
11 Trapped Ions and Atoms

Experiments with single particles were consid-
ered impossible well into the 20th century [225].
This was made possible by early work in the
group of Hans Dehmelt, who created traps for
charged particles and used them for measure-
ments on single electrons, protons and ions [226].

When the first suggestions were made for specific
physical systems as qubits, trapped atomic ions
were among them[178]. Atomic ions have some
attractive properties for use as qubits: qubits can
be defined in ways that make decoherence very
slow while simultaneously allowing for readout
with high e!ciency. To avoid perturbing these
ideal properties, it is best to isolate the ions in
space. This can be achieved with electromag-
netic traps, which arrange electric and magnetic
fields in such a way as to create a potential min-
imum for the ion at a predetermined point in
space.

For neutral atoms, which have no charge or static
dipole moments, the forces from electromagnetic
fields are much weaker, so trapping them is even
more di!cult. This became possible only with
the development of high-intensity lasers, which
interact with the transition dipole moments be-
tween stationary states.

Apart from trapping of neutral atoms, lasers
have a range of other applications, including

• Generating gate operations

• Reading out the results

• Initializing the qubits

• Cooling the motional degrees of freedom

• Trapping neutral atoms.

11.1 Trapping ions

11.1.1 Ions, traps and light

Earnshaw’s1 theorem states that static electro-
magnetic fields cannot trap a charge in a stable
static position2. However, using a combination
of static and alternating electromagnetic fields
makes it possible to confine ions in an e"ective
(time-averaged) potential[228].

Paul Trap Penning Trap

B

Figure 11.1: Two classical ion traps.

Figure 11.1 shows schematically the geometries
used in the two traditional traps, the Paul3 and
Penning4 traps. Both consist of an axially sym-
metric set of electrodes. The electrodes on the
symmetry axis have the same potential, while
the ring has the opposite polarity. The resulting
field is roughly that of a quadrupole, where the
field vanishes at the center and increases in all
directions.

In the case of the Paul trap, the voltage on
the electrodes varies sinusoidally: The electrodes

1
Samuel Earnshaw (1805 - 1888)

2
In the purely electrostatic case the existence of a min-

imum of the electrostatic potential in a charge-free

region would violate Gauss’ law. See [227] for a dis-

cussion of Earnshaw’s theorem in a modern context.
3
Wolfgang Paul (1913 – 1993)

4
Frans Michel Penning (1894 – 1953)
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Figure 11.2: Quadrupole potential.

generate a potential

!(x, y, t) = (U → V cos(ωt))
x2 → y2

2r20
,

where x points towards the ring electrode and y
toward the polar end caps. The ion is therefore
alternately attracted to the polar end caps or to
the ring electrode. If the parameters U , V and ω
of the potential are chosen correctly, the average
potential over a cycle corresponds to a net force
that pushes the ion towards the center of the
trap. In the exact center, the field is zero and
any deviation results in a net restoring force.

The Penning trap uses the same electrodes, but
the electric field is static: it is repulsive for the
end caps. The ions are prevented from reach-
ing the ring electrode by a longitudinal magnetic
field, which forces the ions onto circular orbits.

11.1.2 Linear traps

The basic Paul and Penning traps are well suited
for storing single ions. While it is also possible to
store several ions, their arrangement is di!cult
to control and the Coulomb-repulsion between
them forces them out of the field-free center, so
they are subject to the time-dependent trapping
field. For quantum computing applications, it is
desirable to trap larger numbers of ions and to
arrange them in such a way that they are easier
to address by laser beams. This is achieved by
extending the traps in one dimension into so-
called linear traps.

Figure 11.3: Linear quadrupole trap.

Figure 11.3 shows the geometry of a linear Paul
trap, which consists of four parallel rods that
generate a quadrupole potential in the plane per-
pendicular to them. The quadrupole potential is
alternated at a radio-frequency, and the time-
averaged e"ect on the ions confines them to the
symmetry axis of the trap, while they are free to
move along this axis. A static potential applied
to the end rings surrounding the rods prevents
the ions from escaping along the axis. The re-
sulting e"ective potential (averaged over an rf
cycle) can be written as

V = ω2
xx

2 + ω2
yy

2 + ω2
zz

2,

where ωω, ε = x, y, z are the vibrational frequen-
cies along the three orthogonal axes. By design,
one has ωx = ωy ↑ ωz, i.e., strong confinement
perpendicular to the axis and weak confinement
parallel to the axis.

40Ca+

Figure 11.4: Strings of ions in linear traps.

Ions that are placed in such a trap will there-
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11 Trapped Ions and Atoms

fore preferentially order along the axis, as shown
in figure 11.4. The distance between the ions is
determined by the equilibrium between the con-
fining potential ω2

zz
2 and the Coulomb repulsion

between the ions.
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Figure 11.5: Position of multiple trapped ions in
linear traps.

Figure 11.5 shows the positions of the ions along
the axis as a function of the number of trapped
ions. In general, the ions have finite thermal en-
ergy, moving around their equilibrium positions.
Thes motions can be expanded in eigenmodes,
as discussed in section 11.2.2.

This type of trap has two important advantages
for quantum computing applications: it allows
one to assemble many ions in a linear chain where
they can be addressed by laser beams and the
equilibrium position of the ions (on the symme-
try axis) is field-free. This is in contrast to the
conventional Paul trap where the Coulomb re-
pulsion between the ions pushes them away from
the field-free point. As a result, two or more ions
in a Paul trap perform a micro-motion driven by
the rf potential. In the linear Paul trap, the field-
free region is a line where a large number of ions
can remain in zero field and therefore at rest.

11.2 Interaction with light

The interaction of light with atomic ions is essen-
tial for building a quantum computer on the ba-
sis of trapped ions: it is used for initializing, gat-
ing, readout, and for controlling the motional de-
grees of freedom. We therefore discuss here some
of the basics of the interaction between light and
atomic ions. Most of it is formally equivalent
to the NMR case, except that the interaction is
that of an electric dipole with an electric field
and that the frequencies are six orders of magni-
tude higher (1014 Hz rather than 108 Hz).

11.2.1 Optical transitions

When light couples to atomic ions, the electric
field of the optical wave couples to the atomic
electric dipole moment:

He = → ϑE · ϑµe,

where ϑE is the electric field and ϑµe the atomic
electric dipole moment. For the purpose of quan-
tum information processing applications, it is
important to distinguish between “allowed” and
“forbidden” optical transitions. In the first case,
the matrix element of the electric dipole moment
operator for the transition is of the order of 10→29

C m. The order of magnitude of these values is
determined by the product

e a0 = 1, 6 · 10→19C · 5, 3 · 10→11m

↓ 0, 85 · 10→29Cm.

In the case of “forbidden” transitions, it can be
many orders of magnitude smaller. Atoms do
not have a permanent electric dipole moment.
This implies that the diagonal matrix elements
vanish,

↔”|ϑµe|”↗ = 0.

The size of the electric dipole moment deter-
mines not only the strength of the interaction
with the laser field and thus the ease with which
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11 Trapped Ions and Atoms

the ion can be optically excited, it also deter-
mines the lifetime of the electronically excited
states. According to Einstein’s theory of absorp-
tion and emission, the spontaneous emission rate
is proportional to the square of the matrix ele-
ment. States that have an optically allowed tran-
sition to a lower lying state therefore decay on a
timescale of ↓ 10→8 s. Since the decay destroys
any stored information, this makes such states
unsuitable for use in quantum computers.

While an atom has an infinite number of energy
levels, it is often su!cient to consider a pair of
states to discuss, e.g., the interaction with light.
Writing |g↗ for the state with the lower energy
(usually the ground state) and |e↗ for the higher
state, the relevant Hamiltonian can then be writ-
ten as

H2LS = →ω0Sz → 2ω1 cos(ωt)Sx.

Here, ⊋ω0 = Ee → Eg is the energy di"er-
ence between the ground and excited state and
2ω1 cos(ωt) is the coupling between the laser field
(with frequency ω) and the atomic dipole mo-
ment. The operators Sx and Sz are pseudo-spin-
1/2 operators as defined in section 4.3.1.

