
4 Quantum Mechanics

Before discussing the formal structure of quan-
tum mechanics, we review how this field has be-
come the foundation of most areas of physical
science, including chemistry, materials science as
well as much of life science. The following part
focuses on the general formal structure of the
theory. Later on we will treat some simple appli-
cations which have not yet become standard sub-
ject matter of a quantum mechanics course but
which are relevant to quantum information pro-
cessing. Throughout this course we shall almost
exclusively employ Dirac’s abstract bra and ket
notation for quantum states. This is quite nat-
ural for a field which focuses more on algebraic
structures and relations between states than on,
for example, probability distributions in space
related to individual states which are best dis-
cussed in the position representation, that is in
terms of wave functions.

4.1 History

4.1.1 Before the quantum revolution

During the 19th century, science made enormous
progress, solving many puzzles and laying the
foundations for the industrial revolution. Ex-
amples include thermodynamics as the basis of
steam engines or electromagnetic theory as the
basis of electrical engines and power generation.
Atoms and molecules were generally thought to
form the basis of matter, but very little was
known about their structure. The periodic sys-
tem was known, but no theoretical basis for it.
In 1900, William Thomson (Lord Kelvin) gave a
speech where he suggested that all of physics was
known and only a few minor problems remained
to be solved.

4.1.2 Open questions

Some of the open questions that Kelvin him-
self worked on was the age of the earth and the
sun. His estimate was about 20 million years,
which was not compatible with the theory of evo-
lution. Other problems included the nature of
heat, which was the basis of (phenomenological)
thermodynamics, the nature of radioactivity, or
the fundamentals for materials science: what de-
termines if a material is an insulator or a metal.

One of the biggest problems was the question
about the stability of matter: how could ar-
rangements of opposite charges avoid approach-
ing each other until the distance reached zero,
thereby releasing an infinite amount of energy
according to Coulomb’s law.

4.1.3 The first quantum revolution

Soon after Kelvin’s 1900 speech, the fundamen-
tals of physics were changed completely with the
development of quantum mechanics. Some im-
portant milestones were

• 1900 Planck : Theory of blackbody radia-
tion

• 1905 Einstein : Photoelectric e!ect

• 1910s de Broglie : Wave-particle duality

• 1925-1926 Heisenberg, Schrödinger, Born,
Jordan : Mathematical formalism [37, 38,
39, 40]

• 1927 Heisenberg : Uncertainty principle

• 1920s-1930s : Bohr, Heisenberg : The
Copenhagen interpretation

• 1930s-1940s Feynman, Schwinger, Tomon-
aga : Quantum Field Theory

• 1970s : Standard model of particle physics
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4 Quantum Mechanics

Some of the central points for quantum informa-
tion are

• The existence of stationary states (eigen-
states of the Hamiltonian)

• The quantisation of electromagnetic energy

• The evolution of quantum systems under
the Schrödinger equation

• The measurement process and the related
back-action

4.1.4 Is quantum mechanics weird?

Quantum mechanics is often described as being
weird or counterintuitive. Indeed, some aspects
are di!erent from everyday experience:

• Wave-particle duality: The behaviour of
quantum-mechanical objects can often not
be described in terms of particles of waves
but must refer to both.

• Entanglement: particles can show correla-
tions that are stronger than anything per-
mitted by classical theory, even if they are
far apart from each other.

• Uncertainty principle: certain pairs of phys-
ical properties, like position and momen-
tum, cannot be simultaneously known to ar-
bitrary precision. The process of measuring
either of these properties a!ects the state of
the system.

• Pairs of identical particles can not be in
identical states (Fermions). However, di!er-
ent types of particles prefer to be in identical
states (Bosons).

In vast parts of scientific and popular culture,
some of these properties are described in mislead-
ing ways. A common example are statements
like “entanglement is very fragile and is lost very
quickly at temperatures significantly higher than
absolute zero”. Counterexamples include, e.g.,
the pairs of electrons in the ground states of the
H2 molecule or atomic Helium, which remain en-
tangled in the singlet state for billions of years.

4.1.5 Is quantum mechanics relevant?

Quantum mechanics is often regarded as being
relevant only on the sub-atomic scale. Evidence
for this is that the Planck constant is one of
the smallest constants used in physics (depend-
ing of course on the units used). Nevertheless,
manifestations of quantum mechanical principles
abound in our daily lives. This includes funda-
mental questions like the source of energy for the
sun, chemical reactions, or on a very fundamen-
tal scale why object usually do not overlap[41].
This is closely related to the question why atoms
are so big that they consist mostly of empty
space, plus a tiny nucleus and point-like elec-
trons.

In the context of condensed matter physics,
quantum mechanics explains why some objects
(like glass) are transparent, while others are
opaque and why some objects support electri-
cal currents (like graphite), while others do not
(like diamond) although they consist of the same
constituents. Another example is the existence
of (ferro-)magnetic materials, which can not be
explained by classical physics.

4.2 General structure

4.2.1 Spectral lines and stationary
states

In a way, quantum mechanics started almost two
hundred years ago when scientists like Wollas-
ton and Fraunhofer first observed distinct lines in
optical spectra. Later on Kirchho! and Bunsen
showed that the spectral lines were characteristic
for the di!erent chemical elements and thus es-
tablished a connection between optics and what
later became atomic physics. About a hundred
years ago early quantum theory established that:

1. electromagnetic radiation is emitted and ab-
sorbed in quanta, or photons, whose energy
is proportional to their frequency, and

2. atoms possess certain stationary states with
fixed energies. The di!erences of these en-
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ergy values are equal to the energies of the
photons emitted or absorbed in transitions.

Schrödinger showed that the stationary states
could be described by wave functions whose dy-
namics was determined by an equation that was
later named after him. The possible (quantized)
energy values arose from an eigenvalue problem
related to the Schrödinger equation. It did not
take long to show that Schrödinger’s theory was
completely equivalent to approaches by Heisen-
berg and by Pauli which involved an algebraic
eigenvalue problem.

4.2.2 Vectors in Hilbert space

One of the most strikingly counter-intuitive fea-
tures of quantum mechanics is the linear struc-
ture of its state space. As it turns out this
property is also extremely important for the ap-
plication of quantum mechanics to information
processing. In classical mechanics the state of
a finite number of interacting point particles is
uniquely specified by a vector of generalized co-
ordinates and momenta. In quantum mechanics,
the state of the system is also uniquely speci-
fied, this time by a vector in Hilbert space. In
both cases, linear combinations of two admissible
vectors are again admissible vectors. The di!er-
ence lies in the meaning and interpretation of
the vector components. Classically the compo-
nents are coordinates and momenta which have
definite values in every admissible state, lead-
ing to definite predictions for the outcomes of
all conceivable physical measurements. In the
quantum case, Hilbert space vector components
denote probability amplitudes related to the pos-
sible outcomes of certain measurements. This
leads to the standard probabilistic interpretation
of superpositions of Hilbert space vectors.

The superposition principle is one of the most
fundamental concepts of quantum mechanics,
but not all of its consequences are fully explored.
It relates not only to the states themselves, but
also to the evolution under the Hamiltonian.
Whether it remains valid in the context of gen-

eral relativity is an open question: a superposi-
tion of two position states of a massive particle
implies that the space-time structure, which is
distorted by the particle’s mass, also is in a su-
perposition state.

It is important to note that even the Hilbert
spaces of very simple systems can have infinite
dimension. A single hydrogen atom in free space
has countably infinitely many bound states plus
a continuum of scattering states. For the time
being we neglect the continuous spectrum, as-
suming that we can suppress transitions into con-
tinuum states. For mathematical simplicity we
even assume that the dimension d of the Hilbert
space is finite. d = 2 will be the important spe-
cial case of a single quantum bit, or qubit.

The Hilbert space thus is a d-dimensional com-
plex linear space: every linear combination of
states (Hilbert space vectors) is a state too;
scalar product, norm, etc., can be defined as
usual. The common quantum mechanical abbre-
viation for a complex column vector is a Dirac
ket:

|a→ =





a1
a2
.
.

ad




.

The corresponding row vector is a Dirac bra:

↑a| = (a→1, a
→

2, . . . , a
→

d
),

where the asterisk denotes complex conjugation.

In view of the probabilistic interpretation of
quantum mechanics, it su"ces to consider nor-
malized states |ω→, that is, |||ω→||2 := ↑ω|ω→ =
1. Furthermore the states |ω→ and eiω|ω→(ε
real) are physically equivalent: overall phase fac-
tors do not matter. However, relative phases
between components of a state are extremely
important:|ϑ→ + |ω→ and |ϑ→ + eiω|ω→ (for ε ↓= 0)
may have completely di!erent physical proper-
ties, and many of the most interesting quantum
mechanical phenomena are interference e!ects
related to such relative phases.
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4 Quantum Mechanics

4.2.3 Operators in Hilbert space

Operators map states to each other linearly; they
thus are d↔d complex matrices operating on the
d-dimensional Hilbert space:

R|ω→ = |ϑ→.

Operators will be denoted by boldface letters.
An eigenstate (or eigenvector) |ϑq→ of an operator
Q fulfills the eigenvalue equation

Q|ϑq→ = q|ϑq→,

where the complex number q is called the eigen-
value. The eigenvalues of di!erent eigenstates
can be equal; this is called degeneracy. A trivial
example is the unit operator 1 (d↔d unit matrix)
all of whose eigenvalues are equal to unity.

Observables (measurable quantities) correspond
to self-adjoint or Hermitian matrices, that is,

A† = A; (A†)ij := (A)→ji. (4.1)

Self-adjoint operators possess real eigenvalues
(the eigenvalues are the possible outcomes of
a measurement and thus have to be real); the
eigenstates |ai→ corresponding to the eigenvalues
ai of the operator A are pairwise orthogonal (or
can be orthogonalized in the case of degeneracy).
Thus they form a basis in Hilbert space,

A|ai→ = ai|ai→ ↑ai|aj→ = ϖij (4.2)
(i, j = 1, . . . , d),

where ϖij is the familiar Kronecker symbol. (It
should be kept in mind that we are operating in a
finite-dimensional Hilbert space where all states
can be normalized to unity.)

The sets of eigenstates and eigenvalues charac-
terize an observable A completely, because any
arbitrary state can be expanded in eigenstates
of A, which obey (4.2). This leads to the spec-
tral representation of A. To define that repre-
sentation we need a further class of operators:
projection operators or projectors for short. The
projector Pi onto the eigenstate |ai→ (or, more

correctly, to the subspace spanned by |ai→) is de-
fined by

Pi := |ai→↑ai|.

Application of Pi to an arbitrary state |ω→ yields
a multiple of |ai→

Pi|ω→ = |ai→↑ai|ω→ = ↑ai|ω→|ai→,

where |↑ai|ω→|is the “length” of the projection of
|ω→ onto the unit vector |ai→. Since the vectors
|ai→ are orthonormal (4.2), we have

PiPj = ϖijPj ; especially P2
i = Pi.

These equations have obvious geometrical inter-
pretations: two subsequent projections yield zero
when they project onto di!erent orthogonal sub-
spaces; when they project onto the same sub-
space the second projection has no e!ect. From
P2 = P we see immediately that the only possi-
ble eigenvalues of a projector are zero and unity.
The projector to the subspace spanned by |ai→
and |aj→ is simply Pi + Pj . This projector also
has the characteristic property of being equal to
its square. As the Pi cover “all directions” of
Hilbert space we obtain a completeness relation:

d∑

i=1

Pi =
d∑

i=1

|ai→↑ai| = 1.

Now the spectral representation of A can be de-
fined:

A =
d∑

i=1

aiPi =
d∑

i=1

ai|ai→↑ai|.

