price that the operations become
longer and the amount of energy deposited in
the system grows accordingly. This price can be
reduced if on considers not only the fidelity of
the individual gate operations, but the more rel-
evant question of the fidelity of a sequence of gate
operations.
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Figure 7.27: Fidelity a sequence of 20 7 identical
pulses as a function of the flip angle
error of the individual pulses.

As an example of the effect of experimen-
tal imperfections, consider the dashed curve in
Fig. It shows the cumulative effect of 20
successive rotations by a nominal angle 7w around
the same axis. Under ideal conditions, this cor-
responds to the operation

NOT? = (¢="8x)* = 1 = NOOP.
Accordingly, the fidelity was calculated with re-
spect to this ideal case.

If the actual rotation angle differs by a few per-
cent (e.g. 5 %), the error accumulates over the
20 pulses and the total propagator becomes

(efml.ossx)% — ¢~ im™Sx _ NOT.
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The actual propagator thus has vanishing over-
lap with the target propagator, the fidelity of
the operation is zero. This is the reason that the
blue dashed curve in Fig. [7.27 tends to zero for
flip angle errors of +5%.

This simple example is useful for illustrating
some of the most useful schemes for avoiding
errors. The loss of fidelity can be avoided
if, instead of applying the 20 successive rota-
tions around the same axis, one applies rotations
around a series of different axes. Consider, e.g.,
the case that the rotations are applied alternat-
ing between the x- and —x-axes. In this case,
the overall operation is

NOT2 — (e—i(1+5)7rsxei(1+5)7rsx>10 — 1 - NOOT

independent of the error §. This simple ‘trick’
of alternating the rotation axis thus turns the
highly error-prone sequence into a completely ro-
bust one, and this is achieved with zero overhead:
the duration of the sequence and the amount of
energy deposited remains the same!
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Figure 7.28: Fidelity of different pulse sequences
after 20 7 pulses as a function of
the flip angle error of the individual
pulses.

This principle can be extended: switching not
only between two possible orientations of the ro-
tation axis, it is possible to find sequences that
are much more robust against different types of
experimental imperfections. This is illustrated
in Fig. [7.28 by the two curves labelled XY-4 and
KDD. In the case of XY-4, the rotation axis al-
ternates between the x and y axes, for the KDD

sequence, a 10-step cycle is used for the rotation
axes [109]. In all three cases, the error of the in-
dividual pulses is the same, but the compensated
sequence performs almost flawlessly, even if the
flip angle deviates by as much as 30 % from its
nominal value.

7.5.3 Protection against decoherence

We now turn to the question how information
can be protected from environmental noise by
passive measures, without applying control fields
or using error correction schemes.

Figure 7.29: Storing and processing information
in quiet regions of Hilbert space can
reduce the error rate.

Fig. [7.29| illustrates the guiding idea: In most
systems, noise does not affect the full Hilbert
space in the same way. Instead, some areas are
more noisy than others. It is therefore essential
to identify the quiet areas and preferentially use
them for storing information.

For the discussion of decoherence processes, one
has to distinguish between different types of cou-
pling between the system and environment:

(i) Total decoherence. This is the most general
case, essentially there are no restrictions on
the operators that generate the decoherence.

(i) Independent qubit decoherence. If the cou-
pling operator contains only operators act-
ing on individual qubits, errors of individ-
ual qubits are independent. This is the case
typically considered in quantum error cor-
rection.

(iii) Collective decoherence. Here the coupling
operators act in the same way on all qubits.
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They can thus be written in the form
Fo=2_Su
i

where o = z,y, 2 marks the Cartesian com-
ponent and ¢ the index of the qubit. Clearly
the perturbation has full permutation sym-
metry in this case. This symmetry can
be exploited in a counterstrategy that we
discuss in section [7.5.4. Only three inde-
pendent perturbation operators exist in this
case.

(7.23)

¢ 2y ’dg‘&hg

o ¥

Figure 7.30: Schematic representation of cluster
decoherence.

(iv) Cluster decoherence. This is an intermedi-
ate case, where clusters of qubits decohere
collectively, while the different clusters de-
cay independently.

The cases discussed above are idealized situa-
tions. Real systems may be close to one of them
or intermediate between several limiting cases.

7.5.4 Decoherence-free subspaces

Decoherence-free subspaces represent a possibil-
ity for shielding quantum information from the
decoherence processes caused by the environ-
ment by taking advantage of the symmetry prop-
erties of the coupling operators between the sys-
tem and environment [80]. We follow the discus-
sion of Lidar, Chuang and Whaley [110].

As discussed before, decoherence can be seen to
arise from interactions with the bath. It is there-
fore useful to distinguish three contributions to
the Hamiltonian of the full system (including the
bath):

H=Hs®R1p+1s @ Hp + Hint-

Here Hg is a pure system operator, Hp is a pure
bath operator, and Hiy represents the coupling
operator. It contains product operators

HInt = ZFQ &® Bcw
a

where F, are system operators and B, bath op-
erators. If the system is a spin system, the F, are
spin operators. Depending on the type of envi-
ronment, the B, may be spatial coordinates, cre-
ation / annihilation operators, fields, spin com-
ponents or some other degree of freedom.