If the Hamiltonian is written in this way, the
analogy to the real spin-1/2 system discussed in
Chapter 10, is obvious. This allows us to treat
two-level transitions as virtual spins-1/2 [47]. In
the interaction representation with respect to the
laser frequency, the coordinate system “rotates”
at the laser frequency ω around the z-axis of
the virtual spin. Neglecting the counter-rotating
component at frequency 2ω, we get the e"ective
Hamiltonian

Hr

2LS = →(ω0 → ω)Sz → ω1Sx, (11.1)

in close analogy to the rotating frame represen-
tation of magnetic resonance (see section 5.4).
In optics, this is known as the rotating wave ap-
proximation.

11.2.2 Motional e!ects

When an atom is not at rest, its transition fre-
quency is shifted through the Doppler e"ect:

ωD

0 = ω0 + ϑk · ϑv,

where ϑk is the wave vector of the laser field and
ϑv the atomic velocity. In free atoms, the velocity
can have arbitrary values, with the probability of
a specific velocity determined by the Boltzmann
distribution. The optical spectra of ensembles
of atoms are therefore broadened and/or shifted
according to their motional state.

|e>

|g> Frequency

carrier

Figure 11.6: Energy levels of the trapped atom
(left) and the resulting spectrum
(right).

In trapped ions, the motional energy is quan-
tized. Depending on the trap potential, the mo-
tional states can often be approximated by a col-
lection of harmonic oscillators. The lowest mode
is always the center of mass motion of the full
system, in analogy to the motion of atoms in a
crystal. A change of the fundamental vibrational
mode can be compared to the Mössbauer e"ect,
where the recoil from the photon is shared be-
tween all atoms in the crystal.

Harmonic oscillator motion does not shift the fre-
quency by arbitrary amounts, but creates side-
bands that are separated from the carrier fre-
quency ω0 by the harmonic oscillator frequency.
As shown in Figure 11.6, the trap motion cre-
ates a set of sidebands whose frequencies can be
written as ωn = ω0 + nωT , where →↘ < n < ↘
is the order of the sideband and ωT is the trap
frequency.
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Figure 11.7: Sideband pattern for axial and ra-
dial modes.

Since every motional degree of freedom creates
such a sideband pattern, the resulting spectrum
can contain a large number of resonance lines.

Figure 11.8: Coupled motions of multiple
trapped ions.

In the case of many trapped ions (see fig. 11.8),
their motion is coupled through the Coulomb-
repulsion between them. The number of possible
modes increases with the number of trapped ions
- in close analogy to phononic modes in crystals.
If we consider only axial motion, the number of
modes is equal to the number of ions.

Trapped ions are normally not in the motional
ground state, but carry thermal excitations. De-
pending on the amount of thermal excitation,
the position of the ions can have significant un-
certainty. Most implementations of trapped ion
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Figure 11.9: Thermal excitation of multiple
trapped ions.

quantum computers require that the ions be in
or close to the motional ground state.

In all techniques suggested to date for quantum
computing with trapped ions, the spatial coor-
dinates of the qubit ions play an important role
either as a qubit or as a variable used for cou-
pling di"erent qubits. If the spatial degrees of
freedom are used in the computation, the mo-
tional state of the ion must be well controlled
and initialized to a specific state, which is usu-
ally the motional ground state. The ions must
therefore be cooled into their ground state as a
part of the initialization process [229].

11.2.3 Force from lasers

The technique to bring them into the ground
state is laser cooling, which was developed in the
1980’s [230, 231, 232, 233, 234, 235]. It relies on
the transfer of linear momentum from photons to
atoms during an absorption (and emission) pro-
cess. Suitable arrangements allow one to use this
momentum transfer to create extremely strong
forces that push the atoms in the direction of the
laser beam. Adjusting the experimental param-
eters properly, these forces can be conservative
(i.e., they form a potential) or they can be dis-
sipative friction forces. Conservative forces are
useful for logical gate operations, while frictional
forces are useful for initialization and cooling.
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Figure 11.10: Photon momentum as the source
of mechanical e"ects of light.

The origin of these mechanical e"ects of light
can be traced to the momentum ⊋k that every
photon carries. As shown in Figure 11.10, the
photon momentum is transferred to the atom
whenever a photon is absorbed. During the sub-
sequent spontaneous emission process, the recoil
of the photon emission also contributes to the
mechanical e"ects of the light on the atom. How-
ever, the emission is, in contrast to the absorp-
tion process, not directed. The average e"ect of
all emission processes therefore vanishes.

The momentum change due to the transfer of
a single photon momentum is relatively small; it
corresponds to a change in the atomic velocity of
a few cm/s - much less than the thermal velocity
of typically several 100 m/s. As an example, we
calculate the momentum transferred by a single
photon at a wavelength of 589 nm, a prominent
wavelength in the spectrum of Na:

#p =
h

ϖ
=

6.626 · 10→34Js
589 · 10→9m

= 1.125 · 10→27m kg
s

.

Given the mass mNa = 3.818 · 10→26 kg of the
sodium atom, this corresponds to a change in its
velocity of

#v =
#p

mNa
= 2.95

cm
s

.

This many order of magnitude smaller than the
thermal velocity of an atom, which is of the or-

der of several hundred m/s. This estimate was
first made by Einstein in 1917 [236] and verified
experimentally by Frisch 1933 [237] with a clas-
sical light source. Since the atoms scattered less
than three photons in his experiment, the e"ect
was very small. Frisch therefore collimated an
atomic beam such that its velocity component
in the direction of the photonic momentum was
reduced to less than 1 m/s.

The situation changes if an allowed atomic tran-
sition is excited by a laser, that supplies a large
number of photons. The atom can then absorb
and re-emit the photon within a few nanosec-
onds (16 ns for Na). It can therefore scatter al-
most 108 photons per second, and the momen-
tum transferred by them adds up to a force

F =
#p

ϱ
=

1.125 · 10→27m kg
s

16 ns
= 7.03 · 10→20N,

corresponding to an acceleration of

a =
F

mNa
=

7.03 · 10→20N
3.82 · 10→26kg

= 1.84 · 106
m
s2

= 188 000 g.

This implies that an atom arriving with the ve-
locity of a jet plane can be stopped over a dis-
tance of a few centimeters.

11.2.4 Laser cooling

In the case of trapped ions, the situation may
also be discussed in terms of resolved motional
sidebands. Cooling is then achieved by irradiat-
ing the lower-frequency sidebands, as shown in
Figure 11.11. Since the photon energy is smaller
than the atomic excitation energy, the di"erence
in energy is supplied by the atom from its kinetic
energy: While the atom is excited, the quanum
number of the motion is reduced by one unit.

In reality, the laser drives not only the |g, 3↗ ≃
|e, 2↗ transition, but all |g, n↗ ≃ |e, n → 1↗ tran-
sitions for n > 0. For each absorption event, the
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|e;n> |e;0> |e;1> |e;2> |e;3> |e;4>

|g;n>
|g;0> |g;1> |g;2> |g;3> |g;4>

Figure 11.11: Schematics of sideband cooling for
a single degree of freedom.

vibrational quantum number is reduced by one
unit, since the photon energy is smaller than the
energy di"erence of the two internal states. The
emission process occurs with roughly equal prob-
abilities into the di"erent ground states, thus
not a"ecting the average vibrational energy. The
only state that is not coupled to the laser is the
|g, 0↗ state, since no transition with a frequency
below the carrier originates from this state. As
a result, all atoms eventually are driven into this
state in the absence of heating mechanisms.

11.3 Quantum information
processing with trapped
ions

Cold trapped ions were among the first candi-
dates for qubits (see, e.g., [238]), but it took sev-
eral years of intense experimental work to realize
this potential [239].

11.3.1 Metastable qubits

Since the atomic ions stored in traps have a
large number of states, there are many distinct
possibilities for defining qubits. However, most
states are not suitable for storing information.
The most important reason is that spontaneous
decay times through allowed transitions are of
the order of a few nanoseconds. This violates
the requirement of long decoherence times. Ac-
cordingly, both states of the qubits must either
be sublevels of the electronic ground state or
metastable states, i.e., states where all transi-
tions to lower lying states are “forbidden”.
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Figure 11.12: Possible qubit implementation us-
ing a metastable state in Ca+.

