
5 Quantum Bits and Quantum Gates

5.1 Single-qubit gates

5.1.1 Introduction

Information is quantized in classical digital infor-
mation processing as well as in quantum informa-
tion processing. In analogy to the classical bit,
the elementary quantum of information in quan-
tum information processing is called a qubit. Any
two distinct states of a quantum system can be
used as a qubit, as discussed in Chapter 4. The
state of a qubit can be written as

|!→ = a|0→ + b|1→

with a, b complex and the normalization

|a|2 + |b|2 = 1.

Once some information is stored in a set of qubits
(a quantum register), we must be able to manip-
ulate these qubits in order to process the infor-
mation. This means we must be able to change
the state of a qubit either unconditionally (for
example, for initializing a qubit or for writing
information into a qubit), or conditionally, de-
pending on the previous state of the qubit itself
(e.g., the NOT operation) or on the state of itself
and another qubit (e.g., the controlled NOT, or
CNOT operation), and so on. These tasks have
to be performed by quantum gates.

Like in the classical case, gate operations can in
principle depend on the states of an arbitrary
number of qubits. Fortunately all possible oper-
ations can be reduced to a finite set of universal
quantum gates. From these gates one can con-
struct the specific algorithms of quantum infor-
mation processing which we discuss later.

In the present chapter we discuss the elementary
building blocks for those algorithms: quantum

gates. In several steps we show that arbitrary
quantum gates can be constructed (or approxi-
mated to arbitrary precision) from a small num-
ber of one-and two-bit gates. Note that in Chap-
ter 3 we argued that using classical reversible
gates, three-bit operations are needed to achieve
universality, whereas here we need only one- and
two-qubit operations.

5.1.2 Example gates

All operators in the Hilbert space of a single
qubit can be combined from the four fundamen-
tal operators 1,X,Y, and Z (the Pauli matri-
ces), which form a complete and orthogonal ba-
sis for all possible operators. As an example, we
consider the Hadamard gate H, which can be
written as the matrix representation

H|!→ =
1↑
2

(
1 1
1 ↓1

)
|!→

or as the rotation

H =
1↑
2
(X + Z),

as shown in (4.16). This corresponds to a ω-
rotation around the axis 1

→
2
(1, 0, 1).

Any unitary 2 ↔ 2 matrix is a valid single-qubit
quantum gate. Note that the operators X, Y,
and Z have eigenvalues ±1 and thus are unitary.
It is evident why X is also often called the “NOT
gate” in the language of quantum computing; Z
generates a ω relative phase between the two ba-
sis states, and Y = iXZ is a combination of the
two other gates.

To generate an arbitrary relative phase (instead
of ω) between the two states, we can use

eiωZ =

(
eiω 0
0 e↑iω

)
, (5.1)
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5 Quantum Bits and Quantum Gates

which generates a relative phase 2ε. If we apply
this to a superposition state

|!0→ =
1↑
2

(
1
1

)
,

which is oriented at



↗x→
↗y→
↗z→



 =




1
0
0



 .

we obtain

eiωZ|!0→ =
1↑
2

(
eiω

e↑iω

)
.

The corresponding vector rotates in the xy-
plane:




↗x→
↗y→
↗z→



 (ε) =




cos 2ε
sin 2ε

0



 .

The rotation angle of the vector is therefore 2ε.

Important special cases of this gate are (up to
an overall phase)

T =

(
1 0
0 eiε/4

)
(5.2)

= eiε/8
(

e↑iε/8 0
0 eiε/8

)

= exp(i
ω

8
(1 ↓ Z))

(the ε

8 gate) and

S = T2 =

(
1 0
0 i

)
, (5.3)

(often simply called the phase gate). Note that
S2 = Z.

The NOT gate can also be generalized. Due to
the fact that X2 = 1 we have

exp (iεX) = 1 cos ε + iX sin ε (5.4)

=

(
cos ε i sin ε
i sin ε cosε

)
,

which interpolates smoothly between the iden-
tity and NOT gates, for ε = 0 and ε

2 , respec-
tively. For ε = ε

4 we obtain the “square-root of
NOT” gate.

The gate exp (iεY) may be discussed in a similar
way.

5.1.3 General rotations

The above discussion of the spin component op-
erators X,Y, and Z may be generalized to the
spin operator component along an arbitrary di-
rection. From the general theory of quantum
mechanical angular momentum we know that
exp(iϑq · ϑS) (for some vector ϑq) has the proper-
ties of a rotation operator. However, it is not
always clear what is being rotated, and how. In
Section 4.3.1 we studied the time evolution of
the initial state | ↘→ in a constant magnetic field
ϑB along one of the coordinate axes. The time
evolution operator (4.17) in that case has pre-
cisely the form exp(iϑq · ϑS), with ϑq along one of
the axes. For ϑB along the z axis we obtain no
time evolution (apart from a trivial overall phase
factor), but for ϑB in the x direction, the state
|ϖ(t)→ (4.20) is such that the expectation value
of the spin vector ϑS rotates uniformly in the yz
plane, that is, it rotates about the x axis. As
the expectation value of the spin vector is pro-
portional to the polarization vector ϑP describing
a state in the Bloch sphere representation (com-
pare (4.32), (4.33)) we may also visualize |ϖ(t)→
as rotating on a circle on the surface of the Bloch
sphere.