Decoherence is the non-unitary part of the evo-
lution of the system density matrix pg, which,
under appropriate conditions, can be written as
[111]

d i~
Pst %[HSHPS]

1
= ) Zaaﬁ ([FaapSF}j] + [Faps, FTﬁ]) .
a?ﬁ

(7.24)

Here Hg is the system Hamiltonian plus any
possible unitary contributions arising from the
system-bath interaction, and a,z are elements of
a positive semi-definite Hermitian matrix. The
operators F are the generators of the decoher-
ence process. We may thus consider the possible
decoherence processes in terms of these opera-
tors. In spin systems these are clearly the spin
operators; for the typical case of spin-1/2 sys-
tems, they are multiples of the Pauli matrices.

Depending on the generators F,, not all states
are equally subject to decoherence. Decohe-
rence-free subspaces exist if, for a certain set of
states |i), the coupling to the environment does
not generate a time evolution. For a formal anal-
ysis, we write the corresponding part of the den-
sity operator

p= Z Dij
%,J

i)(l;

where the coefficients p; ; depend on the initial
conditions. The condition for the existence of
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7 Errors and Decoherence

the decoherence-free subspace is then, that the
right-hand side of (7.24) vanishes for this state:

1 . -
5> e ([Fa, PFL] + [Fap, Flj ) = 0.
a?ﬁ

This condition can be fulfilled in a number of
ways, depending on the initial conditions (via the
pi,j) and on the coupling to the bath (via the
aop3). However, decoherence-free subspaces are
only interesting if no additional constraints have
to be imposed on the bath parameters (which are
hard to control) or the initial conditions of the
system (since we would like a general-purpose
computer). Such additional constraints can be
avoided if the states |i) satisfy the condition [110]

Fali) = cali) (7.25)

for all operators F,. This means that the states
|i) of the decoherence-free subspace form a de-
generate set of eigenstates for all error genera-
tors. Obviously this is a rather restrictive crite-
rion. To motivate that relevant cases exist that
approximately fulfill this condition, we discuss a
few examples after we have finished the formal
analysis.

7.5.5 Information capacity

Clearly, this concept is only useful if a signifi-
cant amount of information can be encoded in a
decoherence-free subspace. The answer depends
on the type of decoherence, i.e. on the set of op-
erators F. For collective decoherence, DFS turn
out to be interesting, since the DFS asymptot-
ically fill the Hilbert space completely. In this
case there are only three independent perturba-
tion operators, the total spin operators .
As usual, we discuss the situation in terms of
spins, with the understanding that they may also
be representing pseudo-spins, i.e. general qubits.

While the condition requires only that the
states of the DFS have all the same eigenvalues
Ca, We discuss here only the case ¢, = 0. This im-
plies that the DFS is spanned by all singlet (total

spin quantum number Sp = 0) states of, say, K
spins (where K must be even). The number of
these states can be determined by considering
states with a given total spin z component S%.

The total number of S7 = 0 states is ( Kljz ), the

number of ways to pick K/2 down spins from a
total of K spins.

Some of these S7 = 0 states are the desired
singlets, the others belong to subspaces with
St # 0. Every such subspace contains exactly
one S% = 1 state. An S7 = 1 state corresponds
to K/2 + 1 spins in the ‘up’ state and K/2 — 1
spins in the ‘down’ state, so the total number

of 5% = 1 states is ( K/é{_

ber of Sy = 0 states (or subspaces, since each
subspace is one-dimensional) is

<KI§2>_<K/§(—1>

S — (7.26)

(515 + 1)

The number N of logical qubits that can be
stored in this DFS of K physical qubits then is

1 ) Hence the num-

dim[DFS(K)] =

N = logy,dim[DFS(K)]

3
= K- §log2K+(9(1),

where we have used Stirling’s formula (for large
n)
1

Inn! = (n+§)lnn—n—|—(’)(1). (7.27)
In the limit of large systems, K > 1, the infor-
mation capacity of the DFS therefore asymptot-
ically approaches that of the full Hilbert space.
The result for collective decoherence was
first derived from group-theoretical considera-
tions in [112].

In contrast to this case, where the decoherence-
free subspaces asymptotically fill the whole
Hilbert space, in the opposite limit of individ-
ual qubit decoherence or total decoherence, the
amount of information that can be encoded in
DFSs is negligibly small.
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7 Errors and Decoherence

The last requirement that must be met is to im-
plement gates in this DFS. This is easily achieved
in the generic model, but actual implementations
in physical systems are still rare and must be dis-
cussed for the specific examples. Here, we discuss
the generic example of spins in magnetic fields.

7.5.6 Example: spin qubits

The simplest example of a decoherence-free sub-
space is provided by magnetic resonance if we
consider the decoherence induced by randomly
fluctuating homogeneous magnetic fields. They
couple to the spin system through the sum of the
z-components of the nuclear spin operators,

He=b(t) Y L,

where b(t) describes the fluctuating magnetic
field and we consider a system of identical spins
(a homonuclear spin system). This Hamilto-
nian generates a diffusion-like evolution of the
spins, as discussed in section In this case,
F = > . I! and according to the states
| T1) and | }1) with m; + mg = 0 should form a

decoherence-free subspace.

