6 Wellen

6.1 Grundlagen

6.1.1 Beispiele und Definition

Als Welle bezeichnet man die Ausbreitung einer
Storung in einem kontinuierlichen Medium oder
einer rdumlich periodischen Struktur.

Abbildung 6.1: Erzeugung einer Welle auf einer
Feder.

Als Beispiel zeigt Abb. 6.1 wie eine Feder von
Hand ausgelenkt. Diese Storung lauft der Feder
entlang bis zu ihrer Befestigung. Wellen treten
z.B. in Festkorpern auf, wo Atome durch inter-
atomare Kréfte (“Federn”) aneinander gekoppelt
sind: jedes Atom kann schwingen, doch sind die
Schwingungen voneinander abhingig. Die Sto-
rung ist in diesem Fall die Auslenkung der Ato-
me aus ihrer Ruhelage. Da die Atome dabei eine
Kraft auf ihre Nachbarn ausiiben, wird die Sto-
rung auf den Nachbarn iibertragen, wie dies im
Rahmen der gekoppelten Schwingungen disku-
tiert wurde.

Eine bekannte Art von Wellen sind Wasserwel-
len: hier schwingen Fliissigkeitsteile vertikal, die
Storung breitet sich entlang der Fliissigkeitsober-
fliche aus. Wahrend in Masse-Feder Systemen
klar ist, dass die einzelnen Massen sich nicht fort-
bewegen ist dies in einem fliissigen- oder gasfor-
migen System weniger offensichtlich.

Wahrend die Wellen den Eindruck erwecken,
dass Wasser entlang der Oberflache transportiert
wird, erkennt man durch “Markieren” eines Fliis-
sigkeitsvolumens, z.B. mit Hilfe eines schwim-
menden Koérpers wie in Abb. 6.2, dass die ein-
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Abbildung 6.2: Ball auf Wasseroberfliche bleibt
an Ort.

zelnen Fliissigkeitsteile nur lokale Bewegungen
ausfiihren. In diesem Fall ist es eine nahezu kreis-
férmige Bewegung. Dies zeigt, dass allgemein bei
einer Welle keine Materie transportiert wird. Es
wird jedoch Energie iibertragen.

6.1.2 Ausbreitung von Wellen

Wenn die Wellen auch keine Materie transportie-
ren ist es trotzdem sinnvoll, von der Ausbreitung
der Welle zu sprechen. Damit wird die Ausbrei-
tung der Storung, also der Auslenkung bezeich-
net. Fiir die Beschreibung von Wellen vergleicht
man zundchst die Orte gleicher Phase, d.h. die
Vereinigung aller Elemente, die um den gleichen
Betrag ausgelenkt sind.

Abbildung 6.3: Wellenfronten einer Bugwelle.
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6 Wellen

Diese wird als Wellenfront bezeichnet. Bei den
zweidimensionalen Wasserwellen im Beispiel von
Abb. 6.3 handelt es sich um eine Linie (resp. 2
Linien); bei einer Seilwelle ist die Wellenfront ein
Punkt; in einem dreidimensionale Medium han-
delt es sich um eine Fléche.
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Abbildung 6.4: Harmonische Welle in einer Di-
mension.

Eine besonders einfache Welle ist eine harmoni-
sche Welle in einer Dimension, wie in Abb. 6.4
gezeigt. Sie wird beschrieben durch die Auslen-
kung

y(z,t) = yo cos(wt — kx + @),

mit der Kreisfrequenz w und der Wellenzahl k.
Sie ist periodisch in Zeit und Raum. Im Raum
wird die Periode als Wellenlange

_27‘(’

k

bezeichnet, in der Zeit als Periode

A

T=2T
w

Die meisten Wellen sind allerdings nicht har-
monisch. Abb. 6.5 zeigt einige Beispiele. Diese
koénnen als Summe von harmonischen Wellen ge-
schrieben werden, wobei die entsprechenden Fre-
quenzen ganzzahlige Vielfache einer Grundfre-
quenz sind:

y(z,t) = Z ap cos(n(wt — kx) + ¢p).
n=0

Dies wird als Fourier-Reihe bezeichnet.
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Abbildung 6.5: Beispiele fiir nicht-harmonische
Wellen.
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Abbildung 6.6: Kugelwelle.

Die Ausbreitungsrichtung der Welle ist immer
senkrecht zur Wellenfront. Bei einer optischen
Welle (d.h. Licht) entspricht diese lokale Ausbrei-
tungsrichtung dem Lichtstrahl. Wird die Welle
durch eine punktférmige Anregung erzeugt, wie
in Abb. 6.6, so sind die Wellenfronten konzen-
trische Kugelflichen. Man spricht in diesem Fall
von einer Kugelwelle.

Kugelwellen kann man z.B. in einer Wasserwan-
ne durch periodisches Eintauchen eines Stifts er-
zeugen.

Ein anderer wichtiger Wellentyp sind ebene Wel-
len, wie in Abb. 6.7 gezeigt. Hier sind die Wel-
lenfronten parallele Ebenen. Die Ausbreitungs-
richtung, welche senkrecht auf den Phasenflachen
steht, ist somit iiberall die gleiche.

Auch fiir diese Art von Wellen kann man in
der Wellenwanne ein zweidimensionales Analo-
gon erzeugen, indem die Wellen mit einem gera-
den Blech erzeugt werden.
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Abbildung 6.7: Wellenfronten einer ebenen Wel-
le.
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Abbildung 6.8: Lokale Wellenfronten.

Beide, sowohl die Kugelwelle wie auch die ebe-
ne Welle sollten als mathematisch einfache Idea-
lisierungen der Wirklichkeit verstanden werden.
Es gibt auch viele Fille, die zwischen diesen Ex-
tremféllen liegen. Wie in Abb. 6.8 gezeigt, kann
eine Kugelwelle weit vom Ursprung néherungs-
weise als ebene Welle beschrieben werden.

Wellen findet man in einer, zwei oder drei Di-
mensionen. In zwei Dimensionen wird z.B. eine
Kugelwelle zu einer kreisformigen Welle. Beispie-
le dafiir sind Wellen auf einer Wasseroberflache.

6.1.3 Klassifizierung

Wellen beschreiben immer eine Auslenkung ei-
nes Systems aus dem Gleichgewicht als Funkti-
on von Ort und Zeit. Man kann sie somit nach
dem Medium klassifizieren, in dem diese Auslen-
kung stattfindet, oder nach der Art der Auslen-
kung. Als Medium kommen Gase, Fliissigkeiten,

Festkorper, aber auch das Vakuum in Betracht.
Elektromagnetische Wellen stellen ein Beispiel
dar, bei dem kein Medium benétigt wird: hier
beschreibt die Welle die Stérke des elektroma-
gnetischen Feldes als Funktion von Ort und Zeit.
Elektromagnetische Wellen umfassen Radiowel-
len, Licht, Rontgenstrahlen, und Gammastrah-
len. Die wichtigsten elektromagnetischen Wellen
sind Licht. Diese werden im Rahmen eines eige-
nen Kapitels (7 Optik) separat diskutiert.

Das Medium bestimmt unter anderem auch die
mogliche Art der Auslenkung. Bei einer Seilwel-
le ist die Storung eine Auslenkung des Seils,
welche sich entlang dem Seil bewegt. Bei einer
Oberflichenwelle, wie z.B. Wasserwellen oder be-
stimmten Arten von seismischen Wellen, ist die
Storung die Auslenkung von Volumenelementen
aus der Gleichgewichtsoberflache. Bei Schallwel-
len ist die Stérung eine Druckschwankung. Man
unterscheidet Longitudinal- und Transversalwel-
len, je nachdem ob die Auslenkung in Ausbrei-
tungsrichtung oder senkrecht dazu geschieht.
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Abbildung 6.9: Longitudinalwelle.

Typische Beispiele von Longitudinalwellen sind
Schallwellen: eine Dichteschwankung (wie in
Abb. 6.9 in einer Feder) lauft entlang der Aus-
breitungsrichtung.
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Abbildung 6.10: Magnetrollengerét.

Ein einfaches Beispiel fiir eine Longitudinalwel-
le ist das in Abb. 6.10 gezeigte Magnetrollenge-
rat: Die Dichteschwankung kann durch manuel-
les Anstofsen erzeugt werden, und die Wechsel-
wirkung zwischen den Rollen wird durch die ma-
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6 Wellen

gnetische Abstofsung bestimmt.

Abbildung 6.11: Transversale Federwelle.

Im Fall der Seilwelle oder der Federwelle in Abb.
6.11 findet die Auslenkung senkrecht zur Bewe-
gungsrichtung statt. In diesen Féllen handelt es
sich um eine Transversalwelle. Ein weiteres Bei-
spiel sind Oberflichenwellen.

Abbildung 6.12: Elektrisches und magnetisches
Feld einer transversalen elektro-
magnetischen Welle.

Ein wichtiger Unterschied zwischen Longi-
tudinal- und Transversalwellen ist, dass Trans-
versalwellen Polarisationseffekte zeigen: sie kon-
nen z.B. horizontal oder vertikal polarisiert sein,
oder zirkular. Ein Beispiel fiir transversale Wel-
len sind elektromagnetische Wellen (— Abb.
6.12). Das elektrische und magnetische Feld ste-
hen senkrecht zueinander und zur Ausbreitungs-
richtung. Die beiden Felder zeigen die gleiche
rdumliche und zeitliche Abhéngigkeit.

Eine der wichtigsten Entdeckungen des letzten
Jahrhunderts war, dass auch die Konstituen-
ten der Materie, also Elementarteichen, Atome
und Molekiile Welleneigenschaften besitzen. Dies
konnte man zunéchst fiir Elektronen zeigen; spé-
ter auch fiir Neutronen, Atome, und sogar fir
Molekiile. Die Wellenlénge dieser Wellen hingt
ab von der Masse und der Geschwindigkeit der
Teilchen, ist aber meist im Bereich von wenigen
nm oder Bruchteilen davon.

6.1.4 Mathematische Beschreibung
harmonischer Wellen

Wellen werden mathematisch durch Wellenfunk-
tionen ¥(z,t) dargestellt, welche die Auslenkung
als Funktion von Raum und Zeit beschreiben.
Diese muss einer Wellengleichung der Form

o’V 0%
a2~ P og2
gehorchen. Hier stellt ¥ die Auslenkung und v,

die Phasengeschwindigkeit der Welle dar. In drei
Dimensionen lautet die entsprechende Gleichung

oL P G 2 VAo L G A
ot? P\ox?2 0y 022

Wir beschranken uns hier hauptséchlich auf die
Beschreibung harmonischer Wellen, also Wellen
bei denen die Abhéngigkeit von Raum und Zeit
einer harmonischen Funktion entspricht. Dies ist
natiirlich immer eine Néherung, da in realen Sy-
stemen z.B. die Schwingung sich nie unendlich
lange fortsetzt und das Medium nicht unend-
lich ausgedehnt ist. Trotzdem konnen viele der
Schlussfolgerungen auf reale Systeme iibertragen
werden.

Eine harmonische Welle in einer Dimension, wie
in Abb. 6.4, kann geschrieben werden als

@ t) = yocos (zﬂ (;, _ i) + go)

= yocos(wt —kx+ ).

Hier bezeichnen y die Auslenkung, = die rdumli-
che und t die zeitliche Koordinate, T' die Periode
der Welle, A die Wellenlédnge, ¢ die Phase, w die
Kreisfrequenz und k = 27 /A die Wellenzahl.