We now return to the case of a general rotation
and consider the spin component operator ϑn ·
ϑS along an arbitrary unit vector ϑn. Using the
algebraic properties of the spin matrices, it is
easy to show that the square of ϑn ·ϑS is a multiple
of the unit operator,

(
2

⊋ϑn · ϑS
)2

= (nxX + nyY + nzZ) 2 = 1,
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5 Quantum Bits and Quantum Gates

and consequently the operator

Rϑn(ϱ) = exp

(
iϱ

2

⊋ϑn · ϑS
)

= 1 cos ϱ + i
2

⊋ϑn · ϑS sin ϱ

generates a rotation around ϑn. For every rotation
operator, we can get its inverse as

R†

ϑn
(ϱ) = Rϑn(↓ϱ) = R↑1

ϑn
(ϱ).

This operator obviously commutes with the spin
component ϑn · ϑS and thus does not a!ect this
specific component. It can be shown that the
unitary transformation Rϑn(ϱ) corresponds to a
rotation by the angle 2ϱ about the axis ϑn, as
shown in fig. 5.1. For ϑn = (0, 0, 1) and ϱ = ω/4,
the state is rotated as (x ≃ ↓y≃ ↓x≃ y≃ x).
For other rotation axes, the sense of rotation is
obtained from cyclic permutation (x ≃ y ≃ z ≃
x).

ΨΨ

x

z

y

Figure 5.1: General rotation around an axis ϑn.

This rotation can be interpreted in several ways.
The expectation value ↗ϑS→ of the spin vector ro-
tates by 2ϱ as Rϑn(ϱ) is applied to the state of
the qubit. Alternatively but equivalently we may
think of the spin vector ϑS being rotated as it un-
dergoes a unitary transformation, R†

ϑn
(ϱ)ϑSRϑn(ϱ).

Finally, the polarization vector ϑP on the Bloch
sphere rotates as ↗ϑS→ does.

We do not demonstrate explicitly that Rϑn(ς) is
a 2ς rotation for general ϑn, but only for ϑn = ẑ
(the unit vector along the z axis):

Rẑ(ς) = exp(iςZ) =

(
eiϖ 0
0 e↑iϖ

)
.

For an arbitrary pure state |ϱ,ε→ (compare
(4.21)) we obtain

Rẑ(ς)|ϱ,ε→ =

(
eiϖ 0
0 e↑iϖ

)(
e↑i

ω
2 cos ϱ

2

ei
ω
2 sin ϱ

2

)

=

(
e↑i

ω→2ε
2 cos ϱ

2

ei
ω→2ε

2 sin ϱ

2

)

= |ϱ, ε ↓ 2ς→.

Since Rϑn(ω) = ↓1, every 2ω rotation (ς = ω) re-
verses the sign of any single-qubit state, but has
no consequences for expectation values of physi-
cal observables in that state.

5.1.4 Composite rotations

As any normalized pure single-qubit state is rep-
resented by a point on the surface of the Bloch
sphere, and as any two points on a sphere are
connected by a rotation, any unitary single-qubit
operator can be written in the form

U = eiϖRϑn(ϱ).

It is often desirable to employ only rotations
about the coordinate axes instead of rotations
about arbitrary axes ϑn. This is indeed possible;
for any unitary U a decomposition

U = eiςRẑ(
ς

2
)Rŷ(

φ

2
)Rẑ(

↼

2
) (5.5)

can be found.

Figure 5.2: Decomposition of a rotation into Eu-
ler angles.
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5 Quantum Bits and Quantum Gates

This procedure was introduced by Leonhard Eu-
ler (1707 - 1783) and the angles ς, φ, ↼ are there-
fore known as Euler angles. Figure 5.2 shows one
of many possible combinations of rotation axes
and angles, taking into account that the rotation
generates by Rϑn(ϱ) is 2ϱ. Specifying the angles
alone is not su"cient, but the corresponding axes
must also be given. In addition, it is possible ro-
tate the object or the coordinate axes.

As an example, we decompose the Hadamard
gate H into

H = Rŷ(
ω

8
)Rẑ(

ω

2
)Rŷ(↓

ω

8
).

Another decomposition which will be used in the
next subsection is closely related to the above
single-qubit Z ↓ Y decomposition. Let

A = Rẑ(φ)Rŷ(
↼

2
);

B = Rŷ(↓
↼

2
)Rẑ(↓

↽ + φ

2
);

C = Rẑ(
↽ ↓ φ

2
),

with φ, ↼, and ↽ determined from (5.5). Note
that

ABC = 1; (5.6)

furthermore the relations between Pauli matrices

XYX = ↓Y; XZX = ↓Z

can be used to show that

XBX = Rŷ(
↼

2
)Rẑ(

↽ + φ

2
)

and thus

AXBXC = Rẑ(φ)Rŷ(↼)Rẑ(↽) (5.7)
= e↑iϖU = Rϑn(ϱ).

