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The first implementations of a quantum comput-
ers used nuclear spins as qubits. The correspond-
ing experimental technique is known as nuclear
magnetic resonance (NMR). It can be considered
the prototypic al implementation, in the sense
that the qubits are actual 2-level systems that
are relatively well isolated from other degrees of
freedom. On the other hand, it represents a rad-
ical departure from most other concepts: While
one usually thinks of quantum registers as in-
dividual systems (and many projects try to im-
plement such systems), NMR represents qubits
by some 1020 identical copies of a nuclear spin
in a suitable molecule. One therefore refers to
this type of quantum information processing as
“ensemble quantum computing”.

As discussed before, spins S = 1/2 are the only
physical systems that implement directly the 2-
dimensional Hilbert space of a qubit. Further-
more, single-qubit logical operations are best un-
derstood as rotations of a spin 1/2 around a mag-
netic field. The dynamics of a system of spins
1/2 is thus a simple, idealized representation of
any quantum information processor. We there-
fore describe its operation here in some detail.

10.1 Basics of NMR

Nuclear magnetic resonance is mainly a spectro-
scopic tool that is used for the analysis of almost
any type of molecule, condensed matter or gases
in various environments. In the form of MRI
(magnetic resonance imaging) it also has become
an important tool in clinical medicine. We start
with a review of the basics of NMR spectroscopy
before we discuss how this technique can be used
for quantum computing.

10.1.1 System and interactions

Magnetic resonance is based on the spin degrees
of freedom of electronic and nuclear spins. The
spin of charged (and some neutral composite)
particles has a magnetic dipole moment associ-
ated with it; if such particles are placed in a mag-
netic field, the energy of these magnetic dipoles
depends on their orientation with respect to the
field.
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Figure 10.1: Basics of nuclear magnetic reso-
nance (NMR). Left: Zeeman split-
ting of spin states in a magnetic
field. Right: The basic experimen-
tal setup consists of a static mag-
netic field, a radio frequency (RF)
generator that creates an alternat-
ing magnetic field perpendicular to
the static field, and a detector that
measures the voltage induced in the
coil by the precessing magnetiza-
tion.

As shown in Figure 10.1, the magnetic field lifts
the degeneracy of the spin states. This e!ect,
which is known as the Zeeman e!ect, is pro-
portional to the strength of the magnetic field.
For a spin S = 1/2, the splitting of the two en-
ergy levels is proportional to the magnetic field
strength. Quantum mechanically, it is described
by the Hamiltonian

Hz = →ω εS · εB,
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10 Liquid-state NMR

where ω is the gyromagnetic ratio of spin S. The
usual convention is to orient the z-axis along the
static magnetic field. The Hamiltonian then be-
comes

Hz = →ω SzB0 = →ϑLSz, (10.1)

where B0 is the strength of the magnetic field
and ϑL = ωB0 the Larmor frequency. For most
NMR quantum information processing experi-
ments, we can restrict the discussion to spins
S = 1/2, for which the Zeeman interaction is
the only coupling to external fields.

In magnetic resonance experiments, one uses al-
ternating magnetic fields, which couple to the
same magnetic dipole moments, to resonantly
excite transitions between these spin states. The
resonance condition is that the frequency ϑ of
these alternating fields fulfills the Bohr condi-
tion ⊋ϑ = !E , where !E is the separation of the
two energy levels (= ⊋ϑL here). The relevant fre-
quency is in the radio frequency (RF) range for
nuclear spins (10–1000 MHz in fields of 1–25 T).

The equation of motion for the spin can be de-
rived classically, by considering the magnetic mo-
ment εµ = ωεS in a magnetic field εB0. The interac-
tion between the magnetic field and the magnetic
dipole generates a torque

εT = εµ ↑ εB0 = ωεS ↑ εB0.

~T

~B

~µ

d~S

dt

~S

Figure 10.2: Orientation of spin, magnetic field,
and the torque generated by the
interaction between magnetic mo-
ment and magnetic field.

While a torque acting on a classical magnetic
moment would rotate it towards the direction of

the magnetic field, the spin is also an angular
momentum, and the torque is equal to the time
derivative of the angular momentum,

dεS

dt
= εT .

The resulting equation of motion is thus

ε̇µ = ωεµ ↑ εB0 = εµ ↑ εϑ0.

Here, εϑ0 = ω εB0 is a representation of the mag-
netic field in frequency units. Since the time
derivative is perpendicular to the direction of
the spin and to the magnetic field, the result-
ing motion is a precession around the magnetic
field, rather than a rotation towards the mag-
netic field.

The same result can also be derived quantum me-
chanically, from the equation of motion (4.40).
Using the commutation relations for angular mo-
mentum, the equation of motion becomes

d

dt
↓Sx↔ = →ϑL↓Sy↔ (10.2)

d

dt
↓Sy↔ = ϑL↓Sx↔

d

dt
↓Sz↔ = 0.

↗ Problem 1

The resulting evolution of the spin is a precession
around the direction of the magnetic field at the
Larmor frequency.

↓Sx↔(t) = Sxy(0) cos(ϑLt → ϖ)

↓Sy↔(t) = Sxy(0) sin(ϑLt → ϖ)

↓Sz↔(t) = Sz(0), (10.3)

where Sxy(0) is the amplitude of the transverse
magnetization and ϖ its phase, i.e., the angle
from the x-axis at t = 0 (see Fig. 4.2).

As shown in Figure 10.3, this evolution corre-
sponds to a precession around the z-axis, i.e.,
around the magnetic field. Equation (10.2) is
called the Bloch equation, after one of the dis-
coverers of NMR, who also wrote the theory for it
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10 Liquid-state NMR

Figure 10.3: Larmor precession of spins in a mag-
netic field.

[195]. It can also be derived classically and has
applications to many two-level systems besides
NMR [47]. It also can be used as the equation of
motion of a qubit, no matter what the physical
basis is.

10.1.2 Radio frequency field

To excite transitions between the di!erent spin
states and implement quantum gate operations,
one applies a RF magnetic field. It is generated
by a current running through a coil that is wound
around the sample, as shown in Figure 10.4.

I(ωrf)

B0

Figure 10.4: An alternating current through a
coil generates an RF field perpen-
dicular to the static magnetic field.

The generated RF field is

εBrf (t) = 2B1 cos(ϑt)




1
0
0



 ,

where we have chosen the x-axis along the axis
of the coil.

This linearly oscillating magnetic field is best de-
scribed as a superposition of two fields rotating
in opposite directions.

εBrf (t) = B1




cos(ϑt)
sin(ϑt)

0



+B1




cos(ϑt)

→ sin(ϑt)
0



 .

The first component rotates from x to the y axis
(counterclockwise when viewed from the z-axis),
the second in the opposite direction.

If we combine this magnetic field with εB0 into
a time-dependent Hamiltonian, we obtain an
equation of motion with time-dependent coe"-
cients, which cannot be solved analytically. The
same holds true for all qubit systems that are
excited by resonantly oscillating control fields.
This problem can be solved by moving the time-
dependence from the control fields to the coordi-
nate system. For reasons that will become clear,
the associated reference frame is known as the
rotating frame.

10.1.3 Rotating frame

The resulting dynamics are best analyzed in a
coordinate system that rotates around the static
magnetic field at the RF frequency. We briefly
show here the transformation to this rotating
frame since all quantum computing experiments
use the rotating frame representation, not the
laboratory frame. As shown in Figure 10.5, the
two coordinate systems are related by



x
y
z




r

=




cos(ϑt) sin(ϑt) 0

→ sin(ϑt) cos(ϑt) 0
0 0 1








x
y
z



 .

where the vector εr r refers to the rotating coordi-
nate system, the unlabeled one to the laboratory-
fixed system.

If we apply this transformation to the RF field,
the two circular components become

εBr

rf
= + B1




1
0
0



 + B1




cos(2ϑt)

→ sin(2ϑt)
0



 .
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Figure 10.5: Rotating and laboratory-fixed coor-
dinate systems.

X
Y

Z

=

+

Yr
Z

Xr

Y

X
+

Figure 10.6: Circularly polarized components of
the linearly polarized field in lab-
oratory frame (left) and rotating
frame (right).

Apparently, one of the two components is now
static, while the counter-rotating component ro-
tates at twice the RF frequency. It turns out
that, to an excellent approximation, it is su"-
cient to consider the e!ect of that component
which is static in this coordinate system, while
the counter-rotating component can be neglected
[72]. It is therefore a convenient fiction to as-
sume that the applied RF generates a circularly
polarized RF field, which is static in the rotating
frame. The corresponding Hamiltonian is

Hr

rf
= →ϑ1Sx. (10.4)

Under most conditions, this approximation
yields an excellent description of the actual dy-
namics. Figure 10.7 compares the exact evolu-
tion to the result of the rotating wave approxi-
mation. Compared to typical experimental situ-
ations, for this figure the parameters have been
chosen to exaggerate the deviations by several
orders of magnitude. The rapid oscillation oc-

0

1

Mz

Time

exact
Approximation

Figure 10.7: Comparison between the exact solu-
tion and the rotating wave approx-
imation.

curs at twice the Larmor frequency. In addition,
the frequency is shifted slightly, by 1

4
ω
2
1

ωL
.

The same reasoning can be used in any type of
resonant excitation. In the case of optical spec-
troscopy (e.g. trapped ion quantum computers),
it is known as the rotating wave approximation.

10.1.4 Equation of motion

So far we have transformed the RF field into the
rotating frame. We also need to transform the
quantum mechanical equation of motion into this
reference frame. We start by transforming the
state vector, using the unitary operator

U(t) = eiωtSz/⊋, (10.5)

which defines a rotation around the z-axis. It
transforms the laboratory state |ϱ↔ into the ro-
tating frame as

|ϱ↔r = U→1|ϱ↔ = e→iωtSz/⊋|ϱ↔. (10.6)

To transform an operator A into the same basis,
we use

Ar = U→1AU. (10.7)

This is valid for all operators, including the den-
sity operator or the observables Sx, Sy and Sz.
The only exception that needs special attention
is the Hamiltonian. In this case, the transfor-
mation has to fulfill the additional requirement
that the Hamiltonian remains the generator of
the time evolution. Since the transformation U
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is time-dependent, the new coordinate system is
not an inertial frame of reference. The evolu-
tion in this system therefore appears to be sub-
ject to additional ‘virtual forces’ that influence
the time evolution and must be accounted for by
the transformation. This is in close analogy to
centrifugal forces or Coriolis forces that appear
if the coordinate system rotates with respect to
inertial frames of reference.

