3 Elements of Classical Computer Science

Computer science is a vast field, ranging from
the very abstract and fundamental to the very
applied and down-to-earth. It is impossible to
summarize the status of the field for an audience
of outsiders (such as physicists) on a few pages.
The present chapter is intended to serve as an
introduction to the most basic notions necessary
to discuss logical operations, circuits, and algo-
rithms. We will first introduce logic gates of two
types: irreversible and reversible. Later we will
discuss the Turing machine as a universal com-
puter and the concept of complexity classes. All
this will be done in an informal and highly non-
rigorous style intended to provide our physicist
readership with some rough idea about the sub-
ject.

3.1 Bits of history

Figure 3.1: Charles Babbage (1791-1871) and a
difference engine built according to
his design.

The inventor of the first programmable com-
puter is probably Charles Babbage (1791-1871)
(— Fig. [3.1). He was interested in the auto-
matic computation of mathematical tables and
designed the mechanical “analytical engine” in
the 1830s. The engine was to be controlled and

programmed by punchcards, a technique already
known from the automatic Jacquard loom, but
was never actually built. Babbage’s unpublished
notebooks were discovered in 1937 and the 31-
digit accuracy “Difference Engine No. 2”7 was
built to Babbage’s specifications in 1991. (Bab-
bage was also Lucasian professor of mathematics
in Cambridge, like Newton, Stokes, Dirac, and
Hawking, and he invented important practical
devices such as the locomotive cowcatcher.)

The first computer programmer was proba-
bly Ada Augusta King, countess of Lovelace
(1815-1852), daughter of the famous poet Lord
Byron, who devised a program to compute
Bernoulli numbers (recursively) with Babbage’s
engine. From this example we learn that the
practice of devising algorithms for not-yet ex-
isting computers is considerably older than the
quantum age.

Another important figure from 19th century
Britain is George Boole (1815-1864) who in 1847
published his ideas for formalizing logical oper-
ations by using operations like AND, OR, and
NOT on binary numbers.

Alan Turing (1912-1954) invented the Turing
machine in 1936 in the context of the decidabil-
ity problem posed by David Hilbert: Is it always
possible to decide whether a given mathematical
statement is true or not? (It is not, and Turing’s
machine helped to show that.)

3.2 Boolean algebra and logic
gates

3.2.1 Bits and gates

Classical digital computers are based on Boolean
logic. In this context, the “atoms” of information
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are the binary digits, or bits. Every bit can as-
sume one of two values, which are usually labeled
0 and 1 or true and false. In the computing hard-
ware, bits are represented by easily distinguish-
able physical states, such as high or low voltage
or the presence or absence of a charge or current,
or the direction of a magnetization. Generally,
information is then encoded in a string of bits,
where the length of the string depends on the
amount of information.

Information processing corresponds to manipu-
lation of this information. Computations are de-
fined by algorithms, i.e. sequences of elementary
logical operations like NOT, OR, and AND, that
act on (transform) strings of bits. Any transfor-
mation between two bit strings of finite length
can be decomposed into one- and two-bit opera-
tions. (See [32]; a proof of the quantum version
of this important fact will be sketched in Chapter

B
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Figure 3.2: A logic gate with two input bits and
one output bit.

Logic operations or gates can be characterized by
the number of bits that they take as input and
the number of bits they produce as output. Fig-
ure shows a simple example with two input
bits and one output bit. This representation of
logic gates, where wires represent bits and boxes
the gate operations leads naturally to what is
called the network model of computation (often
also called the circuit model ).

The simplest type of logic gate operations are
the one bit gates, which act on a single input
bit and produce a single output bit. Four pos-
sible operations may be applied to a single bit:
the bit may be left untouched (identity), it may
be flipped (NOT), and it may be set to 0 or 1
unconditionally. The latter two operations are
obviously irreversible.

3.2.2 2-bit logic gates

At the next level of complexity are the 2-bit logic
gates. We first discuss one-bit functions of a two-
bit argument:

(z,y) — f(z,y) where z,y, f =0 or 1.

