9 Atome, Molekiile und Festkorper

9.1 Atome als Grundbestandteile
der Materie

9.1.1 Historisches

Wir gehen heute als selbstverstindliche Grundlage
davon aus, dass Atome die Bausteine der Materie
sind, die uns umgibt und aus der auch wir selber be-
stehen. Obwohl wir diese Tatsache heutzutage in der
Schule unterrichten, und Tageszeitungen sie als be-
kannt voraussetzen, ist es noch keine hundert Jahre
her, dass ihre Existenz auch wissenschaftlich nicht
gesichert war. Einzelheiten iiber ihre Verhalten, ja
sogar ihre Grofe waren nur in sehr groben Umris-
sen bekannt.

Der Begriff “Atom” stammt aus dem Griechischen.
Zu den zentralen Fragen der griechischen Philoso-
phen gehorte die Suche nach Unvergédnglichem, nach
einem ewigen Sein. Wenn aber es aber ein ewiges
Sein gab, so schien dies nicht vereinbar mit Verdnde-
rungen. Insbesondere Parmenides forderte, dass al-
les Seiende unwandelbar sein miisse. Verdnderungen
waren deshalb nicht mdéglich, respektive nur Schein.

Abbildung 9.1: Zeitliche Abfolge der antiken Philo-
sophen.

Natiirlich konnten nicht alle Philosophen diese The-
se akzeptieren (— Abb. 0.1). Insbesondere Demo-

kri suchte nach einer Losung dafiir. In heutiger
Ausdrucksweise kann man seine Losung etwa so be-
schreiben: Die Welt besteht nach Demokrit aus lee-
rem Raum und unteilbaren, unwandelbaren Grund-
bestandteilen der Materie, den Atomen. Wir kennen
heute Demokrit deshalb als den Entdecker der Ato-
me. Genau so wichtig wie seine Forderung nach der
Existenz von Atomen war aber, dass er dem leeren
Raum eine eigenstindige Existenz zubilligte. Da-
durch wurde die Existenz von Atomen in seinem
Sinn erst moglich. Diese bilden die Grundbausteine
der Materie, sie und der leere Raum sind unwandel-
bar. Damit besteht eine sichere Basis fiir das Sein,
und Veridnderung ist trotzdem moglich, da die Ato-
me sich im leeren Raum bewegen und neu gruppie-
ren konnen. Demokrit forderte bereits die Existenz
unterschiedlicher Atome, welche sich durch Form,
Lage und Geschwindigkeit unterschieden. Auch un-
sere Sinneseindriicke werden gemi3 Demokrit von
Atomen iibertragen; in heutiger Lesart wiirden wir
sagen, dass auch Licht aus Atomen besteht. Ja so-
gar die Seele besteht gemidf3 Demokrit aus Atomen
- aus einer besonders glatten, feuerartigen Atomen,
welche von Korperatomen umgeben sind.

Demokrit war keineswegs der einzige, der eine sol-
che These vertrat; es gab auch schon frithere Ver-
suche, z.B. durch Leukip von dem Demokrit we-
sentlich beeinflusst wurde.

Aber es gab auch Kiritiker, welche sich mit die-
sem Konzept nicht anfreunden konnten, insbesonde-
re Aristoteles, der lehrte, dass die Materie aus den
vier Elementen Erde, Luft, Feuer und Wasser auf-
gebaut sei. Abb. zeigt die vier Elemente und ih-
re Eigenschaften. Die Eigenschaften der Stoffe soll-
ten dann von der anteilméfigen Zusammensetzung
bestimmt werden. Der groB3e Einfluss von Aristote-
les war wohl auch der Hauptgrund dafiir, dass die

IDemokrit von Abdera (ca. 460 v. Chr. - 370 v. Chr.)
2Leukipp (5. Jh. v. Chr., Lehrer von Demokrit)
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Abbildung 9.2: Elementelehre von Aristoteles (384-
322 v. Chr.).

Atomtheorie lange Zeit nicht akzeptiert wurde.

9.1.2 Die moderne Atomtheorie

Erst gegen Ende des achtzehnten Jahrhunderts
wurde die Atomhypothese auf wissenschaftlicher
Grundlage wieder entdeckt.

Wasser- | Wasser- Sauer-
+»®

Abbildung 9.3: Gesetz der konstanten Proportionen
von Antoine Lavoisier (1743-1794).

Den Anstofl dazu gab die Chemie, wo insbesonde-
re Lavoisier empirisch gefunden hatte, dass chemi-
sche Elemente in bestimmten Verhéltnissen mitein-
ander reagieren. Wie in Abb. gezeigt, entste-
hen z.B. aus zwei Teilen Wasserstoff und einem Teil
Sauerstoff Wasser. Dies war ein vollig unerwartetes
Resultat. Wenn die Materie aus den vier aristoteli-
schen Elementen aufgebaut wire, wiirde man erwar-
ten, dass diese in beliebigen Verhéltnissen reagieren
konnten und dabei Produkte mit unterschiedlichen
Eigenschaften entstehen wiirden.

John Daltorﬁ fithrte diese Experimente weiter. Er
fand insbesondere, dass die moglichen Verhiltnis-
se, in denen die gleichen Elemente reagieren konn-
ten, durch kleine ganze Zahlen beschrieben werden

3Weitere Einzelheiten: 17.16]
“4John Dalton (1766 - 1844)
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Abbildung 9.4: Gesetz der multiplen Proportionen
von John Dalton (1766-1844).
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konnten. Abb. zeigt als Beispiel verschiedene
Molekiile aus den Elementen Stickstoff und Sauer-
stoff. Diese experimentellen Resultate konnte Dalton
1808 so erkliren, dass er die Existenz von Atomen
postulierte, die sich unterschiedlich zusammenfiigen
und so die beobachtete Vielfalt der Substanzen er-
zeugen.

1811 zeigte AvogadroEL dass die Dalton’sche Hypo-
these auch die experimentellen Resultate von Gay-
Lussac erkldren kann: Das Volumen eines idealen
Gases hingt nur von Druck, Temperatur und Teil-
chenzahl ab, nicht von der Art des Gases.

9.1.3 Experimentelle Hinweise fiir die
Existenz von Atomen

@ Periodisches System der Elemente

o Atomgewichte

@ Brown'sche Bewegung L ¢-——“'°

o/
T
‘«9 |

@ kinetische Gastheorie P
Abbildung 9.5: Entwicklung der Theorie im 19.

A=

SLorenzo Romano Amedeo Carlo Avogadro, Conte di Quare-
gna e Cerreto (1776 - 1856)
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9 Atome, Molekiile und Festkorper

Im Verlauf des 19. Jh. kam es zu einer Reihe von
weiteren Erkenntnissen, wie in Abb. zusammen-
gefasst. So wurden die wichtigsten Arten von Ato-
men entdeckt und im periodischen System der Ele-
mente aufgelistet - zundchst entsprechend dem re-
lativen Gewicht, dann aufgrund der Ordnungszahl.
Die Entdeckung der Brown’schen Bewegung, einer
scheinbar zufilligen Bewegung von kleinen Rauch-
und Pollenteilchen, wurde als Hinweis auf die Exi-
stenz von Atomen gedeutet, welche zwar selber nicht
sichtbar sind, aber durch Stoe die Bewegung des
Teilchens beeinflussen. Die Annahme, dass Gase aus
Atomen aufgebaut seien, erlaubte auch, die Ther-
modynamik auf ein mechanisches Modell, ndmlich
die kinetische Gastheorie zuriickzufiihren und insbe-
sondere den Druck als eine groBe Zahl von Stofen
der Atome mit den GefdBBwénden zu interpretieren.
Wenn das Volumen verkleinert oder die Temperatur
erhoht wurde, wurden die Stof3e zahlreicher und hef-
tiger und der Druck damit grofBer.

Damit war eine der wichtigsten Grundlagen fiir die
Physik, wie auch fiir die Chemie geschaffen - ob-
wohl bisher noch niemand ein Atom gesehen hatte.
Man glaubte an ihre Existenz, doch niemand wusste,
wie die Atome aussehen, ja nicht einmal wie grof3
sie sind.

Erste Hinweise darauf lieferte die Beugung von
Elektronen und Rontgenstrahlen an kristallinen Ma-
terialien. Diese ergaben nicht nur eine Bestitigung
der Wellenhypothese von de Broglie, sondern auch
eine erste Messung von Gitterkonstanten. Allerdings
ergeben sie Bilder im Impulsraum, nicht direkt im
gewohnten Ortsraum.

9.1.4 Feld-Ionen Mikroskopie

Die erste Methode, welche Atome direkt im Orts-
raum sichtbar machte, war die Feld-lonen Mikrosko-
pie. Wie in Abb. gezeigt handelt sich dabei um
ein relativ einfaches Gerit: im wesentlichen benotigt
man eine sehr scharfe Spitze, an die man eine positi-
ve elektrische Spannung anlegt. Dadurch erhilt man
an der Spitze ein sehr hohes elektrisches Feld. Au-
Berhalb der Spitze befindet sich mit niedrigem Druck
ein Gas, typischerweise Helium oder Barium. Wenn

He Schirm
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Abbildung 9.6: Schematische Darstellung des Feld-
Ionen-Mikroskops.

ein Heliumatom in die Néhe der Spitze gelangt, wird
es durch dieses enorme elektrische Feld ionisiert, das
hei3t diese Metallspitze zieht eines der Elektronen
des Heliumatoms weg. Dadurch wird das Heliuma-
tom zu einem positiv geladenen Heliumion und wird
nun durch das starke elektrische Feld sehr rasch von
der Spitze weg beschleunigt. Nach einer Distanz von
etwa 10 cm trifft es auf einen Schirm, wo es sichtbar
gemacht wird. Da sich die Atome auf dem direkte-
sten Weg von der Spitze entfernen, entsteht dadurch
auf dem Schirm ein direktes Bild der Spitze. Die
VergroBerung kommt direkt durch das Verhiltnis des
Radius der Spitze zur Distanz vom Schirm zustande
und benotigt keine weiteren abbildenden Elemente.

Abbildung 9.7: Messaufbau und Bild eines Feld-
Ionen-Mikroskops.

Abb. zeigt einen entsprechenden Messaufbau
und ein damit aufgenommenes Bild. Man erhilt also
auf diese Weise auf dem Schirm ein Bild dieser Spit-
ze mit sehr hoher Auflosung. Allerdings ist das Bild
ziemlich stark verzerrt. [8] Diese Art von Mikrosko-
pie ist inzwischen mehr als 50 Jahre alt, sorgt aber
immer noch fiir spektakulire Bilder.

Der Kontrast kommt dadurch zustande, dass die Io-
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Abbildung 9.8: Atomare Struktur und indizierte
Emissionsmaxima.

nisierung des Heliums davon abhéngt, dass ein frei-
er Zustand fiir das Elektron im Metall vorhanden ist.
Diese Zustinde haben bevorzugte Richtungen inner-
halb der Einheitszelle. In diese Richtungen werden
die Ionen von der Spitze weg beschleunigt und er-
geben dadurch ein Bild der atomaren Struktur der
Spitze, wie in Abb.[9.8]gezeigt.

9.1.5 Mikroskopie

Eine der heute am weitesten verbreiteten Metho-
den, mit denen man die atomare Struktur der Ma-
terie sichtbar machen kann, ist die Elektronenmi-
kroskopie. Dabei werden anstelle von Licht Elek-
tronenstrahlen verwendet, und anstelle von Linsen
aus Glas verwendet man dabei elektromagnetische
Linsen, um den Strahl zu fokussieren und abzubil-
den. Wie beim Lichtmikroskop kann man dabei Bil-
der erzeugen, wobei die Auflosung sehr viel gro-
Ber sein kann. Fiir hoch auflésende Elektronenmi-
kroskopie verwendet man Beschleunigungsspannun-
gen von mehreren 100 kV. Bei diesen Energien be-
wegen sich die Elektronen relativistisch und ihre
de Broglie Wellenléinge ist liegt in der Gréenord-
nung von 10~!2 m. Die Auflésung wird somit nicht
mehr durch Beugungseffekte beschrinkt, sondern
nur noch durch experimentelle Probleme, wie z.B.
Linsenfehler.

Abb. [9.9] zeigt eine elektronenmikroskopische Auf-
nahme eines Molekiilkristalls. Man sieht hier direkt
die einzelnen Atome und kann gut schwerere von
leichteren Atomen unterscheiden. AuBlerdem kann
man erkennen, wie diese Atome in Molekiilen ge-
bunden sind.

‘.-".I

Abbildung 9.9: Atomar aufgelostes TEM-Bild eines
Molekiilkristalls.

Nickel

Abbildung 9.10: Prinzip  der
kroskopie.

Raster-Tunnel-Mi-

Eine neue Art, Atome abzubilden, wurde 1982
in Ziirich entwickelt: die Rastertunnelmikroskopie.
Wie in Abb. [9.10 gezeigt, wird dafiir eine feine Spit-
ze liber eine Oberfldache gefiihrt, wobei der Abstand
zwischen der Spitze und der Oberfliche konstant ge-
halten wurde. Indem man die Position der Spitze auf-
zeichnet, kann man ein Bild der Oberfldche erhalten.
Man tastet also die Oberflache mit einer Spitze ab,
benutzt also eine Art verfeinerten Tastsinn, um die
Oberflache sichtbar zu machen.

Abbildung 9.11: Ein ”Kiristall” aus Magnesium-
Ionen in einer Ionenfalle.

Auch mit optischen Methoden kann man einzelne
Atome sichtbar machen. Abbildung [0.1T zeigt einen
Kristall aus atomaren Ionen, welche in einer elektro-
magnetischen Falle gespeichert und mit Laserlicht
zur Fluoreszenz angeregt wurden. Der Grund, dass
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9 Atome, Molekiile und Festkorper

diese mit optischen Methoden sichtbar gemacht wer-
den konnen, liegt darin, dass ihr Abstand auf Grund
der Coulomb-Abstoung in der Gréenordnung von
10 um liegt.

9.1.6 GroBe eines Atoms

Es gibt heute eine Reihe von Moglichkeiten, die
Grofle von Atomen zu bestimmen. Bereits erwédhnt
wurden Rastertunnelmikroskopie und hochauflosen-
de Elektronenmikroskopie. Auch die Rontgenbeu-
gung, welche die Abstinde von Atomen in einem
Kristallgitter bestimmt, kann als Messmethode be-
trachtet werden. Eine weitere Moglichkeit ist iiber
die Messung der van der Waals-Konstanten realer
Gase, welche das effektive Volumen bezeichnen,
welches ein Atom einnimmt. Das effektive Volu-
men kann auch iiber die Dichte eines Festkorpers be-
stimmt werden, sofern die Loschmidt’sche Zahl be-
kannt ist:
Atomvolumen : V) = 4—7rr3 = m—M.
3 pNL

In enger Analogie dazu kann man die Oberfliche ei-
nes Oltropfchens messen, welches z.B. auf eine Was-
seroberfliche aufgebracht wird: Der Olfilm ist eine
Monolage dick, d.h. die Fliche ist gleich der Quer-
schnittsflache eines Atoms, multipliziert mit der An-
zahl der Atome im Oltropfchen.
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Abbildung 9.12: Uberblick iiber die Historische Ent-
wicklung der Atomtheorie.