Die Verallgemeinerung auf mehrere Dimensionen
erhalt man, indem man fiir die Berechnung der
Phase die Beitrége fiir alle drei Koordinaten ad-
diert:

y(7,t) = yo cos (wt — k- F+¢) '
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6 Wellen

k stellt jetzt den Wellenvektor dar; er steht senk-
recht auf den Phasenflichen, in Ausbreitungs-
richtung der Welle. Offensichtlich kann man die-
sen Fall auf den eindimensionalen Fall zurtick-
fiihren, indem man die z-Achse entlang der Aus-
breitungsrichtung wahlt. In diesem Fall wird
ky = (kz,0,0) und das Skalarprodukt k-7 = kyx
reduziert sich auf einen Term. Dies stimmt mit
der Betrachtung der Welle als parallele Phasen-
flichen iiberein: Das Problem hé&ngt nicht von
den Koordinaten senkrecht zur Ausbreitungs-
richtung ab.

Betrachtet man die Auslenkung an einem festen
Ort x, so erhalt man eine einfache Oszillation
(deren Phase von x abhéngt):

Yz (t) = yo cos(wt + @) (6.1)

mit
Yr = ¢ — kx.

Die Phase ¢, ist ortsabhingig, sie wéchst in
diesem Fall linear mit der Koordinate z. Die-
se Funktion beschreibt eine Welle, die von links
nach rechts (also in Richtung positives z) lauft.
Eine Welle, die in entgegengesetzter Richtung
lduft, kann durch einen negativen Wellenvektor
dargestellt werden.

Einsetzen von (6.1) in die Wellengleichung ergibt

9%
o2

32
g—y = —k%2y.
Or2 p

= —(J_)Z’y =

Somit ist die angegebene Form eine Losung der
Wellengleichung fiir v, = w/k.

6.1.5 Lineare Kette
VNNV
Abbildung 6.13: Modell einer linearen Kette.

Bereits im Kapitel Schwingungen hatten wir ein
Modell diskutiert, in dem Massen durch Federn

verbunden sind (— Abb. 6.13). Diese Schwin-
gungen koénnen sich auch iiber die Kette ausbrei-
ten, sich also als Wellen fortpflanzen. Dazu er-
weitern wir das Modell auf eine unendlich lange
Kette. Fiir identische Massen und Federn entlang
der Kette lautet die Bewegungsgleichung fiir eine
einzelne Masse an der Stelle s

mys = —C(st —Ys—1 — ys+1)-

Die rechte Seite ist eine diskrete Variante der
zweiten Ableitung nach der Raumkoordinate;
dies ist somit eine Verallgemeinerung der Wellen-
gleichung und wir erwarten, dass sich in diesem
System eine harmonische Welle ausbreiten kann.

Diese miisste in komplexer Schreibweise die Form

y(m,t) — yoei(wtka)

aufweisen. Da es sich um ein diskretes System
handelt, kann man die Ortskoordinate x durch
den Index s: £ = sa ersetzen, wobei a den Ab-
stand zwischen benachbarten Massen im Gleich-
gewicht bezeichnet. Dann wird

Ys (t) _ yoei(wtfksa) )

Die zweite Ableitung nach der Zeit ist
st = _w2ys-

Zur Auswertung der rechten Seite verwenden wir

ei(wtfk(erl)a) _ ei(wtfksa)efika.
Damit lasst sich die Differenz zur Summe der

Auslenkungen der Nachbarn schreiben als

= 2Ys — Ys—1 — Ys+1
_ yoei(wt—ksa) (2 o eika o 6—ika>

= 2ys(1 — cos(ka)).

Die Beschleunigung jj; wird also proportional zur
Auslenkung ys.
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6 Wellen

6.1.6 Harmonische Longitudinalwelle
Die Bewegungsgleichung ergib

.. 2 &

s = —wlys = —2—(1 — cos(ka))ys.

js = —wy — (1 — cos(ka))y

Somit ist der obige Wellenansatz eine Losung der
Bewegungsgleichung wenn
1- k
w? = 25 (1 — cos(ka)) = 4. L= 00stka)
m m 2
Mit

9 1 — cos(2a)

sin“ a =
2

kann dies geschrieben werden als

w=2 < ka
\/m

sin —

2

»
|

Frequenz w

»

o

Wellenzahl k n/a

Abbildung 6.14: Dispersionsrelation fiir die li-
neare Kette.

Abb. 6.14 zeigt das Verhalten fiir den Bereich
0 < k < m/a. Fiir kleine Wellenzahlen, d.h. grofe

Wellenléngen wird die Frequenz proportional zur
Wellenzahl

c
w4 —ka.
m

Bei hoheren Wellenzahlen (kiirzeren Wellenlén-
ge) steigt die Frequenz langsamer. Die Frequenz
erreicht ihren Maximalwert fiir ka = m, also
dann wenn benachbarte Massen in Gegenphase
schwingen. Damit wird die Kraft ¢(1-cos(ka))ys
maximal. Ein noch grofserer Wellenvektor ist
physikalisch nicht von einem kleineren unter-
scheidbar. Dieses Verhalten findet man allgemein
bei diskreten Gittern.

Quelle

Abbildung 6.15: Phasenflichen in unterschied-
lichen Abstdnden von einer
Punktquelle.

6.1.7 Phasengeschwindigkeit

Fiir eine harmonische ebene Welle ist die Aus-
breitungsgeschwindigkeit leicht zu bestimmen.
Die Phasengeschwindigkeit vp gibt an, wie
schnell sich die Phase einer Welle, also z.B.
ein Nulldurchgang, ausbreitet. Wenn die Welle
durch eine Funktion beschrieben wird, ist ein Zu-
stand konstanter Phase dadurch definiert, dass

f(wt — kx + ¢) = const.,

oder
wt 4+ ¢ — const.
x = .
k
Abb. 6.15 zeit einige solche Phasenfléchen.

Die Phasengeschwindigkeit ist nach Definition

) —d—x—g—é—)\u
Pedae kT T

Im Beispiel von Kapitel 6.1.6 betragt sie

c ‘SinkQ—a
w=24 ——=".
m k

Fiir kleine Wellenzahlen, ka < 1 gilt somit

w c
v, = — = 4/ —a.
Pk m

Fiir grofere Wellenzahlen nimmt die Phasenge-
schwindigkeit ab.

Diese Beziehung kann man fiir die Messung der
Schallgeschwindigkeit verwenden. Das Experi-
ment in Abb. 6.16 misst die Schallgeschwindig-
keit in Wasser, indem ein “Transducer” eine Ul-
traschallwelle einkoppelt. Die Frequenz dieser
Welle betragt im Experiment 800 kHz.
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Abbildung 6.16: Messung der Schallgeschwindig-

keit.
Anregung
A
Schallwelle

Ortx

Abbildung 6.17: Messresultate an unterschiedli-
chen Orten.

Die Wellenldnge ergibt sich durch die Messung
der eintreffenden Schallwelle an unterschiedli-
chen Orten. Der Schalldruck wird auf dem Os-
zilloskop gegen die Anregungsspannung aufge-
tragen. Sind die beiden in Phase, so erhélt man
eine Gerade mit positiver Steigung. Verschiebt
man den Schallaufnehmer um eine halbe Wellen-
ldnge, so sind die beiden Signale um 180 Grad
aufler Phase und die Gerade hat eine negative
Steigung. Abb. 6.17 zeigt eine grafische Darstel-
lung dieses Verhaltens. Im Experiment wurde ei-
ne Wellenldnge von 1.86 mm gemessen. Dies ent-
spricht einer Schallgeschwindigkeit

vp = A =28-10°"1-1,86-10°m = 1488 m/s.

Dies ist in guter Ubereinstimmung mit dem Li-
teraturwert von 1480 m/s bei 20°C.

6.1.8 Uberlagerung von Wellen;
Gruppengeschwindigkeit

In linearen Systemen kénnen Wellen sich belie-
big {iberlagern. Dabei entstehen auch interessan-
te neue Phidnomene.

JNVVVVUVVVVVVVVY
WTARTATATRVATATRATATES

Raum / Zeit

Abbildung 6.18: Uberlagerung von 2 harmoni-
schen Wellen und resultierende
Schwebung.

Als einfaches Beispiel kann man die Uberlage-
rung von zwei harmonischen Wellen betrachten,
wie in Abb. 6.18 gezeigt. Die resultierende Aus-
lenkung ist die Summe

y = yo cos(wit — k1) + yo cos(wat — kax).

Mit Hilfe der Additionstheoreme fiir harmoni-
sche Funktionen kann die Summe geschrieben
werden als

w1 + wsy k1 + ko
y = yocos( t— x) -
2 2
(WL ki — ko )
- cos - x).
2 2

Dies entspricht einer Welle mit durchschnittli-
cher Frequenz w = (w1 +w2)/2 und Wellenvektor
k = (k1 + k2)/2, welche mit einer Einhiillenden
moduliert ist. Diese Einhiillende hat selber eine
Frequenz Aw = (w1 — wy)/2 und Wellenvektor
Ak = (k1 — ko) /2:

y = yo cos(wt — kx) cos(Awt — Akx).

An einer gegebenen Stelle entspricht dies einer
Schwebung einer Schwingung. Die Einhiillende
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ist selber eine Welle und bewegt sich mit der

Gruppengeschwindigkeit
_ Aw
Vg = Ag

Ebene Welle: y = yo cos(wt — kx)

Informationslibertragung: Wellengruppen

Abbildung 6.19: Harmonische Welle und Wellen-
gruppen.

Das ganze kann erweitert werden auf mehr als
2 sinus-formige Wellen. Jeder endliche Wellen-
zug setzt sich aus einer unendlich grofsen Zahl
von sinus-formigen Wellen zusammen, wie z.B.
die Wellengruppen in Abb. 6.19. Die Ausbrei-
tungsgeschwindigkeit der resultierenden Wellen-
gruppe, also der Einhiillenden, ist dann der infi-
nitesimale Grenzwert

_dw

=T

Diese unterscheidet sich von der Phasenge-
schwindigkeit wenn die Beziehung zwischen Fre-
quenz und Wellenvektor nicht linear ist. Mit Hilfe
von v, = w/k kann man die Gruppengeschwin-
digkeit ausdriicken als

dv d dvy,

Ug— % = %Upk'—’l)p—'—k%.
Die beiden unterscheiden sich also dann, wenn
vp von der Wellenzahl abhéngt. Man bezeichnet

dies als Dispersion.

Vg

6.2 Akustische Wellen

Die Erzeugung, Ausbreitung und Wahrnehmung
von akustischen Signalen wird in der Physik im

Gerdusch

Abbildung 6.20: Akustische Signale als Wellen-

phénomene.

Wesentlichen {iber die Theorie von Schwingun-
gen und Wellen beschrieben. Wie in Abb. 6.20
dargestellt, entspricht ein Ton einer monochro-
matischen Schwingung oder Welle. Ein Klang
besteht aus mehreren Toénen, deren Frequenzen
ganzzahlige Vielfache sind und stellt deshalb sel-
ber ein periodisches Signal dar. Ein allgemeines
Geréusch ist nicht periodisch und enthéilt des-
halb sehr viele Frequenzkomponenten.

6.2.1 Druckwellen

Kompression

LA

Vi
Ausdehnung/

Abbildung 6.21: Druckwelle in einem Rohr.

In der Luft wird Schall durch Druckwellen tiber-
tragen, wie schematisch in Abb. 6.21 dargestellt.
Die Auslenkung ist in diesem Fall eine Ortsin-
derung der Luftmolekiile oder eine lokale Druck-
dnderung (Kompression).

p(z, ti
X

Abbildung 6.22: Verschiebung und Ausdehnung

eines Volumenelements.