Starting with the Schrödinger equation in the
laboratory frame

⊋ d

dt
|”↔(t) = →iH|”↔(t),

we use eq. (10.6) to substitute

|”↔(t) = U|”↔r(t)

and obtain an equation of motion for |”↔r(t):

⊋ d

dt
(U|”↔r(t)) = →iHU|”↔r(t). (10.8)

The left-hand side can be evaluated with the
product-rule:

d

dt
(U|”↔r(t)) = U̇|”↔r(t) + U

d

dt
|”↔r(t)

Inserting this into eq. (10.8), rearranging and
multiplying with U→1 from the left yields

⊋ d

dt
|”↔r(t) = →iU→1HU|”↔r(t)→⊋U→1U̇|”↔r(t).

The Schrödinger equation in the rotating frame
becomes therefore

⊋ d

dt
|”↔r(t) = →iHr|”↔r(t)

with the transformed Hamiltonian

Hr = U→1HU → i⊋U→1U̇ (10.9)

↗ Problem 2

The first term corresponds to the rotation (10.7)
of the operator around the z-axis, as for the other
operators. The second term takes into account

that the rotating coordinate system is not an in-
ertial reference frame, since the rotation is an ac-
celerated motion. Like centrifugal forces, it cor-
rects the equation of motion for the correspond-
ing virtual force. Evaluating this term for the
transformation (10.5), we find

→i⊋U→1U̇ = →i⊋ · iϑ

⊋ Sz = ϑSz.

This represents an additional term to the Zee-
man operator (10.1). Combining it with the driv-
ing Hamiltonian (5.11), we obtain the rotating
frame Hamiltonian

Hr = →(ϑL → ϑ)Sz → ϑ1Sx = →!ϑLSz → ϑ1Sx

= →εϑe! · εS,

wherethe

εϑe! =




ϑ1

0
!ϑL





is the total e!ective field in the rotating frame,
ϑ1 = ωB1 is the strength of the RF field in (an-
gular) frequency units and !ϑL = ϑL → ϑ is the
static magnetic field (also in frequency units),
reduced by the frequency of the applied field.
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Figure 10.8: E!ective magnetic field in the rotat-
ing coordinate system.

Figure 10.8 show this vector graphically. The
angle ς between εϑe! and the z-axis is given by
tan ς = ϑ1/!ϑL.

10.1.5 Evolution

The resulting evolution of the spins in the rotat-
ing frame is exactly the same as if a (small) static
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Figure 10.9: Spin precession for the cases of free
precession(ϑ1 = 0, left), resonant
irradiation (!ϑL = 0, right), and
the general case (center).

field were applied in this direction in the labo-
ratory frame: they undergo a precession around
the magnetic field εϑeff .

Figure 10.9 shows three specific examples for the
motion of spins in this e!ective field. In the ab-
sence of RF irradiation (ϑ1 = 0), the e!ective
field is aligned with the z-axis and the preces-
sion is the same as in the laboratory frame, ex-
cept that the precession frequency is reduced by
ϑ, the frequency of the applied RF field. In the
case of resonant irradiation (shown on the right),
the field along the z-axis vanishes and the e!ec-
tive field lies along the x-axis. In the general case
b), the e!ective field lies along a direction in the
xz plane.

So far, we have assumed that the direction of the
RF field coincides with the x-axis in the rotating
frame. This can be changed by shifting the phase
of the applied rf signal. As a function of this
phase, the coupling Hamiltonian becomes

Hr

rf
= →ϑ1(cos φSx + sin φSy)

and the e!ective field

εϑe! =




ϑ1 cos φ
ϑ1 sin φ
!ϑL



 . (10.10)

As a simple example, we consider the case that
the RF is applied on resonance, with φ = 0,
such that εϑe! = (ϑ1, 0, 0). If the spin is initially

aligned with the z-axis, it rotates around the x-
axis as

↼(t) = Sz cos(ϑ1t) + Sy sin(ϑ1t). (10.11)

The RF field thus rotates it to the y-axis and
from there to the negative z-axis. Such a rota-
tion by an angle ϑ1↽p = ⇀, with ↽p the duration
of the pulse, corresponds to an inversion of the
spins. If the field is left on, the spins continue
to precess, returning to the +z axis, again to the
negative and so on. This process of successive
inversions is called Rabi flopping, in reference to
Rabi’s molecular beam experiment [73]. The fre-
quency ϑ1 at which this process occurs is called
the Rabi frequency.

The primary use of RF irradiation in NMR
quantum computers is to create logical gate op-
erations. As discussed in Chapter 5, single-
qubit gates correspond to rotations of the
(pseudo)spins. Pulses of RF radiation are a con-
venient means for implementing such rotations
around arbitrary axes. According to eq. (5.18),
the rotation axis εϑeff can therefore be oriented
in any arbitrary direction by adjusting frequency
(and thereby !ϑL) and phase φ of the RF field.
The angle of rotation ⇁ = ϑe!↽p around the e!ec-
tive field, which is called the flip angle, is given
by the product of the e!ective field strength ϑe!

and the pulse duration ↽p.

10.1.6 NMR signals

Most NMR signals are obtained in the time do-
main, as the response of the system to an RF
pulse. We assume that the system is initially in
thermal equilibrium which is given by Boltzmann
statistics:

ωeq ↘ exp(→ H
kBT

) ≃ 1 → H
kBT

,

where the approximate form, derived for the
high-temperature limit

!E = ⊋ϑL ⇐ kBT
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is always valid in liquid state NMR: under typical
experimental conditions, ⊋ωL

kBT
is of the order of

10→5. We have therefore

ωeq =
1

2

(
1 +

⊋ϑL

kBT
Sz

)
.

In the simplest NMR measurement, one applies
an RF pulse that rotates the spins through an
angle ε

2 into the xy plane. According to (10.11),
this yields

ω(0+) =
1

2

(
1 +

⊋ϑL

kBT
Sy

)
.

After the pulse, the system undergoes Larmor
precession under the Zeeman Hamiltonian

ω(t) = e→iHt/⊋ω(0+)eiHt/⊋

=
1

2

(
1 +

⊋ϑL

kBT
(Sy cos ϑLt → Sx sin ϑLt)

)
.

Detection of the signal should not be treated
as a quantum mechanical measurement process.
There is no reduction of a wavefunction, and the
system is virtually una!ected by the measure-
ment. Rather than projecting onto an eigen-
state, one measures the expectation value of a
specific observable as a function of time, with-
out disturbing the free evolution of the quantum
system. This is of course closely related to the
fact that the system consists of an ensemble of
many spins rather than a single particle. It is
thus more appropriate to use a classical picture
for the detection of the signal.

 
 
 



 

  

Figure 10.10: Detection of freely precessing spins
through the Faraday e!ect.

Figure 10.10 shows how observation of the pre-
cessing spins is achieved through the Faraday ef-
fect. The polarized spin ensemble is a macro-
scopic magnetization; as it precesses, it changes
the flux through the RF coil, thus inducing a
voltage signal proportional to

s(t) ↘ d

dt
#(t) ↘ d

dt

∑

i

↓Si

x↔ ↘ cos(ϑLt). (10.12)

Damping e!ects, which are not discussed here,
cause a decay of the signal,

s(t) ↘ cos(ϑLt)e→t/T2 .

This signal, which is generated by freely precess-
ing magnetization that slowly decays is known
as free induction decay (FID).

10.1.7 Resonance lines

For an analysis of the signal one usually consid-
ers not the time domain signal, but its Fourier
transform. For an FID decaying exponentially
with time constant T2, the spectrum becomes

s(ϑ) =

√
1

2⇀

T2

1 + (ϑ → ϑL)2T 2
2

,

i.e., a Lorentzian with a half-width at half height
1
T2

centered at the Larmor frequency ϑL.

I = 2� i = 0.3

I = 3� i = 0.7

I = 1� i = 1.0

time
Sum

F

Frequenzfrequency

Figure 10.11: Superposition of 3 time-domain
signals and its Fourier transform.
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While the frequency-domain signal contains the
same information as the time-domain FID, it is
still very useful to do this transformation. The
main advantage of the Fourier transform is that
it allows one to distinguish di!erent transitions:
two distinct transitions usually have di!erent
Larmor frequencies

ϑij =
Ei → Ej

⊋ .

Here, Ei and Ej are the energies of the eigen-
states connected by the transition. The corre-
sponding resonance lines are therefore separated
in frequency space, while the time domain sig-
nals overlap. As an example, fig. 10.11 shows 3
FID signals

sij(t) = Aije
iωijt

with di!erent amplitudes Aij and frequencies
νij = ϑij/2⇀ as well as their sum. Clearly, the
sum is very hard to interpret. If the total time
domain signal is Fourier-transformed, the result-
ing spectrum, shown in the bottom trace, clearly
shows the three di!erent signal contributions as
separate resonance lines.

The amplitude of each resonance line is deter-
mined by the product of a density operator ele-
ment with an element of the observable; in the
simplest case, where the nontrivial part of the
initial density operator and the observable are
identical,

ω(0) → 1

2
1 = A = Sx,

and the amplitudes Aij of the individual transi-
tions in the spectrum become

Aij ↘ |(Sx)ij |2.

10.1.8 Refocusing

In many NMR experiments, and particularly
in (NMR-) quantum computation, it is neces-
sary to eliminate unwanted interactions. This
includes unwanted environmental perturbations,

such as magnetic field inhomogeneities, or un-
wanted terms in the system Hamiltonian. As
an example for the latter, consider a system of
multiple qubits coupled by an interaction such
as a bilinear coupling Si

zS
k
z between qubit i and

k. Such couplings are essential for 2-qubit gate
operations, but they are unwanted when a single-
qubit gate is to be generated. The terms that we
consider, are either linear or bilinear terms, i.e.
they contain a single spin operator (e.g. Sx) or
a product of two spin operators acting on two
di!erent spins, such as S1

zS
2
z .

