2 Physics of Computation

2.1 Physical laws and
information processing

2.1.1 Hardware representation

Information processing is often considered a
purely abstract process, which can be discussed
in purely mathematical terms. However, infor-
mation is always represented in some physical
entity, and processing and analyzing it requires
physical devices [17, [18]. As a consequence, any
information processing is inherently limited by
the physical nature of the devices used in the ac-
tual implementation. While it is evident that an
electronic chip with a high clock speed is more
powerful as an information processor (in most
respects) than a hand-operated mechanical com-
puter, it is perhaps less obvious that the nature
of the physical device does not just determine
the clock rate, it can determine qualitatively the
class of algorithms that can be computed effi-
ciently.

This principle is often overlooked, but its con-
sequences have often been discovered. Church
and Turing asserted [19] 20] that most comput-
ers are equivalent with respect to computability
(not with respect to speed), allowing one to dis-
regard the details of the information processing
device for determining if a given problem can be
solved on a computer. This equivalence princi-
ple may well be considered the foundation of the
computer science:
formation processing without reference to a spe-
cific hardware basis. However, the strong form of
the Church—Turing hypothesis, which states that
any problem that can be solved efficiently on one
computer can be solved efficiently on any other
computer, appears to be wrong: some problems
have been established to be solvable efficiently
if the computer operates according to quantum

it allows one to discuss in-

mechanics, but not on classical computers.

The physical laws governing the hardware that
stores and processes the information determine,
e.g.,
stored or the types of operations that can be ap-
plied to them and therefore the operations that
can be included in an algorithm. They differ
from mathematical limitations (e.g., complexity
classes), which determine the number of logical
operations needed to complete an algorithm, but
not the speed at which it can be executed.

the amount of information that can be

2.1.2 Physical laws and ultimate limits

Physical laws often allow us to determine the ul-
timate performance limits, even if the currently
existing devices are very far from these limits.
The best known examples are probably the speed
of light, the conservation of energy or the ther-
modynamical limits on the energy efficiency of
thermal engines, such as the Carnot cycle. These
limits can not only indicate future roadblocks
in the development of computer hardware, they
also can be used as guidelines for the design of
efficient devices.
levels and relate to the performance of all compu-
tational steps, such as the storage of information,
execution of logical operations, or the transfer of
information between different parts of the com-
puter. While they are also relevant for natural
information processing devices (such as the hu-
man brain), we will consider here only artifacts,
since their operation is still better understood
and easier to quantify.

These limitations arise on all

For this section, we will concentrate on physical
laws that do not refer to a specific hardware ba-
sis chosen for implementing the information pro-
cessing devices. We will refer to these issues as
fundamental, in contrast to issues that depend
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2 Physics of Computation

on a specific technology, such as the speed at
which a CMOS gate can be operated (which is,
of course, also limited by physical laws). While
most of our present information processing sys-
tems are still limited by technical rather than
by fundamental physical limits, some systems
are approaching these limits (e.g. the chan-
nel capacities of experimental fiber optics sys-
tems are close to the limit found by Shannon
[21]) and other components will be approach-
ing real or perceived limitations within the next
few decades, provided that the current trends
can be extrapolated. In the past, several appar-
ent limitations could be overcome by conceptual
changes.

N-bit register
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Figure 2.1: Model of computation: the infor-
mation is stored in a register con-
sisting of N (classical or quantum)
bits. Computation is performed in
discrete steps acting on this regis-
ter. The subsequent registers rep-
resent the same register at different

times.

Figure shows schematically the model that
we use to analyze the computational process: in-
formation is stored in N bits combined into a
register. The computation is split into discrete
steps executed in sequence. Each step uses infor-
mation from the register to transform the regis-
ter into a new state. For each step j, the state
of bit b (j + 1) after the operation is determined
by the state of all bits before this step,

bi(j+1) = fL(01(5), b2(5), -bn(5)),  (2.1)

where the functions f,g together represent the
logical operations acting on the register.