The two X operators (NOT gates) have thus con-
verted the unit operator (5.6) into the rotation
operator Rϑn(ϱ).

5.2 Two-qubit gates

5.2.1 Controlled gates

Any programming language contains control
structures of the type: “If condition X holds,
perform operation Y ”. In quantum information
processing these structures are implemented us-
ing multi-qubit gates which have one or more
control qubits and target qubits. The simplest
example is the two-bit (or two-qubit) operation
known as “controlled NOT” (CNOT), defined by
the truth table in Table 5.1.

control-qubit target-qubit result
0 0 00
0 1 01
1 0 11
1 1 10

Table 5.1: Truth table CNOT

The control qubit remains unchanged, but the
target qubit is flipped if the control qubit is 1.
(We abbreviate |1→ as 1 here for simplicity.) The
“result” column of the truth table lists both con-
trol and target qubits. The output target qubit
is equal to that of the “exclusive or” (XOR) be-
tween the control and target qubits. Hence the
CNOT operation is also called “reversible XOR”,
where the reversibility is accomplished by keep-
ing the value of the control qubit, in contrast
to the ordinary (irreversible) XOR operation of
classical computer science which we discussed in
Chapter 3. Like the single-qubit NOT, the re-
versible XOR is its own inverse. Symbolically it
achieves the following mapping:

(x, y) ↓≃ (x, x XOR y), (5.8)

and it can be used to copy a bit, because it maps

(x, 0) ↓≃ (x, x).

Figure 5.3 shows how a combination of three
CNOT gates (the second one with reversed roles
of control and target bits) swaps the contents of
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5 Quantum Bits and Quantum Gates

SWAP

x

y x

y

Figure 5.3: SWAP gate by combining 3 CNOT
gates.

two bits (x ⇐ y), as can be verified by repeated
application of (5.8):

(x, y) ↓≃ (y, x).

Thus the CNOT gate can be used to copy and
move bits around.

In matrix notation with respect to the usual com-
putational basis (|00→, |01→, |10→, |11→) the CNOT
gate reads

CNOT =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





=

(
1 0
0 X

)

(using 2↔2 block matrix notation). Replacing
X by an arbitrary unitary single-qubit operation
U, we arrive at the controlled-U (CU) gate.

5.2.2 Composite gates

The roles of control and target qubits may be
shifted by basis transformations (in the individ-
ual qubit Hilbert spaces). One example is shown
in figure 5.4.

H

H

H

H
=

Figure 5.4: Ambiguity of control and target
qubits.

Here control and target qubits have interchanged
their roles due to the application of a Hadamard

gate (4.16) to each qubit both before and after
the CNOT operation. This can be verified by
writing down the two-qubit Hadamard transform
matrix H1 ⇒ H2 explicitly and performing the
matrix multiplications.

The CU gate can be implemented using CNOT
and single-qubit gates. The idea is to use the de-
composition (5.7) and apply U = eiϖAXBXC
if the control qubit is set and ABC = 1 if not.
The circuit in Figure 5.5 does the trick. Obvi-
ously the eiϖ phase factor as well as the two NOT
(= X) operations are only active if the control
qubit is set.

C B

1
iα

A

0 e

0
Control

Target

Figure 5.5: A circuit for the controlled-U gate.

The CNOT and Hadamard gates can be used, for
example, to create maximally entangled states
from the four two-qubit computational basis
states |a, b→ (with a, b = 0, 1) via

|φab→ = CNOT (a, b)H(a)|a, b→

As an example, consider

H(a)|0, 0→ =
1↑
2
(|0, 0→ + |1, 0→)

⇑ |φ00→ =
1↑
2
(|0, 0→ + |1, 1→).

which is one of the Bell states (4.28). The other
(a,b) values yield the remaining members of the
Bell basis.

If a Hadamard gate is applied to each qubit of
the ground state |0, 0, . . . 0→, the resulting state
(here, as an example, for 2 qubits,) is

H |0, 0→ =
1

2
(|0→ + |1→) ⇒ (|0→ + |1→)

=
1

2
(|00→ + |01→ + |10→ + |11→).

80



5 Quantum Bits and Quantum Gates

The other computational basis states are trans-
formed into




|00→
|01→
|10→
|11→




H⇑ 1

2





|00→ + |01→ + |10→ + |11→
|00→ ↓ |01→ + |10→ ↓ |11→
|00→ + |01→ ↓ |10→ ↓ |11→
|00→ ↓ |01→ ↓ |10→ + |11→



 .

Figure 5.6: Generating the Bell states from the
computational basis states.