9.2 Aufbau der Atome

9.2.1 Historische Grundlagen

Wenn man Atome als Bausteine der Materie iden-
tifiziert hat, stellt sich sofort die Frage, woraus denn
die Atome bestehen. Abb.[9.12 fasst die Entwicklung
zusammen.

Dabei besteht prinzipiell die Moglichkeit, dass sie
elementar, also nicht mehr teilbar sind. Dies ent-
spricht der Idee von Demokrit und auch der vorherr-
schenden Meinung gegen Ende des 19. Jh. Tatsich-
lich hatte man aber schon im 19. Jh. erste Hinwei-
se darauf, dass Atome nicht die ewigen und unteil-
baren Grundbestandteile der Materie waren, welche
Demokrit postuliert hatte. Ein Hinweis auf die end-
liche Lebensdauer war die Radioaktivitit.

Dass sie nicht unteilbar sind zeigte die Entdeckung
des Elektrons: bei der Elektrolyse, wie auch bei der
Entdeckung der Kathodenstrahlen schienen die La-
dungstriger aus den Atomen herauszukommen.

Diese Teilchen, welche z.B. auch in einem Funken
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Abbildung 9.13: Joseph John Thomson (1856-
1940).

Abbildung 9.14: Vakuumrshre, mit der Thomson
seine Messungen durchfiihrte.

beobachtet werden konnen, sind fiir alle Arten von
Atomen identisch. Sie tragen eine negative elektri-
sche Ladung. Da die Atome elektrisch neutral sind,
mussten sie also auBler den Elektronen auch einen
positiv geladenen Teil enthalten.

Lord Thomson stellte sich das in der zweiten Hilfte
des 19. JH. so vor, dass der positiv geladene Teil ei-
ne Art Teig oder Pudding darstellte, in dem sich die
Elektronen wie Rosinen aufhielten, wie in Abb.[9.15
gezeigt. Damit konnte er schon einige Punkte erkld-
ren. Allerdings gab es auch Diskrepanzen zum Expe-
riment; so stimmten die berechneten Schwingungs-
frequenzen nicht mit den beobachteten tiberein.

Abbildung 9.15: Atommodell “Pudding mit Rosi-

EX]

nen .

9.2.2 Rutherford’s Experiment

Zu Beginn des 20. Jahrhunderts wurden verschiede-
ne Experimente durchgefiihrt, welche das Innere des
Atoms erkunden sollten. Diinne Metallfolien, wur-
den mit subatomaren Partikeln, insbesondere Elek-
tronen und o-Teilchen beschossen.

Mikroskop
Zinksulfid-Schirm—_
Blei \<>

Metallfolie

Abbildung 9.16: Rutherford und sein Experiment.

Die bekanntesten Experimente wurden von E. Ru-
therford (1871-1937, Abb. in den Jahren 1911-
1913 durchgefiihrt. Die Resultate zeigten, dass der
grofite Teil der Teilchen durch die Folien durchflog,
ohne wesentlich abgelenkt zu werden.

Ein kleiner Teil aber wurde praktisch in die Richtung
zurlick gestreut, aus der sie gegkommen waren. Abb.
fasst die Trajektorien zusammen. Dies war ein
vollig unerwartetes Ergebnis, in krassem Gegensatz
zu den Voraussagen aufgrund des Thomson’schen
Modells des Atoms.

Rutherford beschrieb den Ausgang seiner Experi-
mente so, dass es aussah als wire eine Kanonenku-
gel an einem Blatt Papier abgeprallt. Die Resulta-
te lieBen sich nur interpretieren, wenn man annahm,
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Abbildung 9.17: Trajektorien der ¢-Teilchen.

dass der grofite Teil der Masse des Atoms ist in ei-
nem sehr kleinen Gebiet konzentriert ist. Der Durch-
messer dieses Atomkerns ist von der Grofenordnung
von 4 —10-107" m, etwa 100’000 mal kleiner als
das Atom als ganzes. Auf die Erde iibertragen, wiir-
de dies bedeuten, dass die gesamte Masse der Er-
de in einer Kugel von wenigen Metern Durchmesser
konzentriert wire. Dieser Kern musste die positive
Ladung des Atoms enthalten, wihrend die negative
Ladung in den Elektronen lokalisiert war.

9.2.3 Das klassische Atommodell

Daraus folgte, dass der Kern positiv geladen sein
musste. Aufgrund der damals bekannten Naturgeset-
ze konnte man annehmen, dass das Atom durch elek-
trostatische Krifte zusammengehalten wurde, also
die Anziehung zwischen entgegen gesetzten Ladun-
gen. Damit erinnerte dieses System stark an das Son-
nensystem.

Die Elektronen sollten also auf kreisformigen oder
elliptischen Bahnen um den Atomkern kreisen, wo-
bei sie von der elektrostatischen Anziehung auf der
Bahn gehalten wurden, wie in Abb.[9.18 gezeigt. Da
die Masse des Kernes sehr viel grofler war als die
der Elektronen, konnte man davon ausgehen, dass
der Kern praktisch in Ruhe bleibt, wihrend sich die
Elektronen um ihn bewegen, analog zu Planeten um
die Sonne.

Abbildung 9.18: Modell eines Atoms in der Form ei-
nes Sonnensystems.

Dabei tauchte aber ein grofes Problem auf: Eine
Kreisbewegung ist eine beschleunigte Bewegung.
Die Elektrodynamik, welche im 19. Jh. durch Max-
well festgeschrieben worden war, sagte aber vor-
aus, dass beschleunigte elektrische Ladungen elek-
tromagnetische Strahlung aussenden. Diese Strah-
lung wiirde Energie aus dem Atom abfiihren. Das
Elektron miisste demgemall immer ndher zum Kern
riicken, dabei schneller werden und mehr Energie
abstrahlen und innert sehr kurzer Zeit in den Kern
stiirzen. Nach diesem Modell wéren also Atome
nicht stabil, es sollten gar keine Atome und deshalb
auch keine Materie existieren. Es gab hier also einen
Widerspruch zur experimentell beobachteten Tatsa-
che, dass Materie existiert. Damit war klar, dass die-
ses Modell die Wirklichkeit nicht korrekt beschrieb.

9.2.4 Das Wasserstoff-Spektrum

Abbildung 9.19: Spektrum einer thermischen Quelle
und von vier atomaren Gasen.

Schon im 19. Jahrhundert hat man festgestellt, dass
freie Atome Licht bei einigen wenigen, scharf be-
stimmten Wellenldngen absorbieren oder emittieren,
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wie in Abb. [0.19 gezeigt. Dies war ebenfalls im Wi-
derspruch zu einem Modell der Atome, welche ge-
mail der klassischen Elektrodynamik den Atomkern
umkreisen: die dabei erzeugte Strahlung miisste ein
kontinuierliches Spektrum aufweisen.

Um das Spektrum von Wasserstoff (— Abb. [9.19)
zu messen, werden Wasserstoffatome erzeugt und
mit einem Elektronenstrahl zum Glithen gebracht.
Wenn man das Licht, das insgesamt rosa aussieht,
spektral analysiert, findet man eine Reihe von dis-
kreten Emissionslinien. Diejenigen, die im sichtba-
ren Bereich des Spektrums liegen, konnen auf dem
Bildschirm dargestellt werden. Weitere Linien fin-
den sich im Ultravioletten und infraroten Bereich des
Spektrums. Allgemein kann man die Frequenz der
Resonanzlinien schreiben als

1 1
CRy(nz_mz> mit n < m
4

= L _109677,581cm™.
8esh’c

A% =
Ry

Hier sind n und m sind ganzzahlige “Quantenzah-
len” und Ry stellt die Rydbergkonstante dar. Dies
entspricht einer Frequenz

cRy, =3,29-10" Hz.
In Energieeinheiten hat sie den Wert
heRy =2,18-107 18] = 13 6eV.

Sie gehort zu den wichtigsten Naturkonstanten und
bestimmt u. A. die Energieskala chemischer Bindun-
gen.

Rydberg constant meca? /2h  Ra 10973731.534(13) m~!

in hertz: Rooc 3.2898419499(39) 10" Hz

in joules: Roohe 2.1798741(13) 10718

ineV: Rche/{e) 13.605 698 1(40) eV
Abbildung 9.20: Numerische ~ Werte  fiir  die

Rydberg-Konstante.
Abb.[9.20 gibt die Rydbergkonstante in unterschied-
lichen Energie-Einheiten an.

n legt die “Serie” fest: n = 1 definiert die Lyman Se-
rie, n = 2 die Balmer Serie etc. Somit gilt fiir die

Lyman-Serie

1
fn(i-1)

fiir die Balmer Serie

1 1
fm—R(r,nz)v

Ahnliche Linien findet man im Spektrum einer
Quecksilberdampflampe. Ein besser bekanntes Bei-
spiel sind die Natriumdampflampen, welche als Stra-
Benbeleuchtung verwendet werden. Wenn man die
Auflosung des Spektrometers hoch genug wihlt,
sieht man, dass diese Linien sehr schmal sind.

Auch bei Molekiilen, z.B. N», findet man diskrete
Spektrallinien, doch sind sie in diesem Fall nicht
mehr ganz so schmal, und ihre Zahl wird groBer.

Gemal der Beziehung zwischen Energie und Fre-
quenz & = hv bedeutet dies, dass Atome Energie nur
in bestimmten Paketen aussenden oder absorbieren.
Dies, sowie die Tatsache, dass die klassische Elek-
trodynamik die Existenz von stabilen Atomen nicht
befriedigend erkldren konnte, war eine der wichtig-
sten Triebfedern fiir die Entwicklung der Quanten-
mechanik.

Eine weitere wichtige Entdeckung war der Faraday
Effekt. Faraday, einer der Pioniere der klassischen
Elektrodynamik, hatte gezeigt, dass Magnetfelder
die Wechselwirkung zwischen Licht und Atomen be-
einflussen. Insbesondere konnen sie die Polarisati-
onsebene des Lichtes drehen.

9.2.5 Das Bohr’sche Atommodell

Aus diesen Tatsachen entwickelte Niels Bohr (1885-
1962) im Jahre 1913 ein Atommodell, welches sche-
matisch in Abb. [9.21 dargestellt ist. Er sah sich ge-
zwungen, dafiir zusitzlich zu den bekannten physi-
kalischen Gesetzen weitere Annahmen zu machen.
Er postulierte insbesondere, dass die Bewegung der
Elektronen um den Kern nicht durch die Maxwell
Gleichungen beschrieben wurde, sondern dass es
stationdre Bahnen geben sollte:
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Abbildung 9.21: Schematische  Darstellung  des
Bohr’schen Atommodells.

¢ es sind nur solche Bahnen erlaubt, deren Bahn-
drehimpuls ein ganzzahliges Vielfaches des
Planck’schen Wirkungsquantums 7 ist :

L= merza) = nh.

Abbildung 9.22: Stehwellen auf einem Kreis (links)
und in einem Fabry-Perot Resona-
tor (rechts).

Man kann dies mit Hilfe von

_2m _ 2znh _ h2mr _ Umfang

A
k p L n

so interpretieren, dass der Umfang der Kreisbahn ge-
rade einem Vielfachen der Wellenlinge des Elek-
trons entspricht, wie in Abb. [9.22 gezeigt. Damit
sind Radius und Energie des Elektrons festgelegt.

* Bewegung auf diesen Bahnen ist strahlungslos;
Absorption und Emission finden beim Uber-
gang zwischen unterschiedlichen Bahnen statt.

Wenn sich das Elektron auf einer dieser Bahnen be-
fand, so sollte es keine Energie abstrahlen. Energie
konnte hingegen zwischen Licht und den Atomen

ausgetauscht werden, indem ein Elektron von einer
dieser stationdren Bahnen auf eine andere sprang -
auf diese Weise konnte Bohr das Linienspektrum des
Wasserstoffs erkldren. Mit Hilfe der Einstein’schen
Beziehung & = hv konnte man damit wiederum die
GrofBe der Atome bestimmen.

Sommerfeld modifizierte die Bohr’schen Postulate:
Die Bahn der Elektronen soll elliptisch sein; die
grof3e Halbachse ist bestimmt durch die Hauptquan-
tenzahl 7, die kleine durch die Nebenquantenzahl k;
fiir diese gilt: 0 < k < n. Diese Zustinde sind im
einfachsten Modell entartet; genauere Betrachtun-
gen zeigen, dass relativistische Effekte die Entartung
aufheben: Bahnen, die ndher beim Kern sind entspre-
chen hoheren Geschwindigkeiten und damit stirker
relativistischen Effekten.

Das Bohr’sche Atommodell wurde parallel zu den
Anfingen der Quantenmechanik entwickelt. Da-
durch war seine Lebensdauer wohl von Anfang an
nur kurz. Insbesondere die Zuhilfenahme von adhoc-
Annahmen stellte natiirlich einen Schonheitsfehler
dar. Wenige Jahre spéter wurde mit der Schrodinger-
Gleichung, resp. der Quantenmechanik von Schro-
dinger und Heisenberg die Grundlage fiir eine Be-
schreibung des Atoms ohne zusétzliche ad hoc An-
nahmen geschaffen.
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Abbildung 9.23: Fakten zum Wasserstoffatom.

Abbildung 9.24: Coulomb-Potenzial des Kerns.

9.3 Die Quantenmechanik des
Wasserstoffatoms

9.3.1 Grundlagen, Hamiltonoperator

Das Wasserstoffatom besteht aus einem Proton (La-
dung +e) und einem Elektron (Ladung —e). Der Kern
des leichtesten Wasserstoffatoms besteht aus einem
Proton; er besitzt die Masse mp = 1,67 - 1072"kg
und Ladung e = 1,602 - 10~'9C. Abb.[9.23 fasst die
wichtigsten Fakten zusammen.

Die Elektronen wurden 1897 von J.J. Thomson ent-
deckt. Sie besitzen eine Ladung —e = —1,602 -
107'°C und eine Masse m, = 9,11 - 1073 kg. Das
Elektron kann als Punktpartikel betrachtet werden;
man kann ihm aber auch einen Radius von 2,8 -
10~ m zuordnen.

Der Hamiltonoperator .7# des Systems hat die Form

H=—— T A ©.1)

Hier stellt der erste Term die Coulomb-
Wechselwirkung zwischen Kern und Elektron
dar, mit r als Abstand zwischen Kern und Elektron.
Abb. [9.24 zeigt das Potenzial. Der zweite Term ist
die kinetische Energie des Elektrons.