This can be seen by considering the effect of
the randomly fluctuating field on the coherences
pij = (i|p|j). All states |i) with the same z-
component of the total spin, m = (i| 3, I¥|3),
have the same energy and are therefore shifted
by the same amount if the external field fluc-
tuates] The effect of field fluctuations on off-
diagonal density operator elements is then

o d
ih—pij = b(t) Ami;pij,

where
Amg; = (i) > TElG) — (1D 15
k k

IThe energies are not exactly identical, since small en-
ergy differences (due to chemical-shift interactions)
are used for addressing the individual qubits. How-
ever, these differences are small, of the order of 107*
to 1075 times the Zeeman energy.

and the sum runs over all spins. Am;; represents
the change in the total magnetic spin quantum
number, which is proportional to the difference
in Zeeman energy between the two states |i) and
|7). We can therefore eliminate the decoherence
due to such a process if we encode a qubit not in
a single spin but associate the logical states as

Figure 7.31: Energies of the 2-spin product
states as a function of the strength
of the external magnetic field.

As shown in Fig. [7.31, the energy of the states
in the m = 0 subspace does not depend on the
strength of the magnetic field and therefore is
not affected by fluctuations in the field.

In such an encoding scheme, the logical states
are not associated with single physical qubits.
As a result, one does not have immediate access
to manipulate the system, i.e., to apply gate op-
erations to these logical qubits. How this is done
depends on the actual implementation and will
not be discussed here.

From what has been said so far, it should be
obvious that such an encoding scheme will only
work for fluctuations of the field in the direc-
tion of the static field, i.e., along the z-axis. If
more complex systems of coupling operators are
present, it is still possible to design decoherence-
free subspaces. While the general analysis is
rather mathematical and mainly relies on ex-
istence proofs, without constructing an actual
DFS [113], it is relatively easy to see that if a
number of states are available that are immune

126



7 Errors and Decoherence

to noise coupling to >, I!, arbitrary linear com-
binations of these states are still immune to this
type of noise. It is then possible to choose a
suitable linear combination such that it is also
immune to noise (e.g.) coupling to >, IL.

w® 0.8
2
T
2
t
< - _
g _—
o 0.6
c
]
k]
w
4 Un-Encoded, y Noise
= NS-Encoded, y Noise
0.4r * NS-Encoded, z Noise

0 16 26 36
Noise strength 1/t (s-1)
Figure 7.32: Experimental results for the decay
of a DFS-encoded qubit.|114]

The basic scheme has not only been discussed
theoretically, but a number of experimental
proofs of principle have also been performed. A
single qubit of information was encoded in three
spins in such a way that it was protected from
global noise along all three axes [114]. The exper-
imental results show that the information that is
contained in the noiseless subspace decays sig-
nificantly slower than the unprotected informa-
tion. However, the encoding — decoding process
is not error-free, so the fidelity with the encod-
ing process is actually much lower than without
the encoding for most of the range of experimen-
tal parameters. A complete quantum algorithm
(Grover’s algorithm on two qubits) was imple-
mented in a decoherence-free subspace that was
embedded in a four-spin system in such a way
that it reliably reached the correct result in the
presence of strong decoherence [115].

7.5.7 Clock transitions

The basic idea of using subspaces of the Hilbert
space that are less sensitive to environmental
perturbations than others has been exploited in

different fields for a long time. A prominent ex-
ample is that of atomic clocks where the evolu-
tion of the coherence in a chosen transition

i) (K| (t) = |d) (Kk|(0) et

is used as a measure of time. Clearly, a variation
of the level splitting Aw;j, causes the clock to run
too fast or too slow. The currently used time /
frequency standard is defined as the duration of
9192631770 periods of the radiation correspond-
ing to the transition between the two hyperfine
levels of the ground state of the cesium-133 atom.

mr=4
@Y ém 0

65172 / 7 -4

9.192631770 GHz 9.192631770 GHz

_ - 3
\r F=3 %_w 0
3

_—

B-Feld

F=4

Figure 7.33: Ground state sublevels of cesium.
The frequency of the clock transi-
tion (mp = 0 <> mp = 0) transi-
tion is independent of the magnetic
field (to first order).

A closer look at the level scheme of the cesium
ground state (see Fig. shows that the state
splits not only into two hyperfine substates, but
they again consist of a total of 16 Zeeman sub-
levels, which are shifted by the magnetic field by

0 = mpgrupB.,

where gr is the Landé factor and pup the Bohr
magneton and the z—axis is chosen along the
magnetic field B. Accordingly, any perturbing
magnetic field causes deviations of the atomic
clock. The main exception from this is if the
mp = 0 & mp = 0 transition is used, since
these two states do not depend on magnetic fields
acting on the atom.