A typical example of a a qubit implementation
is the Ca+ ion [240]. Figure 11.12 shows its level
scheme. In its ground state [Ar](4s), the sin-
gle valence electron is in the 4s orbital, which is
abbreviated by the term symbol 42S1/2. If the
electron is excited into a 3d orbital, it has angu-
lar momentum L = 2, and can only decay to the
ground state by emitting two quanta of angular
momentum. These quadrupole transitions are
“forbidden” in the dipole approximation, result-
ing in long lifetimes of the excited state. Nägerl
et al. [241] therefore suggested using the tran-
sition between the 42S1/2 ground state and the
32D5/2 excited state as a qubit.

Apart from the computational basis states, ions
have many other states that cannot be com-
pletely omitted. In particular, the 32D3/2 state is
important, since it can be populated and also has
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11 Trapped Ions and Atoms

a long lifetime. To bring it back into the qubit
system, the 866 nm transition to the 42P1/2 state
can be driven with an additional laser. From
there, the ions quickly decay to the ground state.

11.3.2 Hyperfine qubits

2P3/2
De

te
ct

io
n 

(σ
+)

9Be+

2S1/2

Figure 11.13: Possible qubit implementation us-
ing two hyperfine states of 9Be+.

The second common choice is to encode the
quantum information in sublevels of the elec-
tronic ground state [242, 243]. Figure 11.13
shows as an example the possible encoding of
a qubit in the hyperfine levels of the elec-
tronic ground state of Be+. The two qubit
states correspond to the |F = 2, mF = 2↗ and
|F = 1, mF = 1↗ hyperfine states. Since the
spontaneous transition rate between ground
states is very small, the lifetime is again long
compared to all relevant timescales.

The transitions from the two ground state hy-
perfine levels to the electronically excited state
2P1/2 are su!ciently well resolved to allow one
to optically distinguish whether the ion is in the
|2, 2↗ or |1, 1↗ state. This fulfills the most impor-
tant requirement for the readout process.

The initialization of the qubits must bring the
ion into a specific internal state as well as into
the motional ground state. While the laser cool-
ing for the initialization of the external state was
described above, the initialization of the internal
state can be achieved by optical pumping. The
principle of optical pumping is very similar to
sideband cooling: a laser drives the system in
such a way that only the desired state of the ion

Figure 11.14: Initialization of a hyperfine qubit
by optical pumping.

does not couple to the laser, while ions in other
states can absorb light, become excited and re-
turn to an arbitrary sublevel of the ground state.
These absorption / emission cycles are repeated
until the ion falls into the state that does not cou-
ple. Given enough time, all ions will therefore
assemble in the uncoupled state. In this case,
the dissipative process that is required for the
initialization step is spontaneous emission.

11.3.3 Single-qubit gates

The way to generate (pseudo-)spin rotations that
correspond to single qubit gates depends on the
specific choice of the qubit states. If the two
states encoding the qubit are connected by an
optical transition, it is possible to apply laser
pulses that have the same e"ect as RF pulses
acting on spin qubits. The corresponding Hamil-
tonian (11.1) has the same structure as that of
a spin-1/2. Since the spatial separation of the
ions is typically of the order of 10 optical wave-
lengths, it is possible to use tightly focused laser
beams aimed at individual ions to separately ad-
dress the qubits [11]. While the optical transi-
tions used for such qubits must be “forbidden”,
the tightly focused laser beams that are required
for addressing qubits individually provide su!-
ciently high Rabi frequencies for e!cient excita-
tion.

If the qubit is defined by two hyperfine states
that are connected by a magnetic dipole transi-
tion, the situation is even more directly related
to magnetic resonance. In this case, the tran-
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Figure 11.15: E"ect of a microwave pulse on a
hyperfine qubit.

sition between the two qubit states is a mag-
netic dipole transition, which can be driven by
microwave fields [244]. As shown in figure 11.15,
this results in the usual Rabi oscillations. Since
the wavelength of microwave radiation is large
compared to the distance between the ions, mi-
crowaves will interact with all qubits simultane-
ously. Addressing of individual qubits therefore
requires a magnetic field gradient to separate the
transition frequencies of the ions.

|0>

|1>

|aux>

Figure 11.16: Raman excitation of a hyperfine
qubit.

The second possibility for driving transitions of
hyperfine qubits is to use Raman laser pulses.
For this purpose, one uses two laser fields [245],
whose frequency di"erence matches the energy
level separation of the two qubit states, as shown
in figure 11.16. The laser frequency is close to
a transition to an auxiliary state. Choosing an
appropriate set of parameters (frequencies, field
strengths), it is possible to generate laser pulses
that e"ectively drive the transition between the
two qubit states, with negligible excitation of the
auxiliary state [242]. In many cases, one uses a
frequency-swept set of laser pulses, which can
make the operation more robust.

11.3.4 Two-qubit gates

Two-qubit gates that can form the basis of a uni-
versal quantum computer, require, in addition
to the single-qubit operations, an interaction be-
tween qubits. In the case of trapped ions, the
main interaction is the Coulomb repulsion be-
tween neighboring ions, which are separated by
a few micrometers in typical traps. In the qubits
described so far, the Coulomb interaction a"ects
all qubit states in the same way and it is there-
fore not suitable for driving a gate operation di-
rectly. Nevertheless, it can be utilized for two-
qubit operations in di"erent ways, depending on
the qubit implementation.

The Coulomb repulsion between the ions couples
their motional degrees of freedom. As in a solid,
the motion of ions in a trap is best described in
terms of eigenmodes that involve all ions. This
quantized motion is often involved in quantum
information processing.

|00>
|01>

|10>
|11>

|00>
|01>

|aux>

|10>
|11>

Phase gate SWAP

Figure 11.17: Selective laser pulse to generate a
phase shift of state |11↗ (left) and
a SWAP operation (right).

We first discuss a two-qubit gate that uses the in-
ternal degrees of freedom of a 9Be+ ion as the tar-
get qubit and the harmonic oscillator motion as
the control qubit of a CNOT gate [242]. Figure
11.17 shows two examples of simple two-qubit
gates that can be realized by such a scheme. The
notation |ες↗ refers to the internal state ε and
the motional state ς.

In the first example, resonant radiation that cou-
ples only the state |11↗ to an auxiliary state ex-
ecutes a 2φ pulse. As in any two-level system,
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the system consisting of |11↗ and |aux↗ acquires
a phase eiε = →1 by the pulse. Since the other
states are not a"ected, the overall e"ect of the
pulse on the computational basis states is

P4 =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 →1



 .

This phase gate can be combined with two φ/2
pulses into a CNOT operation [242].
Another important two-qubit gate, the SWAP
operation, can be generated by a φ pulse to the
transition |01↗ ≃ |10↗ (see Figure 11.17). In one
of the early implementations, where one qubit
was represented by an ion and the other by its
motional states, this corresponded to a pulse on
the red sideband.

|qN

|q1

|q2

|q3|q5

|q6

|q4

|qph

Figure 11.18: The motional degree of freedom
|qph↗ acts as a bus qubit that con-
nects to all computational qubits
|qi↗ .

While motional degrees of freedom are not ideal
as actual qubits, they appear to be useful for ex-
ecuting two-qubit gates between ions. As shown
in figure 11.18, the motion couples to every com-
putational qubit. At can therefore serve as an
intermediary between two computational qubits.
Their function is similar to that in a bus of a clas-
sical computer, which connects all parts of the

system with each other. In the case of trapped
ions, every ion is coupled to the eigenmodes of
the oscillators. This possibility has been ex-
plored widely [246] [178].

A two-qubit gate between ions j and k can there-
fore be executed by first swapping the informa-
tion from ion j into the oscillator mode, execut-
ing the two-qubit gate between oscillator and ion
k, as described above, and subsequently swap-
ping the information from the oscillator back to
ion j. Since the harmonic oscillator motion in-
volves all ions, this procedure works for any pair
of ions, irrespective of their distance.