Xx(xt)

= -

T
X+dx+x (x+dx,t)

X+dx X+X(xt)

X (x+dxt)

Als Modell verwenden wir ein Rohr, in dem sich
eine harmonische Welle ausbreitet, wie in Abb.
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6.22 gezeigt. Die Wande des Rohrs haben da-
bei keine Bedeutung und tauchen in der Losung
nicht auf. Fiir die Herleitung der Wellengleichung
betrachten wir die Kraft auf ein Volumenelement
V = Adx, wobei A die Querschnittsfliche des
Rohrs darstellt. Das Wegelement dz soll klein
sein im Vergleich zur Wellenlénge. Die Kraft auf
das Volumenelement kann als Differenz der Nor-
malkrifte auf beiden Seiten berechnet werden:

dp

F = Alp(z) - p(z +dz)] = —A-~

dx.

Die Druckdnderung dp ist iiber den Kompressi-
onsmodul K an eine Volumenénderung dV ge-
koppelt:

av
dp=—-K T
Wir stellen die Auslenkung als eine Verschie-
bung x(z,t) einer (imagindren) Trennwand zwi-
schen benachbarten Volumenelementen dar. Da-
mit kann die Volumenadnderung dargestellt wer-
den als Unterschied in der Verschiebung

dV = A(x(z +dx)—x(z)) = A%dm.

Mit AV = Adzx erhalten wir fir die Druckande-
rung

d
X

dp =
P dx

und fir die Kraft

d*x
Damit erhalten wir eine Bewegungsgleichung fiir
die Auslenkung s des Massenelementes pV':
d*x d>x

dp

Division durch pAdz ergibt die Wellengleichung

P Ky

dt2  p da?

6.2.2 Schallwellen

Die Schallgeschwindigkeit, d.h. die Geschwindig-
keit einer Schallwelle ist somit eine Konstante
fiir ein gegebenes Medium, unabhéngig von der
Frequenz und Wellenlénge. Sie betréigt

K
vg =4/ —.

; (6.2)

Sie héngt jedoch stark vom Material ab. Ein ho-
her Kompressionsmodul (d.h. niedrige Kompres-
sibilitét) erhoht die Schallgeschwindigkeit, da ei-
ne Storung sich stark auf ein benachbartes Vo-
lumenelement auswirkt. Eine geringe Dichte er-
hoht ebenfalls die Schallgeschwindigkeit, da die
Volumenelemente rascher beschleunigt werden.
Dies kann man z.B. beim Vergleich unterschied-
licher Gase sehen: Je leichter das Molekularge-
wicht, desto grofer die Schallgeschwindigkeit.

Eine analoge Gleichung kann man fiir die Ande-
rungen des Druckes herleiten:

p(x,t) = po + Ap(z,t),

An die Druckénderung ist auch eine Dichtednde-
rung gekoppelt; die beiden sind in guter Nahe-
rung proportional zueinander:

| _,_ L
0P|, pok’
Hier ist
__lav
N V dp

die (adiabatische) Kompressibilitdt. Damit gilt
fiir kleine Verschiebungen und Dichteschwankun-
gen

p(z,t) = po+Ap(z,t) = pot+a-Ap(z,t). (6.3)

Die einfachsten Losungen einer Wellengleichung
sind ebene Wellen. In diesem Fall entspricht das

x(z,t) = xosin(wt — kx), c=—. (64)

= &
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Abbildung 6.23: Klingel in einem Vakuumbehal-
ter.

Hier stellen w die (Kreis-)Frequenz, k die Wel-
lenzahl und ¢ die Phasengeschwindigkeit dar.

Dass Schall wirklich als Druckwelle in Luft iiber-
tragen wird sieht man wenn man die Luft ent-
fernt. In Abb. 6.23 wird die Klingel in einem
Vakuumgefifs aufbewahrt. Wird daraus die Luft
entfernt, ist die Klingel nicht mehr.

6.2.3 Schallimpedanz und Intensitat

Die Geschwindigkeit v, mit der sich die Luftmo-
lekiile infolge der Druckschwankungen hin- und
herbewegen, ist gegeben als die Ableitung der
Auslenkung y

(% = wxp cos(wt — kx).

Man bezeichnet die Amplitude

v(z,t) =

Vo = WXo

dieser Geschwindigkeit als Schallschnelle. Die-
ser Beitrag zur gesamten Geschwindigkeit der
Molekiile ist im Allgemeinen wesentlich kleiner
als der Anteil der thermischen Bewegung: an der
Horschwelle liegt die Schallschnelle im Bereich

von einigen 10 nm/s, die thermische Geschwin-
digkeit vy, = /3kpT/m bei ~100 m/s.
Die Druckschwankung der Welle ist, wie die

Dichteschwankung, gegeben durch die raumliche
Ableitung der Auslenkung,

_ . Ox

Fiir eine harmonische Welle ist dies,
Ap(z,t) = —pokxo cos(wt — kx)

also einer harmonischen Welle mit Amplitude

Apo = pokxo:
Ap(z,t) = —Apgcos(wt — kzx).

Damit hat sie die gleiche raum-zeitliche Abhéan-

gigkeit wie v(z,t). Ihre Amplituden sind propor-

tional zueinander,

w
Apg = POWX0 7 = POVOC (6.5)
Die Proportionalitatskonstante
A
R (6.6)
Vo

zwischen Schallschnelle und Schalldruck wird als
Wellenwiderstand oder Schallimpedanz bezeich-
net. Mit Gleichung (6.2) kann sie auch geschrie-
ben werden als

In Luft und Wasser betragt sie

k N
Ziue = 1,2 —mgg 340? — 430 miis’”
k N
Tasser = 10° m—% 1460% — 1,46 -10° m%

Die Schallimpedanzen der beiden Medien, welche
flir das Horen am wichtigsten sind, unterscheiden
sich somit um einen Faktor

ZWasser ~ 3400

Luft
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6.2.4 Intensitat und Lautstarke

Die Energiedichte einer Schallwelle ist gegeben
durch die Summe aus kinetischer und Druckener-

gie,
W = Wkin + Welast-

Die kinetische Energiedichte ist

pv?

Wiin = 7
Fiir die Herleitung der elastischen Energie ver-
wendet man die Definition des Kompressionsmo-

duls

av
dp=—-K—.
P AV

Hier ist dp die Druckdnderung durch die Schall-
welle und AV das betrachtete Volumen. Damit
ist die Anderung der elastischen Energie des Vo-
lumens AV bei einer Erhohung des Drucks
d& _ pdV_ 1,
AV - AV T KPP
Integration ergibt die elastische Energie pro Vo-
lumen

dwelast =

11 5
Welast = 5?1) .
Fir eine Schallwelle wird dies
11 wt
Welast = 5?92X3ﬁ Sln2(Wt — kz).
Mit
w2, K
Z 2=
2P P)

kann dies geschrieben werden als

1 .
Welast = §p2X(2)OJ2 Sln2(wt — kjl‘)

Ein Vergleich mit der kinetischen Energiedichte
1
Whin = §p2x(2)w2 sin?(wt — kx)

zeigt, dass sie identisch sind,

Welast = Wkin-

Somit ist die gesamte Energiedichte
W = Whin + Welgst = p2x%w2 sin2(wt — kx).

Die Energie ist somit sinusférmig entlang der
Welle verteilt, wobei die Periode der halben Wel-
lenlénge entspricht. Die Energiedichte einer me-
chanischen Welle ist proportional zum Quadrat
der maximalen Geschwindigkeit yow der Elemen-
te. Bei der maximalen Geschwindigkeit v = vg
verschwindet die elastische Energie und die Ener-
giedichte besteht nur aus kinetischer Energie

1 2
w = — Vg -
2POo

Mit Hilfe von Gleichung (6.5) oder (6.6) kann das
geschrieben werden als

1 Apf  1Ap

w= §p0% - 2 poc?’

Daraus ergibt sich die Intensitéit als Produkt aus
Energiedichte und Ausbreitungsgeschwindigkeit:

AE B lApg B lAp%

:AAt:wC_2poc_2 zZ

Der Schalldruck (die Amplitude Apg) und die
Frequenz der Schallschwingung entscheiden, ob
und wie laut wir einen Ton wahrnehmen. Der
Frequenzbereich des menschlichen Gehdrs reicht
von etwa 16 Hz bis rund 20 kHz, wobei die
Grenzen nicht scharf sind und individuell va-
rileren. Schwingungen mit grofem Schalldruck
bewirken Hoérempfindungen groferer Lautstérke
als Schwingungen mit geringem Schalldruck. Von
dem leisesten noch wahrnehmbaren 2 kHz-Ton
bis zur Schmerzgrenze erstreckt sich der Bereich
von 20 pPa bis zu 20 Pa (Effektivwerte).

An der Horschwelle (20 uPa) betragt die Intensi-
tat
1(2-107°)* W
2 430 -
An der Schmerzschwelle sind es etwa 12 Grofen-
ordnungen mehr, also L4, =~ 1 W/m?. Aus Glei-
chung (6.5) erhilt man die Schallschnelle an der
Horgrenze zu
Apo

= == — ~5-1078—.
Y e T 1,2-340 s s

W
—12
10712

m? m

Iy =
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Bei einer Frequenz von 1 kHz entspricht dies ei-
ner Auslenkung von
vo

xo = — ~ 10" "m,
w

also weniger als einem Atomdurchmesser (siche
6.2.6).

6.2.5 Physiologische
Lautstiarken-Skala

Das menschliche Ohr ist gegeniiber demjenigen
von Reptilien stark verbessert: wihrend wir Téne
mit Frequenzen von bis zu 20 kHz horen kénnen,
liegt die Grenze bei Reptilien bei etwa 2 kHz. Sei-
ne Empfindlichkeit liegt nahe beim theoretischen
Maximum.

Schalldruck /Pa  Schallpegel / dB SPL

4

100

= 140
Schmerzschwelle

PreBlufthammer

10 Dusenflugzeug (200 m)

Diskothek
Autohupe (4 m)
D-Zug (10 m)
0.1 4 Verkehrsreiche Strale

Sprache

Schreibmaschine

0.01 Leise Unterhaltung

klassische Musik

Trittgerausche

0.001 ~ Flustersprache (1 m)

|- 20 Grillenzirpen (10 m)

0.0001
7 Blatterrascheln

i 0 Horschwelle
0.00001 -

Abbildung 6.24: Schalldruck und Schallpegel fiir
verschiedene Gerausche.

Das Gehor nimmt den Schalldruck in etwa lo-
garithmisch wahr. Deswegen, und weil die aku-
stisch wahrnehmbaren Schalldriicke 6 Zehner-
potenzen umfassen, wird eine logarithmische
Schalldruckskala verwendet. Abb. 6.24 gibt
einen Uberblick iiber typische Lautstirken. Um
den Schalldruck dimensionslos zu machen, wird

ein Referenzdruck bendtigt. Die Definition des
Schallpegels L lautet:

A I
L—20-log<A§>dB:10-log(I) .
0 0

Wenn man als Bezugsgrofe die Wahrnehmungs-
grenze des menschlichen Gehors nimmt, dann ist
Apo/v?2 = 20 pPa (Iy = 1072 W/m?). Die so
berechneten Schallwerte werden mit dB SPL
(Sound Pressure Level) bezeichnet.

Schallstérke [dB SPL]
Schalldruck [Pa]

Lautstarke in
Phon = dB(A)

120
1004 700-1
21077
Ku.rven i 20
gleicher 1 21044 0
Lautstarke \/
10 100 1000 10000

Frequenz [Hz]

Abbildung 6.25: Kurven gleicher Lautstérke. Bei
1 kHz stimmen dB SPL-Skala
und Phon- oder dB(A)-Skala

iuberein.