Logic gates of this type are called Boolean func-
tions. The four possible inputs 00, 01, 10,
11 can each be mapped to one of two possi-
ble outputs 0 and 1; the function is completely
characterized by the string of four output bits
(f(00), £(01), £(10), f(11)). Since there are 2* =
16 different output strings, we have 16 possible
Boolean functions of two binary variables. Most
of these gates are irreversible since the output is
shorter than the input.

x|y |xORy|xANDy
0|0 0 0
011 1 0
110 1 0
111 1 1

The binary operations OR and AND are defined
by their truth tables, see the table above. Some
elementary logic operations have useful algebraic
representations:

e NOTz—1—=x

e z AND y — zy

e x XOR y — = @y, i.e. addition modulo 2 .
All other operations, such as IMPLIES or XOR

can be constructed from the elementary opera-
tions NOT, OR, and AND. As an example for
the reduction of a logical operation to more ele-
mentary operations consider

x XOR y = (z OR y) AND NOT (x AND y).

( XOR is also often denoted by @, because it is
equivalent to addition modulo 2.)

We now return to the 16 Boolean functions of two
bits. We number them according to the four-bit
output string as given in the above truth table,
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read from top to bottom and interpreted as a bi-
nary number. For example AND outputs 0001=1
and OR outputs 0111=7. We can thus charac-
terize each gate or function by a number between
0 and 15 and look at them in order. Some ex-
amples are:

0: The absurdity, e.g.
(x AND y) AND NOT (z AND y).

1: x AND y

2: x AND ( NOT y)

3: x, which can be written in a more complicated
way: ¢ =2 OR (y AND NOT y)

4: (NOT z) AND y

5: y = ...(see x above)

8: (NOT z) AND ( NOT y) =: (z NOR y)

9: (( NOT z) AND ( NOT y)) OR (x AND y)

NOT (x XOR y) =: (x EQUALS y)

All others can be obtained by negating the above;
notable are

13: NOT (z AND ( NOT y)) =: z IMPLIES y
14: NOT (z AND y) =: 2 NAND y

15: The banality, for example
(x AND y) OR NOT (z AND y).

We have thus seen that all Boolean functions can
be constructed from the elementary Boolean op-
erations. Furthermore, since

2 OR y = ( NOT z) NAND ( NOT y),

we see that we only need NAND (as defined by
line 14) and NOT to achieve any desired classi-

cal logic gate with two input bits and one output
bit.

In order to connect an arbitrary number n of in-
put lines to m output lines we need, in addition
to the logic gates shown schematically in Fig-
ure the ability to COPY the contents of one
bit to a different bit while keeping the original
bit. This is usually symbolized by a branching
line in a network diagram, which symbolizes a
branching wire with equal voltage levels at the

three terminals. While copying a classical bit is
thus a trivial operation, copying a quantum bit
turns out to be impossible! This no-cloning the-
orem will be discussed in Chapter |4; it is at the
heart of the schemes developed for secure quan-
tum communication to be discussed in Chapter

[13l

3.2.3 Minimum set of irreversible
gates

We would like to reduce the number of gates
needed to perform an arbitrary bit string oper-
ation to the absolute minimum. Being able to
build a network using the smallest possible set
of different elements is desirable from a theoret-
ical point of view. In practice, however, it is
usually more advisable to employ a larger vari-
ety of gates in order to keep the total size of the
network smaller. We note that

x NAND y NOT (z AND y)
( NOT z) OR ( NOT y)

1—xzy.

If we can copy x to another bit, we can use
NAND to achieve NOT:

eNANDz=1—-22=1—2= NOT x

(where we have used 2 = z for z = 0,1). Alter-
natively, if we can prepare a constant bit 1:

zNAND1=1—-2= NOT z.

