6 Feynman’ Contribution

In this chapter we review Richard Feynman’s two
articles from 1982 and 1985 |9, 69, [70], which
were seminal for the field of quantum computa-
tion. Both papers originated from invited talks
at conferences. Feynman’s interest had been
triggered by the notion of reversible computa-
tion brought up by Fredkin, Bennett, and Tof-
foli. The sections of this chapter bear the same
titles as the original papers. This chapter is not
necessary in order to understand the remainder
of this book. It is there purely for entertainment,
or, if you are more seriously minded, for histor-
ical interest. A recent, very positive assessment
of his concept was published in February 2025
[71].

6.1 Simulating physics with
computers

6.1.1 Discrete system representations

In his 1982 article (which was mentioned al-
ready in Section Feynman discussed the
ways in which different kinds of physical systems
can be simulated by computers. A determinis-
tic simulation of a quantum system on a clas-
sical computer runs into problems because the
required resources grow exponentially with the
system size. In Section [1.3.1 we saw that even
for a few spin-1/2 particles without any other de-
grees of freedom, the size of the Hilbert space is
forbidding. This situation worsens considerably
if additional (continuous) degrees of freedom of
the particles must be accounted for. Classical
(deterministic) dynamics, on the other hand, is
much easier to simulate because it is local, causal,
and reversible. Of course such a simulation al-
ways involves some kind of discretization for the
possible values of continuous variables such as

time, coordinates, field values, etc. For exam-
ple, the motion of N interacting classical point
particles in three dimensions is determined by
3N equations of motion. The number of differ-
ential equations is proportional to the number
of particles. A typical numerical algorithm for
solving these equations of motion involves a dis-
cretization of time and an approximation of dif-
ferentials by differences. This converts the set of
differential equations to a set of algebraic equa-
tions. The resources necessary to solve this set
of algebraic equations grows as a power of the
number of particles, but not exponentially. This
means that classical deterministic dynamics can
be efficiently simulated on a computer.

This is no longer so for classical probabilistic dy-
namics; at least if a deterministic simulation is
desired. To understand what is meant by a de-
terministic simulation, consider the classical dif-
fusion equation

Op

D2
ot~ PV

(where D is the diffusion constant) as an exam-
ple. p(7,t) is the probability density of finding
a single particle which undergoes Brownian mo-
tion. To simulate the diffusion equation, space
and time can be discretized and the dynamics
can be approximated by a set of transition rules
determining how probability “jumps” back and
forth between neighboring points in space in each
time step. The continuous function p(7, t) is thus
replaced by an array of numbers p;x, the prob-
abilities of finding the diffusing particle at the
space point 7; at the instant of time ¢;. The sim-
ulation keeps track of all these numbers, starting
from a given initial configuration p;p and end-
ing up with the desired final configuration p;r,
where 4 always runs from 1 to .S, the number of
grid points into which 7 was discretized.
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The trouble starts as the number of diffusing
particles increases. For two particles p(7,t) then
becomes p(771, 7, t), where 7} and 7 are the co-
ordinates of the two particles. This discretizes
into an array of numbers p;;,, where the indices
1,7, and k indicate the possible discrete values of
the coordinates 7 and 7 and the time ¢, respec-
tively. The simulation now has to keep track of
52 numbers per time step. With N particles one
has SV numbers per time step, which quickly
outgrows the capabilities of any classical com-
puter. Of course there are situations where a
description in terms of individual particle coor-
dinates is unnecessarily complicated, for example
if the particles do not interact with each other,
but if they do there is no way around this de-
scription (or a similar one).