Diese physikalische Definition ist in der Au-
diologie und Akustik tiblich. Sie beriicksich-
tigt jedoch nicht den physiologischen Lautstér-
keneindruck, welcher auch von der Frequenz
abhéngt. Dafiir verwendet man ein anderes
Maf: das Phon oder dB(A). Gerdusche mit
dem gleichen dB(A) Wert werden subjektiv als
gleich laut empfunden. Bei einer Frequenz von
1 kHz stimmt die dB(A)-Skala per definitio-
nem mit der dB SPL-Skala iiberein. Fiir andere
Frequenzen werden zur Umrechnung Frequenz-
Bewertungskurven verwendet, das sind Kurven
gleicher Lautstéirke, wie in Abb. 6.25 gezeigt.

6.2.6 Empfindlichkeitsgrenze

Die Detektionsschwelle von 0 dB entspricht ei-
ner Intensitiit von Iy = 10712 W/m?2. Das Trom-

253



6 Wellen

melfell hat eine Fliche von ~ 0,5cm?, so dass
die gesamte aufgenommene Leistung bei etwa
Poin =0,5-10716 W liegt.

Man kann dies vergleichen mit der thermischen
Leistung auf Grund der Brown’schen Bewegung.
Die thermische Energie pro Freiheitsgrad betragt

kpT =1,4-1072%.300J =4,2-10721 J.

Bei einer Bandbreite des Ohrs von Av = 20 kHz
ist die thermische Leistung demnach

kpT Av=4,2-10"21J.20000s! ~ 107 1°W,

Die aufgenommene Leistung einer Schallwelle an
der Horgrenze entspricht somit in etwa der ther-
mischen Leistung. Somit arbeitet das menschli-
che Ohr nahe bei der physikalischen Grenze fiir
die Empfindlichkeit.

Auflerdem kann man die entsprechende Auslen-
kung berechnen, aus der Beziehung zwischen
Schallschnelle vg und Druckamplitude Apy:

B _Apo  Apo
Vo=wWxXo=—F& — —.
Z pocC
Auflésen nach der Auslenkungsamplitude g gibt
~ Apg
X0 = .
wpoC

Fiir eine Schallwelle an der Horgrenze, d.h. mit
Apg = 20 pPa und einer Frequenz von 1 kHz
erhilt man

2.107° 2.107°
m~=
27103 - 1,2 - 300 2106
= 107'm = 10pm.

X0 = m

Die Auslenkung an der Detektionsschwelle ist al-
so weniger als ein Atomdurchmesser.

6.3 Mechanische Wellen

6.3.1 Druckwellen in Fliissigkeiten
und Festkorpern

Druckwellen findet man nicht nur in Gasen
sondern auch in Fliissigkeiten und Festkorpern.

Ein formaler Unterschied zwischen kondensierten
Materialien und Gasen ist, dass hier die Bezie-
hung zwischen Volumenadnderung und Normal-
spannung iiber den Elastizitdtsmodul E definiert
ist:

dx
=—-F-=.
dx
Damit wird die Wellengleichung
£x _ Edx
a2 pda?’

und die Schallgeschwindigkeit

E
vg = 4| —.
p

A
.l

. A
vV ‘f"é
J'@

AN
2%

[
J

v
I\
vy
A

Y

0 2
.
sy
- <
€ J \.@'
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WV

.
v

-
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\vl

Abbildung 6.26: Federmodell eines Festkorpers.

Festkorpern unterscheiden sich von Fliissigkei-
ten und Gasen im Wesentlichen durch ihr Form-
gedachtnis. Dies bedeutet, dass hier auch eine
Scherspannung existieren kann, also eine riick-
treibende Kraft parallel zu einer Ebene. Abb.
6.26 zeigt ein Federmodell eines Festkorpers, wel-
cher die unterschiedlichen riicktreibenden Kréfte
plausibel macht: bei einer lateralen Auslenkung
eines Volumenelements wirkt eine riicktreibende
Kraft und eine Kopplung an das benachbarte Vo-
lumenelement. Solche Stérungen breiten sich als
Transversalwellen aus; ihre Phasengeschwindig-
keit ist gegeben durch das Verhéltnis von Schub-
modul G zu Dichte,

o |G
P o
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Die Phasengeschwindigkeit in einem Material ist
somit um so hoher je starrer das Material und
je geringer die Dichte ist. Am grofiten sollte
die Ausbreitungsgeschwindigkeit somit in stei-
fen, leichten Materialien sein. Umgekehrt kdnnen
wir die Messung der Schallgeschwindigkeit als ei-
ne direkte Messung der Kompressibilitét, resp.
des Kompressionsmoduls betrachten.

’ | Dichte [kg/m?] [ vs [m/s] |

Luft 1.2 344
COq 1.98 266
Wasserstoff 0.09 1260
Wasserdampf 0.54 450
Wasser 1000 1400
Eis 920 3200
Stahl 7700 5050
Glas 2500 5300
Diamant 3520 18000
Tabelle 6.1: Schallgeschwindigkeiten in unter-

schiedlichen Stoffen.

Tabelle 6.1 vergleicht die Dichte und die Schall-
geschwindigkeit fiir unterschiedliche Stoffe. Bei
Gasen findet man Schallgeschwindigkeiten im
Bereich 300-450 m/s, aufer bei Wasserstoff, der
eine sehr geringe Dichte aufweist. In Fliissigkei-
ten ist die Schallgeschwindigkeit um 1500 m/s.
Dies ist bemerkenswert, da sowohl die Dichte,
wie auch die Komprimierbarkeit sich um rund
drei Grofsenordnungen unterscheiden. Da jedoch
nur das Verhaltnis eingeht, kompensieren sie
sich. Bei Festkorpern ist die Dichte etwas hoher
als in Flissigkeiten, aber die Steifigkeit sehr viel
hoher. Darum werden hier die Schallgeschwindig-
keiten maximal. Der Extremwert wird erreicht in
Diamant, das fiir einen Festkorper relativ leicht
ist, gleichzeitig ist es eines der héartesten Mate-
rialien tiberhaupt.

6.3.2 Seismische Wellen

Sowohl longitudinale Druck- als auch transversa-
le Scherwellen spielen bei Erdbeben eine Rolle.
Die so genannten P- (Primér-) und S- (Sekundér-
) Wellen breiten sich im Volumen aus. Wie in

Abbildung 6.27: Ausbreitung von Erdbebenwel-
len.

Abb. 6.27 gezeigt, findet man aufserdem Wellen,
die sich nur entlang der Oberflache ausbreiten.

&~ 17
E (+ o0 ‘l 7..’"
Elastizitatsmodul Schubmodul

| Material | E / GPa | G/GPa |

Eis 9.1 3.9

Granit 55 30

Al 71 26
Stahl 206 80.4
Diamant 1100 478

Abbildung 6.28: Elastische Konstanten in unter-
schiedlichen Materialien.

Wie in Abb. 6.28 gezeigt, ist der Elastizitéts-
modul F immer grofer ist als das Schermodul
G. Dementsprechend haben longitudinale Druck-
wellen eine hohere Ausbreitungsgeschwindigkeit
als fiir transversale Scherwellen.

Diese Erwartung stimmt mit Messungen bei seis-
mischen Wellen iiberein: Die Primérwellen, wel-
che als erste bei einer Messstation eintreffen, sind
Druckwellen, also Longitudinalwellen, wéahrend
die spéter eintreffenden Sekundarwellen Scher-
wellen sind. Abb. 6.29 zeigt die Laufzeiten dieser
Wellentypen als Funktion der Entfernung. Die
Zerstorungskraft von S-Wellen ist grofer als die
von P-Wellen. Die P-Wellen kénnen deshalb als
(kurzzeitige) Vorwarnung vor den S-Wellen ge-
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_
n

Laufzeit [min]

4000

|

Ili T |
0 2000
Entfernung zum Epizentrum [km]

Abbildung 6.29: Laufzeit gegen Distanz von
unterschiedlichen Erdbebenwel-
len.

nutzt werden.

Neben den P- und S-Wellen gibt es auch Tor-
sionswellen, welche sich an der Oberflache aus-
breiten und als Love-Wellen bezeichnet werden.
Rayleigh-Wellen sind ebenfalls Oberflichenwel-
len, sie gleichen aber Meereswellen.

6.3.3 Transversalwellen in einer

Massenkette
A\yj—’l Yi zl)}/i'u
Uol»» SUMAAAL
Q\W’» e m WQ‘M

Gt

Abbildung 6.30: Transversalwelle auf einer Ket-
te aus Massen und Federn.

Wir betrachten die transversale Auslenkung von
Massenpunkten, welche durch Federn verbunden
sind, wie in Abb. 6.30 gezeigt. Wir nehmen an,
dass die beiden transversalen Koordinaten von-
einander und von der longitudinalen Koordinate
unabhéangig sind, d.h. wir nehmen an dass die
Absténde in z-Richtung konstant sind, so dass
die potenzielle und kinetische Energie nur durch

die y-Verschiebung zustande kommen.

Sj-1
a1 M'G ‘

Abbildung 6.31: Gleichgewicht der longitudina-
len Kréfte in der Federkette.

Unter dieser Voraussetzung muss die -
Komponente der Kraft im Gleichgewicht sein,
d.h. die Kréfte auf benachbarte Segmente stehen
im Verhaltnis

Sj_1cosaj_1 = Sjcosqaj,

wobei S; die Kraft darstellt, welche die Feder
j auf ihre Endpunkte ausiibt, wie in Abb. 6.31
dargestellt. Fiir kleine Auslenkungen, d.h. a <
1, ist

cosaj_1 R cosa; ~ 1,
und damit
Sj_l ~ Sj ~ S

d.h. alle Kréafte sind nach Betrag gleich und die
Spannung der Kette ist iiber ihre Lange kon-
stant.

Die transversale Kraft in y-Richtung ist

Fj = *SSinOéj,1+SSinOéj
S S
~ _E(yj —yg—1)+g(yg+1—yg)

= Sl 2+, (6.7
wobei y; die Auslenkung der j’ten Masse be-
schreibt. Diese Bewegungsgleichung hat die glei-
che Form wie bei den longitudinalen Wellen; le-
diglich die Kraftkonstante ist nicht mehr die Fe-
derkonstante selber. Somit sollte eine Transver-
salwelle die gleiche Form haben wie eine Longi-
tudinalwelle.

Dies beinhaltet auch die gleiche Dispersionsre-
lation (— Abb. 6.32), d.h. die maximale Fre-
quenz wird erreicht wenn die Wellenldnge dem
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Abbildung 6.32: Auslenkung fiir unterschiedli-
che k-Vektoren.

doppelten Abstand zwischen benachbarten Ato-
men entspricht,

Die Proportionalitdtskonstante zwischen der
zweiten Ableitung der Auslenkung und der Kraft
ist jedoch nicht die Federkonstante ¢, sondern der
Quotient S/a aus Federkraft und Abstand. Da-
mit wird die Phasengeschwindigkeit einer Trans-
versalwelle abhéngig von der Spannung der Ket-

te,
/S
w = —
am

6.3.4 Energie einer Transversalwelle

. ka
sin — | .
2

Ahnlich wie Longitudinalwellen transportieren
auch Transversalwellen Energie. Fiir ihre Berech-
nung betrachten wir als Modell zunéchst eine lo-
kalisierte Auslenkung, die sich nach rechts be-
wegt. Offenbar ist in diesem System die Masse
an der Spitze des Wellenberges diejenige mit der
grofiten Energie. Wenn die Welle sich bewegt,
wird somit Energie transportiert. Fiir die Berech-
nung der Energielibertragung beginnen wir mit
der Schwingungsenergie eines Elementes,

1 . 1
€ = Exin + Epot = 5y’ + Sy,

wobei ¢ die Kraftkonstante bezeichnet. Fiir har-
monische Wellen kann dies geschrieben werden

als

_ Mmoo

& = W+ )
m, .

