3 Elements of Classical Computer Science

Computer science is a vast field, ranging from
the very abstract and fundamental to the very
applied and down-to-earth. It is impossible to
summarize the status of the field for an audience
of outsiders (such as physicists) on a few pages.
The present chapter is intended to serve as an
introduction to the most basic notions necessary
to discuss logical operations, circuits, and algo-
rithms. We will first introduce logic gates of two
types: irreversible and reversible. Later we will
discuss the Turing machine as a universal com-
puter and the concept of complexity classes. All
this will be done in an informal and highly non-
rigorous style intended to provide our physicist
readership with some rough idea about the sub-
ject.

3.1 Bits of history

Figure 3.1: Charles Babbage (1791-1871) and a
difference engine built according to
his design.

The inventor of the first programmable com-
puter is probably Charles Babbage (1791-1871)
(— Fig. [3.1). He was interested in the auto-
matic computation of mathematical tables and
designed the mechanical “analytical engine” in
the 1830s. The engine was to be controlled and

programmed by punchcards, a technique already
known from the automatic Jacquard loom, but
was never actually built. Babbage’s unpublished
notebooks were discovered in 1937 and the 31-
digit accuracy “Difference Engine No. 2”7 was
built to Babbage’s specifications in 1991. (Bab-
bage was also Lucasian professor of mathematics
in Cambridge, like Newton, Stokes, Dirac, and
Hawking, and he invented important practical
devices such as the locomotive cowcatcher.)

The first computer programmer was proba-
bly Ada Augusta King, countess of Lovelace
(1815-1852), daughter of the famous poet Lord
Byron, who devised a program to compute
Bernoulli numbers (recursively) with Babbage’s
engine. From this example we learn that the
practice of devising algorithms for not-yet ex-
isting computers is considerably older than the
quantum age.

Another important figure from 19th century
Britain is George Boole (1815-1864) who in 1847
published his ideas for formalizing logical oper-
ations by using operations like AND, OR, and
NOT on binary numbers.

Alan Turing (1912-1954) invented the Turing
machine in 1936 in the context of the decidabil-
ity problem posed by David Hilbert: Is it always
possible to decide whether a given mathematical
statement is true or not? (It is not, and Turing’s
machine helped to show that.)

3.2 Boolean algebra and logic
gates

3.2.1 Bits and gates

Classical digital computers are based on Boolean
logic. In this context, the “atoms” of information

35

3 Elements of Classical Computer Science

are the binary digits, or bits. Every bit can as-
sume one of two values, which are usually labeled
0 and 1 or true and false. In the computing hard-
ware, bits are represented by easily distinguish-
able physical states, such as high or low voltage
or the presence or absence of a charge or current,
or the direction of a magnetization. Generally,
information is then encoded in a string of bits,
where the length of the string depends on the
amount of information.

Information processing corresponds to manipu-
lation of this information. Computations are de-
fined by algorithms, i.e. sequences of elementary
logical operations like NOT, OR, and AND, that
act on (transform) strings of bits. Any transfor-
mation between two bit strings of finite length
can be decomposed into one- and two-bit opera-
tions. (See [32]; a proof of the quantum version
of this important fact will be sketched in Chapter

B

Out
Gate

Figure 3.2: A logic gate with two input bits and
one output bit.

Logic operations or gates can be characterized by
the number of bits that they take as input and
the number of bits they produce as output. Fig-
ure shows a simple example with two input
bits and one output bit. This representation of
logic gates, where wires represent bits and boxes
the gate operations leads naturally to what is
called the network model of computation (often
also called the circuit model).

The simplest type of logic gate operations are
the one bit gates, which act on a single input
bit and produce a single output bit. Four pos-
sible operations may be applied to a single bit:
the bit may be left untouched (identity), it may
be flipped (NOT), and it may be set to 0 or 1
unconditionally. The latter two operations are
obviously irreversible.

3.2.2 2-bit logic gates

At the next level of complexity are the 2-bit logic
gates. We first discuss one-bit functions of a two-
bit argument:

(z,y) — f(z,y) where z,y, f =0 or 1.