6.1.2 Probabilistic simulations

Deterministic simulations of probabilistic dy-
namics keep track of all possible (discretized)
configurations of the system, important ones as
well as very improbable ones. The aim of a prob-
abilistic simulation is to avoid the waste of re-
sources implied by the complete calculation of all
possible configurations. The probabilistic simu-
lation is constructed in such a way that it ar-
rives at any possible final result (or configura-
tion) with the same probability as the natural
process. This can be done without exponential
growth of resources as the number of particles
increases. Of course for probabilistic simulations
repeated simulation runs (plus some statistics to
generate error bars for the results) are necessary.
Probabilistic simulations of this kind are every-
day business for scientists and engineers in vari-
ous fields.

A probabilistic simulation of a quantum system
on a classical computer, however, turns out to
be impossible. The fundamental reason for this
failure is related to the nature of correlations in
quantum systems. The possibility of a proba-
bilistic simulation of quantum systems would im-
ply the existence of some “hidden” classical vari-
ables which are not accessible to the observer and

have to be averaged over to arrive at a physical
result. The existence of such variables in turn re-
stricts the values of correlations of the system, by
the Bell or CHSH inequalities discussed in Sec-
tion These inequalities are not obeyed by
quantum theory, and they have been shown to be
violated in a number of quantum experiments.
Thus a consistent probabilistic simulation of a
quantum system on a classical computer is im-
possible, as demonstrated in detail by Feynman.
This impossibility led Feynman to the sugges-
tion of investigating the possibilities of quantum
simulations performed by quantum computers, a

field that we will briefly discuss in Section

6.2 Quantum mechanical
computers

6.2.1 Simple gates

Feynman’s second paper contains quite detailed
suggestions for quantum implementations of
classical computing tasks. We will discuss these
suggestions up to a “Hamiltonian that adds” be-
fore turning to the genuine quantum applications
in the following chapters. The paper also shows
that Feynman was well aware of (and interested
in) the problems inherent in the high sensitivity
of quantum systems to small perturbations; nev-
ertheless, he says: “This study is one of princi-
ple; our aim is to exhibit some Hamiltonian for a
system which could serve as a computer. We are
not concerned with whether we have the most ef-
ficient system, nor how we could best implement
it.”

X
S ¢

y
y X XORy 7

Figure 6.1: Left: Single CNOT gate. Right: CC-
NOT (Toffoli) gate.
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From Chapter [3] we know some reversible gates
on the 1-; 2-; and 3-bit levels. For single qubits:

NOT maps x — 1 — x.

Figure [6.1] show controlled NOT gates for 2- and
3-qubit systems:

CNOT maps (z,y) — (z,2 XOR y)
_J @y ifz=0
)| (z1l—y)ifz=1"

and the Toffoli gate, controlled controlled NOT
or #B) gate:

CCNOT maps (z,y,z) — (z,y,xy XOR z)

|

where “iff” is short for “if and only if”, as usual,
and the symbol & symbolizes XOR or equiva-
lently addition modulo 2. Because for all three
gates just one bit is flipped, all three are their
own inverses, which will be important in what
follows. Their matrix representations are unitary
which allows us to consider them as quantum
mechanical evolution operators that perform a
logical gate operation.

(x,y,1—2)iff e =y=1
(z,y, z) otherwise

6.2.2 Adder circuits

a a a
b b M aédb
N
c=0 D 1 iff a=b=1

Figure 6.2: An adder (half-adder) circuit.

From these elements we can construct an adder
(more precisely, a half-adder), which takes two
input bits a¢ and b and a carry bit ¢ which is zero
initially (Figure . The CCNOT changes the
carry bit to 1 iff both a and b are 1. The output
bit on the middle wireis 1 if a =1 and b =0 or

D
>

a@b

M

a@beoc

D

d=0 N 1 iff a=b=1

D
N

A
\J

>

Figure 6.3: A full adder circuit.

if a =0 and b = 1 and zero otherwise, and thus
yields a @ b.

The next circuit (and the one for which we will
construct a Hamiltonian) is a full adder (Figure
. It takes two data bits a and b and a carry
bit ¢ from a previous calculation and calculates
a®b@ ¢, plus a carry bit d which is 1 if two or
more of a,b, c are 1.

