13 Photons for Quantum Information

This chapter deals with quantum aspects of the
transfer of information. It starts with some dis-
cussion of basic tools and then describes tasks
that cannot be performed classically but can be
performed quantum mechanically. It then gives
an introduction to some notions and topics in
classical and quantum information theory, which
may be useful for studying the growing body of
research literature in quantum information the-
ory.

13.1 Photons as qubits

13.1.1 Photons

Photons are certainly among the most attractive
systems for storing quantum information: they
can be generated in (almost) arbitrary quan-
tities, with well defined properties like energy,
momentum and polarization. Optical compo-
nents like mirrors, beam splitters and retarda-
tion plates can execute unitary transformations
on the photons with high precision. Quantum
algorithms can therefore be implemented rela-
tively easily in optical setups that use only lin-
ear optics |[172, [173, [142]. Readout is relatively
straightforward: the state of individual photons
can be determined with almost certainty, at least
for suitable wavelengths.

The internal degrees of freedom span a 2-
dimensional Hilbert space, as required for qubits.
The computational basis states are typically
chosen as orthogonal polarization states - ei-
ther linear or circular ones. Photons can be
initialized into these states and the polariza-
tions can be controlled by linear (or nonlin-
ear) optical elements such as waveplates. Read-
out is achieved by sending photons through

polarization-selective beam splitters onto single-
photon detectors.

In addition to the internal degree of freedom, the
position or the path of a photon are also im-
portant degrees of freedom. They can serve as
qubits, and they are essential for many tasks,
such as detection, where the polarization state is
converted into different paths for separating the
qubit states in space.

These attractive properties have motivated a
vast range of applications. The most advanced
ones are in (quantum-) communication, informa-
tion processing and sensing.

For some tasks, it is not necessary to use single
photons. Instead, the quantum information can
be stored in states of the electromagnetic field
that are defined by continuous variables|415].
These systems have infinite-dimensional Hilbert
spaces and use use squeezed states [416] or coher-
entﬂ states [418] of light for encode the qubits: in
the latter case, the logical states are |01) = |«)
and [11) = | — a), which are almost orthogonal
it @ > 2.

13.1.2 Working with single photons

Major technical challenges for the realization
of this type of quantum computer (as well as
for quantum communication and similar appli-
cations) is the efficient generation and detection

1Coherent

states  [417, [68] are  superposi-

tions of harmonic oscillator eigenstates |n),
2 n

o)y = exp (—%) >, 3;|n>7 where « is an

arbitrary complex number. No two coherent states
are orthogonal to each other, but their scalar product
decays rapidly with growing distance in the complex
plane, [{a|B)|* = e~1*=A1” | Coherent states minimize
the Heisenberg uncertainty product, and squeezed
states enjoy similar quasi-classical properties.
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13 Photons for Quantum Information

of individual photons [419, 420]. Single photon
sources where photons arrive at known but ran-
dom times have been available for some time
[421,1422]. For the purpose of linear optics quan-
tum computing (and many others as well), it
would be advantageous to generate "single pho-
tons on demand" [423, 424, 425], i.e. at times
when they are required by the algorithm.

Figure 13.1: Structure of the diamond NV cen-
ter and confocal scan of a diamond
surface showing single emitters.

For scalable systems, solid-state sources may be
advantageous. A stable solid-state source is the
nitrogen-vacancy (NV)-center in diamond [426].
For wavelengths in the near infrared, quantum
dots may become a useful source of single pho-
tons. They can be considered as artificial atoms
that can be excited by a laser pulse and will re-
emit the photon within a short period [427].
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Figure 13.2: Correlation function of photons
emitted from a single NV center
showing antibunching.

The probability that pairs of photons are gen-
erated drops dramatically for single emitters, as

shown in Fig. the curve shows the proba-
bility of detecting a photon at a time 7 after the
detection of another photon. Clearly, the prob-
ability drops to (almost) zero for short delays.
This is an immediate consequence of the single
emitter: after emitting a photon, the emitter is
in the ground state and cannot emit another pho-
ton before it is excited again.

Even more useful may be electrically pumped de-
vices, where the electron-hole pairs are created
by carrier injection [428, 429].

For applications in linear optics quantum com-
puting or quantum cryptography, it is actually
preferable to generate not single photons, but
pairs of photons on demand. This was origi-
nally achieved by using atomic three-level sys-
tems [430]: in this case, the first photon is emit-
ted from a doubly excited atomic state when
the atom decays to an intermediate state. If
the lifetime of this state is short enough, the
system emits a second photon immediately af-
ter the first. This type of source has now been
replaced by solid-state sources [431]: in these
sources, blue or ultra-violet photons are down-
converted into pairs of entangled photons with
known directions of propagation and polariza-
tion. This type of source provides much higher
rates of entangled photons than the atomic cas-
cades used earlier. Alternatively, photon pairs
can also be produced in semiconductor quantum
dots by exciting biexcitons [432, 433]. The re-
sulting photon-pairs have highly correlated po-
larization.

Detection of single photons is possible using
avalanche photo diodes (APDs) or photomulti-
plier tubes (PMTs). Today, APDs, as solid-state
devices, are the preferred devices, offering quan-
tum efficiencies of >90% in the visible. Every
detector has a certain dark count rate, i.e. it
"detects" photons when none are present. This
problem can be reduced by cooling the detec-
tor. In the extreme case of a superconducting
detector working at a temperature below 1 K,
the dark count rate becomes negligible [434,1435].
These devices provide high efficiency, even in the
infrared, but have to be operated at cryogenic
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temperatures.

While the detection of individual optical pho-
tons is possible with good efficiency using com-
mercial devices, lower frequencies present much
bigger challenges. Not only are the photon en-
ergies lower (i.e. the energy to be detected is
smaller), but in addition, thermally excited pho-
tons (in the quantum system as well as in the
detector) must be avoided [436, 437].

13.1.3 Linear optics quantum
computing

An important device for linear optics is the beam
splitter (BS). It has 2 input ports and 2 output
ports and can be represented as a logical gate op-
eration: It transfers the two input states into two
output states. For the symmetric beam splitter,
the conversion matrix is

= n(i )

which corresponds to a Hadamard gate. If light
is incident only on 1 port of the BS, equal inten-
sities exit at the two output ports.

If identical photons are incident on both input
ports, they interfere. Their combined state can

be written, e.g., as
1 1 1
\/§<1>H‘yout:U\Pzn:<0)

The light therefore exits only on 1 port.
PBS
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Figure 13.3: Conversion between polarization-
mode and spatially encoded mode.

Fig. [13.3 shows how a polarization-encoded pho-
tonic qubit can be converted to a spatially en-
coded qubit of the same photon: The computa-
tional basis states of the incident photon are the

vertical and horizontal polarization states. The
photon is in the state

Vin = | 1) + 5] ).

