
6 Wellen

6.1 Grundlagen

6.1.1 Beispiele und Definition

Als Welle bezeichnet man die Ausbreitung einer
Störung in einem kontinuierlichen Medium oder
einer räumlich periodischen Struktur.

Abbildung 6.1: Erzeugung einer Welle auf einer
Feder.

Als Beispiel zeigt Abb. 6.1 wie eine Feder von
Hand ausgelenkt. Diese Störung läuft der Feder
entlang bis zu ihrer Befestigung. Wellen treten
z.B. in Festkörpern auf, wo Atome durch inter-
atomare Kräfte (“Federn”) aneinander gekoppelt
sind: jedes Atom kann schwingen, doch sind die
Schwingungen voneinander abhängig. Die Stö-
rung ist in diesem Fall die Auslenkung der Ato-
me aus ihrer Ruhelage. Da die Atome dabei eine
Kraft auf ihre Nachbarn ausüben, wird die Stö-
rung auf den Nachbarn übertragen, wie dies im
Rahmen der gekoppelten Schwingungen disku-
tiert wurde.

Eine bekannte Art von Wellen sind Wasserwel-
len: hier schwingen Flüssigkeitsteile vertikal, die
Störung breitet sich entlang der Flüssigkeitsober-
fläche aus. Während in Masse-Feder Systemen
klar ist, dass die einzelnen Massen sich nicht fort-
bewegen ist dies in einem flüssigen- oder gasför-
migen System weniger offensichtlich.

Während die Wellen den Eindruck erwecken,
dass Wasser entlang der Oberfläche transportiert
wird, erkennt man durch “Markieren” eines Flüs-
sigkeitsvolumens, z.B. mit Hilfe eines schwim-
menden Körpers wie in Abb. 6.2, dass die ein-

Abbildung 6.2: Ball auf Wasseroberfläche bleibt
an Ort.

zelnen Flüssigkeitsteile nur lokale Bewegungen
ausführen. In diesem Fall ist es eine nahezu kreis-
förmige Bewegung. Dies zeigt, dass allgemein bei
einer Welle keine Materie transportiert wird. Es
wird jedoch Energie übertragen.

6.1.2 Ausbreitung von Wellen

Wenn die Wellen auch keine Materie transportie-
ren ist es trotzdem sinnvoll, von der Ausbreitung
der Welle zu sprechen. Damit wird die Ausbrei-
tung der Störung, also der Auslenkung bezeich-
net. Für die Beschreibung von Wellen vergleicht
man zunächst die Orte gleicher Phase, d.h. die
Vereinigung aller Elemente, die um den gleichen
Betrag ausgelenkt sind.

Abbildung 6.3: Wellenfronten einer Bugwelle.
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6 Wellen

Diese wird als Wellenfront bezeichnet. Bei den
zweidimensionalen Wasserwellen im Beispiel von
Abb. 6.3 handelt es sich um eine Linie (resp. 2
Linien); bei einer Seilwelle ist die Wellenfront ein
Punkt; in einem dreidimensionale Medium han-
delt es sich um eine Fläche.
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Abbildung 6.4: Harmonische Welle in einer Di-
mension.

Eine besonders einfache Welle ist eine harmoni-
sche Welle in einer Dimension, wie in Abb. 6.4
gezeigt. Sie wird beschrieben durch die Auslen-
kung

y(x, t) = y
0

cos(!t � kx + '),

mit der Kreisfrequenz ! und der Wellenzahl k.
Sie ist periodisch in Zeit und Raum. Im Raum
wird die Periode als Wellenlänge

� =
2⇡

k

bezeichnet, in der Zeit als Periode

T =
2⇡

!
.

Die meisten Wellen sind allerdings nicht har-
monisch. Abb. 6.5 zeigt einige Beispiele. Diese
können als Summe von harmonischen Wellen ge-
schrieben werden, wobei die entsprechenden Fre-
quenzen ganzzahlige Vielfache einer Grundfre-
quenz sind:

y(x, t) =
1X
n=0

an cos(n(!t � kx) + 'n).

Dies wird als Fourier-Reihe bezeichnet.
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Abbildung 6.5: Beispiele für nicht-harmonische
Wellen.
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Abbildung 6.6: Kugelwelle.

Die Ausbreitungsrichtung der Welle ist immer
senkrecht zur Wellenfront. Bei einer optischen
Welle (d.h. Licht) entspricht diese lokale Ausbrei-
tungsrichtung dem Lichtstrahl. Wird die Welle
durch eine punktförmige Anregung erzeugt, wie
in Abb. 6.6, so sind die Wellenfronten konzen-
trische Kugelflächen. Man spricht in diesem Fall
von einer Kugelwelle.

Kugelwellen kann man z.B. in einer Wasserwan-
ne durch periodisches Eintauchen eines Stifts er-
zeugen.

Ein anderer wichtiger Wellentyp sind ebene Wel-
len, wie in Abb. 6.7 gezeigt. Hier sind die Wel-
lenfronten parallele Ebenen. Die Ausbreitungs-
richtung, welche senkrecht auf den Phasenflächen
steht, ist somit überall die gleiche.

Auch für diese Art von Wellen kann man in
der Wellenwanne ein zweidimensionales Analo-
gon erzeugen, indem die Wellen mit einem gera-
den Blech erzeugt werden.
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6 Wellen

ebene Welle

Abbildung 6.7: Wellenfronten einer ebenen Wel-
le.
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Abbildung 6.8: Lokale Wellenfronten.

Beide, sowohl die Kugelwelle wie auch die ebe-
ne Welle sollten als mathematisch einfache Idea-
lisierungen der Wirklichkeit verstanden werden.
Es gibt auch viele Fälle, die zwischen diesen Ex-
tremfällen liegen. Wie in Abb. 6.8 gezeigt, kann
eine Kugelwelle weit vom Ursprung näherungs-
weise als ebene Welle beschrieben werden.

Wellen findet man in einer, zwei oder drei Di-
mensionen. In zwei Dimensionen wird z.B. eine
Kugelwelle zu einer kreisförmigen Welle. Beispie-
le dafür sind Wellen auf einer Wasseroberfläche.

6.1.3 Klassifizierung

Wellen beschreiben immer eine Auslenkung ei-
nes Systems aus dem Gleichgewicht als Funkti-
on von Ort und Zeit. Man kann sie somit nach
dem Medium klassifizieren, in dem diese Auslen-
kung stattfindet, oder nach der Art der Auslen-
kung. Als Medium kommen Gase, Flüssigkeiten,

Festkörper, aber auch das Vakuum in Betracht.
Elektromagnetische Wellen stellen ein Beispiel
dar, bei dem kein Medium benötigt wird: hier
beschreibt die Welle die Stärke des elektroma-
gnetischen Feldes als Funktion von Ort und Zeit.
Elektromagnetische Wellen umfassen Radiowel-
len, Licht, Röntgenstrahlen, und Gammastrah-
len. Die wichtigsten elektromagnetischen Wellen
sind Licht. Diese werden im Rahmen eines eige-
nen Kapitels (7 Optik) separat diskutiert.

Das Medium bestimmt unter anderem auch die
mögliche Art der Auslenkung. Bei einer Seilwel-
le ist die Störung eine Auslenkung des Seils,
welche sich entlang dem Seil bewegt. Bei einer
Oberflächenwelle, wie z.B. Wasserwellen oder be-
stimmten Arten von seismischen Wellen, ist die
Störung die Auslenkung von Volumenelementen
aus der Gleichgewichtsoberfläche. Bei Schallwel-
len ist die Störung eine Druckschwankung. Man
unterscheidet Longitudinal- und Transversalwel-
len, je nachdem ob die Auslenkung in Ausbrei-
tungsrichtung oder senkrecht dazu geschieht.

komprimiert komprimiert

gestreckt gestreckt

Abbildung 6.9: Longitudinalwelle.

Typische Beispiele von Longitudinalwellen sind
Schallwellen: eine Dichteschwankung (wie in
Abb. 6.9 in einer Feder) läuft entlang der Aus-
breitungsrichtung.

Abbildung 6.10: Magnetrollengerät.

Ein einfaches Beispiel für eine Longitudinalwel-
le ist das in Abb. 6.10 gezeigte Magnetrollenge-
rät: Die Dichteschwankung kann durch manuel-
les Anstoßen erzeugt werden, und die Wechsel-
wirkung zwischen den Rollen wird durch die ma-
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6 Wellen

gnetische Abstoßung bestimmt.

Abbildung 6.11: Transversale Federwelle.

Im Fall der Seilwelle oder der Federwelle in Abb.
6.11 findet die Auslenkung senkrecht zur Bewe-
gungsrichtung statt. In diesen Fällen handelt es
sich um eine Transversalwelle. Ein weiteres Bei-
spiel sind Oberflächenwellen.
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Abbildung 6.12: Elektrisches und magnetisches
Feld einer transversalen elektro-
magnetischen Welle.

Ein wichtiger Unterschied zwischen Longi-
tudinal- und Transversalwellen ist, dass Trans-
versalwellen Polarisationseffekte zeigen: sie kön-
nen z.B. horizontal oder vertikal polarisiert sein,
oder zirkular. Ein Beispiel für transversale Wel-
len sind elektromagnetische Wellen (! Abb.
6.12). Das elektrische und magnetische Feld ste-
hen senkrecht zueinander und zur Ausbreitungs-
richtung. Die beiden Felder zeigen die gleiche
räumliche und zeitliche Abhängigkeit.

Eine der wichtigsten Entdeckungen des letzten
Jahrhunderts war, dass auch die Konstituen-
ten der Materie, also Elementarteichen, Atome
und Moleküle Welleneigenschaften besitzen. Dies
konnte man zunächst für Elektronen zeigen; spä-
ter auch für Neutronen, Atome, und sogar für
Moleküle. Die Wellenlänge dieser Wellen hängt
ab von der Masse und der Geschwindigkeit der
Teilchen, ist aber meist im Bereich von wenigen
nm oder Bruchteilen davon.

6.1.4 Mathematische Beschreibung
harmonischer Wellen

Wellen werden mathematisch durch Wellenfunk-
tionen  (x, t) dargestellt, welche die Auslenkung
als Funktion von Raum und Zeit beschreiben.
Diese muss einer Wellengleichung der Form

@2 

@t2
= v2p

@2 

@x2

gehorchen. Hier stellt  die Auslenkung und vp
die Phasengeschwindigkeit der Welle dar. In drei
Dimensionen lautet die entsprechende Gleichung

@2 

@t2
= v2p

✓
@2 

@x2

+
@2 

@y2
+

@2 

@z2

◆
Wir beschränken uns hier hauptsächlich auf die
Beschreibung harmonischer Wellen, also Wellen
bei denen die Abhängigkeit von Raum und Zeit
einer harmonischen Funktion entspricht. Dies ist
natürlich immer eine Näherung, da in realen Sy-
stemen z.B. die Schwingung sich nie unendlich
lange fortsetzt und das Medium nicht unend-
lich ausgedehnt ist. Trotzdem können viele der
Schlussfolgerungen auf reale Systeme übertragen
werden.

Eine harmonische Welle in einer Dimension, wie
in Abb. 6.4, kann geschrieben werden als

y(x, t) = y
0

cos

✓
2⇡

✓
t

T
� x

�

◆
+ '

◆
= y

0

cos (!t � kx + ') .

Hier bezeichnen y die Auslenkung, x die räumli-
che und t die zeitliche Koordinate, T die Periode
der Welle, � die Wellenlänge, ' die Phase, ! die
Kreisfrequenz und k = 2⇡/� die Wellenzahl.

Die Verallgemeinerung auf mehrere Dimensionen
erhält man, indem man für die Berechnung der
Phase die Beiträge für alle drei Koordinaten ad-
diert:

y(~r, t) = y
0

cos
⇣
!t � ~k · ~r + '

⌘
.
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6 Wellen

~k stellt jetzt den Wellenvektor dar; er steht senk-
recht auf den Phasenflächen, in Ausbreitungs-
richtung der Welle. Offensichtlich kann man die-
sen Fall auf den eindimensionalen Fall zurück-
führen, indem man die x-Achse entlang der Aus-
breitungsrichtung wählt. In diesem Fall wird

~kx = (kx, 0, 0) und das Skalarprodukt ~k ·~r = kxx
reduziert sich auf einen Term. Dies stimmt mit
der Betrachtung der Welle als parallele Phasen-
flächen überein: Das Problem hängt nicht von
den Koordinaten senkrecht zur Ausbreitungs-
richtung ab.