As shown in Figure 5.6, these states can be con-
verted into the Bell states by applying a CNOT
operation to them.

5.2.3 3-qubit gates

In higher-order controlled operations n con-
trol qubits and k target qubits are used; an
important example is the To!oli (controlled-
controlled-NOT, or C2NOT) gate (3.4), or more
generally, the C2U gate for some arbitrary single-
qubit U. C2U can be built from CNOT and
single-qubit gates. To see this, consider the uni-
tary operator V, with V2 = U (which always
exists) and build the circuit shown in Figure 5.7.

V+ VV

   

Figure 5.7: A circuit for the controlled-
controlled-U gate; V2 = U.

If neither of the control qubits is set, nothing
at all happens. If only one control qubit is set,

V† = V↑1 and one V acts on the target qubit.
If both control qubits are set, V† is not switched
on, but both Vs are.

This is an example how 3-qubit quantum gates
like the To!oli gate can be decomposed into
one- and two-qubit gates, which is not possi-
ble classically. (Otherwise universal reversible
classical computation with just one- and two-bit
operations would be possible, contrary to what
we discussed in Chapter 3.) The To!oli gate
(and as we shall see, any gate) can be made
from Hadamard (more precisely, square root of
Hadamard), phase, CNOT, and ε

8 gates.

=

Figure 5.8: Decomposition of the To!oli gate
into 1- and 2-qubit gates.

Figure 5.8 shows how the To!oli gate can be de-
composed into about a dozen more elementary
gates. Here,

T =

(
1 0
0 eiε/4

)
= eiε/8e↑iε/8Z

is the ω/8 gate and S = T2 is called the phase
gate.

Figure 5.9: Decomposition of a CnU into To!oli
and U gates.
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5 Quantum Bits and Quantum Gates

Figure 5.9 shows, as another example of a de-
composition, how a CnU gate can be built from
To!oli and U gates, for the case of n = 5. U
is a 2 ↔ 2 unitary gate that is only active if all
control qubits are 1.

5.3 Universal sets of gates

5.3.1 Choice of set

It is important to know whether any conceiv-
able unitary operation in the Hilbert space of
interest can be decomposed into a sequence of
standard elementary operations taken from a fi-
nite set. Only if that is true, can a universal
quantum computer be built which can be pro-
grammed to fulfill fairly arbitrary tasks, much
as today’s universal classical digital computers
which are (in principle) built from a very small
set of universal classical gates. Luckily there ex-
ists a set of universal quantum gates, in the sense
that any unitary operation may be approximated
to arbitrary accuracy by a combination of these
gates.

As already mentioned in the previous section, the
following four gates do the trick:

• the CNOT gate,

• the ε

8 gate (5.2)

T =

(
1 0
0 exp iε4

)
= exp

(
i
ω

8
(1 ↓ Z)

)
,

• the phase gate (5.3)

S = T2 =

(
1 0
0 i

)

(note that S2 = Z), and

• the square root H
1
2 of the Hadamard gate1

(4.16)

H
1
2 =

e↓i
ϑ
4

↑
2

(1 ± iH) = H↑
1
2 (5.9)

1
Since H is its own inverse, the square roots of H and

H
→1

are equal. Consequently H
1
2 and H

→ 1
2 are not

inverses to each other; however, H

1
2
+H

→ 1
2

→ = 1, where

the subscript denotes the two possibilities in (5.9)

This set of four gates can be shown to be univer-
sal in a three-step process.

1. Any unitary operator can be expressed (ex-
actly) as a product of unitary operators af-
fecting only two computational basis states:
“Two-level gates are universal.”

2. (From 1) and preceding sections.) Any
unitary operator may be expressed (ex-
actly) using single-qubit and CNOT gates:
“Single-qubit and CNOT gates are univer-
sal.”

3. Single-qubit operations may be approxi-
mated to arbitrary accuracy using square
root of Hadamard, phase, and ε

8 gates.

5.3.2 Unitary operations

We start with step 1: Two-level gates are uni-
versal; that is, any d ↔ d unitary matrix U can
be written as a product of (at most) d(d↑1)

2 two-
level unitary matrices (unitary matrices that act
non-trivially only on at most two vector compo-
nents). This can be shown as follows. Concen-
trate on the top left corner of the unitary matrix

U =




a d · · ·
b c · · ·
· · · · ·



 .

The 2 ↔ 2 unitary matrix

U1 =
1√

|a|2 + |b|2

(
a↔ b↔

b ↓a

)

eliminates the second element in the first column
of U:

U1

(
a
b

)
=

(
a↗

0

)
.

(In what follows we use (without introducing ad-
ditional notation) U1, supplemented by a (d ↓
2) ↔ (d ↓ 2) unit matrix so that products like
U1U make sense.) Further unitary 2 ↔ 2 ma-
trices can be used to eliminate further elements

82



5 Quantum Bits and Quantum Gates

from the first column of U:

Ud↑1Ud↑2 · · ·U1U =





1 0 0 · · ·
0 c↗ · · · ·
0 · · (non-zero)
·



 .