11.3.5 Readout

One of the important advantages of trapped ion
quantum computers is the possibility of optically
reading out the result with a very high selectivity
and success probability. A photon from a laser
focused to an ion and tuned to an allowed optical
transition is absorbed with almost 50% probabil-
ity and the photon is re-emitted after typically 10
ns. If the photon is collected and sent to an ap-
propriate detector, such as an avalanche photo
diode, it can be detected with a probability of
> 90%, depending on the wavelength.

Since the collection e!ciency of the detection
system is only a few percent, however, this is
still not su!cient for high-fidelity readout. It
is therefore necessary to repeat the absorption-
emission process several thousand times to ob-
tain an unambiguous signature of the state of
the qubit. These repetitions must be performed
without changing the state of the qubit. This
can be achieved if the laser frequency is tuned
to an optical cycling transition from the state
that is to be detected, focuses it on the ion to be
measured, and detects the fluorescence emitted.

The term “cycling transition” means that the
state to which the ion is excited can only fall
back to the particular ground state from which
it was excited. Figure 11.19 shows an exam-
ple of such a cycling transition between an elec-
tronic state with total angular momentum F = 1
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Figure 11.19: Optical readout of a single qubit:
the left-hand part shows the rel-
evant states and transitions, the
right-hand part an example of a
cycling transition.

and a second state with F = 2. If circularly
polarized light couples to the |F = 1, mF = 1↗
ground state, it excites the atom into the
|F = 2, mF = 2↗ excited state. The selection
rule #mF = ±1 does not allow for transitions to
any other state than the |F = 1, mF = 1↗ ground
state.

For suitable transitions, up to 108 photons per
second can be scattered. If the detection sys-
tem has a 1% collection e!ciency, this yields a
very reliable decision whether the ion is in the
particular state or not.
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Figure 11.20: Fluorescence of a single Ba ion.
The quantum jumps indicate
changes of the internal quantum
state of the ion [247].

Figure 11.20 shows an example for an observed
signal [247]: when the single Ba ion is in the ob-
served state, it scatters approximately 2200 pho-
tons per second; the background rate is less than
500 photons per second. As shown in the exam-
ple data, the fluorescence level is an excellent
indicator if the ion is in the state that is being

measured. The sudden drops in the fluorescence
level indicate that the ion jumps into a di"erent
state, which is not coupled to the transition be-
ing irradiated. These transitions are referred to
as “quantum jumps”.

The detection scheme sketched here only pro-
vides a measure of the atom being in state |0↗; a
similar measurement of state |1↗ is only possible
if that state is also part of a cycling transition.
The complementary measurement of the atom
being in state |1↗ can be achieved in di"erent
ways. The first possibility is to take the absence
of a result for the state |0↗ measurement as a
measurement of the atom being in state |1↗. This
is possible since the system (under ideal condi-
tions) must be either in state |0↗ or state |1↗.
A second possibility is to perform first the mea-
surement of state |0↗ and then apply a logical
NOT operation and a second measurement of

state |0↗. Since the NOT operation interchanges
the two states, a subsequent measurement of the
state |0↗ is logically equivalent to a measurement
of state |1↗ before the NOT operation.

11.4 Experimental
implementations

11.4.1 Systems

One of the most popular ions for quantum infor-
mation studies is the Ca+ ion [241, 134]. Fig-
ure 11.12 shows a possible identification of qubit
states. For laser cooling, excitation of resonance
fluorescence and optical pumping of the ground
state, di"erent transitions are used. The ex-
periment therefore requires laser sources at the
wavelengths 397 nm, 866 nm, and 854 nm. If
the E2 transition between the ground state and
the metastable D5/2 state is used as the qubit,
a fourth laser with a wavelength of 729 nm is
required. Its frequency stability must be better
than 1 kHz.

The long lifetimes make hyperfine ground states
very attractive for quantum information process-
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ing applications. Examples for such systems are
the 171Yb+[244] and 9Be+ ions [245].

The linear Paul trap was mostly used for quan-
tum information processing, but some variants
are also being tested. Tight confinement of the
ions is advantageous as it increases the separa-
tion between the vibrational levels and there-
fore facilitates cooling into the motional ground
state. In addition, the vibrational frequencies
are involved in the logical operations. Accord-
ingly higher vibrational frequencies imply faster
clocks.

3 µm

Figure 11.21: Two ions in a small elliptical trap
[229].

Tight confinement can be achieved mainly by
miniaturization of the traps. For the example
shown in Figure 11.21, the smallest trapping fre-
quency is 8.6 MHz [229]. However, miniaturiza-
tion is not without di!culties: it increases, e.g.,
the e"ect of uncontrolled surface charges in the
trap and it makes addressing of the ions more
di!cult.

11.4.2 Initial results

The earliest quantum logic operation was re-
ported by the group of Wineland [242]. They
used a 9Be+ ion where one of the qubits was a
pair of internal states, two hyperfine sublevels of
the electronic ground state, the |F = 2, mF = 2↗
and |F = 1, mF = 1↗ states with an energy dif-
ference of 1.25 GHz. This qubit represented the
target qubit. The control qubit was defined by
the two lowest harmonic oscillator states, which

were separated by 11 MHz. A sequence of three
Raman pulses was used to implement a CNOT
gate.

Figure 11.22: Experimental test of the CNOT
gate on single 9Be+ ion [242].

Figure 11.22 shows the populations of the four
possible states of the system before (front row)
and after (back row) the application of the
CNOT gate. The black bars indicate the mea-
sured probabilities of finding the system in the
internal ground state ⇐, the white bars the prob-
ability of finding them in the motional ground
state n = 0. These probabilities were obtained
by collecting fluorescence while irradiating with
a laser tuned to a cycling transition. The result-
ing photon count is much higher for the internal
ground state.

To measure the motional state, they applied a
laser pulse on the red sideband to SWAP the
internal and external state qubits and perform-
ing another measurement on the cycling tran-
sition. The control qubit (the motional state),
which is shown in white, does not change during
the CNOT operation. The target qubit (internal
state), shown in black, remains also roughly con-
stant when the control qubit is in the |0↗ state
(shown in the first two columns) but changes
when the control is 1 (3rd and 4th column).

Other achievements with this system include
cooling of two ions into the vibrational ground
state and their entanglement [229, 245]. For
this purpose the authors did not address the
ions individually, but modified the e"ective Rabi
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frequency through fine-tuning of their micro-
motion. The resulting state was not a singlet
state (but close to it) and the scheme is not di-
rectly applicable to quantum computing.

Using Ca+ ions in a linear trap, optical address-
ing of individual ions was demonstrated [248],
and in a chain of three ions, coherent excitation
[249].

11.4.3 Two-qubit operations

Figure 11.23: The 2-qubit Cirac-Zoller gate.

The two-qubit Cirac–Zoller gate[178] is a pop-
ular method for implementing 2-qubit gate op-
erations. As shown in figure 11.23, it uses a se-
quence of 2 φ and one 2φ pulse selectively applied
to the two targeted ions. The first and the last
pulse are tuned to the lower sideband of the first
atom, while the second pulse drives the transi-
tion between the state |g, 1↗ state of ion 2 and
an auxiliary state. Here, |g↗ refers to the inter-
nal state of ion 2 and |1↗ to the motional state
of the system. The 2φ pulse selectively inverts
the state |gg, 1↗. The full sequence implements a
controlled phase gate on the 2-ion system, while
the motional state is brought back to the ground
state.

Figure 11.24 shows an early implementation of
this scheme on two trapped Ca+ ions [11]. The
authors used a laser tuned to a blue-shifted side-
band, where, in addition to the electronic tran-
sition of the given ion, the collective motion
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Figure 11.24: CNOT gate implemented on two
trapped Ca+ ions [11].

of the two ions was also excited. To obtain a
CNOT gate, they combined the CPhase gate
with single-qubit gates, which were realized by
a laser beam whose frequency was resonant with
the quadrupole transition and which was focused
so tightly that it interacted only with a single
ion. The final state was measured by exciting
the S–P transition of the trapped ions and mea-
suring the fluorescence. Since the ions can only
be excited when they are in the S state, high flu-
orescence counts are indicative of the qubit being
in the |0↗ state.