4.2.4 The Schrödinger equation

The stationary states of a quantum system are
eigenstates of a special operator, the Hamil-
tonian operator (or Hamiltonian, for short),
whose eigenvalues are the energy values of
the stationary states. This follows from the
Schrödinger equation (often called the “time-
dependent” Schrödinger equation) governing the
evolution of an arbitrary state |ω(t)→,

d

dt
|ω(t)→ = ↗ i

⊋H|ω(t)→, (4.3)
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where H is the Hamiltonian. If the Hamiltonian
is time-independent and |ϑi→ is an eigenstate of
the Hamiltonian with energy eigenvalue ϱi:

H|ϑi→ = ϱi|ϑi→, (4.4)

then |ϑi→ will evolve into

|ω(t)→ = exp

(
↗i

ϱit

⊋

)
|ϑi→.

So |ω(t)→ is a solution of the time-dependent
Schrödinger equation with initial condition

|ω(t = 0)→ = |ϑi→.

Obviously |ω(t)→ is a stationary state, as a global
phase factor has no physical significance.

The eigenvalue equation (4.4) is often called the
“time-independent Schrödinger equation”. As
any initial state |ω(t = 0)→ can be expressed as a
linear combination of eigenstates |ϑi→ of H, the
initial value problem is solved (at least in prin-
ciple).

4.2.5 Time evolution

Formally the solution for time-independent H
can be written as

|ω(t)→ = U(t)|ω(t = 0)→ (4.5)

:= exp

(
↗i

Ht

⊋

)
|ω(t = 0)→.

The time evolution operator U(t) may be inter-
preted in two ways:
(i) as a power series

exp

(
↗i

Ht

⊋

)
= 1 +

(
↗i

Ht

⊋

)
+

1

2

(
↗i

Ht

⊋

)2

+
1

6

(
↗i

Ht

⊋

)3

+ · · · (4.6)

(ii) by means of the spectral representation

exp

(
↗i

Ht

⊋

)
=

d∑

i=1

exp

(
↗i

ϱit

⊋

)
|ϑi→↑ϑi|.

Version (ii) is easy to use of the eigenvalues are
known. (i) does not require diagonalization but
convergence is only guaranteed for short times,
Ht/⊋ < 1.

For a more general Hamiltonian H(t) depending
on time, the time evolution operator U(t) (as de-
fined by |ω(t)→ = U(t)|ω(0)→) obeys an operator
di!erential equation; for a general time depen-
dence of H the solution of that equation is not
known, even for d = 2, but it can be approxi-
mated numerically.

All eigenvalues exp
(
↗i εit⊋

)
of U(t) have unit

modulus; operators with this property are called
unitary. A unitary operator U preserves all
scalar products, that is, the scalar product of
|ω→ and |ς→ equals that of U|ω→ and U|ς→; con-
sequently norms are preserved too. The general
property characterizing unitarity is

U†U = 1 ↘ U† = U↑1.

For time-independent H we have

(U(t))↑1 = U(↗t),

that is, unitary time evolution is reversible.The
states |ai→ are now the eigenstates of A and ai its
eigenvalues. Physically this means that an arbi-
trary state is first decomposed into components
along eigenstates of A, and then each of these
components is treated according to its eigenstate
property (4.2). It should be noted that the spec-
tral representation is possible not only for ob-
servables (4.1) but for the larger class of normal
operators B with B†B = BB†.

4.2.6 Measurements

The process of measurement in quantum me-
chanics is di"cult to grasp since it involves phe-
nomena at the border between the quantum sys-
tem and its environment, including the observer.
In this section we will stay quite formal and just
state the projection postulate which is usually
employed to describe the measurement process.
A more physical discussion of the postulate and
its interpretation will follow in Section 4.5 .
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The situation to which the postulate refers is
that of a quantum system prepared in a state
|ω→. After preparation a single measurement of
the observable A is performed. This cycle of
preparation and measurement is repeated many
times so that the notion of probability used in
the postulate makes sense. Alternatively we may
imagine an ensemble containing a large number
of independent copies of the quantum system, all
prepared in the same state |ω→. A is measured
for all system copies independently.

Postulate: A single measurement of the
observable A in the normalized state |ω→
yields one of the eigenvalues ai of A with
probability |↑ai|ω→|2 (

∑
i
|↑ai|ω→|2 = 1 due

to normalization).

Immediately after the measurement the system
is in the (normalized) state

Pi|ω→
||Pi|ω→|| , (4.7)

where Pi is the projection operator onto the sub-
space of eigenstates of A with eigenvalue ai. This
subspace is one-dimensional if the eigenvalue ai
is non-degenerate. Any measurement thus leads
to a reduction of the wave function.

In general it is not possible to predict the out-
come of a single measurement. A measurement
of A on an ensemble of systems as discussed
above yields the average (expectation value)

↑A→ := ↑ω|A|ω→

with deviations described by the variance (the
square of the standard deviation)

↑(A ↗ ↑A→)2→ ≃ 0.

The variance vanishes if and only if |ω→ is an
eigenstate of A.

This chapter describes two fundamentally dif-
ferent kinds of change of state: the time evo-
lution governed by the Hamiltonian, which is
unitary, deterministic and reversible (at least for

a time-independent Hamiltonian), and the mea-
surement process, which is probabilistic and ir-
reversible. From an aesthetic point of view this
is a very unpleasant situation. After all, quan-
tum mechanics is supposed to be valid for the
whole system, including the measurement appa-
ratus, at least in principle, and then it is hard to
see why a measurement (an interaction between
the apparatus and the system) should be fun-
damentally di!erent from other dynamical pro-
cesses in the system. This is one of the questions
that have kept the measurement process discus-
sion going for many decades. In Section 4.5 we
will return to the measurement process in order
to discuss in a little more detail those aspects
that are relevant for quantum information pro-
cessing.

4.3 Quantum states

4.3.1 The two-dimensional Hilbert
space: qubits, spins, and
photons

In many situations, only two states of a quan-
tum system are important. Examples include
the ground and first excited states of an atom
and a single spin-1/2 particle fixed in space. A
photon can be in one of two mutually orthogo-
nal polarization states: horizontal and vertical if
it is linearly polarized, or left and right if it is
circularly polarized.

In order to keep the analogy to classical bits as
close as possible, it is convenient to choose such
two-state systems for the discussion of quantum
computing. Any quantum system with a two-
dimensional Hilbert space can store a quantum
bit or qubit. Any two mutually orthogonal states
in this Hilbert space can be chosen as the compu-
tational basis states |0→ and |1→; they correspond
to the states “logical 0” and “logical 1” of a classi-
cal bit. In contrast to a classical bit, however, a
qubit can also exist in any arbitrary linear com-
bination of the computational basis states.

We briefly discuss some properties of single
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qubits in this section. For definiteness we assume
that the qubits are represented by spin-1/2 par-
ticles possessing a magnetic moment which can
be influenced by an external magnetic field φB.
This analogy between qubits and spin-1/2 par-
ticles was first noted by Feynman, Vernon and
Hellwarth [42]. It allows one to treat any two-
dimensional Hamiltonian subspace as a virtual
spin-1/2, often called a pseudo-spin.

The Hilbert space of a single spin-1/2 particle is
spanned by two basis states, which we choose in
the following way:

(
1
0

)
= | ⇐→ = |0→ (4.8)

(
0
1

)
= | ⇒→ = |1→.

(The identification with the computational ba-
sis states |0→ and |1→ follows the convention of
[35].) All operators in this Hilbert space can be
combined from the four fundamental operators

P↓ =

(
1 0
0 0

)
= | ⇐→↑⇐ | (4.9)

P↔ =

(
0 0
0 1

)
= | ⇒→↑⇒ |

S+ = ⊋
(

0 1
0 0

)
= ⊋| ⇐→↑⇒ | (4.10)

S↑ = ⊋
(

0 0
1 0

)
= ⊋| ⇒→↑⇐ |.

S+ and S↑ are called the raising and lowering
operator, respectively. More convenient for the
purposes of physics are the following combina-
tions:

1 =

(
1 0
0 1

)
= P↓ + P↔ (4.11)

Sz =
⊋
2

(
1 0
0 ↗1

)
=

⊋
2
(P↓↗P↔) =

⊋
2
Z (4.12)

Sx =
⊋
2

(
0 1
1 0

)
=

1

2
(S++S↑) =

⊋
2
X (4.13)

Sy =
⊋
2

(
0 ↗i
i 0

)
=

i

2
(S↑↗S+) =

⊋
2
Y. (4.14)

The spin matrices Sω obey the usual angular mo-
mentum commutation relations

[Sx, Sy] = i⊋Sz,

and they are their own inverses (up to a factor):

S2
x = S2

y = S2
z =

⊋2
4

1.

The matrices X,Y, and Z have eigenvalues ±1
and are commonly known as Pauli matrices.

4.3.2 Hamiltonian and evolution

The Sω can be used to write the Hamiltonian of
a spin-1/2 particle (fixed in space) in an external
field with components Bx, By, Bz:

H = ↗ φB ·φS = ↗(BxSx+BySy+BzSz). (4.15)

Usually the Hamiltonian (4.15) contains pre-
factors related to the nature of the particle, like
the g factor and the Bohr magneton. At this
point, however, those pre-factors do not matter
and are eliminated by using appropriate units for
φB. Note that (4.15) is, apart from trivial modifi-
cations, the most general Hermitian single-qubit
operator.

It is evident why X is also often called the “NOT
gate” in the language of quantum computing: it
maps the two computational basis states onto
each other. Any unitary 2 ↔ 2 matrix is a valid
quantum gate, for example the Z gate, which
generates a ↼ relative phase between the compu-
tational basis states.

We will also frequently encounter the Hadamard
gate

H =
1⇑
2
(X + Z) =

1⇑
2

(
1 1
1 ↗1

)
. (4.16)
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H (hopefully not to be confused with the Hamil-
tonian H) is at the same time unitary and Her-
mitian, implying that H2 = 1. Nevertheless H
is sometimes called the “square-root of NOT”
gate, because it turns |0→ into a state “halfway
between” |0→ and |1→ and similarly for |1→. How-
ever, in contrast to real

⇑
NOT, applying it twice

does not result in a NOT.

We can describe the time evolution via the evo-
lution operator U(t) for a φB field along one of
the coordinate axes ε = x, y, z.

U(t) = exp

(
↗ iHt

⊋

)
(4.17)

= exp

(
iBωt

2

2Sω

⊋

)
.

The solution can be obtained by expanding the
exponential function

ex = 1 + x +
x2

2!
+ · · · =

↗∑

n=0

xn

n!

exp

(
↗ iHt

⊋

)
= 1 ↗ iHt

⊋ ↗ 1

2

(
Ht

⊋

)2

+ . . .

As the square of the operator 2Sω/⊋ is equal to
the unit operator, all even terms of the power
series expansion (4.6) of the exponential in U(t)
are proportional to 1, whereas all odd terms are
proportional to 2Sω, and thus

U(t) = cos

(
Bωt

2

)
1+i sin

(
Bωt

2

)
2Sω

⊋ . (4.18)

For ε = z we have

U(t) =

(
exp

(
iBzt

2

)
0

0 exp
(
↗iBzt

2

)
)

.

For the initial state, we choose, as a simple ex-
ample,

| ⇐→ =

(
1
0

)
.

Applying U(t) to this state yields

U(t)| ⇐→ = |ω(t)→ = exp

(
i
Bzt

2

)
|ω(0)→,

which is a stationary state, as expected, because
the initial state was an eigenstate of Sz (and thus
of H).