Logic gates of this type are called Boolean func-
tions. The four possible inputs 00, 01, 10,
11 can each be mapped to one of two possi-
ble outputs 0 and 1; the function is completely
characterized by the string of four output bits
(f(00), £(01), £(10), f(11)). Since there are 2* =
16 different output strings, we have 16 possible
Boolean functions of two binary variables. Most
of these gates are irreversible since the output is
shorter than the input.

x|y |xORy|xANDy
0|0 0 0
011 1 0
110 1 0
111 1 1

The binary operations OR and AND are defined
by their truth tables, see the table above. Some
elementary logic operations have useful algebraic
representations:

e NOTz—1—=x

e z AND y — zy

e x XOR y — = @y, i.e. addition modulo 2 .
All other operations, such as IMPLIES or XOR

can be constructed from the elementary opera-
tions NOT, OR, and AND. As an example for
the reduction of a logical operation to more ele-
mentary operations consider

x XOR y = (z OR y) AND NOT (x AND y).

(XOR is also often denoted by @, because it is
equivalent to addition modulo 2.)

We now return to the 16 Boolean functions of two
bits. We number them according to the four-bit
output string as given in the above truth table,

36

3 Elements of Classical Computer Science

read from top to bottom and interpreted as a bi-
nary number. For example AND outputs 0001=1
and OR outputs 0111=7. We can thus charac-
terize each gate or function by a number between
0 and 15 and look at them in order. Some ex-
amples are:

0: The absurdity, e.g.
(x AND y) AND NOT (z AND y).

1: x AND y

2: x AND (NOT y)

3: x, which can be written in a more complicated
way: ¢ =2 OR (y AND NOT y)

4: (NOT z) AND y

5: y = ...(see x above)

8: (NOT z) AND (NOT y) =: (z NOR y)

9: ((NOT z) AND (NOT y)) OR (x AND y)

NOT (x XOR y) =: (x EQUALS y)

All others can be obtained by negating the above;
notable are

13: NOT (z AND (NOT y)) =: z IMPLIES y
14: NOT (z AND y) =: 2 NAND y

15: The banality, for example
(x AND y) OR NOT (z AND y).

We have thus seen that all Boolean functions can
be constructed from the elementary Boolean op-
erations. Furthermore, since

2 OR y = (NOT z) NAND (NOT y),

we see that we only need NAND (as defined by
line 14) and NOT to achieve any desired classi-

cal logic gate with two input bits and one output
bit.

In order to connect an arbitrary number n of in-
put lines to m output lines we need, in addition
to the logic gates shown schematically in Fig-
ure the ability to COPY the contents of one
bit to a different bit while keeping the original
bit. This is usually symbolized by a branching
line in a network diagram, which symbolizes a
branching wire with equal voltage levels at the

three terminals. While copying a classical bit is
thus a trivial operation, copying a quantum bit
turns out to be impossible! This no-cloning the-
orem will be discussed in Chapter |4; it is at the
heart of the schemes developed for secure quan-
tum communication to be discussed in Chapter

[13l

3.2.3 Minimum set of irreversible
gates

We would like to reduce the number of gates
needed to perform an arbitrary bit string oper-
ation to the absolute minimum. Being able to
build a network using the smallest possible set
of different elements is desirable from a theoret-
ical point of view. In practice, however, it is
usually more advisable to employ a larger vari-
ety of gates in order to keep the total size of the
network smaller. We note that

x NAND y NOT (z AND y)
(NOT z) OR (NOT y)

1—xzy.

If we can copy x to another bit, we can use
NAND to achieve NOT:

eNANDz=1—-22=1—2= NOT x

(where we have used 2 = z for z = 0,1). Alter-
natively, if we can prepare a constant bit 1:

zNAND1=1—-2= NOT z.

We can also express AND and OR by NAND
only:

(x NAND y) NAND (z NAND y)

1—(1—zy)?
1—-(1—2y)=a2y=x2 AND y

and

(x NAND z) NAND (y NAND y)
(NOT z) NAND (NOT y)
1-1-2)1—-y)=xdy—ay
x OR y.