What is going on along the three top wires is
quite clear, the “tricky bit” is the carry bit d,
especially the action of the second CCNOT gate.
Ifa=0b=1,d=1 by the first CCNOT gate.
The control bit a @ b = 0 of the second CCNOT
gate then is zero so that d is not flipped back to
0 regardless of the value of ¢. The only case in
which d is flipped (from 0 to 1) is a® b =1 and
c =1, such that indeed d =1ifa+b+c > 2.

6.2.3 Qubit raising and lowering
operators

We now change our point of view from classi-
cal to quantum. To this end we first map the
bits to qubits of which we only use the basis
states |0) = | 1) and |1) = | |), since we are (at
this point) not interested in the specific quantum
properties arising from the superposition princi-
ple. We have to translate the gates and circuits
discussed above into quantum mechanical oper-
ators. From Chapter [4] we know how to flip a
qubit by the spin raising and lowering operators:

Sillla=Hl1)y 5 Salt,=hll), (6.1)
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The index a simply reminds us that we are ma-
nipulating the qubit a.

For the following discussion it is convenient to
use a slightly different notation and language.
We interpret the basis states |0), and [1),, as ab-
sence and presence of a particle at position a,
respectively. The number of particles at qubit
a can be either zero or one, and this number
can be changed by creating or annihilating an
“a-type particle”. These tasks are performed by
the creation operator a’ and by its adjoint, the
annihilation operator a:

al|0), = 1), ; all), =10),. (6.2)

Comparing ((6.2) to M we see that al corre-
sponds to S; and a corresponds to Sf. We
stress that we will only use the language of cre-
ation and annihilation operators as a convenient
way of discussing the states of qubits; we will
not employ the full formal machinery of the “oc-
cupation number representation”, also known as
“second quantization” .

6.2.4 NOT and CNOT

Recalling the relation (4.13)

h
S, =-X =
2

1

—(ST+8S7),

2

we can express the NOT operation on qubit a in
terms of the a-particle creation and annihilation
operators:

NOT (a) = (a+al).

Since the qubit ¢ may be used as a control qubit
in a CNOT or CCNOT gate, we need a con-
venient way of checking the state of a without
changing it. In our newly adopted language this
means “counting the number of a-particles”, and
it is achieved by the particle number operator
afa, as can be verified:

alalz), = z[z), (z=0,1).

In order to take care of other qubits b, ¢, etc., in
addition to the qubit a, we introduce b-type, c-
type, etc. particles with corresponding creation

and annihilation operators bf and b, ¢ and c,
etc. This can be used to write down the opera-
tor corresponding to the CNOT gate with a as
control qubit. This operator is supposed to flip
b if a =1 and to do nothing if a = 0:

CNOT (a,b) (b+bhala+1,(1, — a'a)

(b+bl —1;)ala + 1,1,.

The operators acting on different sites belong to
different Hilbert spaces and therefore commute
with each other. This is a property reminiscent
of Bose particles (Bosons), while the “on-site”
(anti-)commutation relation

ala+aal = 1,

is typical for Fermi particles (Fermions). Thus
the particles employed here are neither Bosons
nor Fermions, which would cause some compli-
cations if we intended to use standard many-
particle calculational techniques. As mentioned
already, however, we are not going to do this.

To continue the construction of a “Hamiltonian
that adds” we need to code the Toffoli gate 6()
or CCNOT as an operator, similar to CNOT:

0 (a,b,¢) = 1,151, + (c' + ¢ — 1.)alab’b.