9.3.2 Wasserstofforbitale

Die stationdren Zustinde des Wasserstoffs ergeben
sich laut dem Bohr-Sommerfeld’schen Modell da-
durch dass die elektronische Wellenfunktion gera-
de in ein Kreis-, resp. ellipsenformige Umlaufbahn
passt. In der Heisenberg-Schrodinger’schen Quan-
tenmechanik stellen sie Eigenfunktionen des Hamil-
tonoperators dar. Diese Zustinde sind fiir den Ha-
miltonoperator exakt bestimmbar. Sie werden
als Orbitale bezeichnet und mit drei Indizes n, ¢ und
m indexiert. In Polarkoordinaten lauten sie

\Pngm(l’,e,([)) :Rné(r)Yém(ev(P)- 9.2)
Die Radialfunktion ist
2 n—0/—1) 1 —r/na
Rnﬂ(r) = 3 ( ) fnao .

2\ (n+0)1)3 @e

l
(2 e (2
nao n+tt \ nag )’
L2£+1

wobei L, das entsprechende Laguerre Polynom
darstellt. Die Winkelfunktionen Y;,,(0,¢) sind die
Kugel(flichen)funktionen.

Die Hauptquantenzahl n bestimmt die Energie des
Systems und gibt gleichzeitig an, wie grof3 das ent-
sprechende Orbital ist. Wie in anderen Systemen
nimmt die Anzahl der Nulldurchgéinge (=Knoten)
der Funktion mit der Energie zu. Fiir Wasserstoff ist
die Zahl der Knoten jeweils n — 1.

Fiir den oben angegebenen Hamiltonoperator ist die
Energie aller Zustinde mit gleichem n identisch.
Man spricht von Entartung. Die Energie betrigt

& hR,
éan — 72 . —*%.

n cn

Fiir n = 1 erhilt man den Grundzustand des Wasser-
stoffatoms

&1 = —13,6eV.
Abb.[9.25/zeigt die Energien.
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Abbildung 9.25: Energien der Zustdnde im H-Atom.

9.3.3 Drehimpuls

Die Drehimpuls-Quantenzahl ¢ bezeichnet den
Bahndrehimpuls des Zustandes W ,;,,:

L=n/l(l+1) £=0,1,2,..n—1.

Wihrend die Bahn selber nicht scharf bestimmt ist,
ist der Drehimpuls in jedem stationdren Zustand eine
exakte GrofBe, d.h. samtliche Messungen des Bahn-
drehimpulses an einem Elektron in einem bestimm-
ten Zustand wiirden den selben Wert ergeben. Fiir
Elektronen in einem Zustand mit £ = 0 (sog. s-
Elektronen) verschwindet der Bahndrehimpuls ex-
akt. Dies ist offenbar ein Resultat, welches in einem
klassischen Atom nicht moglich wire.

Nicht nur der Betrag, sondern auch die Orientierung
des Drehimpulses sind quantisiert (siche Abb. [9.26).
Deshalb bezeichnet die dritte Quantenzahl m in Glei-
chung die Komponente des Drehimpulses ent-
lang der z-Achse:

L,=mh; m=—0—(+1,...—1,0,1,2,...¢.

Die z-Komponente kann somit positiv oder negativ
sein, der Betrag kann jedoch nicht grofler werden,
als der gesamte Drehimpuls /.

Die Orbitale konnen auf unterschiedliche Weise gra-
phisch dargestellt werden, wie z.B. in Abb.[0.27. Auf
diese Weise werden auch die Symmetrieeigenschaf-
ten besser sichtbar, welche z.B. fiir die Interpretati-
on der Spektren eine gro3e Rolle spielen. Berechnet

2 L=aVEETY
-AV22+ 1)
. =AV6

Abbildung 9.26: Quantisierung des Drehimpulses.

L=1
.o @
K

Pz I

L=2
3%
Abbildung 9.27: Graphische Darstellung einiger

Wasserstofforbitale.

+ dxy, dxyz-y2

man den Erwartungswert des Ortsoperators (), so
findet man, dass er fiir alle Orbitale identisch ist:

<?> Yotm — 0’

d.h. das Elektron befindet sich im Schnitt beim Kern.
Allerdings ist das Quadrat des Abstandes,

<?2>‘Pngm >0,

d.h. die mittlere Entfernung vom Kern ist > 0; sie
wichst mit der Hauptquantenzahl .

9.3.4 Das Wasserstoffspektrum

Damit kann das Linienspektrum des Wasserstoffs in-
terpretiert werden, welches in Abb. [9.28 dargestellt
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Abbildung 9.28: Ubersicht iiber das Wasserstoft-
spektrum.

ist. Die einzelnen Linien entsprechen Ubergiingen
zwischen Zustinden mit Hauptquantenzahl nj, n;.
Die Lyman-Reihe entspricht den Ubergiingen in den
Grundzustand, n = 2 der Balmer Reihe, n = 3 der
Paschen Reihe und so weiter.

9.3.5 Elektronenspin

Dass Elektronen nicht nur eine Ladung und eine
Masse besitzen, wurde aus der Untersuchung der
atomaren Linienspektren sowie des periodischen Sy-
stems relativ bald klar. So konnten die beobachteten
Aufspaltungen im Magnetfeld (der Zeeman-Effekt)
nur erklirt werden, wenn man dem Elektron weitere
Eigenschaften zuschrieb.

Abbildung 9.29: Wolfgang Pauli (1900-1958).

Wolfgang Pauli (— Abb. stellte die Vermu-
tung auf, dass die Elektronen durch eine zusitzli-
che Quantenzahl beschrieben werden miissen, wel-
che nur zwei mogliche Werte annehmen kann. Es

stellte sich heraus, dass diese Quantenzahl dem Spin
entspricht, einem quantisierten internen Drehimpuls.
Dieser Spin ist an ein magnetisches Moment gekop-
pelt.

Abbildung 9.30: Kraft auf einen magnetischen Di-
pol in einem inhomogenen Ma-
gnetfeld.

Wie in Abb. [9.30 gezeigt, spiirt ein magnetisches
Moment, welches durch ein inhomogenes Magnet-
feld fliegt, eine Kraft in Richtung des Magnetfeldes,
welches von seiner Orientierung beziiglich dem Ma-
gnetfeld abhingt. Ist das Magnetfeld stirker beim
magnetischen Siidpol des inhomogenen Magneten,
so wird der fliegende Magnet in die Richtung abge-
lenkt, in der sich sein magnetischer Nordpol befin-
det.

Abbildung 9.31: Resultat des Stern-Gerlach Experi-
mentes.

Stern und Gerlach konnten als erste zeigen, dass die-
se magnetischen Momente tatsédchlich durch Ablen-
kung in einem inhomogenen Magnetfeld gemessen
werden konnten und dass sie praktisch nur zwei un-
terschiedliche Werte annehmen konnten. Abb. [9.31
zeigt schematisch das Experiment und das gemesse-
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ne Ergebnis. Ein Elektron besitzt einen internen Dre-
himpuls, welcher als Spin bezeichnet wird. Er hat die
Grolie

h
==-=53-107%s.
s > , S

Man kann sich dies in einer ersten Anniherung als
eine rotierende Kugel vorstellen. Allerdings ist der
Drehimpuls fest, d.h. die Rotationsgeschwindigkeit
ist fix.

Eine rotierende, elektrisch geladene Kugel bedingt
einen Kreisstrom und damit ein magnetisches Mo-
ment. Dies trifft auch fiir das Elektron zu: es besitzt
ein magnetisches Moment

eh
H=8ls=85 "~
Me
Der Faktor g bezeichnet das Verhéltnis zwischen
dem magnetischen Moment aufgrund des Spins und
demjenigen, welches fiir einen klassischen Kreis-
strom erwartet wiirde. Dieses wird mit pz = 9,3 -
10~2* Am? bezeichnet.

Der Spin ist neben der Ladung und der Masse
die dritte fundamentale Eigenschaft eines Elektrons
(und vieler anderer Elementarteilchen). Er spielt
auch eine wichtige Rolle fiir die Unterscheidung
zwischen Zustdnden, welche in der Natur vorkom-
men (erlaubten Zustinden) und solchen, welche
nicht beobachtet werden. So gilt insbesondere, dass
zwei Teilchen mit einem Spin, der ein ungeradzah-
liges Vielfaches von 7i/2 ist (“Fermionen”) sich nie
im gleichen Quantenzustand befinden diirfen. Wenn
sich z.B. 2 Elektronen im gleichen rdumlichen Zu-
stand, z.B. dem Orbital eines Atoms befinden, miis-
sen ihre Spins entgegengesetzt ausgerichtet sein. Fiir
vollstindig gefiillte Schalen existiert deshalb zu je-
dem Drehimpuls ?;,5; auch der entgegengesetzte und
der Gesamt-Drehimpuls L, S verschwindet:

L=Y /=0 S=Y5=0.
i i

Hier bezeichnet Z, Zl den Bahndrehimpuls und §, Si

den Spindrehimpuls.

Ahnlich wie Elektronen besitzen auch Atomkerne
einen Spin. Diesen kann man u.a. mit Hilfe der ma-

Abbildung 9.32: Kernspin-Tomographie bildet Pro-
tonendichte ab.

gnetischen Resonanz, resp. Kernspinresonanz unter-
suchen. Eine bildgebende Variante der Kernspinre-
sonanz, die Kernspintomographie oder MRI (=Ma-
gnetic Resonance Imaging) wird in der Medizin ver-
wendet. Abb.[9.32 zeigt ein Beispiel eines MRI Bil-
des.

9.3.6 Schwerere Atome

Atome mit mehreren Elektronen kdnnen @hnlich ver-
standen werden wie das Wasserstoff-Atom. Sie be-
stehen aus einem Kern mit Ladung +Ze und Z Elek-
tronen, jeweils mit Ladung —e. In einer ersten Néhe-
rung kann man die Wechselwirkung der Elektronen
untereinander vernachlidssigen und die Zusténde fiir
die einzelnen Elektronen entsprechend den Zustéin-
den des Wasserstoffatoms schreiben, mit den Quan-
tenzahlen n, ¢, m und s. Die wichtigsten Unterschie-
de zum Wasserstoffatom sind

* In wasserstoffihnlichen Atomen (Kernladung =
+Ze, ein Elektron) ist die Energie der Zustinde

&
=220 = —hz*2.

n
Bei mehreren Elektronen schirmen diese die

Kernladung teilweise ab.

* Die Orbitale zu einer Hauptquantenzahl n sind
nicht mehr entartet. Ihre Energie nimmt mit zu-
nehmendem Drehimpuls ¢ zu.
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Dies kann so interpretiert werden, dass ein Elek-
tron in einem s-Orbital sich ndher beim Kern be-
findet und deshalb die vollstindige Kernladungszahl
“spiirt” und aufgrund dieser Coulomb-Energie eine
niedrigere Gesamtenergie besitzt, wihrend ein Elek-
tron in einem hoheren Drehimpulszustand nur die
effektive Kernladungszahl der Atomrumpfs (Kern +
tiefer liegende Elektronen) “sieht”. Man bezeichnet
Zustande mit Drehimpuls ¢ =0, 7, 27, 34, ... als s—,
p-,d—, f-, ... Orbitale.

G
sH-  H K-

Abbildung 9.33: Konfiguration von
Elektronen Atomen.

n=1

Gemal Pauli-Prinzip kann jeder Zustand maximal
von 2 Elektronen mit entgegengesetztem Spin be-
setzt sein. Im Grundzustand sind dementsprechend
jeweils die Z/2 energetisch niedrigsten Orbitale mit
2 Elektronen besetzt. Daraus ergibt sich die Struktur
des Periodensystems. Abb.[9.33 zeigt einige Beispie-
le von besetzten Orbitalen.

9.3.7 Das Periodensystem

Bei der Betrachtung der Elemente als Funktion der
Kernladungszahl fallen unterschiedliche Regelmai-
Bigkeiten auf. Dmitri Iwanowitsch Mendelejew (—
Abb. erarbeitete eine Systematik der chemi-
schen Elemente, die er periodische GesetzmifBigkeit
nannte.

Sie werden deshalb in ein periodisches System ein-
geteilt, welches in Abb.[9.35 dargestellt ist. Am Be-
ginn der Periode steht jeweils ein Alkalimetall (Aus-
nahme: Wasserstoff), am Ende ein Edelgas. Die Peri-
oden haben unterschiedliche Lidnge: Sie betragen 2,
8, 8,18, 18 und 32.

Die Zahlen entsprechen der Anzahl der Elektronen,

Dmitrij Iwanowitsch

Mendlejew (1834-1907)
ONKNTY CHCTEMN JAEMEHTOBY,

OCROALINON KA A ATINANS 043 B LRROVECHNL CUETI.

M= 3Th=118?

Die alteste Darstellung des
Periodensystems

Abbildung 9.34: Dmitri Iwanowitsch Mendelejew
(1834 - 1907) und seine Darstel-
lung des Periodensystems.
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Abbildung 9.35: Aktuelle Darstellung des Perioden-
systems.

welche in einer vollstindig gefiillten Schale unterge-
bracht werden kann. Es ist jeweils die Reihenfolge
zu beriicksichtigen, in der die Orbitale gefiillt wer-
den. Die Periodizitit schldgt sich in unterschiedli-
chen GroBen nieder. So erreicht der Atomradius je-
weils bei den Alkalimetallen ein Maximum. Wenn
weitere Elektronen in die gleiche Schale eingefiillt
werden nimmt der Atomradius unter dem Einfluss
der zunehmenden (effektiven) Kernladungszahl ab.
Das Minimum wird kurz nach der Mitte der Periode
erreicht, danach nimmt der Atomradius wieder zu.

Die Ionisierungsenergie zeigt ebenfalls ein periodi-
sches Verhalten, wie in Abb. dargestellt. Hier
wird das Maximum bei den Edelgasen erreicht:
Wenn eine Schale vollstindig gefiillt ist wird fiir
die Entfernung eines Elektrons eine besonders hohe
Energie benotigt. Bei den Alkaliatomen hingegen ist
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Abbildung 9.36: Abhéngigkeit der Ionisierungsener-
gie von der Ordnungszahl.

die Bindungsenergie des duBersten Elektrons rela-
tiv gering. Jedes Atom besitzt ein charakteristisches
Linienspektrum. Aus den Frequenzen dieses Spek-
trums kann man die Energien der elektronischen Zu-
stdnde berechnen.

9.4 Bindungen und Molekiile

9.4.1 Wechselwirkung und Bindungsenergie

Atome haben die Tendenz, sich zu groferen Syste-
men wie Molekiilen oder Festkorpern zu verbinden.
Diese groferen Systeme bildet sich “spontan” durch
die Wechselwirkung zwischen den Molekiilen, und
die Molekiile selber sind ebenfalls durch eine Anord-
nung minimaler Energie bestimmt. Man kann somit
die Struktur bestimmen, indem man die Abstand-
sabhidngigkeit der Wechselwirkungsenergie berech-
net und deren Minimum als Funktion des Abstandes
bestimmt.

neutrale
Bestandteile
2 Gleichgesichts- gi]r?tF:iEZt
9] abstand in Ruhe
c
L
A

g Abstand
()
© Bindungsenergie

Abbildung 9.37: Definition der Bindungsenergie.