2.1.3 Quantum vs. classical
information processing

Quantum and classical computers share a num-
ber of properties that are subject to the same
physical limitations. As an example, the limits
on processing speed that we discuss in the follow-
ing section apply to both approaches. Similarly,
the amount of information that can be stored in
a system is limited by the number of distinguish-
able states of the system.

One of the major differences between classical
and quantum computers is the existence of su-
perpositions in the quantum computer, which
implies that the amount of information processed
by a single computational step is a single num-
ber of N bits in the classical computer, while the
quantum computer processes typically 2V num-
bers simultaneously.

Another, but less fundamental difference is that
ideal quantum computers operate reversibly:
logical operations are implemented by unitary
transformations, which do not change the energy
of the quantum state on which they operate and
therefore (in the ideal case) do not dissipate any
energy. As we discuss in more detail below, the
operation of today’s classical computers is irre-
versible. This is partly due to the logic foun-
dations (Boolean logic uses non-invertible oper-
ations), and partly due to the hardware design.
The progress in microelectronics is quickly re-
ducing the dissipation per logical operation and
considerations of the ultimate limits to the re-
quirements on energy and power to drive logical
operations are becoming relevant.

The quantum mechanical measurement process
imposes some limitations on quantum comput-
ers that are not relevant for classical computers:
the readout process will always change the in-
formation stored in a quantum computer, while
its effect on a classical computer can be made
arbitrarily small.
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2 Physics of Computation

2.2 Limitations on computer
performance

While some of the limits that physical laws set
for the operation of computers are quite obvious
(such as the speed of light as a limit for infor-
mation transfer), others have only recently been
established, while others have been shown not to
be fundamental limits, if some of the concepts
are adjusted.

2.2.1 Switching energy

One limitation that was held to be fundamental
was that the operation of a logical gate work-
ing at a temperature 7" should dissipate at least
the energy kpT |22, 123]. At the time that these
minimum energy requirements were discussed,
actual devices required switching energies that
were some ten orders of magnitude larger, so this
perceived limit appeared quite irrelevant for any
conceivable device.

As we discussed in the introduction, the situa-
tion has changed dramatically since then: the
energy dissipated per logical step has decreased
exponentially, at a rate of approximately a fac-
tor of ten every 4 years. This increase in en-
ergy efficiency is a requirement for the increase
in speed and computational power and will need
to continue if these other trends continue. Con-
sider, e.g., a typical microprocessor with some
108 transistors being clocked at 1 GHz: if it were
to dissipate 10 mJ per logical operation, as was
typical in 1940, it would consume some 10> W
for a short time, probably disintegrating explo-
sively within a few clock cycles.

It appears therefore quite likely that this trend
must continue as long as the increase in speed
and integration continues. As figure shows,
the extrapolation of this trend implies that the
energy per logical step will reach the thermal en-
ergy kgT (T =~ 300K) within about 10 years.
This limit (kgT) is relevant in at least two re-
spects:

° %kBT is the average thermal energy per de-
gree of freedom. Any environment that is at
the temperature T will therefore inject this
energy into switches that are not perfectly
shielded from the environment, thus causing
them to switch spontaneously.

kpT In2 is the minimum energy that is dis-
sipated by non-reversible gate operations,
such as an AND operation.

We are therefore led to conclude that conven-
tional electronic circuits will encounter problems
when they reach this limit. However, as we dis-
cuss below, it is now established that information
can be processed with techniques that dissipate
less energy than kg1 per logical step. There is
no lower limit for the energy required for a log-
ical operation, as long as the switching time is
not critical.

2.2.2 Entropy generation and
Maxwell’s demon

The flow of information in any computer corre-
sponds to a transfer of entropy. Information pro-
cessing is therefore closely tied to thermodynam-
ics. As an introduction to these issues consider
the Maxwell demon: As Maxwell discussed, in
his “Theory of heat” in 1871,

"If we conceive a being whose facul-
ties are so sharpened that he can fol-
low every molecule in its course, such
a being, whose attributes are still es-
sentially finite as our own, would be
able to do what is at present impos-
sible to us. For we have seen that the
molecules in a vessel full of air at a uni-
form temperature are moving with ve-
locities by no means uniform... Now let
us suppose that such a vessel is divided
into two portions, A and B, by a divi-
sion in which there is a small hole, and
that a being, who can see the individual
molecules, opens and closes this hole, so
as to allow only the swifter molecules to
pass from A to B, and only the slower
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2 Physics of Computation

ones to pass from B to A. He will thus,
without expenditure of work, raise the
temperature of B and lower that of A,
in contradiction with the second law of
thermodynamics."