Note that initially the first column had unit norm
because U is unitary. We have applied only uni-
tary (that is, norm-preserving) operations so the
end result is still a unit vector but has only one
non-zero component, which must be 1. (A phase
can be eliminated.) Due to unitarity (of a prod-
uct of unitary matrices) all elements in the first
row other than the leftmost one must also van-
ish. The elimination process can be continued in
other columns and finally

UkUk↑1 · · ·U1U = 1(
k ⇓ d(d ↓ 1)

2
= (d ↓ 1) + (d ↓ 2) + · · · + 1

)

UkUk↑1 · · ·U1U = 1(
k ⇓ d(d ↓ 1)

2
= (d ↓ 1) + (d ↓ 2) + · · · + 1

)

and thus

U = U†

1U
†

2 · · ·U†

k

which is the desired decomposition of an arbi-
trary gate U in terms of two-level gates.

5.3.3 Two qubit operations

In step 2 we prove that single-qubit and CNOT
gates are universal, because we can use them
to build the arbitrary two-level gates discussed
in the previous step. The basic idea is simple.
Transform the Hilbert space such that the two
relevant basis states become the basis states of
one qubit, perform the desired single-qubit op-
eration on that qubit, and transform back to
the original basis. The basis reshu#ing can be
achieved via higher-order controlled-NOT oper-
ations, which in turn can be reduced to simple
CNOT operations.

CNOT(NOT B,A)
CNOT(NOT B,A)

|11
|10

|01

|00

|11
|10

|01

|00

Target operation:

|11
|10

|01

|00

CtrldU

Example:  
2-level operation on {| 00 , |11 }

Step 3 : reshuffle basis

Step 1 : reshuffle basis Step 2 : C U

Figure 5.10: Example of a decomposition of a
2-level operation on 2 qubits into
CNOT and a single-qubit opera-
tions.

Figure 7.26 shows the scheme for a 2-qubit sys-
tem: to apply a 2-level operation between |00→
and |11→, we first swap the states |00→ ⇐ |10→
with a CNOT gate. Then the CUoperation can
be applied and finally the basis is brought back
to the original state.

For a three-qubit example, we discuss how
to perform a two-level operation U on the
states |ABC→ = |000→ and |111→. First, ap-
ply the To!oli gate ϱ(3) (3.4) to the three ar-
guments NOT A, NOT B, and C(remember
that the To!oli gate is a three-qubit gate):
ϱ(3)( NOT A, NOT B, C). The first two qubits
are control qubits which in this case must be 0,
the last one is the target. This operation swaps
|000→ with |001→ and leaves everything else un-
touched. Now, apply ϱ(3)( NOT A, C, B). This
swaps |001→ with |011→. The net e!ect has been
to swap |000→ with |011→. Now, the C2U can be
applied, performing the operation U on qubit A,
provided both B and C are 1. Finally the basis
states can be rearranged in their original order.

Similar rearrangements can always be achieved
through a sequence of qubit basis states (or the
binary numbers representing the states) two con-
secutive members of which di!er at one position
only. (Such sequences are known as Gray codes.)
Clearly this way of constructing arbitrary quan-
tum gates is not always the most e"cient one
(involving the smallest possible number of op-
erations). However, this is no source of serious
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concern, since there are, in any case, unitary n-
qubit operations which involve O(en) gates to
implement (see Section 4.5.4 of [35]) and hence
are intrinsically ine"cient.

5.3.4 Approximating single-qubit
gates

In step 3 we show that Hadamard, phase and ω/8
gates are (approximately) universal single-qubit
gates. Recall that the most general single-qubit
gate is a rotation by an arbitrary angle about
an arbitrary axis (combined with a trivial phase
factor). Imagine we could implement a rotation
about some axis ϑn by an angle ς which is an
irrational multiple of 2ω. Due to irrationality,
the angles

nς mod 2ω (n = 0, 1, 2, ...)

are dense in [0, 2ω] and thus an arbitrary rota-
tion about ϑn can be approximated to arbitrary
precision by repeating the ς rotation:

Rϑn(φ) = (Rϑn(ς))φ + O(⇀).

If we can implement two such irrational rotations
about mutually orthogonal axes we can perform
arbitrary rotations due to the Z-Y-Z decomposi-
tion (5.5). This is exactly the route followed by
Boykin et al. [66] which we will briefly sketch
now. From the fundamental multiplication laws
for Pauli matrices

X2 = Y2 = Z2 = 1, XY = iZ = ↓YX etc.

and the definition of the Hadamard gate

H =
1↑
2
(X + Z),

we obtain

HXH = Z, HZH = X.