Bestimmt man die Gesamtenergie eines stabilen Mo-
lekiils als Funktion der interatomaren Abstinde, so
existiert bei einem endlichen Abstand ein Minimum.
Dieser Abstand ist der Gleichgewichtsabstand, wel-
cher die Struktur des Molekiils definiert und seine
Energie bestimmt die Bindungsenergie.

Die Energie, die man benétigt, um ein Molekiil
in Atome zu zerlegen, wird als Bindungsenergie
bezeichnet.

Bindungsenergien werden meist in der Einheit eV
pro Molekiil oder kJ pro Mol angegeben. Dabei ent-
spricht 1eV/Molekiil

| eV J
Molekiil Molekiil

Die Energie pro Molekiil kann man auch umrechnen
in makroskopische Energien, z.B. Energie pro Mol,
indem man sie mit der Avogadro-Konstante multi-
pliziert:

= 1,6-107"

J

sMolekiille  kJ
Molekiil N

.6-10? 96
Mol

1,6-1071°

Mol
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Fiir die Berechnung der Energie benttigt man ei-
ne quantenmechanische Beschreibung. Allerdings
beschreibt man nie ein vollstindiges Modell des
Systems, sondern man geht aus von der Born-
Oppenheimer Niherung. Diese Naherung behandelt
nur die Elektronen rein quantenmechanisch, wéh-
rend die Position der Kerne als klassische Groflen
behandelt werden. Die Grundlage dafiir ist, dass bei
gleichem Impuls die Kerne sich um mindestens drei
GrofBenordnungen langsamer bewegen als die Elek-
tronen, bei schwereren Atomen bis zu 5 Grofenord-
nungen. AuBlerdem vernachldssigt man in erster Ni-
herung die Wechselwirkung zwischen den Elektro-
nen und behandelt sie als unabhédngige Teilchen. Fiir
die Wechselwirkung mit den Kernen ist dann in er-
ster Linie der mittlere Aufenthaltsort relevant. Die
Elektronen bewegen sich in einem Potenzial, wel-
ches durch die Coulomb-Wechselwirkung mit den
Kernen und den iibrigen Elektronen gegeben ist.

Die quantenmechanische Beschreibung benétigt in
der Born-Oppenheimer Nédherung nur eine Zustands-
funktion fiir die Elektronen, in denen die Positionen
der Kerne als klassische Parameter auftauchen. Um
die Bewegung der Kerne zu diskutieren, kann man
anschliefend die gemittelte Gesamtenergie fiir un-
terschiedliche Kern-Konfigurationen berechnen. In
diesem Potenzial folgt die Bewegung der Kerne ei-
nem Satz von harmonischen Oszillatoren.

9.4.2 Bindungstypen

Anziehende Wechselwirkungen zwischen Atomen,
welche zu einer stabilen Anordnung fithren, kdnnen
sich auf qualitativ sehr unterschiedliche Weise be-
merkbar machen. Eine erste Klassifizierung unter-
scheidet vier Arten von Wechselwirkungen, welche
in Tabelle0.Tjund Abb.[9.38 zusammengefasst sind..

* kovalente Bindung

* van der Waals Bindung

* Wasserstoffbriicken

* Coulomb-Wechselwirkung

Grob vereinfacht kann man sich vorstellen, dass im
Fall der van der Waals Bindung die neutralen Be-
standteile (z.B. Argon im Festkorper oder Lipidmo-

Typ Beispiel | Bindungs- | Konstitu-

energie in enten
kJ/Mol

kovalent Diamant 710 C

van der CHy4 10 CHy4

Waals

Wasserstoff-| H,O 50 H,0

briicken

Coulomb NaCl 780 Na™,Cl~

Tabelle 9.1: Einige Eigenschaften der wichtigsten

Bindungstypen
C ©
©
C @

Abbildung 9.38: Schematischer Vergleich der Elek-
tronendichteverteilung bei kovalen-
ten Bindungen (links) und van der
Waals Bindungen (rechts).

lekiile in einer Membran) sich gerade berithren und
durch schwache Krifte aneinander gehalten werden.
Im Fall der kovalenten Bindung existiert ein ver-
stirkter Uberlapp zwischen den Elektronen der ein-
zelnen Atome, welcher zu einer starken, gerichte-
ten Bindung fiihrt. Die kovalente Bindung hilt die
Atome innerhalb der Molekiile zusammen, die van
der Waals Bindung und die Wasserstoffbriicken wir-
ken zwischen den Molekiilen und sind verantwort-
lich fiir die Kondensation der Molekiile zu Fliissig-
keiten und Festkorpern, sowie fiir die Bildung von
supramolekularen Strukturen, wie z.B. Zellmembra-
nen oder molekularen Aggregaten.

Die Coulomb-Wechselwirkung spielt eine wichtige
Rolle in wissrigen Losungen, nicht nur bei gelade-
nen Molekiilen (Ionen), sondern auch bei der Wech-
selwirkung zwischen Teil-Ladungen, d.h. polarisier-
ten Molekiilen.
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9.4.3 Das Wasserstoffmolekiil

Wir betrachten zunichst nur die Krifte, welche bei
der Wechselwirkung zwischen zwei Atomen auftre-
ten. Das einfachste System, bei dem sich mehre-
re neutrale Teilchen zu einer bestimmten Struktur
zusammenfinden, ist das Wasserstoffmolekiil. Mit
klassischer Mechanik allein ist es schwierig einzuse-
hen, wie zwischen zwei neutralen Teilchen eine bin-
dende Wechselwirkung zustande kommen soll. Um
dies zu verstehen, muss das System also quantenme-
chanisch analysiert werden.

0|
‘I/A Up
' > Ort

S =(U4|Tp

Abbildung 9.39: Uberlapp der Atomorbitale im H,-
Molekiil.

Ausgangspunkt sind zwei Wasserstoffatome A und
B, deren Elektronenhiillen sich zum Teil iiberla-
gern. Die Wellenfunktionen der beiden Elektronen
seien ¥4 und Wp. Sind die beiden Atome rdum-
lich gut getrennt, so kann die Zustandsfunktion des
Gesamtsystems in guter Ndherung als das Produkt
Y4 (1)®p(2) der beiden einzelnen Funktionen ge-
schrieben werden; hier sind die Koordinaten (Ort
und Spin) der beiden Elektronen zu den Indices (1,
2) zusammengefasst. Dies beriicksichtigt nicht das
Pauliprinzip, nach dem der Zustand der beiden Elek-
tronen unter Vertauschung ihrer Koordinaten anti-
symmetrisch sein miisste.

Den Hamiltonoperator des Systems sei 7. Er ent-
hilt neben der kinetischen Energie die Coulomb-
Wechselwirkung mit beiden Atomkernen. Eine voll-
standige Analyse des molekularen Hamiltonopera-
tors ist sehr aufwindig. Fiir ein qualitatives Ver-
stindnis geniigt jedoch eine relativ einfache Be-
schreibung. Dafiir wird die Eigenfunktion ¥ des
gesamten Hamiltonoperators bendtigt, wobei nicht
die explizite Darstellung des Hamiltonoperators ver-

wendet wird, sondern lediglich die (unbekannten)
Matrixelemente in der Basis der Grundzustands-
Eigenfunktionen der einzelnen Atome.

9.4.4 Zustandsenergie

Als Ansatz fiir die Berechnung der Eigenfunktion
¥ eines einzelnen Elektrons im Molekiil verwendet
man eine Linearkombination der beiden atomaren
Zustinde:

Y =cs¥4 +cp¥p.

Die beiden Basisfunktionen sind fiir endliche Ab-
stinde nicht orthogonal, sondern besitzen ein end-
liches Uberlappintegral

S = (PA|Pp).

S ist ein MaB fiir die Stirke der Wechselwirkung
zwischen den beiden Atomen: je nidher die Atome
zusammen liegen, desto groBer ist der Uberlapp zwi-
schen den beiden Orbitalen. Aufgrund der Normie-
rung ist S < 1. Die Energie & des Zustandes ¥ ist

(P2 |P)
(P|¥)
A o + g+ 2cacp g

= , (9.3
ci+6123+2cAcBS ©-3)

&

wobei die Koeffizienten c4, cg und die Matrixele-
mente g = g4 als reell angenommen wurden.
Die Matrixelemente sind

Ay = (B|H|Ey).

Das Uberlappintegral S wurde ebenfalls als reell an-
genommen.

Erweitern von Gleichung (9.3) mit dem Nenner der
rechten Seite ergibt

E (X + % +2cacpS)
= AHMp+ CaHpp+ 2cacpHap.

Diese Gleichung erlaubt es, die Energie zu mini-
mieren und so den Eigenzustand zu finden. Ableiten
nach cy4 ergibt

d

T:CA(%AA_(?)‘FCB(%AB—éDS) =0.
CA
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Die Ableitung nach cp ergibt entsprechend

0
T:CA(%AB_gS)“‘CB(%B—g):Q
B

Da die beiden Atome identisch sind, muss %44 =
Jpp sein. Damit konnen die beiden Gleichungen in
Matrixschreibweise geschrieben werden:

t%ﬂAA - & %AB ) CA . 0
%B - éDS <%0AA —& CB o 0 '
Damit dieses Gleichungssystem l6sbar ist, muss die
Determinante
(s — E) — (A —ES)* =0

verschwinden. Dies ergibt eine Gleichung fiir die
Energie

E*(1-8%) =28 (Han + HapS)
4+, -y = 0.

Die Losungen dieser quadratischen Gleichung sind

(Haa —HapS) £/ (Haa — HapS)? — (H4, — Hip)(1— 5?)

€= 1- 52

(Haa —HapS) =/ HAL + HAS2 —2HaaHapS —HA, + Hap + HEAS2 — HES?
1-52

(Haa —HaS) £ (Hap — HaaS)

1-52
_ (HaaFHap)(1£S)
B 1-52
oder
o Hoa F Hap
s,a — .
1FS

9.4.5 Molekiilorbitale

Die zugehorigen Eigenfunktionen, welche die mog-
lichen Zustinde eines Elektrons im Molekiil be-
schreiben, sind

g _ Yat¥s
2(1+5)
Y, ¥
lPa _ A B

V)

d.h. die symmetrische und antisymmetrische Linear-
kombination der beiden Atomorbitale.

Die Energie &; des symmetrischen Zustandes ist ge-
geniiber der Energie 7#34 der Atomorbitale um einen
Betrag abgesenkt, der vom Wechselwirkungsterm
4 und dem Uberlappintegral S abhingt. Die Ener-
gie &, des antisymmetrischen Zustandes liegt dage-
gen hoher, um einen Betrag der von den gleichen Pa-
rametern abhingt.

Energie

Ea / &g

Abbildung 9.40: Energie der
Molekiil.

Orbitale im H»-

Die Wechselwirkung zwischen den beiden Atomen
fiihrt also zu einer Aufspaltung der Energiezustinde,
die ohne Wechselwirkung entartet sind. Das symme-
trische Molekiilorbital ¥ liegt energetisch unterhalb
der Atomorbitale, die antisymmetrische Linearkom-
bination W, oberhalb. Wie im Atom kann jedes die-
ser Molekiilorbitale mit maximal zwei Elektronen
mit entgegengesetztem Spin besetzt werden. Offen-
sichtlich weist das neutrale Wasserstoffmolekiil, bei
dem das tiefer liegende Orbital ¥ von zwei Elektro-

nen besetzt wird, die stabilste Konfiguration auf.
Up
XN

Abbildung 9.41: Molekiilorbitale im H,-Molekiil.

\I[G,S

/N

Beim symmetrischen Molekiilorbital ¥; werden die
beiden Atomorbitale mit dem gleichen Vorzeichen
addiert. Es entsteht deshalb zwischen den beiden
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Atomen eine positive Interferenz und die Elektro-
nendichte steigt in diesem Gebiet. Das antibinden-
de Orbital ¥, hingegen weist zwischen den beiden
Kernen eine Knotenebene auf; in dieser Ebene ver-
schwindet die Elektronendichte. Treten mehr als 2
Atome in Wechselwirkung, so ergeben sich weitere
Aufspaltungen.

9.4.6 Kovalente Bindung

‘ Abstand zu lang

|Quantenzus
atand S

Energie in Ry (13.6 eV)

| 74pm
Bindungslange

o ‘ I ‘

Kern-Kern Abstand in ao=0.53 A

Abbildung 9.42: Energie der Molekiilorbitale im
H,-Molekiil als Funktion des Ab-
standes.

Das Uberlappintegral und damit die Stirke der
Wechselwirkung nimmt mit abnehmendem Abstand
zu. Die Energie des antisymmetrischen Orbitals liegt
fiir alle Abstidnde iiber der Energie der Atomorbitale.
Bringt man das Molekiil in diesen Zustand, so kann
das System immer Energie gewinnen, indem die bei-
den Atome sich voneinander entfernen - es fliegt so-
mit auseinander. Man nennt dieses Orbital deshalb
antibindend.

Im Gegensatz dazu liegt die Energie des symmetri-
schen Molekiilorbitals fiir einen grolen Abstandsbe-
reich unterhalb der Energie der freien Atome. Be-
findet sich das Atom in diesem Zustand, so miisste
Energie aufgebracht werden, um die Atome vonein-
ander zu trennen; sie bleiben deshalb aneinander ge-
bunden. Erst wenn der Abstand unter den Gleich-
gewichtswert fillt, fiihrt die AbstoBung zwischen
den Kernen (und ev. zwischen den geschlossenen

Schalen) zu einer zusitzlichen abstolenden Wech-
selwirkung, so dass die Gesamtenergie wieder an-
steigt. Das Energieminimum entspricht dem Gleich-
gewichtsabstand.

Insgesamt kann das System seine Energie erniedri-
gen, wenn jedes der beiden Atome ein Elektron zur
Bindung beitrégt. Solche Bindungen werden als ko-
valente Bindungen bezeichnet. Innerhalb von Mole-
kiillen werden die Atome durch kovalente Bindun-
gen zusammengehalten. Sind es mehr als 2 Elektro-
nen (z.B. bei gefiillten Schalen, wie den Edelgasen),
so miissen auch antibindende Orbitale belegt wer-
den. Dadurch erhoht sich die Gesamtenergie und ei-
ne Bindung findet nicht statt.

Kovalente Bindungen sind fiir alle Molekiile die
wichtigste Wechselwirkung. Bei den meisten Mole-
kiilen arrangieren sich die Atome so, dass sie ihre
Elektronen so teilen, dass jedes Atom lokal die Kon-
figuration eines Edelgasatoms annimmt. Dies bedeu-
tet z.B. beim Kohlenstoff, welcher vier Elektronen in
der duBersten Schale besitzt, dass er bevorzugt vier
einfache Bindungen eingeht und dadurch auf insge-
samt 8 Elektronen kommt. Sauerstoff benétigt noch
2 Elektronen, Wasserstoff eines.