Betrachtet man die Auslenkung an einem festen
Ort x, so erhält man eine einfache Oszillation
(deren Phase von x abhängt):

yx(t) = y
0

cos(!t + 'x) (6.1)

mit

'x = ' � kx.

Die Phase 'x ist ortsabhängig, sie wächst in
diesem Fall linear mit der Koordinate x. Die-
se Funktion beschreibt eine Welle, die von links
nach rechts (also in Richtung positives x) läuft.
Eine Welle, die in entgegengesetzter Richtung
läuft, kann durch einen negativen Wellenvektor
dargestellt werden.

Einsetzen von (6.1) in die Wellengleichung ergibt

@2y

@t2
= �!2y = v2p

@2y

@x2

= �k2v2py.

Somit ist die angegebene Form eine Lösung der
Wellengleichung für vp = !/k.

6.1.5 Lineare Kette

Abbildung 6.13: Modell einer linearen Kette.

Bereits im Kapitel Schwingungen hatten wir ein
Modell diskutiert, in dem Massen durch Federn

verbunden sind (! Abb. 6.13). Diese Schwin-
gungen können sich auch über die Kette ausbrei-
ten, sich also als Wellen fortpflanzen. Dazu er-
weitern wir das Modell auf eine unendlich lange
Kette. Für identische Massen und Federn entlang
der Kette lautet die Bewegungsgleichung für eine
einzelne Masse an der Stelle s

mÿs = �c(2ys � ys�1

� ys+1

).

Die rechte Seite ist eine diskrete Variante der
zweiten Ableitung nach der Raumkoordinate;
dies ist somit eine Verallgemeinerung der Wellen-
gleichung und wir erwarten, dass sich in diesem
System eine harmonische Welle ausbreiten kann.

Diese müsste in komplexer Schreibweise die Form

y(x, t) = y
0

ei(!t�kx)

aufweisen. Da es sich um ein diskretes System
handelt, kann man die Ortskoordinate x durch
den Index s: x = sa ersetzen, wobei a den Ab-
stand zwischen benachbarten Massen im Gleich-
gewicht bezeichnet. Dann wird

ys(t) = y
0

ei(!t�ksa).

Die zweite Ableitung nach der Zeit ist

ÿs = �!2ys.

Zur Auswertung der rechten Seite verwenden wir

ei(!t�k(s+1)a) = ei(!t�ksa)e�ika.

Damit lässt sich die Differenz zur Summe der
Auslenkungen der Nachbarn schreiben als

= 2ys � ys�1

� ys+1

= y
0

ei(!t�ksa)
⇣
2 � eika � e�ika

⌘
= 2ys(1 � cos(ka)).

Die Beschleunigung ÿs wird also proportional zur
Auslenkung ys.
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6 Wellen

6.1.6 Harmonische Longitudinalwelle

Die Bewegungsgleichung ergib

ÿs = �!2ys = �2
c

m
(1 � cos(ka))ys.

Somit ist der obige Wellenansatz eine Lösung der
Bewegungsgleichung wenn

!2 = 2
c

m
(1 � cos(ka)) = 4

c

m

1 � cos(ka)

2
.

Mit

sin2 ↵ =
1 � cos(2↵)

2

kann dies geschrieben werden als

! = 2

r
c

m

����sin ka

2
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Abbildung 6.14: Dispersionsrelation für die li-
neare Kette.

Abb. 6.14 zeigt das Verhalten für den Bereich
0  k  ⇡/a. Für kleine Wellenzahlen, d.h. große
Wellenlängen wird die Frequenz proportional zur
Wellenzahl

! ⇡
r

c

m
ka.

Bei höheren Wellenzahlen (kürzeren Wellenlän-
ge) steigt die Frequenz langsamer. Die Frequenz
erreicht ihren Maximalwert für ka = ⇡, also
dann wenn benachbarte Massen in Gegenphase
schwingen. Damit wird die Kraft c(1–cos(ka))ys
maximal. Ein noch größerer Wellenvektor ist
physikalisch nicht von einem kleineren unter-
scheidbar. Dieses Verhalten findet man allgemein
bei diskreten Gittern.
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ωt - kx = const.

Abbildung 6.15: Phasenflächen in unterschied-
lichen Abständen von einer
Punktquelle.

6.1.7 Phasengeschwindigkeit

Für eine harmonische ebene Welle ist die Aus-
breitungsgeschwindigkeit leicht zu bestimmen.
Die Phasengeschwindigkeit vP gibt an, wie
schnell sich die Phase einer Welle, also z.B.
ein Nulldurchgang, ausbreitet. Wenn die Welle
durch eine Funktion beschrieben wird, ist ein Zu-
stand konstanter Phase dadurch definiert, dass

f(!t � kx + �) = const.,

oder

x =
!t + � � const.

k
.

Abb. 6.15 zeit einige solche Phasenflächen.

Die Phasengeschwindigkeit ist nach Definition

vp =
dx

dt
=

!

k
=

�

T
= �⌫.

Im Beispiel von Kapitel 6.1.6 beträgt sie

! = 2

r
c

m

��sin ka
2

��
k

.

Für kleine Wellenzahlen, ka ⌧ 1 gilt somit

vp =
!

k
=

r
c

m
a.

Für größere Wellenzahlen nimmt die Phasenge-
schwindigkeit ab.

Diese Beziehung kann man für die Messung der
Schallgeschwindigkeit verwenden. Das Experi-
ment in Abb. 6.16 misst die Schallgeschwindig-
keit in Wasser, indem ein “Transducer” eine Ul-
traschallwelle einkoppelt. Die Frequenz dieser
Welle beträgt im Experiment 800 kHz.
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Abbildung 6.16: Messung der Schallgeschwindig-
keit.

λ

Schallwelle

Anregung

Schalldruck

Ort x

Abbildung 6.17: Messresultate an unterschiedli-
chen Orten.

Die Wellenlänge ergibt sich durch die Messung
der eintreffenden Schallwelle an unterschiedli-
chen Orten. Der Schalldruck wird auf dem Os-
zilloskop gegen die Anregungsspannung aufge-
tragen. Sind die beiden in Phase, so erhält man
eine Gerade mit positiver Steigung. Verschiebt
man den Schallaufnehmer um eine halbe Wellen-
länge, so sind die beiden Signale um 180 Grad
außer Phase und die Gerade hat eine negative
Steigung. Abb. 6.17 zeigt eine grafische Darstel-
lung dieses Verhaltens. Im Experiment wurde ei-
ne Wellenlänge von 1.86 mm gemessen. Dies ent-
spricht einer Schallgeschwindigkeit

vp = �⌫ = 8 ·105s�1 ·1, 86 ·10�3m = 1488m/s.

Dies ist in guter Übereinstimmung mit dem Li-
teraturwert von 1480 m/s bei 20�C.

6.1.8 Überlagerung von Wellen;
Gruppengeschwindigkeit

In linearen Systemen können Wellen sich belie-
big überlagern. Dabei entstehen auch interessan-
te neue Phänomene.

 1
Raum / Zeit

Abbildung 6.18: Überlagerung von 2 harmoni-
schen Wellen und resultierende
Schwebung.

Als einfaches Beispiel kann man die Überlage-
rung von zwei harmonischen Wellen betrachten,
wie in Abb. 6.18 gezeigt. Die resultierende Aus-
lenkung ist die Summe

y = y
0

cos(!
1

t � k
1

x) + y
0

cos(!
2

t � k
2

x).

Mit Hilfe der Additionstheoreme für harmoni-
sche Funktionen kann die Summe geschrieben
werden als

y = y
0

cos(
!
1

+ !
2

2
t � k

1

+ k
2

2
x) ·

· cos(
!
1

� !
2

2
t � k

1

� k
2

2
x).

Dies entspricht einer Welle mit durchschnittli-
cher Frequenz ! = (!

1

+!
2

)/2 und Wellenvektor
k = (k

1

+ k
2

)/2, welche mit einer Einhüllenden
moduliert ist. Diese Einhüllende hat selber eine
Frequenz �! = (!

1

� !
2

)/2 und Wellenvektor
�k = (k

1

� k
2

)/2:

y = y
0

cos(!t � kx) cos(�!t ��kx).

An einer gegebenen Stelle entspricht dies einer
Schwebung einer Schwingung. Die Einhüllende
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ist selber eine Welle und bewegt sich mit der
Gruppengeschwindigkeit

vg =
�!

�k
.

 1

Informationsübertragung: Wellengruppen

y = y0 cos(!t � kx)
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Ebene Welle:

Abbildung 6.19: Harmonische Welle und Wellen-
gruppen.

Das ganze kann erweitert werden auf mehr als
2 sinus-förmige Wellen. Jeder endliche Wellen-
zug setzt sich aus einer unendlich großen Zahl
von sinus-förmigen Wellen zusammen, wie z.B.
die Wellengruppen in Abb. 6.19. Die Ausbrei-
tungsgeschwindigkeit der resultierenden Wellen-
gruppe, also der Einhüllenden, ist dann der infi-
nitesimale Grenzwert

vg =
d!

dk
.

Diese unterscheidet sich von der Phasenge-
schwindigkeit wenn die Beziehung zwischen Fre-
quenz und Wellenvektor nicht linear ist. Mit Hilfe
von vp = !/k kann man die Gruppengeschwin-
digkeit ausdrücken als

vg =
d!

dk
=

d

dk
vpk = vp + k

dvp
dk

.

Die beiden unterscheiden sich also dann, wenn
vp von der Wellenzahl abhängt. Man bezeichnet
dies als Dispersion.

6.2 Akustische Wellen

Die Erzeugung, Ausbreitung und Wahrnehmung
von akustischen Signalen wird in der Physik im

Periode

Zeit

Ton Klang Geräusch

Periode

Zeit D
ru
ck
am

pl
itu

de

Zeit

Abbildung 6.20: Akustische Signale als Wellen-
phänomene.

Wesentlichen über die Theorie von Schwingun-
gen und Wellen beschrieben. Wie in Abb. 6.20
dargestellt, entspricht ein Ton einer monochro-
matischen Schwingung oder Welle. Ein Klang
besteht aus mehreren Tönen, deren Frequenzen
ganzzahlige Vielfache sind und stellt deshalb sel-
ber ein periodisches Signal dar. Ein allgemeines
Geräusch ist nicht periodisch und enthält des-
halb sehr viele Frequenzkomponenten.

6.2.1 Druckwellen

Kompression

Ausdehnung

x
v

Abbildung 6.21: Druckwelle in einem Rohr.

In der Luft wird Schall durch Druckwellen über-
tragen, wie schematisch in Abb. 6.21 dargestellt.
Die Auslenkung ist in diesem Fall eine Ortsän-
derung der Luftmoleküle oder eine lokale Druck-
änderung (Kompression).

p(x + dx, t)

χ(x,t)

χ(x+dx,t)

A�A

x+dxx x+χ(x,t) x+dx+χ(x+dx,t)

p(x, t)

Abbildung 6.22: Verschiebung und Ausdehnung
eines Volumenelements.

Als Modell verwenden wir ein Rohr, in dem sich
eine harmonische Welle ausbreitet, wie in Abb.
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6.22 gezeigt. Die Wände des Rohrs haben da-
bei keine Bedeutung und tauchen in der Lösung
nicht auf. Für die Herleitung der Wellengleichung
betrachten wir die Kraft auf ein Volumenelement
V = A dx, wobei A die Querschnittsfläche des
Rohrs darstellt. Das Wegelement dx soll klein
sein im Vergleich zur Wellenlänge. Die Kraft auf
das Volumenelement kann als Differenz der Nor-
malkräfte auf beiden Seiten berechnet werden:

F = A[p(x) � p(x + dx)] = �A
dp

dx
dx.