The photon is now incident on an optical device
called “polarizing beam splitter” (PBS). This de-
vice transmits vertically polarized light but re-
flects horizontally polarized light. The incident
photon is therefore split into two wavepackets
with orthogonal polarization and spatially sepa-
rated paths. If required, we can rotate the po-
larization of one of the two partial beams, and
we can now use the spatially separated paths as
computational basis states |0) and |1). The state
of the photon behind the beam splitter is then

U = al0) + B1).
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Figure 13.4: Optical implementation of the DJ
algorithm [172].

Fig.[13.4 shows, as an example, the optical setup
used for implementing the DJ-algorithm [172] for
two input qubits and one qubit for storing the
function result. It uses only a single photon;
the input qubits are implemented as four dif-
ferent optical paths, and the function result is
encoded in the polarization state of the photon.
The beam splitters split the laser light into four
paths with equal amplitude. Each optical path
contains an electro-optical modulator. Applying
a voltage to this modulator generates a transfor-
mation of the photon travelling through it. At
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the end of each path, a mirror reflects the photon
through the same path until they again hit the
beam splitters. At the beam splitters, the par-
tial amplitudes from the different paths interfere
and depending on the relative phase, they are re-
flected or transmitted. The photodetector thus
measures different count rates, depending on the
relative phases.
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Figure 13.5: Result of the DJ algorithm [172].

Fig. [13.5/shows the observed count rates for the
different functions. For the two constant func-
tions, the photon detection probability is maxi-
mized, for the balanced values, it vanishes within
the experimental uncertainties, and for the other
functions, it takes an intermediate value.

Like in classical computing, integration by litho-
graphic processes is rapidly increasing the com-
plexity and capabilities of these devices [438].

13.1.4 Linear optics and
measurements

Unfortunately, setups with linear optics cannot
be readily extended to larger number of qubits:
as the number of qubits increases, one needs ei-
ther a coupling between different qubits or the
number of optical components required increases
exponentially with the number of qubits. In
vacuum, interactions between photons are ex-
tremely weak. In many materials, effective inter-
actions between photons can be mediated by the

medium; this is, e.g., the mechanism that allows
frequency doubling, parametric amplification, or
the Kerr effect. However, while these interac-
tions can be readily observed in high-intensity
laser beams, they are usually very weak at the
single photon level. Building a quantum com-
puter on this basis appears therefore extremely
difficult.

A possible way out was suggested by Knill,
Laflamme, and Milburn: they realized that mea-
surements of individual photons represent a non-
linear process that works well enough with single
photons and can be used for quantum comput-
ing [175} 439]. This linear optics scheme encodes
qubits in the mode occupied by the single pho-
ton, i.e., two modes are required to encode a log-
ical qubit: |0z) =(01), [11) = |10).

Their scheme differs from the usual network
model in that they use measurements, which
are clearly nonunitary operations, to process the
data. The results of these measurements are
fed back into the state of the quantum register
by controlled phase shifts. Several steps have
been taken towards realizing this scheme, includ-
ing the construction of a two-qubit gate that is
closely related to the CNOT operation [440)].

Among the biggest difficulties of this architec-
ture is the necessity for storing qubits. Even if
the auxiliary photons used for the measurements
can be produced on demand, which remains a
challenging problem [441,424/1442|, the measure-
ments are inherently probabilistic and have to be
repeated several times to ensure success. Until
success is assured, the photons have to be kept
in a waiting state. While some schemes have
been tested to store the quantum state of pho-
tons [443, [444, [445], the efficiency of such con-
versions is still much too low for useful imple-
mentations. While these difficulties make it un-
likely that such a scheme will be implemented
directly, similar proposals have been put forward
that may be easier to implement.
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13.1.5 Implementation

Experimental work towards this goal is under
way. Single-qubit gates are straightforward to
be implemented by retardation plates or mod-
ulators. Two-qubit gates are significantly more
demanding but have been realized as probabilis-
tic gates [446] by interference on a beamsplitter
[447]. A probabilistic nondestructive CNOT gate
was implemented for two independent photons
using only linear optics [448].
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Figure 13.6: Optical CNOT gate [440].

Fig. shows a similar scheme, which was also
tested experimentally [440]. Each qubit is rep-
resented by a single, spatially encoded photon.
The control and target qubits must be entered
simultaneously. The target qubit goes through
an interferometer, which is balanced, so it exits
unchanged if the control qubit is not in mode C}
- except that the two mirrors labeled “1/3” are
only partially reflective (1/3). This means that
the gate is probabilistic, not all photons reach
the output. However, when a single photon is
detected in each output (a coincidence count),
which occurs with probability P = 1/9, the gate
has worked correctly.

If the control photon is in mode Cj, it does not
interact with the target photon and the target
photon is not changed. However, if the control
photon is in state C7, the interaction between
control and target photon results in a phase shift
of the target photon, which is translated into a
spin flip by the second “1/2” beam splitter.

The principle of this approach can also be
used in different contexts. Apart from the

network model, it can also be applied to
the measurement-based approach to quantum-
information processing [449] and it can be used
for quantum non-demolition detection of photons

[450].

13.1.6 Integrated optics

While the basic principles of photonic quantum
computing can be demonstrated with discrete
devices like mirrors and beam splitters, scalable
devices have to rely on miniaturization on the
basis of lithographic processing.

Figure 13.7: Single-qubit gate based on inte-
grated optical waveguides.[451]

Figure shows how single-qubit gates can be
integrated on photonic chips.
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Figure 13.8: Platform for photonic quantum
computing. [452]

Figure [13.8 shows some components of a plat-
form for optical quantum processors that was
proposed developed by the PsiQuantu team.
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[452]. They are developing a general-purpose
silicon photonic quantum computer and bench-
marked a set of monolithically integrated silicon-
photonics-based modules to generate, manip-
ulate, network and detect heralded photonic
qubits, demonstrating dual-rail photonic qubits
with 99.98% 0.01% state preparation and mea-
surement fidelity, HongOu Mandel (HOM) quan-
tum interference between independent pho-
ton sources with 99.50% 0.25% visibility, two-
qubit fusion with 99.22% 0.12% fidelity and a
chip- to-chip qubit interconnect with 99.72%
0.04% fidelity, conditional on photon detection
and not accounting for loss. Their techno-
logical basis is low-loss silicon nitride (SiN)
waveguides and components to address loss,
as well as fabrication-tolerant photon sources,
high-efficiency photon-number- resolving detec-
tors (PNRDs), low-loss chip-to-fibre coupling
and barium titanate (BTO) electro-optic phase
shifters for high-performance fast switching.