9.4.7 Polare Bindungen

v,
Ort

Energie

s
Ort

Abbildung 9.43: Energie und Form der Molekiilor-
bitale in einem polaren Molekiil.

Die obige Diskussion ging aus von der Annahme,
dass es sich um zwei identische Atome handelt. Ko-
valente Bindungen konnen aber auch bei ungleichen
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Partnern entstehen. In diesem Fall sind auch die Ko-
effizienten ¢4 und cp der Atomorbitale bei der Kom-
bination zu Molekiilorbitalen

Wy =caWa +cp¥sp

(und analog fiir ¥,) nicht mehr vom gleichen Be-
trag, wie Abb. [9.43 zeigt. Das tiefer liegende Orbi-
tal ist dominiert durch das energetisch tiefer liegende
Atomorbital. Ist nur das bindende Orbital besetzt, ist
dementsprechend die Elektronendichte ist auf die-
sem Atom konzentriert. Beim antibindenden Orbi-
tal ist der groBte Teil der Elektronendichte auf dem
energetisch hoher liegenden Atom, wie in Abb.[9.43
gezeigt.

—~

Abbildung 9.44: Ladungsverteilung im Wassermo-
lekiil: negative Ladungsdichte ist
blau, positive griin.

Abb.[9.44 zeigt als Beispiel die Ladungsverteilung in
einem Wassermolekiil. In der O-H Bindung werden
die Bindungselektronen niher zum Sauerstoff ver-
schoben. Dieser erhilt dadurch eine partiell negative
Ladung, die Wasserstoffatome eine positive Partial-
ladung.

Abbildung 9.45: Verlauf der Elektronegativitit im
Periodensystem.

Elektronegativitit ist ein relatives Mab fiir die Kraft,
mit der ein Atom ein gemeinsames Elektron an sich

bindet und damit ein MaB fiir die Asymmetrie bei
polaren Bindungen. Sie ist fiir kleine Atome auf
der rechten Seite des Periodensystems am hochsten
(Bsp. : Fluor 3,98), wihrend groe Atome mit nur
wenigen Elektronen in der dufersten Schale (Bsp:
Cs 0,79) diese leichter abgeben. Je nach Differenz
der Elektronegativitdten kann dieser Transfer voll-
stindig sein (siche auch Kapitel [9.4.12). Dies ent-
spricht dem Fall der ionischen Bindung. 2 Beispiele

Wasser : Yo — xu =3,44-2,2=1,24
— polare kovalenteBindung
NaCl: xc; — Xng = 3,16-0,93 =2,23

— ionische kovalenteBindung

9.4.8 Van der Waals Bindung

Atome oder Molekiile konnen aber auch eine bin-
dende Wechselwirkung eingehen, bei der keine
Elektronen transferiert werden. Dies geschieht im-
mer dann, wenn die Bausteine schon gefiillte Elek-
tronenschalen aufweisen, sodass keine Elektronen
zur Verfiigung stehen, welche geteilt werden konn-
ten und dadurch eine Bindung erzeugen konnten.
Diese Art der Wechselwirkungen tritt auch in rea-
lIen (van der Waals-) Gasen auf und wird als van der
Waals Wechselwirkung, London-Wechselwirkung
oder induzierte Dipol-Dipol Wechselwirkung be-
zeichnet. Sie kann so verstanden werden, dass die
beiden Atome gegenseitig Dipole induzieren, wel-
che sich anziehen. Allerdings handelt es sich nicht
um statische Dipole. In einem klassischen Bild (das
notwendigerweise unvollstindig ist) miissten die
Atome oszillierende Dipolmomente besitzen. Wenn
diese in Phase oszillieren, stellt sich insgesamt eine
anziehende Wechselwirkung ein.

Um zu verstehen, wie die van der Waals Wechselwir-
kung zustande kommt, kann man das einfache elek-
trostatische Modell betrachten, welches in Abb.[9.46
dargestellt ist. Zwei Atome bestehen aus jeweils ei-
nem Kern und einer Elektronenhiille, die sich ge-
geniiber dem Kern verschieben kann. Die elektro-
statische Anziehung zwischen Kern und Elektronen-
hiille stellt eine riicktreibende Kraft dar, welche zu
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— —

X1 T2

Abbildung 9.46: Schwingung benachbarter Atome.

einer oszillatorischen Bewegung fiihrt. Die Schwin-
gungsfrequenz entspricht einer optischen Resonanz
mit Frequenz @y. Der Abstand zwischen den beiden
Atomen sei R und die Auslenkungen der Elektronen-
hiille aus der Ruhelage seien x; und x;. In guter Na-
herung kénnen die Positionen der Kerne als konstant
betrachtet werden.

9.4.9 Wechselwirkung

Die anziehende Wechselwirkung zwischen den bei-
den Systemen entsteht, wenn man zusitzlich die
Coulomb-Wechselwirkungen zwischen Kern und
Elektronenhiille des ersten Systems mit den Kom-
ponenten des zweiten Systems beriicksichtigt:

7 1+ 1 1 1
dneg |[R R—x1+x2 R—x; R—i—xz'

Hier ist die Ladung des Kerns +¢ und diejenige
der Elektronenhiille —g. Die beiden ersten (positiven)
Terme stellen die AbstoBung zwischen den Kernen
und zwischen den Elektronen dar, die beiden nega-
tiven Terme die Anziehung zwischen der Elektro-
nenhiille des einen Atoms und dem Kern des andern
Atoms. Offenbar sind alle vier Terme von der Gro-
enordnung

q2

4wegR ’

Um zu verstehen, ob die abstof3ende oder anziehen-
de Wechselwirkung dominiert, entwickelt man die-
sen Ausdruck fiir kleine Auslenkungen, x{,x; < R.
Dazu verwendet man sinnvollerweise eine dimensi-
onslose Schreibweise:

q* 1 1 1
4wegR

In erster Ordnung, d.h. fir 1 /(1+¢€)~1—¢, mite =
x12/R, verschwindet der Ausdruck in der Klammer.
In zweiter Ordnung, d.h. mit

1
——~l-g+é®
1+¢
erhilt man
2
~ g 1 22 2
R TR
2
q- X1x3
= ————=, 9.4
2mey R3 O-4)

Offenbar ist der Kopplungsterm proportional zum
Produkt x;x, der beiden Auslenkungen. Er ist ne-
gativ, d.h. anziehend, wenn die beiden Auslenkun-
gen das gleiche Vorzeichen haben, d.h. wenn beide
Elektronenhiillen in die gleiche Richtung verscho-
ben sind.

9.4.10 Eigenmoden

Der gesamte Hamiltonoperator ist die Summe
H = I+ 74

des ungestorten Systems 775 und des Kopplungs-
terms 7¢. Die Eigenwerte dieses Operators, d.h. die
Energien des Systems, erhilt man durch Verwen-
dung von symmetrieangepassten Koordinaten

1
\/E E('xl —XZ),

wobei s und a fiir symmetrische und antisymmetri-
sche Linearkombination stehen. In diesen Koordina-
ten sind

Xs=—7=(x14+x) x4=

1 1
X1 =—=X+%) x= ﬁ(xx —Xg).

V2
In dieser Form besteht der Hamiltonoperator aus
zwel unabhingigen Termen, welche jeweils einen
harmonischen Oszillator darstellen. Der eine ent-
hilt die Variablen x; und p;, der andere x, und p,.
Beim symmetrischen Term ist die Kraftkonstante re-
duziert, beim antisymmetrischen erhoht. Die beiden
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Terme besitzen deshalb unterschiedliche Frequen-
zen. Das System spaltet somit auf, wie bei gekop-
pelten klassischen Pendeln. Die beiden Eigenmoden
haben die Frequenzen

C q*
o=/ (1£——).
\/m( 2neOR3C)

Mit Hilfe der Taylor-Reihe
2

\/1ix:1i%—%+...

erhalten wir fiir x = ¢*/(2m&R>C) in zweiter Ord-
nung die Ndherung

2
1 & 1 2
omay el L1 )
22mwegR°C 8 \ 2meyRC
]
k=) R— o 1. Ordnung 2.Ordnung
] I
S [ Aufspaltung Verschiebung

€

) —
Abbildung 9.47: Energieverschiebung durch die
Kopplung.

Offenbar sind die Frequenzen der beiden Eigenmo-
den leicht verschoben. Die Verschiebung erster Ord-
nung ist fiir die beiden Frequenzen entgegengesetzt,
die Verschiebung zweiter Ordnung ist fiir beide zu
kleineren Frequenzen.

9.4.11 Das Lennard-Jones Potenzial

Die bindende Wechselwirkung kommt dadurch zu-
stande, dass der Zustand niedrigster Energie, also der
Schwingungs-Grundzustand, nicht die Energie O be-
sitzt, sondern iw/2 (pro Freiheitsgrad). Die Energie
des Gesamtsystems ist somit

h 1/ &
Mot =hao [1— - (—L
3 (@t @) “’Ol 8<27reoR3C>

Diese ist etwas geringer als die Grundzustandsener-
gie hiay der beiden getrennten Atome, zwar um den
Beitrag zweiter Ordnung

2
1 7 A
AU = —hoyy= | ——— | =——.
8 <27tsoR3C> RS

9.5)

Da diese Energie mit abnehmendem Abstand im Be-
trag zunimmt, stellt dies einen bindenden Beitrag
zur gesamten Energie des Systems dar. Die anzie-
hende Wechselwirkung ist indirekt proportional zur
sechsten Potenz des Abstandes. Da es sich um eine
Anderung der Nullpunktenergie handelt, sollte die-
ser induzierte Dipol nicht als schwingender Dipol
verstanden werden. Offensichtlich verschwindet die
Wechselwirkung im statischen Grenzfall (wy — 0),
wie auch im klassischen Grenzfall (& — 0).

Die Wechselwirkung ergibt mit abnehmendem
Abstand eine immer stirkere Bindung o< R=%. Es exi-
stieren jedoch auch abstoBBende Krifte, welche bei
geringen Abstidnden dominieren. Ein wichtiger Bei-
trag kommt dazu, wenn sich die Elektronendichte-
verteilungen zweier Atome mit gefiillten Elektro-
nenschalen iiberlappen: dann muss auf Grund des
Pauli-Prinzips eines der beiden Elektronenpaare in
ein hoher gelegenes Orbital ausweichen. Weil dafiir
eine hohe Energie aufgebracht werden muss, ent-
spricht dies einer starken abstoBenden Wechselwir-
kung. Empirisch hat man fiir Edelgase ein Potenzi-
al gefunden, das etwa mit R~'? von der Distanz R
abhingt. Das gesamte Potenzial fiir die Wechselwir-
kung zwischen zwei Atomen mit gefiillten Orbitalen
kann damit geschrieben werden als

ot =se[(5)" (2)]

=

T T
1,0 1.2 14 16 18 R/o

Abbildung 9.48: Abstandsabhiingigkeit der Energi-
en im Lennard-Jones Potenzial.

Dieses Potenzial ist als Lennard-Jones Potenzial be-
kannt. Die genaue Form sollte nicht als Naturgesetz
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betrachtet werden. Sie bildet jedoch die folgenden
wichtigen Punkte ab:

* Bei groBBen Abstinden ist die Energie propor-
tional to R~S.

* Bei kurzen Distanzen ist das Potenzial stark ab-
stofend.

¢ Der Parameter o bestimmt die Distanz, bei der
das Potenzial zwischen anziehend und absto-
Bend wechselt, wihrend € die Stirke der Wech-
selwirkung skaliert. Beide Parameter konnen in
der Gasphase gemessen werden.

Dieses Potenzial beschreibt qualitativ korrekt die
Wechselwirkung zwischen Edelgas-Atomen und
apolaren Molekiilen. Typische Bindungsenergien
liegen im Bereich 0,01 .. 0.1 eV und typische Gleich-
gewichtsabstinde bei ~4 A. Damit sind sie deutlich
schwicher als z.B. die kovalente Bindung. Die van
der Waals Wechselwirkung spielt jedoch eine wich-
tige Rolle bei der Kondensation von Molekiilen zu
Fliissigkeiten oder Festkorpern, oder auch als anzie-
hende Wechselwirkung zwischen biologischen Mo-
lekiilen.

9.4.12 Metallische und ionische Bindung

1

Van der Waals lonisch

Kovalent

Metallisch

Abbildung 9.49: Schematische Darstellung  von
Atomriimpfen und Valenzelektro-
nen fiir unterschiedliche Bindungs-
typen. Die Zahlen beziehen sich
auf Ar, KCI, K und Diamant.

In Metallen sind die Valenzelektronen weitgehend
delokalisiert und konnen sich frei durch den gesam-

ten Kristall bewegen. Typische Metalle zeigen des-
halb eine hohe elektrische Leitfdhigkeit. Die Bin-
dung kann im Wesentlichen so verstanden werden,
dass die Delokalisierung der Elektronen ihre kineti-
sche Energie erniedrigt. Die Bindung ist, im Gegen-
satz zur kovalenten Bindung, nicht gerichtet, so dass
die Metalle haufig in dichtester Kugelpackung kri-
stallisieren.

Die metallische Bindung ist schwicher als die ko-
valente oder ionische Bindung. Alkalimetalle haben
deshalb einen relativ niedrigen Schmelz- und Siede-
punkt, da hier lediglich die metallische Bindung eine
Rolle spielt. Bei den Ubergangsmetallen hingegen
tragen auch die nur teilweise gefiillten d-Orbitale zur
Bindung bei. Deren Beitrag ist eher kovalenter Natur
und ergibt deshalb eine sehr viel stirkere Bindung
und dementsprechend hohere Schmelzpunkte.

Die hier diskutierte Klassifizierung von Bindungsty-
pen ist hilfreich. Wirkliche Materialien lassen sich
aber selten exakt einer dieser Kategorien zuordnen.
Stattdessen tragen im allgemeinen unterschiedliche
Bindungsarten bei, wie das Beispiel der Ubergangs-
metalle zeigt: hier spielen kovalente wie auch metal-
lische Bindung eine Rolle.

A

100

% ionischer Charakter

A (Elektronegativitat)

Abbildung 9.50: Elektronegativitit und ionischer

Charakter.

Auch zwischen kovalenter und ionischer Bindung
findet man alle Ubergangsformen. So kann man bei
biniren Verbindungen einen kontinuierlichen Uber-
gang von Kovalenter zu ionischer Bindung beobach-
ten (sieche Abb.[9.50). Der relevante Parameter ist die
Differenz der Elektronegativititen der beiden Part-
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ner. Elemente wie z.B. Si, Ge sind naturgemif3 nicht
ionisch gebunden, aber Alkalihalogenide sind prak-
tisch ideale ionische Verbindungen. Als Beispiel ist
RbF 96% ionisch.