Die Druckänderung dp ist über den Kompressi-
onsmodul K an eine Volumenänderung dV ge-
koppelt:

dp = �K
dV

V
.

Wir stellen die Auslenkung als eine Verschie-
bung �(x, t) einer (imaginären) Trennwand zwi-
schen benachbarten Volumenelementen dar. Da-
mit kann die Volumenänderung dargestellt wer-
den als Unterschied in der Verschiebung

dV = A(�(x + dx)–�(x)) = A
d�

dx
dx.

Mit �V = A dx erhalten wir für die Druckände-
rung

dp = �K
d�

dx

und für die Kraft

F = AK
d2�

dx2

dx.

Damit erhalten wir eine Bewegungsgleichung für
die Auslenkung s des Massenelementes ⇢V :

⇢Adx
d2�

dt2
= �A

dp

dx
dx = AK

d2�

dx2

dx.

Division durch ⇢Adx ergibt die Wellengleichung

d2�

dt2
=

K

⇢

d2�

dx2

.

6.2.2 Schallwellen

Die Schallgeschwindigkeit, d.h. die Geschwindig-
keit einer Schallwelle ist somit eine Konstante
für ein gegebenes Medium, unabhängig von der
Frequenz und Wellenlänge. Sie beträgt

vS =

s
K

⇢
. (6.2)

Sie hängt jedoch stark vom Material ab. Ein ho-
her Kompressionsmodul (d.h. niedrige Kompres-
sibilität) erhöht die Schallgeschwindigkeit, da ei-
ne Störung sich stark auf ein benachbartes Vo-
lumenelement auswirkt. Eine geringe Dichte er-
höht ebenfalls die Schallgeschwindigkeit, da die
Volumenelemente rascher beschleunigt werden.
Dies kann man z.B. beim Vergleich unterschied-
licher Gase sehen: Je leichter das Molekularge-
wicht, desto größer die Schallgeschwindigkeit.

Eine analoge Gleichung kann man für die Ände-
rungen des Druckes herleiten:

p(x, t) = p
0

+�p(x, t) ,

An die Druckänderung ist auch eine Dichteände-
rung gekoppelt; die beiden sind in guter Nähe-
rung proportional zueinander:

@p

@⇢

����
⇢0

= ↵ =
1

⇢
0


.

Hier ist

 = � 1

V

dV

dp

die (adiabatische) Kompressibilität. Damit gilt
für kleine Verschiebungen und Dichteschwankun-
gen

p(x, t) = p
0

+�p(x, t) = p
0

+↵ ·�⇢(x, t) . (6.3)

Die einfachsten Lösungen einer Wellengleichung
sind ebene Wellen. In diesem Fall entspricht das

�(x, t) = �
0

sin(!t � kx), c =
!

k
. (6.4)
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Abbildung 6.23: Klingel in einem Vakuumbehäl-
ter.

Hier stellen ! die (Kreis-)Frequenz, k die Wel-
lenzahl und c die Phasengeschwindigkeit dar.

Dass Schall wirklich als Druckwelle in Luft über-
tragen wird sieht man wenn man die Luft ent-
fernt. In Abb. 6.23 wird die Klingel in einem
Vakuumgefäß aufbewahrt. Wird daraus die Luft
entfernt, ist die Klingel nicht mehr.

6.2.3 Schallimpedanz und Intensität

Die Geschwindigkeit v, mit der sich die Luftmo-
leküle infolge der Druckschwankungen hin- und
herbewegen, ist gegeben als die Ableitung der
Auslenkung �

v(x, t) =
@�

@t
= !�

0

cos(!t � kx) .

Man bezeichnet die Amplitude

v
0

= !�
0

dieser Geschwindigkeit als Schallschnelle. Die-
ser Beitrag zur gesamten Geschwindigkeit der
Moleküle ist im Allgemeinen wesentlich kleiner
als der Anteil der thermischen Bewegung: an der
Hörschwelle liegt die Schallschnelle im Bereich

von einigen 10 nm/s, die thermische Geschwin-
digkeit vth =

p
3kBT/m bei ⇡100 m/s.

Die Druckschwankung der Welle ist, wie die
Dichteschwankung, gegeben durch die räumliche
Ableitung der Auslenkung,

�p(x, t) = p
0

@�

@x
.

Für eine harmonische Welle ist dies,

�p(x, t) = �p
0

k�
0

cos(!t � kx)

also einer harmonischen Welle mit Amplitude
�p

0

= p
0

k�
0

:

�p(x, t) = ��p
0

cos(!t � kx) .

Damit hat sie die gleiche raum-zeitliche Abhän-
gigkeit wie v(x, t). Ihre Amplituden sind propor-
tional zueinander,

�p
0

= ⇢
0

!�
0

!

k
= ⇢

0

v
0

c . (6.5)

Die Proportionalitätskonstante

Z :=
�p

0

v
0

= ⇢
0

c (6.6)

zwischen Schallschnelle und Schalldruck wird als
Wellenwiderstand oder Schallimpedanz bezeich-
net. Mit Gleichung (6.2) kann sie auch geschrie-
ben werden als

Z =
�p

0

v
0

= ⇢
0

c =

r
⇢
0


.

In Luft und Wasser beträgt sie

Z
Luft

= 1, 2
kg

m3

340
m

s
= 430

Ns

m3

,

Z
Wasser

= 103
kg

m3

1460
m

s
= 1, 46 · 106

Ns

m3

.

Die Schallimpedanzen der beiden Medien, welche
für das Hören am wichtigsten sind, unterscheiden
sich somit um einen Faktor

Z
Wasser

Z
Luft

⇡ 3400.
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6.2.4 Intensität und Lautstärke

Die Energiedichte einer Schallwelle ist gegeben
durch die Summe aus kinetischer und Druckener-
gie,

w = wkin + welast.

Die kinetische Energiedichte ist

wkin =
⇢v2

2
.

Für die Herleitung der elastischen Energie ver-
wendet man die Definition des Kompressionsmo-
duls

dp = �K
dV

�V
.

Hier ist dp die Druckänderung durch die Schall-
welle und �V das betrachtete Volumen. Damit
ist die Änderung der elastischen Energie des Vo-
lumens �V bei einer Erhöhung des Drucks

dwelast =
dEp
�V

= �p dV

�V
=

1

K
pdp.

Integration ergibt die elastische Energie pro Vo-
lumen

welast =
1

2

1

K
p2.

Für eine Schallwelle wird dies

welast =
1

2

1

K
⇢2�2

0

!4

k2

sin2(!t � kx).

Mit

!2

k2

v2p =
K

⇢

kann dies geschrieben werden als

welast =
1

2
⇢2�2

0

!2 sin2(!t � kx).

Ein Vergleich mit der kinetischen Energiedichte

wkin =
1

2
⇢2�2

0

!2 sin2(!t � kx)

zeigt, dass sie identisch sind,

welast = wkin.

Somit ist die gesamte Energiedichte

w = wkin + welast = ⇢2�2

0

!2 sin2(!t � kx).

Die Energie ist somit sinusförmig entlang der
Welle verteilt, wobei die Periode der halben Wel-
lenlänge entspricht. Die Energiedichte einer me-
chanischen Welle ist proportional zum Quadrat
der maximalen Geschwindigkeit y

0

! der Elemen-
te. Bei der maximalen Geschwindigkeit v = v

0

verschwindet die elastische Energie und die Ener-
giedichte besteht nur aus kinetischer Energie

w =
1

2
⇢
0

v2
0

.

Mit Hilfe von Gleichung (6.5) oder (6.6) kann das
geschrieben werden als

w =
1

2
⇢
0

�p2
0

⇢2
0

c2
=

1

2

�p2
0

⇢
0

c2
.

Daraus ergibt sich die Intensität als Produkt aus
Energiedichte und Ausbreitungsgeschwindigkeit:

I =
�E
A�t

= wc =
1

2

�p2
0

⇢
0

c
=

1

2

�p2
0

Z
.

Der Schalldruck (die Amplitude �p
0

) und die
Frequenz der Schallschwingung entscheiden, ob
und wie laut wir einen Ton wahrnehmen. Der
Frequenzbereich des menschlichen Gehörs reicht
von etwa 16 Hz bis rund 20 kHz, wobei die
Grenzen nicht scharf sind und individuell va-
riieren. Schwingungen mit großem Schalldruck
bewirken Hörempfindungen größerer Lautstärke
als Schwingungen mit geringem Schalldruck. Von
dem leisesten noch wahrnehmbaren 2 kHz-Ton
bis zur Schmerzgrenze erstreckt sich der Bereich
von 20 µPa bis zu 20 Pa (Effektivwerte).

An der Hörschwelle (20 µPa) beträgt die Intensi-
tät

I
0

=
1

2

(2 · 10�5)2

430

W

m2

⇡ 10�12

W

m2

.

An der Schmerzschwelle sind es etwa 12 Größen-
ordnungen mehr, also Imax ⇡ 1 W/m2. Aus Glei-
chung (6.5) erhält man die Schallschnelle an der
Hörgrenze zu

v
0

=
�p

0

⇢
0

c
=

2 · 10�5

1, 2 · 340

m

s
⇡ 5 · 10�8

m

s
.
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Bei einer Frequenz von 1 kHz entspricht dies ei-
ner Auslenkung von

�
0

=
v
0

!
⇡ 10�11m,

also weniger als einem Atomdurchmesser (siehe
6.2.6).

6.2.5 Physiologische
Lautstärken-Skala

Das menschliche Ohr ist gegenüber demjenigen
von Reptilien stark verbessert: während wir Töne
mit Frequenzen von bis zu 20 kHz hören können,
liegt die Grenze bei Reptilien bei etwa 2 kHz. Sei-
ne Empfindlichkeit liegt nahe beim theoretischen
Maximum.

Schalldruck / Pa Schallpegel / dB SPL

Sprache

kl
as

sis
ch

e 
M

us
ik

Abbildung 6.24: Schalldruck und Schallpegel für
verschiedene Geräusche.

Das Gehör nimmt den Schalldruck in etwa lo-
garithmisch wahr. Deswegen, und weil die aku-
stisch wahrnehmbaren Schalldrücke 6 Zehner-
potenzen umfassen, wird eine logarithmische
Schalldruckskala verwendet. Abb. 6.24 gibt
einen Überblick über typische Lautstärken. Um
den Schalldruck dimensionslos zu machen, wird

ein Referenzdruck benötigt. Die Definition des
Schallpegels L lautet:

L = 20 · log

✓
�p

�p
0

◆
dB = 10 · log

✓
I

I
0

◆
.

Wenn man als Bezugsgröße die Wahrnehmungs-
grenze des menschlichen Gehörs nimmt, dann ist
�p

0

/
p

2 = 20 µPa (I
0

= 10�12 W/m2). Die so
berechneten Schallwerte werden mit dB SPL
(Sound Pressure Level) bezeichnet.

Musik
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Abbildung 6.25: Kurven gleicher Lautstärke. Bei
1 kHz stimmen dB SPL-Skala
und Phon- oder dB(A)-Skala
überein.

Diese physikalische Definition ist in der Au-
diologie und Akustik üblich. Sie berücksich-
tigt jedoch nicht den physiologischen Lautstär-
keneindruck, welcher auch von der Frequenz
abhängt. Dafür verwendet man ein anderes
Maß: das Phon oder dB(A). Geräusche mit
dem gleichen dB(A) Wert werden subjektiv als
gleich laut empfunden. Bei einer Frequenz von
1 kHz stimmt die dB(A)-Skala per definitio-
nem mit der dB SPL-Skala überein. Für andere
Frequenzen werden zur Umrechnung Frequenz-
Bewertungskurven verwendet, das sind Kurven
gleicher Lautstärke, wie in Abb. 6.25 gezeigt.

6.2.6 Empfindlichkeitsgrenze

Die Detektionsschwelle von 0 dB entspricht ei-
ner Intensität von I

0

= 10�12 W/m2. Das Trom-
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melfell hat eine Fläche von ⇡ 0, 5 cm2, so dass
die gesamte aufgenommene Leistung bei etwa
Pmin = 0, 5 · 10�16 W liegt.