= §(y2+w2y2)

m
= Ewag (sin® wt + cos? wt)

C 9
—Y
m

m o 9
= —wys.
9 Yo
Fiir kontinuierliche Systeme kénnen wir diesen
Ausdruck in differenzieller Form schreiben:
pdV o 4

de = - w3,

Die Energiedichte betragt somit
_dE _p 9o

YTy T Y
wiederum proportional zum Quadrat der Ampli-
tude und zum Quadrat der Frequenz.

Mit der Ausbreitung der Welle wandern sowohl
potenzielle wie auch kinetische Energie mit der
Welle mit. Die Intensitdt der Welle, also die
Energie, welche pro Zeit und Flache transpor-
tiert wird, ist

I =woup,

d.h. die Intensitat ist gleich der Energiedichte
mal der Phasengeschwindigkeit. Da die Energie-
dichte proportional zum Quadrat der Auslen-
kung, also zur Amplitude der Welle ist, gilt of-
fenbar I oc 3, d.h. die Intensitiit einer Welle ist
proportional zum Quadrat ihrer Amplitude.

6.3.5 Seilwellen

Wenn wir den kontinuierlichen Grenzfall a — 0
betrachten, erhalten wir eine Saite oder ein Seil.

Eine seitliche Auslenkung eines gespannten Seils
oder einer Feder wird als Transversalwelle iiber-
tragen. Wie bei der Kette ist die Spannkraft des
Seils konstant iiber die Lange des Seils.

Fiir die Beschreibung von Seilwellen betrachten
wir ein Volumenelement zwischen den Positionen
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Fy(x+ dx)

Auslenkung y

X x+dx Ort x

Abbildung 6.33: Krifte auf ein Seilstiick.

z und x + dz, wie in Abb. 6.33 gezeigt. Hier be-
schreibt x die Koordinate entlang der Saite, y(z)
die Auslenkung. An beiden Endflichen greifen
Krifte an, welche senkrecht auf die Endflachen
wirken. Thre Richtung wird parametrisiert durch

den Winkel

d d
afr) = tan ! % ~ %

Die Néherung ist giiltig fiir kleine Auslenkungen,
WO

: dy
sina = tana ~ a & —,

dx

Der Betrag der beiden Krifte ist gegeben durch
die Saitenspannung und damit gleich,

cosa ~ 1.

|F(z)| = |F(x + dx)| = F.

Die y-Komponenten der Krifte an beiden Enden
des Volumenelementes addieren sich zu

dFy = Fy(z)+ Fy(z + d)
= F[sina(x + dz) — sina(x)]
und damit
dsin « d%y
F,=F ~ F—dx.
dr, - dx 72 dx

Dies ist die infinitesimale Form von Gleichung
(6.7). Diese resultierende Kraft wirkt als Riick-
stellkraft auf das Massenelement dm = pAdzx,
wobei p die Dichte und A den Querschnitt der
Saite darstellen. Damit erhalten wir die Bewe-
gungsgleichung

d*y

d%y
dma = pAdl’@ = F@d:ﬁ

oder

Py _
a2

I d%
pAdx?

Dies ist die Differentialgleichung, welche die Aus-
breitung der Welle auf einer gespannten Saite be-
schreibt. Die Phasengeschwindigkeit betragt so-
mit

_JE
vy = A

d.h. sie ist proportional zum Verhéltnis von
Spannung des Seils zur Massendichte pA pro
Langeneinheit. Dicke, schwach gespannte Seile
oder Saiten ergeben somit niedrige Frequenzen,
leichte, stark gespannte eine hohe Frequenz. Die
Abhéngigkeit von der Spannung der Saite kann
wieder leicht verstanden werden da ohne Span-
nung keine riicktreibende Kraft existiert. Die Ab-
héngigkeit von der Massendichte (pro Lange) ist
die gleiche wie bei allen Arten von Materiewel-
len, die wir bisher diskutiert hatten.

6.3.6 Wellen in 2D und 3D

Zweidimensionale Systeme wie Oberflichen und
Membranen (z.B. Trommeln) zeigen eine Reihe
von interessanten Wellenphdnomenen. Man fin-
det hier ebene Wellen, wie z.B. die Wellen, wel-
che am Meer auf den Strand treffen, oder Kugel-
wellen, wenn ein Stein ins Wasser geworfen wird.

Bei Membranen werden die Losungsfunktionen,
also die entstehenden Wellen unter anderem
durch die Randbedingungen bestimmt. Stehwel-
len kann man sichtbar machen, z.B. indem man
ein Pulver darauf streut. Wir die Membran zu
Schwingungen angeregt, sammelt sich das Pul-
ver in den Knoten der Welle.

Die Knotenlinien kénnen sichtbar gemacht wer-
den, indem man die Membran mit einem Pulver
bestreut. Wie in Abb. 6.34 gezeigt, bleibt das
Pulver in den Knotenlinien liegen, an allen an-
deren Punkten wird es durch die Schwingungen
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Chladni’schen

einer
Klangfigur.

Abbildung 6.34: Beispiel

aufgeworfen. Die einzelnen Moden kénnen entwe-
der durch die geeignete Frequenz angeregt wer-
den, wenn man eine harmonische Welle verwen-
det, oder mit Hilfe eines Bogens, indem man an
der geeigneten Stelle liber den Rand streicht.

SE0808

60Hz T2Hz 95Hz 109Hz 128Hz 175Hz

JBE880

240Hz 378Hz 338Hz 352Hz 426Hz 478Hz

Abbildung 6.35: Knotenlinien auf einem Gitar-
renboden.

Vergleichbare Knotenlinien findet man auf allen
Arten von schwingenden zweidimensionalen Sy-
stemen, wie z.B. den Resonanzkérpern von Mu-
sikinstrumenten. Abb. 6.35 zeigt die gerechneten
Knotenlinien fiir einen Gitarrenboden, Abb. 6.36
die gemessenen Knotenlinien fiir ein Trommel-
fell. Wie bei der rechteckigen Platte kann man
auch bei kreisformigen Platten die Knotenlinien
der Eigenmoden sichtbar machen, indem man sie
mit Sand bestreut.

In 3 Dimensionen lautet die Wellengleichung
1 O?A(T,t) B
c o2

Die einfachsten Losungen sind ebene Wellen

A7 1) = Agsin(k - 7 — wt)

AA(T, t)

Abbildung 6.36: 6 unterschiedliche Moden als
Chladni’sche Klangfiguren [aus
Spektrum der Wissenschaft].

mit dem Wellenvektor
Ky
E=| ky
k.

ll \Y
41 BB

\‘| \\\kh
I |M|l'» N
|

11 1 L
\\‘\é{Q //Z/,é’/

Abbildung 6.37: Akustische Mode in der Sonne.

Abb. 6.37 zeigt als Beispiel eine akustische Mo-
de in der Sonne. Solche Schwingungen kénnen in
der Astronomie gemessen werden. Aus den ge-
messenen Schwingungsfrequenzen kann man In-
formationen iiber das Innere der Sonne erhalten.

6.3.7 Ubersicht
Phasengeschwindigkeiten

Die Ausbreitungsgeschwindigkeit einer harmoni-
schen Welle wird bestimmt durch die Wellenglei-
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chung
Py _ Py
dt2  Pdz?’

Die Phasengeschwindigkeit betragt fiir

Druckwellen in Gasen und Fliissigkeiten

K
Vy = 4| —
P p

mit K: Kompressionsmodul; p: Dichte

Longitudinalwellen in Festkorpern

E
Vy =4 —
P p

mit E: Elastizitatsmodul

Torsionswellen in diinnen Rundstaben

v =
P p

mit G: Schubmodul

Seilwellen

Vyy = i
p— ,OA

mit F' Zugkraft, p Dichte und A Querschnitt des
Seils.

6.4 Ausbreitung

6.4.1 Reflexion und Transmission

Andert sich ein Parameter des Mediums, wie
z.B. Schallgeschwindigkeit oder Schallimpedanz,
so fiihrt dies zu Reflexionen: Ein Teil der Welle
andert ihre Richtung. Der einfachste Fall ist der
einer vollstdndigen Reflexion einer eindimensio-
nalen Welle, z.b. wenn eine Seilwelle an einem

A\ 4

I

Z1| Za

Abbildung 6.38: Reflexion einer Welle an einer
Grenzflache.

Fixpunkt reflektiert wird. Das gleiche gilt fiir an-
dere Arten von Wellen, wie z.B. Schallwellen.

Abb. 6.38 zeigt als einfachstes Beispiel eine Wel-
le, die vom Gebiet 1 mit Dichte p;, Schallge-
schwindigkeit ¢; und Schallimpedanz Z; = pi¢y
in ein Gebiet 2 (p2, c2) mit anderer Wellenim-
pedanz Zy = pocsy iibertritt. Fiir jede Art von
Wellen findet man in einem solchen Fall, dass
ein Teil der Welle reflektiert wird.

Fiir den einfachsten Fall nimmt man an, dass
das System sich linear verhalt, dass also ei-
ne Proportionalitét zwischen einfallender, reflek-
tierter und transmittierter Welle besteht. In die-
sem Fall betrachtet man eine Welle, welche senk-
recht auf die Grenzfliche einféllt und berech-
net die Reflexions- und Transmissionskoeflizien-
ten aus der Energieerhaltung: Die auf die Grenz-
fliche einfallende Energie wird entweder trans-
mittiert oder reflektiert. Somit gilt

L=1I+1.

Der Ausdruck I = %pooﬂx% fiir die Schallin-
tensitdt kann umgeschrieben werden als I =
%ZwQ)(z. Die Frequenz ist fiir alle Wel-
len die gleiche. Damit wird die Energie-
Erhaltungsgleichung zu

Zixty = Zixto + Zaxi -

Hier stellen xeo, X0 und xzo die Amplituden der
drei Wellen dar. Auflerdem muss fiir die Auslen-
kung der Wellen die Stetigkeitsbedingung

Xe(o) + XT(O) = Xt(o)

an der Grenzflache erfillt sein. Damit erhalt
man ein quadratisches Gleichungssystem mit
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zwei Gleichungen fiir die beiden Amplituden y;q
und xyo. Losen des Gleichungssystems ergibt die
Transmissions- und Reflexionskoeffizienten:

Xwo _ 24
Xeo 21+ 2y

xro 21— 2y

Xeo Z1+ 2y

Die physikalische Ursache fiir die Reflexion ist
somit, dass mit nur einer Welle nicht Energie-
erhaltung und Stetigkeit gleichzeitig erfiillt sein
kénnen.

einlaufende Welle =

2
3 2

I~
Q 2
] a
- C )
[E—— Y c
@ (o)
@ 1%}
= @
o c
—/4"'; o
n 3 -

X
ST i

Seil fest (Z2

reflektierte Welle —=—

£ L\t
Seil frei (Z

1LY

Abbildung 6.39: Reflexion einer Seilwelle bei lo-
sem oder fixem Ende.

Offenbar ist |x,| = Xxe sowohl wenn Zy = 0 wie
auch wenn Z, = oo ist. Abb. 6.39 vergleicht die
beiden Falle fiir eine Seilwelle. Z = 0 bedeutet
hier, dass das Seilende frei beweglich ist, Z =
oo dass es fixiert ist. Beide Male wird die Welle
vollstandig reflektiert. Im ersten Fall (Zy = 0)
hat die reflektierte Welle das gleiche Vorzeichen
wie die einlaufende Welle x, = xe , im zweiten
Fall ist das Vorzeichen invertiert, x, = —xe -

Fiir die Intensititen I o< x? erhilt man

I, VAV,

— =4— 6.8

Ie (Zl + ZQ)Q ( )
und

I, (Z1 — 22)2

Ie <Z1 -+ 22)2 ’

Mochte man Reflexionen vermeiden, so muss of-
fenbar Z; = Zs sein, d.h. die Impedanzen der
beiden Medien miissen gleich sein.