Furthermore we recall the rotation of the Bloch
sphere about the unit vector ϑn by an angle ϱ

exp

(
↓i

ϱ

2
ϑn · ϑ⇁

)
= cos

(
ϱ

2

)
1↓ i sin

(
ϱ

2

)
ϑn ·ϑ⇁,

(ϑ⇁ = (X,Y,Z) = 2
⊋
ϑS), and the ε

8 gate

T = ei
ϑ
8

(
e↑i

ϑ
8 0

0 ei
ϑ
8

)
= ei

ϑ
8 e↑i

ϑ
8Z = Z

1
4

⇑ HTH = ei
ϑ
8 e↑i

ϑ
8X = X

1
4 .

We now multiply

Z↑
1
4X

1
4

= ei
ϑ
8Ze↑i

ϑ
8X

=
(
cos

(ω

8

)
1 + i sin

(ω

8

)
Z
)

·
(
cos

(ω

8

)
1 ↓ i sin

(ω

8

)
X
)

= cos2
(ω

8

)
1 ↓ i sin

(ω

8

)

·
(
cos

(ω

8

)
X ↓ sin

(ω

8

)
Y ↓ cos

(ω

8

)
Z
)

= cos2
(ω

8

)
1 ↓ i sin

(ω

8

)
ϑq · ϑ⇁,

where

ϑq =




cos

(
ε

8

)

↓ sin
(
ε

8

)

↓ cos
(
ε

8

)



 .

With ϑn = ϑq

|ϑq|
this can be written as

Z↑
1
4X

1
4 = cos ς1 ↓ i sin ςϑn · ϑ⇁

where

cos ς = cos2
(ω

8

)
=

1

2

(
1 +

1↑
2

)
.

Invoking some theorems from algebra and num-
ber theory it can be shown that ς is an irrational
multiple of 2ω.

This is the first of the two rotations we need.
The second one is

H↑
1
2Z↑

1
4X

1
4H

1
2 ,

where

H↑
1
2 =

e↑i
ϑ
4

↑
2

(1 + iH). (5.10)
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Now we can work out

H↑
1
2XH

1
2 =

1

2
(X + Z ↓

↑
2Y)

H↑
1
2YH

1
2 =

1↑
2
(X ↓ Z)

H↑
1
2ZH

1
2 =

1

2
(X + Z +

↑
2Y),

and finally

H↑
1
2Z↑

1
4X

1
4H

1
2 = cos2

(ω

8

)
1↓i sin

(ω

8

)
ϑm ·ϑ⇁

with

ϑm =




↓ 1

→
2
sin

(
ε

8

)

↓
↑

2 cos
(
ε

8

)
1
→
2
sin

(
ε

8

)





from which we see that ϑm2 = ϑq 2 and ϑm · ϑq = 0.
This is again a rotation by the same angle ς as
before, about an axis orthogonal to the previous
axis ϑn.

The construction in [35] uses the rotations X
1
4Z

1
4

and HX
1
4Z

1
4H = Z

1
4X

1
4 , which are quite similar

to those used above. However, the axes of rota-
tion are not orthogonal to each other but only at
an angle of 32.65↘. In this case the simple Z-Y-Z
decomposition (5.5) of an arbitrary rotation into
three factors is not possible, but a decomposition
into more than three factors still is.

5.4 Resonant electromagnetic
fields

So far we assumed that the gate operation is
driven by a (magnetic) field, which causes Lar-
mor precession of the pseudo-spin. In practice,
it is more common and more e!ective to use
time-dependent electromagnetic fields whose fre-
quency is close to the transition frequency be-
tween two stationary states.

5.4.1 Radio frequency field

To excite transitions between the di!erent spin
states and implement quantum gate operations,
one applies a ardio-frequency (RF) magnetic
field. It is generated by a current running
through a coil that is wound around the sample,
as shown in Figure 5.11.

|0�

|1�

�� = ��
B1

I0 cos �t

Figure 5.11: An alternating current through a
coil generates an RF field resonant
with the transition between 2 qubit
states.

The generated RF field is

ϑBrf (t) = 2B1 cos(ωt)




1
0
0



 ,

where we have chosen the x-axis along the axis
of the coil. In this case, the ac field couples to
the Sx component of the spin.

This linearly oscillating magnetic field is best de-
scribed as a superposition of two fields rotating
in opposite directions.

ϑBrf (t) = B1




cos(ωt)
sin(ωt)

0



+B1




cos(ωt)

↓ sin(ωt)
0



 .

The first component rotates from x to the y axis
(counterclockwise when viewed from the z-axis),
the second in the opposite direction.

If we combine this alternating field with the
static Hamiltonian (for the spin case, e.g. a
Zeeman field along z) into a time-dependent
Hamiltonian, we obtain an equation of motion
with time-dependent coe"cients, which cannot
be solved analytically. This holds true for all
qubit systems that are excited by resonantly os-
cillating control fields. This problem can be

85



5 Quantum Bits and Quantum Gates

solved by moving the time-dependence from the
control fields to the coordinate system. For rea-
sons that will become clear, the associated refer-
ence frame is known as the rotating frame.