A two-qubit gate has also been implemented on
two trapped beryllium ions by Leibfried et al.
[12]. They used two hyperfine states of the elec-
tronic ground state to store the quantum in-
formation. In this experiment, the motion of
the ions was excited by two counter-propagating
laser beams, whose frequencies di"ered by 6.1
MHz. As a result, the ions experience a time-
dependent e"ective potential that resonantly ex-
cites the oscillatory motion in the trap. The pa-
rameters of the excitation were chosen such that
the ions were not directly excited, but instead
their quantum states were transported around a
closed loop in parameter space. As shown by
Berry [250], the parameters of such a circuit can
be chosen in a way that the transported states
acquire a net phase. Leibfried et al. used this
procedure to implement a phase gate on their
system. Since the laser beams interact with both
ions, additional lasers will be required for gener-
ating specific single-qubit gates in this system.
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In a similar system, a Grover-type search was
implemented [251].

The number of trapped and controlled ions has
increases significantly over the years. Using in-
ternal as well as motional degrees of freedom,
Monz et al were able to entangle up to 14 qubits
[252] and later up to 50 qubits [253].

11.4.4 Challenges

One of the biggest problems of ion traps is that
the ions, as charged particles, are relatively sen-
sitive to stray fields in the vicinity. These fields
can adversely a"ect the motion of the ions and,
if they are time dependent, they heat the ions.
Typical heating times are of the order of 1 ms
[229] for two ions in a trap. With increasing
numbers of ions, heating rates tend to increase
so that not only the number of particles that cou-
ple to these stray fields, but also the number of
degrees of freedom that can be driven, increases.

Some of the gate operations require that the
atoms be cooled into the motional ground state.
This can not be achieved by simple Doppler cool-
ing but requires, in addition, sideband cooling.
Depending on the type of trap and gate opera-
tion, the cooling procedure has to be applied to
all (or only specific) motional modes.

Like all other implementations of quantum com-
puters, ion traps will have to demonstrate that
they can perform a su!ciently large number of
gate operations. As the number of ions in a
trap increases, it becomes more and more dif-
ficult to control the ions. In particular, the
trap frequency (i.e. the confinement) decreases,
while the number of motional modes increases
and heating e"ects become more e"ective. It ap-
pears thus unlikely that individual traps will be
able to accept a su!ciently large number (i.e.,
hundreds) of ions.

Several solutions to this problem have been pro-
posed, such as storing the ions in multiple traps.
It has been suggested [255] that it should be pos-
sible to couple these separate traps through pho-
tons, thus creating an arbitrarily large quantum

Pushing laser
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Figure 11.25: A proposed system of individual
microtraps [254].

register with a linear overhead. As a first step
towards this goal, quantum interference between
two remote trapped 174Yb+ ions was reported
[256].

11.4.5 Scalability

While these demonstration experiments were
done on a small number of ions, proposals exist
how the number of ions could be scaled up, par-
ticularly by integrating the trap electrons on a
chip [169]. Operation of such a micro-fabricated
trap was first demonstrated for a single ion [257].

Memory region

Electrode segments

Interaction region

Figure 11.26: Proposed architecture for a large-
scale ion-trap quantum computer
[169].

The current generation of trapped-ion quantum
computers relies on microfabricated traps that
can trap, store and manipulate many individual
atomic ions. An early proposal was the quan-
tum charge-coupled device (QCCD), a micro-
fabricated array of electrodes that can trap the
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ions and shift them around between “interaction-
” and "memory-”regions [169]. This allows one,
e.g., to apply 2-qubit gate operations on arbi-
trary pairs of ion by bringing them close to each
other. One of the current frontrunners in the
race towards ion-based quantum computers is
the company Quantronics. It uses a QCCD-type
architecture [258]. A similar path is chosen by
some European groups [257].

Addressing of qubits by lasers must be achieved
in the far-field di"raction-limited regime, where
the separation between the ions must be large
compared to an optical wavelength. This re-
quirement sets a lower limit on the distance be-
tween the ions and therefore on the strength of
the axial confinement potential. Since this po-
tential also determines the vibrational frequency
that enters the clock speed, it is obvious that ion
traps cannot be operated with arbitrary speed.

In the case of hyperfine qubits, it is not neces-
sary to use lasers for driving gate operations. In-
stead, one can use microwave pulses, provided
a magnetic field gradient makes the ions dis-
tinguishable in frequency space[244]. The gra-
dient also induces spin-state dependent interac-
tions between the ions, which can be used for
2-qubit gates.

11.5 Neutral atoms

Neutral atoms can also be used as qubits [259].
Compared to trapped ions, they o"er potentially
lower decoherence rates, since their interactions
with the environment are weaker. For the same
reason, neutral atoms are more di!cult to trap,
store and manipulate.

11.5.1 Potential and force

The first prerequisite for using neutral atoms as
qubits is a means to control their position and ve-
locity. Since electrostatic forces cannot be used,
one has to resort to electromagnetic waves that
interact with the induced dipole moment of the

atoms and / or to magnetic fields that interact
with the static magnetic dipole moment of the
atoms.

For quantum computing applications, the main
tool for generating mechanical forces acting on
atoms are laser beams. As discussed in section
11.2.3, the interaction with a laser field can cre-
ate a highly viscous medium that reduces the
velocity of ions and atoms and results in a veloc-
ity distribution corresponding to a low e"ective
temperature. This e"ect is used also for neutral
atoms. However, since the absorption-emission
cycles involved in laser cooling destroy any in-
formation stored in the atoms, the cooling laser
must be switched o" for the actual computation.
To trap the particles, one uses a di"erent regime
where the e"ective forces are conservative and
can be described by an e"ective potential. This
type of interaction can be understood by consid-
ering the potential energy surface generated by
the laser field. Starting from the classical expres-
sion for the energy of an electric dipole µe in an
electric field E,

U = → ϑE · ϑµe,

we calculate the force acting on the atom as

F = →ϑ⇒U = ϑ⇒( ϑE · ϑµe).

In the absence of saturation, the induced dipole
moment ϑµe increases linearly with the strength
of the field, ϑµe ⇑ ϑE, and the e"ective potential
U is thus proportional to the square of the field
strength.

The sign of the potential depends on the di"er-
ence between the laser frequency and the atomic
transition frequency: For a red-detuned laser
(i.e. laser frequency smaller than the transition
frequency), the atomic dipole oscillates in phase
with the laser field, ϑµe · ϑE > 0 and the energy be-
comes negative. In this case, the atom is pulled
into the region of maximal field, where its po-
tential energy is minimal. In the case of a blue-
detuned laser, the atomic dipole is out of phase
with respect to the field, the energy becomes pos-
itive and the atom is pushed out of the high-field
region.
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Figure 11.27: E"ect of laser-detuning with re-
spect to the optical resonance fre-
quency: for a red-detuned laser,
the atomic dipole oscillates in
phase with the laser field and the
atoms are pulled into the high field
region. For a blue-detuned laser,
the induced dipole is out of phase
and the atoms are pushed out of
the areas of high laser intensity.

11.5.2 Traps

A simple example of a laser-based trap for neu-
tral particles is a tightly focused laser beam.
Such traps were initially used for the manipu-
lation of neutral atoms, but also for macroscopic
particles [260, 233, 261]. The depth of the trap
(i.e. the maximum kinetic energy that a parti-
cle can have without escaping from the trap) is
determined by the laser intensity and the detun-
ing of the laser frequency from the atomic res-
onance: the strength of the induced dipole mo-
ment decreases linearly with the frequency dif-
ference. While it would therefore be advanta-
geous to tune the laser close to the resonance,
this would also cause absorption. In the context
of quantum information processing, however, ab-
sorption of light from the trapping laser must be
avoided since this would cause decoherence. One
therefore uses a large detuning and high laser in-
tensity.

This type of trap can be extended to arrays of
tightly focused laser beams[262, 263], as shown in
figure 11.28. To make such a scheme scalable, the

Selective addressing of 
individual dipole traps

Dipole traps

Microlens array

Figure 11.28: Array of dipole traps generated by
focusing a laser beam with an ar-
ray of micro-lenses.

di"erent foci can be generated by micro-lenses,
either in one or two dimensions [264]. This also
allows for parallel manipulation of many qubits.