The case ε = x is di!erent; (4.18) leads to

U(t) =

(
cos

(
Bxt

2

)
i sin

(
Bxt

2

)

i sin
(
Bxt

2

)
cos

(
Bxt

2

)

)
, (4.19)

consequently

|ω(t)→ =

(
cos

(
Bxt

2

)

i sin
(
Bxt

2

)

)
(4.20)

= cos

(
Bxt

2

)
| ⇐→ + i sin

(
Bxt

2

)
| ⇒→.

This state runs through a continuum of states
periodically and thus performs a kind of “uniform
rotation in Hilbert space”. The result for ε = y
is similar.

4.3.3 Vector representation

The most general state in the Hilbert space of
a single qubit is an arbitrary normalized lin-
ear combination of | ⇐→ and | ⇒→ which may be
parametrized, for example, by two angles:

|↽,ϑ→ : = exp (↗iϑ/2) cos
↽

2
| ⇐→ (4.21)

+ exp (iϑ/2) sin
↽

2
| ⇒→

(0 ⇓ ↽ ⇓ ↼; 0 ⇓ ϑ ⇓ 2↼).

Thus a qubit in a sense contains two (bounded)
real numbers’ worth of information, in contrast
to the single binary number contained in a clas-
sical bit. Unfortunately, however, not all of this
information is accessible and robust. The ques-
tion of how to read, write, and manipulate part
of this information will keep us busy throughout
this course.

Figure 4.1 shows how the two angles (↽,ϑ)
parametrize the surface of a sphere, the Bloch
sphere, which is often helpful in visualizing state
changes of single qubit systems. Every Hilbert
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y

z

P

x

Figure 4.1: Polarization vector φP in the Bloch
sphere.

space vector (or pure state) of a single qubit is
represented by a point on the surface of the Bloch
sphere. Every unitary single-qubit operator is
(apart from a global phase factor) a rotation of
the Bloch sphere, as will be discussed in more
detail in Chapter 5. In the next subsection we
will encounter a di!erent kind of states, called
mixed states. The mixed states of a single qubit
will be seen to populate the interior of the Bloch
sphere. (⇔ section 4.4.3).

4.3.4 Coupling to environment

“Stepping up from one qubit to two is a big-
ger leap than you might expect. Much that
is weird and wonderful about quantum me-
chanics can be appreciated by considering
the properties of the quantum states of two
qubits.” (John Preskill [32]).

In the real world there are no isolated spin-1/2
particles; quantum systems always couple to the
“environment” which we often cannot or do not
want to take into account in our quantum me-
chanical considerations. However, if we consider

a quantum system which is in reality only part of
a larger system, the following “articles of faith”
to which we have become accustomed when deal-
ing with isolated quantum systems are no longer
always true:

• States are vectors in Hilbert space.

• Measurements are orthogonal projections
onto the final state.

• Time evolution is unitary.

The simplest example is given by one qubit A
which we call “system”, and to which we have ac-
cess and another qubit B which we call “environ-
ment” and to which we have no access. The two
pairs of states {| ⇐→

A
, | ⇒→

A
} and {| ⇐→

B
, | ⇒→

B
}

are orthonormal bases for the Hilbert spaces of
the two subsystems. The two qubit system with
its four-dimensional Hilbert space is the simplest
possible setting for a discussion of the concepts
of pure and mixed states of a single subsystem,
and of entanglement between subsystems.

If the subsystems A and B are in states |ω→
A

and |ϑ→
B

, respectively, the combined system is
in a direct product state which we denote by
|ω→

A
↖ |ϑ→

B
. Direct product states are often

simply called product states and later on we
will often use shorthand notations like | ⇐⇐→ for
| ⇐→

A
↖ | ⇐→

B
. Presently, however, we will stick

to the somewhat clumsy but unambiguous nota-
tion with the subscripts A and B and the direct
product sign ↖.

Product states are the simplest, but by no means
the only possible states of the combined system.
According to the general superposition principle
of quantum mechanics, any linear combination
of product states, like |ω→

A
↖ |ϑ→

B
+ |ς→

A
↖ |⇀→

B

is a possible state of the combined system.

4.3.5 Entangled with environment

This leads us straight to the definition of entan-
glement for a bipartite system. A state of a bi-
partite system is called entangled if it cannot be
written as a direct product of two states from the
two subsystem Hilbert spaces. A word of caution
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is in order here: a state which does not look like
a product state at first sight may be one after
all. An entangled state cannot be written as a
product state in any basis. In contrast, a state
which can be written as a product state in some
basis is called separable.

We consider the two-qubit state

|ω→ = a | ⇐→
A

↖ | ⇐→
B

+ b | ⇒→
A

↖ | ⇒→
B

. (4.22)

(|a|2+ |b|2 = 1) which for general values of a and
b is entangled. A measurement of the state of
qubit A (in the computational basis) leaves the
system in the state | ⇐→

A
↖ | ⇐→

B
with probability

|a|2 and in | ⇒→
A

↖ | ⇒→
B

with probability |b|2.
In both cases, after the measurement on A, the
state of B is fixed.

Now we consider a measurement with a general
observable MA ↖1B, which acts only on A. The
expectation value of this observable for a state
|ω→ (4.22) is easily calculated since 1B does not
change |...→

B
states and since B↑⇐ | ⇒→

B
= 0 :

= ↑MA→
= ↑ω|MA ↖ 1B|ω→

=

[
a→ A↑⇐ | ↖B ↑⇐ | + b→ A↑⇒ | ↖B ↑⇒ |



MA ↖ 1B[
a | ⇐→

A
↖ | ⇐→

B
+ b | ⇒→

A
↖ | ⇒→

B



= |a|2 A↑⇐ |MA| ⇐→
A

+ |b|2 A↑⇒ |MA| ⇒→
A

4.3.6 Density operator

The expression A↑⇐ |MA| ⇐→
A

can be written
as TrA(P↓AMA), and correspondingly for | ⇒→.
Here P↓A and P↔A are the projectors (4.9) for
the system A; TrA denotes the trace (sum of the
diagonal elements) in the Hilbert space of A, that
is,

TrA O =A ↑⇐ |O| ⇐→
A

+A ↑⇒ |O| ⇒→
A

(4.23)

for any operator O. With this notation, the ex-
pectation value becomes

↑MA→ = TrA
(
|a|2 P↓A MA + |b|2 P↔A MA

)

= TrA
(

|a|2 P↓A + |b|2 P↔A


MA

)

= TrA (ωAMA) .

The quantity

ωA = |a|2P↓A+|b|2P↔A =

(
|a|2 0
0 |b|2

)
(4.24)

is the density operator (density matrix) of the
system A. It is Hermitian (4.1), positive (no
negative eigenvalues) and its trace is unity (due
to normalization). It is important to note that
every operator with these properties is a den-
sity operator, be it diagonal or not, in the basis
which we have chosen accidentally or thought-
fully! Due to these properties every density op-
erator can be written as a convex combination
(a linear combination with positive coe"cients
whose sum equals unity) of orthogonal projec-
tors. 1

If ω2
A

= ωA ( for example if |a| = 1 in our
example) ωA is a single projector onto a vec-
tor in Hilbert space. (Projectors onto higher-
dimensional subspaces are excluded by TrA ω =
1.) In that case ωA is called a pure state; other-
wise it is called a mixed state. (Mixed states are
also often called “incoherent superpositions” by
people with an optics background.) In our ex-
ample, ωA (4.24) is a mixed state if both a and
b are nonzero, that is if and only if |ω→ (4.22) is
an entangled state. This connection between en-
tanglement and mixing turns out to hold beyond
our simple example.

4.3.7 Product states

As a second example let us now consider a state
in which the systems A and B are not entangled,

1
In fact, this is the standard way to introduce the

density operator in statistical mechanics. There, an

ensemble of many copies of a given quantum sys-

tem is considered. Each system can be in any one

of a set of quantum states |ωi→, with probability

pi. The density operator describing that ensemble is

ω =
∑

i pi|ωi→↑ωi|.
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that is, a product state (in fact, the most general
two-qubit product state):

|!→ =

(
a| ⇐→

A
+ b| ⇒→

A

)
↖
(

c| ⇐→
B

+ d| ⇒→
B

)

(4.25)

with |a|2 + |b|2 = |c|2 + |d|2 = 1. For that state
the expectation value becomes

= ↑MA→
= ↑!|MA ↖ 1B|!→

=

[
a→ A↑⇐ | + b→ A↑⇒ |


MA

[
a | ⇐→

A
+ b | ⇒→

A



[
c→ B↑⇐ | + d→ B↑⇒ |


1B

[
c | ⇐→

B
+ d | ⇒→

B



= |a|2 A↑⇐ |MA| ⇐→A + |b|2 A↑⇒ |MA| ⇒→A
+a→b A↑⇐ |MA| ⇒→A + b→a A↑⇒ |MA| ⇐→A

= TrA

(
MA


|a|2P↓A + |b|2P↔A

+a→b
S↑

A

⊋ + b→a
S+
A

⊋

)

= TrA (MAωA) .

Again ωA is Hermitian and of unit trace, but
obviously not diagonal; in the usual basis (4.8)
it is

ωA =

(
|a|2 b→a
a→b |b|2

)
.

Nevertheless ω2
A

= ωA, as we can easily verify,
i.e. the system is in a pure state.

4.4 Quantum vs. classical

4.4.1 Entanglement and mixing

As we have seen above, the density matrix of A is
a pure state if the (pure) state of the combined
system A + B is a product state (that is, not
entangled). If the (pure) state of the combined
system A + B is entangled, the summation over
all possibilities for the state of B (“partial trace
over the Hilbert space of B”) leads to the loss of

the phases of the complex numbers a and b and
we end up with a mixed state, as observed in the
previous example involving the state (4.22).

The following general picture for the loss of co-
herence (as encoded in the phases of the initial
pure state probability amplitudes) thus emerges:
in the beginning, system (A) and environment
(B) are not entangled. The system’s density ma-
trix is initially pure. By interaction, the system
and environment become entangled (we will see
examples in later chapters) and the system’s den-
sity matrix becomes mixed.

We stress that the pure or mixed character of
a density operator is independent of the choice
of basis for the Hilbert space of interest. It is
thus completely unrelated to whether the density
operator is diagonal or not. If ωA is a pure state,
ω2
A

= ωA holds in any basis. Fortunately it is not
necessary to compute all matrix elements of ω2

A

to check if ωA is pure. It su"ces to check if the
trace of ω2

A
equals unity, because for mixed states

that trace is strictly smaller than unity. (To see
this, consider the basis in which ωA is diagonal,
keeping in mind that the trace does not depend
on the basis.)

Often, especially in experimental contexts, the
diagonal elements of a density operator are
called populations and the o!-diagonal elements
are called coherences. While a given density
operator may be diagonal in one basis but
non-diagonal in a di!erent basis, distinguishing
between diagonal and o!-diagonal elements is
meaningful if we use the eigenbasis of the Hamil-
tonian. In this basis, the diagonal elements rep-
resent populations of stationary states, while o!-
diagonal elements correspond, e.g., to precessing
magnetization or oscillating electric dipole mo-
ments.

The “pedestrian” method of determining the den-
sity matrix ωA that we have used for the two sim-
ple examples above may be phrased more com-
pactly, and more generally at the same time.
Given a pure state |ς→ of the combined system
A + B, the density operator of system A is ob-
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tained as

ωA = TrB |ς→↑ς| (4.26)

where TrB denotes the trace in the Hilbert space
of B. The generalization to a mixed state of the
compound system A + B is obvious;

ωA = TrB ω (4.27)

is then usually called the reduced density matrix
of A.