13.2 “Quantum only” tasks

Before we start discussing tasks which can only
be performed quantum mechanically but not
classically, we recall the no-cloning theorem (Sec-
tion where it is just the other way round.
Any piece of classical information can be copied
arbitrarily often and with arbitrary precision,
but there is no way to copy an arbitrary quan-
tum state. This inability to copy quantum in-
formation is the basis for secure communication
by means of quantum key distribution, which we
will discuss in Section Before, in Section
we will show how one qubit may be used
to transfer the information of two classical bits
by a scheme known as (super-) dense coding. We
will start, however, with quantum teleportation.

13.2.1 Quantum teleportation

We may be unable to give a copy of a quantum
state to a friend, but under certain circumstances

we are able to transmit some classical informa-
tion which allows him or her to prepare precisely
the state that we originally had. Our state will
then be destroyed, of course, because otherwise
we would have been able to violate the no-cloning
theorem. The process can then be summarized
by the formula

|¥) 4®|something) 5 — [something else) A4®| V) p.

A necessary resource for this teleportation of an
unknown state is entanglement, that is, both
partners must share among them two qubits (in
the simplest case) in an entangled state. Quan-
tum teleportation was proposed in 1993 by Ben-
nett et al. [453] and is surprisingly simple.

We consider the usual characters, Alice and Bob.
Let Alice be in possession of a qubit in the state

) = al0) + [1).

(Of course she does not know o and 3, otherwise
the problem would be trivial.) Furthermore Al-
ice and Bob share a pair of qubits prepared in
one of the Bell states , often also called an
EPR pair,

1
V2
where Alice can manipulate only the first qubit

and Bob only the second one. The initial state
of the combined three-qubit system is thus

) (100) + [11)),

) = |¥)l¢)
= —[a]0)(J00) + |11))
+811)(100) + [11))].

N

Figure [13.9 shows the basic experiment: Alice
applies a CNOT(1,2) gate to the two qubits in
her possession, followed by a Hadamard gate Hy
acting on the first qubit (the one initially con-
taining [¢)). This entangles the two qubits ini-
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Figure 13.9: Simple quantum teleportation ex-
periment.

tially in the states |¢) and |¢) with each other.

[X) = Hi CNOT (1,2)[x)

_ % [a(|0) + [1))(|00) + [11))

+8(10) = [1)(]10) + [01))] .

We rewrite this state in order to bring out clearly
what has happened on Bob’s end

X) = 5 100)(al0) + B1) + [01)(af1) + 5i0))
H10)(@0) — BIL) + 11)(af1) — 510))]
= S 100) 1) + 01Xl + [10)Zsfy)

+[11) (=iY3) [¢)
~—
Xng

1
> Z M Mz) X5 25" 1),
M =0

N

where X3, Y3, and Z3 are the Pauli matrices
(4.124.14)) applied to the qubit 3, that is, Bob’s
qubit.

Bob now possesses a superposition of four dis-
torted variants of Alice’s original state. Alice
performs a measurement (in the computational

basis) on the two qubits 1,2 to which she has ac-
cess. She obtains one of the four combinations
| My My) (M, My = 0,1) with equal probabilities.
After the measurement the state of the complete
system has been projected to

| My M) X3 Z3" 1))

so that Bob possesses a definite modification of
the desired state |¢), but he does not yet know
which one! To let him know, Alice transmits the
two measured classical bits (Mi, Ms) through a
classical channel. The transmission through the
classical channel is limited by the special theory
of relativity and prevents superluminal commu-
nication, or, as Einstein put it, “spukhafte Fern-
wirkungen” (spooky actions at a distance). Bob
then applies to his qubit the operator

M~y M. Mo rp M7\ —
Z3 1X32:(X3 2Z3 1) 1

1
- Hlﬁ []0)(100) + [11)) + B1)([10) + |012x)1ld can enjoy the state |¢)) which is now in his

possession, while Alice’s original qubit is in the
state | My).

An important aspect is that in this process nei-
ther matter nor energy were transported “explic-
itly”, only two classical bits. Surprisingly enough
these two classical bits were sufficient to recon-
struct on Bob’s side the state [¢)) which requires
three real numbers for its complete specification
(one amplitude, and two phases, assuming nor-
malization). In a sense, these three real num-
bers contain infinitely more information than
was transmitted; unfortunately (see the follow-
ing subsection) this information cannot be re-
trieved completely. Nevertheless, the possibil-
ity of teleportation clearly shows how powerful
a resource a shared EPR pair is. On the other
hand, the necessity to have a shared EPR pair
for every qubit (or electron, nucleon) whose state
is to be teleported makes it very clear that we
are still quite far away from any kind of “beam
me up, Scotty” scenario. Nevertheless, single-
qubit states have been successfully teleported
in more than one laboratory, using optical and
NMR techniques. References to those experi-
ments (and to critical comments on them) can
be found in [131] and in [40], p. 59.
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13.2.2 (Super-) Dense coding

An arbitrary normalized pure single-qubit state
is completely specified by three real numbers,
for example, the two angles 8 and ¢ in the
Bloch sphere representation , plus an over-
all phase which is usually irrelevant. These real
numbers contain much more information than
the single binary digit contained in a classical
bit, and it is interesting whether that much in-
formation can be reliably transmitted by a single
qubit. The answer is no, unfortunately. How-
ever, transmission capacity can be doubled by
using quantum instead of classical bits, as dis-
covered by Bennett and Wiesner in 1992 [454],
whose scheme has become known as superdense
coding. In a sense, it is the inverse process of
teleportation. Alice and Bob share an EPR pair
and can transmit two classical bits by a single
qubit. The method is difficult to implement and
it is not important as a means of practical fast
communication. However, it demonstrates one
possibility of secure communication, as we shall
see.

As in the preceding subsection, Alice and Bob
are supposed to share the EPR pair state

_ L

(100) + [11)).

(By the way, there is no need for any prior direct
communication between Alice and Bob: they
could have obtained their respective qubits from
an “EPR pair distribution agency”.) Now, if Al-
ice wants to send the two classical bits (M7, M)
to Bob, she applies XJIWIZ{W2 (to the only qubit
accessible to her, that is, qubit 1). This yields
one of the four states

Then Alice transmits her qubit to Bob. Note
that the four states on the right-hand side are an
orthonormal set (the Bell basis which we already
encountered in Chapter 4) and thus can be dis-
tinguished by an appropriate measurement. Bob
might first apply CNOT(1,2) and then measure
the target bit 2. This yields

CNOT |¢go) ~ [00) +|10) — 0
ONOT |p10) ~ [11)+]01) — 1
CNOT |go1) ~ [00) —|10) — 0
CNOT |¢11) ~ [11)—]01) —> 1

Obviously this yields the first classical bit M;
transmitted by Alice. The second qubit now has
been used up in the measurement. The remain-
ing classical bit My is encoded in the relative
sign in the four superpositions above. Bob
can decode it by applying the Hadamard gate
H= %(X +Z) to his remaining qubit and then
measuring it :

H(|1) +0)) = v2|0)
(for |¢oo) and |p10)), and
+H(0) — [1)) = £v21)

(for the other two states). Experimentally this
has been implemented by both optical and NMR
techniques, see [131] for the references.