5.4.2 Rotating frame

z

x

yxr

yr

t
t

Figure 5.12: Rotating and laboratory-fixed coor-
dinate systems.

The resulting dynamics are best analyzed in a
coordinate system that rotates around the static
magnetic field at the RF frequency. We briefly
show here the transformation to this rotating
frame since all quantum computing experiments
use the rotating frame representation, not the
laboratory frame. As shown in Figure 5.12, the
two coordinate systems are related by



x
y
z




r

=




cos(ωt) sin(ωt) 0

↓ sin(ωt) cos(ωt) 0
0 0 1








x
y
z



 .

where the vector ϑr r refers to the rotating coordi-
nate system, the unlabeled one to the laboratory-
fixed system.

If we apply this transformation to the RF field,
the two circular components become

ϑBr

rf
= + B1




1
0
0



 + B1




cos(2ωt)

↓ sin(2ωt)
0



 .

Figure 5.13 shows a graphic representation of
this transformation.

Apparently, one of the two components is now
static, while the counter-rotating component ro-
tates at twice the RF frequency. It turns out
that, to an excellent approximation, it is su"-
cient to consider the e!ect of that component

X
Y

Z

=

+

Yr
Z

Xr

Y

X
+

Figure 5.13: Circularly polarized components of
the linearly polarized field in lab-
oratory frame (left) and rotating
frame (right).

which is static in this coordinate system, while
the counter-rotating component can be neglected
[67]. It is therefore a convenient fiction to as-
sume that the applied RF generates a circularly
polarized RF field, which is static in the rotating
frame. The corresponding Hamiltonian is

Hr

rf
= ↓ω1Sx. (5.11)

0

1

Mz

Time

exact
Approximation

Figure 5.14: Comparison between the exact solu-
tion and the rotating wave approx-
imation.

Under most conditions, this approximation
yields an excellent description of the actual dy-
namics. Figure 5.14 compares the exact evolu-
tion to the result of the rotating wave approxi-
mation. Compared to typical experimental situ-
ations, for this figure the parameters have been
chosen to exaggerate the deviations by several
orders of magnitude. The rapid oscillation oc-
curs at twice the Larmor frequency. In addition,
the frequency is shifted slightly, by 1

4
↼
2
1

↼L
.

The same reasoning can be used in any type of
resonant excitation. In the case of optical spec-
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troscopy (e.g. trapped ion quantum computers),
it is known as the rotating wave approximation.

5.4.3 Equation of motion

So far we have transformed the RF field into the
rotating frame. We also need to transform the
quantum mechanical equation of motion into this
reference frame. We write the static Hamiltonian
as

Hz = ↓↼ SzB0 = ↓ωLSz (5.12)

and start by transforming the state vector, using
the unitary operator

U(t) = ei↼tSz/⊋, (5.13)

which defines a rotation around the z-axis and
commutes with the static Hamiltonian. It trans-
forms the laboratory state |ϖ→ into the rotating
frame as

|ϖ→r = U↑1|ϖ→ = e↑i↼tSz/⊋|ϖ→. (5.14)

To transform an operator A into the same basis,
we use

Ar = U↑1AU. (5.15)

This is valid for all operators, including the den-
sity operator or the observables Sx, Sy and Sz.
The only exception that needs special attention
is the Hamiltonian.

In the case of the Hamiltonian, the transforma-
tion has to fulfill the additional requirement that
the Hamiltonian remains the generator of the
time evolution. Since the transformation U is
time-dependent, the new coordinate system is
not an inertial frame of reference. The evolu-
tion in this system therefore appears to be sub-
ject to additional ‘virtual forces’ that influence
the time evolution and must be accounted for by
the transformation. This is in close analogy to
centrifugal forces or Coriolis forces that appear
if the coordinate system rotates with respect to
inertial frames of reference.

Starting with the Schrödinger equation in the
laboratory frame

⊋ d

dt
|!→(t) = ↓iH|!→(t),

we use eq. (5.14) to substitute

|!→(t) = U|!→r(t)

and obtain an equation of motion for |!→r(t):

⊋ d

dt
(U|!→r(t)) = ↓iHU|!→r(t). (5.16)

The left-hand side can be evaluated with the
product-rule:

d

dt
(U|!→r(t)) = U̇|!→r(t) + U

d

dt
|!→r(t)

Inserting this into eq. (5.16), rearranging and
multiplying with U↑1 from the left yields

⊋ d

dt
|!→r(t) = ↓iU↑1HU|!→r(t)↓⊋U↑1U̇|!→r(t).