Clearly such a device is not in contradiction with
the first law of thermodynamics, but with the
second. A number of people discussed this is-
sue, adding even simpler versions of this para-
dox. A good example is that the demon does
not have to measure the speed of the molecules;
it is sufficient if he measured its direction: He
only opens the door if a molecule comes towards
the door from the left (e.g.), but not if it comes
from the right. As a result, pressure will increase
in the right-hand part of the container. This will
not create a temperature difference, but rather
a pressure difference, which could also be used
as a source of energy. Still, this device does not
violate conservation of energy, since the energy
of the molecules is not changed.

The first hint at a resolution of this paradox
came in 1929 from Leo Szilard [24], who realized
that the measurement, which must be taken on
the molecules, does not come for free: the in-
formation required for the decision, whether or
not to open the gate, compensates the entropy
decrease in the gas. It is thus exactly the infor-
mation processing, which prevents the violation
of the second law.

While Szilard’s analysis of the situation was cor-
rect, he only assumed that this had to be the
case, he did not give a proof for this assumption.
It was Rolf Landauer of IBM [22] who made a
more careful analysis, explicitly discussing the
generation of entropy in various computational
processes. Other researchers, including Charles
Bennett, Edward Fredkin, and Tommaso Toffoli
showed that it is actually the process of erasing
the information gained during the measurement
(which is required as a step for initialising the
system for the next measurement) which creates
the entropy, while the measurement itself could
be made without entropy creation. Erasing in-
formation is closely related to dissipation: a re-
versible system does not destroy information, as

expressed by the second law of thermodynam-
ics. Obviously most current computers dissipate
information. As an example, consider the calcu-
lation 3+ 5 = 8. It is not possible to reverse this
computation, since different inputs produce this
output. The process is quite analogous to the
removal of a wall between two containers, which
are filled with different pressures of the same gas.

The creation of entropy during erasure of infor-
mation is always associated with dissipation of
energy. Typically, the erasure of 1 bit of in-
formation must dissipate at least an energy of
kT In2. This can be illustrated in a simple pic-
ture. We assume that the information is stored
in a quantum mechanical two-level system, the
two states being labeled |0) and |1). Erasing the
information contained in this bit can be achieved
by placing it in state |0), e.g., independent of its
previous state. This cannot be achieved by a uni-
tary operation, i.e., by (energy-conserving) evo-
lution under a Hamiltonian: such an evolution
is reversible and the previous state could always
be recovered by inverting the operation. The in-
formation would therefore not really be erased.

12>

Laser

10> 11>

Figure 2.2: Erasing one bit of information, i.e.,
setting it unconditionally to the
value |0) can be achieved by driv-
ing the transition from state |1) to
an auxiliary state |2) with a laser.

Figure shows a simple system that allows for
initialization of a qubit by spontaneous emission.
A laser drives the transition from state |1) to an
auxiliary optically excited state |2). If this state
has a non-vanishing probability to decay to state
|0), it will eventually end up in this state, since
this does not interact with the laser beam. It rep-
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resents therefore a (re-)initialization of the qubit
into state |0). For this scheme to work, the third
state |2), must have an energy higher than that
of state |1). If the system is initially in state |1),
the pulse puts it in state |2). If it is initially in
state |0), the pulse does nothing. From state |2),
the system will undergo spontaneous emission; in
a suitable system, the probability for this spon-
taneous emission to bring the atom to state |0)
approaches unity. In systems where the proba-
bility is not high enough, the procedure must be
repeated.