9.4.13 Wasserstoffbriicken

Wasserstoffatome gehen in bestimmten Verbindun-
gen eine besondere Art von Bindungen ein. Mit sei-
nem einzelnen Elektron kann es nicht nur mit einem
Partner eine kovalente Bindung eingehen. Statt des-
sen geht es eine sehr stark polare Bindung ein, bei
der das Elektron groBtenteils an den stidrker elek-
tronegativen Partner (F, O oder N) abgegeben wird,
wihrend das verbleibende Proton sich gleichzeitig
an ein weiteres Atom bindet, welches ein freies Elek-

tronenpaar aufweist.
‘ Ort /

\

\_INS

Abbildung 9.51: Typische Form des Potenzials fiir
ein Wasserstoffatom in einer Was-
serstoffbriicke.

Potenzial

Diese Art der Bindung wird als Wasserstoffbriicke
bezeichnet. Wasserstoffkerne (=Protonen) konnen
solche Bindungen leichter eingehen als andere Ker-
ne, da ihr geringes Gewicht sie beweglicher macht
und da sie keine Rumpfelektronen besitzen. Wie in
Abb. 0.5T gezeigt, existieren hiufig zwei Potenzial-
minima fiir den Wasserstoffkern.

kq H-Briicken i
LS L
% ‘_‘

kovalent

& ®

Abbildung 9.52: Wasserstoffbriicken in Eis.

H-Briicken sind sehr wichtig fiir die besondere

Struktur von Eis oder die hohe Verdampfungswir-
me von Wasser. Die Wasserstoffbriicken fiihren da-
zu, dass ein Sauerstoff tetraedrisch von vier Was-
serstoffatomen umgeben ist, wobei zwei der Bin-
dungen lang sind (=H-Briicken), zwei kurz (=kova-
lent). Die Wasserstoffatome befinden sich in einem
(meist asymmetrischen) Doppelminimumpotenzial
und koénnen leicht von einem zum anderen Sau-
erstoff wechseln. Wasserstoffbriicken werden dann
gebildet, wenn der Wasserstoff an einen Sauerstoff
oder einen Stickstoff gebunden ist und sich ein wei-
teres Sauerstoff oder Stickstoffatom mit einem freien
Elektronenpaar in der Néhe befindet.

9.4.14 Bedeutung von H-Briicken

Die Wasserstoffbriicken sind fiir die hohen Schmelz-
und Siedepunkte von Wasser verantwortlich: Bei ei-
nem Molekulargewicht von 18 siedet Wasser bei
+100°C. Als Vergleich kann man Neon betrachten,
welches ein Atomgewicht von 20 aufweist und bei
—246°C verdampft.

Wasserstoffbriicken spielen auch in der Biologie ei-
ne grofle Rolle. So werden z.B. die beiden Strin-
ge des DNS-Molekiils durch Wasserstoffbriicken zu-
sammengehalten. Wie in Abb.[9.53 gezeigt, kann das
Basenpaar Guanin/Cytosin 3 Wasserstoffbriicken
bilden, das Basenpaar Adenin/Thymin nur zwei.
Dies ist ein wesentlicher Grund fiir die Ausbildung
der Paare. Auch bei der Proteinfaltung spielen Was-
serstoffbriicken eine wichtige Rolle.

Wasserstoffbriicken sind stark orientiert: die Bin-
dungsenergie ist maximal wenn die drei beteilig-
ten Atome (z.B. N-H-O) auf einer Linie sind, d.h.
wenn der Bindungswinkel beim Wasserstoff ~ 180°
betrigt. Dies ist wichtig fiir die Wechselwirkung
von Molekiilen, z.B. zwischen Substrat und Enzym
oder zwischen Antigen und Antikorper, welche nach
den “Schliissel-Schloss” Prinzip funktioniert, wie in
Abb.[9.54 gezeigt.
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Cytosin Guanin |

e

Abbildung 9.53: Wasserstoffbriicken in DNA Mole-
kiilen.

9.5 Kristalline Festkorper

9.5.1 Symmetrie

In kristallinen Festkorpern werden Atome nicht nur
durch kovalente Wechselwirkungen zusammenge-
halten, sondern auch durch ionische oder metalle-
ne Bindungen. Der wichtigste Unterschied zu Mo-
lekiilen liegt jedoch darin, dass die Struktur eines
Kristalls nicht nur durch die Paar-Wechselwirkung
bestimmt wird, sondern durch die Minimierung der
Gesamtenergie des Systems. Wir miissen deshalb
nicht nur einzelne Paare betrachten, sondern auch
das Gesamtsystem. Zum Gliick findet man, dass
sich die Eigenschaften des Gitters in vielen Fillen
auf die Paarwechselwirkungen zuriickfiihren lassen.
Dies gilt insbesondere bei der van der Waals und bei
der ionischen Bindung, nicht jedoch bei der metalli-
schen Bindung.

el
~ 3 “\(e
oeite
:} o’

(e}
‘i':"“: P T
T

/
:?[/ 2 Substrat

L

N,

LT

<€—H-Briicken

Abbildung 9.54: Gerichtete H-Briicken in der mole-
kularen Erkennung.

Ga bevorzugt

g g tetraedrische

. Umgebung aus As

As bevorzugt
tetraedrische

Umgebung aus Ga ( C

Abbildung 9.55: Translationssymmetrie als Folge
von lokalen Wechselwirkungen.

Viele Festkorper besitzen im Zustand niedrigster
Energie eine Translationssymmetrie: verschiebt man
alle Bestandteile um bestimmte Vektoren (die so-
genannten Gittervektoren), so wird jedes Atom auf
ein identisches Atom abgebildet. Wie in Abb. [0.55
gezeigt, kann man dies als Konsequenz der lokalen
Wechselwirkungen jedes Atoms betrachten. Aus der
Translationssymmetrie ergeben sich wichtige Eigen-
schaften und ihre Beriicksichtigung erleichtert die
theoretische Behandlung sehr stark.

Bei Metallen kann man die Gitterenergie nicht in
Paarwechselwirkungen zerlegen. Sie werden des-
halb hier nicht diskutiert. Ebenfalls nicht diskutiert
werden hier kovalent gebundene Kristalle. Deren
Gitterenergie ist vom Betrag her vergleichbar mit
derjenigen von ionischen Kristallen. Wiahrend die io-
nischen Kristalle moglichst dicht gepackt sind, fin-
det man bei kovalenten Kristallen offenere Struk-
turen, damit die ausgeprigte Richtungsabhingigkeit
der kovalenten Bindung befriedigt werden kann.
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9.5.2 Van der Waals

Fiir Festkorper, bei denen die Van der Waals Wech-
selwirkung dominiert, erhélt man die Gitterenergie,
indem man {iiber alle Paarwechselwirkungen sum-
miert. Die Stirke der Wechselwirkung

=1 ()"~ ()]

fallt mit der sechsten, respektive zwolften Potenz des
Abstandes ab, sodass hauptsichlich die Wechselwir-
kung zwischen néchsten Nachbarn eine Rolle spielt.

Abbildung 9.56: Néchste Nachbarn im fcc Gitter.

Abbildung [9.56 zeigt als Beispiel eine sogenann-
te kubisch flichenzentrierte (fcc)Struktur. Hier bil-
den die Atome ein kubisches Gitter, wobei sich zu-
sitzlich im Zentrum jeder Wiirfelfliche ein wei-
teres Atom befindet. Damit besitzt jedes Atom
12 néchste Nachbarn im Abstand a/ V2 (4 in
jeder der drei rot markierten Ebenen von Abb.
©.56). Von der Stelle (0,0,0) aus sind dies
die Positionen (+1/2,+1/2,0), (£1/2,0,£1/2),
(0,+£1/2,£1/2). In der zweiten Schale mit Ab-
stand a befinden sich 6 Nachbarn an den Positionen
(£100) , (0,£1,0), (0,0,+1).

Fiir die Berechnung der Gitterenergie schreiben wir
fiir R;; = p;ja, so dass p;; den Abstand in Einheiten
des Abstandes R zwischen nichsten Nachbarn dar-
stellt. Fiir die néchsten Nachbarn ist damit die anzie-
hende Wechselwirkungsenergie o 12 /RS und fiir die
zweitnichsten Nachbarn o 6/(v/2R)® = 6/(8R)°.
Eine Summierung iiber alle Paarwechselwirkungen

ergibt fiir diese Struktur

1 1 1
ZT - 727
7 Rij R pij
1 12+6+24+12+8
R 8 27 16 216
343 512
1
= ﬁ14,45.
Analog erhilt man
1 1
Jj

Bei der abstolenden Wechselwirkung spielen so-
mit praktisch nur die nichsten Nachbarn eine Rol-
le, wihrend bei der anziehenden Wechselwirkung
auch etwas entferntere Schalen eine Rolle spielen.
Die Gesamtenergie wird damit

UR) = %ZUij(Rij)
ij
— 2Ne [12,13 (%)12— 14,45 (;)6] ,

wobei N die Anzahl der Gitteratome darstellt.

9.5.3 Gleichgewichtsabstand

2,5

Gitterenergie / 2N e

Abbildung 9.57: Gitterenergie als Funktion des Ab-
standes.

Die Gitterenergie verhélt sich als Funktion des Ab-
standes zwischen néichsten Nachbarn qualitativ iden-
tisch zur Paar-Wechselwirkung. Allerdings sind die

381



9 Atome, Molekiile und Festkorper

Achsen durch die Gittersumme umskaliert und das
Minimum leicht verschoben worden.

Den Gleichgewichtsabstand Ry erhilt man aus der
Minimierung der Gitterenergie beziiglich des Ab-
standes:

au

= =0
dR

Ry

12 6
(o o
= —2Ne¢ [12-12,13—6-14,45 .
R13 R7

Somit muss der Ausdruck in eckigen Klammern ver-
schwinden:

145,560° = 86, 7RS.

Dies entspricht einem Gleichgewichtsabstand Ry =
1,09 0. Da sich der Parameter ¢ aus Messungen in
der Gasphase bestimmen lasst, kann diese Vorhersa-
ge experimentell tiberpriift werden. Tatsichlich lie-
gen die Gitterkonstanten fiir alle Edelgase im Be-
reich zwischen 1.09 o und 1.14 ©.

Indem man diesen Gleichgewichtsabstand in das Po-
tenzial einsetzt, erhédlt man die Bindungsenergie U =
—8,6N¢. Die Energieskala € kann man wiederum
aus Messdaten der Gasphase entnehmen, aber auch
aus Messungen am Festkorper, z.B. tiber die Kom-
pressibilitat

1oV

Vdp’

Dabei dndert sich die Energie bei einer Volumenén-
derung um

dU = —pdV.
Daraus folgt

9 _ U

v IV?

und

Bei dieser Rechnung ist die Nullpunktenergie der
Bewegung der Atome noch nicht beriicksichtigt,
welche insbesondere bei den leichten Atomen eine
signifikante Reduktion der Bindungsenergie von bis
zu 28% ergeben.

9.5.4 Ionische Bindung

Im Falle der ionischen Bindung gehen wir aus von
der Paarwechselwirkung
—pyR 1 qiq;
Uij =Ae i /P + %ﬁ

Der erste Term ist positiv und wirkt somit absto-
Bend, wihrend der zweite Term je nach Vorzeichen
der Ladungen positive und negative Beitrige enthilt.
Da der AbstoBungsterm exponentiell mit der Di-
stanz abfillt, kann er fiir alle Paare aufler den néich-
sten Nachbarn vernachldssigt werden. Dieser Teil
der Gittersumme wird damit fiir das i-te Ion

Ui =zAe /P,

wobeli z die Zahl der ndchsten Nachbarn beschreibt.

Beim Coulomb Term schreiben wir die Summe als

1 oe?
Ur=——7""—,
¢ 47[80 R
wobei die Madelung—KonstanteEJ

_y44i
7 Pij

o =

eine Summe iiber alle Atome des Gitters darstellt.
q;,;j sind jetzt die Ladungen in Einheiten der Ele-
mentarladung. Die Summe hingt nur von den rela-
tiven Koordinaten p;; ab und kann deshalb fiir einen
bestimmten Gittertyp berechnet werden, unabhéngig
davon, durch welche Atome dieses Gitter gebildet
wird. Unterschiedliche Substanzen, welche im glei-
chen Gittertyp kristallisieren, besitzen somit die glei-
che Madelung-Konstante. Die Unterschiede in der
Gitterenergie sind (in dieser Niherung) lediglich auf
die unterschiedlichen Absténde R zuriickzufiihren.

Die Gitterkonstante a, resp. der Abstand R wird be-
stimmt durch die Minimierung der Energie beziig-
lich R. Der Gleichgewichtsabstand Ry ist bestimmt
durch

U —Ro/p 1 e
A o B
IR |, p 4rey R

6Nach Erwin Madelung (1881 - 1972).
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oder
AdmegRie F/P = pae®.

Diese Gleichung kann man nach dem Gleichge-
wichtsabstand R auflésen. Wir konnen daraus auch
den exponentiellen Term aus der AbstoBungsenergie
ausrechnen:

deRilp __POE P

=—-Uc—.
ZA4TEYR) Ro
Damit erhalten wir auch die Gesamtenergie:

Nae? P

Upor = — _Py
for 471780R0 Ry )

Die Energie ist somit proportional zur Madelung-
Konstante, und diese muss positiv sein, damit das
Gitter stabil ist.

9.5.5 Berechnung der
Madelung-Konstanten

@ 9 9@ 9 @9

a=R

Abbildung 9.58: Berechnung der Madelung-Kon-
stanten fiir einen eindimensionalen
Kiristall.

Im eindimensionalen Fall kann die Madelung-
Konstante relativ einfach berechnet werden. Wir
summieren iiber eine alternierende Kette mit kon-
stantem Abstand und erhalten
1 1 1
a=2(1—-4+-—-...).
( 2 + 3 4 )

Fiir die Berechnung der Summe kann man die Rei-
henentwicklung

2 x3 x4

In(14+x)=x—"+2 -2 4
n(l+x)=x 2+3 4+

verwenden und erhilt

a=2In2

Abbildung 9.59: Struktur von Kochsalz.

In drei Dimensionen ist die analytische Berechnung
der Summe im Allgemeinen sehr schwierig.

Wir betrachten als Beispiel zunidchst das Natrium-
chlorid (Kochsalz), dessen Struktur in Abb.[9.59 dar-
gestellt ist. Wir konnen entweder ein Na™ oder ein
Cl1™ -Ion als Referenz benutzen und wihlen Na™. Je-
des Na™ Ton ist von 6 Cl~ Tonen in oktaedrischer
Anordnung umgeben, wobei der Abstand die Hilfte
der Gitterkonstante betrigt.

# Nachbarn X 1

Schale ipij

p]J
1 +1 6 6
2 ) 12 249
3 +3 8 2.13
4 2 6 -0.87
5 +45 24 9.87
6 -6 24 0.07
7 B 12 -4.17
8 +3 30 5.83

Abbildung 9.60: Beitrage der Schalen zur Made-
lung-Konstanten.