What about the security of this procedure for in-
formation transmission between Alice and Bob?
Can a malignant person (usually called Eve, the
eavesdropper) intercept the qubit transmitted by
Alice and decode the information? Of course she
can intercept and measure the qubit, but, regard-
less of the two classical bits M7 and My encoded
by Alice, Eve will measure |0) and |1) with equal
probabilities, so that she obtains no information
whatsoever.

(13.1y~ Problem

The information is encoded in the way the two
qubits are entangled, and it can only be decoded
by using information on both qubits. In the fol-
lowing subsection we will see how entanglement
can be employed to generate keys for data en-

lboo) = XIZ%|¢) = |4)
o) = X%z?|¢>=%<|w>+|m>>
1) = X?z%|¢>=%<|oo>—|n>>
. 1
611) == X(Zi|g) = —iY1|¢) = *2(|10> - ‘01>)'cryption.
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13.2.3 Quantum key distribution

Secure communication is a field where quantum
mechanics may contribute in several ways to cre-
ate or destroy security. In Section we saw
how quantum mechanics may help to break clas-
sical codes by Shor’s algorithm. Here we will
discuss how quantum mechanics helps to make
secure communication possible by quantum key
distribution, one of the central ideas in the field
of quantum cryptography [455]. Alice and Bob
exchange qubits in order to generate a key which
can be used later to encrypt a message transmit-
ted by a classical (and public) channel. The en-
crypted message can only be decrypted by means
of the key. Quantum mechanics can be used to
make sure that only two persons are in posses-
sion of the key. This should be contrasted to
old-fashioned techniques such as providing se-
cret agents with “code books” which may get lost,
stolen, or copied.

A key is a (random) sequence of (classical) bits
{k;}(i = 1,...,N) which Alice uses to encrypt
the N-bit message {m;} and transform it to the
code {c;} by bitwise addition modulo 2:

¢i = ki®m; = k; XOR m; = (k;j+m;) mod 2.
Bob can decrypt the code if he possesses the key:
m; = ¢; © ki,

as can be easily verified for all four possible com-
binations (k;, m;).

This method of encryption is only safe if the key
is used only once. If two messages m and m' are
encoded with the same key and the codes ¢ and
c are intercepted, the relation

/ /
¢ D, =m;dm;

can be used to eliminate the deliberate irregu-
larities introduced by encoding. Subsequently
standard correlation analyses (as available at any
secret service) can be applied in an attempt to
separate m from m’. Given this situation there is
obviously a need to distribute fresh keys among

Alice and Bob. Quantum key distribution serves
that purpose.
“protocols” to do this quantum mechanically, see
[131]. Here we will discuss only two schemes
which are closely related to each other.

There exist several schemes or

13.2.4 BB84

First we discuss the four-state protocol known
as BB84 [456]. This protocol uses four pairwise
orthogonal states

1
V2

(the eigenstates of the Pauli matrices Z and X,
respectively) which can be easily prepared as
linearly polarized photons with electric field E
along Z, ¢, and & £+ ¢, where £ and ¢ are unit
vectors along orthogonal coordinate axes.

10), [1),1£) = —=(10) £ 1))
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Figure 13.10: Experimental protocol for QKD.

Measurements are performed with linear polar-
izers along these directions, and detectors. A
photon polarized along & passes through a po-
larizer along & and is detected, one along ¥ is
not. To get an unambiguous result the observer
must know that a photon should be coming along
his way and that it is polarized either along & or
along . A photon polarized along one of the
diagonal directions z 4 ¢ will not yield any in-
formation when analyzed with a polarizer along
2, because both possibilities will give a signal in
half of all cases.

Alice prepares 2n qubits randomly in one of the
four states. Each qubit ¢ contains two classical
bits, namely:
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e by; telling which basis, {|0),[1)} or
{|4+),|—)}, was used to prepare the state,
and

e s, telling which state (1st or 2nd) of the
given basis was prepared.

Bob (ideally) receives all these qubits and mea-
sures them, randomly switching the basis used
for measuring. He also stores two bits for each
qubit, namely

® by, 4, telling which basis was used to measure
the qubit, and

® s;,4, telling which state of the given basis
was measured.

Alice now (after the transmission) tells Bob (over
a public channel) the sequence {b,;} which Bob
compares to his sequence {by,;}. Both parties
keep only qubits with b, ; = by, ; and throw away
all the others (roughly n), because they do not
contain useful information, as discussed above.
For the remaining qubits the classical bits s, ; =
Sm, are known to both Alice and Bob. They
constitute the key.

The security aspects of this procedure become
visible if Eve intercepts and measures the qubits.
During transmission Eve neither knows which
basis Alice uses for preparing the qubits, nor
which basis Bob uses for measuring them. Never-
theless she has to supply Bob with qubits resem-
bling those transmitted by Alice, in order not to
be discovered immediately. Eve’s only possible
strategy is to use one of the two measurement
bases randomly for each qubit. After each mea-
surement she prepares a fresh qubit in the basis
state just measured and passes it on to Bob. Af-
ter the transmission is complete, Alice and Bob
discuss their bases and agree to discard about
half of their measurements as useless. (Eve of
course listens to the conversation and discards
the same measurements.) Let us discuss what
effect Eve’s attack has on the code, that is, on
those qubits which have been measured by Bob
in the same basis as used by Alice to prepare
them. For about 50 % of these qubits Eve has
performed her measurement in the right basis,

causing no disturbance. The remaining 50 % of
the qubits have been measured in the wrong ba-
sis by Eve and then passed on to Bob. The fi-
nal measurement by Bob (in the right basis) has
projected half of these qubits back into the state
originally prepared by Alice, so the overall error
rate caused by Eve is 25 %.

Alice and Bob can agree to publicly compare a
certain share of the key (thereby sacrificing that
share, of course), and if they detect no differences
they can be pretty certain that no eavesdropping
has occurred. (If m bits are compared the prob-
ability that they are all correct by chance in the
presence of eavesdropping is (%)m =3-10713 for
m = 100.) Of course Eve might be clever enough
not to intercept every qubit, and also there might
be errors other than those caused by eavesdrop-
ping in a less than perfect transmission line. All
these problems have been analyzed and may be
overcome, see [41], [131].