Refocusing can eliminate such terms. This is
usually achieved by a sequence of RF pulses that
modulates the evolution in such a way that the
total e!ect of the interaction on the system van-
ishes. The first such experiment is the “Hahn-
echo” observed in liquid state NMR by Erwin
Hahn [122]. We consider here only the simplest
cases, which must fulfill the two conditions

• The interaction H1 can be inverted by a con-
trol operation, Hc : H1 ↗ →H1

• The interaction commutes with the static
system Hamiltonian, [H0, H1] = 0.

π/2 π

τ τ

Time

RF

Ph
as
e

Time

Figure 10.12: Refocusing of magnetic field inho-
mogeneities in a Hahn echo exper-
iment.

Figure 10.12 shows a typical experiment. The
initial ε

2 RF pulse converts longitudinal into
transverse magnetization ↘ Sx that subse-
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quently precesses in the magnetic field. For a
system of uncoupled spins, the density operator
after the RF pulse is

ω(↽) → 1

2
1 ↘ e→iHϑ/⊋Sxe

iHϑ/⊋

= Sx cos(!ϑL↽) + Sy sin(!ϑL↽).

As shown in the lower part of figure 10.12, the
phase !ϑL↽ (which represents the orientation of
the magnetization in the xy plane) increases lin-
early with time. If two spins experience di!erent
magnetic fields, their precession frequency dif-
fers. In the figure, the blue and red lines indicate
the evolution of the phase of two spins that expe-
rience di!erent magnetic fields (e.g., due to mag-
netic field inhomogeneity). In the central part of
the figure, the blue and red arrows indicate the
orientation of these spins. If a distribution of
such Larmor frequencies is present, the overall
e!ect will be destructive interference and a loss
of signal, as indicated in the upper part of Figure
10.12 and discussed in more detail in section 7.2.

To refocus this destructive interference process,
one can apply a second RF pulse. A ⇀x pulse,
i.e. a rotation around the x-axis by an angle ⇀,
leaves the x-component of the density operator
invariant but inverts the y-component:

ω(↽+) → 1

2
1 ↘ Sx cos(!ϑL↽) → Sy sin(!ϑL↽)

= Sx cos(→!ϑL↽) + Sy sin(→!ϑL↽).

Apparently, the pulse inverts the phase of the xy
magnetization vector, as indicated in the lower
part of Figure 10.12. After the pulse, the spins
continue to precess in the magnetic field. If the
Larmor frequency remains constant over time,
the total phase acquired during the time ↽ after
the refocusing pulse is equal to the phase that
the spin acquired between the two pulses, before
its phase was inverted. As a result, the total
phase

φt = →!ϑL↽ + !ϑL↽ = 0

vanishes, independently of the Larmor frequency
of the spin. The destructive interference is then
eliminated, and a “spin-echo” is observed.

In a similar way, unwanted couplings between
spins (qubits) can be eliminated by suitable refo-
cusing sequences. In an AX system (see Section
10.2.3, e.g.,) the coupling term can be eliminated
by applying a refocusing pulse to one of the spins.
For a Hamiltonian

HAX = ϑAAz + ϑXXz + dAzXz, (10.13)

the initial condition ω(0) → 1
21 ↘ Ax + Xx, and

equal precession periods before and after a ⇀
pulse on the X-spin, the system evolves to

ω(2↽) → 1

2
1 = U(↽)e→iεXx/⊋U(↽)(Ax + Xx)U

†(↽)

·eiεXx/⊋U†(↽)

= U(↽)e→iεXx/⊋U(↽)eiεXx/⊋(Ax + Xx)

·e→iεXx/⊋U†(↽)eiεXx/⊋U†(↽),

where U(↽) := e→iHAXϑ/⊋ is the time evolution
operator describing the precession. Using

e→iεXx/⊋HAXeiεXx/⊋ = ϑAAz→ϑXXz→dAzXz,

we find that the the refocusing pulse eliminates
the e!ect of the Zeeman term Xz as well as
the coupling term AzXz, but leaves the Zeeman
term of the A spin. Similar refocusing schemes
are possible to eliminate di!erent terms in larger
spin systems.

10.2 NMR as a molecular
quantum computer

10.2.1 Spins as qubits

The two quantum states that represent a qubit
correspond naturally to the two states of a
spin-1/2 – the only quantum system whose
Hilbert space has exactly two states. It is
therefore always possible to use the Feyn-
man–Vernon–Hellwarth picture [47] to describe
the qubit as a virtual spin-1/2. In this chap-
ter, however, the virtual spin is a real nuclear
spin of a molecule in solution: we study NMR
systems to show how quantum computers can
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be implemented. It should be realized, however,
that the quantum computers that can be built
this way still have very limited capabilities. They
should not be compared to conventional comput-
ers, which have been developed over half a cen-
tury, but to early prototypes, whose development
only started twenty years ago.

+ 12

- 12

|0>

|1>

|0>

|1>

^̂0

^̂1

Spin 1/2 QubitQubit

EV

Classical bit

1

0

Figure 10.13: Identification of bits with volt-
age levels (classical computer,
left), quantum mechanical states
(generic quantum computer, cen-
ter), and states of a spin-1/2
(right).

Using the spins as qubits requires a mapping of
the logical qubit states to the spin states. As
shown in Figure 10.13, the spin states take over
the role of voltage levels in classical computers.
Conventionally, one chooses the |mS = +1/2↔
state to represent a logical 0, while the
|mS = →1/2↔ state represents a logical 1. To
construct a quantum register, one needs several
distinguishable qubits.

Solid-state computer
bit 1 bit 2 bit 3

separate leads

space

Liquid-state NMR quantum computer

qubit 1 qubit 2 qubit 3

“monochromatic” 
excitation

frequency

Figure 10.14: Addressing of qubits in NMR
quantum computers vs. solid state
computers.

Every computer using the network architecture
must be able to selectively address individual
bits or qubits. As indicated in Figure 10.14, con-
ventional electronic computers (e.g. Si-based)
use wires for this purpose. In liquid state NMR
quantum computers, the qubits are nuclear spins
of freely floating molecules; clearly it is not feasi-
ble to use wires for addressing in this case. Nev-
ertheless, it is possible to address qubits selec-
tively. Since the qubit gates are applied with res-
onant RF fields, they are only e!ective when the
RF frequency is close to the Larmor frequency of
the spin.

weak pulse

Nonselective excitation

Selective 
excitation

Qubit a Qubit b

ωa ωb

Figure 10.15: Left: qubits with di!erent reso-
nance frequencies. Right: Selec-
tive vs. nonselective excitation.

As shown in Fig. 10.15, spins whose Larmor
frequency di!ers from the frequency of the RF
pulse are not a!ected by the pulse to a first ap-
proximation, provided the frequency separation
!ϑ0 = |ϑa→ϑb| is larger than the Rabi frequency
ϑ1 of the excitation pulse. The width of the af-
fected frequency range is therefore inversely pro-
portional to the duration of the RF pulse.

For nuclear spins of di!erent isotopes, this con-
dition can be readily fulfilled. Typical resonance
frequencies for typical nuclear spin qubits are, in
a field of B0 = 14 T:

Isotope 1H 13C 19F
ϑ0/2⇀ [MHz] 600 151 565

The frequency di!erences are this in the MHz
range while typical Rabi frequencies are of the
order of ϑ1 ≃ 10 kHz, so the condition !ϑ0 ⇒
ϑ1 is always fulfilled if the qubits are associated
with di!erent nuclear spin species.
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10.2.2 Chemical shift

Since the number of nuclear isotopes is limited
and the number of suitable nuclear isotopes is
very limited, it is desirable to have other mecha-
nisms for distinguishing the qubits. The easiest
possibility is the chemical shift. The nuclear Lar-
mor frequency is ϑL = ωB0. The gyromagnetic
ratio ω is the same for every spin of a given iso-
tope. However, the magnetic field B0 can di!er,
since it corresponds not to the externally applied
field, but to the local field at the site of the nu-
cleus.

H
Sample

external magnetic 
!eld

magnetization = 
additional !eld

ωL = γ B0

Figure 10.16: Chemical shift: local magnetic
fields shift the Larmor frequency.

The magnetic field strength at the site of the
nucleus di!ers in general from the externally
applied magnetic field: the electron system,
in which the nucleus is embedded, has a non-
vanishing magnetic susceptibility. These shifts
depend therefore on the electronic structure and
are generally known as “chemical shift”. The
Hamiltonian that describes such a system of
qubits can be written as

HZ = →
∑

i

ϑi S
i

z,

where the index i runs over all spins (qubits).
These frequency shifts are proportional to the
magnetic field strength and can be used to dis-
tinguish di!erent qubits.

Figure 10.17 shows a typical example. The
molecule ethylbenzene is a standard used for cal-
ibrating NMR spectrometers. It contains three

12345678

CH2
CH3

aromatic protons CH2 protons

CH3 protons

Figure 10.17: Chemical shift of protons in the
NMR spectrum of ethylbenzene.

types of protons, which cover a chemical shift
range of about 6 ppm. In general, the available
chemical shift range depends on the isotope con-
sidered. In the case of protons (1H), the range
|ϑi → ϑj |/ϑi is of the order of 10 ppm. For 13C,
it is about 200 ppm, and similar for 15N. For
a typical 1H NMR frequency, the available fre-
quency range is therefore of the order of 6 kHz,
for 13C in the same field 30 kHz. In contrast to
conventional computers, where lithographic pat-
terns localize di!erent bits, this may be consid-
ered a bottom-up approach, where the molecular
structure determines the location of the qubit in
frequency space.

10.2.3 Coupled spin systems

Implementation of quantum algorithms requires
two-qubit gates, which must rely on couplings
between qubits / spins. Such couplings are nat-
urally present in nuclear spin systems and are
exploited also in NMR spectroscopy.

1H Frequency

2H Frequency

HD molecule

Figure 10.18: Splitting of resonance lines in the
HD-molecules by the coupling be-
tween 1H and D=2H.
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Figure 10.18 shows the e!ect of the coupling on
the spectrum of the HD-molecule, which contains
two di!erent nuclear spin species. The 1H nu-
cleus has a spin 1/2, while the D=2H nucleus,
which contains one proton as well as one neutron,
has spin I = 1. As a result of the interaction, the
1H spectrum (upper trace) splits into three res-
onance lines, while the spectrum of the 2H splits
into two. As we show below, the number of res-
onance lines is given my the multiplicity 2I + 1
of the coupling partner.