37

3 Elements of Classical Computer Science

Thus the combination of the NAND gate and the
COPY operation (which is not a gate in the strict
sense defined above) forms a universal set of (ir-
reversible) classical gates. A different universal
set of two gates is given by NOR and COPY, for
example.

The operations NAND and COPY can both be
performed by a single two-bit to two-bit gate,
if we can prepare a bit in state 1. This is the
NAND/NOT gate:

— (1—-z,1—2zy)

(NOT z,z NAND y).

(2, y) (3.1)

The truth table is

x|y | NOTx | x NAND y
0]0 1 1
0|1 1 1
110 0 1
171 0 0

The NOT and NAND functions are obviously
achieved by ignoring the second and first output
bit, respectively. For y = 1 we obtain COPY,
combined with a NOT which can be inverted by
the same gate.

3.2.4 Minimum set of reversible gates

Although we know how to construct a universal
set of irreversible gates there are good reasons to
study the reversible alternative. Firstly, quan-
tum gates are reversible, and secondly, reversible
computation is in principle possible without dis-
sipation of energy.

A reversible computer evaluates an invertible n-
bit function of n bits. Note that every irre-
versible function can be made reversible at the
expense of additional bits: the irreversible (for
m < n) function mapping n bits to m bits

x(n bits) — f(m bits)

is replaced by the obviously reversible function
mapping n + m bits to n + m bits

(x,m times 0) — (z, f).

The reversible n-bit functions are permutations
among the 2" possible bit strings; there are (2")!
such functions. For comparison, the number of
arbitrary n-bit functions is (2")*") (Each of the
2" input strings can be mapped to every possible
output string). The number of reversible 1,- 2-,
and 3-bit gates is 2, 24, and 40320, respectively.

While irreversible classical computation gets by
with two-bit operations, reversible classical com-
putation needs three-bit gates in order to be uni-
versal. This can be seen by observing that the
24 reversible two-bit gates are all linear, that is,
they can be written in the form [32]

)+(5)

()= ()= %)

where all matrix and vector elements are bits
and all additions are modulo 2. As the two re-
versible one-bit gates are also obviously linear,
any combination of one- and two-bit operations
applied to the components of a n-bit vector ¥
can only yield a result linear in Z. On the other
hand, for n > 3 there are invertible n-bit gates
which are not linear, for example, the Toffoli
gate to be discussed below. In Chapter [5] we
will see that quantum computing, although re-
versible too, does not need gates acting on three
quantum bits to be universal. Furthermore all
quantum gates will have to be strictly linear be-
cause quantum mechanics is a linear theory.

x/

/

Y

x
Y

a f
v 9

T
Y

a

b

3.2.5 The CNOT gate

One of the more interesting reversible classical
two-bit gates is the controlled NOT, or CNOT,
also known as “reversible XOR”, which makes the
XOR operation reversible by storing one argu-
ment:

(z,y) — (z,z XOR y). (3.2)

The following table shows why (3.2)) is called
CNOT:

38

3 Elements of Classical Computer Science

x|y x|xXORy
0/0(0 0
0110 1
11011 1
17111 0

The target bit y is flipped if and only if the con-
trol bit x = 1. A second application of CNOT
restores the initial state, so this gate is its own

The CNOT gate can be used to copy a classical
bit, because it maps

(,0) — (z,z). (3.3)
X X X M Yy
UV
Yy M X
y—EB_X XORy Y N
Figure 3.3: Left: Single CNOT gate. Right:

SWAP gate.

The network combining three XOR gates in Fig-
ure achieves a SWAP of the two input bits:

— ((z XOR y) XOR z,z XOR y)

Thus the reversible XOR can be used to copy
and move bits around.

3.2.6 The Toffoli gate

We will show now that the functionality of
the universal NAND/NOT gate can be
achieved by adding a three-bit gate to our
toolbox, the Toffoli gate 0©) also known
as controlled-controlled-NOT, (CCNOT) which
maps

(z,y,2) — (x,y,2y XOR z), (3.4)

that is, z is flipped only if both x and y are 1.