Eine interessante Konsequenz davon ergibt sich
fiir das menschliche Ohr. Die Schallwelle, wel-
che das Ohr erreicht, bewegt sich im Medium
Luft. Dessen Schallimpedanz liegt bei 414 kg
m~2s. Um wahrgenommen zu werden, muss sie
das Innenohr erreichen, welches von einer wassri-
gen Fliissigkeit gefiillt ist. Deren Schallimpedanz
liegt bei Zy ~ 1,4 - 105 kg m~2s. Gemif Glei-
chung 6.8 wiirden somit nur etwa 0,1 % des
Schalls das Innenohr erreichen und wir wéren
praktisch taub. Ein effizienter Horsinn wird erst
durch die Impedanzwandlung im Mittelohr er-
reicht.

6.4.2 Stehwellen

Die iiberlagern sich die vorwérts- und die riick-
warts laufende Wellen. Die Amplitude der Ge-
samtwelle ist deshalb

A = Aplcos(kz — wt) + cos(—kx — wt)]

2Ap[cos(kx) cos(wt)]

Dabei handelt es sich um eine harmonische
Schwingung mit der Kreisfrequenz w, dessen Am-
plitude vom Ort x abhéngt. Man bezeichnet dies
als “stehende Welle”.

DO
O

Abbildung 6.40: Reflexion erzeugt Stehwellen.

Abb. 6.40 zeigt fiir das Beispiel einer vollstéin-
dig reflektierten Seilwelle, wie sich eine stehen-
de Welle bildet. Findet die Reflexion an einem
Punkt hoher Wellenimpedanz statt, so liegen die
Knoten der Stehwelle im Abstand nA/2 von die-
sem Punkt, mit ganzzahligem n. Bei einem Uber-
gang zu Zy = 0 sind die Knoten um \/4 verscho-
ben.

261



6 Wellen

In einem Saiteninstrument werden die Toéne
durch das Anregen von stehenden Wellen er-
zeugt. Da die Saiten an beiden Enden fest sind,
muss die Wellenlédnge einem Bruchteil der dop-
pelten Lange entsprechen.

A

L=n— n ganz.

2

Die Ausbreitungsgeschwindigkeit v (Phasenge-

schwindigkeit) héngt von der Saitenspannung
und der Massendichte p ab:

L [Fua
o

Hier ist F' die Kraft, mit der die Saite gespannt
ist und A die Querschnittsfliche der Saite. Die
resultierende Schwingungsfrequenz ist dann

[

f=3.

6.4.3 Abstandsabhingigkeit

Wellen enthalten Energie. Bei laufenden Wellen
wird diese Energie transportiert. Wie im Falle
von akustischen Wellen diskutiert (Kap. 6.2.4)
ist die Energiedichte proportional zum Quadrat
der Amplitude.

Die Amplitude einer Welle schwécht sich bei der
Ausbreitung ab. Dazu trage verschiedene Me-
chanismen bei, wie z.B. Absorption und Streu-
ung. Streuung entspricht der (teilweisen) Reflexi-
on an Strukturen mit unterschiedlichen Schallim-
pedanzen oder Schallgeschwindigkeiten, die nicht
so reguldr geformt sind wie die oben diskutierte
Grenzfliche. Neben diesen Verlustmechanismen
fithrt auch die geometrische Ausbreitung zu ei-
ner Abschwéchung.

Bei ebenen Wellen ist die Amplitude und damit
die Energiedichte iiberall im Raum gleich. In Ku-
gelwellen fillt sie quadratisch mit dem Abstand
ab. Dies kann als Folge der Energieerhaltung ver-
standen werden: Fine Welle, die sich kugelférmig
von einer Quelle ausbreitet, deckt eine Flache A
ab, welche proportional zum Quadrat des Ab-
standes 7 von der Quelle zunimmt, A « r% (—

Abbildung 6.41: Fliache einer Kugelwelle als
Funktion des Abstandes.

Abb. 6.41). Unter der Annahme, dass die Welle
nicht absorbiert wird, wird die vorhandene Ener-
giedichte also iiber eine Flache verteilt, welche
o« 72 zunimmt. Dementsprechend muss die In-

tensitdt um diesen Faktor abnehmen,

1
T o —
ocTZ,

da sonst die Energie nicht erhalten wére.

6.4.4 Der Dopplereffekt

Bewegen sich Quelle oder Beobachter relativ zum
Medium, so unterscheiden sich die ausgestrahl-
ten und die gemessenen Frequenzen. Diesen Ef-
fekt bezeichnet man als Dopplerverschiebung®.

Der Effekt kann bei einem vorbeifahrenden Zug
(vor allem einem pfeifenden) beobachtet werden.
Man kann ihn aber auch mit einem bewegten
Lautsprecher horbar machen. Mit Radarwellen
wird er zur Geschwindigkeitsmessungen verwen-
det.

Fiir die Herleitung betrachten wir zunéchst die
Periode, die ein ruhender Beobachter misst,
wenn eine Welle der Wellenldnge A und Phasen-
geschwindigkeit vp bei ihm eintrifft

T=2"2.
Up

!Christian Andreas Doppler (1803 - 1853)
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Hier und im Folgenden wird jeweils ein Koordi-
natensystem verwendet, bei dem das Medium,
in dem sich die Schallwelle ausbreitet, in Ru-
he ist. Fiir einen Beobachter, der sich mit der
Geschwindigkeit vp auf die Quelle zu bewegt,
betragt die Geschwindigkeit der Welle fiir ihn
scheinbar vp 4+ vg. Damit wird die Periode ver-
kiirzt auf

A
Tp =
Up + VB

und die Frequenz wird

vp = — = .
B~ Ty by

vp stellt hier die Geschwindigkeitskomponente
des Beobachters in Richtung auf die Quelle dar;
tangentiale Komponenten zéhlen nicht. Die Wel-
lenlange wird bestimmt durch die Frequenz, mit
der die Wellen erzeugt werden, und die Phasen-
geschwindigkeit v):

O

)\:UPTQ = I/Q

Damit ist

1 vp +vUB
vo——.

1% = — =
B TB @ Up

Offenbar ist die Frequenz, die der Beobachter
misst, gegeniiber der ausgestrahlten Frequenz
hoher, um das Verhéltnis der Geschwindigkeit
des Beobachters gegeniiber der Schallgeschwin-
digkeit:

v = vQ (H:Z—B) .
P

Das + Zeichen bezieht sich auf den Fall dass der
Beobachter sich in Richtung auf die Quelle zu
bewegt, das — Zeichen auf den entgegengesetzten
Fall.

Bewegt sich statt dem Beobachter die Quelle,
wie im Beispiel von Abb. 6.42, so wird in Bewe-
gungsrichtung der Abstand zwischen den Wellen-
flichen kleiner, auf der anderen Seite grofer. Die
einzelnen Kreiswellen markieren wie weit sich die
Welle in den letzten n Perioden T ausgebreitet

Abbildung 6.42: Wellenfronten
Quelle.

bei

bewegter

haben. Wir nehmen an, dass ein ruhender Be-
obachter sich in Bewegungsrichtung (rechts im
Bild) befindet. Die Wellenlange, die er sieht, ver-
ringert sich um vgTq :

A= )\0 — UQTQ.

Mit A\g = vpTg = vp/vg wird die vom Beobach-
ter gemessene Frequenz

b vp vp
BTN T M —woTo
o
- vp e Ve
vp/v —vQ/vQ -
= U Up .
Up — VQ

Fiir den Fall dass die Quelle sich vom Beob-
achter entfernt muss das - Zeichen durch ein +
ersetzt werden. Offenbar unterscheiden sich so-
mit die beiden Félle, in denen sich der Beobach-
ter, resp. die Quelle bewegen. Der Unterschied
ist allerdings gering so lange die Geschwindigkeit
klein ist im Vergleich zur Phasengeschwindigkeit
im betreffenden Medium. Bewegen sich beide, so
kann man die beiden Ausdriicke kombinieren:

Vg = 1+1;}_15_V Ut VB
B Ql—Z—Q_ va—vQ'
p
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6.4.5 Uberschallgeschwindigkeit

Die Wellenldnge der ausgestrahlten Welle
A= X—vqTg =vpTg—vQTg = (vp—vg)Tg

kann offenbar auch Null werden, wenn die Ge-
schwindigkeit der Quelle gleich der Phasenge-
schwindigkeit der Welle wird, oder negativ, fir
vQ > vp.

Vg = Up

Abbildung 6.43: Wellenfronten bei bewegter
Quelle fiir vg = vp (links) und
vg > vp (rechts).

Dies entspricht dem Fall dass die Quelle sich
mit der emittierten Welle mitbewegt, wie in
Abb. 6.43 links. Fiir den Fall einer Schallwelle
entspricht dies einer Bewegung der Quelle mit
Schallgeschwindigkeit.

Abbildung 6.44: Wellenfronten einer Quelle, de-
ren Geschwindigkeit hoher ist
als die Phasengeschwindigkeit.

Bewegt sich die Quelle schneller als mit Schall-
geschwindigkeit, vg > vp, so bilden die Wellen
einen Kegel, der als Mach’scher Kegel bezeich-
net wird. Abb. 6.44 zeigt einen solchen Kegel

fiir ein Flugzeug. Wie in Abb. 6.43 gezeigt, kann
dessen Offnungswinkel berechnet werden indem
man beriicksichtigt, dass alle Kugelwellen den
Kegel beriihren. Befindet sich die Quelle zu ¢t = 0
bei A und zur Zeit t bei B, hat sie die Strecke
AQ = tvg zuriickgelegt, wéhrend die Schallwel-
le die Strecke AB = vpt zuriickgelegt hat. Somit
ist der halbe Offnungswinkel o gegeben als
. vpt Up 1
sihag= — = — = —.
vt  vg Ma

Die Zahl Ma = vg/vp, das Verhéltnis der Ge-
schwindigkeit zur Schallgeschwindigkeit, wird als
Mach’sche Zahl bezeichnet.

Bei Flugzeugen wird der Mach’sche Kegel als
Uberschallknall hérbar, z.T. aber auch sicht-
bar. Im Beispiel von Abb. 6.44 kann man den
Mach’schen Kegel sehen, da die Druckdnderung
zu einer Kondensation von Wasserdampf fiihrt.
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gjy_ll
Mikrowellen
Radiowellen

T T T T T T T T
1 m Wellenlinge
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Abbildung 6.45: Spektrum der elektromagneti-
schen Wellen.

6.5 Elektromagnetische Wellen

6.5.1 Das elektromagnetische
Spektrum

Elektromagnetische Wellen sind Wellen, bei de-
nen elektrische und magnetische Felder sich in
Zeit und Raum ausbreiten. Heute kennt man
sehr unterschiedliche elektromagnetische Wellen.
Thre Frequenzen reichen von wenigen Hertz bis
zu 10?3 Hertz. Ein wichtiger, wenn auch schma-
ler Bereich ist das sichtbare Spektrum, welches
zwischen 10 und 10'® Hertz liegt. Von prak-
tischer Bedeutung ist aber der gesamte Bereich
von etwa 10% Hz bis 10'® Hz.

Die elektromagnetische Skala kann nach Wellen-
langen, Frequenzen oder Energien gegliedert wer-
den. Abb. 6.45 zeigt dies fiir einen Bereich von
den Rontgenstrahlen bis zu den Radiowellen. Im
langwelligen Bereich beginnt die Skala mit Ra-
diowellen, deren Wellenldngen praktisch belie-
big lang werden konnen. Hier fand aufgrund der
technischen Entwicklung eine Inflation der Na-
mengebung statt: Man unterteilte zunéchst in
vif, If, mf, hf. Als hohere Frequenzen erreicht
wurden, mussten neue Namen gefunden werden:

vhf, uhf, shf, ehf.