BB γ B0

ν

( - δ)

negative 
additional 

field
B

γ (B0 + δ)

positive 
additional 

field

Splitting ~ coup-
ling strength

Coupling partner : spin 1/2

smaller splitting 
lower frequency

larger splitting 
higher frequency

Figure 10.19: Coupling between nuclear spins as
an e!ective field.

The e!ect of the coupling can qualitatively be
understood in a semiclassical picture, where ev-
ery spin generates a small additional field, which
is felt by the coupling partner(s). Its direction
depends on the orientation of the spin that gener-
ates the field, as shown in Fig. 10.19. Depending
on the sign of the additional field, it increases
or reduces the Zeeman splitting of the coupling
partner and therefore shifts its resonance fre-
quency. This shift is proportional to the mag-
netic quantum number of the source spin. Ac-
cordingly, every line of the multiplet can be la-
beled by the spin state of the source spin.

There are two main types of couplings; the first is
called scalar, indirect, or J-coupling, the second
type is the direct or dipolar coupling. In the case
of the dipolar coupling, the coupling energy can
be calculated from the distance and orientation

of the spins:

Edd =
µ0

4⇀r312
µ1µ2(1 → 3 cos2 ς).

Here, r12 is the distance between the two nu-
clei, µi are their magnetic moments, and ς is the
orientation angle of the internuclear vector with
respect to the direction of the external magnetic
field. The isotropic average of the Legendre poly-
nomial P2(ς) = 1→3 cos2 ς vanishes. In isotropic
liquids, where molecules rotate freely, these in-
teractions are therefore averaged to zero and do
not contribute to the evolution of the spins (but
to their relaxation).

D
H(b)

(b)

Figure 10.20: J-coupling between the nuclear
spins of the HD-molecule.

The isotropic coupling (J-coupling), however,
does not depend on the molecular orientation
and is therefore not a!ected by the molecular
motion. As a result, only the scalar J-couplings
are observed in the spectrum. These couplings
are mediated by the electrons in the chemical
bonds and are therefore often called indirect
couplings. Fig. 10.20 illustrates the underlying
mechanism: the hyperfine interaction between
the nuclear spins and the electron spins of the
chemical bonds lifts the degneracy of the two
electronic spin states and leads to a (very small!)
polarisation of the electron spins in that bond,
with the energetically favored orientation having
a slightly higher density near the nucleus. Ac-
cordingly, the opposite spin state has a slightly
higher density at the other nucleus. The hyper-
fine interaction therefore lowers the energy of the
opposite nuclear spin state in the second nucleus.
The energy of the two nuclear spins therefore in-
cludes a term

EJ = →Jεµ1 · εµ2.
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In both cases, the coupling between two spins
can be understood as a small additional mag-
netic field generated by spin A and acting on spin
X, as well as in the opposite direction. We con-
sider here only the simplest case (which is most
useful for NMR quantum computing), where the
interaction can be written as

HAX = dAzXz,

where A and X are the two spins and d the cou-
pling constant. The total Hamiltonian is then

H = Hz + HAX = →ϑAAz → ϑXXz + dAzXz

AX

ν

X-spectrum A-spectrum

Energy levels Spectrum

Figure 10.21: Energy levels and spectrum of a
system of two qubits A and X.
The dashed horizontal lines indi-
cate the energy levels of the Zee-
man Hamiltonian (no coupling),
the solid lines the energies of the
full Hamiltonian.

Figure 10.21 shows the energy levels and the
spectrum of such a two-spin system. The dashed
horizontal lines in the left-hand part indicate the
energy levels of the Zeeman Hamiltonian alone
(no coupling), the solid lines represent the ener-
gies of the full Hamiltonian. The coupling shifts
the states with parallel orientation of the two
spins upwards (for a positive sign of the coupling
constant d), the states with antiparallel orienta-
tion downwards.
As discussed in section 10.1.6, NMR signals are
generated by precessing magnetization. Ob-
servable transitions must therefore have non-
vanishing matrix elements of the transverse spin

operators Sx and Sy. These allowed transi-
tions correspond to the flip of a single spin by
one quantum. In the present spin system, such
transitions are those between the states ⇑⇑⇓⇑⇔,
⇑⇑⇓⇔⇑, ⇑⇔⇓⇔⇔, ⇔⇑⇓⇔⇔. The transition frequen-
cies are

ϑ12 = ϑ↑↑↓↑↔ = ϑX → d/2;

ϑ13 = ϑ↑↑↓↔↑ = ϑA → d/2;

ϑ24 = ϑ↑↔↓↔↔ = ϑA + d/2;

ϑ34 = ϑ↔↑↓↔↔ = ϑX + d/2;

The spectrum consists of four lines, each of which
is associated with a transition of one spin and la-
beled by the (invariant) state of the second spin.

10.2.4 Pseudo / e!ective pure states

Before NMR quantum computing was demon-
strated, all algorithms for quantum computers
assumed that quantum computers use individual
quantum systems, which are initially prepared
in a specific quantum state. Unfortunately, de-
tecting individual spins is extremely di"cult and
has only been achieved in a few specific systems
[196, 197, 198, 199, 200, 201]. In most cases,
signals can be detected only from macroscopic
ensembles of spins, containing some 1020 spins.
These spins are not in identical quantum me-
chanical states and therefore cannot be described
by a pure state. For the description of the mixed
states, one has to use a density operator.

Many quantum algorithms require pure quantum
states for their implementation and can therefore
not be applied to NMR systems in thermal equi-
librium. Nevertheless, mixed states can be made
to mimic pure states and therefore allow the im-
plementation of these algorithms. For this pur-
pose, the target system has to be prepared in an
initial state that can be written as the sum of
the unit operator and an operator representing a
pure state:

ωpp ↘ β1 + ⇁ωp,

where ωpp is referred to as a “pseudo-pure” state,
or “e!ective pure state”, while ωp is a pure state.
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The density operator component proportional to
the unity operator has vanishing magnetization
and therefore does not contribute to the signal.
In addition, it commutes with the Hamiltonian
and therefore does not undergo time evolution.
Accordingly, the behavior of such a system is
completely determined by the second component
and therefore is exactly equal to that of a pure
state. The coe"cient ⇁ is largely determined by
the polarization of the spin system.

thermal state

= +

completely mixed population difference

Figure 10.22: A thermal state of a single qubit is
a pseudo-pure state.

As shown in Fig. 10.22, a single spin is always in
a pseudo-pure state (compare (4.31)).

ρeq

=

11

+2 qubits

Figure 10.23: A thermal state of a 2-qubit sys-
tem.

In multi-qubit spin systems, however, the ther-
mal equilibrium states are not even pseudo-pure.
Figure 10.23 illustrates this for a 2-qubit system.
Unitary operations cannot be used to bring such
a system into a pseudo-pure state. Instead one
has to average over a number of di!erent mixed
states to make the pseudo-pure state.

There are a number of procedures for imple-
menting such an averaging scheme, which are
referred to as “spatial labeling” [10], “temporal
labeling”[202] and “logical labeling” [203]. Tem-
poral labeling is perhaps easiest to explain, us-
ing the example of two coupled spins. If the two
spins are from the same type of nuclear isotope,

the populations of the four states are

⇑⇑: 1/4 + ▷ ⇑⇔, ⇔⇑: 1/4 ⇔⇔: 1/4 → ▷,

as illustrated in Figure 10.23. Here ▷ ≃
⊋ϑL/kBT ≃ 10→5 is determined by the ration
of the Zeeman energy to the thermal energy of
the system.

To obtain a pseudo-pure state, one can equalize
the populations of three levels (e.g., ⇑⇔, ⇔⇑, ⇔⇔) by
cyclically permuting them and adding the results
of three experiments with di!erent initial con-
ditions. The time-averaged populations would
then be

1

4





1
1
1
1



 + ▷





1
→1

3
→1

3
→1

3





= (
1

4
→ ▷

3
)





1
1
1
1



 +
4▷

3





1
0
0
0



 .

The corresponding averaged density operator
corresponds to the sum of the unit operator (
= the totally mixed state) and a pure state.

The main disadvantage of this procedure is that
the averaging process reduces the polarization
and therefore the signal amplitude. In the case
of spatial labeling, one turns the population dif-
ferences of states 2, 3, 4 into transverse magneti-
zation, which is destroyed by pulsed field gradi-
ents. It was soon realized [204] that this loss of
polarization, which increases exponentially with
the number of spins in the quantum register,
severely restricts the usefulness of liquid-state
NMR quantum computing. Similarly, the num-
ber of operations required increases exponen-
tially with the number of qubits. This can be
reduced to polynomial overhead by logical label-
ing [203], which uses additional (ancilla) spins to
create pure states for specific ancilla spin config-
urations. For the related techniques POPS [205]
or SALLT [206], the overhead is independent of
the number of qubits.
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While this loss of signal is a severe problem for
scalability, it is not always necessary to prepare
a pseudo-pure state. Many quantum algorithms
can also be applied to mixed states, and some of
these mixed state algorithms actually run faster
than the corresponding pure state algorithms
[207, 208]. These algorithms, which can provide
an exponential speedup even over optimal quan-
tum algorithms, use a combination of quantum
parallelism with classical parallelism: the ensem-
ble of nuclear spins corresponds then to a large
number of quantum computers running in paral-
lel.

10.2.5 Single-qubit gates

�eff

Figure 10.24: Single-qubit gate implemented as a
rotation around the e!ective field
ϑeff .

Single-qubit gates are implemented by RF
pulses. In the rotating frame, an RF pulse can
be represented by its propagator

U = e→iHϑ/⊋ = eiϖωeff ·
ϖSϑ/⊋,

where H is the Hamiltonian during the pulse and
↽ the duration of the pulse. Depending on the
phase φ of the RF field, the propagator for a
resonant pulse is

e→
i
⊋ϱ(Sx cosς+Sy sinς)

The flip angle is β = ϑ1↽ , where ϑ1 is the am-
plitude of the RF field (the Rabi frequency) and
↽ the duration of the pulse.