Die erste Schale steuert somit einen Beitrag 6 zur
Madelung-Konstante bei. Die zweitnédchsten Nach-
barn sind wieder Na* Tonen: 12 sitzen im v/2-fachen
Abstand. Bis zu dieser Koordinationshiille gerech-
net ist die Madelung-Konstante deshalb 6-12/y/2 ~
—2,49. Die nichsten beiden Hiillen bestehen aus 8
Cl~ Ionen im Abstand v/3 und 6 Na Ionen im Ab-
stand 2. Die Konvergenz ist offenbar sehr langsam.

Eine etwas bessere Konvergenz erhdlt man durch
Aufsummieren iiber die Beitrdige von entgegenge-
setzten lonenpaaren. Auch hier muss man jedoch
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1.7476

20000
# lonenpaare

Abbildung 9.61: Konvergenz bei der Berechnung
der Madelung-Konstanten.

iiber viele Tausend Ionenpaare summieren, bis die
Schwankungen gering werden. Generell sind die Ab-
weichungen bei der Berechnung von Energien endli-
cher Kristalle physikalisch leicht interpretierbar: sie
entsprechen der Energie von Oberflichenladungen.

Diese Technik kann man verfeinern und anstelle von
Ionenpaaren andere neutrale Einheiten aufsummie-
ren, welche die Oberflichenladungen verkleinern.
Der Vorteil bei der Verwendung von neutralen Ein-
heiten liegt darin, dass deren Potenzial eine kiirze-
re Reichweite hat, so dass die Konvergenz schneller
ist. Eine weitere Methode ist diejenige von Ewald,
bei der man kurzreichweitige Beitrdge im direk-
ten Raum aufsummiert, langreichweitige im rezipro-
ken Raum. Dort erscheinen langreichweitige, d.h.
langsam variierende Beitrdge, in der Nédhe des Ur-
sprungs, so dass die Integrationsgrenzen eng gesetzt
werden konnen.

Fiir unterschiedliche Gittertypen erhélt man die Wer-
te

| Kristall [ NaCl | ZnS | CsCl | CaF,
| o [ 1,7476 | 1,6381 [ 1,7627 | 5,0388 |

9.6 Elektronen im Festkorper

Metalle zeichnen sich dadurch aus, dass Elektro-
nen in diesen Materialien eine sehr hohe Beweg-
lichkeit besitzen. Sie sind somit nicht an einzelne
Atomriimpfe gebunden. Dies kann man mit Hilfe der
Quantenmechanik verstehen. Ein erstes Modell ist
jedoch etwas dlter als die Quantenmechanik.

9.6.1 Das klassische Drude-Modell

Die klassische Theorie entstand drei Jahre nach
der Entdeckung des Elektrons durch J.J. Thomson
(1897). Im 19. Jh. hatte die kinetische Gastheorie
eine befriedigende Erkldrung fiir viele bekannte Ef-
fekte im Bereich der Thermodynamik geliefert. Dies
mag ein Motiv gewesen sein dafiir, dass Drude
die Elektronen in einem Metall als Gas modellierte
[4,5]. Seine Annahme war, dass die duflersten Elek-
tronen jedes Atoms sich im Metall praktisch frei be-
wegen konnen. Zu diesen Leitungselektronen tragen
die Atome, welche das Gitter bilden normalerweise
ein oder zwei Elektronen bei. Diese Elektronen sind
im gesamten Kristall frei beweglich, wobei die posi-
tiv geladenen Atomriimpfe ein Potenzial bilden.
Valenzelektronen:

- ballistische Bewegung

- kurze Stofle Atomrimpfe:

- klein
- statisch

.9 @ O o

ng d 0\0
PR -
@ @ @ @O 9

Abbildung 9.62: Das Drude-Modell des freien Elek-
tronengases.
Nach Drude verhalten sich diese Elektronen dhnlich
wie ungeladene Teilchen in einem klassischen Gas:
* Die Atomriimpfe sind klein und statisch.

* Die Elektronen sollen eine freie Weglidnge zwi-
schen St6fen haben, welche vielen Gitterkon-
stanten entspricht.

"Paul Karl Ludwig Drude (1863 — 1906)
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e Zwischen den StoBen ist die Bewegung frei,
d.h. unabhingig von den anderen Elektronen
(unabhingige Elektronen) und von den Atom-
rimpfen (freie Elektronen). Sind duB3ere Felder
vorhanden, so beeinflussen diese die Bewegung
wie in der Mechanik diskutiert.

* StoBe finden im Drude-Modell vor allem mit
den Ionenriimpfen statt; Stoe zwischen Elek-
tronen sind sehr selten. Die Stole werden als
kurz angenommen und die Geschwindigkeit der
Elektronen nach dem Stof} ist unabhiingig von
der Geschwindigkeit vor dem StoB, sondern
wird durch die Temperatur des Kristalls be-
stimmt.

Mit Hilfe dieses einfachen klassischen Modells kon-
nen unterschiedliche Aspekte der Phidnomenolo-
gie von Metallen erklidrt werden. Beispiele dafiir
sind die Herleitung der qualitativen Aspekte des
Ohm’schen Gesetzes, oder die Beziehung zwischen
elektrischer und thermischer Leitfdhigkeit. Wir dis-
kutieren diese Resultate jedoch nicht im Rahmen des
klassischen Modells, sondern erst nach der Einfiih-
rung des quantenmechanischen Modells.

Element Z n(102/cm3 r(A)
Li(78K) 1  4.70 1.72
Na(5K) 1  2.65 2.08
KGK) 1 1.40 2.57
Be 2 247 0.99
Mg 2 8.61 1.41
Al 3 181 1.1
Ga 3 154 1.16

Abbildung 9.63: Dichte ndes Elektronengases fiir
verschiedene Elemente.

Ein wesentlicher Unterschied zwischen dem Elek-
tronengas eines Metalls und einem echten Gas ist
die Dichte: Im Vergleich zu einem echten Gas ist
die Dichte des Elektronengases um rund einen Fak-
tor 1000 grofBer: Pro Leitungselektron steht lediglich
ein Volumen zur Verfiigung das etwa einem Atom-
volumen entspricht. Fiir ein Atom mit Radius 2 A
erhilt man ein Volumen von ca. 3-1072m?, entspre-
chend einer Teilchendichte von 3 - 102m—3. Dies ist
eine typische GroBenordnung (ca. 1 —20-10%m=3).

Die positiv geladenen Atomriimpfe sind relativ klein
und fiillen lediglich einen kleinen Teil des Raumes.

Bei Natrium umfasst das Volumen der Atomriimp-
fe rund 15 % des gesamten Festkorpervolumens; bei
Edelmetallen wie Ag, Au steigt der Anteil. Sie sind
aber sehr viel schwerer als die Elektronen und blei-
ben unbeweglich auf ihren Plétzen.

Behandelt man das Elektronengas rein klassisch, ge-
langt man aber an Grenzen, ab denen ein wirkliches
Verstindnis nur mit Hilfe der Quantenmechanik er-
reicht werden kann. Zu den qualitativen Unterschie-
den zwischen den Voraussagen der klassischen und
der quantenmechanischen Theorie gehort die Be-
rechnung der Stofe, die ein Elektron bei der Durch-
querung des Kristalls erleidet. Im klassischen Bild
wiirde man eine gro3e Anzahl St63e mit den Gittera-
tomen erwarten. Experimentell findet man, dass die
Distanz, iiber die sich die Elektronen frei bewegen
konnen, von der Qualitit des Kristalls abhéngt, so-
wie von der Temperatur. Wihrend in gewohnlichen
Metallen bei Raumtemperatur (z.B. Kupferdrihte)
die Elektronen nach wenigen Gitterperioden gestreut
werden und sich deshalb insgesamt diffusionsartig
bewegen, kann bei tiefen Temperaturen und guten
Kristallen die mittlere freie Weglidnge grofler als die
Kristalldimension werden. Aus experimentellen Da-
ten ist bekannt, dass die freie Weglidnge bis zu ei-
nem Zentimeter betragen kann. In diesem Fall be-
wegt sich somit das Elektron ohne Streuung durch
rund 10% atomare Lagen; offenbar breiten sie sich
dann ballistisch aus, also ohne Streuung im Kristall.

Weitere experimentelle Befunde, die mit dem
Drude-Modell nicht erkldrt werden konnten, wa-
ren die Temperaturabhingigkeit der elektrischen
und thermischen Leitfdhigkeit. AuBerdem sollten in
einem idealen Gas die Elektronen einen Beitrag
3/2RT zur spezifischen Wirme liefern; der experi-
mentell beobachtete Beitrag ist um rund 2 Grofen-
ordnungen kleiner.

Ein besonders wichtiger Punkt ist eine Aussage
dariiber, welche Festkorper metallischen Charakter
haben (hohe elektrische Leitfihigkeit) und welche
Halbleiter oder Isolatoren sind. Ein klassisches Mo-
dell, welches (teilweise) erkldren kann, welche Ele-
mente metallischen Charakter haben, wurde 1927
durch Herzfeld Vorgeschlage Ein wirkliches Ver-

8Phys. Rev. 29, 701-705
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standnis ist jedoch nur im Rahmen einer quantenme-
chanischen Behandlung moglich.

9.6.2 Das Sommerfeld-Modell

Die wichtigsten Beschrinkungen des Drude Modells
konnen dadurch iiberwunden werden, dass man die
Elektronen als quantenmechanische Teilchen, d.h.
als Teilchen mit Wellencharakter behandelt. Ein ent-
sprechendes Modell wurde 1928 von Sommerfeld
vorgeschlagen, kurz nach der Entdeckung des Pauli-
Prinzips. Damit gelang es, die wichtigsten Inkonsi-
stenzen des Drude-Modells aufzulosen.

Ein Festkorper umfasst rund 10?0 miteinander wech-
selwirkende Teilchen. Natiirlich ist die exakte Be-
handlung eines solchen Systems nicht méglich. Wir
miissen deshalb zunichst einige drastische Vereinfa-
chungen durchfiihren: wir lassen Wechselwirkungen
zwischen den Elektronen wie auch von Kernen zu
Elektronen vorldufig vollstindig weg und betrach-
ten zunéchst nur freie und unabhéngige Elektronen.
Ihre Zustinde sind somit auch nur Einelektronen-
Zustinde, die wir auch als Orbitale bezeichnen.

Vakuum Vakuum

Metall

Energie E

Ortx

Abbildung 9.64: Potenzial fiir Elektronen im
Sommerfeld-Modell.

Damit brauchen wir lediglich freie Elektronen in ei-
nem (unendlich ausgedehnten) Kristall zu betrach-
ten. Die Rinder des Kristalls sind Potenzialwinde.
Als Eigenzustinde solcher freier Elektronen kann
man bekanntlich ebene Wellen verwenden; diese
sind allerdings im gesamten Raum nicht normier-
bar. Man kann zu normierbaren Funktionen gelan-
gen, indem man periodische Randbedingungen ein-
fiihrt. Die entsprechende Periode, welche grof3 ge-
gen die Gitterkonstante sein sollte, kann anschlie-
Bend gegen Unendlich gefiihrt werden.

Die Atomriimpfe bilden ein Hintergrundpotenzial.
Sie bestehen aus den Kernen plus den stark gebun-
denen Elektronen in den gefiillten Schalten. Je nach
Metall sind diese Riimpfe relativ klein und weit von-
einander entfernt, oder sie beriihren sich und bilden
teilweise kovalente Bindungen.

Das Sommerfeld’sche Modell der freien Elektronen
passt am besten auf die Alkalimetalle. Hier entspre-
chen die Atomriimpfe den abgeschlossenen Schalen
mit Edelgaskonfiguration, das eine Valenzelektron
im s-Orbital ist das freie Elektron, welches ein Lei-
tungsband mit s-Charakter bildet.

Abbildung 9.65: Aufbau des Planeten Jupiter.

Wasserstoff, das leichteste und hiufigste Element
des Universums, gehort zur gleichen Gruppe des Pe-
riodensystems wie die Alkaliatome. Gemil theo-
retischen Vorhersagen sollte es bei hohen Driicken
metallisch werden. Versuche, im Labor Wasserstoff
in die metallische Form zu bringen, haben jedoch
bisher keine eindeutigen Resultate geliefert. Theo-
retische Vorhersagen gehen davon aus, dass dafiir
Driicke im Bereich von 500 GPa (5-10° atm) not-
wendig sind. Solche Driicke im Labor zu erzeu-
gen ist schwierig. Es gibt jedoch Hinweise, dass
auf dem Jupiter, welcher zu einem wesentlichen Teil
aus Wasserstoff besteht, der Druck auf Grund der
Schwerkraft hoch genug ist, um metallischen Was-
serstoff zu erzeugen.
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9.6.3 Das Teilchen im Potenzialtopf

Um die quantenmechanischen Zustandsfunktionen
der Elektronen im Kristall zu bestimmen, rekapi-
tulieren wir zunichst das Problem eines Teilchens
in einem eindimensionalen Potenzialtopf. Man fiihrt
zunichst Randbedingungen ein, welche in erster Li-
nie dazu dienen, die Zustinde zu normieren und die
Zustandsdichte zu berechnen.

\Y
D A=2L/3 7
7 A=L
A=2L
e
///i,/ ..
1 X
)

Abbildung 9.66: Eindimensionaler Potentialtopf.

Das Potenzial verschwindet auf der Strecke [0,L]
und ist unendlich hoch auf3erhalb. Der Hamiltonope-
rator dieses Systems beinhaltet im Bereich [0, L] le-
diglich die kinetische Energie

_ p2 _ hz d2
C2m 2mdx?

Die Eigenfunktionen dieses Operators sind die ebe-
nen Wellen

W, — ok
oder

W, = asinkx+ b coskx
und die Eigenwerte sind

B thZ B pZ
a C 2m’

&k

Der Hamiltonoperator ist nur giiltig fiir 0 < x < L.

Wir beriicksichtigen das Potenzial liber die Randbe-
dingung und verlangen, dass ¥(0) = ¥(L) = 0. Da-
mit erhalten wir als Losungen

. X
¥, =Asin (nnz>

und

B 7Y AN

(1)

Wenn sich mehrere Elektronen in diesem Potenzial
befinden und wir deren elektrostatische Wechselwir-
kung zunéchst vernachléssigen, so kann geméfl dem
AusschlieBungsprinzip von Pauli jeder dieser Zu-
stande mit zwei Elektronen mit entgegen gesetztem
Spin besetzt werden. Das Gesamtsystem ist demnach
im Grundzustand wenn die niedrigsten N /2 Zustin-
de mit jeweils 2 Elektronen besetzt sind.

én

9.6.4 Drei Raumdimensionen

In Kiristallen entspricht der Potenzialtopf der Rand-
bedingung, dass die Elektronen sich innerhalb des
Kristalls befinden miissen. Wir beriicksichtigen dies
wiederum iiber periodische Randbedingungen

¥(x,y,2) W(x+L,yz) ="Y(x,y+L,2)

= W¥(x,y,z+L),

wobei L grof3 gegeniiber einer Einheitszelle sein soll.