The same principle can be applied to solid-state
qubit systems. Fig. [7.34 shows, as an example,
the energy level scheme of a Bi electron spin de-
fect in silicon. The electron spin is S = 1/2, and
therefore no field-independent state exists. How-
ever, the energy levels are also influenced by the

127



7 Errors and Decoherence

‘o X-band =€&= ESR-type CTs —6— NMR-type CTs ‘

Energy (GHz)

- L
o o
| |

Transition
frequency (GHz)
w
|

)

© o 9o
> oo ®
I I I

(“4) |ap 4pl

|df/ dB| (y,)

I
N}
I

g
o

Z T T
0 100 200 300 400 500 600
Magnetic field (mT)

Figure 7.34: Energy levels, transition frequencies
and field sensitivities for different
transitions of a Bi qubit in Si.|116]

nuclear spin I = 9/2 and the corresponding hy-
perfine interaction, which splits the system into
an F' = 4 and an F' = 5 multiplet. In the pres-
ence of a magnetic field, these levels depend in
a nonlinear way on the field strength, as shown
in the upper part of Fig.[7.34. The middle panel
shows, how most of the transition frequencies

E— &k
h

Vil =

increase with the field strength, but some of
them pass through a minimum, where

dl/ik _
1B 0.

These points are marked by blue circles. Since
the frequencies are not affected by variations in
the magnetic field strength at these points, the
transitions are insensitive to magnetic field noise.
In such a system, a phase relaxation time of
Ty ~ 2.7 s was measured in 2013 |116], which
is extremely long for a solid-state system.

This type of protection scheme has been applied
primarily to magnetic fields, where the acronym

PI‘:Laz(WO4)3

Fidelity

107 107 107 10°
Storage time [s]

Figure 7.35: Storage of photons in the nuclear
spin states of Pr:Las(WOy)s.

ZEFOZ (=zero first-order Zeeman) is used. It
can be used, e.g., to extend the dephasing time
of spin qubits in rare earth ions. Fig.[7.35 shows
that the application of a suitable magnetic field
extends the dephasing time by up to three orders
of magnitude. In a similar system, storage times
up to six hours were demonstrated [117].

The conditions for the existence of a suitable ZE-
FOZ point are sometimes difficult to find, since
they depend on the details of the level structure.
A possible alternative is to apply near-resonant
alternating fields that create dressed states form-
ing decoherence-free subspaces. [118] [119]

7.5.8 The quantum Zeno effect

While the DFS-approach to protecting quantum
information is purely passive, i.e. it requires no
experimental actions, it is also possible to re-
duce decoherence by active means other than er-
ror correction. One such approach, called dy-
namical decoupling, will be discussed in section
[7.6] Here, we briefly discuss a related approach,
which is practically less relevant, but brings some
interesting insight into the dynamics of quantum
mechanical systems. It is based on the quantum
Zeno effect [120]. The idea behind this radical
simplification is to keep the quantum state error-
free by projecting frequently (by a measurement)
onto the subspace corresponding to the “no error”
syndrome.

Zeno of Elea (ca. 490 — 430 b.C., southern Italy)
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was a student of Parmenides. He stated a num-
ber of paradoxa to defend the teachings of Par-
menides, in particular the statement that motion
is impossible and more than one thing cannot ex-
ist. One well known paradox is that of the race
between Achilles and the tortoise. Achilles (the
fastest man in antiquity) is ten times as fast as
the tortoise. Nevertheless he cannot overtake her
if she gets a head start of (e.g.) 10 m: Achilles
first must cover these 10 m. During this time, the
tortoise moves 1 m and is therefore still ahead.
While he covers this meter, the tortoise moves
another 0.1 m and so on, always staying ahead.

Another motion paradox “proves” that a body
cannot move from A to B: for this, it would first
have to move to the middle of the distance. For
this it would first have to move to the middle of
the first half, etc.

While these paradoxa are easily resolved, similar
situations exist in quantum mechanics that are
real. They have been discussed under the head-
ing “quantum Zeno effect”, although they cannot
really be considered paradoxa.

We consider the evolution of a system that is ini-
tially (at ¢ = 0) prepared in the state |1);), which
is an eigenstate of operator A with eigenvalue a;.
The state evolves under the influence of a Hamil-
tonian #H, which does not commute with A. A
possible example would be that the Hamiltonian
1s < S, and the observable is S,. A measurement
with A of the system after some time 7 will then
in general yield a result that is different from a;.

For a qubit or a single spin 1/2, we can consider
a spin in the m, = +1/2 eigenstate of S,

1

v(0) 7

(10) +[1))-

In a magnetic field By||z, the energy of the com-
putational basis states are

h hwr,
fo = —Bo=—7"

h hw
&ny = +§’YBOZTL,

Therefore the state ¥ evolves to

1
V2

where wy, = 7By is the Larmor frequency. The

probability that a subsequent measurement of S,
at time ¢ also finds the eigenvalue +1/2 is then

W(t) = ([0t 4 [1yeints?),

() w(1))]* =

b+ =
_ 1 eith/z_i_efith/z’Q
4
wrt |? 1
= cos(i) = —(1 + cos(wrt)).
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> |7
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je]
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o
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Figure 7.36: Probabilities p4 for measuring the
initial state and p_ for measuring
the opposite state.

The probability of obtaining the opposite result
is

p_ = %(1 — cos(wrt)).

