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Aufgabe 1: Elektrischer Schwingkreis

In dem unten gezeigten Schaltkreis sei der Schalter zunächst für eine lange Zeit in Position a. Anschlie-
ßend wird er schnell auf Position b geschaltet. Die Leitungswiderstände sowie R(L) und R(C) werden
vernachlässigt.

Abbildung 1: Elektrischer Schwingkreis.

a) Bestimmen Sie die Ladung Q0 auf dem Kondensator.

b) Bestimmen Sie die Differentialgleichung des Systems.
Tipp: Verwenden Sie die Maschenregel um eine Differentialgleichung für die Ladung Q(t) aufzu-
stellen.

c) Berechnen Sie die Frequenz des so entstandenen Wechselstroms.

d) Welche Maximalamplitude haben die Stromschwingungen?
Tipp: Verwenden Sie als Ansatz Q(t) = Q0 cos(ωt). Machen Sie sich Gedanken welche Anfangs-
bedingungen sinnvoll sind.

e) Stellen Sie die DGL für den gedämpften Schwingkreis auf, wenn sich ein Widerstand R (in Reihe)
im Schwingkreis befindet.

f) Wie groß muss der Widerstand aus d) sein, um den aperiodischen Grenzfall zu erreichen?

Lösung:

a) Q0 = U0C = 34 V · 6,2µF = 2,1 · 10−4 C.
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b) Mit der Maschenregel ergibt sich die DGL für die Ladung:

UL + UC = 0⇒ Q̈+
Q

LC
= 0.

c) Mit der Lösung des harmonischen Oszilator ergibt sich ω = 1/
√
LC. Und damit die Frequenz:

f =
ω

2π
=

1

2π
√
LC

= 275 Hz.

d) Mit der Lösung Q(t) = U0C cos( 1√
LC
t) und den Anfangsbedingungen Q(0) = U0C und Q̇ =

I(0) = 0 und der Zeitlichen Ableitung von Q ergibt sich

I(t) = −U0

√
C

L
sin

t

LC
⇒ I(0) = −U0

√
C

L
= 0,36 A.

e) Aus der Maschenregel folgt

UC + UL + UR = 0⇒ Q

C
+ Lİ +RI = 0⇒ Ï +

R

L
İ +

1

LC
I = 0.

Die DGL der gedämpften harmonischen Schwingung ergibt sich mit 2γ = R
L und ω2

0 = 1
LC .

f) Für den aperiodischen Grenzfall muss gelten: ω0 = γ. Daraus folgt:

R

2L
=

1√
LC
⇒ R = 2

√
L

C
= 187 Ω.

Aufgabe 2: Resonanzverhalten eines Federpendels

Ein leicht gedämpftes Federpendel (Dämpfungskonstante β 6= 0) mit beliebiger Masse m und Feder-
konstante k werde durch eine äußere harmonische Kraft zu einer erzwungenen Schwingung angeregt.

a) Geben Sie zunächst die Resonanzfrequenz ω0 für ein Federpendel ohne Einwirkung einer äußeren
Kraft an.

b) Bestimmen Sie anhand der aus der Vorlesung bekannten Beziehung, wie sich die Amplitude A(ω)
bei der erzwungenen Schwingung, für die unten angegebenen Grenzfälle der Anregungsfrequenz
ω verhält. Was bedeutet dieses Verhalten physikalisch?

(i) ω → 0

(ii) ω → ω0

Bestimmen sie für diesen Fall außerdem die Phasendifferenz φ zwischen äußerer Kraft und
Federschwingung.

(iii) ω →∞

c) Auf einem Spielplatz wollen Sie, unter Berücksichtigung Ihrer Erkenntnisse aus dem vorherigen
Aufgabenteil, die maximale Auslenkung einer Federwippe austesten. Dazu geben Sie innerhalb
einer Schwingungsperiode immer wieder zu einer festen Zeit Anschwung. Wann genau und in
welche Richtung sollten Sie Anschwung geben?

Lösung:
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a) Die Schwingung des Federpendels wurde bereits auf Blatt 11 in Aufgabe 2 diskutiert. Die Bewe-
gungsgleichung lautet

ÿ = − k
m
· y (1)

und die Eigenfrequenz ist gegeben als

ω0 =

√
k

m
(2)

b) Die Amplitude der erzwungenen Vorlesung ist gemäß der Vorlesung gegeben als

A(ω) =
K0

m

1√(
ω2
0 − ω2

)2
+ 4ω2β2

. (3)

und die Phasendifferenz als
tan(φ) = − 2βω(

ω2 − ω2
0

) . (4)

(i) Damit ergibt sich für den ersten Fall

A(ω → 0) = lim
ω→0

K0

m

1√(
ω2
0 − ω2

)2
+ 4ω2β2

→ K0

m

1

ω2
0

=
K0

k
, (5)

wobei im letzten Schritt (2) eingesetzt wurde.
In diesem Fall ändert sich die erregende Kraft so langsam, dass der Schwinger folgen kann
und es keine Phasenverschiebung gibt. Die Amplitude der Schwingung ist in diesem quasi-
statischen Fall durch die Federkonstante k bestimmt.