We can also express AND and OR by NAND
only:

(x NAND y) NAND (z NAND y)

1—(1—zy)?
1—-(1—2y)=a2y=x2 AND y

and

(x NAND z) NAND (y NAND y)
( NOT z) NAND ( NOT y)
1-1-2)1—-y)=xdy—ay
x OR y.
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Thus the combination of the NAND gate and the
COPY operation (which is not a gate in the strict
sense defined above) forms a universal set of (ir-
reversible) classical gates. A different universal
set of two gates is given by NOR and COPY, for
example.

The operations NAND and COPY can both be
performed by a single two-bit to two-bit gate,
if we can prepare a bit in state 1. This is the
NAND/NOT gate:

— (1—-z,1—2zy)

( NOT z,z NAND y).

(2, y) (3.1)

The truth table is

x|y | NOTx | x NAND y
0]0 1 1
0|1 1 1
110 0 1
171 0 0

The NOT and NAND functions are obviously
achieved by ignoring the second and first output
bit, respectively. For y = 1 we obtain COPY,
combined with a NOT which can be inverted by
the same gate.

3.2.4 Minimum set of reversible gates

Although we know how to construct a universal
set of irreversible gates there are good reasons to
study the reversible alternative. Firstly, quan-
tum gates are reversible, and secondly, reversible
computation is in principle possible without dis-
sipation of energy.

A reversible computer evaluates an invertible n-
bit function of n bits. Note that every irre-
versible function can be made reversible at the
expense of additional bits: the irreversible (for
m < n) function mapping n bits to m bits

x(n bits) — f(m bits)

is replaced by the obviously reversible function
mapping n + m bits to n + m bits

(x,m times 0) — (z, f).

The reversible n-bit functions are permutations
among the 2" possible bit strings; there are (2")!
such functions. For comparison, the number of
arbitrary n-bit functions is (2")*") (Each of the
2" input strings can be mapped to every possible
output string). The number of reversible 1,- 2-,
and 3-bit gates is 2, 24, and 40320, respectively.

While irreversible classical computation gets by
with two-bit operations, reversible classical com-
putation needs three-bit gates in order to be uni-
versal. This can be seen by observing that the
24 reversible two-bit gates are all linear, that is,
they can be written in the form [32]

)+(5)

()= ()= %)

where all matrix and vector elements are bits
and all additions are modulo 2. As the two re-
versible one-bit gates are also obviously linear,
any combination of one- and two-bit operations
applied to the components of a n-bit vector ¥
can only yield a result linear in Z. On the other
hand, for n > 3 there are invertible n-bit gates
which are not linear, for example, the Toffoli
gate to be discussed below. In Chapter [5] we
will see that quantum computing, although re-
versible too, does not need gates acting on three
quantum bits to be universal. Furthermore all
quantum gates will have to be strictly linear be-
cause quantum mechanics is a linear theory.
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3.2.5 The CNOT gate

One of the more interesting reversible classical
two-bit gates is the controlled NOT, or CNOT,
also known as “reversible XOR”, which makes the
XOR operation reversible by storing one argu-
ment:

(z,y) — (z,z XOR y). (3.2)

The following table shows why (3.2)) is called
CNOT:
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x|y x|xXORy
0/0(0 0
0110 1
11011 1
17111 0

The target bit y is flipped if and only if the con-
trol bit x = 1. A second application of CNOT
restores the initial state, so this gate is its own

The CNOT gate can be used to copy a classical
bit, because it maps

(,0) — (z,z). (3.3)
X X X M Yy
UV
Yy M X
y—EB_X XORy Y N
Figure 3.3: Left: Single CNOT gate. Right:

SWAP gate.

The network combining three XOR gates in Fig-
ure achieves a SWAP of the two input bits:

— ((z XOR y) XOR z,z XOR y)

Thus the reversible XOR can be used to copy
and move bits around.

3.2.6 The Toffoli gate

We will show now that the functionality of
the universal NAND/NOT gate can be
achieved by adding a three-bit gate to our
toolbox, the Toffoli gate 0©) also known
as controlled-controlled-NOT, (CCNOT) which
maps

(z,y,2) — (x,y,2y XOR z), (3.4)

that is, z is flipped only if both x and y are 1.