As discussed in section 2.2.5, the shortest pos-
sible duration of a single-qubit gate is given by

the energy level splitting. In the case of spins,
the energy level splitting is given by the strength
ϑ1 of the interaction with the RF field and the
gate duration ↽ is inversely proportional to the
interaction strength, ↽ = β/ϑ1, where β is the
rotation angle of the gate. In section 10.2.1, we
showed that addressing of individual qubits re-
quires that the strength of the rf field is weaker
than the di!erence between their resonance fre-
quencies. Accordingly, the duration of single-
qubit gates will always be longer than the inverse
of the frequency di!erence between the qubits.

Combining two such generators (rotations) with
di!erent axes, it is possible to implement any
SU(2) operation. An important example is the
set of rotations around the z-axis, which cannot
be generated by RF pulses directly. They can,
however, be realized by combining three rota-
tions around axes in the xy plane:

e→iφSz/⊋ =

(
e→iφ/2

eiφ/2

)

= e→i
ω
2 Sx/⊋e→iφSy/⊋ei

ω
2 Sx/⊋

= e→i
ω
2 Sy/⊋eiφSx/⊋ei

ω
2 Sy/⊋.(10.14)

We now consider the most important single-
qubit gates. Using the conventional choice of
relative phases between states, the NOT gate
may be implemented, up to an irrelevant over-
all phase, by

NOT : e→iεSx/⊋ =

(
→i

→i

)

= e→i
ω
2

(
1

1

)
.

This implementation of NOT thus di!ers from
the usual representation by an overall phase of
→ε

2 . Since such overall phases do not correspond
to observable quantities, we will not consider
them here and regard all implementations that
di!er by such a phase factor as equivalent.

One might first think that any 180 degree pulse,
which inverts the two states |0↔ and |1↔ should
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be an implementation of NOT. However, looking
at the propagator for a ⇀y pulse,

e→iεSy/⊋ =

(
0 →1
1 0

)
,

one sees that this di!ers from the NOT in terms
of the relative phase that it applies to the two
states.

The Hadamard gate

H =
1↖
2

(
1 1
1 →1

)

can also be implemented by an RF pulse

i↖
2

(
1 1
1 →1

)
= e

→i( ω→
2
)(Sx+Sz)/⊋

Physically this transformation can be achieved in
a number of di!erent ways: either by applying
an o!-resonant RF pulse with !ϑL = ϑ1, or by
a sequence of RF pulses along the y, x and →y
axes:

H = ei
ω
4 Sy/⊋e→iεSx/⊋e→i

ω
4 Sy/⊋ (10.15)

= e→i
ω
4 Sy/⊋e→iεSz/⊋ei

ω
4 Sy/⊋

= e→iεSz/⊋ei
ω
2 Sy/⊋.

The three-pulse version is also interesting: as
in the case of the composite z-rotation (10.14),
it can be understood as a “rotated rotation”.
The central pulse executes the desired ⇀ rotation
around an axis in the xy plane. The first and last
pulses then rotate the axis from the xy plane into
the xz plane. This scheme is experimentally eas-
ier to implement since it only requires resonant
pulses.

The last version in eq. (10.15) is the shortest:
a
(
ε

2

)
y

pulse is followed by a ⇀z rotation, which
can be implemented, e.g., by a phase shift. If the
z-rotation is omitted, this gate is known as the
pseudo-Hadamard gate

h =
1↖
2

(
1 1

→1 1

)
= ei

ω
2 Sy/⊋,

which can replace the Hadamard gate in many
cases. It is not it’s own inverse, but

h→1 =
1↖
2

(
1 →1
1 1

)
= e→i

ω
2 Sy/⊋.

They correspond to ±ε

2 rotations around the y
axis.

↗ Problem 3

10.2.6 Two-qubit gates

Two-qubit gates require couplings between the
spins to apply transformations to one spin con-
ditional on the state of the other spin. There are
two di!erent ways of implementing such gates.
One may be referred to as “soft pulses”, the other
as “hard pulses plus free precession”. The first
uses the fact that weak RF fields a!ect only
transitions whose resonance frequency is close to
the RF frequency. As we discussed in Section
10.2.3, the transitions of a nuclear spin that is
coupled to another spin can be labeled by the
state of the coupling partner. A weak RF field
whose frequency matches the frequency of one
resonance of spin A (e.g.) therefore excites spin
A on the condition that spin X is in the |1↔ state
– a CNOT gate.

CNOT =





1
1

1
1



 .

This variation is conceptually simple since it can
be described in terms of two-level systems, and
it can be extended to more complicated spin sys-
tems. The condition that the pulse must be se-
lective requires that the RF field ϑ1 be weak
compared to the coupling d, ϑ1 ⇐ d, and there-
fore that the gate duration ↽ be long compared
to the inverse coupling strength, ↽d ⇒ 1. As a
result, this type of gate operation is more sus-
ceptible to decoherence.

Figure 11.24 shows, as an example, how a CNOT
gate can be implemented by a selective ⇀-pulse
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CNOT

invert

Figure 10.25: CNOT gate implemented by a se-
lective pulse on the ⇔⇔⇓⇔⇑ transi-
tion.

SW
AP

1)

2) 3)

1)

2)

3)

Figure 10.26: SWAP gate implemented by a se-
quence of three selective ⇀-pulses.

applied to the ⇔⇔⇓⇔⇑ transition, i.e. the 11 ⇓ 10
transition.

Figure 10.26 shows a second example. In this
case, the SWAP operation ⇑⇔⇓⇔⇑ cannot be im-
plemented directly, since the matrix element of
the magnetic dipole operator vanishes for the
transition ⇑⇔⇓⇔⇑. It can be replaced by a se-
quence of three ⇀-rotations, e.g. the combination
given in fig. 10.26.

10.2.7 Two-qubit gates with
nonselective pulses

The second approach consists of a combination of
single qubit gates with periods of free precession.
We consider a spin A coupled to a control spin
X by the interaction dAzXz. The correspond-
ing Hamiltonian (10.13) yields a spectrum with
two resonance lines in the A-spectrum, which can

be labeled by the states | ⇑↔ and | ⇔↔ of the X
spin. We will assume that pulses can be applied
to the A and X spin separately – a condition
which must be satisfied for the one-qubit gates.
In contrast to the first implementation, however,
the pulses used here always act on all transitions
of a given spin, independent of the state of its
coupling partner(s), as in any single-qubit gate.

Starting from the state |00↔ = |X =⇑, A =⇑↔, an
e→i

ω
2Ay/⊋ RF pulse creates a superposition state

|”↑(0)↔ =
1↖
2
[|0↔ ↙ (|0↔ + |1↔)].

Free precession converts it to

|”↑(t)↔ =
1↖
2
[|0↔ ↙ (|0↔e→i⊋dt/4 + |1↔ei⊋dt/4)],

where we use a rotating frame that is resonant
with the Zeeman frequency for the A and (inde-
pendently) for the X spin.

After a time t = ε

d⊋ , the phase factor is e±iε/4 =

(1 ± i)/
↖

2 and the system has reached the state

|”↑(
⇀

d⊋)↔ =
1

2
[|0↔ ↙ ((1 → i)|0↔ + (1 + i)|1↔)].

=
1 → i

2
[|0↔ ↙ (|0↔ + i|1↔)],

which corresponds to an ⇀/2 rotation of the A-
spin around the z-axis. An e→i

ω
2Ax/⊋ pulse ap-

plied at this time returns the system to its orig-
inal state |00↔ (apart from an overall phase fac-
tor).

⇢A(0) = Ax

⇢A(t; X =#)

⇢A(t; X =")

Figure 10.27: Evolution of nuclear spin coher-
ence under a coupling to another
spin-1/2.

As shown in fig. 10.27, this can be readily fol-
lowed in terms of a vector model. The initial
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y-pulse turns the spin from the z-axis to the x-
axis. The red vector, which corresponds to the
control qubit being in the ⇑↔ state, then precesses
by 90 degrees to the y-axis, and the subsequent
x-pulse flips it back to the z-axis.

If we apply the same sequence of pulses to the
state |10↔ = |X =⇔, A =⇑↔, the free precession
occurs with opposite sign

|”↔(t)↔ =
1↖
2
[|1↔ ↙ (|0↔ei⊋dt/4 + |1↔e→i⊋dt/4)],

as shown by the blue vector in fig. 10.27. Ac-
cordingly, the second pulse rotates the spin to
the negative, rather than the positive z-axis.
Clearly, this corresponds to an inversion condi-
tioned on the control qubit being in the |1↔ state.

The free precession period under the Hamilto-
nian

HAX =
d

⊋AzXz

implements the transformation ei(εAzXz)/⊋2 . To-
gether with the two pulses, this implements a
CNOT gate:

ei
ω
2Ay/⊋e→i(ω2Xz+

ω
2Az→εAzXz/⊋)/⊋e→i

ω
2Ay/⊋

= e→i(ω2Xz+
ω
2Ax→εAxXz/⊋)/⊋

= (1 + i)





1
1

1
1



 .

The additional terms of Xz and Az are for nor-
malization of the relative phases. They can be
implemented as composite z-pulses [209] or by
an appropriate choice of the reference frequency.

Three qubit gates like the To!oli gate can be
constructed in the same way as two-qubit gates
- either by selective pulses or by a combination
of single-qubit gates and free precession periods.
Formally, a three-qubit operation involves three-
particle interactions, corresponding to Hamilto-
nian terms H3 = ABC, where A, B and C
are single-qubit operators of the three involved
qubits. Such interactions do not exist on the

π/2 pulse π pulse

61 2 2 6162 6 2 62 62 62 6261 6

y y -x -x

Time

Figure 10.28: Pulse sequence for implementing a
To!oli gate.

fundamental level, but they can be created arti-
ficially, by using transformations like

e→iϱByCze→i↼AzBxeiϱByCz = e→i↽AzBzCz .

Here, A↼ , Bϱ , and C↽ refer to the three
qubits and the three factors can be generated in
the same way as the CNOT operation discussed
above, by combining free precession periods un-
der the e!ect of a two-qubit coupling Hamilto-
nian with single-qubit gates. Each factor corre-
sponds to a 2-qubit gate operation.

Figure 10.28 shows a possible pulse sequence for
implementing the To!oli gate with hard pulses.
Alternatively, three- or N -spin gates may be gen-
erated using selective pulses [210, 211, 212]. The
To!oli gate, e.g., can be implemented by a se-
lective inversion pulse applied to the transition
|110↔ ⇓ |111↔.