The operator for the full adder can be written
down reading the diagram in Fig. starting
from the left and writing down the elementary
operators starting from the right:

CNOT (b, )0 (b, ¢,d) CNOT (a, b
0% (a,b,d)|a,b,c,0
=: AyA3AsA a,b,c,0

t
= exp (—zi) la, b, c,0

(with obvious definitions of the operators
A;...Ay). Is there a Hamiltonian H and a time
t which both satisfy this equation? Obviously

this is no easy question, since
2

e (<i00) = 1

)
)
)
)

Ht
=

h

1 Ht
=

h

+
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and thus the right-hand side of the above equa-
tion for the full adder will be a superposition of
states where H has acted any number of times,
from zero to infinity. Nevertheless, it turns out
that it is possible:

e to construct an H such that the desired final
state is present (among others) and

e to separate the desired state from the oth-
ers.

The trick is to keep a record of which of the A
operators have already acted on the input state.
This bookkeeping is done by auxiliary (or “slave”)
particles. Suppose we want to calculate

[Vr) = ApAg_1--- Aq|ty)

(in our example k = 4) for an n-qubit state [i);)
(n =4 in our example). We introduce a “chain”
of kK 4+ 1 new “program counter qubits” named
1 =0---k, with corresponding creation and an-
nihilation operators q;,q; .

6.2.5 Adder Hamiltonian

The desired Hamiltonian then reads

k—1
Z(QIH%‘A@'H + h.c.)

H

T
- O

Z(QZHQiAiH + ALM}%H)

T
- o

Z(‘LTH(I@‘ + qu‘CIiH)AiJrL
i=0

Here, “h.c.” denotes the Hermitian conjugate (to
make H Hermitian). We have used the fact that
the A operators are Hermitian and the q opera-
tors are assumed to commute among themselves
and with all gate operators A;. Note that the
number of “q particles” Zf:o ngi is a constant;
we will be interested exclusively in the case of a
single particle. The action of the Hamiltonian is
represented pictorially in Figure [6.4}

Whenever the “program counter particle” moves
from site ¢ to ¢4 1 or vice versa the operator A;;1

@

Figure 6.4: A Hamiltonian with register opera-
tions A;.

acts on the “register qubits” where the calcula-
tion is performed. The calculation starts with
the register qubits in the input state [¢;) and a
single program counter particle at site 0. The
action of H" then yields

HY|1000 - - - 0)|1h;) = H¥~1[0100 - - - 0) A |e;)
= H""2(]0010 - - - 0) Ay Ay|1;)

+[1000---0) A1 Ay [¢))
1

where we have used that the gates A; are their
own inverses. We see that if the program counter
particle is at site [, the last operator which has
been active is A;:

1 O>Al|'¢z>

~—
l

0

The next application of H then leads to two pos-
sibilities:
e | — | —1;A; is squared (and thus erased
because it is its own inverse)

e | —1+1;A; is prepended to the string of
A operators.

(This argument can of course be transformed
into a rigorous proof by induction.) We conclude
that if our final state contains a component with
the counter particle at site k, we are finished. We
only have to project out the desired component:

(

where « is a normalization factor whose size may
be important in practice. The operator quk,

al00---01)[¢h)

Ht) 1100+ -0 45),

; _HE
“h

= q;,qk exp
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which detects the presence of a particle at the
last site, indicates that the computation has ter-
minated.

After showing how to construct the full adder
Hamiltonian, Feynman in his paper then goes on
to discuss the influence of imperfections (for ex-
ample not perfectly equal “bond strengths” in the
program counter qubit chain), simplifications of
the implementation and more complicated tasks
like implementing loops which perform a piece of
code a given number of times. We recommend
the original paper [70] to readers who want to
discover more details.

Problem

Construct the Hamiltonian for the full adder.
Calculate (for example numerically, with your
classical PC) the amplitude of the desired output
state as a function of time. Does this amplitude
depend on the contents of the register qubits?
Can you see how it will depend on the number
of program steps k for more general programs?

This problem is more advanced than others in
this book. We have not solved it ourselves, but
we are confident that it is feasible and that it
will basically reduce to finding the eigenvalues
and eigenstates of a single quantum mechanical
particle moving on an open-ended chain of five
sites, which is a typical (and solvable) exercise
in many courses on condensed matter theory.
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