Man kann dies vergleichen mit der thermischen
Leistung auf Grund der Brown’schen Bewegung.
Die thermische Energie pro Freiheitsgrad beträgt

kBT = 1, 4 · 10�23 · 300 J = 4, 2 · 10�21 J.

Bei einer Bandbreite des Ohrs von �⌫ = 20 kHz
ist die thermische Leistung demnach

kB T �⌫ = 4, 2 ·10�21 J ·20000 s�1 ⇡ 10�16W.

Die aufgenommene Leistung einer Schallwelle an
der Hörgrenze entspricht somit in etwa der ther-
mischen Leistung. Somit arbeitet das menschli-
che Ohr nahe bei der physikalischen Grenze für
die Empfindlichkeit.

Außerdem kann man die entsprechende Auslen-
kung berechnen, aus der Beziehung zwischen
Schallschnelle v

0

und Druckamplitude �p
0

:

v
0

= ! �
0

=
�p

0

Z
=
�p

0

⇢
0

c
.

Auflösen nach der Auslenkungsamplitude �
0

gibt

�
0

=
�p

0

! ⇢
0

c
.

Für eine Schallwelle an der Hörgrenze, d.h. mit
�p

0

= 20 µPa und einer Frequenz von 1 kHz
erhält man

�
0

=
2 · 10�5

2⇡103 · 1, 2 · 300
m ⇡ 2 · 10�5

2 · 106
m

= 10�11m = 10pm.

Die Auslenkung an der Detektionsschwelle ist al-
so weniger als ein Atomdurchmesser.

6.3 Mechanische Wellen

6.3.1 Druckwellen in Flüssigkeiten
und Festkörpern

Druckwellen findet man nicht nur in Gasen
sondern auch in Flüssigkeiten und Festkörpern.

Ein formaler Unterschied zwischen kondensierten
Materialien und Gasen ist, dass hier die Bezie-
hung zwischen Volumenänderung und Normal-
spannung über den Elastizitätsmodul E definiert
ist:

� = �E
d�

dx
.

Damit wird die Wellengleichung

d2�

dt2
=

E

⇢

d2�

dx2

.

und die Schallgeschwindigkeit

vS =

s
E

⇢
.

Abbildung 6.26: Federmodell eines Festkörpers.

Festkörpern unterscheiden sich von Flüssigkei-
ten und Gasen im Wesentlichen durch ihr Form-
gedächtnis. Dies bedeutet, dass hier auch eine
Scherspannung existieren kann, also eine rück-
treibende Kraft parallel zu einer Ebene. Abb.
6.26 zeigt ein Federmodell eines Festkörpers, wel-
cher die unterschiedlichen rücktreibenden Kräfte
plausibel macht: bei einer lateralen Auslenkung
eines Volumenelements wirkt eine rücktreibende
Kraft und eine Kopplung an das benachbarte Vo-
lumenelement. Solche Störungen breiten sich als
Transversalwellen aus; ihre Phasengeschwindig-
keit ist gegeben durch das Verhältnis von Schub-
modul G zu Dichte,

vp =

s
G

⇢
.
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Die Phasengeschwindigkeit in einem Material ist
somit um so höher je starrer das Material und
je geringer die Dichte ist. Am größten sollte
die Ausbreitungsgeschwindigkeit somit in stei-
fen, leichten Materialien sein. Umgekehrt können
wir die Messung der Schallgeschwindigkeit als ei-
ne direkte Messung der Kompressibilität, resp.
des Kompressionsmoduls betrachten.

Dichte [kg/m3] vs [m/s]
Luft 1.2 344
CO

2

1.98 266
Wasserstoff 0.09 1260
Wasserdampf 0.54 450
Wasser 1000 1400
Eis 920 3200
Stahl 7700 5050
Glas 2500 5300
Diamant 3520 18000

Tabelle 6.1: Schallgeschwindigkeiten in unter-
schiedlichen Stoffen.

Tabelle 6.1 vergleicht die Dichte und die Schall-
geschwindigkeit für unterschiedliche Stoffe. Bei
Gasen findet man Schallgeschwindigkeiten im
Bereich 300-450 m/s, außer bei Wasserstoff, der
eine sehr geringe Dichte aufweist. In Flüssigkei-
ten ist die Schallgeschwindigkeit um 1500 m/s.
Dies ist bemerkenswert, da sowohl die Dichte,
wie auch die Komprimierbarkeit sich um rund
drei Größenordnungen unterscheiden. Da jedoch
nur das Verhältnis eingeht, kompensieren sie
sich. Bei Festkörpern ist die Dichte etwas höher
als in Flüssigkeiten, aber die Steifigkeit sehr viel
höher. Darum werden hier die Schallgeschwindig-
keiten maximal. Der Extremwert wird erreicht in
Diamant, das für einen Festkörper relativ leicht
ist, gleichzeitig ist es eines der härtesten Mate-
rialien überhaupt.

6.3.2 Seismische Wellen

Sowohl longitudinale Druck- als auch transversa-
le Scherwellen spielen bei Erdbeben eine Rolle.
Die so genannten P- (Primär-) und S- (Sekundär-
) Wellen breiten sich im Volumen aus. Wie in

Abbildung 6.27: Ausbreitung von Erdbebenwel-
len.

Abb. 6.27 gezeigt, findet man außerdem Wellen,
die sich nur entlang der Oberfläche ausbreiten.

 1

l α

∆x

Elastizitätsmodul Schubmodul
Material E / GPa G/GPa

Eis 9.1 3.9
Granit 55 30

Al 71 26
Stahl 206 80.4

Diamant 1100 478

1

Abbildung 6.28: Elastische Konstanten in unter-
schiedlichen Materialien.

Wie in Abb. 6.28 gezeigt, ist der Elastizitäts-
modul E immer größer ist als das Schermodul
G. Dementsprechend haben longitudinale Druck-
wellen eine höhere Ausbreitungsgeschwindigkeit
als für transversale Scherwellen.

Diese Erwartung stimmt mit Messungen bei seis-
mischen Wellen überein: Die Primärwellen, wel-
che als erste bei einer Messstation eintreffen, sind
Druckwellen, also Longitudinalwellen, während
die später eintreffenden Sekundärwellen Scher-
wellen sind. Abb. 6.29 zeigt die Laufzeiten dieser
Wellentypen als Funktion der Entfernung. Die
Zerstörungskraft von S-Wellen ist größer als die
von P-Wellen. Die P-Wellen können deshalb als
(kurzzeitige) Vorwarnung vor den S-Wellen ge-
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Abbildung 6.29: Laufzeit gegen Distanz von
unterschiedlichen Erdbebenwel-
len.

nutzt werden.

Neben den P- und S-Wellen gibt es auch Tor-
sionswellen, welche sich an der Oberfläche aus-
breiten und als Love-Wellen bezeichnet werden.
Rayleigh-Wellen sind ebenfalls Oberflächenwel-
len, sie gleichen aber Meereswellen.

6.3.3 Transversalwellen in einer
Massenkette

yj-1 yj yj+1

a
m

Abbildung 6.30: Transversalwelle auf einer Ket-
te aus Massen und Federn.

Wir betrachten die transversale Auslenkung von
Massenpunkten, welche durch Federn verbunden
sind, wie in Abb. 6.30 gezeigt. Wir nehmen an,
dass die beiden transversalen Koordinaten von-
einander und von der longitudinalen Koordinate
unabhängig sind, d.h. wir nehmen an dass die
Abstände in x-Richtung konstant sind, so dass
die potenzielle und kinetische Energie nur durch

die y-Verschiebung zustande kommen.

αj
αj-1

Sj

Sj-1

Abbildung 6.31: Gleichgewicht der longitudina-
len Kräfte in der Federkette.

Unter dieser Voraussetzung muss die x-
Komponente der Kraft im Gleichgewicht sein,
d.h. die Kräfte auf benachbarte Segmente stehen
im Verhältnis

Sj�1

cos ↵j�1

= Sj cos ↵j ,

wobei Sj die Kraft darstellt, welche die Feder
j auf ihre Endpunkte ausübt, wie in Abb. 6.31
dargestellt. Für kleine Auslenkungen, d.h. ↵ ⌧
1, ist

cos ↵j�1

⇡ cos ↵j ⇡ 1,

und damit

Sj�1

⇡ Sj ⇡ S

d.h. alle Kräfte sind nach Betrag gleich und die
Spannung der Kette ist über ihre Länge kon-
stant.

Die transversale Kraft in y-Richtung ist

Fj = �S sin ↵j�1

+ S sin ↵j

⇡ �S

a
(yj � yj�1

) +
S

a
(yj+1

� yj)

=
S

a
(yj+1

–2yj + yj�1

), (6.7)

wobei yj die Auslenkung der j’ten Masse be-
schreibt. Diese Bewegungsgleichung hat die glei-
che Form wie bei den longitudinalen Wellen; le-
diglich die Kraftkonstante ist nicht mehr die Fe-
derkonstante selber. Somit sollte eine Transver-
salwelle die gleiche Form haben wie eine Longi-
tudinalwelle.

Dies beinhaltet auch die gleiche Dispersionsre-
lation (! Abb. 6.32), d.h. die maximale Fre-
quenz wird erreicht wenn die Wellenlänge dem

256



6 Wellen

Abbildung 6.32: Auslenkung für unterschiedli-
che k-Vektoren.

doppelten Abstand zwischen benachbarten Ato-
men entspricht,

k =
⇡

a
=

2⇡

�
! � = 2a.

Die Proportionalitätskonstante zwischen der
zweiten Ableitung der Auslenkung und der Kraft
ist jedoch nicht die Federkonstante c, sondern der
Quotient S/a aus Federkraft und Abstand. Da-
mit wird die Phasengeschwindigkeit einer Trans-
versalwelle abhängig von der Spannung der Ket-
te,

! = 2

r
S

am

����sin ka

2

���� .

6.3.4 Energie einer Transversalwelle

Ähnlich wie Longitudinalwellen transportieren
auch Transversalwellen Energie. Für ihre Berech-
nung betrachten wir als Modell zunächst eine lo-
kalisierte Auslenkung, die sich nach rechts be-
wegt. Offenbar ist in diesem System die Masse
an der Spitze des Wellenberges diejenige mit der
größten Energie. Wenn die Welle sich bewegt,
wird somit Energie transportiert. Für die Berech-
nung der Energieübertragung beginnen wir mit
der Schwingungsenergie eines Elementes,

E = Ekin + Epot =
1

2
mẏ2 +

1

2
cy2,

wobei c die Kraftkonstante bezeichnet. Für har-
monische Wellen kann dies geschrieben werden

als

E =
m

2
(ẏ2 +

c

m
y2)

=
m

2
(ẏ2 + !2y2)

=
m

2
!2y2

0

(sin2 !t + cos2 !t)

=
m

2
!2y2

0

.

Für kontinuierliche Systeme können wir diesen
Ausdruck in differenzieller Form schreiben:

dE =
⇢ dV

2
!2y2

0

.

Die Energiedichte beträgt somit

w =
dE
dV

=
⇢

2
!2y2

0

,

wiederum proportional zum Quadrat der Ampli-
tude und zum Quadrat der Frequenz.

Mit der Ausbreitung der Welle wandern sowohl
potenzielle wie auch kinetische Energie mit der
Welle mit. Die Intensität der Welle, also die
Energie, welche pro Zeit und Flache transpor-
tiert wird, ist

I = w vP ,

d.h. die Intensität ist gleich der Energiedichte
mal der Phasengeschwindigkeit. Da die Energie-
dichte proportional zum Quadrat der Auslen-
kung, also zur Amplitude der Welle ist, gilt of-
fenbar I / y2

0

, d.h. die Intensität einer Welle ist
proportional zum Quadrat ihrer Amplitude.

6.3.5 Seilwellen

Wenn wir den kontinuierlichen Grenzfall a ! 0
betrachten, erhalten wir eine Saite oder ein Seil.

Eine seitliche Auslenkung eines gespannten Seils
oder einer Feder wird als Transversalwelle über-
tragen. Wie bei der Kette ist die Spannkraft des
Seils konstant über die Länge des Seils.