2w0 = 40 µm

Figure 11.29: Dipole trap generated by two
counter-propagating laser beams.

Another geometry for trapping neutral atoms is
a standing wave generated by superimposing two
counter-propagating laser beams, which are red-
detuned with respect to the transition frequency.
As shown in figure 11.29, the atoms are then
drawn towards the antinodes of the beam, where
the resulting intensity is maximal and the poten-
tial energy minimal. These energy minima form
a linear sequence, separated by half of the laser
wavelength.

The principle can be extended to two or three di-
mensions: two (or three) pairs of counterpropa-
gating beams in orthogonal dimensions generate
a 2D array of stable trap sites. Many parame-
ters of the resulting optical lattices, such as the
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dimensionality, form, depth and position can be
precisely controlled through the geometry, polar-
ization and intensity of the laser beams generat-
ing the lattice.

11.5.3 Motional control

A trap can be filled, e.g., by placing it directly
in a cloud of cold atoms. The depth of a trap is
of the order of 100 mK, with oscillator frequen-
cies around 100 kHz. Using Raman cooling tech-
niques, up to 80% of the atoms can be put into
the motional ground state, which corresponds to
temperatures in the µK range.

Such a process will always generate a random fill-
ing of the di"erent minima of the trap, which is
not compatible with the requirements of quan-
tum information processing. If the traps are
small enough, the interaction between the atoms
reduces the probability of filling the trap with
more than one atom [265].

Figure 11.30: Array of dipole traps generated by
two orthogonal pairs of counter-
propagating beams showing ran-
dom filling and the Mott insulator
state.

In an array of such traps, a parameter range ex-
ists, in which an ensemble of cold atoms will pref-
erentially occupy every microtrap with a single
atom [266]. This regime is called a Mott insula-
tor state (see also chapter 11.6) and may be used

to create quantum registers if the separation be-
tween the microtraps is in a range suitable for
individually addressing the qubits.

If the separation between the microtraps is
smaller than the required distance between the
qubits or if the fluctuations of the populations
are too large, active control of the populations
is required. For a linear trap, this was demon-
strated experimentally [267, 268] by combining
the trapping laser with a second standing wave
trap, at a right angle to the quantum register.

For these experiments, it is necessary to shift
the trap potential. This can be achieved in one
dimension by shifting the phase of the counter-
propagating laser beams that form the standing
wave [269]. Shifting the phase of one beam by
↼ shifts the standing-wave pattern, i.e. the trap
potential, by a distance

↽ =
ϖ

2

↼

2φ
,

where ϖ is the laser wavelength. If the phase shift
is time-dependent, i.e. realized by a frequency
shift of one of the laser beams, this results in a
linear motion of the trap potential. Acceleration
can be implemented by a frequency chirp.

Figure 11.31: Schematic representation of an
atomic conveyor belt and image of
atoms in a conveyor belt.[270]

On the basis of such phase shifts, it is possible to
implement a wide variety of time-dependent po-
tentials, including “atomic conveyor belts”, such
as the one represented in figure 11.31.

Laser-optical traps are in general state-selective:
depending on the internal state of the atom, the
interaction can be strong or weak, and the atoms
can be confined to or expelled from regions of
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high laser intensity. This e"ect must be taken
into account when gate operations are applied
that change the internal state of the atoms. The
state-selectivity can also be used, to specifically
manipulate subsets of the atoms that are in spe-
cific internal states.

11.5.4 Gate operations

Single qubit gate operations can be performed
on neutral atoms in much the same way as on
atomic ions, using laser pulses with appropriate
wavelength and polarization. The qubit states
will typically be hyperfine sublevels of the elec-
tronic ground state. Transitions between them
can be excited either by Raman laser pulses or
by microwave pulses [271, 272].

For two-qubit operations, a state-dependent in-
teraction must be present between the di"er-
ent qubits. In contrast to trapped ions, neutral
atoms do not experience Coulomb forces. They
can, however, interact by electric or magnetic
dipole couplings, which depend on their internal
state. This interaction is of course significantly
weaker than the Coulomb interaction, and has
a shorter range. This shorter range can also
be beneficial, since it reduces unwanted long-
range interactions, and since these interactions
are state-dependent, it is possible to turn them
on and o" in a controlled manner.

The strength of the interaction between qubits
can be controlled, e.g., via the distance between
them. This requires independent trapping of two
subensembles, e.g. by using two dipole traps
with di"erent polarizations, such that one trap
represents the dominant interaction for atoms in
one internal state, while the orthogonal polariza-
tion dominates for the other state [273]. The two
potentials have the same periodicity but are dis-
placed with respect to each other, and the dis-
placement may be controlled. Thus, atoms in
di"erent spin states may be brought into contact
with each other in a well-defined way and for a
well-defined time. If the time-dependence of the
interaction is properly adjusted, the overall ef-
fect of such a controlled collision between cold

atoms generates an entangling quantum logical
gate operation [274, 275].

The strength of the interaction and therefore the
speed of the gate operations can be increased sig-
nificantly if the atoms are briefly promoted to a
highly excited Rydberg state [276]. For suitable
Rydberg states, interactions have been observed
over distances up to 10 µm. Another possibility
for controlling the coupling between atoms is to
bring them into optical resonators. If two atoms
interact with the same resonator mode, they ex-
perience an indirect interaction with each other
[277].

Figure 11.32: Couplings between atoms can be
generated by placing them in an
optical resonator and by connect-
ing optical resonators through op-
tical fibers.

Alternatively, the atoms can be put into sepa-
rate optical resonators, which are then coupled
to each other, e.g. through an optical fiber [255].
These schemes involve some degree of population
of electronically excited states. Accordingly, a
major challenge for their implementation is the
need to avoid spontaneous emission, which de-
stroys the quantum coherence in these systems.
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11.6 Interacting atoms in optical
lattices

Some interesting applications of trapped atomic
ensembles are found in the field of quantum sim-
ulations. Most of the problems that were consid-
ered are inspired by condensed matter physics.
In ideal crystals as well as in multidimensional
trapped atom experiments, the system has pe-
riodic boundary conditions. In a pioneering ex-
periment, Greiner et al [266], following a the-
oretical suggestion of Jaksch et al. [278], ob-
served a “quantum phase transition from a su-
perfluid to a Mott insulator in a gas of ultracold
atoms”, as the title of the paper says. The paper
demonstrated for the first time that it is possi-
ble to construct physical realizations of theoret-
ical models for condensed-matter systems with
adjustable values of the model parameters and
without many of the complications present in
real-world condensed-matter systems. A lot of
activity followed, both experimental and theo-
retical. The phenomena and the tools employed
in their study have been discussed in a number of
reviews of varying level, perspective, and length
[279, 280, 281, 282, 283].

Atoms in optical lattices thus are excellent illus-
trations of Feynman’s [14] concept of using quan-
tum systems to simulate other quantum systems.
It also seems possible to construct gates, initial-
ize qubits and perform other operations essen-
tial for the implementation of universal quantum
computation. A significant drawback, however,
remains the lack of individual adressability of the
atoms stored in an optical lattice.

11.6.1 Particles in a periodic potential

For a discussion of the Hubbard model, we need a
few basic notions from the theory of crystalline
condensed matter. In ordinary solids the elec-
trons move in a periodic potential generated by
the ion charges. The interaction between elec-
trons is often neglected or treated implicitly in
some form of e"ective-field approximation unless

it is absolutely necessary to proceed otherwise.
The interatomic distances in a solid are of the
order of the atomic radius, which leads to over-
lap between electronic wavefunctions of neigh-
boring atoms, to chemical bonding, and, under
suitable conditions, to the ability of electrons
to move around in the crystal. In an “artifi-
cial solid” of atoms in an optical lattice this is
di"erent: the lattice constant (the distance be-
tween neighboring potential wells) is given by the
light wavelength, ϖL ↓ 10→6m, much larger than
the typical size of an atom, about 10→10m. All
short-range variations in the interatomic poten-
tial can thus be neglected when we discuss e"ects
of the interatomic interactions in an optical lat-
tice. Furthermore, the electrons in a real solid
are inevitably spin-1/2 fermions, whereas an op-
tical lattice can be populated with either bosonic
or fermionic atoms.