Input Output
X|y|z X|y|z
01010 0/0]0
0|01 0|01
0|10 0|10
0|11 01111
11010 11010
1{0]|1 1101
11110 11111
11111 11110

The nonlinear nature of the Toffoli gate is evi-
dent from the presence of the product xy. This
gate forms by itself a universal set, provided that
we can prepare fixed input bits and ignore out-
put bits:

e For z = 1 we have (z,y,1) — (z,y,1 —
zy) = (z,y,2 NAND y).

e For x = 1 we obtain z XOR y which can be
used to copy, swap, etc.

e For x = y =1 we obtain NOT.

Thus we can do any computation reversibly. In
fact it is even possible to avoid the dissipative
step of memory clearing (in principle):
all “garbage” which is generated during the re-
versible computation, copy the end result of the
computation and then let the computation run
backwards to clean up the garbage without dis-
sipation. Though this may save some energy dis-
sipation, it has a price as compared to reversible
computation with final memory clearing:

store

e The time (number of steps) grows from 7" to
roughly 27

e Additional storage space, growing roughly
proportional to T, is needed.

However, there are ways [32] to split the compu-
tation up in a number of steps which are inverted
individually, so that the additional storage grows
only proportional to log 7', but in that case more
computing time is needed.

3.2.7 The Fredkin gate

Another reversible three-bit gate which can be
used to build a universal set of gates is the Fred-
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kin gate [27]. While the Toffoli gate has two
control bits and one target bit, the Fredkin gate
has one control qubit and two target bits. The
target bits are interchanged if the control bit is
1, otherwise they are left untouched. Table
shows the input and output of the Fredkin gate,
where x is the control bit, and y and z are the
target bits, respectively.

Input Output
X|yl|lz|x|y|z
1|11 1]1]1
1]1]0| 1101
1/0]1f 1|10
1100 1]0]0
Oj(11)0j1]1
O(1]|0f0f1]|0
0|01 0|0]|1
00|00 |O|O

Table 3.1: Truth table of the Fredkin gate.

To implement a reversible AND gate, for exam-
ple, the z bit is set to 0 on input. On output z
then contains z AND g, as can be seen in Table
[3.1] If the other two bits x and y were discarded,
this gate would be irreversible; keeping the input
bits makes the operation reversible.

The NOT gate may also be embedded in the
Fredkin gate: setting y = 0 and z = 1 on input
we see that on output z = NOT =z, and y = z;
thus we have implemented a COPY gate at the
same time.

3.3 Universal computers

Computer science has developed some concepts
that allow one to check computability and ef-
ficiency of algorithms in a way that does not
depend on hardware implementation. They in-
clude some representations of computing ma-
chinery that have proved useful for this purpose,

although nobody would actually build a com-
puter according to this recipe.
portant example of such a “universal computer”
is the Turing machine.

The most im-

3.3.1 The Turing machine

Tape

00011011...... 0011010111

State indicator
abc.. ..h(halt)

Figure 3.4: A Turing machine operating on a
tape with binary symbols and pos-
sessing several internal states, in-
cluding the halt state.

The Turing machine has no importance as a
practical computing device. However, accord-
ing to the Church-Turing hypothesis (see next
subsection) every task that can be performed by
some computer can also be performed by a Tur-
ing machine, hence its importance in theoretical
computer science as the simplest example for a
unwversal computer. The Turing machine acts on
a tape (or string of symbols) as an input/output
medium. It has a finite number of internal states.
If the machine reads the symbol s from the tape
while being in state G, it will replace s by an-
other symbol s’, change its state to G’ and move
the tape one step in direction d (left or right).
The machine is completely specified by a finite
set of transition rules

(s,G) — (',G',d)

The machine has one special internal state, the
“halt” state, in which the machine stops all fur-
ther activity. On input, the tape contains the
“program” and “input data”’; on output, the re-
sult of the computation.

The (finite) set of transition rules for a given Tur-
ing machine 7" can be coded as a binary number
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