Für die Beschreibung von Seilwellen betrachten
wir ein Volumenelement zwischen den Positionen
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Abbildung 6.33: Kräfte auf ein Seilstück.

x und x + dx, wie in Abb. 6.33 gezeigt. Hier be-
schreibt x die Koordinate entlang der Saite, y(x)
die Auslenkung. An beiden Endflächen greifen
Kräfte an, welche senkrecht auf die Endflächen
wirken. Ihre Richtung wird parametrisiert durch
den Winkel

↵(x) = tan�1

dy

dx
⇡ dy

dx
.

Die Näherung ist gültig für kleine Auslenkungen,
wo

sin ↵ ⇡ tan ↵ ⇡ ↵ ⇡ dy

dx
, cos ↵ ⇡ 1.

Der Betrag der beiden Kräfte ist gegeben durch
die Saitenspannung und damit gleich,

|F (x)| = |F (x + dx)| = F.

Die y-Komponenten der Kräfte an beiden Enden
des Volumenelementes addieren sich zu

dFy = Fy(x) + Fy(x + dx)

= F [sin ↵(x + dx) � sin ↵(x)]

und damit

dFy = F
d sin ↵

dx
dx ⇡ F

d2y

dx2

dx.

Dies ist die infinitesimale Form von Gleichung
(6.7). Diese resultierende Kraft wirkt als Rück-
stellkraft auf das Massenelement dm = ⇢Adx,
wobei ⇢ die Dichte und A den Querschnitt der
Saite darstellen. Damit erhalten wir die Bewe-
gungsgleichung

dm a = ⇢Adx
d2y

dt2
= F

d2y

dx2

dx

oder

d2y

dt2
=

F

⇢A

d2y

dx2

.

Dies ist die Differentialgleichung, welche die Aus-
breitung der Welle auf einer gespannten Saite be-
schreibt. Die Phasengeschwindigkeit beträgt so-
mit

vp =

s
F

⇢A
,

d.h. sie ist proportional zum Verhältnis von
Spannung des Seils zur Massendichte ⇢A pro
Längeneinheit. Dicke, schwach gespannte Seile
oder Saiten ergeben somit niedrige Frequenzen,
leichte, stark gespannte eine hohe Frequenz. Die
Abhängigkeit von der Spannung der Saite kann
wieder leicht verstanden werden da ohne Span-
nung keine rücktreibende Kraft existiert. Die Ab-
hängigkeit von der Massendichte (pro Länge) ist
die gleiche wie bei allen Arten von Materiewel-
len, die wir bisher diskutiert hatten.

6.3.6 Wellen in 2D und 3D

Zweidimensionale Systeme wie Oberflächen und
Membranen (z.B. Trommeln) zeigen eine Reihe
von interessanten Wellenphänomenen. Man fin-
det hier ebene Wellen, wie z.B. die Wellen, wel-
che am Meer auf den Strand treffen, oder Kugel-
wellen, wenn ein Stein ins Wasser geworfen wird.

Bei Membranen werden die Lösungsfunktionen,
also die entstehenden Wellen unter anderem
durch die Randbedingungen bestimmt. Stehwel-
len kann man sichtbar machen, z.B. indem man
ein Pulver darauf streut. Wir die Membran zu
Schwingungen angeregt, sammelt sich das Pul-
ver in den Knoten der Welle.

Die Knotenlinien können sichtbar gemacht wer-
den, indem man die Membran mit einem Pulver
bestreut. Wie in Abb. 6.34 gezeigt, bleibt das
Pulver in den Knotenlinien liegen, an allen an-
deren Punkten wird es durch die Schwingungen

258



6 Wellen
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Frequenz: x 1: 0...100 kHz
(Einstellung mit dem Feinstellpoti)
NF-Verstärker: 9 – 12 Skt

Die Verstärkung muss je nach Mode geeignet eingestellt werden, da sonst zu viel Salz
von der Platte springt.

 
Den Salzstreuer mit Kochsalz füllen und die Metallplatte gleichmäßig bestreuen.
 
Die Metallplatte formatfüllend mit der Videokamera aufnehmen. Die

Tafelstrahler einschalten und die Neonröhrenbeleuchtung über der Platte ausschalten, da sie sich in der Membran spiegelt.
 

 
 
 

 
 
 
 

Experiment:
 
Schwingungsmoden von zentrisch eingespannten Metallplatten
Die Erregerfrequenz wird von ca. 10 Hz ausgehend langsam erhöht, bis sich durch
die Bewegung der Salzkörner eine stabile Mode ankündigt.
Mit dem Feinstellpoti wird die Mode genau eingestellt und gegebenenfalls die
Amplitude am Verstärker und die Frequenz nachreguliert. Besonders bei höheren Frequenzen ist eine Erhöhung von Amplitude und
Frequenz erforderlich.
 

 
Die einzelnen Moden haben einen eng begrenzten Frequenzbereich, sodass
die Einstellung etwas schwierig ist, vor allem bei höheren Moden.
Ihre Form ist nicht immer reproduzierbar.
 
Es sind folgende Metallplatten vorhanden:
 

Abbildung 6.34: Beispiel einer Chladni’schen
Klangfigur.

aufgeworfen. Die einzelnen Moden können entwe-
der durch die geeignete Frequenz angeregt wer-
den, wenn man eine harmonische Welle verwen-
det, oder mit Hilfe eines Bogens, indem man an
der geeigneten Stelle über den Rand streicht.

Abbildung 6.35: Knotenlinien auf einem Gitar-
renboden.

Vergleichbare Knotenlinien findet man auf allen
Arten von schwingenden zweidimensionalen Sy-
stemen, wie z.B. den Resonanzkörpern von Mu-
sikinstrumenten. Abb. 6.35 zeigt die gerechneten
Knotenlinien für einen Gitarrenboden, Abb. 6.36
die gemessenen Knotenlinien für ein Trommel-
fell. Wie bei der rechteckigen Platte kann man
auch bei kreisförmigen Platten die Knotenlinien
der Eigenmoden sichtbar machen, indem man sie
mit Sand bestreut.

In 3 Dimensionen lautet die Wellengleichung

�A(~r, t) � 1

c

@2A(~r, t)

@t2
= 0.

Die einfachsten Lösungen sind ebene Wellen

A(~r, t) = A
0

sin(~k · ~r � !t)

Abbildung 6.36: 6 unterschiedliche Moden als
Chladni’sche Klangfiguren [aus
Spektrum der Wissenschaft].

mit dem Wellenvektor

~k =

0@ kx
ky
kz

1A .

Abbildung 6.37: Akustische Mode in der Sonne.

Abb. 6.37 zeigt als Beispiel eine akustische Mo-
de in der Sonne. Solche Schwingungen können in
der Astronomie gemessen werden. Aus den ge-
messenen Schwingungsfrequenzen kann man In-
formationen über das Innere der Sonne erhalten.

6.3.7 Übersicht
Phasengeschwindigkeiten

Die Ausbreitungsgeschwindigkeit einer harmoni-
schen Welle wird bestimmt durch die Wellenglei-
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chung

d2y

dt2
= v2p

d2y

dx2

.

Die Phasengeschwindigkeit beträgt für

Druckwellen in Gasen und Flüssigkeiten

vp =

s
K

⇢

mit K: Kompressionsmodul; ⇢: Dichte

Longitudinalwellen in Festkörpern

vp =

s
E

⇢

mit E: Elastizitätsmodul

Torsionswellen in dünnen Rundstäben

vp =

s
G

⇢

mit G: Schubmodul

Seilwellen

vp =

s
F

⇢A

mit F Zugkraft, ⇢ Dichte und A Querschnitt des
Seils.

6.4 Ausbreitung

6.4.1 Reflexion und Transmission

Ändert sich ein Parameter des Mediums, wie
z.B. Schallgeschwindigkeit oder Schallimpedanz,
so führt dies zu Reflexionen: Ein Teil der Welle
ändert ihre Richtung. Der einfachste Fall ist der
einer vollständigen Reflexion einer eindimensio-
nalen Welle, z.b. wenn eine Seilwelle an einem

It

Ie

Ir

Z1 Z2

Abbildung 6.38: Reflexion einer Welle an einer
Grenzfläche.

Fixpunkt reflektiert wird. Das gleiche gilt für an-
dere Arten von Wellen, wie z.B. Schallwellen.

Abb. 6.38 zeigt als einfachstes Beispiel eine Wel-
le, die vom Gebiet 1 mit Dichte ⇢

1

, Schallge-
schwindigkeit c

1

und Schallimpedanz Z
1

= ⇢
1

c
1

in ein Gebiet 2 (⇢
2

, c
2

) mit anderer Wellenim-
pedanz Z

2

= ⇢
2

c
2

übertritt. Für jede Art von
Wellen findet man in einem solchen Fall, dass
ein Teil der Welle reflektiert wird.

Für den einfachsten Fall nimmt man an, dass
das System sich linear verhält, dass also ei-
ne Proportionalität zwischen einfallender, reflek-
tierter und transmittierter Welle besteht. In die-
sem Fall betrachtet man eine Welle, welche senk-
recht auf die Grenzfläche einfällt und berech-
net die Reflexions- und Transmissionskoeffizien-
ten aus der Energieerhaltung: Die auf die Grenz-
fläche einfallende Energie wird entweder trans-
mittiert oder reflektiert. Somit gilt

Ie = Ir + It .

Der Ausdruck I = 1

2

⇢
0

!2�2c für die Schallin-
tensität kann umgeschrieben werden als I =
1

2

Z!2�2. Die Frequenz ist für alle Wel-
len die gleiche. Damit wird die Energie-
Erhaltungsgleichung zu

Z
1

�2

e0 = Z
1

�2

r0 + Z
2

�2

t0 .

Hier stellen �e0, �r0 und �t0 die Amplituden der
drei Wellen dar. Außerdem muss für die Auslen-
kung der Wellen die Stetigkeitsbedingung

�e(0) + �r(0) = �t(0)

an der Grenzfläche erfüllt sein. Damit erhält
man ein quadratisches Gleichungssystem mit
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zwei Gleichungen für die beiden Amplituden �r0

und �t0. Lösen des Gleichungssystems ergibt die
Transmissions- und Reflexionskoeffizienten:

�r0

�e0
=

Z
1

� Z
2

Z
1

+ Z
2

;
�t0

�e0
=

2Z
1

Z
1

+ Z
2

.

Die physikalische Ursache für die Reflexion ist
somit, dass mit nur einer Welle nicht Energie-
erhaltung und Stetigkeit gleichzeitig erfüllt sein
können.

 1

einlaufende Welle

reflektierte Welle S
ei

l f
re

i (
Z 2

=0
) :

 k
ei

n 
P

ha
se

ns
pr

un
g

S
ei

l f
es

t (
Z 2

=∞
) :

 P
ha

se
ns

pr
un

g

Abbildung 6.39: Reflexion einer Seilwelle bei lo-
sem oder fixem Ende.

Offenbar ist |�r| = �e sowohl wenn Z
2

= 0 wie
auch wenn Z

2

= 1 ist. Abb. 6.39 vergleicht die
beiden Fälle für eine Seilwelle. Z = 0 bedeutet
hier, dass das Seilende frei beweglich ist, Z =
1 dass es fixiert ist. Beide Male wird die Welle
vollständig reflektiert. Im ersten Fall (Z

2

= 0)
hat die reflektierte Welle das gleiche Vorzeichen
wie die einlaufende Welle �r = �e , im zweiten
Fall ist das Vorzeichen invertiert, �r = ��e .

Für die Intensitäten I / �2 erhält man

It
Ie

= 4
Z
1

Z
2

(Z
1

+ Z
2

)2
(6.8)

und

Ir
Ie

=
(Z

1

� Z
2

)2

(Z
1

+ Z
2

)2
.

Möchte man Reflexionen vermeiden, so muss of-
fenbar Z

1

= Z
2

sein, d.h. die Impedanzen der
beiden Medien müssen gleich sein.