10.2.8 Qubit readout

As discussed in Section 10.1.6, detection in mag-
netic resonance is best described in a classical
picture: the transverse components of the spin
generate a macroscopic magnetization that pre-
cesses around the static magnetic field. Obvi-
ously such a detection scheme is not compatible
with the usual description of a quantum mechan-
ical measurement, which involves the collapse of
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a wavefunction. Instead, one observes the system
continuously, without significantly a!ecting its
behavior. This di!erence is closely related to the
fact that the system is an ensemble, rather than
the usually assumed single-particle system. In
addition, the observed quantity is not the popu-
lation of some state, i.e., |ϱk↔↓ϱk|, but rather the
evolution of a coherence, i.e., |ϱj↔↓ϱk|(t), where
|ϱj,k↔ are eigenstates of the Zeeman Hamilto-
nian.

According to equation (10.12), the signal con-
tribution of a specific coherence is proportional
to the corresponding matrix element of the total
spin operator

∑
i
Si
y. This matrix element van-

ishes unless exactly one of the spins changes its
magnetic quantum number, i.e., unless the tran-
sition occurs between two states

|i↔ = |m0, m1, ...mN→1↔

and

|f↔ = |m0↗, m1↗, ...mN→1↗↔

with mj↗ = mj for all but one j.

The observed signal is the sum over the contribu-
tions of the individual spins. A measurement at
a single instant in time therefore does not deter-
mine the values of the individual qubits, but only
the sum over all qubits. However, the possibility
for continuous measurements makes it possible to
distinguish the contributions from the individual
qubits, since they evolve at di!erent frequencies.
As we discussed in Section 10.2.1, all spins in an
NMR qubit register must have di!erent Larmor
frequencies to allow addressability for logical op-
erations. This condition also implies that their
precession frequencies during detection are dif-
ferent. As discussed in section 10.1.7, Fourier
transformation of the FID from such a system
therefore separates the contributions from di!er-
ent qubits in frequency space.

Measuring the FID is a straightforward way to
measure the expectation value of transverse spin
components Sx and Sy. When a quantum algo-
rithm requires the measurement of populations,

it can be trivially modified to allow for imple-
mentation on an NMR quantum computer. One
adds an RF pulse that converts the populations
into transverse coherence and again measures the
FID of the system.

|1>
x

y

z

x
y

z

|0>

Apply (-x)-rotation

Iy

Frequency

Figure 10.29: Readout of populations with the
help of an RF pulse for the two
basis states. The vector diagram
shows how the spin is rotated
by the RF pulse and the (single
line) spectra show how the result-
ing amplitudes identify the qubit
state.

Figure 10.29 shows, as an example, the signal
that one observes from a single qubit if it is in
one of the two eigenstates before the RF pulse is
applied. If it is in the ground state, which corre-
sponds to the spin pointing along the direction
of the magnetic field, the RF pulse rotates it to
the positive y-axis. Since Sy is the observable,
we expect a positive signal at the Larmor fre-
quency of this qubit. If the spin is in the logical
|1↔ state instead, it always points in the opposite
direction and the signal becomes negative.

There are cases in quantum computation, where
the readout process hinges on the collapse of a
wavefunction. For those cases, which include
Shor’s algorithm, the algorithm must be modi-
fied when it is applied to an NMR system. The
non-existence of a collapse is handled by append-
ing an additional step, which is polynomial in the
number of bits and allows one to obtain the re-
sult from ensemble measurements [9, 213].
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10.2.9 Readout in multi-qubit systems

As the number of qubits increases, the number
of resonance lines in the associated NMR spec-
tra also increases. While the addressability crite-
rion mandates an increase in the number of lines
that is proportional to the number of qubits, the
couplings between the spins (which are needed
for two-qubit gates) increase the number of lines
much more rapidly. Every coupling partner dou-
bles the number of resonance lines. If all N
qubits are coupled to all other qubits (which is
usually not the case), each qubit gives rise to
2N→1 resonance lines, corresponding to the 2N→1

states of its coupling partners and the total num-
ber of lines is nL = N2N→1.

1 qubit

2 qubits

3 qubits

Frequency

Figure 10.30: Increase in the number of reso-
nance lines in N spin systems.

Figure 10.30 shows the number of resonance lines
for N = 1, 2, and 3 qubits. In most real systems,
not all couplings are large enough to be measur-
able, resulting in a smaller number of lines.

This exponential increase in the number of lines
in a finite frequency bandwidth limits the num-
ber of useful qubits. However, it does have
the advantage that the spectrum contains much
more information about the state of the quantum
mechanical system than the simple readout of in-
dividual qubits. Every group of lines associated
with transitions of qubit |j↔ provides informa-
tion about the state of the corresponding qubit
but, in addition, it can also yield information
about the states of the other qubits. To illus-
trate this, we consider the two-qubit system of
Section 10.2.3 and assume that we are interested
in the readout of the states

|00↔, |01↔, |10↔, |11↔.

ρ before pulse

|00>

|01>

|10>

|11>

A X

A Spectrum
(selective pulse)

X Spectrum
(selective pulse)

AX Spectrum
(nonselective pulse)

|0> |1> |0> |1> A X

Figure 10.31: Signals in NMR readout for di!er-
ent spin states.

Figure 10.31 shows how these states can be dis-
tinguished by applying an RF pulse, measuring
the FID and calculating its Fourier transform.
If we apply the pulse only to the A or X spin,
we measure only a partial spectrum. Each par-
tial spectrum consists of two resonance lines that
can be labeled with the quantum state of the
coupling partner. If the coupling partner X is in
state |0↔, e.g., the spectrum of the A spin only
shows the single resonance line associated with
this state. Starting from the state |00↔, e.g., and
applying a ⇀/2 rotation to the A-spin, we obtain
the state

”00+ =
1↖
2
(|0↔+ |1↔)↙ |0↔ =

1↖
2
(|00↔+ |10↔),

which evolves with the single frequency (E10 →
E00)/⊋ and therefore generates a single resonance
line in the spectrum, as shown in the upper left
of fig. 10.31. Even the partial spectrum of ei-
ther spin provides therefore a clear distinction
between all four possible cases.

It is also possible to apply an RF pulse that ex-
cites both spins simultaneously. The resulting
nonselective spectrum, shown in the last column,
again allows for a clear distinction between the
four cases.

This scheme can easily be extended to more
spins; examples are given, e.g., in [214]. In gen-
eral, a spectrum of a weakly coupled N -spin sys-
tem contains N2N→1 resonance lines. Taking
into account that the usual NMR experiments
measure not only

∑
i
Si
y, but also

∑
i
Si
x, this
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number doubles to N2N . The number of reso-
nance lines is thus even larger than 2N , the total
number of coe"cients that describe a pure state
of N qubits. This shows that the resonance line
amplitudes are not independent of each other.

10.2.10 DiVincenzo’s criteria

DiVincenzo[8] listed five criteria that implemen-
tations of quantum computers should fulfill to be
considered “useful”. We summarize here to what
degree liquid state NMR fulfills these criteria:

1. Well-defined qubits.

The usual implementations use nuclear spins S =
1/2 and identify |0↔ = | ⇑↔ and |1↔ = | ⇔↔. The
qubits are well characterized in the sense that
their energies are well known and the coupling
to external fields occurs only through the Zee-
man interaction. In the liquid state NMR ex-
periments, logical qubits are not represented by
individual spins, but by collections of spins of the
order of Avogadro’s number. This is in contrast
to the usual assumption of quantum computa-
tion theory, and some consequences of this need
to be addressed in the context of readout and
initialization.

In liquid state NMR, the individual qubits are
distinguishable by their resonance frequency.
The resonance frequencies of the di!erent spins
may be shifted by chemical shift e!ects or the
qubits may be represented by di!erent isotopes.
The latter is clearly preferable, since it avoids
cross-talk between qubits. However, since the
number of useful isotopes is limited, assigning
di!erent isotopes to di!erent qubits is clearly
not a scalable procedure. When one uses chemi-
cal shift di!erences, the separation should be as
large as possible to allow for fast operations of
logical gates.

In summary, NMR systems fulfill the “qubit-
identification" requirement quite well, but
liquid-state NMR appears to fail the scalability
criterion.

2. Initialization into a well defined state.

In liquid state NMR, initialization is
achieved by relaxation, which provides for
an excess of spins in the ground state.
For algorithms designed to work with pure
states, this must be combined with the
preparation of a pseudo-pure state. While
these procedures can be used for small
spin systems, they are clearly not scalable
for larger systems. Furthermore, thermal
initialization is not su"cient for repeated
quantum error correction, which will repre-
sent an essential part of scalable quantum
computing.

3. Long decoherence times.

The long decoherence time (of the order of
a second) of liquid state NMR is one of its
biggest advantages. However, typical dura-
tions of two-qubit gates are at least several
milliseconds, so the number of gates that
can be applied is limited to approximately
100.

4. A universal set of quantum gates.

At this point, liquid state NMR scores very
well: the implementation of unitary trans-
formations is well established and rather
straightforward.

5. A qubit-selective readout.

Another strong point, as discussed above.
The di!erentiation of qubits requires chem-
ical shift separation, but is much easier to
achieve than the addressing during gating.
It is even possible to read out the full den-
sity operator, rather than only the popu-
lations, as in standard quantum computing
algorithms.

10.2.11 Scaling behavior

Liquid state NMR was the first experimental
technique that allowed the implementation of
quantum algorithms. Nevertheless, there are se-
rious obstacles to advancing this system much
farther. One di"culty is associated with the
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Figure 10.32: Loss of signal amplitude due to
preparation of pseudo-pure states
as a function of the quantum reg-
ister size.

preparation of pseudo-pure states [204]: The pro-
cedure averages all populations but one. As long
as the spin system can be described by the high-
temperature approximation, the population of
an individual spin state is inversely proportional
to the number of states. It therefore decreases
as 2→N with the number of spins N . The de-
tectable signal size therefore limits the possible
number of spins to be used in such a quantum
information processor. Figure 10.32 shows the
resulting decrease of the signal amplitude.

The reduction of sensitivity associated with the
preparation of pseudo-pure states can be avoided
by using algorithms that do not require pure
states to work with. For this purpose, variations
of algorithms have been developed that can be
applied directly to mixed states [215, 207, 216,
208]. For the purpose of database search, such
modified algorithms can even be exponentially
faster [207, 208] than the original algorithm de-
veloped by Grover [133].