13.2.5 Tests

An early demonstration of the BB84 scheme used
23 km of public telecom glass fiber beneath Lake
Geneva [457]. In that experiment polarized light
pulses with < 0.1 photons per pulse were used:
there must be (practically) no pulses with two or
more photons because an eavesdropper might in-
tercept just one photon and go unnoticed. The
bit error rate was ~ 1% and the data transfer
rate was of the order of MHz instead of the usual
(in non-secure communication) GHz. More re-
cent work was reviewed in [455]. The distance
over which quantum keys can be distributed was
extended beyond 100 km via glass fibers [458] as
well as in free space [459]. Significant progress
in this field might be achieved by using actual
single-photon sources instead of strongly atten-
uated pulses [460, 461].

Other protocols for secure communication in-
volve entangled states, for example EPR pairs,
and it was shown that the Bell inequalities
(mentioned in Chapter [4)) distinguishing genuine
quantum correlations from classical ones can be
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used to detect eavesdroppers. An extremely sim-
ple scheme involving EPR pairs but no Bell in-
equalities was suggested by Bennett, Brassard,
and Mermin in 1992 |462]. This scheme is essen-
tially equivalent to the BB84 protocol just dis-
cussed, as we will see. Alice and Bob share 2n
EPR pairs

1

|¢Z> - \/§
in the usual way, that is, each qubit is accessible
to one person only. Both measure the qubit ac-
cessible to them, and thus project it on one of the
eigenstates of X or Z (at random). They inform
each other publicly about the (X,Z) sequence
used, but not about the results of the measure-
They discard all measurements where
one has measured X and the other Z. The re-
maining measurement results are perfectly anti-
correlated and can be used to produce two equal
bit strings of length ~ n. A part of the key may
again be sacrificed to detect eavesdropping. The
scheme has an additional advantage: the EPR
pairs can be left untouched until just before the
key is needed so that the time during which the
key is kept in classical storage and can be copied
by a thief is minimal. Of course this requires the
ability to preserve EPR pairs over long times,
but that is a different story.

(101) —[10))

ments.

For further information on quantum cryptogra-
phy, interested readers are referred to the review
[455]. This article treats a broad range of topics,
from theoretical foundations to detailed discus-
sions of fiber optical transmission systems. A
more recent review treating all aspects of quan-
tum communication is [463].

13.3 A few bits of classical
information theory

13.3.1 Measuring Information

Information theory has developed over the past
six decades in parallel to computer science. Its
roots are in communication theory, that is, in

the theory of transmission of information by tele-
phone or radio. Of course, all parts of this book
deal with information theory in a wider sense,
but as the subfields have developed, questions
of computation and algorithm development have
been separated from information theory in a nar-
rower sense. In this section we will restrict our-
selves to some problems dealing with the trans-
mission of information.

The most fundamental questions of course are,
what 4s information, or, more precisely, how can
it be quantified? These questions were dealt
with in the pioneering contributions of Claude
Shannon [26] in the late 1940s. The histori-
cal (or socio-economic) context was the rapid
growth of communication by telephone lines.
Consequently the problem was formulated as the
problem of effectively transmitting information
through a given “channel”. The channel, for ex-
ample a telephone line, may connect two points
in space, but it may also connect two points in
time, in which case we are dealing with effec-
tive data storage. As every channel has physical
limits, there is an obvious interest in precisely
determining these limits and extending them if
possible. To do that, a measure of the informa-
tion content of a communication must be devel-
oped and related to the capacity of the chan-
nel. That is the content of Shannon’s noiseless
channel coding theorem. Of course channels are
always noisy, and questions of error-correction
immediately come to mind. Actually there is
a large subfield of classical information theory
dealing with the development of error-correcting
codes. The fundamental limits are fixed by Shan-
non’s noisy channel coding theorem.

In contrast to the theory of quantum (or clas-
sical) algorithms, here we are not dealing with
a small number of (qu-)bits which must be pro-
cessed, but with large quantities of transmitted
data. From the point of view of the communi-
cations engineer these data form a random se-
quence of symbols about which only some sta-
tistical properties may be known. It turns out
(not unexpectedly) that some key concepts from
statistical mechanics, such as entropy, are use-
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ful also in information theory, both classical and
quantum.

After discussing some notions of classical infor-
mation theory we will try to generalize the con-
cepts to the quantum regime. Unfortunately it
turns out that the use of qubits does not sig-
nificantly speed up the transmission of classi-
cal information (such as this text) through a
noiseless channel. Nevertheless it is interesting
to study how the notion of classical informa-
tion may be generalized to quantum informa-
tion, how strongly quantum information may be
compressed (looking for the quantum analogs of
Shannon’s theorems), and how quantum noise
(i.e., continuous fluctuations in both amplitude
and phase in contrast to mere bit flips) may af-
fect the transmission.

13.3.2 Information content and
entropy

The first question is, how to quantify informa-
tion. Imagine you are told that

X =2.

How much information do you gain? That de-
pends on your previous knowledge: if you knew
already that X was 2, you learn nothing. If you
only knew that X was determined by throwing a
die you gain information. The information con-
tent of X is a measure of your ignorance: how
much information would you gain if you learned
the value of X? That depends on the number
of possible values x of the random variable X
and their probabilities p(x). The general formula
for the information content of X introduced by
Shannon is

S(X)=S{p ) logs p(z

Zp
Since 0 < p(z) < 1, S(X) > 0. Let us look
at more examples to see if this definition makes
sense: p(x) = 0,2 (for integer x) = S(X) = 0.

(Nothing is learned if we know already that X =
2.)

o p(x) = % for x = 1,..., N and zero other-
wise = § = logy N

N =6 = S = 2.58 (the fair die)

N =2 = § = m: m bits must be specified
to convey the information
o p(6) = 5.p(1) = ... =p(5) = 35 = 5 =

2.16 (a loaded die).

The comparison between the fair die and the
loaded die shows that the potential information
gain decreases if the information about the prob-
ability distribution increases. The uniform prob-
ability distribution is the one with “maximal ig-
norance”. Obviously S is closely related to the
entropy well-known from Statistical Mechanics,
and it is indeed often called information entropy
or Shannon entropy. A simple but important
special case is a binary variable (X = 0 or 1,
say), with p(1) =p = p(0) =1 —p. S(x) is then
a function of p only:

S(X) = H(p) = —plogyp—(1—p)logy(1—p).

The binary entropy function H(p) assumes its
maximum value 1 at p = %; it is zero if X is
known with certainty.

1 y T

X=0

\ I \
OO 0.5 1

p

Figure 13.11: The binary entropy function H (p).