7.5.9 Repeated measurements

If such a measurement is performed, the projec-
tion postulate states that after the measurement
the system is in an eigenstate of A. If the mea-
surement yielded the result +1/2, the system is
again in the same initial state, and the evolu-
tion starts out again with the same time depen-
dence. While the probability for this outcome is
less than unity, the important point is that the
first derivative of the time dependence,

d 1
— = —— in(0) =0
G| = e =0,
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vanishes after the projection. During short times
after the measurement, the system therefore does
not evolve significantly.

If a series of measurements is repeated with a
separation (in time) of 7, the probability that n
measurements in sequence will always find the
system in state W(0), corresponding to m, =
+1/2, becomes

L1+ cos(wrr)™.

o (7.28)

b+ =

19 Measurements

Population difference ps-p-

Time [arb. units]

Figure 7.37: Quantum Zeno effect: the decay of
a state becomes slower with increas-
ing number of measurements.

Figure shows how the evolution of the sys-
tem changes as the measurement interval de-
creases. We now consider specifically the situ-
ation for short measurement intervals, wym < 1.
In this limit, the cosine can be expanded as
cos(z) ~ 1 —?/2 and eq. @ can be written

o <1+(1—(°"L27)2)>n

%

p+(nT7)

Writing t = n7 for the full duration, this be-
comes

2 n
Wi Tt
t 1--L
p+(t) ( ™ >
Using the relation
lim (1-5)" =
n—00 n

R O C7% AR SR N
A 2 4

we can simplify the probability to

(JJ2T
p+(n7) = p1(t) =~ exp (—it> :

We therefore obtain an exponential decay with
the decay rate W%T /4. The system evolution is no
longer periodic, but shows an exponential decay.
The decay rate decreases with the interval be-
tween measurements. For quickly repeated mea-
surements, it can therefore be made arbitrarily
slow. This is referred to as the quantum Zeno
effect:

In the limit of frequent measurement, the
system does not evolve.

7.5.10

Experimental example
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Figure 7.38: Experimental test of the quantum
Zeno effect. Left-hand side: laser
pulses measure the state of the ions
while they are attempting to make
a transition from state [0) to [1).
Right-hand side: calculated and
measured transition probability for
increasing number of measurements
[121].

These general quantum mechanical predictions
can be verified experimentally, e.g., for trapped
ions [121]. The left-hand part of figure [7.38
shows the principle of the experiment. The ions
are initially in state |0), from where an RF field
drives them into state |1). The amplitude of the
RF field and its duration can be adjusted such
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that probability for the ion to make the tran-
sition from state |0) to |1) approaches unity at
time 7.

To detect if the ions have arrived in state |1), one
can use laser pulses that excite fluorescence from
the ions if they are in state |1); with a suitable
calibration, the fluorescence signal can be used
to measure whether the ions are in this state. If
such a laser pulse is applied first at time 7, it
finds the ions in state |1) with almost unit prob-
ability. If, however, additional measurements are
made at times 7; = 7'% for ¢ = 1..n, the proba-
bility of finding the system in state |1) at time 7
is reduced to

p(n) = %[1 — cos” (f)}

n

For n = 1,2, 3,4, we obtain p(n) = 1, %, 1—76, %.

the limit of large n, the argument of the cosine
tends to zero and

In

cos” (z) —1, p(n)—0.
n

This prediction was verified experimentally by
measurements on two hyperfine states of the
9Bet ground state [121]. A radio-frequency field
was used to drive the transition. In the absence
of measurements, this results in an oscillatory ex-
change of populations. The measurements were
performed by selective laser irradiation, which
generate a signal if the transition has occurred.
The results, shown in the right-hand side of Fig-
ure [7.38, correspond to 1 — p(n) and are in good
agreement with theory. For 64 measurements,
the transition probability has dropped to a very
small value, indicating that the evolution was
quenched.

Clearly the slow-down of transition rates by mea-
surement cannot be universal. As an exam-
ple, consider an atom that is initially in the ex-
cited state. A possible measurement for the ex-
cited state population probability is a fluores-
cence measurement: as long as we do not ob-
serve a fluorescence photon from this atom, we
know it is still in the excited state. This would
imply that, if we only “looked” at the atom often

enough, it would therefore be impossible for the
atom to decay. Similar arguments are used to
explain why the decay of the proton has not yet
been observed.

The main reason for this paradox is that the
concept of a quantum mechanical measurement
is not established with sufficient precision. A
projection, i.e., a reduction of the wave packet,
does not always occur in “standard” quantum
mechanical measurements. If the interaction is
weak (such as “looking” for a fluorescence pho-
ton), the reduction does not occur. One impor-
tant point that must be considered is that a pro-
jective measurement can only occur during a fi-
nite time interval. If the interaction between the
measurement apparatus and the system is weak,
this time interval can become very long. In the
experiment with the trapped ions, the interac-
tion strength of the measurement is determined
by the intensity of the laser used for the mea-
surement. The projection postulate is well suited
to the Stern—Gerlach type experiment, but com-
pletely unsuitable for experiments like NMR.