Before discussing interatomic interaction e"ects,
however, we have to understand the behavior of a
single atom (or, equivalently, of a number of non-
interacting atoms) in a D-dimensionally periodic
potential of the form

V (ϑr) = V0

D∑

i=1

sin2 kLri. (11.2)

The potential is generated by superposing D
standing-wave laser beams of wavenumber kL =
2φ/ϖL in orthogonal directions, thus creating a
simple cubic (or square, or one-dimensional) lat-
tice of potential minima with lattice constant
a = ϖL/2. The potential strength V0 is given
by the intensity of the laser beam. As the in-
tensity varies across the beam, (for example in a
Gaussian shape with maximum intensity in the
center of the beam), V0 should be considered
weakly position-dependent. In addition, V0 may
also vary along the beam due to focusing e"ects.
The spatial variation of V0, though necessary to
keep the atoms from moving out of sight, will be
neglected.

The motion of a free particle is completely char-
acterized by the momentum ϑp = ⊋ϑk, and the
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particle’s wave function is a plane wave

⇀ϑk
(ϑr) =

1⇓
$

ei
ϑk·ϑr, (11.3)

where $ is a normalization volume. The energy
of the particle is

⇁ϑk =
⊋2k2

2m
. (11.4)

In an optical lattice the laser frequency is tuned
to be roughly (but not precisely) equal to a tran-
sition frequency of the atom; the emission or ab-
sorption of a photon will thus be accompanied
by a kinetic energy of recoil

ER =
⊋2k2

L

2m
. (11.5)

A periodic potential acting on a free particle
changes both wave function and energy. Instead
of a plane wave (11.3) the wave function becomes
a modulated plane wave, or Bloch function,

⇀ϑk
(ϑr) = uϑk(ϑr)e

iϑk·ϑr, (11.6)

where the function uϑk(ϑr) (the “Bloch factor”)
has the periodicity of the potential V (ϑr) (11.2).
The dispersion relation (energy-momentum rela-
tion) ⇁ϑk (11.4) changes gradually as the potential
strength is slowly increased. For very weak po-
tential ⇁ϑk essentially keeps its free-particle form
(11.4); however, it turns out to be convenient to
write it in the form

⇁ϑk,ϑg =
⊋2
2m

(ϑk + ϑg)2, (11.7)

where ϑg is a vector of the reciprocal lattice, de-
fined by requiring that the plane waves eiϑg·ϑr have
the periodicity of the lattice (or the potential
V (ϑr)). In the simple cubic case, all components
of every ϑg are integer multiples of 2ε

a
= 4ε

ϖL
. In

the dispersion (11.7) ϑk is then restricted to the
first Brillouin zone, the region of reciprocal space
(ϑk space) closer to ϑg = ϑ0 than to any other
ϑg. In the simple cubic case that is the cube
[→φ/a, φ/a]3.

In ⇁ϑk,ϑg then ϑg classifies di"erent branches of
the dispersion relation, leading to di"erent en-
ergy bands. The lowest energy band obviously

is the one with ϑg = ϑ0. At the Brillouin zone
boundary, for example at ϑk = (φ/a, 0, 0), the
ϑg = ϑ0 and ϑg = (→2φ/a, 0, 0) bands are degener-
ate. Degenerate perturbation theory shows that
the degeneracy is lifted by a weak potential V0.
The formerly degenerate energy levels are pushed
away in opposite directions and an energy gap is
created. The set of energy bands and gaps is
called the band structure, and is an important
means in understanding the behavior of crys-
talline condensed matter; compare, for example
[284, 285] for details. For su!ciently weak po-
tential strength V0 the maximum energy of the
lowest band is of the order of

⊋2
2m

(φ

a

)2
=

⊋2
2m

(
2φ

ϖL

)2

=
⊋2k2

L

2m
= ER. (11.8)

The bandwidth of the lowest energy band for
“nearly free” particles is thus equal to the recoil
energy (11.5).

The Hamiltonian for non-interacting fermions or
bosons in an optical lattice can now be written
in the occupation number (or “second quantiza-
tion”) formalism:

H =
∑

ϑk,ϑg

⇁ϑk,ϑgc
†

ϑk,ϑg
cϑk,ϑg , (11.9)

where c†
ϑk,ϑg

( cϑk,ϑg ) is the creation (annihilation)
operator for a particle in a single-particle energy
eigenstate with quantum numbers ϑk and ϑg. The
operator nϑk,ϑg

= c†
ϑk,ϑg

cϑk,ϑg is the occupation num-
ber operator for that eigenstate. (Note that the
Bloch functions ⇀ϑk

and the Bloch factors uϑk in
(11.6) should also bear ϑg or some other appro-
priate band index as ϑk is restricted to the first
Brillouin zone.)

11.6.2 Interactions between atoms

Let us now discuss the e"ects of interatomic in-
teractions in an optical lattice. Since typical in-
teratomic distances are comparable to ϖL and
thus very large compared to atom sizes, the in-
teratomic potential essentially only acts through
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its long-range part which can be parametrized in
terms of the scattering length aS :

Vint(ϑr → ϑr↑) =
4φ⊋2
m

aS↽(ϑr → ϑr↑). (11.10)

In order to treat this short-range potential, it is
convenient to use a basis set of localized single-
particle wave functions instead of the Bloch func-
tions (11.6) extending over the whole “crystal”.
This basis set is given by the Wannier functions
[284, 285]

wn(ϑr →ϑl) =
1⇓
N

∑

ϑk

e→iϑk·ϑl⇀
nϑk

(ϑr). (11.11)

Here, N is the number of lattice sites ϑl in the
system (equal to the number of ϑk vectors in the
first Brillouin zone) and n is an index indicating
the band of interest. (Labeling bands by the re-
ciprocal lattice vectors ϑg is convenient only close
to the free-particle case.) Each Wannier func-
tion is centered around a lattice site ϑl, and de-
cays with growing distance from ϑl. If the po-
tential wells of the optical lattice are very deep
and well separated from each other (that is, for
large V0) the Wannier functions for the lowest
energy bands are the lowest energy eigenstates
of a single potential well (similar to orbitals of
an isolated atom), and the Bloch functions are
linear combinations of atomic orbitals.

Denoting the creation and annihilation operators
for particles in a Wannier state by c†

ϑln
and cϑln,

respectively, the Hamiltonian of non-interacting
particles may be written as

H =
∑

ϑl,ϑl→

tϑl→ϑl→nc†
ϑln

cϑl→n , (11.12)

where the “hopping elements” tϑl→ϑl→n are given by

tϑl→ϑl→n =
1

N

∑

ϑk

⇁ϑknei
ϑk·(ϑl→ϑl→). (11.13)

Indices labeling spin or other internal degrees of
freedom have been suppressed. The formal ex-
pression (11.13) for the hopping elements can be

rewritten in terms of the Wannier functions at
lattice sites ϑl and ϑl↑. For the large-V0 case the
Wannier functions are well localized within each
potential minimum and the hopping elements
will be negligible except forϑl andϑl↑ nearest neigh-
bors. If the Wannier functions are isotropic,
all non-vanishing hopping elements will have
the same value, which we call →tn. The non-
interacting particles then are described by the
energy bands

⇁ϑkn = →2tn

D∑

i=1

cos kia. (11.14)

11.6.3 The Hubbard model

In the same spirit, the interaction between atoms
via the potential (11.10) can be discussed. The
interaction term of the Hamiltonian then con-
tains a sum of terms, each with four electron cre-
ation and annihilation operators and an integral
involving Wannier functions located at four lat-
tice sites. From the localization properties of the
Wannier functions it is then clear that the domi-
nant term is the one where all Wannier functions
are located at the same lattice site. Neglecting
all other terms, the interaction is given by the
single value

U =
4φ⊋2
m

aS

∫
d3r |wn(ϑr)|4. (11.15)

Since we focus on a single band, the band index
n can be omitted. The total Hamiltonian de-
pends on the statistics of the atoms involved. If
the atoms are spin-half fermions (with internal
quantum number σ =⇔, ⇐) we obtain the Hub-
bard model [286, 287, 288] in its original form

H = →t
∑

ϑl,ϑl→,ϱ

c†
ϑlϱ

cϑl→ϱ + U
∑

ϑl

nϑl↓nϑl↔ (11.16)

(ϑl,ϑl↑ nearest neighbors), where nϑlϱ := c†
ϑlϱ

cϑlϱ
is the number operator. The model (11.16)
and its many extensions are popular in solid-
state physics for modeling the electron corre-
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lation e"ects believed to be important in mag-
netism, metal-insulator transitions, and high-
temperature superconductivity. If the atoms are
bosons (all in the same internal atomic state) the
Hamiltonian is known as the bosonic Hubbard
model

H = →t
∑

ϑl,ϑl→

c†
ϑl
cϑl→ +

U

2

∑

ϑl

nϑl(nϑl → 1), (11.17)

originally [289] employed to describe superfluids
in porous media or granular superconductors.