Input Output
X|y|z X|y|z
01010 0/0]0
0|01 0|01
0|10 0|10
0|11 01111
11010 11010
1{0]|1 1101
11110 11111
11111 11110

The nonlinear nature of the Toffoli gate is evi-
dent from the presence of the product xy. This
gate forms by itself a universal set, provided that
we can prepare fixed input bits and ignore out-
put bits:

e For z = 1 we have (z,y,1) — (z,y,1 —
zy) = (z,y,2 NAND y).

e For x = 1 we obtain z XOR y which can be
used to copy, swap, etc.

e For x = y =1 we obtain NOT.

Thus we can do any computation reversibly. In
fact it is even possible to avoid the dissipative
step of memory clearing (in principle):
all “garbage” which is generated during the re-
versible computation, copy the end result of the
computation and then let the computation run
backwards to clean up the garbage without dis-
sipation. Though this may save some energy dis-
sipation, it has a price as compared to reversible
computation with final memory clearing:

store

e The time (number of steps) grows from 7" to
roughly 27

e Additional storage space, growing roughly
proportional to T, is needed.

However, there are ways [32] to split the compu-
tation up in a number of steps which are inverted
individually, so that the additional storage grows
only proportional to log 7', but in that case more
computing time is needed.

3.2.7 The Fredkin gate

Another reversible three-bit gate which can be
used to build a universal set of gates is the Fred-

39

3 Elements of Classical Computer Science

kin gate [27]. While the Toffoli gate has two
control bits and one target bit, the Fredkin gate
has one control qubit and two target bits. The
target bits are interchanged if the control bit is
1, otherwise they are left untouched. Table
shows the input and output of the Fredkin gate,
where x is the control bit, and y and z are the
target bits, respectively.

Input Output
X|yl|lz|x|y|z
1|11 1]1]1
1]1]0| 1101
1/0]1f 1|10
1100 1]0]0
Oj(11)0j1]1
O(1]|0f0f1]|0
0|01 0|0]|1
00|00 |O|O

Table 3.1: Truth table of the Fredkin gate.

To implement a reversible AND gate, for exam-
ple, the z bit is set to 0 on input. On output z
then contains z AND g, as can be seen in Table
[3.1] If the other two bits x and y were discarded,
this gate would be irreversible; keeping the input
bits makes the operation reversible.

The NOT gate may also be embedded in the
Fredkin gate: setting y = 0 and z = 1 on input
we see that on output z = NOT =z, and y = z;
thus we have implemented a COPY gate at the
same time.

3.3 Universal computers

Computer science has developed some concepts
that allow one to check computability and ef-
ficiency of algorithms in a way that does not
depend on hardware implementation. They in-
clude some representations of computing ma-
chinery that have proved useful for this purpose,

although nobody would actually build a com-
puter according to this recipe.
portant example of such a “universal computer”
is the Turing machine.

The most im-

3.3.1 The Turing machine

Tape

00011011...... 0011010111

State indicator
abc.. ..h(halt)

Figure 3.4: A Turing machine operating on a
tape with binary symbols and pos-
sessing several internal states, in-
cluding the halt state.

The Turing machine has no importance as a
practical computing device. However, accord-
ing to the Church-Turing hypothesis (see next
subsection) every task that can be performed by
some computer can also be performed by a Tur-
ing machine, hence its importance in theoretical
computer science as the simplest example for a
unwversal computer. The Turing machine acts on
a tape (or string of symbols) as an input/output
medium. It has a finite number of internal states.
If the machine reads the symbol s from the tape
while being in state G, it will replace s by an-
other symbol s’, change its state to G’ and move
the tape one step in direction d (left or right).
The machine is completely specified by a finite
set of transition rules

(s,G) — (',G',d)

The machine has one special internal state, the
“halt” state, in which the machine stops all fur-
ther activity. On input, the tape contains the
“program” and “input data”’; on output, the re-
sult of the computation.