4.4.2 Bell states

Entanglement can be quantified beyond the
crude yes/no level considered above. There exist
several measures of entanglement, which will be
discussed in section 4.6. A special class of states
are the maximally entangled states, where the
partial density operators are maximally mixed.
For a = ±b = 1

↘
2

the state |ω→ (4.22) is maxi-
mally entangled. The four maximally entangled
states

1⇑
2

[
| ⇐→

A
↖ | ⇐→

B
± | ⇒→

A
↖ | ⇒→

B



1⇑
2

[
| ⇐→

A
↖ | ⇒→

B
± | ⇒→

A
↖ | ⇐→

B


(4.28)

are known as Bell states; they are a basis (the
Bell basis) of the two-qubit Hilbert space. The
Bell states illustrate nicely how information can
be hidden from local measurements, involving
only one of the qubits A and B. In any of the
states (4.28), any measurement of a single qubit
will give completely random and (on average)
identical results; these states cannot be distin-
guished by single-qubit measurements.

Entanglement between two quantum systems
can only be created if they interact. Section
7.2.5 below, discusses an example where an ini-
tial product state of two spins-1/2 develops into
a Bell state under the influence of an exchange
interaction between the spins.

Up to now we have only considered pure states
of the combined system A + B. We have dis-
cussed and quantified the entanglement between

subsystems A and B, and we have defined the
density operator for subsystem A by discarding
the information on subsystem B. All this is also
possible for mixed states of the combined sys-
tem A + B; for example, the definition of the
concurrence may be generalized to mixed two-
qubit states [43, 44]. Thus mixed states of two
qubits as well as pure states may be entangled
to varying (but not arbitrary, see [45]) degrees.
More general entanglement measures, extending,
for example, beyond two qubits are a topic of on-
going research (see [46] and other articles in the
same journal issue devoted to Quantum Infor-
mation Theory). Some of them are discussed in
section 4.6.1.

4.4.3 Bloch sphere

x

y

z

P

Figure 4.2: Polarization vector φP on the Bloch
sphere.

There is a useful graphic representation for
single-qubit states; to derive it, note that every
operator in the single-qubit Hilbert space can be
written as a combination of the unit operator
and the three spin matrices Sω (eqs. (4.11) to
(4.14)). As the spin matrices are Hermitian and
traceless, the sum of 1

21 plus any linear combi-
nation (with real coe"cients) of the Sω is Her-
mitian and has unit trace. Every 2 ↔ 2 matrix
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with these properties can be written as

1

2

(
1 +

2

⊋
φP · φS

)
=

1

2

(
1 + Pz Px ↗ iPy

Px + iPy 1 ↗ Pz

)

(4.29)

where φP is a real three-component vector. The
eigenvalues of this matrix are

⇀± =
1

2
(1 ± |φP |), (4.30)

that is, the matrix is positive if |φP | ⇓ 1. Thus
the general single-qubit density matrix is

ω(φP ) =
1

2

(
1 +

2

⊋
φP · φS

)
; |φP | ⇓ 1. (4.31)

The set of possible polarization vectors φP is
called the Bloch sphere; pure states have |φP | = 1,
since in that case one of the eigenvalues(4.30)
vanishes. The physical meaning of the polariza-
tion vector is

1

2
Pω =

1

⊋ TrωSω =
1

⊋↑Sω→. (4.32)

In spherical coordinates, the polarization vector
is

φP = r(sin ↽ cos ϑ, sin ↽ sin ϑ, cos ↽). (4.33)

4.4.4 Purity

For pure states |↽, ϑ→ (4.21), r = 1, while for
mixed states 0 ⇓ r < 1.

There is a simple general relation between the
polarization vector φP of the single-qubit density
matrix ωA and the “purity” of ωA. Among the
many possible quantitative measures of purity
of a single qubit density matrix we choose the
quantity

⇁ := 2 Trω2 ↗ 1. (4.34)

A pure density matrix has ⇁ = 1 and the “maxi-
mally mixed” density matrix ω = 1

21 has ⇁ = 0.

The quantity ⇁ can be written in terms of the
eigenvalues of ω, and by (4.30), in terms of φP :

⇁ = 2(⇀2
+ + ⇀2

↑) ↗ 1 = |φP |2 = r2. (4.35)

The density matrix of the system A correspond-
ing to the pure 2-qubit state |ς→ is in the usual
basis (4.8)

ωA(ς) = TrB |ς→↑ς| (4.36)

=

(
|ε|2 + |β|2 εγ→ + βϖ→

ε→γ + β→ϖ |γ|2 + |ϖ|2
)

.

The determinant of ωA(ς) is related to the con-
currence C of |ς→ :

detωA(ς) =
1

4
C2, (4.37)

and it can be expressed by the eigenvalues (4.30):

detω = ⇀+⇀↑ =
1

4
(1 ↗ |φP |2), (4.38)

from which we conclude the desired relation

C2 = 1 ↗ |φP |2 = 1 ↗ ⇁. (4.39)

4.4.5 Time-dependence

Since there are no truly isolated systems (if there
were we would have no way to notice!) the
Schrödinger equation (4.3) is only an approxima-
tion which should be generalized to describe the
dynamics of mixed states. This generalization is
given by the von Neumann equation (often also
called Liouville–von Neumann equation since it
also generalizes the Liouville equation of classical
statistical mechanics)

i⊋ d

dt
ω = [H,ω]. (4.40)

This equation is equivalent to Schrödinger’s
equation (4.3) if ω is a pure state. For time-
independent H a formal solution analogous to
(4.5) may be found:

ω(t) = U(t)ω(t = 0)U(t)† (4.41)

where

U(t) = exp

(
↗i

Ht

⊋

)
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is again the time evolution operator.

A word of warning is in order at this point: all
considerations above are only valid if H involves
only degrees of freedom of the “system” and not
of the “environment”. As soon as system and
environment are coupled by H the density op-
erator ω (of the system) is no longer su"cient
to describe the dynamics consistently, and ad-
ditional information or simplifying assumptions
are necessary.

4.4.6 EPR correlations

Some aspects of quantum mechanics are radi-
cally di!erent from classical mechanics. This can
be illustrated by the Einstein–Podolsky–Rosen
thought experiment [47] invented in 1935 by
Albert Einstein, Boris Podolsky, and Nathan
Rosen, with the intention of showing that quan-
tum mechanics does not provide a complete de-
scription of nature. Ironically the discussion
started by Einstein, Podolsky, and Rosen led
to the discovery by John Bell in 1964 [48] that
indeed correlations between separated quantum
systems which are entangled due to interactions
in the past can be stronger than is possible from
any classical mechanism. This result was ex-
perimentally confirmed by several groups, most
notably the group of Alain Aspect [49], show-
ing that nature prefers quantum mechanics to a
“complete description” in the sense of Einstein
et al. At the same time these results show that
there are “quantum tasks” which cannot be per-
formed by any classical system.

To discuss these matters, we consider once more
two qubits A and B, which will be under the
control of two scientists named Alice and Bob.
(These are the names of the standard characters
in quantum information processing. David Mer-
min once remarked that, in the present context,
the names Albert and Boris would be more ap-
propriate.) We will refer to the qubits as spins-
1
2 , keeping in mind that real experiments usually
involve photons, whose polarization states form
a two-dimensional Hilbert space. The combined

system A + B is initially prepared in the maxi-
mally entangled state

|ωs→ =
1⇑
2

[
| ⇐→

A
↖ | ⇒→

B
↗ | ⇒→

A
↖ | ⇐→

B


,

(4.42)

a member of the Bell basis (4.28). |ω→ is often
called the singlet state because it is an eigenstate
of the total spin S2

T
:= (φSA + φSB)2 with eigen-

value zero (see Appendix 14).

Source

| � � � � | � � �

A B

Figure 4.3: A version of the EPR experiment.

The state |ωs→ having been prepared, the two
qubits are separated spatially, as shown in Fig-
ure 4.3. Alice and Bob perform measurements of
the z spin components of their respective qubits.
(The argument does not change if any other axis
in spin space is chosen, as long as both partners
agree on its direction.) Let us assume that Alice
measures first and that she obtains Sz = +⊋

2 for
her qubit. According to the postulates of quan-
tum mechanics then the state of the combined
system collapses to | ⇐→

A
↖ | ⇒→

B
and Alice can

predict with certainty, the outcome of Bob’s sub-
sequent measurement, Sz = ↗⊋

2 . The argument
is symmetric: if Bob does the measurement, he
knows what result Alice will get - no matter who
measures first.

This was called a “spooky action at a distance”
(spukhafte Fernwirkung) by Einstein, and it is
not surprising that he did not like it, having
made considerable e!orts to eliminate actions at
a distance from physics in his theory of relativ-
ity. One attempt to reconcile the prediction of
quantum mechanics with classical thinking is the
assumption of an underlying classical mechanism
which determines the outcome of the experiment
but which scientists have not yet been able to un-
ravel. This line of thinking goes under the label
hidden-variable theory.
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4.4.7 Bell’s theorem

John Bell showed that the assumption of hid-
den classical variables leads to certain restric-
tions (the, by now, famous Bell inequalities) for
the results of certain measurements. These in-
equalities are violated by quantum mechanical
theory and, as it finally turned out, also by ex-
periment.

As an example we will discuss an inequality due
to Clauser, Horne, Shimony, and Holt [50] (the
CHSH inequality) which was also independently
found by Bell who did not publish it. We start
the discussion with a purely classical reasoning
assuming that the outcomes of the measurements
performed by Alice and Bob on the state |ω→
(4.42) can be described by an underlying clas-
sical probability distribution.

Polariser A Polariser B

Orientation a, a’ Orientation b, b’

Figure 4.4: Experimental scheme for testing the
Bell inequalities.

As shown in Figure 4.4, we assume that Alice
can choose to measure one of the components

a =
2

⊋
φSA · φa or a≃ =

2

⊋
φSA · φa≃, (4.43)

defined by two unit vectors φa and φa≃, respectively.
In any single experiment, a and a≃ can assume
the values ±1. Bob can perform similar mea-
surements with respect to directions φb and φb≃ of
his qubit.

A large number of singlet states is prepared and
shared between Alice and Bob, each of whom
performs a single measurement on each qubit,
deciding randomly (and independently) which
of the two possible measurements to perform.
The pairs of measurements take place at such

space–time points as to exclude any influence of
one measurement on the other.

According to the classical point of view the quan-
tities a, a≃, b, and b≃ have definite values in-
dependent of observation, for each of the large
number of measurements performed. These val-
ues are governed by a joint probability distribu-
tion p(a, a≃, b, b≃) about which nothing is known
except that it is non-negative and normalized to
unity. Now consider the quantity

f := (a + a≃)b ↗ (a ↗ a≃)b≃. (4.44)

Since a and a≃ are either equal or opposite to
each other, one summand of f is zero and the
other is ±2; thus |f | = 2 and consequently

f :=
∑

a,a→,b,b→

p(a, a≃, b, b≃)f ⇓ 2, (4.45)

where the overbar denotes the average (expecta-
tion value) with respect to the probability dis-
tribution defined by p(a, a≃, b, b≃). The average
may be performed separately for each term in f ,
leading to

ab + a≃b ↗ ab≃ + a≃b≃ ⇓ 2, (4.46)

the CHSH inequality. Every single measurement
pair performed by Alice and Bob, as described
above, contributes to one of the four averages of
products in the CHSH inequality and, for a large
number of measurements, the inequality may be
checked to arbitrary precision.