Eine interessante Konsequenz davon ergibt sich
für das menschliche Ohr. Die Schallwelle, wel-
che das Ohr erreicht, bewegt sich im Medium
Luft. Dessen Schallimpedanz liegt bei 414 kg
m�2s. Um wahrgenommen zu werden, muss sie
das Innenohr erreichen, welches von einer wässri-
gen Flüssigkeit gefüllt ist. Deren Schallimpedanz
liegt bei Z

2

⇡ 1, 4 · 106 kg m�2s. Gemäß Glei-
chung 6.8 würden somit nur etwa 0,1 % des
Schalls das Innenohr erreichen und wir wären
praktisch taub. Ein effizienter Hörsinn wird erst
durch die Impedanzwandlung im Mittelohr er-
reicht.

6.4.2 Stehwellen

Die überlagern sich die vorwärts- und die rück-
wärts laufende Wellen. Die Amplitude der Ge-
samtwelle ist deshalb

A = A
0

[cos(kx � !t) + cos(�kx � !t)]

= 2A
0

[cos(kx) cos(!t)]

Dabei handelt es sich um eine harmonische
Schwingung mit der Kreisfrequenz !, dessen Am-
plitude vom Ort x abhängt. Man bezeichnet dies
als “stehende Welle”.

 1

Abbildung 6.40: Reflexion erzeugt Stehwellen.

Abb. 6.40 zeigt für das Beispiel einer vollstän-
dig reflektierten Seilwelle, wie sich eine stehen-
de Welle bildet. Findet die Reflexion an einem
Punkt hoher Wellenimpedanz statt, so liegen die
Knoten der Stehwelle im Abstand n�/2 von die-
sem Punkt, mit ganzzahligem n. Bei einem Über-
gang zu Z

2

= 0 sind die Knoten um �/4 verscho-
ben.
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In einem Saiteninstrument werden die Töne
durch das Anregen von stehenden Wellen er-
zeugt. Da die Saiten an beiden Enden fest sind,
muss die Wellenlänge einem Bruchteil der dop-
pelten Länge entsprechen.

L = n
�

2
n ganz.

Die Ausbreitungsgeschwindigkeit v (Phasenge-
schwindigkeit) hängt von der Saitenspannung
und der Massendichte ⇢ ab:

v =

s
F/A

⇢
.

Hier ist F die Kraft, mit der die Saite gespannt
ist und A die Querschnittsfläche der Saite. Die
resultierende Schwingungsfrequenz ist dann

f =
v

�
.

6.4.3 Abstandsabhängigkeit

Wellen enthalten Energie. Bei laufenden Wellen
wird diese Energie transportiert. Wie im Falle
von akustischen Wellen diskutiert (Kap. 6.2.4)
ist die Energiedichte proportional zum Quadrat
der Amplitude.

Die Amplitude einer Welle schwächt sich bei der
Ausbreitung ab. Dazu trage verschiedene Me-
chanismen bei, wie z.B. Absorption und Streu-
ung. Streuung entspricht der (teilweisen) Reflexi-
on an Strukturen mit unterschiedlichen Schallim-
pedanzen oder Schallgeschwindigkeiten, die nicht
so regulär geformt sind wie die oben diskutierte
Grenzfläche. Neben diesen Verlustmechanismen
führt auch die geometrische Ausbreitung zu ei-
ner Abschwächung.

Bei ebenen Wellen ist die Amplitude und damit
die Energiedichte überall im Raum gleich. In Ku-
gelwellen fällt sie quadratisch mit dem Abstand
ab. Dies kann als Folge der Energieerhaltung ver-
standen werden: Eine Welle, die sich kugelförmig
von einer Quelle ausbreitet, deckt eine Fläche A
ab, welche proportional zum Quadrat des Ab-
standes r von der Quelle zunimmt, A / r2 (!

A1 / r2

A2 / (2r)2 = 4r2

I / 1

r2

r r

A1
A2

r

Abbildung 6.41: Fläche einer Kugelwelle als
Funktion des Abstandes.

Abb. 6.41). Unter der Annahme, dass die Welle
nicht absorbiert wird, wird die vorhandene Ener-
giedichte also über eine Fläche verteilt, welche
/ r2 zunimmt. Dementsprechend muss die In-
tensität um diesen Faktor abnehmen,

I / 1

r2
,

da sonst die Energie nicht erhalten wäre.

6.4.4 Der Dopplereffekt

Bewegen sich Quelle oder Beobachter relativ zum
Medium, so unterscheiden sich die ausgestrahl-
ten und die gemessenen Frequenzen. Diesen Ef-
fekt bezeichnet man als Dopplerverschiebung1.

Der Effekt kann bei einem vorbeifahrenden Zug
(vor allem einem pfeifenden) beobachtet werden.
Man kann ihn aber auch mit einem bewegten
Lautsprecher hörbar machen. Mit Radarwellen
wird er zur Geschwindigkeitsmessungen verwen-
det.

Für die Herleitung betrachten wir zunächst die
Periode, die ein ruhender Beobachter misst,
wenn eine Welle der Wellenlänge � und Phasen-
geschwindigkeit vP bei ihm eintrifft

T =
�

vp
.

1Christian Andreas Doppler (1803 - 1853)
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Hier und im Folgenden wird jeweils ein Koordi-
natensystem verwendet, bei dem das Medium,
in dem sich die Schallwelle ausbreitet, in Ru-
he ist. Für einen Beobachter, der sich mit der
Geschwindigkeit vB auf die Quelle zu bewegt,
beträgt die Geschwindigkeit der Welle für ihn
scheinbar vP + vB. Damit wird die Periode ver-
kürzt auf

TB =
�

vp + vB

und die Frequenz wird

⌫B =
1

TB
=

vp + vB
�

.

vB stellt hier die Geschwindigkeitskomponente
des Beobachters in Richtung auf die Quelle dar;
tangentiale Komponenten zählen nicht. Die Wel-
lenlänge wird bestimmt durch die Frequenz, mit
der die Wellen erzeugt werden, und die Phasen-
geschwindigkeit vp:

� = vPTQ =
vp
⌫Q

.

Damit ist

⌫B =
1

TB
= ⌫Q

vP + vB
vp

.

Offenbar ist die Frequenz, die der Beobachter
misst, gegenüber der ausgestrahlten Frequenz
höher, um das Verhältnis der Geschwindigkeit
des Beobachters gegenüber der Schallgeschwin-
digkeit:

⌫B = ⌫Q

✓
1±

vB
vp

◆
.

Das + Zeichen bezieht sich auf den Fall dass der
Beobachter sich in Richtung auf die Quelle zu
bewegt, das – Zeichen auf den entgegengesetzten
Fall.

Bewegt sich statt dem Beobachter die Quelle,
wie im Beispiel von Abb. 6.42, so wird in Bewe-
gungsrichtung der Abstand zwischen den Wellen-
flächen kleiner, auf der anderen Seite größer. Die
einzelnen Kreiswellen markieren wie weit sich die
Welle in den letzten n Perioden TQ ausgebreitet

Abbildung 6.42: Wellenfronten bei bewegter
Quelle.

haben. Wir nehmen an, dass ein ruhender Be-
obachter sich in Bewegungsrichtung (rechts im
Bild) befindet. Die Wellenlänge, die er sieht, ver-
ringert sich um vQTQ :

� = �
0

� vQTQ.

Mit �
0

= vPTQ = vP /⌫Q wird die vom Beobach-
ter gemessene Frequenz

⌫B =
vP
�

=
vP

�
0

� vQTQ

=
vP

vp/⌫Q � vQ/⌫Q

·
⌫

Q

v

P=
⌫Q

1 � v
Q

v
p

= ⌫Q
vp

vp � vQ
.

Für den Fall dass die Quelle sich vom Beob-
achter entfernt muss das - Zeichen durch ein +
ersetzt werden. Offenbar unterscheiden sich so-
mit die beiden Fälle, in denen sich der Beobach-
ter, resp. die Quelle bewegen. Der Unterschied
ist allerdings gering so lange die Geschwindigkeit
klein ist im Vergleich zur Phasengeschwindigkeit
im betreffenden Medium. Bewegen sich beide, so
kann man die beiden Ausdrücke kombinieren:

⌫B = ⌫Q
1 + v

B

v
p

1 � v
Q

v
p

= ⌫Q
vp + vB
vp � vQ

.
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6.4.5 Überschallgeschwindigkeit

Die Wellenlänge der ausgestrahlten Welle

� = �
0

�vQTQ = vPTQ�vQTQ = (vP �vQ)TQ

kann offenbar auch Null werden, wenn die Ge-
schwindigkeit der Quelle gleich der Phasenge-
schwindigkeit der Welle wird, oder negativ, für
vQ > vP .

Abbildung 6.43: Wellenfronten bei bewegter
Quelle für vQ = vP (links) und
vQ > vP (rechts).

Dies entspricht dem Fall dass die Quelle sich
mit der emittierten Welle mitbewegt, wie in
Abb. 6.43 links. Für den Fall einer Schallwelle
entspricht dies einer Bewegung der Quelle mit
Schallgeschwindigkeit.

Abbildung 6.44: Wellenfronten einer Quelle, de-
ren Geschwindigkeit höher ist
als die Phasengeschwindigkeit.

Bewegt sich die Quelle schneller als mit Schall-
geschwindigkeit, vQ > vP , so bilden die Wellen
einen Kegel, der als Mach’scher Kegel bezeich-
net wird. Abb. 6.44 zeigt einen solchen Kegel

für ein Flugzeug. Wie in Abb. 6.43 gezeigt, kann
dessen Öffnungswinkel berechnet werden indem
man berücksichtigt, dass alle Kugelwellen den
Kegel berühren. Befindet sich die Quelle zu t = 0
bei A und zur Zeit t bei B, hat sie die Strecke
AQ = t vQ zurückgelegt, während die Schallwel-
le die Strecke AB = vP t zurückgelegt hat. Somit
ist der halbe Öffnungswinkel ↵ gegeben als

sin ↵ =
vP t

vQt
=

vp
vQ

=
1

Ma
.

Die Zahl Ma = vQ/vP , das Verhältnis der Ge-
schwindigkeit zur Schallgeschwindigkeit, wird als
Mach’sche Zahl bezeichnet.

Bei Flugzeugen wird der Mach’sche Kegel als
Überschallknall hörbar, z.T. aber auch sicht-
bar. Im Beispiel von Abb. 6.44 kann man den
Mach’schen Kegel sehen, da die Druckänderung
zu einer Kondensation von Wasserdampf führt.
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Abbildung 6.45: Spektrum der elektromagneti-
schen Wellen.

6.5 Elektromagnetische Wellen

6.5.1 Das elektromagnetische
Spektrum

Elektromagnetische Wellen sind Wellen, bei de-
nen elektrische und magnetische Felder sich in
Zeit und Raum ausbreiten. Heute kennt man
sehr unterschiedliche elektromagnetische Wellen.
Ihre Frequenzen reichen von wenigen Hertz bis
zu 1023 Hertz. Ein wichtiger, wenn auch schma-
ler Bereich ist das sichtbare Spektrum, welches
zwischen 1014 und 1015 Hertz liegt. Von prak-
tischer Bedeutung ist aber der gesamte Bereich
von etwa 106 Hz bis 1018 Hz.

Die elektromagnetische Skala kann nach Wellen-
längen, Frequenzen oder Energien gegliedert wer-
den. Abb. 6.45 zeigt dies für einen Bereich von
den Röntgenstrahlen bis zu den Radiowellen. Im
langwelligen Bereich beginnt die Skala mit Ra-
diowellen, deren Wellenlängen praktisch belie-
big lang werden können. Hier fand aufgrund der
technischen Entwicklung eine Inflation der Na-
mengebung statt: Man unterteilte zunächst in
vlf, lf, mf, hf. Als höhere Frequenzen erreicht
wurden, mussten neue Namen gefunden werden:
vhf, uhf, shf, ehf.