Another approach to beating the exponential de-
crease of the signal size due to the pseudo-pure
state preparation would be to work with su"-
ciently high spin polarization that one can cre-
ate good approximations of pure states. Virtu-
ally complete polarization of the electron spins
by thermal relaxation can be achieved at a tem-
perature of 100 mK in a magnetic field of 2 T,
where ⊋ω

kBT
= 27 ⇒ 1. High enough nuclear spin

polarization, in contrast, cannot be achieved in
thermal equilibrium within the currently acces-

sible experimental conditions.

Highly spin polarized hydrogen nuclei can be
obtained by several non-equilibrium techniques,
e.g., by separating the ortho- and para- compo-
nents in molecular hydrogen gas [217]: The en-
ergy of para-hydrogen is lower than that of ortho-
hydrogen. Accordingly, it is possible to bring
pairs of protons in hydrogen molecules into the
singlet spin state by cooling them to low tem-
perature. When the symmetry between the two
nuclei in the molecule is broken, e.g., through
a chemical reaction, it is possible to achieve
truly entangled nuclear spin states [218, 219].
Other approaches to pure state preparation in-
clude optical pumping [220, 221] or polarization
exchange with electron spins at very low tem-
perature [222, 223]. All these techniques require
that the system be kept at low temperature to
avoid competing processes that reduce the polar-
ization. This also implies that the material that
contains the spins be a solid rather than a liquid.

Another aspect of liquid state NMR that may
make it di"cult to scale up to larger numbers of
qubits, is the addressing of the individual qubits.
Current implementations use the natural chemi-
cal shift range of the nuclear spins to distinguish
them by their resonance frequency. Since the
chemical shift range is limited, this procedure
cannot be extended to arbitrarily large numbers
of spins. The larger the number of qubits, the
smaller is therefore the separation of their res-
onances and therefore the slower the switching
speed. It appears therefore necessary to design
an addressing scheme that does not rely on chem-
ical shift di!erences.

10.3 NMR Implementation of
Shor’s algorithm

When Peter Shor published his algorithm for
factorization in polynomial time (Ref. [19], for
details see Section 8.3), it generated enormous
boost to the field of quantum information pro-
cessing. Similarly, its first physical implementa-
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tion convinced more people that quantum com-
puting may not remain a field of science fiction
but become reality. The first experimental im-
plementation was published by a group at IBM
Almaden Research Center near San Jose, Cali-
fornia, using an NMR quantum computer [213].
They factorized 15, the smallest integer to which
the Shor algorithm can be applied (remember: N
must be odd and not the power of a prime).

10.3.1 Qubit implementation

For the implementation of Shor’s factoring al-
gorithm, Vandersypen et al. used a custom-
designed molecule with five 19F and two 13C nu-
clear spins.

Figure 10.33: Custom designed molecule with
seven nuclear spin qubits [213].

The use of carbon and fluorine nuclei spreads
the frequencies over a relatively wide range and
therefore allows for fast processing. 19F and 13C
are both spins-1/2, have generally long decoher-
ence times and a large chemical shift range that
allows for fast gating of the qubits. As shown
in fig. 10.33, the custom-built molecule contains
five fluorine and four carbon nuclei. As actual
qubits, five fluorine and two carbon nuclei were
used; two additional carbon nuclei were not used
in this experiment.

As shown in figure 10.34, the chemical shift sep-
aration between the qubits is typically of the
order of 1 kHz, thus allowing for single-qubit
gate switching times of the order of 1 millisec-
ond. Each qubit is coupled to every other qubit,
although some of the coupling constants are rela-
tively small. While the large number of coupling
constants allows for direct implementation of all

13C

19F

Coupling constants

Frequencies, relaxation times

Figure 10.34: Resonance frequencies, relaxation
times and coupling constants of
the molecule.

two-qubit gates, it leads to a rather complicated
spectrum: since every spin is coupled to six other
spins, we expect 26 = 64 resonance lines for ev-
ery spin or a total of 7 · 64 = 448 lines. Most of
these transitions can actually be observed, but
several resonance lines are so close in frequency
that they are di"cult to distinguish.

Figure 10.35 shows the multiplet structure for
the first qubit, which has resolved couplings to
the other six qubits. Another consequence of the
many couplings is that for every gate most of the
couplings must be refocused.

Shor’s algorithm consists of two main blocks:
the period-finding algorithm and the quantum
Fourier transform (QFT). It requires a quantum
register consisting of n workspace qubits and
m qubits to store the number N to be factor-
ized. For N = 15, m must be at least 4, since
24 = 16 > 15 and n in the general case 8. How-
ever, using specific properties of the N = 15 case
(for details, see section 10.3.3), n can be reduced
to 2. In their implementation, Vandersypen et
al. chose n = 3, to find additional periods.
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Figure 10.35: Qubit 1 multiplet structure from
the couplings to 6 other qubits.
The bottom trace shows the exper-
imental spectrum.

10.3.2 Initialization

Shor’s algorithm starts with the initial state

|ϱ0↔ = |0000001↔, (10.16)

i.e., a pure state. The NMR system must there-
fore be first be brought from the thermal to a
pseudo-pure state. In this case, Vandersypen et
al. used temporal averaging. As we discussed in
Section 10.2.4, the temporal averaging process
for two spins involves a sum over three di!erent
experiments. For the seven-qubit system used
for the factorization experiment, the total num-
ber of states is 128. Out of these, the population
of 127 must be averaged, while that of the last
one is kept. Equalizing 127 populations could be
done be averaging over 127 cyclic permutations.
Using the fact that the populations of many of
these states are already equal, it was possible to
reduce the number of individual experiments to
36.

(0) (1) (2) (3) (4)

l0> Inverse
QFT

H n

ax mod N1

xx
n

m l1>

Figure 10.36: Simplified network model of Shor’s
algorithm [213].

Qubit 1

Qubit 2

Qubit 3

Figure 10.37: Demonstration of pure state
preparation in the spectra of
qubits 1–3 [213].

The success of the preparation scheme can be
checked by applying a selective readout pulse
to the system, measuring the resulting FID and
converting it into a spectrum. We recall that the
di!erent resonance lines in the multiplet of lines
originating from a single spin can be labeled by
the state of its coupling partners. If these cou-
pling partners are in a pure state that is also
an eigenstate of the Hamiltonian (e.g. |000000↔,
this corresponds to a single line in the spectrum
of the fist spin. Starting from a pure eigenstate
like (10.16), we therefore expect to find only a
single line in the spectrum of a selectively excited
qubit. As Figure 10.37 shows, this is fulfilled to
an excellent approximation in the spectra of the
first three qubits. The small additional lines that
would not be present in the ideal case can be
used to quantitate the degree of purity achieved
by the state preparation.

While the source register is initiated in the state
|0↔, the target register is initially in state |1↔.
This is achieved by first initiating it into state
|0↔ and subsequently flipping bit 7. In the im-
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Figure 10.38: Implementation of Shor’s algo-
rithm by gates for N=15 and a=7
[213].

plementation details of fig. 10.38, qubits 1-3 hold
the workspace bits, with qubit 1 the msb and
qubit 3 the lsb, while qubits 4-7 hold the regis-
ter m, with qubit 7 representing the lsb.

The next step is the generation of the superpo-
sition of all spin states of qubits 1–3 (the input
qubits) through the Hadamard transformation.
The Hadamard gates were implemented by spin-
selective ε

2 pulses on the first three qubits.

10.3.3 Computational steps

One of the crucial steps of Shor’s algorithm (as
well as of corresponding classical algorithms) is
the modular exponentiation f(q) = aq mod N
for 2n values in parallel. As discussed in Section
8.3.3, this is done qubit by qubit with the help
of the identity

aq = a2
n↑1

qn↑1 ...a2q1aq0 , (10.17)

where qn are the bits of the binary representation
of q. While the period of f(q) can be as large as
N , only the values 2 and 4 appear for N=15.
Since a must be coprime with N , the possible
choices of a for N=15 are 2, 4, 7, 8, 11, 13 and
14. For the choices a = 2, 7, 8, and 13, one finds
a4 mod 15 = 1, while a2 mod 15 = 1 for a =
4, 11 and 14. Since we only require the values 0,
1, 2 and 3 for q, it can be encoded in a 2-qubit

quantum register. Vandersypen et al. chose to
use three qubits for encoding q; the additional
qubit may be used for test purposes. Together
with the m = 4 (∝ log2 15) qubits needed to
encode f(q), a total of seven qubits were used.
To implement the exponentiation e"ciently, the
powers of a were precomputed on a classical com-
puter. The eight values of q are stored as a su-
perposition in the qubits labeled 1, 2, 3 in Figure
10.38. The exponentiation is then computed in
the target register through CNOT operations.

The first step is a multiplication mod 15 with aq0 .
q0 is encoded in qubit 3, so multiplication by aq0

corresponds to multiplication with a if qubit 3
is 1 and to multiplication with a0 = 1,i.e. to
NOOP, if qubit 3 is 0. Since the target register
is initialized into state |1↔, multiplication by a
can be done by adding (a → 1), again controlled
by qubit 3. This addition can be implemented by
two CNOT operations: for a = 7, qubits 5 and
6 must be changed from 0 to 1. The controlled
addition is therefore achieved by the operation
CNOT (3, 5) CNOT (3, 6), as shown in Figure

10.38, where the operations are labeled A and B.
For a = 11, qubits 4 and 6 must be incremented,
which is done as CNOT (3, 4) CNOT (3, 6).