4.4.8 The quantum mechanical
prediction

Now let us consider the situation from a quantum
mechanical point of view. We choose the follow-
ing directions of measurement for Alice and Bob:

φa = ẑ, φa≃ = x̂, φb =
1⇑
2
(↗ẑ ↗ x̂),

φb≃ =
1⇑
2
(ẑ ↗ x̂)
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where x̂ denotes the unit vector in x direction,
etc. This leads to (see (4.12, 4.13))

a = ZA, a≃ = XA, (4.47)

b = ↗ 1⇑
2
(ZB + XB), b≃ =

1⇑
2
(ZB ↗ XB).

The calculation then proceeds by observing that

a ↖ b| ⇐→A ↖ | ⇒→B = | ⇐→A ↖ 1⇑
2
(| ⇒→B ↗ | ⇐→B),

a ↖ b| ⇒→A ↖ | ⇐→B = ↗| ⇒→A ↖ 1⇑
2
(↗| ⇐→B ↗ | ⇒→B)

so that the quantum mechanical expectation
value of a ↖ b in the singlet state (4.42) is

↑ab→ = ↑ω|a ↖ b|ω→ =
1⇑
2
. (4.48)

The other expectation values are calculated in a
similar manner, leading to

↑a≃b→ =
1⇑
2
, ↑ab≃→ = ↗ 1⇑

2
, ↑a≃b≃→ =

1⇑
2
,

(4.49)

and consequently

↑ab→ + ↑a≃b→ ↗ ↑ab≃→ + ↑a≃b≃→ = 2
⇑

2 (4.50)

in obvious contradiction to the classical Bell-
CHSH inequality (4.46).

4.4.9 The Aspect experiment

Figure 4.5: Experimental setup of Aspect for
testing the Bell inequalities.

The quantum mechanical result (4.50) was con-
firmed by Alain Aspect et al. [49] using the
setup shown in Figure 4.5. This changed the

status of the Einstein, Podolsky, and Rosen sce-
nario from a Gedankenexperiment to a real ex-
periment. In the experiment the spin-1/2 states
from the above analysis are replaced by photon
polarization states: the two mutually orthogonal
Sz eigenstates are mapped to linear polarizations
at 0 deg and 90 deg (in some fixed coordinate sys-
tem), and the Sx eigenstates correspond to ±45
deg. polarizations. This translates the algebraic
relations between Hilbert space vectors, such as
|+→ = 1

↘
2
(| ⇐→ + | ⇒→) (where Sx|+→ = +⊋

2 |+→)
to relations between electric fields of polarized
photons.

A photon pair with entangled polarizations cor-
responding to the singlet state (4.42) can be
created by a cascade of decays from an excited
atomic state. Later measurements used nonlin-
ear optical processes to generate entangled pho-
tons. Measurements of the spin components
(4.47) then correspond to photon polarization
measurements, and the 45⇐ angle between the
two spin space reference directions changes to a
22.5⇐ angle between polarizations.

Figure 4.6: Summary of the results of Aspect for
di!erent angles. The curve shows the
quantum mechanical prediction.

As shown in Figure 4.6, the experimental results
clearly confirm the prediction of quantum me-
chanics and violate the Bell-CHSH inequality by
several standard deviations. This and other ex-
periments have demonstrated the impossibility
of hidden-variable theories, and hence, the re-
ality and importance of entanglement in several
convincing ways.
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4.4.10 CNOT as copy operator

In the classical world of our everyday work we
take the possibility of copying something for
granted: we distribute copies of our research pa-
pers to other scientists and we (hopefully) make
backup copies of our important data files on a
regular basis. In Chapter 3 we discussed the pos-
sibilities of copying classical bits, using either the
classical irreversible NAND/NOT gate, or the
reversible classical CNOT gate which performs
the following operation on a pair of classical bits
(x, y):

(x, y) ↗⇔ (x, x XOR y).

With the target bit y initialized to zero, this
yields

(x, 0) ↗⇔ (x, x), (4.51)

as desired. As shall be discussed in Chapter 5,
a quantum CNOT gate may be defined which
performs exactly the same operation on the input
states |0→ and |1→:

|0→ ↖ |0→ ↗⇔ |0→ ↖ |0→ (4.52)
|1→ ↖ |0→ ↗⇔ |1→ ↖ |1→

Here the first qubit is assumed to be the source
qubit and the second qubit is the target qubit,
which after copying is supposed to be in the same
state as the source qubit, provided it was prop-
erly initialized to a certain “blank” state (logical
zero in our case) in the beginning. So, it seems
to be possible to copy quantum states too! How-
ever, the problems start as soon as we initialize
the source qubit to a state

|ω→ = ε|0→ + β|1→. (4.53)

In this case the CNOT gate (which is supposed
to be a linear operator) maps

|ω→ ↖ |0→ = ε|0→ ↖ |0→ + β|1→ ↖ |0→(4.54)
↗⇔ ε|0→ ↖ |0→ + β|1→ ↖ |1→
↓= |ω→ ↖ |ω→,

because |ω→↖|ω→ contains “mixed terms” |0→↖|1→
and |1→ ↖ |0→. This example shows that it may
be possible to copy every member of a finite set
of mutually orthogonal quantum states, but not
every superposition of these states. The ability
to copy classical objects may thus be interpreted
as the ability to copy special quantum states.

4.4.11 The no-cloning theorem

In general it is not possible to make a copy (or
clone) of an unknown (pure) quantum state by
means of unitary operations. This is the famous
no-cloning theorem of Wootters and Zurek [51]
and also Dieks [52]. The proof is amazingly sim-
ple. Let |ω→ be a pure state from some Hilbert
space Hsource, and |s→ some “standard” (or blank)
initial state from a Hilbert space Htarget which
has the same structure as Hsource. A “quantum
state cloner” would then be a unitary operator U
(defined on the direct product Hsource ↖ Htarget)
with the property

U|ω→↖ |s→ = |ω→↖ |ω→ ↙|ω→ ∝ Hsource. (4.55)

As U is supposed to clone every state from
Hsource we now consider the cloning of a second
state |ϑ→:

U|ϑ→ ↖ |s→ = |ϑ→ ↖ |ϑ→. (4.56)

For simplicity we assume that |ω→, |ϑ→, and |s→
are normalized, and take the scalar product of
the two equations above, keeping in mind that U
is unitary, that is, it preserves scalar products:

(
↑s| ↖ ↑ω|U†

)(
U|ϑ→ ↖ |s→

)
= ↑s|s→↑ω|ϑ→

= ↑ω|ϑ→.(4.57)

As U is supposed to clone both states |ω→ and
|ϑ→ we also have

(
↑s| ↖ ↑ω|U†

)(
U|ϑ→ ↖ |s→

)
(4.58)

= (↑ω| ↖ ↑ω|) (|ϑ→ ↖ |ϑ→) (4.59)
= (↑ω|ϑ→)2
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and this is possible only if ↑ω|ϑ→ = 0 or ↑ω|ϑ→ =
1, that is, if the two states to be copied by the
same operation are either identical or orthogo-
nal. This proves the theorem while admitting
copies of states from a set of mutually orthogo-
nal Hilbert space vectors.

Several questions arise regarding the assump-
tions of the theorem:

• Can we allow non-unitary cloning opera-
tions? A possible idea might be to enlarge
the Hilbert space by taking into account the
environment’s Hilbert space. It is not hard
to see that this idea leads to the same prob-
lems as above.

• Can mixed states be cloned?

• Are less than perfect copies possible and
useful?

All these questions have been addressed in the
research literature, references to which can be
found, for example, in [35].

The no-cloning theorem may be considered an
obstacle in quantum computation, where it
would be desirable to “store a copy in a safe
place”. It should be noted, however, that the
theorem is at the very heart of the concept of
secure quantum communication to be discussed
in Chapter 13.

A similar operation is that of quantum telepor-
tation; it transports a state ω from one qubit to
another:

U |ωs→ = |s≃ω→.

In contrast to the cloning case, the source qubit
is modified by the teleportation operation. De-
tails will be discussed in section 13.2.1.

4.5 Measurement revisited

4.5.1 Quantum mechanical projection
postulate

The projection postulate (see Section 4.2.6) is
one of the fundamental assumptions on which

quantum mechanics is based. It assumes that
an ideal measurement brings a particle into the
eigenstate |aj→ of the measurement operator A,
where aj is the corresponding eigenvalue, which
we here assume to be non-degenerate for simplic-
ity. We cannot predict in general which of the
eigenstates will be realized, but the probability
of the realization of each state |aj→ is

pj = |↑aj |ω→|2

for a system initially in state |ω→. According to
the usual interpretation of quantum mechanics,
this is a completely random process, whose out-
come cannot be predicted. Accordingly, it can
also be used as a basic random number genera-
tor.

The observable for this readout process must be
adapted to the system used to implement the
quantum computer as well as to the algorithm. A
typical measurement distinguishes if qubit i is in
state |0→ or |1→. The corresponding measurement
operator may be written as Si

z, i.e., as the z-
component of the spin operator acting on qubit
i, with the positive eigenvalue indicating that the
qubit is in state |0→ and the negative eigenvalue
labeling state |1→.
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Figure 4.7: Stern–Gerlach experiment.

The usual treatment of measurement processes is
due to von Neumann [53] and can be pictured as
a generalized Stern–Gerlach experiment (see Fig-
ure 4.7). The measurement apparatus separates
the particles according to their internal quantum
states. In this picture it is obvious that the mea-
surements are local, i.e., the results for the in-
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dividual particles do not depend on the state of
the other particles. Obviously the complete ab-
sence of interactions is not representative for a
quantum computer.

  

NS

N
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N
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|B| increases
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S

Figure 4.8: Pictorial representation of the
coupling mechanism during the
measurement process. Depending
on their orientation, the mag-
netic dipoles are deflected in the
inhomogeneous magnetic field.

For this simple example, it is relatively straight-
forward to see how the inhomogeneous field sep-
arates the di!erent particles according to their
orientation. As shown in figure 4.8, a particle
whose north pole is closer to the south pole of
the magnet has a lower energy than the particle
with the opposite orientation – its potential en-
ergy is negative. It can further lower its energy
by moving farther into the high-field region and
is therefore deflected upwards, while the oppo-
sitely oriented particle is deflected down. Trans-
ferred into the quantum mechanical context, par-
ticles will follow di!erent trajectories, depending
on their spin state.
If we want to describe the result of a sequence
of measurements, where di!erent realizations of
eigenstates may occur, it is more convenient to
use the density operator introduced in Section
4.3.4. Since the measurement projects the sys-
tem into an eigenstate of the observable, the re-
sulting density operator (which describes the en-
semble of the measurement outcomes) is diago-
nal in the basis of these eigenstates. The mea-
surement process corresponds to a non-unitary

evolution

ω ⇔
∑

j

PjωPj ,

where the Pj = |aj→↑aj | are the projection op-
erators onto the eigenstates aj of the observable
A, i.e., operators with a single 1 on the diagonal
and zeroes everywhere else.

As a simple example, we consider the density
operator

▷ =
1

2

(
1 1
1 1

)

and measure the z↗component of the spin. The
corresponding projection operators are

P1 =

(
1 0
0 0

)
, P2 =

(
0 0
0 1

)
.

The result of the measurement will then be

1

2

(
1 0
0 0

)(
1 1
1 1

)(
1 0
0 0

)

+
1

2

(
0 0
0 1

)(
1 1
1 1

)(
0 0
0 1

)

=
1

2

(
1 0
0 1

)
.

Apparently the measurement process simply
eliminates all o!-diagonal elements of the density
operator in the basis of the observable (which is
usually also an eigenbasis of the Hamiltonian).
This implies that the result of the measurement
process will be a mixed state, unless the system
was already in an eigenstate of A.

We will give some more details of the measure-
ment process below; before that we put it in a
historical and philosophical context.