The (finite) set of transition rules for a given Tur-
ing machine 7" can be coded as a binary number

40

	Introduction and survey
	Information, computers and quantum mechanics
	History of computing
	General purpose digital computers
	The digital revolution
	Moore's law
	Emergence of quantum behavior
	Energy dissipation in computers

	Quantum computer basics
	Quantum information
	Quantum communication
	Basics of quantum information processing
	Decoherence
	The network model
	Physical implementation

	History of quantum information processing
	Initial ideas
	Quantum algorithms
	Potential Benefits and Risks

	About this course
	Literature
	Online resources

	Physics of Computation
	Physical laws and information processing
	Hardware representation
	Physical laws and ultimate limits
	Quantum vs. classical information processing

	Limitations on computer performance
	Switching energy
	Entropy generation and Maxwell's demon
	Reversible logic
	Reversible gates for universal computers
	Processing speed
	Information content and speed
	Additional details

	The ultimate laptop
	Processing speed
	Maximum storage density
	Monoatomic gas
	Massless particles
	Parallel / serial operation

	Elements of Classical Computer Science
	Bits of history
	Boolean algebra and logic gates
	Bits and gates
	2-bit logic gates
	Minimum set of irreversible gates
	Minimum set of reversible gates
	The CNOT gate
	The Toffoli gate
	The Fredkin gate

	Universal computers
	The Turing machine
	Example
	The Church–Turing hypothesis

	Complexity and algorithms
	Complexity classes
	Hard and impossible problems

	Quantum Mechanics
	General structure
	Spectral lines and stationary states
	Vectors in Hilbert space
	Operators in Hilbert space
	Dynamics and the Hamiltonian operator
	Measurements

	Quantum states
	The two-dimensional Hilbert space: qubits, spins, and photons
	Hamiltonian and evolution
	Coupling to environment
	Density operator
	Entanglement and mixing
	Quantification of entanglement
	Bloch sphere
	EPR correlations
	Bell's theorem
	Violation of Bell's inequality
	The no-cloning theorem

	Measurement revisited
	Quantum mechanical projection postulate
	The Copenhagen interpretation
	Von Neumann's model

	Entanglement measures
	General requirements
	Entropy of entanglement
	Concurrence
	Tangle
	Positive Partial Transpose (PPT)
	Examples
	Decay of entanglement
	Quantum discord
	Entanglement witnesses

	Quantum Bits and Quantum Gates
	Single-qubit gates
	Introduction
	Rotations around coordinate axes
	General rotations
	Composite rotations

	Two-qubit gates
	Controlled gates
	Composite gates

	Universal sets of gates
	Choice of set
	Unitary operations
	Two qubit operations
	Approximating single-qubit gates

	Feynman' Contribution
	Simulating physics with computers
	Discrete system representations
	Probabilistic simulations

	Quantum mechanical computers
	Simple gates
	Adder circuits
	Qubit raising and lowering operators
	Adder Hamiltonian

	Errors and Decoherence
	Motivation
	Quantum vs. classical errors
	Sources of errors
	Characterization of errors
	A counterstrategy

	Errors and Decoherence
	Phenomenology
	Semiclassical perturbation
	Ensemble average
	Spin-boson model
	Spin-spin model
	Entanglement and mixing
	Time dependence
	Decoherence in large systems

	Quality Measures
	Distance and Fidelity
	Process fidelity
	Quantum state tomography
	Quantum process tomography

	Error correction
	Basics
	Classical error correction
	Quantum error correction
	Single spin-flip error
	Error detection and correction
	Continuous errors
	Decoding
	Phase errors
	Projection errors
	General single qubit errors
	Perfect 5-qubit code
	Stabilizer codes
	Fault-tolerant computing

	Avoiding errors
	Robust operations
	Robust sequences
	Protection against decoherence
	Decoherence-free subspaces
	Information capacity
	Example: spin qubits
	Clock transitions
	The quantum Zeno effect
	Repeated measurements
	Experimental example

	Fighting Decoherence
	Refocusing
	Fluctuations
	Dynamical Decoupling
	Imperfections
	Error compensation
	Robust DD
	DD for large systems