In contrast to the situation in real-world con-
densed matter systems modeled by Hubbard-
type Hamiltonians, the parameter values t and U
for atoms in an optical lattice can be easily tuned
by varying the laser field strength V0 in (11.2). If
V0 increases, the potential wells get steeper and
narrower and the wave functions get compressed,
so that U (11.15) increases. Approximating the
potential well by a D-dimensional paraboloid
and the wave function by the appropriate oscil-
lator ground state, one obtains U ↖ V D/2

0 .

↙ Problem

By the same mechanism the overlap between
wave functions in neighboring potential wells will
decrease as Vo grows, and hence the nearest-
neighbor hopping amplitude t will decrease ex-
ponentially. The ground-state properties of the
Hubbard model depend only on the ratio U/t
and thus on the laser field strength V0.

11.6.4 Experimental simulation: setup

In the experiment of Greiner et al. [266] ultra-
cold bosonic 87Rb atoms were trapped in an opti-
cal lattice produced by a laser with ϖL = 852nm.
The recoil energy (11.8) then is ER ↓ kB ·0.15µK
and the trapping potential was V0 ↭ 22ER. Non-
interacting free (V0 = 0) bosons at zero temper-
ature will condense into the lowest plane-wave
state (11.3), with ϑk = ϑ0. The situation does not
change decisively if a weak interatomic interac-
tion and a weak lattice potential are present: the
state remains a macroscopically coherent (super-
fluid) many-boson state.

With growing strength of the lattice potential V0,
the single-particle states become progressively
localized and the repulsive interaction U dom-
inates the Hamiltonian (11.17) more and more.
If the total number of particles is small enough,
every lattice site (or potential well) contains at
most one atom. For strong enough V0 each atom
will be strongly localized in one potential well
and will not enjoy enough overlap to its neigh-
bors to develop long-range phase coherence of
the wave function. If every potential well con-
tains exactly one atom5, further atoms can only
be added at the price of an excitation energy U
per atom. The same energy gap also prevents
the formation of doubly occupied sites (and ac-
companying vacancies) which would be needed to
achieve particle transport. The resulting state is
obviously incompressible and, thinking in terms
of the original (electronic) Hubbard model, in-
sulating. Therefore it is known as the Mott (-
Hubbard) insulator state.

The transition between the superfluid and Mott
insulating states was demonstrated in a time-of-
flight experiment [266]. For small or moderate
potential strength V0 all bosons convene in the
lowest-energy extended Bloch state in a coher-
ent manner. As the Bloch state is a periodically
modulated plane wave (11.6) it contains Fourier
components with di"erent ϑg values, with ϑg = ϑ0
dominating as V0 goes to zero. In the experi-
ment the optical potential is switched o" sud-
denly and the atoms are allowed to expand freely.
The Fourier components with di"erent ϑg sepa-
rate spatially according to their di"erent propa-
gation speeds. After a fixed expansion time an
absorption image is taken. The absorption im-
ages of Figure 11.33 therefore map directly the
distribution of the atoms in reciprocal space.

11.6.5 Results

For free atoms, (V0 = 0) the lowest-energy Bloch
state is an unmodulated ϑk = ϑ0 plane wave.
The corresponding absorption image in Figure

5
The situation is similar for any other integer number

of atoms per site.
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11.33.a therefore shows a single spot in the cen-
ter. As V0 grows, additional Fourier components
enter the lowest Bloch state and become visible
in the absorption image, which develops into a
two-dimensional projection of the reciprocal lat-
tice (Figure 11.33 b, c, and d). However, upon
further growth of V0 the reciprocal lattice spots
fade away again, their intensity being soaked up
by a big central blob. That blob (Figure 11.33 g
and h) is witness to the fact that the state has
evolved into one where each potential minimum
houses one atom, with no phase relation between
neighboring atoms and hence no interference vis-
ible. The large extent of the central absorption
spot in reciprocal space reflects the localization
of each atom in real space. This shows clearly
the change in the nature of the ground state as
the ratio U/t is varied. The expected change in
the nature of the low-energy excitation spectrum
from gapless in the superfluid state to gapped in
the Mott insulating state could also be observed
[266] by analyzing tunneling between neighbor-
ing potential wells which are energetically dis-
placed with respect to each other in an applied
external field.

Fermionic atoms in optical lattices have also
been studied. Köhl et al. [290] stored a large
number of 40K atoms in a three-dimensional sim-
ple cubic lattice and obtained absorption images
after switching o" the potential and allowing the
atoms to expand ballistically. As the Pauli prin-
ciple strictly forbids double occupation of single-
particle energy levels, the fermionic 40K atoms
fill up the available Bloch states (11.6) up to the
Fermi energy. The surface in ϑk space which sepa-
rates occupied states (at low energy) from empty
states (at high energy) is called the Fermi sur-
face. For a simple cubic optical lattice potential
of the form (11.2) the Fermi surface is spheri-
cal at low density, but less so at higher density.
For a completely filled band the Fermi surface
is equal to the boundary of the first Brillouin
zone. The energy gap to the next higher band
then is the minimum energy for a single-particle
excitation. For electrons in a solid that situation
corresponds to an insulator (or a semiconductor,

Figure 11.33: Absorption images reflecting the
Fourier component structure (mo-
mentum distribution) of the many-
particle wave function of 87Rb
atoms in an atomic lattice of
strength V0. Images were ob-
tained after switching o" the lat-
tice potential suddenly and allow-
ing atoms to expand for 15 ms.
Potential strengths V0 in units of
the recoil energy ER are a:0, b:3,
c:7, d:10, e:13, f:14, g:16, and h:20
[266].

if the energy gap is small enough). In contrast to
the interaction-induced Mott insulator discussed
above, the present case is termed band insula-
tor and obviously does not rely on interaction
e"ects. In the optical-lattice experiment on 40K
the shape of the Fermi surface could be measured
for various particle densities. Also, employing
the magnetic-field dependence of the scattering
between two spin species (Feshbach resonance),
interaction e"ects like the transfer of atoms into
higher bands could be observed.

These pioneering experiments on bosonic and
fermionic atoms in optical lattices show that
quantum simulation of correlated many-body
systems may soon be within reach of experimen-
tal possibilities. These exciting prospects have
led to a very large number of proposals for cor-
relation e"ects in many-body systems that could
be studied with atoms in optical lattices, see the
review by Lewenstein et al. [283].
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Problems

For su!ciently large potential strength V0 the
optical lattice potential (11.2) can be approxi-
mated by a harmonic oscillator potential

Vosc =
mω2

2
ϑr 2,

where ϑr is the D-dimensional vector of displace-
ment from the potential minimum.

a) Calculate the Hubbard interaction U
(11.15), approximating the Wannier func-
tion wn(ϑr) by the normalized oscillator
ground-state wave function

↼0(ϑr) = φ→D/4a→D/2 exp →1

2

(
ϑr

a

)2

,

where a =
√

⊋
mς

is the characteristic length
of the quantum harmonic oscillator. Show
that U grows as V D/2

0 .

b) The nearest-neighbor hopping amplitude t
can be approximated by the overlap (the in-
tegral of the product of the wave functions)
between the ground-state wave functions in
neighboring potential wells. Calculate t and
determine its dependence on the parameters
of the optical lattice potential. Show that t
decreases as V0 grows.
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