4.5.2 The Copenhagen interpretation

The conventional interpretation of this measure-
ment process is due to Bohr and coworkers and
known as the “Copenhagen interpretation” of
quantum mechanics. It can be summarized by
a few fundamental assumptions.
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• Quantum mechanics describes individual
systems.

• Quantum mechanical probabilities are pri-
mary, i.e., they cannot be derived from a
deterministic theory (like in classical statis-
tical mechanics).

• The world must be divided into two parts.
The object under study must be described
quantum mechanically, the remaining part,
which includes the measurement apparatus,
is classical. The division between system
and measurement apparatus can be made
at an arbitrary position.

• The measurement process is irreversible.

• Complementary properties cannot be mea-
sured simultaneously.

The Copenhagen interpretation has the advan-
tage that it is relatively simple and internally
consistent. It cannot satisfy, from an aesthetic
point of view, since it implies two di!erent types
of evolution: the “normal” unitary evolution of
the Schrödinger equation and the non-unitary
measurement process. In the strict sense, it im-
plies that quantum mechanical systems cannot
be attributed real properties; instead, it repre-
sents “only” an operational description of the
possible outcomes of measurements and their
probabilities.

These deficiencies have prompted many re-
searchers to look for better alternatives and /
or to check some of the fundamental assump-
tions for their validity. A more detailed model
that tries to integrate the measurement process
with the unitary evolution under the Schrödinger
equation and avoids the splitting of the universe
into a quantum mechanical and a classical part,
is due to John (also known as János or Johann)
von Neumann.

4.5.3 Von Neumann’s model

In von Neumann’s model, the system S is cou-
pled to an apparatus A, which is also considered
as a quantum mechanical system that can be

described by a state vector. For a simple two-
level system the basis states are |ωa→ and |ωb→,
the eigenstates of a system observable OS . The
measurement should determine if the system is
in state |ωa→ or |ωb→. To obtain a quantum me-
chanical description of the measurement process,
we also describe the apparatus A as a two-level
system. The eigenstates are written as |◁a→ and
|◁b→ and correspond to the apparatus indicating
that the system is in state |ωa→ and |ωb→, respec-
tively. A corresponding observable acting on the
apparatus can be written as OA.

According to von Neumann, the measurement
process involves coupling the system to the mea-
surement apparatus through an interaction of
the type

Hint = OSBA,

where OS is the observable to be measured and
BA is a variable of the measurement apparatus.
The system thus drives the motion of the mea-
surement apparatus and in the idealized process,
the eigenvalues of OS can be read o! a “pointer
variable” of the measurement apparatus, which is
treated classically. One usually assumes that the
observable OS that one tries to measure, com-
mutes with the Hamiltonian of the system. In
the case of the Stern–Gerlach experiment, the
observable OS is the z-component of the spin
operator, Sz, and the pointer variable is the po-
sition z along the field direction.

Before the measurement process, the total (sys-
tem and apparatus) can be described as a state
without correlations between system and appa-
ratus. The two parts can thus be described indi-
vidually by the states |ω→

S
= ca|ωa→S + cb|ωb→S

(which is not known) and the initial state |◁→
A

of
the measurement device. The combined system
is then in the product state

|ω→
S

↖ |◁→
A

= (ca|ωa→S + cb|ωb→S) ↖ |◁→
A
.

The interaction between system and apparatus
must be such that it drives the evolution as

|ωa→S ↖ |◁→
A

⇔ |ωa→S ↖ |◁a→A
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and

|ωb→S ↖ |◁→
A

⇔ |ωb→S ↖ |◁b→A

Since the evolution is linear, the superposition
state evolves as

(ca|ωa→S + cb|ωb→S) ↖ |◁→
A

⇔ ca|ωa→S ↖ |◁a→A + cb|ωb→S ↖ |◁b→A.

Apparently the combined system (consisting of
system and apparatus) is still in a superposi-
tion state, but the two parts are now entangled.
Von Neumann’s model does not generate a re-
duction of the wave function, such as is required
by the projection postulate (compare equation
(4.7)). This is a necessary consequence of the
unitary evolution. The reduction only occurs if
we assume in addition that the apparatus is a
classical system, where a reduction must occur.
A reduction of the wavefunction component for
the apparatus into (e.g.) |◁a→A then also causes
a reduction of the system state into |ωa→S . The
combined system is then in state

ca|ωa→S ↖ |◁a→A.

4.5.4 Discussion

This formal result matches the expected out-
come: the system is in a well-defined, pure state
that matches the outcome of the measurement
and the apparatus is also in the matching state.
What remains open are the details of the wave-
function collapse. While the wavefunction re-
duction is therefore not explained, it has been
shifted farther away from the system. Accord-
ing to von Neumann’s understanding, the final
reduction occurs in the mind of the observer.
While this is therefore not a full resolution of
the measurement paradox, it improves the situ-
ation. Since the apparatus is very complex in
terms of a quantum mechanical description, the
collapse of its wavefunction is very fast. Fur-
thermore, since it does not directly involve the
system, some inconsistency is easier to accept.

Nevertheless, one major issue remains unresolved
in von Neumann’s model (as well as in all others):
we only obtain probabilities from the quantum
mechanical description, i.e., we cannot predict
the result of individual measurements. In a wider
context, this relates to the question if quantum
mechanics can teach us something about the re-
ality of quantum objects (ontic interpretation)
or if it only relates to our knowledge of these ob-
jects and how they will behave under experimen-
tal conditions (epistemic interpretation). Today,
textbooks as well as research papers focus on
the epistemic approach, which is based on the
Kopenhagen model. Ontic models of quantum
mechanics include pilot-wave or hidden-variable
models, which were proposed by David Bohm
[54, 55] in the early 1950s. They assume that
wavefunctions are real but there are also extra
degrees of freedom representing the actual po-
sitions of particles, and it is the latter that get
observed. The so-called “many-world” interpre-
tation, introduced by Hugh Everett[56] in 1957
accepts that observers become entangled with
the systems they measure. As a result, measure-
ments do not collapse the wavefunction but lead
to separate branches of the wavefunction, which
are interpreted as parallel worlds.

An extension of the von Neumann measurement
that is sometimes used in the context of quantum
information processing and communication is
the positive operator-valued measure (POVM),
where the states that form the basis for the mea-
surement are not orthogonal. The corresponding
projection operators must still sum up to unity.
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4.6 Entanglement measures

4.6.1 General requirements

In section 4.3.4, we introduced a definition of
entanglement:

A state of a bipartite system is called en-
tangled if it cannot be written as a direct
product of two states from the two subsys-
tem Hilbert spaces.

Formally:

”A⇒B ↓= ”A ↖ ”B.

Entanglement defines a clear border between the
classical and the quantum world. This is not the
only di!erentiation, but certainly an important
one.

In the context of quantum information, it is
sometimes important to know more about a state
than that it is not separable. One would like to
measure the amount of entanglement and some-
times also the type of entanglement. Quantita-
tive measures are particularly important in the
context of quantum communication: some codes
rely on sharing entangled quantum states and se-
crecy can only be guaranteed if the entanglement
is su"ciently large.

The general goal of quantifying entanglement
can be approached on di!erent lines. A useful
measure C of entanglement should fulfill some
general requirements, including

• C = 0 for product states ▷ = ▷A ↖ ▷B.

• C should reach its maximum for maximally
entangled states like the Bell states.

• C is invariant under local unitary transfor-
mations. The measure should not depend
on the choice of the local basis.

Out of the many measures that fulfill these re-
quirements, we discuss only the most popular
ones. Most of the definitions are not completely
general, but they cover only certain systems, e.g.
only bipartite systems or only pure states.

4.6.2 Entropy of entanglement

One of the simplest measures that fulfill these
requirements for pure states is the entropy of en-
tanglement. As discussed in section 4.3.6, the
projection of an entangled pure state onto a sub-
space is mixed. This degree of mixing can be
used as a measure of entanglement of the full
state.

We start with the von Neumann entropy of a
density operator

S(▷) = ↗Tr {▷ log2(▷)}

or sometimes the logarithm is taken with respect
to the basis e, log2 ⇔ ln. The von Neumann
entropy vanishes for a pure state, where all pop-
ulations are 0 or 1 and it reaches its maximum
for the completely mixed state, where

S(
1

N
1) = ↗ 1

N
Tr(log2

1

N
1) = log2 N,

where N is the dimension of the Hilbert space.
The von Neumann entropy is related to Shan-
non’s measure of information, which is important
in the context of information capacity, and to
Gibbs’ entropy from statistical mechanics. More
details are given in chapter 13.

A useful interpretation of the von Neumann en-
tropy is that it represents the minimum number
of bits required to store the result of a random
variable: A pure state ▷1 = |”→↑”| of a single
qubit can always be written in its eigenbase as

▷1 =

(
1 0
0 0

)
.

Its entropy vanishes,

S(▷1) = 1 log2(1) + 0 log2(0) = 0.

A suitable measurement of the observable 0z al-
ways produces the result +1, and the informa-
tion gain from such a measurement vanishes.

For the maximally mixed state

▷2 =
1

2

(
1 0
0 1

)
,
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however, the entropy reaches its maximum value

S(▷2) = ↗Tr

(
1
2 0
0 1

2

)
log2

(
1
2 0
0 1

2

)

=
1

2
Tr

(
log2 2 0

0 log2 2

)
= 1.

Here, every binary observable generates com-
pletely random values. Every result must there-
fore be represented by one bit, compression is
not possible.

The entropy of entanglement is defined for bi-
partite pure states as the von Neumann entropy
of one of the reduced states:

E(▷) = S(▷A) = S(▷B),

where ▷A = TrB(▷) and vice versa. If ▷ is a
product state, such as | ⇐⇐→, ▷A and ▷B are pure
states and the entropy vanishes. If the state is
maximally entangled, e.g.

|”→ =
1⇑
2

(| ⇐⇐→ + | ⇒⇒→) ,

the subsystems become completely mixed, ▷A =
▷B = 1

21. The corresponding entropy, the en-
tanglement entropy of a maximally entangled 2-
qubit state is then E(▷) = S(▷A) = S(▷B) = 1.

4.6.3 Concurrence : Definition
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Figure 4.9: Meanings of the term “Concurrence”
in di!erent fields (from wikipedia).

The term “concurrence” has been used in many
di!erent contexts. In quantum information, it

was introduced as a measure of ’quantumness’.
For pure 2-qubit states

|”→ = ε| ⇐⇐→ + β| ⇐⇒→ + γ| ⇒⇐→ + ϖ| ⇒⇒→

it is defined as

C := 2|εϖ ↗ βγ| ≃ 0. (4.60)

The concurrence is bounded from above:

C ⇓ 1. (4.61)

If we consider a typical product state, e.g.

”1 = | ⇐⇐→ =





1
0
0
0





we find C(”1) = 0, i.e. the state is not entan-
gled. Similarly, for

”2 =
1

2
(| ⇐→ + | ⇒→)↖(| ⇐→ + | ⇒→) =

1

2





1
1
1
1



 ,

we find again C(”2) = 0. Since ”1 and ”2 are
identical under local transformations (here: ro-
tations z ⇔ x), this is consistent with the general
requirements for entanglement measures.

4.6.4 Generating entanglement

We now consider the e!ect of an “entangling
gate”, such as

CN =





1
1

cos ϑ

2 ↗ sin ϑ

2
sin ϑ

2 cos ϑ

2



 , (4.62)

which is close to the CNOT gate if 1 = ↼. If we
apply it to ”2, we find

”3 = CN · ”2 =
1

2





1
1

cos ϑ

2 ↗ sin ϑ

2
cos ϑ

2 + sin ϑ

2



 .
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This corresponds to the ‘pre-measurement’ in
the theory of the quantum measurement process,
which entangles the system with the apparatus.