The minimum energy expenditure for this proce-
dure is defined by the photon energy for bringing
the system into the excited state. This energy
must be larger than kT, since the system could
otherwise spontaneously undergo this transition,
driven by the thermal energy. Similar require-
ments hold in classical systems, where dissipa-
tion is typically due to friction.
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Figure 2.3: Erasing one bit of information in a
time-dependent potential. [25]

This theoretical prediction was verified exper-
imentally in 2012 by measurements on a col-
loidal particle trapped in a time-dependent po-
tential [25]. The authors used a bistable poten-
tial, where the two minima represented the log-

ical states of the system. They erased the infor-
mation by first lowering the central barrier and
then applying a tilting force. The figures repre-
sent the transition from the initial state, 0 (left-
hand well), to the final state, 1 (right-hand well).
With this procedure, the final state of the par-
ticle is always 1, irrespective of the initial state.
The experiment used glass beads (2 pm diame-
ter) manipulated by optical tweezers.

4

Q (kT)
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Figure 2.4: Heat generated by erasing one bit
of information as a function of the
switching time. [25]

As shown in Fig. [2.4] the heat generated by
the erasing process approaches kgT'In2 if the
switching process is slow.

2.2.3 Reversible logic

As discussed before, conventional computers use
Boolean logic, which includes the operations
AND and OR. Both these operations, which have
two input bits and one output bit, discard infor-
mation, i.e., they reduce the phase space. When
the system has fewer accessible states, its en-
tropy is lower. Since the second law of thermody-
namics does not allow a decrease in the entropy
of a closed system, this decrease has to be com-
pensated by the generation of entropy at some
other place. The entropy generated by erasing a
bit of information is AS = kT In 2. Computers
based on Boolean logic are therefore inherently
dissipative devices, with the dissipation per log-
ical step of at least kT In2. This generation
of heat during the computational process repre-
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2 Physics of Computation

sents an obvious limitation on the possible speed
of a computer, since no physical device can with-
stand arbitrary amounts of heat generation.

AND CNOT
00 00<>00
01;0 01<>01
10 1 10<+>11
11— 1110

Figure 2.5: Examples of an irreversible (AND)
and reversible (CNOT) gate.

It turns out, however, that computers do not
have to rely on Boolean logic. They can use
reversible logic instead, which preserves the in-
formation, generating no entropy during the pro-
cessing |26]. Figure[2.5]shows an example of a re-
versible logic gate, the so-called controlled NOT
or CNOT gate, which can be used to implement
arbitrary algorithms. This particular gate is its
own inverse, i.e., CNOT - CNOT =1.

Quantum information processors use unitary op-
erations to perform computations. Since unitary
operations are always reversible, they therefore
require algorithms that use only reversible logical
gates. For the example of a quantum computer,
it is easy to prove that the energy dissipation
during the computation vanishes.
calculate the energy of the quantum register at
time t

(E)(t)

For this we

Tr(Hp(t))
Tr(fHefthp(O)eth)
Tr(eHe™ M p(0))

(E)(0),

where we have used that [¢?*!, H] = 0. (The den-
sity operator p describes the state of the system,
Tr denotes the trace, see Chapter IV.)

Figure [2.6] shows schematically how a reversible
operation could be implemented by a time-
modulated potential and a coupling between
source and target. The double well potential rep-
resents the information: the bead in the left hand
well corresponds to the logical value 0, the bead
in the right hand well to the value 1. Each poten-
tial therefore stores one bit of information, with

Figure 2.6: Reversible copy operation in a time-
modulated potential.

the single minimum well representing a neutral
state. The copy operation is achieved by mod-
ulating the potential between a monostable and
a bistable state in such a way that no energy is
expended. The modulation must be sufficiently
slow that the system can follow it adiabatically.
The spring, which is a passive device, assures
that the bead in the second well falls into the
left or right sub-well, depending on the position
of the other bit.