The second step is multiplication with a2q1 mod
15. For a = 7, this corresponds to multiplication
by 72 → 15 · 3 = 4, controlled by q1 or qubit 2 in
Figure 10.38. Multiplication by 4 corresponds to
a shift of the bits in the register by 2 positions.
In the case of modular multiplication, the shift
is replaced by a rotation. In the case of the four-
bit register m, multiplication by 4 can thus be
implemented by a rotation by 2 positions, which
corresponds to swapping bits 0 with 2 and 1 with
3. In Figure 10.38, this corresponds to SWAP
operations of 4 with 6 and 5 with 7, both con-
trolled by qubit 2. Each SWAP operation can be
decomposed into 3 CNOT operations, of which
the second is turned into a CCNOT for the con-
trolled SWAP. These CNOT and CCNOT opera-
tions are labeled CDE and FGH in Figure 10.38.
Vandersypen et al. used a number of simplifica-
tions (=“compiler optimizations") to simplify or
eliminate specific gates, taking advantage of the
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special situation. These simplifications are indi-
cated in the figure as dotted gates (can be elimi-
nated) or dashed gates (can be simplified). Gate
C can be eliminated because the control qubit is
zero, thus reducing the gate to the unity opera-
tion. The doubly controlled gates D and G act
on target bits that are in basis states (not su-
perposition states), which allows for additional
simplifications. Gate F can be simplified to a
NOT operation, since the control qubit is always
1. Finally, gates E and H can be omitted, since
they act on qubits that are no longer accessed
afterwards and therefore do not a!ect the result.

After the multiplication step, Shor’s algorithm
requires an (inverse) QFT of the register n. It
contains Hadamard gates and phase gates (i.e.,
z-rotations) of 45 and 90 degrees. In practice,
the phase gates are usually turned into rotations
of the coordinate axes: rather than apply actual
z-pulses (which can be implemented by compos-
ite rotations), one simply shifts the phases of all
earlier pulses by the corresponding amount. This
reduces the power deposition of the system and
the overall duration of the algorithm, and the
resulting fidelity is higher, since phase shits are
essentially ideal rotations.

10.3.4 Readout

At the end of the standard algorithm, the infor-
mation is stored in the populations of the spin
state. As discussed in Section 10.2.8, one ob-
tains the populations by applying an RF pulse,
measuring and Fourier transforming the FID.

The three spectra shown in Figure 10.39 display
the resulting state of the three qubits for an in-
put of a = 11. They contain only positive lines
for qubits 1 and 2, indicating that they are in
state |0↔ at the end of the computation. Qubit 3
has one positive and one negative line, indicating
that it is in a superposition state |0↔ + |1↔.

After the inverse QFT, qubit 3 is the most signif-
icant qubit. The exponentiation therefore gener-
ates the states |100↔ = |4↔ and |000↔ = |0↔. This
indicates that the period of the probability (8.44)

Qubit 1

Qubit 2

Qubit 3

|0>

|0>

|0> + |1>

Figure 10.39: Spectra of the three result-qubits
for the input a = 11 [213].

is p = 4. Since n = 3 qubits were used, the de-
sired number r is given by (see Section 8.3.3)
r = 2n/p = 2. A classical calculation yields the
greatest common divisor of 112/2 ±1 and 15 as 3
and 5, and thus directly the prime factors of N .

Qubit 1

Qubit 2

Qubit 3

|0>

|0> + |1>

|0> + |1>

Figure 10.40: Spectra of the three result-qubits
for the input a = 7 [213].

If the input a = 7 is used instead, the observed
spectra shown in Figure 10.40 show that both
qubits 2 and 3 are in superposition states, while
qubit 1 is again in state |0↔. The possible re-
sults are therefore the states |000↔ = |0↔, |010↔
= |2↔, |100↔ = |4↔, and |110↔ = |6↔, indicating a
period of 2. We conclude that r = 8/2 = 4 and
gcd(74/2±1, 15) = 3, 5 as before. Obviously both
trial values for a produce the expected result.
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10.3.5 Decoherence

The experimental implementation of Shor’s al-
gorithm represented a milestone for quantum in-
formation processing, not because of the result
itself, but because it provided the possibility
of studying limitations to quantum information
processing in a working example.

1:
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3:

4:

5:

6:

7:

(0) (1) (2) (3)

Figure 10.41: Pulse sequence used for the imple-
mentation [213].

The IBM group used some 300 RF pulses to im-
plement the algorithm. Most of the pulses were
used not for the processing itself, but to com-
pensate for unwanted e!ects, such as spin-spin
couplings and magnetic field inhomogeneity.

The overall sequence lasted almost 1 second,
which is longer than some of the relevant relax-
ation times (=decoherence times). This caused
a significant loss of information and therefore de-
viations of the experimental measurements from
the idealized behavior. Vandersypen et al. ana-
lyzed these deviations with a model for the rele-
vant decoherence processes and found that they
could explain most of the di!erences with their
model.

10.4 Spin chains

As discussed in a separate lecture by J. Stolze,
linear chains of coupled spins represent interest-

ideal

experimental

model

Figure 10.42: Comparison of the ideal spectrum,
the experimental and the result
of a model calculation including
the e!ect of decoherence processes
[213].

qubit 1 2 3

Figure 10.43: Model of a spin chain.

ing model systems that allow one to study var-
ious aspects of quantum mechanical dynamics.
Such systems are also useful test systems for vari-
ous quantum algorithms and have therefore often
been implemented by NMR quantum computers.
A few examples of such implementations will be
discussed here.

10.4.1 Quantum state transfer

Quantum-state transfer (QST), i.e., the transfer
of an arbitrary quantum state ⇁|0↔ + β|1↔ from
one qubit to another, is an important element
in quantum computation and quantum commu-
nication. The most direct method to implement
QST is based on SWAP operations. For a pair of
coupled qubits, this is an elementary operation.
For a chain of qubits with only nearest-neighbor
interactions, a series of SWAP operations be-
tween neighboring qubits can be used until the
quantum state arrives at the target qubit.

209



10 Liquid-state NMR

For specific systems, it is possible to transfer
quantum information without applying gate op-
erations, but instead relying on a static cou-
pling network. If a quantum state is prepared
at one end of such a chain, it will travel through
the chain without requiring control operations.
The main di"culty with this approach is the re-
quired precision with which the couplings have to
be realized in order to generate a transfer with
high fidelity. This requirement can be relaxed
significantly, without compromising the fidelity
of the transfer, by applying gate operations to
the receiving end of the spin chain that e!ects
the transfer. The capability for applying such
gate operations is not an additional requirement,
since such operations are required anyway if the
spin chain is to be used for communication be-
tween quantum registers. This gate accumulates
any amplitude of the initial state that is trans-
ferred along the chain. The protocol allows one,
in principle, to obtain unit fidelity for the trans-
fer, even if the couplings along the chain have
arbitrary fluctuations, as long as a finite ampli-
tude reaches the end of the chain. Obtaining a
large transfer amplitude requires multiple iter-
ations, each of which includes the evolution of
the spin chain and the two-qubit gate operation.
This procedure is known as iterative quantum
state transfer [224].

For the spin chain without the end-qubit, we as-
sume that the Hamiltonian is

H = 2⇀
∑

i,k

Jik

(
S(i)
x S(k)

x + S(i)
y S(k)

y

)
.

In addition, we assume that the coupling be-
tween the end-qubit and the one next to it is
switchable, i.e. it can be turned on and o!. With
these requirements, the protocol can be imple-
mented.

Figure 10.44 shows how the amplitude that can
be transferred to the final spin increases with
each iteration. The di!erent curves correspond
to di!erent coupling strengths. While the dif-
ferences lead to a di!erent transfer speed, they
all increase towards full transfer with increas-
ing number of iterations. Apart from the in-
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Figure 10.44: Achieved transfer of the quantum
state with increasing number of it-
erations.

creased transfer, decoherence leads to an over-
all loss of signal amplitude and therefore to an
optimal number of iterations.

10.4.2 Two- and three-body
interactions

In most cases, spins (and also most other qubits)
are subject to pairwise interactions. This means
that the Hamiltonian contains only terms de-
pending on single qubits and pairs, such as

H = a S1
z + b S2

xS
3
y + . . . .

Three-body interactions, such as

H3 = c S1
zS

2
xS

3
y

are only rarely found in nature, but they can
arise as e!ective interactions or they can be gen-
erated in quantum simulators. They can signifi-
cantly change the static as well as the dynamical
properties. They can, e.g., speed up the trans-
fer of quantum states along a spin chain. As a
specific example, we consider a minimal model a
spin chain consisting of three members coupled
by the Hamiltonian

H = S1
xS

2
x + S1

yS
2
y + S2

xS
3
x + S2

yS
3
y

+
◁

2

(
S1
xS

2
zS

3
y + S1

yS
2
zS

3
x

)
. (10.18)
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Here, the parameter ◁ represents the strength of
the three-body interaction, relative to the two-
body interaction.

With this Hamiltonian, we can consider di!erent
types of state transfer: we can initialize the left-
hand spin and transfer its state to the right-hand
side, or we can do the opposite, or we can let
the state be transferred from left to right and
back. All three types of transfer can take place,
with or without the three-body interaction. In
the absence of the three-body interaction (◁ =
0) the system is symmetric, i.e. the transfers
left↗right and right↗left run at the same speed,
and the round-trip time is twice the time of the
individual transfer.
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Figure 10.45: Duration of QST as a function
of the coupling strength of the 3-
qubit interaction.

This is no longer the case in the presence of the
three-body coupling, as shown in fig. 10.45.

The experimental implementation can be sim-
plified by decomposing the Hamiltonian into two
commuting parts. Each of these two parts gener-
ates a harmonic evolution and the superposition
is still quite simple [212].

Figure 10.46 shows the pulse sequence that was
used to implement half of the Hamiltonian [212].

Figure 10.47 shows the observed transfer of the
state S1

x along the chain. When it reaches the fi-
nal qubit, the total system is in the state S1

zS
2
zS

3
x.

This final state is reached for all values of ◁, but
fastest when ◁ = 4 and slowest for ◁ = 0.

Figure 10.46: Pulse sequence used to implement
part of the Hamiltonian of eq.
(10.18).

Time t / t0

hS
1 z
S
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3 x
i

� = 0

� = 1.4

� = 4

Figure 10.47: Predicted (curves) and measured
(data points) transfer of the state
along the spin chain for three dif-
ferent strengths of the 3-body in-
teraction.

Problems and Exercises

1. Derive the equations of motion (10.2) from
the Schrödinger equation using the Hamil-
tonian (10.1).

2. Show that the e!ective Hamiltonian (10.9)
is the correct Hamiltonian Hr in the rotat-
ing frame by transforming the solution of
the Schrödinger equation from the labora-
tory frame to the rotating frame and de-
manding that the transformed operator Hr

generates the correct time evolution.

3. Verify equations (10.14) and (10.15) using
the properties of spin matrices.
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