Im Bereich von ca. 1 GHz, resp. 30 cm Wellen-
länge beginnt man üblicherweise von Mikrowel-
len zu sprechen. Im Bereich von einigen THz,

resp. bei Wellenlängen von etwa 1 mm spricht
man von Millimeterwellen oder THz-Wellen, für
noch kürzere Wellenlängen von Fern-Infrarot. Ab
einer Wellenlänge von ca. 10 - 0.75 µm spricht
man von Infrarot und der Bereich von 750 nm
bis 400 nm entspricht sichtbarem Licht. Daran
schließt das der Bereich des Ultravioletten (UV)
und des Vakuum-UV an, und schließlich Rönt-
gen und Gamma-Strahlen. Obwohl es sich auch
dabei um elektromagnetische Wellen handelt, de-
ren Ausbreitung durch die Maxwell Gleichungen
beschrieben wird, können die Phänomene, die in
diesem Bereich auftreten, nicht mehr vollständig
durch die klassische Physik erklärt werden. Hier
wird der Teilchencharakter des elektromagneti-
schen Feldes wichtig.

Ein wesentlicher Unterschied zwischen elektro-
magnetischen Wellen und den bisher diskutier-
ten mechanischen Wellen ist, dass elektromagne-
tische Wellen sich nicht nur in einem Medium
ausbreiten, sondern auch im Vakuum. Da sol-
che Wellen vorher nicht bekannt waren, hatte
man im 19. Jh. große Mühe diese Möglichkeit
zu akzeptieren. Man postulierte deshalb die Exi-
stenz eines Mediums, in dem sich diese neuarti-
ge Sorte von Wellen ausbreiten konnte und be-
zeichnete es als Äther. Da alle experimentellen
Versuche, ihn nachzuweisen, fehlschlugen, akzep-
tierte man aber schließlich die Vorstellung von
Wellen ohne Medium. Die wichtigste Konsequenz
des fehlenden Mediums ist, dass die Lichtge-
schwindigkeit nicht vom Koordinatensystem ab-
hängt: Beobachter, welche sich in unterschiedli-
chen Inertialsystemen befinden, messen die glei-
che Ausbreitungsgeschwindigkeit für elektroma-
gnetische Wellen. Eine weitere Konsequenz ist,
dass bei elektromagnetischen Wellen eine Bewe-
gung von Quelle oder Beobachter eine andere Art
von Dopplereffekt erzeugt als bei mechanischen
Wellen.

6.5.2 Elektromagnetische
Wellengleichung

Die in Kapitel 4.9 diskutierten Maxwell Glei-
chungen beschreiben unter anderem die Ausbrei-
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tung von elektromagnetischen Wellen. Wir zei-
gen zunächst, wie man aus den Maxwell Glei-
chungen eine Wellengleichung erhalten kann. Da-
für rechnen wir die Rotation der zweiten Glei-
chung (4.12):

~r ⇥
⇣

~r ⇥ ~E
⌘

= �~r ⇥ @ ~B

@t

= �µrµ0

@

@t

⇣
~r ⇥ ~H

⌘
.

wobei wir die Materialgleichung für das Magnet-
feld verwendet haben:

~B = µrµ0

~H.

Hier wurde auch angenommen, dass das Medium
isotrop sei, dass also alle Richtungen gleichwertig
seien. Dies ist insbesondere in Festkörpern meist
nicht der Fall. Die Proportionalitätskonstanten
✏r, µr werden dann zu Tensoren. Im Folgenden
soll auch µr = 1 sein, das Medium also nicht
magnetisch sein.

Auf der rechten Seite verwenden wir die erste
Maxwell Gleichung (4.11) (mit ~j = 0) und erhal-
ten

~r ⇥
⇣

~r ⇥ ~E
⌘

= �µ
0

@2

@t2
~D = �µ

0

✏r✏0
@2

@t2
~E.

Offensichtlich spielt hier der Verschiebestrom ei-
ne entscheidende Rolle.

Die Vektoranalysis ergibt für die linke Seite

~r ⇥
⇣

~r ⇥ ~E
⌘

= ~r
⇣

~r · ~E
⌘

�� ~E.

Gemäß der dritten Maxwell Gleichung (4.13) ver-
schwindet die Divergenz des E-Feldes, wenn wir
Ladungen ausschließen, und wir erhalten

� ~E =

✓
@2

@x2

+
@2

@y2
+

@2

@z2

◆
~E

= µ
0

✏r✏0
@2

@t2
~E

oder

@2 ~E

@t2
=

c2

✏r
� ~E (6.9)

mit

c2 =
1

✏
0

µ
0

als Phasengeschwindigkeit. Dies ist offenbar eine
dreidimensionale Wellengleichung und ihre Aus-
breitungsgeschwindigeit c ist eine universelle Na-
turkonstante, welche durch die beiden Feldkon-
stanten ✏

0

und µ
0

gegeben ist. Wir werden uns
im Rest dieses Kapitels hauptsächlich mit dieser
Wellengleichung beschäftigen.
Eine analoge Wellengleichung kann man natür-
lich auch für das magnetische Feld herleiten.
Meist ist es aber einfacher, die Gleichung für
das elektrische Feld zu lösen und anschließend
die magnetischen Komponenten aus den Maxwell
Gleichungen zu bestimmen (! Kap. 6.5.4).
Offenbar sind die drei Komponenten des elek-
trischen Feldes in dieser Gleichung unabhän-
gig voneinander. Im allgemeinen Fall erwarten
wir somit drei voneinander unabhängige Lösun-
gen, z.B. eine longitudinale und zwei transversale
Wellen, wie im Fall von Gitterschwingungen.

6.5.3 Ebene Wellen

Die Lösungen dieser Gleichung hängen wie im-
mer von den Randbedingungen ab. Wir betrach-
ten zunächst den einfachsten Fall einer harmo-
nischen ebenen Welle. Für die Ausbreitungsrich-
tung verwenden wir ohne Verlust an Allgemein-
heit die z-Richtung. Damit wird der Ansatz

~E = Re

8<:
0@ Ex

Ey

Ez

1A ei(!t�kz)

9=; , (6.10)

wobei Ex, Ey, Ez die komplexen Amplituden
darstellen.
Einsetzen in die Wellengleichung (6.9) ergibt für
die linke Seite0@ Ex

Ey

Ez

1A ✓
@2

@x2

+
@2

@y2
+

@2

@z2

◆
ei(!t�kz)

=

0@ Ex

Ey

Ez

1A ⇣n

c

⌘
2 @2

@z2
ei(!t�kz).
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oder

�k2

0@ Ex

Ey

Ez

1A = � ✏r
c2

!2

0@ Ex

Ey

Ez

1A .

Offenbar muss also die Dispersionsrelation lau-
ten

k2 = !2

✏r
c2

= !2

n2

c2
,

d.h. der Ansatz beschreibt eine gültige Lösung
falls ! = kc/n, d.h. falls die Ausbreitungsge-
schwindigkeit gerade gleich c/n ist. c = 299793
km/s ist die Ausbreitungsgeschwindigkeit im Va-
kuum oder Vakuum-Lichtgeschwindigkeit. Inter-
essant ist, dass die elektrostatischen Größen
✏
0

und µ
0

die Ausbreitungsgeschwindigkeit der
Welle bestimmen. n =

p
✏r wird als Brechungs-

index bezeichnet; er beschreibt die Reduktion
der Ausbreitungsgeschwindigkeit durch das Me-
dium. Diese Materialeigenschaften sind jedoch
frequenzabhängig, d.h. sie unterscheiden sich von
den Werten, die man in der Elektrostatik findet.

6.5.4 Magnetfeld

Der obige Ansatz genügt also der vorhin herge-
leiteten Wellengleichung. Wir müssen aber noch
überprüfen, ob er auch die Maxwell Gleichungen
erfüllt. Insbesondere haben wir bisher nur das
elektrische Feld berücksichtigt. Wir setzen es ein
in die Gleichung

~r ⇥ ~E = � @

@t
~B.

Diese Gleichung kann nur erfüllt sein, wenn
das magnetische und elektrische Feld die gleiche
raumzeitliche Abhängigkeit besitzen, d.h.

~B =

0@ Bx

By

Bz

1A ei(!t�kz),

Die Ableitungen @/@x und @/@y verschwinden
wieder, so dass sich die Rotation vereinfacht zu

~r ⇥ ~E =

0@ �@E
y

@z
@E

x

@z
0

1A .

Die Maxwell Gleichung ergibt

�ik

0@ �Ey

Ex

0

1A = �i!

0@ Bx

By

Bz

1A .

Offenbar muss die longitudinale Komponente des
Magnetfeldes verschwinden, Bz = 0.

Aus der Gleichung

~r ⇥ ~H =
@

@t
~D

folgt analog, dass die longitudinale Komponente
des elektrischen Feldes verschwindet,

Ez = Hz = Dz = Bz = 0,

d.h. die Komponenten der Felder in Ausbrei-
tungsrichtung verschwinden. Offenbar sind elek-
tromagnetischen Wellen in einem isotropen Me-
dium reine Transversalwellen.

Man kann diese Beziehung auch direkt aus der
Gleichung

~r · ~E =
@Ex

@x
+

@Ey

@y
+

@Ez

@z
= 0

für ein Medium ohne Ladungen herleiten: Gemäß
Ansatz (6.10) ist die einzige Ableitung, die nicht
verschwindet, diejenige nach z und somit

~r · ~E =
@Ez

@z
= �ikzEz = 0.

Diese Gleichung kann offenbar nur dann erfüllt
sein, wenn Ez identisch verschwindet. Dies gilt
allerdings nur für den Fall von isotropen di-
elektrischen Medien; anisotrope Eigenschaften
können zu longitudinalen Komponenten führen;
ebenso enthalten elektromagnetische Wellen in
elektrisch leitenden Medien longitudinale Kom-
ponenten.

Abb. 6.46 zeigt ein Beispiel für eine elektroma-
gnetische Welle, bei der das elektrische Feld ent-
lang der x-Achse polarisiert ist (d.h. Ey = Ez =
0) und die sich in z-Richtung ausbreitet. Das
magnetische Feld ist immer senkrecht dazu, also
parallel zur y-Achse. Allgemein gilt

Bx = � k

!
Ey By =

k

!
Ex.
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Abbildung 6.46: Ebene elektromagnetische Wel-
le.

Die elektrischen und magnetischen Komponen-
ten der Welle stehen in einem festen Verhältnis.
Im Vakuum gilt

|E|
|H| =

µ
0

!

k
=

r
µ
0

✏
0

= z
0

= 377⌦.

Die Größe z
0

wird als die Wellenimpedanz des
Vakuums bezeichnet. Dieses Verhältnis kann
man natürlich auch als

|E|
|B| =

!

k
= c

ausdrücken.

6.5.5 Transversalwellen: Polarisation

Polarisierte transversale Wellen besitzen somit
eine Vorzugsrichtung. Diese Polarisationsebene,
welche durch die Schwingungsebene des elektri-
schen Feldes definiert wird, kann einerseits durch
die Quelle des elektromagnetischen Feldes defi-
niert werden (siehe Hertz’scher Dipol), anderer-
seits indem man mit Hilfe von Filtern einen Teil
der Welle eliminiert.

Abb. 6.47 zeigt ein Experiment, das eine Mikro-
wellenquelle verwendet, welche polarisierte Mi-
krowellen erzeugt. Der Empfänger ist ebenfalls
nur auf Wellen mit einer bestimmten Polarisa-
tionsrichtung empfindlich. Ein Metallgitter kann

a)

b)

c)

d)

e)

Abbildung 6.47: Übertragung von linear polari-
sierten Mikrowellen.

verwendet werden, um nur eine bestimmt Polari-
sationsrichtung durchzulassen: ist die Welle par-
allel zu den Stäben polarisiert, so wird sie daran
reflektiert.

6.5.6 Hertz’scher Dipol

Elektromagnetische Wellen werden durch
schwingende elektrische Ladungen erzeugt. Ein
einfaches Modell für schwingende Ladungen ist
der in Kapitel 5.3.5 behandelte LC-Schwingkreis.
Solche Schwingungen bilden die Quellen der
Wellen. Umgekehrt können elektromagnetische
Wellen nachgewiesen werden, indem man ihren
Effekt auf bewegliche Ladungen untersucht.
So ist jeder Schwingkreis mit der Frequenz
! = 1/

p
LC die Quelle einer elektromagneti-

schen Welle: Sowohl das elektrische, wie auch
das magnetische Feld sind zeitabhängig.