Reversible computer

A general reversible computer can be represented
as a system of states, corresponding to the infor-
mation stored in the computer, and a sequence
of logical operations, transforming one such state
into the next. Since no information is discarded,
it is possible to reverse the complete computation
and bring the system back to its initial state,
simply be reversing each of the logical opera-
tions. No minimum amount of energy is required
to perform reversible logical operations. How-
ever, not discarding any information also implies
that no error correction or re-calibration is done,
since these processes also discard (unwanted) in-
formation. Reversible computation (which in-
cludes quantum computation) therefore requires
very reliable gate operations.
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2.2.4 Reversible gates for universal
computers

The first proof that reversible logic gates can
form the basis of a universal computer is due to
Fredkin and Toffoli [27]. They proposed a three-
bit gate that is now known as the Fredkin gate,
which can be operated in a reversible way (de-
tails will be discussed in Section III). It can be
described as a controlled-SWAP operation: the
first bit acts as the control; if it is =1, the 2" and
37 bit are swapped. The control bit is always
transmitted unchanged. Since the SWAP oper-
ation is it’s own inverse, SWAP2=1, the Toffoli
gate is also its own inverse.

The Fredkin gate can be used to implement a
reversible AND gate by identifying the inputs of
the AND gate with two lines of the Fredkin gate
and setting the third input to the fixed value 0.
The corresponding (third) output line then con-
tains the output of the AND gate, while the two
other lines contain bits of information which are
not used by the Boolean logic, but would be re-
quired to reverse the computation. The following
table shows the outputs for all possible inputs of
the first two bits (with the third set to 0):

| Inputs 1,2 | 00 | 01 [ 10 | 11 |
Output1 | 0 | O | 1 | 1
Output2 | 0 | 1 | 0 | O
Output3 | 0 | O | O | 1

Other reversible gates can be derived from the
Fredkin gate in a similar way: the irreversible
Boolean gate is embedded in the larger Fredkin
gate.

When irreversible gates are embedded in larger
reversible ones, some of the output lines are not
used in the rest of the computation. They can be
erased at the corresponding dissipation expense,
or they can be used to reverse the computation
after the result has been read out, thus providing
a truly reversible operation of the machine at the
expense of some additional bits whose number
grows linearly with the length of the computa-
tion [26].

Another reversible computational architecture is
the reversible Turing machine. As discussed in
more detail in section III, a Turing machine con-
sists of an infinitely long tape storing bits of in-
formation, a read/write head that can be in a
number of different states, and a set of rules stat-
ing what the machine is to do depending on the
value of the bit at the current position of the
head and the state of the head. A reversible
set of rules would be the set of operations repre-
sented in Table 2.1l

head bit change | change | move

state | read bit to | state to to
A 1 0 A left
A 0 1 B right
B 1 1 A left
B 0 0 B right

Table 2.1: Reversible Turing machine

The information processing corresponds to a mo-
tion of the head. The motion is driven by ther-
mal fluctuations and a small force defining the di-
rection. The amount of energy dissipated in this
computer decreases without limit as this external
force is reduced, but at the same time the pro-
cessing speed decreases. Overall the best picture
to describe the operation of a reversible com-
puter is that it is driven along a computational
path. The same path may be retraced backward
by changing some external parameter, thereby
completely reversing the effect of the computa-
tion.

2.2.5 Processing speed

One limit for the processing speed can be derived
from the uncertainty principle. It can be shown
[28] that it takes at least a time

At — 7h

=7z (2.2)

for a quantum mechanical state to evolve into
an orthogonal state, if E is the energy of the
system. This condition is a requirement for two
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states to be distinguishable, which is one con-
dition to qualify as a computational step. This
limit therefore defines a minimal duration for a
computational step given the available energy FE.
It does not imply, however, that this energy must
be dissipated during this step. In an ideal sys-
tem, the energy will remain available for the con-
tinuation of the computation.

Quantum computers work close to this limit if
the energy is equated with the energy range of
the eigenstates of the relevant Hamiltonian. This
implies that only the energy in the system de-
grees of freedom is included in the calculation,
not the (usually much larger) energy stored in
bath degrees of freedom, in particular, not the
rest mass of the system. In an NMR quan-
tum computer, e.g., where the relevant degrees of
freedom are the nuclear spins, the energy avail-
able to the computation is the Zeeman energy of
the spins.