13.3.3 Mutual information and the
data processing inequality

For two random variables X and Y we can de-
fine the conditional probability p(y|x) that the
random variable Y assumes the value y under
the condition that X = z, and the conditional
entropy

S(Y|X) =

Zp Z (ylz) logy p(ylz).
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(13.2)

Since — 3, p(y|z)logy p(ylz) is the information
content of Y for given value of X, the conditional
entropy S(Y'|X) is the average information con-
tent remaining in Y if we were to learn the value
of X. (Where the average is performed over the
possible values of X.) Since the (“simultaneous”)

probability p(x,y) that X = xz and Y = y is
given by
p(z,y) = p(x)p(ylr), (13.3)

we can rewrite (13.2) as

S(Y]X) = ZZP z,y) logy p(ylx). (13.4)

We now define the mutual information content
of X and Y as

—
~—

I(X:Y): =

plz,y
%: Zy:p(%'y y) log, @)
— I(Y:X)

If X and Y are independent random variables,
that is, p(z,y) = p(z)p(y), the mutual infor-
mation I(X : Y) = 0 and this indicates that
I(X :Y) in fact measures how much X and Y
“know about each other”. We can relate the mu-
tual information to the conditional entropy by
noting that

I(X:Y) =

5 vt o 200
_%:Zp z,y)logy p(y)
— ZZ;(az,y) log, p(y|x)
_ Z oy

= - (Y!X) +5(Y),

where we have used (13.3), , and p(y) =

> . p(x,y). Due to the symmetry of I(X :Y)
we also have

) logy P

I(X:Y)=I(Y : X) = -S(X|Y) + S(X).

Defining the information content of the “two-
component” random variable (X,Y") by

=YY p(w,y)logy plw,y) (13.6)
r Yy

and using the normalization conditions p(z) =
>y P(z.y) and p(y) = >_, p(z,y), we see that

I(X:Y)=-5(X,Y)+ S(X)+ S(Y),
where S(X,Y) is the information content of the
“vector” random variable (X,Y).

During data processing, information can only de-
crease. To see this we reconsider the fundamen-
tal step of data processing from a proba-
bilistic point of view. The register is described
by a random variable which is capable of a cer-
tain set of states (or values). The set of rules
(the program) determining the transition from
one state of the register to the next state is en-
coded in conditional probabilities. In this lan-
guage, data processing is a stochastic process
(a Markov chain). We consider two steps of
data processing involving three random variables
X — Y — Z where successive variables are con-
nected by conditional probabilities p(y|x) and
p(z|y) and where the simultaneous probability

p(z,y,z) = p(x)p(y|z)p(zly). Under these con-
ditions the data processing inequality says

S(X)>I(X:Y)>I(X:2),

that is, Z cannot know more about X than Y
knew which is less than the information content
of X. This highly plausible inequality (a corol-
lary to which is the well-known rule “garbage in,
garbage out”) can be deduced from the proper-
ties of the various entropy functions discussed
above. (Compare, for example, [40], Chap. 11).

13.3.4 Data compression and
Shannon’s noiseless channel
coding theorem

The basic idea of data compression is very simple
and also very old. Determine which sequences of
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symbols or words occur most frequently and use
abbreviations for them, that is, code these words
in short strings of the symbols (bits, for example)
We illustrate this
principle with a very simple example. Suppose
we wish to transmit information from a source X
with a four-letter alphabet with unequal proba-
bilities. Four symbols can be distinguished by
using two bits and there is a “natural” (or naive)
way to do this. In the table we show both the
naive code and a “clever” code which we analyze
below.

used for data transmission.

symbol | probability | naive code | clever code
1 3 00 0
2 2 01 10
3 3 10 110
4 3 11 111

Note that in the naive code all symbols are stored
in two bits each. The clever code uses bit strings
of variable length, but nevertheless the bound-
aries of the symbols are always well defined: af-
ter a “0” or after at most three bits. The average
length of the cleverly coded string in bits per
symbol then is

1 1 2 7
grltg2+tg3=,<2

Let us compare this to the entropy of the source:

1 1 1 1 2 1

S(X) = —§log2§—110g21—§10g2§
1 1 2 7
- S.1+-.242.3=1
2 +4 +8 4

The fact that
coincidence.

the two numbers are equal is no

Also, no compression scheme can
be constructed which works with a smaller num-
ber of bits per symbol on average. This is the
contents of Shannon’s noiseless channel coding
theorem.

To illustrate the idea a little more generally (but
without going into full generality) we consider
a source sending a stream of binary symbols:

X =0,1;p(1) =p,p(0) = 1 —p with p # 3.
(Remember: the central elements of data com-
pression were the fact that not all strings are
equally probable, and the use of short codes for
frequent symbols.) We will not encode individ-
ual symbols but blocks of n symbols with n large.
In the typical case such a block will contain np
ones and n(l — p) zeros. (Let us postpone for
a moment the discussion of what “typical” really
means.) There are many blocks of n symbols np
of which are ones. The probability of any such
sequence of zeros and ones is

Pryp = P"P(1 — p)n(l—p)'

Now note that

logy ptyp = mplogyp + n(1 —p)logy(1 - p)
= —nH(p)
where H(p) is the binary entropy function de-

fined earlier. Thus

Piyp = 9—nH(p)

As these typical sequences all have equal proba-
bility 27"H®) | their total number is 2 ®) and
they can be numbered, from 1 to 2*#®). To com-
municate which one of the 2H®) possible typ-
ical sequences are transmitted, only nH (p) bits
are needed, not n bits as in the case where bits
are transmitted one by one. It is not possible
to distinguish the typical sequences by sending
fewer than nH (p) bits, since they are all equally
probable, so the compression from n to nH(p) is
optimal.

13.3.5 Data compression

So, how typical is typical, and why is the above
argument relevant? Why do we really encounter
(almost) only typical sequences? It turns out
that the answer to these questions is provided
by one of the “laws of large numbers” arguments
which are possibly familiar from elementary sta-
tistical mechanics. There it is shown, for exam-
ple, that the energy per particle may be allowed
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to fluctuate arbitrarily, but nevertheless the total
energy of a large number of particles practically
does not deviate from its mean value. By a sim-
ilar argument we will now show that, although
the individual symbols of a sequence may fluctu-
ate between 0 and 1, a long sequence will never
deviate much from the typical number of zeros
and ones, that is, np ones and n(1 — p) zeros.
The probability of finding m ones in a sequence
of n symbols is

p(m) = ( "

m n—m
m >p (I—=p)"™™,
the binomial distribution. For fixed p and large
n, the binomial distribution is excellently ap-
proximated by a Gaussian distribution. To see
this we write down Inp(m), approximating the
logarithm of the binomial coefficient with the
help of Stirling’s formula