For this state, the concurrence is

C(”3) =
1

2
| cos

1

2
+ sin

1

2
↗ (cos

1

2
↗ sin

1

2
)|

= | sin 1

2
|.

The state is therefore entangled for any finite
angle 1. The entanglement reaches its maximum
of C = 1 for 1 = ↼, where CN ′ CNOT, apart
from the ↗ sign, and returns to 0 for 1 = 2↼.

We can also calculate the entanglement entropy
for this state. The full density operator has the
form

▷3 =
1

4





1 1 c↑ c+
1 1 c↑ c+
c↑ c↑ 1 ↗ sin 1 cos ϑ

4
c+ c+ cos ϑ

4 1 + sin 1



 ,

where

c± = cos
1

2
± sin

1

2
.

The subsystem density operators are calculated
by tracing over the basis states of the other sub-
system, e.g. ▷A = TrB(▷). The individual ele-
ments are then

▷A[1, 1] = ▷[1, 1] + ▷[2, 2] =
1

2

▷A[2, 2] = ▷[3, 3] + ▷[4, 4] =
1

2

▷A[1, 2] = ▷[1, 3] + ▷[2, 4] =
1

4
(c↑ + c+) =

1

2
cos

1

2

▷A[2, 1] = ▷[3, 1] + ▷[4, 2] =
1

4
(c↑ + c+) =

1

2
cos

1

2
.

Together

▷A = TrB(▷) =
1

2

(
1 cos ϑ

2
cos ϑ

2 1

)
.

For the other subsystem:

▷B[1, 1] = ▷[1, 1] + ▷[3, 3] =
1

4
(2 ↗ sin 1)

▷B[2, 2] = ▷[3, 3] + ▷[4, 4] =
1

4
(2 + sin 1)

▷B[1, 2] = ▷[1, 2] + ▷[3, 4] =
1

4
(1 + cos

1

4
)

=
1

2
cos2

1

2

▷B[2, 1] = ▷[2, 1] + ▷[4, 3] =
1

4
(1 + cos

1

4
)

=
1

2
cos2

1

2
.

Together:

▷B = TrA(▷) =
1

2

(
1 ↗ 1

2 sin 1 cos2 ϑ

2
cos2 ϑ

2 1 + 1
2 sin 1

)
,

where we used the trigonometric identity 1 +
cos(1/4) = 2 cos2(1/2). The di!erence between
▷A and ▷B reflects the asymmetric role that con-
trol and target bit play in the CNOT gate.

To calculate the logarithm, it is useful to convert
the matrices into their eigenbases. The diagonal
form of ▷A is

▷dA =
1

2

(
1 ↗ cos ϑ

2 0
0 1 + cos ϑ

2

)
.

The entropy is thus

S(▷A) = ↗1

2

[
(1 ↗ cos

1

2
) log2

(
1 ↗ cos ϑ

2

2

)

+(1 + cos
1

2
) log2

(
1 + cos ϑ

2

2

)
.

For ▷B, we obtain

▷dB =
1

2

(
1 ↗ cos ϑ

2 0
0 1 + cos ϑ

2

)
= ▷dA

and therefore S(▷B) = S(▷A). It also reaches its
maximum at 1 = ↼:

S(▷A, ↼) = ↗ log2(
1

2
) = 1.
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4.6.5 Concurrence : Properties

The two-qubit product state |!→ (4.25) has C =
0, and in fact any state with C = 0 can be writ-
ten as a product state. Thus C = 0 if and only if
the state is a product state. The state |ω→ (4.22),

|ω→ = a | ⇐→
A

↖ | ⇐→
B

+ b | ⇒→
A

↖ | ⇒→
B

has

C = 2|ab| = 2|a|


1 ↗ |a|2 ⇓ 1. (4.63)
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Figure 4.10: Entanglement entropy S and con-
currence C of ▷3 as a function of
the rotation angle 1.

Figure 4.10 shows the entanglement entropy
E(▷3) = S(▷A) = S(▷B) that is generated by the
entangling gate (4.62) as a function of the rota-
tion angle 1. Clearly, the dependence is di!erent
from that of the concurrence C(”3) for the same
state, which starts linearly with 1. However,
both entanglement measures reach their maxi-
mum for the same state and vanish when the
state is separable.

For density matrices, i.e. partially mixed states
of two qubits, the concurrence is defined as

C(▷) = max(0, ⇀1 ↗ ⇀2 ↗ ⇀3 ↗ ⇀4), (4.64)

where ⇀i are the eigenvalues, in decreasing order,
of the Hermitian operator

R =
⇑

▷▷̃
⇑

▷,

where

▷̃ = (0y ↖ 0y) ▷→ (0y ↖ 0y) .

Equivalently, the ⇀i may be calculated as the
square roots of the eigenvalues of the non-
Hermitian matrix ▷▷̃. For pure states, ▷2 =
▷, this yields the same result as the definition
(4.60).

4.6.6 Tangle

Concurrence and entropy quantify the entangle-
ment between 2 qubits. In a 3-qubit system
ABC, di!erent types of entanglement exist. The
qubits can be pairwise entangled, i.e. A can be
entangled with B or with C. Alternatively, there
are three-way entangled states that are not pair-
wise entangled. These di!erent types of entan-
glement can be quantified by several entangle-
ment measures called “tangle”.

We consider a pure three-qubit system. Any two
qubits of this system can be pairwise entangled
and their entanglement can be measured, e.g., by
the concurrence Cik, which measures the pair-
wise entanglement between qubits i and k. Each
of these is determined by tracing over the third
qubit and then using eq. (4.64) to calculate the
concurrence for the resulting 2-qubit state, which
may be pure or mixed.

For the 3-qubit system, we can define the average
two-tangle

22 =
C2
12 + C2

23 + C2
13

3
,

Entanglement between one qubit and both oth-
ers can be measured by the bipartite concurrence

Ci(jk) =


2 ↗ 2 Tr(▷2
i
),

where ▷i is the subsystem of qubit i obtained by
tracing over the two other qubits. If the pure
3-qubit state is a product state, ▷i is pure and
therefore ▷i = ▷2

i
and Tr(▷2

i
) = 1 and Ci(jk) = 0.

For an entangled state, Tr(▷2
i
) < 1 and Ci(jk) >
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0. For a maximally entangled state, ▷i = 1
21 and

Ci(jk) = 1.

While the bipartite concurrence tells us if qubit
i is entangled with the two others, this entan-
glement could be with only one of them or with
both. This can be quantified by the three-tangle
23, which subtracts the pairwise entanglement of
qubit i with qubits j and k from the bipartite
concurrence to obtain the essential three-way en-
tanglement of a pure three-qubit state:

23 = C2
i(jk) ↗ (C2

ij + C2
ik

). (4.65)

The di!erence between pure 2-way and 3-way en-
tanglement can be seen by considering the GHZ
and W-states:

|W→001 =
1⇑
3
(|001→ + |010→ + |100→)

|GHZ±→ =
1⇑
2
(|000→ ± |111→).

Figure 4.11: Di!erent types of entanglement in
3-partite states.

The essential di!erence between these states be-
comes obvious if we perform a measurement on
one of the three qubits. In the case of the GHZ
state, if we measure an arbitrary qubit and ob-
tain the result 0, the system collapses into the
state |000→. Clearly, this is no longer an en-
tangled state. Measuring any one of the qubits
therefore completely destroys the entanglement.
This is therefore “essential three-way entangle-
ment”. In contrast, if we measure the third qubit
of the W state and obtain the result 0, we are left
with the state |010→+|100→, in which the first two
qubits are still maximally entangled. This type
of entanglement is therefore called pairwise en-
tanglement.

The di!erent types of entanglement are comple-
mentary: If a system is strongly three-way entan-
gled, its bipartite entanglement cannot be large.
This can be quantified. For a three-qubit system,

23 + 2 (k)
2 + S2

k
= 1.

Here, Sk quantifies the single-particle character
of qubit k (for details, see Ref. [57]), 2 (k)

2 the
two-way entanglement of qubit k with the other
qubits, and 23 the ‘essential three-way entangle-
ment’ defined by eq. (4.65).

4.6.7 Positive Partial Transpose
(PPT)

The Positive Partial Transpose (PPT) was intro-
duced by Peres [58] and by the Horodeckis [59]
as a necessary condition, for the joint density
matrix ▷ of two quantum mechanical systems A
and B to be separable. It is directly formulated
for density operators and therefore applicable to
mixed states. It is not a measure of entangle-
ment, but a criterion that allows one to distin-
guish between entangled and separable states.

We consider a bipartite system AB and write the
basis states of qubit A as |i→ and |j→ and for qubit
B as |l→ and |k→. The density operator of the full
system can then be written as

▷ =
∑

ijkl

pijkl |i→↑j| ↖ |k→↑l|. (4.66)

The partial transpose with respect to one of the
qubits, e.g. B, is obtained by interchanging the
corresponding bras and kets,

(|k→↑l|)T = |l→↑k|,

while the corresponding states of qubit A remain
unchanged. Applying this transformation to the
density operator (4.66) yields

▷TB = (1 ↖ T )▷ =
∑

ijkl

pijkl |i→↑j| ↖ |l→↑k|.

The PPT criterion states that if ▷TB has a neg-
ative eigenvalue, then ▷ is entangled. A positive
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partial transpose is thus a necessary condition
for a density operator to be separable. In the
2 ↔ 2 and 2 ↔ 3 dimensional cases the condition
is also su"cient.
Unfortunately, the proof of this theorem is not
trivial. However, it is easy to show that for sep-
arable states the eigenvalues of the partial trans-
pose are positive. If the state is separable, it can
be written as

▷ =
∑

i

pi ▷
A

i ↖ ▷Bi

for some probabilities pi ≃ 0. The density op-
erators ▷A,B

i
act on the Hilbert spaces of the in-

dividual qubits. If we take the partial transpose
of one of them, their eigenvalues, which must all
be positive or zero, do not change and therefore
the eigenvalues of the product state must also be
positive or zero.

4.6.8 Examples

We now apply this test to 2 specific examples,
one that we know to be a product state, the other
a well-known entangled state. The first example
is the product state

▷1 = | ⇐⇐→↑⇐⇐ | =





1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



 .

Clearly, the partial transpose leaves this state
invariant, ▷TB

1 = ▷1, and the eigenvalues are
(1,0,0,0). Since none of them is negative, this
is compatible with a product state.
As the second example, we take one of the Bell
states, 1

↘
2
(| ⇐⇐→ + | ⇒⇒→). It’s density operator is

▷2 =
1

2
(| ⇐⇐→ + | ⇒⇒→) (↑⇐⇐ | + ↑⇒⇒ |)

=
1

2
(| ⇐⇐→↑⇐⇐ | + | ⇐⇐→↑⇒⇒ |

+| ⇒⇒→↑⇐⇐ | + | ⇒⇒→↑⇒⇒ |)

=
1

2





1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1



 . (4.67)

The TB operation does not a!ect the projectors
| ⇐⇐→↑⇐⇐ | and | ⇒⇒→↑⇒⇒ |, but it changes

| ⇐⇐→↑⇒⇒ | TB↗↗⇔ | ⇐⇒→↑⇒⇐ |

| ⇒⇒→↑⇐⇐ | TB↗↗⇔ | ⇒⇐→↑⇐⇒ |.

We therefore get

▷TB
2 =

1

2
(| ⇐⇐→↑⇐⇐ | + | ⇐⇒→↑⇒⇐ |

+| ⇒⇐→↑⇐⇒ | + | ⇒⇒→↑⇒⇒ |)

=
1

2





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



 .