Im Bereich von ca. 1 GHz, resp. 30 cm Wellen-
lange beginnt man iiblicherweise von Mikrowel-
len zu sprechen. Im Bereich von einigen THz,

resp. bei Wellenldngen von etwa 1 mm spricht
man von Millimeterwellen oder THz-Wellen, fiir
noch kiirzere Wellenléngen von Fern-Infrarot. Ab
einer Wellenldnge von ca. 10 - 0.75 pm spricht
man von Infrarot und der Bereich von 750 nm
bis 400 nm entspricht sichtbarem Licht. Daran
schlieft das der Bereich des Ultravioletten (UV)
und des Vakuum-UV an, und schliefslich Ront-
gen und Gamma-Strahlen. Obwohl es sich auch
dabei um elektromagnetische Wellen handelt, de-
ren Ausbreitung durch die Maxwell Gleichungen
beschrieben wird, kénnen die Phanomene, die in
diesem Bereich auftreten, nicht mehr vollstédndig
durch die klassische Physik erklért werden. Hier
wird der Teilchencharakter des elektromagneti-
schen Feldes wichtig.

Ein wesentlicher Unterschied zwischen elektro-
magnetischen Wellen und den bisher diskutier-
ten mechanischen Wellen ist, dass elektromagne-
tische Wellen sich nicht nur in einem Medium
ausbreiten, sondern auch im Vakuum. Da sol-
che Wellen vorher nicht bekannt waren, hatte
man im 19. Jh. groke Miihe diese Moglichkeit
zu akzeptieren. Man postulierte deshalb die Exi-
stenz eines Mediums, in dem sich diese neuarti-
ge Sorte von Wellen ausbreiten konnte und be-
zeichnete es als Ather. Da alle experimentellen
Versuche, ihn nachzuweisen, fehlschlugen, akzep-
tierte man aber schlieflich die Vorstellung von
Wellen ohne Medium. Die wichtigste Konsequenz
des fehlenden Mediums ist, dass die Lichtge-
schwindigkeit nicht vom Koordinatensystem ab-
héngt: Beobachter, welche sich in unterschiedli-
chen Inertialsystemen befinden, messen die glei-
che Ausbreitungsgeschwindigkeit fiir elektroma-
gnetische Wellen. Eine weitere Konsequenz ist,
dass bei elektromagnetischen Wellen eine Bewe-
gung von Quelle oder Beobachter eine andere Art
von Dopplereffekt erzeugt als bei mechanischen
Wellen.

6.5.2 Elektromagnetische
Wellengleichung

Die in Kapitel 4.9 diskutierten Maxwell Glei-
chungen beschreiben unter anderem die Ausbrei-
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tung von elektromagnetischen Wellen. Wir zei-
gen zunichst, wie man aus den Maxwell Glei-
chungen eine Wellengleichung erhalten kann. Da-
fiir rechnen wir die Rotation der zweiten Glei-
chung (4.12):

Tx (VxE) - —ﬁx‘?f

_MTMO% (6 X ﬁ) .

wobei wir die Materialgleichung fiir das Magnet-
feld verwendet haben:

é = Mrluoﬁ.

Hier wurde auch angenommen, dass das Medium
isotrop sei, dass also alle Richtungen gleichwertig
seien. Dies ist insbesondere in Festkorpern meist
nicht der Fall. Die Proportionalitdtskonstanten
€r, by werden dann zu Tensoren. Im Folgenden
soll auch p, = 1 sein, das Medium also nicht
magnetisch sein.

Auf der rechten Seite verwenden wir die erste
Maxwell Gleichung (4.11) (mit 7 = 0) und erhal-

ten
D n 92 . 92 .
V x (V X E) = —[LO@D = —/LOETEO@E.

Offensichtlich spielt hier der Verschiebestrom ei-
ne entscheidende Rolle.

Die Vektoranalysis ergibt fiir die linke Seite
V x (ﬁxE) :ﬁ<ﬁﬁ> — AE.
Gemaéf der dritten Maxwell Gleichung (4.13) ver-

schwindet die Divergenz des E-Feldes, wenn wir
Ladungen ausschlieffen, und wir erhalten

2 2 2

ox?  Oy? 022
9% .
reo=—=F
Ho€r€o 912
oder
PE 2 -

mit
= !
€00

als Phasengeschwindigkeit. Dies ist offenbar eine
dreidimensionale Wellengleichung und ihre Aus-
breitungsgeschwindigeit c ist eine universelle Na-
turkonstante, welche durch die beiden Feldkon-
stanten €y und po gegeben ist. Wir werden uns
im Rest dieses Kapitels hauptséchlich mit dieser
Wellengleichung beschéaftigen.

Eine analoge Wellengleichung kann man natiir-
lich auch fiir das magnetische Feld herleiten.
Meist ist es aber einfacher, die Gleichung fiir
das elektrische Feld zu l6sen und anschlieffend
die magnetischen Komponenten aus den Maxwell
Gleichungen zu bestimmen (— Kap. 6.5.4).

Offenbar sind die drei Komponenten des elek-
trischen Feldes in dieser Gleichung unabhén-
gig voneinander. Im allgemeinen Fall erwarten
wir somit drei voneinander unabhéngige Losun-
gen, z.B. eine longitudinale und zwei transversale
Wellen, wie im Fall von Gitterschwingungen.

6.5.3 Ebene Wellen

Die Losungen dieser Gleichung hingen wie im-
mer von den Randbedingungen ab. Wir betrach-
ten zunédchst den einfachsten Fall einer harmo-
nischen ebenen Welle. Fiir die Ausbreitungsrich-
tung verwenden wir ohne Verlust an Allgemein-
heit die z-Richtung. Damit wird der Ansatz

E,
FE = Re E,
E,

ei(wtsz) ’ (610)

wobei F,, E,, E, die komplexen Amplituden
darstellen.

Einsetzen in die Wellengleichung (6.9) ergibt fiir
die linke Seite

E,
E, (32 > 82) ilt—k2)
2 2 2
E. ox oy 0z
E
z n\2 9% .
_ 7 Y i(wt—kz)
gy (c) 922° ’

I\
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oder
E, . E,
k| B, | =—3u*| B,
E, ¢ E,

ten

d.h. der Ansatz beschreibt eine giiltige Losung
falls w = ke/n, d.h. falls die Ausbreitungsge-
schwindigkeit gerade gleich ¢/n ist. ¢ = 299793
km /s ist die Ausbreitungsgeschwindigkeit im Va-
kuum oder Vakuum-Lichtgeschwindigkeit. Inter-
essant ist, dass die elektrostatischen Groéfen
€o und po die Ausbreitungsgeschwindigkeit der
Welle bestimmen. n = /€, wird als Brechungs-
index bezeichnet; er beschreibt die Reduktion
der Ausbreitungsgeschwindigkeit durch das Me-
dium. Diese Materialeigenschaften sind jedoch
frequenzabhéngig, d.h. sie unterscheiden sich von
den Werten, die man in der Elektrostatik findet.

6.5.4 Magnetfeld

Der obige Ansatz geniigt also der vorhin herge-
leiteten Wellengleichung. Wir miissen aber noch
iiberpriifen, ob er auch die Maxwell Gleichungen
erfiillt. Insbesondere haben wir bisher nur das
elektrische Feld berticksichtigt. Wir setzen es ein
in die Gleichung

L o -
VxE_—ﬁB.

Diese Gleichung kann nur erfillt sein, wenn
das magnetische und elektrische Feld die gleiche
raumzeitliche Abhéngigkeit besitzen, d.h.

By
B’ _ By ei(wt—kz)’
B:

Die Ableitungen 0/0x und 0/0y verschwinden
wieder, so dass sich die Rotation vereinfacht zu

0E,

- o N2
0z
0

Die Maxwell Gleichung ergibt

-E, B,
—ik E, = —iw | By
0 B,

Offenbar muss die longitudinale Komponente des
Magnetfeldes verschwinden, B, = 0.

Aus der Gleichung

I
VxH=—D
Y
folgt analog, dass die longitudinale Komponente
des elektrischen Feldes verschwindet,

d.h. die Komponenten der Felder in Ausbrei-
tungsrichtung verschwinden. Offenbar sind elek-
tromagnetischen Wellen in einem isotropen Me-
dium reine Transversalwellen.

Man kann diese Beziehung auch direkt aus der
Gleichung
O0FE,

e oF,
v ox + oy + 0z 0

fiir ein Medium ohne Ladungen herleiten: Geméfs
Ansatz (6.10) ist die einzige Ableitung, die nicht
verschwindet, diejenige nach z und somit

- - OF,
V- -E=
0z

Diese Gleichung kann offenbar nur dann erfiillt
sein, wenn F, identisch verschwindet. Dies gilt
allerdings nur fiir den Fall von isotropen di-
elektrischen Medien; anisotrope Eigenschaften
kénnen zu longitudinalen Komponenten fithren;
ebenso enthalten elektromagnetische Wellen in
elektrisch leitenden Medien longitudinale Kom-
ponenten.

= —ik, F, =0.

Abb. 6.46 zeigt ein Beispiel fiir eine elektroma-
gnetische Welle, bei der das elektrische Feld ent-
lang der 2-Achse polarisiert ist (d.h. By = E, =
0) und die sich in z-Richtung ausbreitet. Das
magnetische Feld ist immer senkrecht dazu, also
parallel zur y-Achse. Allgemein gilt

k k
B:E - —;Ey By == ;E:L‘
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ebene Welle

Abbildung 6.46: Ebene elektromagnetische Wel-
le.

Die elektrischen und magnetischen Komponen-
ten der Welle stehen in einem festen Verhéltnis.
Im Vakuum gilt

E
H:’f:,/‘;’:zozwm.

Die Grofse zg wird als die Wellenimpedanz des
Vakuums bezeichnet. Dieses Verhaltnis kann
man natirlich auch als

1Bl _w _
Bl k-
ausdriicken.

6.5.5 Transversalwellen: Polarisation

Polarisierte transversale Wellen besitzen somit
eine Vorzugsrichtung. Diese Polarisationsebene,
welche durch die Schwingungsebene des elektri-
schen Feldes definiert wird, kann einerseits durch
die Quelle des elektromagnetischen Feldes defi-
niert werden (siehe Hertz’scher Dipol), anderer-
seits indem man mit Hilfe von Filtern einen Teil
der Welle eliminiert.

Abb. 6.47 zeigt ein Experiment, das eine Mikro-
wellenquelle verwendet, welche polarisierte Mi-
krowellen erzeugt. Der Empfanger ist ebenfalls
nur auf Wellen mit einer bestimmten Polarisa-
tionsrichtung empfindlich. Ein Metallgitter kann

Abbildung 6.47: Ubertragung von linear polari-
sierten Mikrowellen.

verwendet werden, um nur eine bestimmt Polari-
sationsrichtung durchzulassen: ist die Welle par-
allel zu den Stéaben polarisiert, so wird sie daran
reflektiert.

6.5.6 Hertz’scher Dipol

Elektromagnetische =~ Wellen werden durch
schwingende elektrische Ladungen erzeugt. Ein
einfaches Modell fiir schwingende Ladungen ist
der in Kapitel 5.3.5 behandelte LC-Schwingkreis.
Solche Schwingungen bilden die Quellen der
Wellen. Umgekehrt konnen elektromagnetische
Wellen nachgewiesen werden, indem man ihren
Effekt auf bewegliche Ladungen untersucht.
So ist jeder Schwingkreis mit der Frequenz
1/ VLC die Quelle einer elektromagneti-
schen Welle: Sowohl das elektrische, wie auch
das magnetische Feld sind zeitabhangig.

w =

LC Schwingkreis

Dipoleantenne

J7i H
AN
2 E
Abbildung 6.48: LC-Schwingkreis wird zu Dipol
deformiert.