Inn! =nlnn —n+ O(lnn), (13.7)

valid for large n. (We assume that n, m, and (n—
m) are all sufficiently large.) We then calculate
the first and second derivatives of In p(m) which
we need for a Taylor expansion. The results are

d
— Inp(m) =Inp—In(1—p)—lnm-+In(n—m)

dm
(13.8)
and
L gy =L L n
am? PN T T T m T m(n —m)
(13.9)

The first derivative of In p(m) vanishes if 1’%}0 =
T, or m = np, and we see that np is indeed
the most probable number of ones in a sequence
of length n. A Taylor expansion of In p(m) about

the value m = np then reads

(m—np)* 1
2 np(l—p)
(13.10)

Inp(m) ~ Inp(np) —

This shows clearly that p(m) is a Gaussian

(m) L (13.11)

p m) =~ (& 20 .
V2mo?

with standard deviation o = /np(1 —p). (We

have adjusted the normalization of the Gaussian
@ by hand, because we used the crude form
@ of Stirling’s asymptotic expansion. Taking
into account a few more terms in this expansion
leads to the correct normalization automatically,
but makes the calculation somewhat less trans-
parent.) Note that, while the mean value np
grows linearly with the sequence length n, the
standard deviation only grows as {/n. That is,
the relative fluctuations of the number of ones
in a sequence becomes smaller as the sequence
grows longer and for long enough sequences we
can be pretty sure that almost all sequences are
typical.

Thus we only have to transmit H(p) < 1 bits per
symbol for our binary source. More generally, for
a source producing random variables X (capable
of d values so that coding the symbols one by
one would require log, d bits per symbol) with
an information content S(X) we need nS(X) <
nlog, d bits to communicate n values of X. This
fact about the compressibility of data is known
as Shannon’s noiseless channel coding theorem.

For practical purposes it is of course not always
possible to wait until a large number n of sym-
bols have accumulated before starting the trans-
mission. However, there are near-optimal coding
schemes for blocks of a few (say, four) symbols
only. They are based on the same idea as the ex-
ample we started with: use shorter transmission
codes for the most frequently occurring blocks of
symbols. An example for such a scheme is the
Huffman code (compare [41]).

13.3.6 The binary symmetric channel
and Shannon’s noisy channel
coding theorem

We have to think about signal transmission in
the presence of noise, because noise is unavoid-
able in real-world systems. Depending on the
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physical nature of the signal and the transmis-
sion channel, different types of noise are possible.
We will concentrate on the important and sim-
ple case of binary digital transmission (of zeros
and ones, that is) and symmetric bit-flip noise.
That means that every single bit is flipped with
a certain probability p on its way down the chan-
nel, regardless of its value (0 or 1) and regardless
of the fate of all other bits. Such a channel is
called a binary symmetric channel, and we want
to know its capacity, measured in (useful) bits
out per bit in. It turns out (see [41] for details)
that for the maximum information content of the
source, S(X) = 1 (that is, 0 and 1 are equally
probable in the input bit stream) the channel
capacity is

C(p)=1-H(p),

where H(p) is again the binary entropy function
defined earlier and p is the bit flip probability.
For a noisy channel one must use some redun-
dancy, that is, one must employ error-correcting
codes. Shannon’s noisy channel coding theorem
tells us that, for any given channel capacity C(p),
there exist error-correcting codes which allow for
transmission with an arbitrarily small error prob-
ability.

Unfortunately the theorem is an existence theo-
rem and does not tell us immediately how such a
code may be constructed, but fortunately, a va-
riety of clever error-correcting codes have been
constructed (see |[L31] for some examples), for ex-
ample, for the transmission of image data from
satellites traveling the solar system to Jupiter
and beyond.

13.4 A few bits of quantum
information theory

13.4.1 The von Neumann entropy

It turns out that a useful quantum analog to
Shannon’s entropy (information content) for a
classical set of probabilities p; (which character-
ize the possible values z; of a random variable

X)

S({pi}) = - Zpi logy p;

is the von Neumann entropy

S(p) = —Trplog, p

which is defined for any density operator, that
is, any operator p with p = pl > 0, Trp =
1. Any such p can be decomposed in projectors
onto normalized but not necessarily orthogonal
pure states,

p= Zpi|¢i><¢i| (pi > 0; Zpi =1).

This is possible in many ways for any given p,
and to any of these possibilities we can assign
a (classical) Shannon entropy S({p;}); it can be
shown that

S{{pi}) = S(p),

with equality if and only if the vectors |¢;) are
pairwise orthogonal. (Take, for example, the
eigenstates of p.) This inequality has a fairly ob-
vious interpretation in terms of the distinguisha-
bility of two quantum states. Imagine a person
(Alice) sending a string of classical symbols z;
down a line to another person (Bob), with proba-
bilities p;. We have learned that the information
content of this transmission is S({p;}).

Now let us assume that Alice is a dedicated fol-
lower of fashion and goes into the quantum com-
munication business. Instead of sending classical
symbols z; she sends quantum states |¢;). While
Bob can easily distinguish all possible z;, he can
only distinguish two states with certainty if they
are orthogonal to each other. This is also re-
lated to the no-cloning theorem: imagine Bob
could clone arbitrary unknown quantum states.
He then could make many copies of the incoming
state and perform many measurements compar-
ing clones of Alice’s state to clones of all possi-
ble states and determine Alice’s state with high
probability.
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It is instructive to consider a simple example in-
volving a two-dimensional Hilbert space spanned

(- ()

1
Let us define a third vector

by the vectors |a)

|B) := cos ¢|vy) + sin ¢|a)
and the density matrix

pla){al + (1 —p)|B){B]
< p+(1—p)sin?¢ (1 —p)cosgsing

(1 — p) cos ¢sin ¢ (1 —p)cos? ¢
The easiest way to calculate the von Neumann
entropy S(p) is via the eigenvalues \; of p:

S(p) =— Z)‘i logy A;.

p

The eigenvalues of the above density matrix are

A=1a

5 \/i—p(l—p)cos%b.

For ¢ = 0 the states |«) and |3) are orthogonal,
the eigenvalues of p are A = pand A =1 —p
and thus S(p) = H(p) (the binary entropy func-
tion), whereas for ¢ # 0 |a) and |3) cannot be
distinguished with certainty, and S(p) is strictly
smaller than H(p), as seen in the figure.

The quantum entropy has some non-classical
properties. Whereas classical random variables
X, Y always fulfill

S(X) < S(X,Y),

that is, the entropy of a subsystem is never
greater than that of the total system, this is pos-
sible for a quantum system. Consider two qubits
A, B in the (pure!) state

1
E(IOW +[11))

9)(¢ = S(pag) = 0.