LC Schwingkreis Dipoleantenne

~H

~E

~H

~E

~H

~E

~H

~E

Abbildung 6.48: LC-Schwingkreis wird zu Dipol
deformiert.

Bei den üblicherweise verwendeten Spulen und
Kondensatoren in LC-Schwingkreisen sind die
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Felder stark im Inneren lokalisiert. Durch eine
andere Anordnung kann man die Felder aber
auch nach außen richten und dadurch eine Ab-
strahlung begünstigen. Abb. 6.48 zeigt als Bei-
spiel den Übergang von einem kompakten LC-
Schwingkreis zu einer Dipolantenne.

Dipol

Dipol Beobachter

Ausbreitung

Abbildung 6.49: Dipol als Quelle einer Welle.

Die endliche Ausbreitungsgeschwindigkeit führt
zu einer wellenförmigen Ausbreitung, wobei die
Frequenz an jedem Ort durch die Parameter des
Schwingkreises gegeben ist. Abb. 6.49 zeigt eine
grafische Darstellung.

Je höher die Frequenz wird, desto kleiner werden
Spulen und Kondensatoren und damit werden
die Strukturen offener und ein Abstrahlverhalten
stärker ausgeprägt. Ein nützlicher Extremfall ist
der eines linearen schwingenden Dipols. Er wird
als Hertz’scher Dipol bezeichnet.

Abbildung 6.50: Abstrahlung durch oszillieren-
den Dipol.

Man kann sich die Entstehung von elektromagne-
tischen Wellen verstehen, indem man die Feld-
linien eines schwingenden Dipols über eine Pe-
riode beobachtet. Wenn die beiden Ladungen
getrennt werden entstehen elektrische Feldlinien

zwischen den beiden. Da die Verschiebung der
Ladungen einem Strom entspricht, muss auch ein
Magnetfeld entstehen, welches kreisförmig um
die Dipol-Achse liegt. In Abb. 6.50 liegen sie
senkrecht zur Bildebene und sind als Punkte und
Kreuze markiert (aus der Ebene heraus, resp. in
die Ebene hinein).

3
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/
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elektrisches Feld magnetisches Feld

Abbildung 6.51: Feldlinien des Hertz’schen Di-
pols.

In Abb. 6.51 sind die elektrischen Feldlinien in
einer Ebene dargestellt, welche den Dipol ent-
hält, die magnetischen in der Ebene senkrecht
zum Dipol. Bei maximaler Amplitude des Di-
pols sind auch die Feldlinien auf den maxima-
len Umfang angewachsen. Wenn die Ladungen
sich wieder nähern, werden die Feldlinien einge-
schnürt und wenn die beiden Ladungen am Ur-
sprung sind, verschwinden die Feldlinien direkt
am Dipol, während sie sich in der Ebene senk-
recht zum Dipol davon entfernt haben. Somit hat
sich eine erste Halbwelle vom Dipol abgelöst.

6.5.7 Eigenschaften des Hertz’schen
Dipols

Abb. 6.52 zeigt ein Experiment, bei dem eine
elektromagnetische Welle erzeugt wird. Ein Ge-
nerator G erzeugt eine elektrische Wechselspan-
nung. Die Wechselspannung wird an eine Stab-
antenne eingekoppelt und von dieser abgestrahlt.
Eine Empfangsantenne E fängt diese Strahlung
auf. Die übertragene Energie kann z.B. für die
Erzeugung von Licht in einer Glühlampe verwen-
det werden.
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Abbildung 6.52: Prinzip und Aufbau des
Hertz’schen Dipol-Experi-
ments.
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Abbildung 6.53: Übertragungseffizienz für un-
terschiedliche relative Orientie-
rungen der Antennen.

Die Effizienz des Nachweises hängt von der Ori-
entierung der Antennen ab, wie in Abb. 6.53 ge-
zeigt: Stehen die beiden Antennen parallel, findet
eine effiziente Übertragung statt. Für senkrechte
Ausrichtung der Antennen hört das Lämpchen
auf zu leuchten, wie in Abb. 6.53 rechts gezeigt.
Offenbar ist die ausgesendete Strahlung linear
polarisiert. Dies zeigt auch, dass es sich um eine
Transversalwelle handeln muss.

Die Welle wird auch nicht isotrop abgestrahlt,
sondern bevorzugt senkrecht zur Achse des Di-
pols. Bringt man die Empfangsantenne in die
Verlängerung der Sendeantenne, so kann man
keine Strahlung messen. Offenbar wird in der
Richtung der Antenne keine Leistung abge-
strahlt. Trägt man die Intensität der angestrahl-
ten Welle als Funktion der Richtung auf, so fin-
det man ein charakteristisches Verhalten in Form
einer Doppelkeule. Wie in Abb. 6.54 gezeigt, sind
die Maxima senkrecht zur Antenne orientiert.

Eine genauere Messung ergibt, dass die abge-
strahlte Intensität I die Form

I / p2
0

⌫4 sin2 ✓

r2

Intensität im Fernfeld Abstrahlrichtung

Abbildung 6.54: Intensität der abgestrahl-
ten Leistung im Fernfeld als
Funktion der Richtung.

beträgt. Hier stellt p
0

= qd
0

die Amplitude des
oszillierenden Dipols aus Ladung q und Abstand
d
0

dar, ✓ den Winkel zwischen der Richtung der
Sendeantenne und dem Detektionsort dar, ⌫ die
Frequenz und r den Abstand von der Antenne.
Abbildung 6.54 zeigt eine grafische Darstellung
der Richtungsabhängigkeit. Die Abnahme der In-
tensität mit dem Quadrat des Abstandes stellt
lediglich die Erhaltung der Energie dar: das In-
tegral über eine Kugeloberfläche im Abstand r
bleibt konstant. Die Abhängigkeit von der vier-
ten Potenz der Frequenz zeigt, dass Abstrahlung
bei höheren Frequenzen wesentlich einfacher zu
erreichen ist als bei niedrigen.

6.5.8 Übertragung von Energie und
Impuls

Aus der Elektrostatik ist bekannt, dass elektro-
magnetische Felder Energie enthalten:

w =
1

2

⇣
~E · ~D + ~H · ~B

⌘
.

Im Unterschied zur Elektrostatik ist diese Ener-
gie im Falle von elektromagnetischen Wellen be-
weglich, d.h. sie fließt durch das System. Wenn
sie mit Ladungen in Wechselwirkung treten, so
leisten sie Arbeit an diesen. Umgekehrt fließt bei
der Erzeugung von elektromagnetischen Wellen
Energie aus der mechanischen Bewegung von La-
dungen in das elektromagnetische Feld. Dieser
Transport und Austausch von Energie muss die
gesamte Energie des Systems konstant lassen.
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Die Energieerhaltung für elektromagnetische Fel-
der ist der Inhalt des Theorems von Poynting,
der diese Betrachtungen im Jahr 1884 als erster
durchführte.

Aus der Beziehung zwischen elektrischer und ma-
gnetischer Feldstärke

|E|
|H| =

r
µrµ0

✏r✏0

sehen wir, dass die elektrische und magnetische
Energiedichte einer ebenen Welle gleich sind,

wE =
1

2
✏
0

✏rE
2 =

1

2
µ
0

µrH
2 = wH .

Die gesamte Energiedichte ist somit

w = wE + wH =
1

2
✏
0

✏rE
2 +

1

2
µ
0

µrH
2

=
p

✏
0

✏rµ0

µrEH =
n

c
EH.

Der Energiefluss ist die Energiedichte multipli-
ziert mit der Ausbreitungsgeschwindigkeit der
Welle, also

S =
c

n
w = EH.

Wie man aus der Lösung der Wellengleichung
sieht, ist der Vektor

~S = ~E ⇥ ~H

in Ausbreitungsrichtung orientiert und hat den
Betrag des Energieflusses. Er wird als Poynting-
vektor bezeichnet und beschreibt den (ort- und
zeitabhängigen) Energiefluss. Der Poyntingvek-
tor besitzt offenbar die Einheiten

[S] = [E][H]=
V

m

A

m
=

W

m2

,

also Leistung pro Fläche.

Die Intensität ist definiert als der Mittelwert des
Energieflusses über eine Periode,

I =
1

2
E

0

H
0

.

In ähnlicher Weise wie die transportierte Energie
kann man auch den Impuls des Feldes berech-
nen. Die Existenz eines Impulses für die elektro-
magnetische Welle kann man sich leicht plausi-
bel machen, wenn man die Bewegung eines ge-
ladenen Teilchens im elektromagnetischen Feld
der Welle betrachtet. Eine Welle, die sich in z-
Richtung ausbreitet, deren elektrisches Feld in
x-Richtung und das magnetische in y-Richtung
liegt, erzeugt zunächst eine Coulomb-Kraft auf
die Ladung, welche diese in x-Richtung beschleu-
nigt. Damit führt sie eine Bewegung senkrecht
zum B-Feld durch, welche eine Lorentzkraft be-
wirkt. Damit erhält das Teilchen eine Beschleu-
nigung in z-Richtung, also einen Impulsübertrag,
welcher aus der Welle stammen muss. Damit
ist auch klar, dass die Impulsdichte proportio-
nal zum Produkt aus E und B sein muss. Die
Impulsdichte der Welle beträgt im Vakuum

~pFeld = ~D ⇥ ~B = ✏
0

µ
0

~E ⇥ ~H =
1

c2
~S.

Damit übt eine Welle einen Strahlungsdruck aus,
welcher proportional zu ihrer Intensität ist. Wird
eine Welle vollständig absorbiert, so beträgt der
Impulsübertrag pro Zeit- und Flächeneinheit

~PS =
1

2
c ~pFeld =

1

2

c

c2
~S =

I

c

~k

k
.

Der Strahlungsdruck ist somit proportional zur
Intensität einer Welle.

6.5.9 Dopplereffekt

Der Dopplereffekt tritt auch bei elektromagne-
tischen Wellen auf. Allerdings gilt dafür die Be-
handlung aus Kapitel 6.4.4 nicht, da Licht für die
Ausbreitung kein Medium benötigt. Dies wur-
de von Michelson und Morley 1887 in einem
berühmten Experiment gezeigt: sie wollten die
Geschwindigkeit der Erde gegenüber dem Äther
messen, der als Medium für die Lichtausbreitung
betrachtet wurde. Sie fanden aber, dass die Rela-
tivgeschwindigkeit Null war, unabhängig davon,
in welche Richtung die Erde sich bewegte. Dies
konnte nur dadurch erklärt werden konnte, dass
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für die Lichtausbreitung kein Medium notwendig
war. Beim Licht findet man deshalb einen ande-
ren Dopplereffekt:

⌫B = ⌫Q

r
c + v

c � v
.

Hier stellt c die Lichtgeschwindigkeit, also die
Phasengeschwindigkeit von Licht im Vakuum
dar und v die Relativgeschwindigkeit, mit der
sich Beobachter und Quelle nähern. Entfernen
sie sich, müssen die beiden Vorzeichen getauscht
werden.

Der Dopplereffekt für elektromagnetische Strah-
lung wird z.B. bei Radar-Geschwindigkeits-
messungen verwendet. Er zeigt sich auch in der
Spektroskopie, wo Bewegung von Atomen oder
Molekülen als Verschiebungen von Resonanzli-
nien beobachtet werden können. Er wird beim
Wetterradar verwendet, um Windgeschwindig-
keiten zu messen.

Abbildung 6.55: Dopplereffekt in der Astrono-
mie.

Die größten Effekte findet man in der Astrono-
mie, wo man aus der Dopplerverschiebung be-
stimmen kann, wie schnell sich weit entfernte
Sterne bewegen. Abb. 6.55 zeigt ein Beispiel.
Wichtige Anwendungen sind die Rotation von
Galaxien und die Relativbewegungen von Ster-
nen. Letztere wird verwendet, um Exoplaneten
zu finden. Aus der Relativbewegung von fernen
Galaxien bestimmt man die Geschwindigkeit der
Expansion des Kosmos.
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