7.6 Fighting Decoherence

While passive methods for avoiding decoherence
are useful, they are alone not sufficient. This
section therefore discusses techniques that use
active control operations for refocusing the envi-
ronmental disturbance.

7.6.1 Refocusing

The basic experiment that refocuses environmen-
tal interactions uses a NOT gate to invert the
unwanted time-evolution.

This approach to reducing decoherence was origi-
nally introduced in Nuclear Magnetic Resonance
(NMR), in particular by Erwin Hahn [122], who
showed that a m-rotation (a NOT-gate) applied
to a spin-1/2 system (a qubit) corresponds to an
effective change of the sign of the perturbation
Hamiltonian and therefore generates a time re-
versal of the corresponding evolution.
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Figure 7.39: Phase reversal and echo formation
by an inversion pulse applied to the
qubit.

This principle can be understood by considering
a qubit (=spin 1/2) in a superposition state. In
an external field that splits the two states by a
frequency w, it evolve as

1
V2

i.e. the relative phase ¢ of the coherence increases
linearly with time, ¢ = wt.

) (1) = = (I0pe™!/2 4 [1)e1/2)

The NOT gate which is applied at time 7 there-
fore changes the state to

1
V2

The relative phase between the two components
has thus been reversed, from ¢; = wr to ¢/1 =
—w7. Depending on the factor in w7 to which
we associate this sign change, we can consider
the effect as an inversion of the Hamiltonian for
the period before the pulse, from w — —w or to
a reversal of the time evolution, from 7 — —7.

0)(7) = —= (10)e™ 72 4 [1)et/2)

As the evolution continues, the coherence con-
tinues to acquire phase,

¢p=—-wr+w(t—7)=w(t—27).

Over the next period of duration 7, the addi-
tional phase ¢o = wt exactly cancels the phase

qﬁ/l and the sum of the two phases vanishes,
qb,l + @2 = 0. It therefore appears as if the system
had never undergone an evolution. Since this is
true for all spins, independent of the interaction
with the environment, the dephasing due to an
inhomogeneous interaction is exactly cancelled
by this refocusing pulse. All phases vanish and
the qubits get back into phase, forming an echo
at time 7 after the refocusing pulse.

/2 m
U D T
0 5 10 Time/ us

Figure 7.40: Experimental echo signal from a
single electron spin of an NV cen-
ter in diamond.

Figure [7.40 shows an example of an echo signal
from a single electron spin in the diamond NV-
center (— section . The modulation of
the echo indicates that not all interactions are
reversed by the refocusing pulse.

7.6.2 Fluctuations

In practice, refocusing never works perfectly.
The most critical assumption is that the environ-
ment should be static, i.e. the interaction with
the environment is time independent. In prac-
tice, there are always fluctuations. As a result of
these fluctuations, a qubit may experience a dif-
ferent interaction with the environment after the
refocusing pulse than before it. In this case, the
phase acquired by the environmental interaction
does not cancel and some destructive interference
remains and the echo amplitude decays as a func-
tion of the refocusing time [122,[123]. This decay
contains information about the time-dependence
of the environment.

To explain how such a time-dependence arises,
we introduce a simple model Hamiltonian. The
free evolution Hamiltonian, without gate opera-
tions, is

Hy=Hse +He,
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where H g describes the environment and

Hsg = ZbﬁEfsz
B

is the interaction between the system and the
environment. Ezﬂ are operators of the environ-
ment and b® the system-environment coupling
constants. The index S runs over all modes of
the environment. If the environmental Hamilto-
nian Hg does not commute with Ezﬁ , Hsg also
undergoes a time evolution induced by Hg.

A similar effect arises if the spins diffuse in an
environment with an inhomogeneous magnetic
field. The diffusion then changes the Larmor fre-
quency of the spin and the refocusing becomes
ineffective.

7.6.3 Dynamical Decoupling

A technique for reducing this effect was intro-
duced by Carr and Purcell [123] and an improved
version by Meiboom and Gill [124]: Instead of
applying a single pulse in the middle of the pe-
riod, they applied a sequence of pulses, with
separations between them that were short com-
pared to the timescale on which the environment
changes.

RF pulses H H |_| H |_| H

Zeit t

Signal

Figure 7.41: Echo train generated by a sequence
of m-rotations.

As shown in Fig. [T.41, each pulse generates a
new echo. Similar to the case of the Zeno-effect,
the decay of the echo envelope slows down as the
spacing between the pulses is decreased. If the

pulse spacing becomes short compared to the en-
vironmental fluctuations, they become unimpor-
tant and refocusing is re-established.

The same idea was introduced in the context of
quantum information processing under the name

of dynamical decoupling (DD) [125].
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Figure 7.42: Decay of electron spin coherence
for different numbers of refocusing
pulses.

Fig.[7.42]shows that the application of refocusing
pulses effectively decouples the qubit from the
environment, increasing the survival time. The
more pulses are applied (and thus the shorter the
delay between the pulses), the longer the sur-
vival time of the electron spin coherence. For
the conditions shown here (a single electron spin
in a diamond NV-center), the coherence time in-
creases by roughly one order of magnitude as the
number of refocusing pulses is increased from 1
to 64.