This system also permits a verification of the
condition stated above. Setting the energy of
the ground state | 1) to zero, the excited state
| }) has an energy fuwvr(where wy, is the Larmor
frequency of the spin, which is proportional to
the magnetic field). An initial state

1
V2

then evolves into

(1)) = ¢1§

The final state is distinguishable from the initial
state if the two are orthogonal, i.e.

W (0)) (I +14)

(1) +e ™ 1)

(WOIEWH) = {0+ DI +e s 1))

1 .
5(1 +e et |) = 0.
This can be simplified to e".t = —1 or wyt =

7. Apparently the two states are orthogonal after
t=m / wy,.

Since the energy of the ground state is 0, the
energy of the excited state is hwp, and the popu-
lation of both states is 1/2, the (constant) energy

of the superposition state is £ = (0 + hwr)/2 =
fuwwr, /2. Solving for wy, = 2E/h and inserting it
into wyt = 7, we recover the condition At = %
given above.

An interesting aspect of this limit is that it does
not depend on the architecture of the computer.
While we generally expect computers contain-
ing many processors working in parallel to be
faster than purely serial computers, this is no
longer the case for a computer working at the
limit just discussed: if the number of processors
increases, the available energy per processor de-
creases and correspondingly its speed. The total
number of logical operations per unit time re-
mains constant.

2.2.6 Information content and speed

A limit on the amount of data stored in the com-
puter can be derived from thermodynamics. Ac-
cording to statistical mechanics, the entropy of
a system is

S=kplnW, (2.3)

where W is the number of accessible states. To
store NV bits of information, we need N two-level
systems, which have 2V states.

Assuming that all sates are roughly equally prob-
able, that is, every state occurs with probability
pi = 27N we calculate the entropy of the regis-
ter using statistical thermodynamics as

—kp Zpi Inp; = Z 27V n(27Y)
i i
Nkpln2.

S

This entropy is formally that of an ensemble at
a given energy, while the actual system doing
the computation is in a well-defined (pure) state,
thus having zero entropy.

The information content I as given by the num-
ber of qubits is related to the entropy by

S
N kpln2

I=N
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and the maximum number of operations per
qubit per second is

12E  4kpln2E
Ith  7h 8°
For many macroscopic systems (see below for an

example) £ is roughly proportional to the tem-
perature 7', and thus

S
maximum number of operations per bit
per second = ’%BT.

2.2.7 Additional details

Reversible gates (quantum or classical) do exist
and are discussed elsewhere in this course. Let us
briefly sketch the overall design of a general re-
versible computation. The computer memory is
divided into three parts fulfilling different tasks:
program storage, data storage, and work space.
As illustrated in Figure most of the garbage
generated by running the program is taken care
of by running the program backwards. Only in
the final step entropy is generated (and energy
dissipated) by erasing program and input data
in order to prepare everything for the next com-
putation.

2.3 The ultimate laptop

2.3.1 Processing speed

Some limits to the performance of computers
have been summarised by Seth Lloyd [29] in a
very popular style: he discusses the “ultimate
laptop” , i.e., the maximum performance that a
computer of 1 kg mass and a volume of 1 1 may
ultimately achieve. “Ultimately” means again
that this approach does not consider any spe-
cific implementation; in fact, the conditions con-
sidered are such that it is highly unlikely that
any device will ever be built that even remotely

approaches the conditions that are derived here.
Nevertheless, the considerations are instructive
in showing that limitations will eventually be-
come important, no matter what advances mate-
rials science will make in the future. Specific as-
sumptions are that the mass of his laptop is one
kilogramand the volume is one liter. He asked
what kind of computation could be achieved with
this system, given the values of the fundamental
constants A, ¢, kg, and G (the Newtonian gravi-
tational constant).

The limit on the processing speed discussed in
Section [2.2.5] would be reached if all the mass of
the computer were available as energy for driv-
ing the computation; it can be obtained from
the condition on the processing speed. An
energy of

E=mc*=9-10"]
results in a maximum speed of

_2E 2mc® 1.8 x 107

== = = =5-10%
mh mh 3.2 x 10734

n

operations per second.