Bei den iiblicherweise verwendeten Spulen und
Kondensatoren in LC-Schwingkreisen sind die
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Felder stark im Inneren lokalisiert. Durch eine
andere Anordnung kann man die Felder aber
auch nach aufen richten und dadurch eine Ab-
strahlung begiinstigen. Abb. 6.48 zeigt als Bei-
spiel den Ubergang von einem kompakten LC-
Schwingkreis zu einer Dipolantenne.

® Dipol Beobachter
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Dipol -
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Abbildung 6.49: Dipol als Quelle einer Welle.

Die endliche Ausbreitungsgeschwindigkeit fiihrt
zu einer wellenférmigen Ausbreitung, wobei die
Frequenz an jedem Ort durch die Parameter des
Schwingkreises gegeben ist. Abb. 6.49 zeigt eine
grafische Darstellung.

Je hoher die Frequenz wird, desto kleiner werden
Spulen und Kondensatoren und damit werden
die Strukturen offener und ein Abstrahlverhalten
starker ausgepragt. Ein niitzlicher Extremfall ist
der eines linearen schwingenden Dipols. Er wird
als Hertz’scher Dipol bezeichnet.

Lo O

Abbildung 6.50: Abstrahlung durch oszillieren-
den Dipol.

Man kann sich die Entstehung von elektromagne-
tischen Wellen verstehen, indem man die Feld-
linien eines schwingenden Dipols iiber eine Pe-
riode beobachtet. Wenn die beiden Ladungen
getrennt werden entstehen elektrische Feldlinien

zwischen den beiden. Da die Verschiebung der
Ladungen einem Strom entspricht, muss auch ein
Magnetfeld entstehen, welches kreisférmig um
die Dipol-Achse liegt. In Abb. 6.50 liegen sie
senkrecht zur Bildebene und sind als Punkte und
Kreuze markiert (aus der Ebene heraus, resp. in
die Ebene hinein).

elektrisches Feld

magnetisches Feld

=D
==

[—> —]

Abbildung 6.51: Feldlinien des Hertz’schen Di-
pols.

In Abb. 6.51 sind die elektrischen Feldlinien in
einer Ebene dargestellt, welche den Dipol ent-
hélt, die magnetischen in der Ebene senkrecht
zum Dipol. Bei maximaler Amplitude des Di-
pols sind auch die Feldlinien auf den maxima-
len Umfang angewachsen. Wenn die Ladungen
sich wieder ndhern, werden die Feldlinien einge-
schniirt und wenn die beiden Ladungen am Ur-
sprung sind, verschwinden die Feldlinien direkt
am Dipol, wahrend sie sich in der Ebene senk-
recht zum Dipol davon entfernt haben. Somit hat
sich eine erste Halbwelle vom Dipol abgelGst.

6.5.7 Eigenschaften des Hertz’schen
Dipols

Abb. 6.52 zeigt ein Experiment, bei dem eine
elektromagnetische Welle erzeugt wird. Ein Ge-
nerator G erzeugt eine elektrische Wechselspan-
nung. Die Wechselspannung wird an eine Stab-
antenne eingekoppelt und von dieser abgestrahlt.
Eine Empfangsantenne E fangt diese Strahlung
auf. Die iibertragene Energie kann z.B. fiir die
Erzeugung von Licht in einer Glithlampe verwen-
det werden.
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Abbildung 6.52: Prinzip
Hertz’schen
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Dipol-Experi-
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Abbildung 6.53: Ubertragungseffizienz fiir un-
terschiedliche relative Orientie-
rungen der Antennen.

Die Effizienz des Nachweises hédngt von der Ori-
entierung der Antennen ab, wie in Abb. 6.53 ge-
zeigt: Stehen die beiden Antennen parallel, findet
eine effiziente Ubertragung statt. Fiir senkrechte
Ausrichtung der Antennen hort das Lampchen
auf zu leuchten, wie in Abb. 6.53 rechts gezeigt.
Offenbar ist die ausgesendete Strahlung linear
polarisiert. Dies zeigt auch, dass es sich um eine
Transversalwelle handeln muss.

Die Welle wird auch nicht isotrop abgestrahlt,
sondern bevorzugt senkrecht zur Achse des Di-
pols. Bringt man die Empfangsantenne in die
Verlangerung der Sendeantenne, so kann man
keine Strahlung messen. Offenbar wird in der
Richtung der Antenne keine Leistung abge-
strahlt. Tragt man die Intensitét der angestrahl-
ten Welle als Funktion der Richtung auf, so fin-
det man ein charakteristisches Verhalten in Form
einer Doppelkeule. Wie in Abb. 6.54 gezeigt, sind
die Maxima senkrecht zur Antenne orientiert.

Eine genauere Messung ergibt, dass die abge-
strahlte Intensitéat I die Form

pirisin? 6
o 207 P 7

I 2

r

der
ten Leistung im Fernfeld als
Funktion der Richtung.

Abbildung 6.54: Intensitét abgestrahl-

betrégt. Hier stellt pg = qdy die Amplitude des
oszillierenden Dipols aus Ladung ¢ und Abstand
dy dar, 8 den Winkel zwischen der Richtung der
Sendeantenne und dem Detektionsort dar, v die
Frequenz und r den Abstand von der Antenne.
Abbildung 6.54 zeigt eine grafische Darstellung
der Richtungsabhangigkeit. Die Abnahme der In-
tensitdt mit dem Quadrat des Abstandes stellt
lediglich die Erhaltung der Energie dar: das In-
tegral iiber eine Kugeloberfliche im Abstand r
bleibt konstant. Die Abhéngigkeit von der vier-
ten Potenz der Frequenz zeigt, dass Abstrahlung
bei hoheren Frequenzen wesentlich einfacher zu
erreichen ist als bei niedrigen.

6.5.8 Ubertragung von Energie und
Impuls

Aus der Elektrostatik ist bekannt, dass elektro-
magnetische Felder Energie enthalten:

1 /e o o o
wzi(E-D+H~B).

Im Unterschied zur Elektrostatik ist diese Ener-
gie im Falle von elektromagnetischen Wellen be-
weglich, d.h. sie flieft durch das System. Wenn
sie mit Ladungen in Wechselwirkung treten, so
leisten sie Arbeit an diesen. Umgekehrt fliefst bei
der Erzeugung von elektromagnetischen Wellen
Energie aus der mechanischen Bewegung von La-
dungen in das elektromagnetische Feld. Dieser
Transport und Austausch von Energie muss die
gesamte Energie des Systems konstant lassen.
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Die Energieerhaltung fiir elektromagnetische Fel-
der ist der Inhalt des Theorems von Poynting,
der diese Betrachtungen im Jahr 1884 als erster
durchfiihrte.

Aus der Beziehung zwischen elektrischer und ma-
gnetischer Feldstirke

2] _
|H|

o 40
€r€0

sehen wir, dass die elektrische und magnetische
Energiedichte einer ebenen Welle gleich sind,

1

WE = 55067"E2 = EMOMTHQ = wg.

Die gesamte Energiedichte ist somit

1 1
wg +wyg = 5606TE2 + §M0MTH2

= JeoomEH = “EH.
C

Der Energiefluss ist die Energiedichte multipli-
ziert mit der Ausbreitungsgeschwindigkeit der
Welle, also

S= w=EH.
n
Wie man aus der Losung der Wellengleichung
sieht, ist der Vektor

S=ExH

in Ausbreitungsrichtung orientiert und hat den
Betrag des Energieflusses. Er wird als Poynting-
vektor bezeichnet und beschreibt den (ort- und
zeitabhéngigen) Energiefluss. Der Poyntingvek-
tor besitzt offenbar die Einheiten

8] = [E)a)= ~ 2 = W

mm
also Leistung pro Fléche.

Die Intensitat ist definiert als der Mittelwert des
Energieflusses iiber eine Periode,

1
I =_-EyHy.
o5 £0t10

In &hnlicher Weise wie die transportierte Energie
kann man auch den Impuls des Feldes berech-
nen. Die Existenz eines Impulses fiir die elektro-
magnetische Welle kann man sich leicht plausi-
bel machen, wenn man die Bewegung eines ge-
ladenen Teilchens im elektromagnetischen Feld
der Welle betrachtet. Eine Welle, die sich in z-
Richtung ausbreitet, deren elektrisches Feld in
z-Richtung und das magnetische in y-Richtung
liegt, erzeugt zunéchst eine Coulomb-Kraft auf
die Ladung, welche diese in z-Richtung beschleu-
nigt. Damit fiihrt sie eine Bewegung senkrecht
zum B-Feld durch, welche eine Lorentzkraft be-
wirkt. Damit erhalt das Teilchen eine Beschleu-
nigung in z-Richtung, also einen Impulsiibertrag,
welcher aus der Welle stammen muss. Damit
ist auch klar, dass die Impulsdichte proportio-
nal zum Produkt aus E und B sein muss. Die
Impulsdichte der Welle betragt im Vakuum

Damit tibt eine Welle einen Strahlungsdruck aus,
welcher proportional zu ihrer Intensitét ist. Wird
eine Welle vollstandig absorbiert, so betrégt der
Impulsiibertrag pro Zeit- und Flacheneinheit

Al le o Tk
§ = 5CPFeld = 55 s

Der Strahlungsdruck ist somit proportional zur
Intensitat einer Welle.

6.5.9 Dopplereffekt

Der Dopplereffekt tritt auch bei elektromagne-
tischen Wellen auf. Allerdings gilt dafiir die Be-
handlung aus Kapitel 6.4.4 nicht, da Licht fiir die
Ausbreitung kein Medium benétigt. Dies wur-
de von Michelson und Morley 1887 in einem
berithmten Experiment gezeigt: sie wollten die
Geschwindigkeit der Erde gegeniiber dem Ather
messen, der als Medium fiir die Lichtausbreitung
betrachtet wurde. Sie fanden aber, dass die Rela-
tivgeschwindigkeit Null war, unabhéngig davon,
in welche Richtung die Erde sich bewegte. Dies
konnte nur dadurch erklart werden konnte, dass
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fiir die Lichtausbreitung kein Medium notwendig
war. Beim Licht findet man deshalb einen ande-
ren Dopplereffekt:

c+v
VB = VQ .

Hier stellt ¢ die Lichtgeschwindigkeit, also die
Phasengeschwindigkeit von Licht im Vakuum
dar und v die Relativgeschwindigkeit, mit der
sich Beobachter und Quelle ndhern. Entfernen
sie sich, miissen die beiden Vorzeichen getauscht
werden.

Der Dopplereffekt fiir elektromagnetische Strah-
lung wird z.B. bei Radar-Geschwindigkeits-
messungen verwendet. Er zeigt sich auch in der
Spektroskopie, wo Bewegung von Atomen oder
Molekiilen als Verschiebungen von Resonanzli-
nien beobachtet werden koénnen. Er wird beim
Wetterradar verwendet, um Windgeschwindig-
keiten zu messen.

Abbildung 6.55: Dopplereffekt in der Astrono-

mie.

Die grofiten Effekte findet man in der Astrono-
mie, wo man aus der Dopplerverschiebung be-
stimmen kann, wie schnell sich weit entfernte
Sterne bewegen. Abb. 6.55 zeigt ein Beispiel.
Wichtige Anwendungen sind die Rotation von
Galaxien und die Relativbewegungen von Ster-
nen. Letztere wird verwendet, um Exoplaneten
zu finden. Aus der Relativbewegung von fernen
Galaxien bestimmt man die Geschwindigkeit der
Expansion des Kosmos.
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