To obtain the eigenvalues of this state, we have to
diagonalize the central 2↔2 matrix, which corre-
sponds to 0x/2 and therefore has the same eigen-
values as 0z/2, ⇀2,3 = ±1/2. We have there-
fore found one negative eigenvalue and are cor-
respondingly assured that ▷2 is entangled, as we
expect for a Bell state.

4.6.9 Decay of entanglement

Superposition states like ▷2 generally are not sta-
ble, but decay over time. A typical evolution is
that the populations equilibrate on a time scale
T1, while the o!-diagonal elements decay to zero
on a time scale T2, ▷ik = ▷ik(0)e↑t/T2 . The state
▷2 would thus evolve as

▷2(t) =





p+ 0 0 1
2e

↑t/T2

0 p↑ 0 0
0 0 p↑ 0

1
2e

↑t/T2 0 0 p+





with

p± =
1

4
(1 ± e↑t/T1).

Clearly, ▷(t = 0) is equal to ▷2 of eq. (4.67).

For su"ciently long times t ∞ (T1, T2), this state
tends to

▷2(t ⇔ ∈) =
1

4
1,
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which corresponds to the maximally mixed state
and is clearly not entangled.

If we apply the partial transpose to ▷2(t), we
obtain

▷2(t) =





p+ 0 0 0
0 p↑

1
2e

↑t/T2 0
0 1

2e
↑t/T2 p↑ 0

0 0 0 p+



 ,

which has the eigenvalues

⇀i = (p+, p↑ +
1

2
e↑t/T2 , p↑ ↗ 1

2
e↑t/T2 , p+).

While the eigenvalues ⇀1, ⇀2, and ⇀4 are always
positive, ⇀3 is negative for

1

4
(1 ↗ e↑t/T1) <

1

2
e↑t/T2

or

e↑t/T1 + 2e↑t/T2 > 1,

i.e. for su"ciently short times. For long times,
however, t ∞ T1,T2, it tends towards 1/4, the
same as all the other eigenvalues, and the result-
ing state fulfills the PPT criterion.

Time
0

0.5

0 2 3

-0.5

1

Figure 4.12: Time dependence of the popula-
tions and the eigenvalue ⇀3 of ▷2 for
T1 = T2 = 1.

Fig. 4.12 shows the time dependence of the pop-
ulations (blue) and of the third (negative) eigen-
value ⇀3(t). For long times, the populations ap-
proach their equilibrium values p↗ = 1/4. The
initially negative eigenvalue ⇀3(t) increases and
vanishes after a time ′ 1 for the present exam-
ple, where we arbitrarily assumed T1 = T2 = 1.

At this point, the system is no longer entangled.
With a certain tendency towards drama, this ef-
fect that the system becomes separable on a fi-
nite time scale has been termed “entanglement
sudden death”.

The PPT criterion is not suited for the charac-
terization of multipartite (>2 parts) systems.

4.6.10 Quantum discord

Another measure of nonclassical correlations be-
tween two subsystems is the quantum discord.
The concept was introduced in 2001 by Ollivier
and Zurek [60] and by Henderson and Vedral [61].
It measures correlations that can also be present
in certain mixed separable states and are consid-
ered “quantum mechanical”. It is based on “quan-
tum mutual information”, the quantum mechani-
cal analog of Shannon mutual information. More
precisely, discord is the di!erence between the
total mutual information of the subsystems and
the mutual information that can be extracted by
local measurements. In the case of pure states,
the quantum discord measures the entropy of en-
tanglement.

Figure 4.13: Schematic representation of the mu-
tual information I(▷) between sub-
systems A and B.

We first remember the von Neumann or infor-
mation entropy S(▷) = ↗Tr(▷ log2 ▷) defined in
section 4.6.2. If we apply this definition to a
system consisting of 2 qubits A and B, we can
define the entropy of the individual subsystems
S(▷A), S(▷B), as well as the entropy S(▷) of the
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combined system. From this, we calculate

I(▷) = S(▷A) + S(▷B) ↗ S(▷),

which is known as the von Neumann mutual in-
formation between the two subsystems. If the
subsystems ▷A and ▷B are completely indepen-
dent, the sum of the information contents of the
subsystems, S(▷A) + S(▷B) is equal to the in-
formation content S(▷) of the combined system
and the di!erence vanishes. If the two are entan-
gled, then a measurement of one subsystem also
contains information about the other and the to-
tal information content is smaller than the sum
of the two subsystems. In the case of a maxi-
mally entangled system, such as the Bell states,
the measurement of one subsystem contains also
the complete information about the other sub-
system. The mutual information thus measures
the total correlations between the two subsys-
tems.

We consider as an example the product state
”1 = | ⇐⇐→. Here, S(▷A) = S(▷B) = S(▷) = 0,
and the mutual information vanishes,

I(|”1→↑”1|) = 0.

For the Bell state

”2 =
1⇑
2

(| ⇐⇐→ + | ⇒⇒→) ,

the entropy of the combined system vanishes, but
the subsystems are maximally mixed and their
entropy reaches the maximal value of 1. Accord-
ingly,

I(|”2→↑”2|) = 2.

In addition, we define the quantum conditional
entropy

S(▷B|▷A) = min
∑

{!A
J }

S(▷
B|!A

j
),

where


#A

j


is the set of projective operators on

subsystem A and ▷
B|!A

j
are the resulting states.

Figure 4.14: Schematic representation of J(▷) for
the classical case or for a specific set
of observables.

The quantum conditional entropy is also an en-
tanglement measure: if it is negative, the state
is entangled.

From this we calculate the di!erence

JA(▷) = S(▷B) ↗ S(▷B|▷A).

J specifies the information gained about A as a
result of a measurement on some set of observ-
ables on B. For a classical system, I(▷) = J(▷).

The quantum discord is then defined as the dif-
ference

DA(▷) = I(▷) ↗ JA(▷).

It vanishes for classical systems, but not gener-
ally for quantum mechanical systems. For a pos-
sible interpretation, I describes the correlation
between the two subsystems, J the information
gained about A by measurements on B. The
di!erence DA(▷) therefore measures information
that can’t be extracted by local measurements.

If we use the definitions of I and J , we can write

DA(▷) = I(▷) ↗ JA(▷)

= S(▷A) ↗ S(▷) + S(▷B|▷A).

The first 2 terms represent the entropy of entan-
glement before the measurements, the last term
the conditional entropy between the two subsys-
tems.

The quantum discord is not symmetric, DA(▷) ↓=
DB(▷) in general. As an example, consider the
state

▷AB =
1

2
(|0→↑0| ↖ |↗→↑↗| + |1→↑1| ↖ |0→↑0|) .
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Here, a measurement in the computational basis
will not perturb subsystem A, while a measure-
ment on B will always change the state.

A necessary and su"cient condition for a state ▷
to have zero discord is that there exist a projec-
tive measure {#k} such that

▷ =
∑

k

(#k · 1) ▷ (#k · 1).

If DA(▷) ↓= 0, this means that measurements on
the subsystem B perturb the subsystem A. This
does not happen for classical systems, but can
happen for quantum systems, even if they are
not entangled. The discord can therefore also be
interpreted as the di!erence between the total
mutual information and the mutual information
that can be extracted by local measurements.
It can be nonzero for quantum mechanical sys-
tems in separable states. It therefore represents
a measure of “quantumness” independent of en-
tanglement.
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Figure 4.15: Discord as a function of the polar-
ization for a partially mixed Bell
state.

Figure 4.15 shows, as an example, the quantum
discord for a partially mixed Bell state

▷ =
1 ↗ z

4
1 + z|”→↑”|,

where

|”→ =
1⇑
2
(| ⇐⇐→ + ↑⇒⇒ |)

is one of the Bell states. For all nonzero values of
the polarization z, the discord is positive, while
the entanglement only starts at a finite value.

The quantum discord was quite popular for some
time. One possible reason for this is that it van-
ishes for pointer states, which correspond to the
e!ectively classical states relevant for quantum
measurements. In pure states, the quantum dis-
cord is nonzero only for entangled states.

Quantum discord can be measured by quantum
discord witness operators. Since these operators
are nonlinear, this is a nontrivial subject.

4.6.11 Entanglement witnesses

Entanglement witnesses are functionals of the
density operator that distinguish specific entan-
gled states from separable ones. If they are lin-
ear functions, they can be represented as oper-
ators. The expectation value of theses opera-
tors for an entangled state is strictly outside the
range of possible expectation values of any sepa-
rable state. Separable states are given by density
operators of the type

▷s =
∑

i

pi▷
A

i ↖ ▷Bi ,

where ▷A,B

i
are pure states of the subsystems A

and B and the pi ≃ 0 probabilities. Clearly,
these states form a convex set, i.e. every linear
combination

a ▷A + (1 ↗ a) ▷B a ∝ [0, 1]

of 2 states ▷A and ▷B in the set is also inside.

Separable states

.

Entanglement witness

Figure 4.16: Schematic representation of an en-
tanglement witness W , separating
the entangled state ▷e from the con-
vex set of all separable states ▷s.
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This is compared to an entangled state ▷e, which
therefore must be outside of this convex set. It
is then possible to find a (hyper-)plane located
between the point and the convex set. This hy-
perplane can be represented as an operator W
such that

Tr{W▷e} < 0 and Tr{W▷s} ≃ 0.

Entanglement witness operators can always be
found, but there is no general recipe for con-
structing them and they are not suitable for dis-
tinguishing between arbitrary entangled states
and product states. However, for large systems
with more than 3 qubits, there is often no other
practical solution.

Further reading

There is a large number of excellent books on
quantum mechanics and its applications at all
levels. Dirac’s classic book [62] is a concise and
clear masterpiece. Cohen-Tannoudji et al. [63] is
a detailed student-friendly textbook. Ballentine
[64] has interesting modern applications, whereas
Peres [65] concentrates on the conceptual struc-
ture of the theory.

Problems and Exercises

1. Show that H2 = 1, where H is the
Hadamard gate. Find X

1
2 , the square root

of NOT. (Hint: use (4.18) for ε = x or
(4.19) and choose appropriate values for the
arguments of the sine and cosine functions.)
Apply X

1
2 to |0→ and |1→.

2. Calculate the time-dependent expectation
value of the spin vector, with components
↑Sω→, (ε = x, y, z) for the time-dependent
state (4.20) and visualize it in terms of a
classical magnetic moment precessing in a
magnetic field. This aspect will be discussed
again in the context of nuclear magnetic res-
onance in chapter 10.

3. Check that the state |↽, ϑ→ (4.21) is an eigen-
state of the operator

cos ↽ Sz + sin ↽ cos ϑSx + sin ↽ sin ϑSy

with eigenvalue +⊋/2.

4. Try to write the following two states as
product states:

a) ac| ⇐⇐→ + ad| ⇐⇒→ + bc| ⇒⇐→ + bd| ⇒⇒→

b) 1
↘
2
(| ⇐⇒→ ↗ | ⇒⇐→)

5. Calculate the expectation values ↑(Sω→ and
the variances ↑(Sω↗↑Sω→)2→ (ε = x, y, z) for
the pure state

|ς→ =
1⇑
2
(| ⇐→ + | ⇒→)

and the mixed state

ω =
1

2
(P↓ + P↔)

Calculate the purity ⇁ (4.35) for the mixed
state.

6. Calculate the quantum discord for the state

▷ =
1 ↗ z

4
1 + z|”→↑”|,

with |”→ = 1
↘
2
(| ⇐⇐→ + | ⇒⇒→).
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