	Quantum Algorithms
	Quantum versus classical algorithms
	Why Quantum?
	Classes of quantum algorithms

	The Deutsch algorithm: Looking at both sides of a coin at the same time
	Functions and their properties
	Example : one-qubit functions
	Evaluation
	Many qubits
	Extensions and generalizations

	The Shor algorithm: It's prime time
	Some number theory
	Factoring strategy
	The core of Shor's algorithm
	The quantum Fourier transform
	Gates for the QFT

	The Grover algorithm: Looking for a needle in a haystack
	Oracle functions
	The search algorithm
	Geometrical analysis
	Quantum counting
	Phase estimation

	Quantum simulations
	Potential and limitations
	Simulated evolution
	Implementations

	How to Build a Quantum Computer
	Fundamentals
	Terminology
	The network model
	Some existing and proposed implementations

	Requirements for quantum information processing hardware
	DiVincenzo criteria
	Qubits
	Initialization
	Initialization time
	Decoherence time
	Quantum gates
	Frequency-domain addressing
	Imperfections

	Converting quantum to classical information
	Principle and strategies
	Repeated measurements through ancilla qubits
	Example: Deutsch–Jozsa algorithm
	Complete state information

	Alternatives to the network model
	Cellular automata
	Quantum cellular automata
	QCA with 2 types of cells
	One-way quantum computer
	Adiabatic computation

	Liquid-state NMR
	Basics of NMR
	System and interactions
	Radio frequency field
	Rotating frame
	Equation of motion
	Evolution
	NMR signals
	Resonance lines
	Refocusing

	NMR as a molecular quantum computer
	Spins as qubits
	Chemical shift
	Coupled spin systems
	Pseudo / effective pure states
	Single-qubit gates
	Two-qubit gates
	Two-qubit gates with nonselective pulses
	Qubit readout
	Readout in multi-qubit systems
	DiVincenzo's criteria

	NMR Implementation of Shor's algorithm
	Qubit implementation
	Initialization
	Computational steps
	Readout
	Decoherence

	Spin chains
	Quantum state transfer
	Two- and three-body interactions

	Trapped Ions and Atoms
	Trapping ions
	Ions, traps and light
	Linear traps

	Interaction with light
	Optical transitions
	Motional effects
	Basics of laser cooling

	Quantum information processing with trapped ions
	Qubits
	Single-qubit gates
	Two-qubit gates
	Readout

	Experimental implementations
	Systems
	Some results
	Challenges

	Neutral atoms
	Trapping neutral particles
	Manipulating neutral particles
	Gate operations

	Interacting atoms in optical lattices
	Interacting particles in a periodic potential: The Hubbard model
	(Observing) The Mott-Hubbard transition
	Universal optical lattice quantum computing?

	Solid State Quantum Computers
	Solid state NMR/EPR
	Scaling behavior of NMR quantum information processors
	Spins in solids
	31P in silicon
	Qubit operations
	Readout
	Si/Ge heterostructure
	N@C60
	Rare Earth Ions
	Photonic quantum memories
	Molecular Magnets
	The NV--center in diamond
	Single-spin readout

	Superconducting systems
	Basics
	Charge qubits
	Flux qubits
	Gate operations
	Readout

	Semiconductor qubits
	Materials
	Quantum Dots
	Excitons in quantum dots
	Electron spin qubits
	Readout

	Photons for Quantum Information
	Photons as qubits
	Photons
	Working with single photons
	Linear optics quantum computing
	Linear optics and measurements

	``Quantum only'' tasks
	Quantum teleportation
	(Super-) Dense coding
	Quantum key distribution

	A few bits of classical information theory
	Measuring Information
	Information content and entropy
	Mutual information and the data processing inequality
	Data compression and Shannon's noiseless channel coding theorem
	The binary symmetric channel and Shannon's noisy channel coding theorem

	A few bits of quantum information theory
	The von Neumann entropy
	The accessible information and Holevo's bound
	Schumacher's noiseless channel coding theorem
	Classical information over noisy quantum channels

	Appendix: Two spins-1/2: Singlet and triplet states
	Bibliography