An additional limit derives from the necessity
to include error correction. Detecting an error
can in principle be achieved without energy dissi-
pation. However, correcting it implies eliminat-
ing information (about the environment), thus
generating dissipation. The dissipated energy
will heat the computer and must be removed
to the environment. We will assume here that
energy dissipation is limited by blackbody radi-
ation. An ideal blackbody radiates, according to
the Stefan-Boltzmann law, a power of

P =cAT?,

where 0 = 5.67 x 107 8Wm 2K~ is the Stefan-
Boltzmann constant, A the surface area and T
the temperature. If this computer operates, e.g.,
at a temperature of ' = 6 x 108K, with a surface
area of 0.01m?, the power of the blackbody ra-
diation amounts to P = 4 x 10*W. This energy
throughput (which is required for error correc-
tion, not for operation) corresponds to a mass
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Figure 2.7: General scheme of reversible computation.
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which must be fully converted to energy. If this
is possible, the number of error bits that can be
rejected per second is 7 x 10*2 bits per second.
With a total of 10%° logical operations per sec-
ond, this implies that its error rate must be less
than about 1078 to achieve reliable operation.

2.3.2 Maximum storage density

A limit that may be easier to approach can be
obtained from the following model: We assume
that every atom of the system can store at most
1 bit of information. This is in principle fulfilled
in NMR and ion trap quantum computers. For
a mass of 1 kg, the number of atoms would be
of the order of 10?°. At this density, it would
thus be possible to store 10?° qubits of informa-
tion in a computer. If optical transitions of these
atoms are used for logical operations, gate times
of the order of 10~1s would be feasible, allowing
a total of 1040 logical operations per second for
the whole computer. The difference between this
number and the 105 quoted above is the energy
content: here, we assume an electronic energy
difference between the states of ~ 1 eV, while

the rest mass of the atom corresponds to an en-
ergy of me? ~ 10723 . 107 ~ 1076J ~ 10'3eV.

At such data rates, the different parts of the com-
puter would not be able to communicate with
each other at the same rate as the individual
logical operations. The computer would there-
fore need a highly parallel architecture. If serial
operation is preferred (which may be dictated by
the algorithm), the computer needs to be com-
pressed. Fully serial operation becomes possible
only when the dimensions become equal to the
Schwarzschild radius (= 1.5-1072"m for m = 1
kg), i.e., when the computer forms a miniature
black hole.

While all these limits appear very remote, it
would only take of the order of 100-200 years of
progress at the current rate (as summarized by
Moore’s law) to actually reach them. It is there-
fore very likely that a deviation from Moore’s
law will be observed within this time frame, irre-
spective of the technology being used for building
computers.

2.3.3 Monoatomic gas

The simplest example of a macroscopic system
is the classical monatomic ideal gas with N par-
ticles of mass m, whose entropy is given by the
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Sackur-Tetrode formula

v

N

3
dmm E \ 2
3h2 N
Noting that % = %kBT and measuring 7" in ap-
propriate dimensionless units we obtain

S = ;NkB—FNkBln

S = Nkp(a+blnT) =~ const,

which means that the temperature dependence
of S (logarithmic) is utterly negligible compared
with that of E (linear), and thus, in this approx-
imation,

E

S 2

as claimed above.

3

T

B
const

NT,

2.3.4 Massless particles

Since the classical monatomic ideal gas is not
the only macroscopic system we have to find out
what kind of system (within the given limits of
one liter and one kilogram) provides most en-
tropy at a given temperature T'. Systems of mas-
sive particles are improbable since the density of
particles of mass m in equilibrium is

)

which is exceedingly small for mc? > kgT. We
thus have to focus on systems dominated by
massless particles. A standard example in sta-
tistical mechanics is the Stefan-Boltzmann law
for the energy of a gas of massless particles (for
example, photons or acoustic phonons):

m02

kT

pm) ~ exp (—

E

v

_ 7 T
© %30 (he)?

reT4,

where 7. is a particle-specific factor of the or-
der of unity: the number of photon polarizations
(re = 2) or phonon branches (r. = 3). The free
energy for massless particles is F —%E and
thus we obtain the entropy:

OF 4F
a7 =37~ (

S =

i 13
4) =reFBa.