[

PAB

However, the reduced density matrix of subsys-
tem A (obtained from p,p by performing the

)

S(p)

05

0.5 1
p

Figure 13.12: The von Neumann entropy for
a simple two-dimensional density
matrix.  Curves are for ¢
0,0.17,0.27,0.3w, and 0.4w, re-
spectively (top to bottom). See
text for details.

trace over the Hilbert space of B) is py = %1 =
S(pa) =1.

Evidently this is related to the entanglement be-
tween A and B. In any pure state p,yp, the
subsystems A and B are entangled if and only if

S(pap) < S(pa) (or S(pp)),

where, of course, p, is again the reduced density
matrix.

Most theorems concerning entropy, which are rel-
evant to quantum information theory, can be de-
rived from a few fundamental properties, which
are discussed, proved and applied in [40] and
which we just quote here for the sake of com-
pleteness:

i) Concavity

A1S(p1) + X25(pg) < S(A1py + A2py)

(A2 > 0,A\1 + A2 = 1). In statistical me-
chanics, the concavity of the entropy is re-
lated to thermodynamical stability.
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ii) Strong subadditivity
S(papc) +5(pp) < S(pas) +S(Pso)-
iii) Triangularity

1S(pa)—S(pp)l < S(pap < S(pa)+S(pB)

All of these inequalities also hold (in appropri-
ately modified form) for the (classical) Shannon
entropy, except the first one in iii).

13.4.2 The accessible information and
Holevo’s bound

We are still dealing with the transmission of clas-
sical data through a quantum channel. Let Alice
have a classical information source X, that is, a
random variable with values x; and probabilities
pi(i =0,...,n). According to the value z; to be
transmitted, Alice prepares one quantum state
p; from a fixed set of (mixed, in general) states
Po; - - - Py, and gives it to Bob who measures the
state and gets a result that can be treated as
a classical random variable Y capable of values
Y0, - - - Ym- Let us discuss Bob’s measurement a
little more precisely. Bob has a set of measure-
ment operators M;(i = 0,...,m) which he can
apply to any incoming state vector |¢) (and also,
with appropriate changes in notation, to mixed
states). The probability of finding the result i is

pi = (Y| MIM;[y)

and the state immediately after the measurement
is

M;|1))

i MIM )

The operators E; := MZLMZ are positive, and if
YiroE; = 1 they are called POVM elements
(positive operator valued measure elements). (If
the sum is smaller than one, Bob’s measurement
misses some possibilities of the incoming |[1)).)
An extremely simple example for a set of POVM

elements are the projectors P; on the states of a
basis.

Turning back to the result Y of Bob’s mea-
surement (described by the POVM elements
Eq,...,E,,), it is clear that what Bob can learn
about Alice’s message is I(X : YY), the mutual
information, which depends on the cleverness of
his measurement strategy. The accessible infor-
mation is the maximum of I(X :Y) over all mea-
surement strategies. There is no prescription to
calculate the accessible information, but there is
a bound by Holevo (also often spelled Kholevo).
Under the conditions described above, and with

p =Y . pip;, we have

I(X:Y)<S(p) - ZPz‘S(Pz‘) = X,

where y is sometimes called the Holevo informa-
tion. (For the simplest possible example compare
Section 12.1.2 of ]40].)

13.4.3 Schumacher’s noiseless channel
coding theorem

Consider a “quantum alphabet” of states |¢;)
(not necessarily orthogonal to each other) with
probabilities p;. Such an alphabet can be de-
scribed by a density operator

1A

p=> piloi) (il
i=1

A message is a sequence of n “quantum char-
acters” |¢;, )| diy) - - |bi, ). The ensemble of n-
symbol messages is described by the density op-
erator p®" which lives in a Hilbert space $®" of
dimension

‘A|n — 2nlog2 |A]

(or smaller, if the alphabet states are not linearly
independent).

Is it possible to compress the information con-
tained in p®"? Schumacher’s 1995 theorem pro-
vides an affirmative answer. For sufficiently large
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n, p®" is compressible to a state in a Hilbert

space of dimension 27%(P) (that is, in nS(p)
qubits) with a fidelity (probability that after de-
compression the original state is recovered) ap-
proaching 1. This means that S(p) is the number
of qubits of essential quantum information, per
character of the alphabet.

The proof rests on the same ideas as that
of Shannon’s noiseless channel coding theorem,
namely typical sequences and the laws of large
numbers. The density operator p can be de-
composed into its eigenstates |x) (which are or-
thonormal), with eigenvalues p(z):

p=> pa)lz)(xl.

Then the von Neumann entropy is equal to the
Shannon entropy

S(p) = S{p(x)}).-
We can then define a typical sequence

L1, Z2,...,Tn

of classical symbols x; and associate with it a
typical state

|z1)|x2) ... |2n)

in the Hilbert space ®". The typical states span
the typical subspace and by the laws of large num-
bers a few facts can be shown about the typical
subspace for sufficiently large n which are very
similar to the properties of the typical sequences
leading to Shannon’s noiseless channel coding
theorem. (See [40] for a nice parallel treatment
of both theorems.)

e p®" has almost all of its weight in the typi-
cal subspace:

TrP(n)p®" >1-6 (§—0),

where P(n) is the projector on the typical
subspace.

e The dimension of the typical subspace is
asymptotically 275(P).

TrP(n) ~ 2"5(P),

implying that compression is possible.

e The weight of p®" in any smaller subspace

is negligible. Let Q(n) be a projector on any
subspace of H®" of dimension at most 2™
with R < S(p). Then for any § > 0 and n
sufficiently large

TrQ(n)p" <4

implying that compression is limited: if one
tries to press too hard, data will be lost.

13.4.4 Classical information over noisy
quantum channels

This is a subject of ongoing research (as is,
even more so, the subject of quantum informa-
tion over noisy quantum channels). The us-
age of quantum states for information trans-
fer offers many possibilities which do not ex-
ist classically. Many of these possibilities are
related to entanglement. For example, two or
more successive qubits transmitted may be en-
tangled, and there may also be entanglement
between transmitter and receiver. (This leads
to the fascinating possibilities of quantum cryp-
tography and teleportation discussed in the first
part of this chapter.) Many of the schemes in-
volving entanglement between the transmitted
qubits are not explored very well. The simplest
case is that of product state transmission, that
is, the n-symbol quantum message is just a prod-
uct state of n factors (no entanglement). For
that case an analogy of Shannon’s noisy channel
coding theorem has been shown which gives a
lower bound for the capacity of a noisy quan-
tum channel. That lower bound is known as
the Holevo-Schumacher—Westmoreland (HSW)
bound. Some researchers suspect that the bound
is in fact the exact value of the capacity, but this
has not yet been proved. Details on the HSW
theorem, together with some simple examples,
can be found in [40].

Problem

Calculate the reduced density operators for the

states (13.1) and show that they do not depend
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on the classical bits to be transmitted.
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