7.6.4 Imperfections

If the refocusing pulses are ideal, i.e. perfect 7-
rotations of zero duration, it would be possible to
keep increasing the number of refocusing pulses
and thereby “freeze” the evolution of the system
by completely isolating it from its environment.
Unfortunately, experimental pulses are not per-
fect. They have finite durations, they may have
a frequency offset, and most importantly, their
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flip angles differ from the target value, typically
by as much as a few percent. The effect of such
imperfections becomes most important when a
large number of gate operations are used, such
as in dynamical decoupling.
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Figure 7.43: Decay times of nuclear spin coher-
ence for different numbers of refo-
cusing pulses. “Longitudinal” and
“transverse” refer to the orientation
of the spin with respect to the rota-
tion axis of the pulses.

An ideal refocusing sequence works perfectly, in-
dependent of the initial condition of the system
(which should be considered to be unknown).
As Fig. [7.43 shows, this is not always the case.
Here, the black symbols, representing experi-
mental data points, show that the relaxation
(=decoherence) time of the system increases by
roughly two orders of magnitude as the delay be-
tween the pulses is reduced. However, a further
reduction of the delay and therefore increased
number of pulses does not lead to a further in-
crease, but actually to a small reduction. Even
more strikingly, the red symbols, which corre-
spond to measurements where the initial condi-
tion is perpendicular to the rotation axis, indi-
cate that an increasing number of pulses reduces
the relaxation time of the system. In this case,
the pulses apparently do not help, but actually
destroys spin coherence.

This effect can be understood by considering the
effect of two my pulses. The total propagator for
two such pulses is

Uy = eiﬂ'Sy eiﬂ'Sy =1,

i.e. the system returns to its initial state.
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TS pimSy — 1 p(0) =5, B
Real pulses: o

J_ﬂ_ Error

Transverse initial

05y (T+8) 4iSy (T+8) _ 255, se
condition

accumulates
Compensating pulses:

Bif
p(0) = S, !

I

ei(7r+6)Sy c—i(n+6)sy —1 CPMG-2

Figure 7.44: Effect of pulse imperfections: If the
flip angle error is not set precisely,
the error accumulates over a 2-pulse
cycle.  This does not affect the
qubits if their polarization is aligned
with the rotation axis, but if it is
perpendicular to it, the errors accu-
mulate. The problem can be solved
by switching the rotation axis be-
tween opposite directions.

If we consider now two pulses whose flip angle is
m + 6§, where § is the flip angle error, the total
propagator becomes

Us = ¢/Su(m+0) giSy(m+0) _ 285,

This is not a problem as long as the initial condi-
tion is aligned with the y-axis, p(0) o< Sy: in this
case, the density operator commutes with the er-
ror propagator, [Us, Sy| = 0, indicating that the
error does not affect the state. If, however, the
initial state is p(0) oc S;, which is equally pos-
sible, the commutator does not vanish and the
error causes a rotation of the qubit. This rota-
tion accumulates over many cycles and results
in a loss of coherence. This is an example of the
general rule for quantum information processing;:

The quality of gate operations must be high
for arbitrary initial conditions.

134



7 Errors and Decoherence

7.6.5 Error compensation

The basis idea of reducing the effect of pulse
imperfections in sequences of gate operations,
which was discussed in section [7.5.2, can be ap-
plied to the example of dynamical decoupling.
The bottom left part of Fig. [7.44 shows how
this problem can be solved: instead of applying
all pulses with the same sense of rotation, one
switches the rotation axes between the *+y di-
rection. In this case, the propagator for a basic
sequence element of two pulses with alternating
sense of rotation is

Uss = eiSy(Tr+5)eiSy(ﬂ'76) -1

Y

independent of the amplitude error §.
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Figure 7.45: Comparison of the effect of different
decoupling sequences.

Fig. [7.45 compares the performance of this com-
pensated decoupling sequence (CPMG-2) with
that of the standard uncompensated sequence
(CPMG). Clearly, the compensated sequence re-
duces the decay rate by approx. two orders of
magnitude.

For real-world operation, we have to look for gate
operations that work reliably also if the preci-
sion of the experimental control fields is finite.
Here, we discuss two possible approaches: first
we show that it is possible to replace individ-
ual refocusing pulses by compensated pulses that
implement very precise inversions, and then we
discuss sequences that are inherently robust, i.e.

insensitive to the imperfections of the individual
pulses.

The simplest approach to make a sequence ro-
bust is by replacing every standard pulse by a
robust composite pulse. The general approach
to composite pulses was discussed in section
In the context of dynamical decoupling, we
specifically need w-pulses that are robust against
flip angle errors and frequency offset errors.

0 | ==» [60 | 0o | 9% o] 6

Time

Figure 7.46: Robust inversion pulse.

A composite m-pulse that is quite effective in
compensating these errors simultaneously is the
sequence

(7T)7r/6+¢ - (7T)¢ - (W)w/2+¢ - (77)¢ - (7T)7r/6+¢'
(7.29)

If the 5 m-pulses are ideal, the sequence imple-
ments a 7 rotation around the ¢-axis followed by
a —m/3 rotation around the z axis. The phases
are chosen such that errors cancel and do not
change this overall rotation to first order. A com-
parison between this pulse and a normal rectan-
gular pulse was shown in section[7.5.1. If the DD
pulses are replaced by such pulses, the sequence
becomes significantly more robust against pulse
imperfections.