The Schrödinger equation in the rotating frame
becomes therefore

⊋ d

dt
|!→r(t) = ↓iHr|!→r(t)

with the transformed Hamiltonian

Hr = U↑1HU ↓ i⊋U↑1U̇ (5.17)

The first term corresponds to the rotation (5.15)
of the operator around the z-axis, as for the other
operators. The second term takes into account
that the rotating coordinate system is not an in-
ertial reference frame, since the rotation is an ac-
celerated motion. Like centrifugal forces, it cor-
rects the equation of motion for the correspond-
ing virtual force. Evaluating this term for the
transformation operator 5.13, we find

U̇ =
d

dt

(
ei↼tSz/⊋

)

=
iω

⊋ SzU

↓i⊋U↑1U̇ = ↓i⊋ · iω

⊋ Sz = ωSz.
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This represents an additional term to the static
Hamiltonian, modifying the level splitting. Com-
bining it with the driving Hamiltonian (5.11), we
obtain the rotating frame Hamiltonian

Hr = ↓(ωL ↓ ω)Sz ↓ ω1Sx

= ↓”ωLSz ↓ ω1Sx

= ↓ϑωe! · ϑS,

where

ϑωe! =




ω1

0
”ωL





is the total e!ective field in the rotating frame,
ω1 = ↼B1 is the strength of the RF field in (an-
gular) frequency units and ”ωL = ωL ↓ ω is the
static magnetic field (also in frequency units),
reduced by the frequency of the applied field.

 
       

   
       

  

x

z
!

"#L

#1

#eff

Figure 5.15: E!ective magnetic field in the rotat-
ing coordinate system.

Figure 5.15 shows this vector graphically. The
angle ϱ between ϑωe! and the z-axis is given by

tan ϱ =
ω1

”ωL

.

5.4.4 Evolution

In the rotating frame, the e!ective Hamiltonian
is time-independent (after neglecting the coun-
terrotating term). It is therefore possible to de-
scribe the resulting evolution analytically: The
evolution of the spins in the rotating frame is
exactly the same as if a (small) static field were
applied in this direction in the laboratory frame:
they undergo a precession around the magnetic
field ϑωeff .
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Figure 5.16: Spin precession for the cases of free
precession (ω1 = 0, left), resonant
irradiation (”ωL = 0, right), and
the general case (center).

Figure 5.16 shows three specific examples for the
motion of spins in this e!ective field. In the ab-
sence of RF irradiation (ω1 = 0), the e!ective
field is aligned with the z-axis and the preces-
sion is the same as in the laboratory frame, ex-
cept that the precession frequency is reduced by
ω, the frequency of the applied RF field. In the
case of resonant irradiation (shown on the right),
the field along the z-axis vanishes and the e!ec-
tive field lies along the x-axis. In the general case
b), the e!ective field lies along a direction in the
xz plane.

So far, we have assumed that the direction of the
RF field coincides with the x-axis in the rotat-
ing frame. This can be changed by shifting the
phase of the applied rf signal. As a function of
this phase ϕ, the coupling Hamiltonian in the
rotating frame becomes

Hr

rf
= ↓ω1(cos ϕSx + sin ϕSy)

and the e!ective field

ϑωe! =




ω1 cos ϕ
ω1 sin ϕ
”ωL



 . (5.18)

As a simple example, we consider the case that
the RF is applied on resonance, with ϕ = 0,
such that ϑωe! = (ω1, 0, 0). If the spin is initially
aligned with the z-axis, it rotates around the x-
axis as

▷(t) = Sz cos(ω1t) + Sy sin(ω1t). (5.19)
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The spin thus rotates from the z- to the y-axis
and from there to the negative z-axis. Such a
rotation by an angle ω1◁p = ω, with ◁p the dura-
tion of the pulse, corresponds to an inversion of
the spins. If the field is left on, the spins continue
to precess, returning to the +z axis, again to the
negative and so on. This process of successive
inversions is called Rabi flopping, in reference to
Rabi’s molecular beam experiment [68]. The fre-
quency ω1 at which this process occurs is called
the Rabi frequency.

The primary use of irradiation with ac fields in
quantum computers is to create logical gate op-
erations. As discussed above, single-qubit gates
correspond to rotations of the (pseudo-)spins.
Pulses of RF or MW radiation or laser pulses
are a convenient means for implementing such
rotations around arbitrary axes. According to
eq. (5.18), the rotation axis ϑωeff can therefore
be oriented in any arbitrary direction by adjust-
ing frequency (and thereby ”ωL) and phase ϕ of
the RF field. The angle of rotation ς = ωe!◁p
around the e!ective field, which is called the flip
angle, is given by the product of the e!ective
field strength ωe! and the pulse duration ◁p.

Further reading

An excellent reference for the material in this
chapter is Chapter 4 of [35] which consists to a
large extent of exercises which the reader is en-
couraged to solve in order to really learn the ma-
terial. (However, the anticipated results of the
exercises are stated clearly enough so that the
lazy reader may also get along without solving
the exercises.) Preskill [32], Section 6.2.3 dis-
cusses universal quantum gates from a di!erent
(Lie-group) point of view.

Problems and Exercises

1. Show that the Paul matrices anti-commute,
i.e. XY + YX = 0, and that therefore

(
2

⊋ϑn · ϑS
)2

= (nxX + nyY + nzZ)2 = 1,

when ϑn is a unit vector.
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