We see that the dependence on the number of
available particle species 7. is very weak. The
exact formula is

w2r vV
30h3¢3

1
4 3

At low temperature, only photons are present,
and thus r, = 2. With V = 1l and E = 1kgc?and
the operating temperature 7' = 5.87 - 108K (see
above), we then obtain

4
S=1Ikpln2= 3k3<

J

= 2.04-10%=

S 0 0K
= [= s = 2.13 - 103" bits
kpln2 ' '

(One might ask at this point wether 6 - 108 K
really is a low temperature. This is answered by
comparing the corresponding energy of roughly
6-10% eV to the rest energy of an electron, which

is 5.11-10% eV.)

Correspondingly, the number of operations per
bit per second is

which is way beyond the clock speed of any pro-
cessor available in 2013 and probably for some
years to come. Of course none of the fundamen-
tal limits discussed here will be easily reached
within the foreseeable future. However, the
many orders of magnitude between today’s lap-
tops and the ultimate laptop serve to illustrate
nicely that there is a lot of technical progress
which can be made before hitting the hard walls
set up by fundamental physical laws.

2.3.5 Parallel / serial operation

This gigantic memory and the enormous speed of
the ultimate laptop can only be used efficiently in
highly parallel computing. To see this we note
that the speed of communication between dif-
ferent parts of the computer is limited by the
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speed of light, and thus the typical communica-
tion time is
2R

teom =

where R = 0.1m is the size of the laptop. This
has to be compared to the time for a bit flip
(state change)

b mh S
M = okpn2 E

The ratio between these times then is
teom k341n2@ kBTR E
tfiip N S hc

whe A’

where Ap is the thermal de Broglie wavelength
determined by the equality between the thermal
energy and that of a massless particle of wave-
length Ap:

2T
kT = hce—.
B C)\

For R = 0.1 m that means

feom _ 110,
t flip

Since communication is extremely slow com-
pared to the bit flip rate the computer must oper-
ate in an extremely parallel way: every single bit
must go through 10'° operations on its own be-
fore it gets another chance to communicate with
other bits.

In order to reduce the necessary degree of paral-
lelization (to make the computer work more se-
rially), communication time must be reduced by
making the computer smaller (than the original
1 liter size). The ultimate limit of compression
is reached in a black hole, with Schwarzschild

radius Rg. The Schwarzschild radius is given by

Gm?  mc?

Rg

2

I

meaning that the classical Newtonian gravita-
tional energy of two particles at distance Rg be-
comes comparable to the rest energy. The en-
tropy (and information content) of a black hole

is proportional to its surface area, and for m = 1
kg one obtains

Rs = 15-107%m
I = 4-10"Dits
tflp ﬁ:72,10*51 %710
2Rg 310727 _
t(com) c - 3.108 s =10""s
leading to

tcom ~ 1
trlip

Thus the ultimate serial computer is a black hole.

Returning to the original one liter extremely par-
allel device we finally point out that parallelism
is also related to the admissible error rate. In or-
der to correct an error which has occurred, that
error must first be communicated to another re-
gion of the computer, or to the outside world.
Thus teom 1s the smallest tolerable time interval
between two successive errors of a given bit, and
consequently the maximum admissible error rate
is

Liip 1010,

tcom

which is challenging, to say the least.

Further reading

A brief, nontechnical introduction into the ther-
modynamic aspects of computation is given in
two articles in Scientific American |30} [31].

Problem

A metal sphere of radius 50 nm is used as a ca-
pacitor to store charge, or information. What is
the capacitance? What is the voltage change for
each additional electron stored? What is the en-
ergy of the capacitor if a single electron is stored?
If the capacitor is charged to a voltage of 1 V?
Compare these energies to kg1 at room tem-
perature. How large is the electric field at the
surface in both cases?
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