7.6.6 Robust DD

An alternative to the use of composite pulses
consists in making the decoupling sequences
fault-tolerant without compensating the error of
each pulse, but by designing them in such a way
that the error introduced by one pulse is com-
pensated by the other pulses of the cycle. The
first demonstration of this possibility is due to
Maudsley [126], who noticed that sequences of
identical pulses performed well for the longitudi-
nal initial condition, but not for the transverse
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one. He suggested to alternate the phase of the
m-pulses between x and y.

The solution

The problem

XY-4 sequence

Ncraceus
in phase

cp
Zout of phase
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Coherence

2
Coherence
>

Echo number

Figure 7.47: Comparison of the effect of different
decoupling sequences.

As shown in Fig. [7.47, the performance of this
symmetrized sequence is independent of the ini-
tial condition. Various schemes are known for
further improving the performance of this se-
quence.
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Figure 7.48: Robust DD sequence.

A closely related approach is based on the robust
m-pulse , which consists only of m-pulses.
If the segments (i.e. individual m—pulses) are
not applied directly after each other, but with
equidistant delays between them, one obtains a
robust DD sequence

KDDy = fr/2(7)r/64¢f7(T) o fr(T) 7 /246
fT(W)¢fT(7r)7F/6+¢fT/27

where f; describe delays of duration 7. The self-
correcting sequence is created by combining 5-
pulse blocks shifted in phase by m/2, such as

|[KDDg - KDDgyyr/o|?, where the lower index
gives the overall phase of the block. The cyclic
repetition of these 20 m-pulses is referred to as
the KDD sequence [109].
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Figure 7.49: Error tolerance of different DD
sequences: the uncompensated
CPMG sequence and the compen-
sated sequences XY-4 and KDD.
The resulting fidelity for a sequence
of 100 pulses is shown by color
codes. The regions where the fi-
delity is lower than 0.95 are shown
in white.

Figure [7.49| shows the overall error generated
by a decoupling sequence where the individual
pulses suffer from flip angle errors as well as off-
set, errors. Without considering the effect of the
environment, it shows the fidelity F' after apply-
ing 100 pulses to the system as a function of the
two error parameters. Each panel contains the
color-coded fidelity for one decoupling sequence.
The best performance is achieved by the KDD
sequence, whose cycle consists of 20 pulses.

Fig. [7.50 compares the experimental perfor-
mance of different self-correcting sequences. The
performance of the CDD sequences always satu-
rates or decreases with increasing duty cycle un-
der these experimental conditions. However, in-
stead of saturating, the relaxation time for the
KDD sequence continues to increase, as in the
case of sequences with robust pulses. The KDD
sequence combines the useful properties of ro-
bust sequences with those of sequences of robust
pulses and can thus be used for both quantum
computing and state preservation.

Dynamical decoupling is becoming a standard
technique for preserving the coherence of quan-
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Figure 7.50: Experimental decoherence times

for different compensated DD se-
quences as a function of the duty
cycle. Experiments were done with
nuclear spin qubits subjected to
noise from an environment consist-
ing of a nuclear spin bath.

tum mechanical systems, which does not need
control over the environmental degrees of free-
dom.

7.6.7 DD for large systems

Of course, such measures for fighting decoher-
ence become more important in large systems.
We therefore have to test them also on systems
with many qubits.

Fig. [7.51 shows an experimental test. The filled
squares represent experimentally measured de-
coherence rates as a function of the number of
correlated qubits, while the curve is a fit of the
experimental data to a power law, oc K948, The
upper part of the figure represents similar data
as that in section [7.2.8]

As shown in Fig.[7.51 by the lower curve and data
points, a suitable decoupling sequence allows one
to reduce the decoherence rate by approximately
a factor 50. The lower curve, labeled “Decou-
pled” has almost the same dependence on the
number of qubits (x K%43), indicating that the
decoupling works just as well for “large” quantum
systems consisting of many correlated qubits, as
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Figure 7.51: Scaling of decoherence rates with
the number of qubits in the quan-
tum register.

for individual spins.

Further reading

Decoherence is discussed in many sources deal-
ing with fundamental issues of quantum mechan-
ics, such as the measurement problem and the
quantum-classical boundary. In the present con-
text Leggett’s summer school lecture notes [83]
are particularly useful. A compact and clear
reference on quantum error correction is |127];
[40] discusses the topic in much more detail and
from a more general perspective, with many ref-
erences to original research articles. Preskill’s
lecture notes [37] also contain an in-depth dis-
cussion, pointing out relations to classical error-
correcting codes. A review on decoherence-free
subspaces and related topics is [128] and [129] re-
views dynamical decoupling techniques, with an
emphasis on robust sequences.

Problems and Exercises

1. Write the projector onto the general single-
qubit state a|0) 4+ 3|1) as a linear combina-
tion of 1,X,Y,Z .
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