(ii) Für den zweiten Fall folgt

A(ω0) =
K0

m

1

2ω0β
=
K0

k

ω0

2β
, (6)

wobei im letzten Schritt wieder (2) verwendet wurde.
Für die Phase ergibt sich

φ = lim
ω→ω0

tan−1
(
− 2βω(

ω2 − ω2
0

))→ tan−1(∞) =
π

2
(7)

Der Erreger pumpt hier phasengerecht mit φ = π
2 Energie in den Resonator, sodass die Am-

plitude ständig zunimmt und es zur Resonanzkatastrophe kommt. Für sehr kleine Dämpfun-
gen also β → 0 wird die Amplitude unendlich groß. Dieses Verhalten kann zur Zerstörung
von schwingenden Objekte führen.

(iii) Im letzten Fall ω →∞ ergibt sich

A(ω) = lim
ω→∞

K0

m

1√(
ω2
0 − ω2

)2
+ 4ω2β2

→ 0 . (8)

c) Im vorherigen Teil wurde gezeigt, dass die maximale Amplitude gerade bei der Resonanzfrequenz
auftritt. Für den Resonanzfall sind äußere Kraft und Eigenschwingung genau um π

2 phasenver-
schoben, d.h. die Amplitude der äußeren Kraft hat genau dann ihr Maximum erreicht, wenn
die Amplitude der Schwingung gleich null ist (vgl. untere Abbildung). Demzufolge ist es am
günstigsten genau dann Anschwung zu geben, wenn die Wippe wieder ihre Gleichgewichtslage
erreicht hat. Zudem sollte die Kraft beim Anschwung geben in dieselbe Richtung zeigen wie die
Bewegungsrichtung der Wippe. Beim umgekehrten Fall würde die Bewegung der Feder gebremst
werden.
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Aufgabe 3: Erzwungene Schwingung

Maschine

Eine Maschine der Masse m = 75 kg steht, wie in der Abbildung gezeigt, auf sechs gleichen Federn
mit der Federkonstante k = 1500 N m−1. Zusätzliche Dämpfungselemente bewirken eine Dämpfung mit
einer Dämpfungskonstanten β = 1, 64. Wenn die Maschine mit einer Drehzahl von n1 = 500 min−1

läuft, treten in Folge dieser äußeren Kraft erzwungene Schwingungen mit der Amplitude A1 = 1 mm
auf.
Wie groß müssen Sie die Drehzahl n2 wählen, damit die Amplitude der Schwingung auf A2 = 0, 1 mm
abnimmt? Nehmen Sie bei Ihrer Berechnung an, dass die Kraftamplitude K0 unabhängig von der
Drehzahl ist.

Lösung:

a) Die sechs parallelen Federn entsprechen einer Feder mit einer gesamten Federkonstante von kges =
6 · k.
Die Eigenfrequenz ist damit gegeben als

ω0 =

√
kges

m
= 10.95 s−1 . (9)

Da die Drehzahl mit n1 = 500 min−1 = 8, 33 Hz bzw. ω1 = 52, 36 s−1 bereits oberhalb von
ω0 = 10.95 s−1 liegt, geht die Amplitude für höhere Drehzahlen weiter zurück.
Gemäß der Vorlesung ist die Amplitude einer erzwungenen Schwingung gegeben als

A(ω) =
K0

m

1√(
ω2
0 − ω2

)2
+ 4ω2β2

. (10)
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Damit gilt für die beiden Amplituden

A1(ω1) =
K0

m

1√(
ω2
0 − ω2

1

)2
+ 4ω2

1β
2

(11)

A2(ω2) =
K0

m

1√(
ω2
0 − ω2

2

)2
+ 4ω2

2β
2

(12)

und für das Verhältnis der Amplituden, welches laut Aufgabenstellung gerade 1mm
0,1mm = 10 sein

soll

A1

A2
= 10 =

√(
ω2
0 − ω2

2

)2
+ 4ω2

2β
2√(

ω2
0 − ω2

1

)2
+ 4ω2

1β
2

(13)

Die Werte für ω0 ω1 und β können direkt in den Nenner eingesetzt werden und für den Nenner
gilt damit √(

ω2
0 − ω2

1

)2
+ 4ω2

1β
2 ≈ 2672 . (14)

Umgestellt folgt damit für Gleichung (13)

10 · 2672 =

√(
ω2
0 − ω2

2

)2
+ 4ω2

2β
2 . (15)

Anschließend werden beide Seiten quadriert

7, 14 · 108 =
(
ω2
0 − ω2

2

)2
+ 4ω2

2β
2 (16)

und entsprechend für die pq-Formel umgestellt

0 = ω4
2 + ω2

(
4β2 − 2ω2

0

)
− 7, 14 · 108 + ω4

0 . (17)

Als Lösung ergibt sich der Wert ω2
2 = 2, 64 · 104 s−2 bzw. ω2 ≈ 162 s−1.

Dies entspricht einer Frequenz von f2 =
ω2

2π
≈ 25, 8 Hz oder als Drehzahl ausgedrückt

n2 = 1548 min−1
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