Im dreidimensionalen Raum lautet der Hamilton-
operator fiir ein freies Elektron

no(d> 4> 4
" 2m (dxz Tt az ) '
Elektronen in einem Potenzialtopf mit Kantenlinge
L haben dann die Zustinde

. (2% . (2% . (2%
Y, = Asin <Lnxx> sin (Lnyy> sin (anz>

und Energien

750 S
%:%(kx‘i‘ky‘f'kz)

2 [2m\?
= () (nt+nj+n?). (9.6)

én =

om \ L

Der Impuls der Elektronen ist somit

1 (™
p= AR 9.7)
n;
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Da wir uns hier in einem endlichen Bereich (mit Vo-
lumen L?) befinden, sind diese Zustinde normierbar
und die moglichen Werte des Impulses diskret. Die
Energie steigt proportional zum Quadrat des Impul-
ses.

9.6.5 Fermi-Energie

Wir untersuchen nun die Frage, welche dieser Zu-
stinde besetzt sind.

EA
Zustiinde leer

. . . . Ep l]:: ermi

nergie

1 27a/L N Zustiinde
. . . . besetzt
. e o . K
Abbildung 9.67: Links: Zustinde im k-Raum;

rechts: Besetzung der Zusténde bei
T=0.

Da wir periodische Randbedingungen angenommen
haben, ist der Impulsraum diskret, mit Einheitszel-
len der Seitenlidnge 27t/L. Das Volumen pro Zustand
betriigt somit im k-Raum (27/L)3.

Am absoluten Nullpunkt besetzen N Elektronen die
N/2 energetisch niedrigsten Zustéinde. Da die Ener-
gie (im Rahmen dieses Modells) nur vom Betrag
des Impulses abhingt, bilden diese Zustdnde im Im-
pulsraum eine Kugel mit Radius kr und Volumen
k34w /3. Die Anzahl der Zustinde in dieser Kugel,
d.h. die Zahl der besetzten Zustdnde, muss der Zahl
der Elektronen entsprechen. Da Elektronen einen
Spin Y2 besitzen, unterliegen sie der Fermi-Dirac Sta-
tistik und jeder raumliche Zustand kann maximal
von 2 Elektronen mit entgegengesetztem Spin be-
setzt sein. Die Zahl der Zustinde innerhalb der Fer-
mikugel erhilt man, indem ihr Volumen durch das
Volumen pro Zustand dividiert. Die Zahl N der Elek-
tronen ist dann das doppelte:

Az .3
Tk Vi

L
Bei N Elektronen muss damit der Radius der Kugel
/372N
kp =1\ v

sein. Die entsprechende Energie betragt

72 (37:21\/)5
Ep = —

2m 14
und wird als Fermi-Energie bezeichnet. Die Fermi-
Energie ist somit die Energie der Elektronen im
hochsten besetzten FEinelektronenzustand. In der
Fermi Energie tritt die Anzahl Elektronen und das
Volumen nicht mehr unabhingig auf, sondern sie
hingt lediglich von der Dichte N/V der Elektronen
ab. Damit muss die Fermienergie mit der Dichte der
Elektronen zunehmen.

9.9

Wertig- Elektronenzahl- Fermi- Fermi-
keit dichte Energie Temperatur
[em™3] fev] K

Li 1 4,70 - 1032 4,72 54800
Rb 1 1,15-10%2 1,85 21500
Cu 1 8,45 - 1022 7,00 81200
Au 1 5,90 - 1022 5,51 63900
Be 2 24,20 - 1022 14,14 164100
Zn 2 13,10 - 1022 9,39 109000
Al 3 18,06 - 1022 11,63 134900
Pb L) 13,20+ 1022 9,37 108700

Abbildung 9.68: Beispiele von Fermi-Energien.

Abb.[9.68 zeigt, dass die experimentellen Werte dies
bestétigen. Typische GroBenordnungen fiir die Elek-
tronenzahldichte liegen bei 10%° m~3, fiir die Fermi-
energie bei 10 eV.

Héufig parametrisiert man die Fermi-Energie auch
iber die Temperatur:

kpTp = éaF.

Typische Werte fiir die Fermi-Temperatur liegen bei
10° K, also bei Temperaturen weit oberhalb des
Schmelzpunktes. Somit ist 7 < T immer eine sehr
gute Néherung.

Wenn wir den Impuls der Elektronen in eine
Geschwindigkeit umrechnen, erhalten wir fiir die
Geschwindigkeit der Elektronen an der Fermi-
Oberfldche

hikp h 5/372N
VFp — — = — .
m m \%

Typische Werte liegen im Bereich von 10% m/s, also
bei 0.003 c. Allerdings sollte man dies nicht mit ei-
nem entsprechend schnellen Massentransport asso-
ziieren.
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Insgesamt ist die kinetische Energie der Leitungs-
elektronen deutlich niedriger, als die entsprechende
kinetische Energie in einem isolierten Atom. Diese
Absenkung der kinetischen Energie ist im Wesentli-
chen fiir die metallische Bindung verantwortlich.

9.6.6 Die Fermi-Dirac Verteilung

Die Fermi-Energie bezeichnet die hochste Energie
eines besetzten Zustandes im Grundzustand des Sy-
stems, also bei der Temperatur 7 = 0 K. Bei end-
licher Temperatur dndert sich die Besetzungswahr-
scheinlichkeit. Sie ist gegeben durch die Fermi-
Dirac Statistik, welche fiir Fermionen gilt, also fiir
Teilchen, welche dem Pauli-Prinzip unterliegen. Sie
kann geschrieben werden als

1
fiN = (e /ksT +1°
Hier ist & die Energie des Zustandes und
Y
H=oNn

das chemische Potenzial, also die Energieinderung,
welche durch Hinzufiigen eines Elektrons zustan-
de kommt. Der Term +1 im Nenner stellt sicher,
dass die Funktion nicht grofer als 1 wird, dass also
kein Zustand mehr als einmal besetzt werden kann.
Die Bose-Einstein Statistik, welche die Besetzungs-
wahrscheinlichkeit fiir Bosonen beschreibt, unter-
scheidet sich durch ein Minus an dieser Stelle. In
diesem Fall kann die Besetzungswahrscheinlichkeit
sehr grof3 werden. Bei tiefen Temperaturen konden-
sieren Bosonen deshalb alle in den Grundzustand.
Solche Phidnomene sind fiir kollektive Quantenpha-
nomene verantwortlich, wie z.B. Supraleitung, Su-
prafluiditét oder Bose-Einstein Kondensation.

Da die Fermi-Temperatur sehr viel hoher ist als die
Raumtemperatur und fiir niedrige Temperaturen U ~
kpTF, gilt meistens T < ukg. Wir betrachten die fol-
genden Grenzfille:

a) & — 0 : Die Exponentialfunktion geht gegen null
und N — 1.

b) & > u: Die Exponentialfunktion wird grof ge-
gen 1 und £V — e~ @=m/ksT 1 diesem Bereich ni-
hert sich die Fermi-Dirac Verteilung der Boltzmann-
Verteilung an und fillt exponentiell gegen Null ab.

= 10
g 4 N = L™ kpT = L
5 ¢ elei—w)/ksT 4 1 100
2
£ i
ey
5 i
£ 0,51
©
2 ]
wn
o
g i
S
N -
2
&
0,0 T T T T T T T T T T T T T T
0,0 0,5 1,0

Energie &;/p

Abbildung 9.69: Fermi-Dirac Besetzungswahr-
scheinlichkeit bei verschiedenen
Temperaturen.

Bei der Temperatur 0 K beschreibt sie einen abrup-
ten Ubergang von der 1 nach 0 an der Fermikante.
Bei hoheren Temperaturen wird Population aus der
Nihe der Fermikante in energetisch hohere Zustinde
verschoben, wie in Abb.[9.69 gezeigt. Die Breite die-
ses Ubergangsbereiches ist von der GroBenordnung
kgT . Das Zentrum des Ubergang wird durch das che-
mische Potenzial p bestimmt, welches am absoluten
Nullpunkt der Fermienergie entspricht.

9.6.7 Leitfihigkeit

Die Fihigkeit, elektrischen Strom zu leiten, gehort
zu den charakteristischen Eigenschaften der Metal-
le. Sowohl die klassische Drude-Theorie wie auch
die quantenmechanische Theorie bieten einen An-
satz fiir die Erklidrung dieses Phanomens. Wir disku-
tieren hier einen halbklassische Beschreibung, d.h.
wir verwenden klassische Bewegungsgleichungen,
beriicksichtigen aber die Fermi-Dirac Verteilung.

Elektrischer Strom wird durch die freien Elektronen
getragen. Deren Reaktion auf das angelegte elek-
trische Feld bestimmt deshalb die Beziehung zwi-
schen Strom und Spannung, welche im Rahmen die-
ser Theorie mit dem Ohm’schen Gesetz iiberein-
stimmt. Die meisten freien Elektronen bewegen sich
mit einer relativ hohen Geschwindigkeit; die Fer-
migeschwindigkeit liegt bei rund 10° m/s. Da die
Verteilung der Geschwindigkeiten ohne ein dufleres
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Feld isotrop ist, findet jedoch netto kein Ladungs-
transport statt.

Perfekte Metalle konnen prinzipiell Strom leiten
auch wenn kein elektrisches Feld anliegt. Reale Me-
talle weisen jedoch immer einen endlichen Wider-
stand auf — mit Ausnahme der Supraleiter, welche
nicht als normale Metalle beschrieben werden kon-
nen und in einem spéteren Kapitel noch behandelt
werden.

Werden #duflere Felder an ein Metall angelegt, so
bewirken diese auf die Elektronen eine zusitzliche
Kraft

(9.10)

Das Resultat ist somit eine lineare Zunahme des Im-
pulses:

k(t) —k(0) = —eEt /h.

Diese Beschleunigung hilt an bis die Elektronen
einen Stof} ausfiihren. Bei einem Stof8 wird kineti-
sche Energie vom Elektron auf das Gitter libertragen.
Im Rahmen dieses Modells wird dabei angenom-
men, dass die Geschwindigkeit des Elektrons ther-
malisiert wird, d.h. sie kehrt zur Fermi-Dirac Ver-
teilung zuriick. Wenn die Thermalisierung im Mittel
eine Zeit T beansprucht, erreichen die Elektronen im
Mittel einen Impuls, der sich um

eET

Sk=—
h

vom thermischen Gleichgewicht unterscheidet. Die
Fermikugel im k-Raum wird somit um diesen Betrag
gegeniiber dem Ursprung verschoben.

Da die Geschwindigkeit der Elektronen direkt pro-

portional zum k-Vektor ist,

. hk eET
\}:—:—77
m m

konnen wir daraus die Stromdichte berechnen:
j=n(—e)V = ne*tE /m.

Hier stellt n die Anzahl Leitungselektronen pro Vo-
lumeneinheit dar. Der Strom ist somit proportional

Fermikugel bei E>0
//

/

Fermikugel bei E=0

Abbildung 9.70: Verschobene Fermikugel im elek-
trischen Feld.

zur Feldstirke, wie im Ohm’schen Gesetz. Die Pro-
portionalititskonstante ist die spezifische elektrische
Leitfahigkeit

2T, 1

c=ne"—; |[0]=—. (9.11)
m
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A
Metalle
1 Cu
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Abbildung 9.71: Groenordnung der Ladungstriager-
dichten.

9.7 Binder

9.7.1 Probleme des Modells freier
Elektronen

Im Modell der freien Elektronen werden Wechsel-
wirkungen zwischen Valenzelektronen und Atom-
riimpfen vollstindig vernachldssigt. Dies ist auch in
den meisten Fillen eine gute Nédherung. Sie hat al-
lerdings auch ihre Grenzen. Die wichtigsten Diskre-
panzen zwischen der Niherung der freien Elektro-
nen und der experimentellen Wirklichkeit sind:

* Elektrische Leitfihigkeit. Experimentell beob-
achtet man vor allem drei Klassen von Materialien,
die sich qualitativ unterscheiden: Metalle, Halblei-
ter, und Isolatoren. Bei Isolatoren ist die elektrische
Leitfahigkeit sehr klein, der spezifische Widerstand
betrigt typischerweise mehr als 10'> Qm. Die unter-
schiedliche Leitfidhigkeit verschiedener Materialien
kann direkt auf die Ladungstrigerdichte zuriickge-
fiihrt werden. Diese variiert zwischen Isolatoren und
Metallen um mehr als 10 GréBenordnungen. Das
Modell der freien Elektronen sagt voraus, dass die
Zustandsdichte mit der Wurzel aus der Energie zu-
nimmt,

dN(& 2Vm’/?
(&) _vm® sz
a& T2h
Dies gibt keinen Hinweis darauf, dass die Zahl frei-
er Elektronen in einem Material 10 GroéBenordnun-

gen hoher liegt, als in einem anderen oder dariiber,
weshalb ein Teil der Elektronen frei ist, andere aber
gebunden.

g Me
5 Qe
f‘:'_:
g
paloleiter

Temperatur

Abbildung 9.72: Temperaturabhédngigkeit der Leit-
fahigkeit von Metallen und Halb-
leitern.

Halbleiter verhalten sich am absoluten Nullpunkt
wie Isolatoren, doch ihre Leitfdhigkeit nimmt mit
steigender Temperatur zu. Bei Metallen ist die Leit-
fahigkeit bei allen Temperaturen hoch, nimmt aber
mit steigender Temperatur ab. Offenbar ist die Som-
merfeld’sche Theorie nur auf Metalle anwendbar.

~

log (Magnetfeld)

Hall-Widerstand

Abbildung 9.73: Magnetfeldabhingigkeit des Hall-
Widerstandes in Aluminium.

» Hall-Widerstand: Gemifl dem Modell der freien
Elektronen sollte der Hall-Koeffizient Ry = —1/ne
sein, unabhédngig von Temperatur, Magnetfeld etc.
In vielen Metallen findet man jedoch Abweichun-
gen, welche von Temperatur und Magnetfeldstirke
abhingen. Teilweise unterscheiden sich berechnete
und experimentelle Werte um Faktoren im Bereich
1-10.

* Anisotropie: Die elektrische Leitfahigkeit ist in ei-
nigen Metallen von der Richtung abhiingig. Dies ist
im Rahmen des Modell freier Elektronen nicht er-
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kldrbar, da dort keine bevorzugten Richtungen exi-
stieren: Die Fermikugel ist isotrop.

9.7.2 Das periodische Potenzial

Alle diese Unterschiede konnen letztlich auf die
Wechselwirkung der Elektronen mit dem periodi-
schen Potenzial U(¥) erklirt werden, welches die
Atomriimpfe (Kerne plus stark gebundene Elektro-
nen) erzeugen. Diese bricht die vollstandige Trans-
lationssymmetrie, so dass der Impuls der Elektronen
keine Erhaltungsgrofie mehr ist.

Wie iiblich beschrinken wir uns auf ideale Kristalle.
Hier ist das effektive Potenzial periodisch,

UF+T)=U(7),
wenn 7 ein Vektor des Gitters ist.

Wir diskutieren den Effekt dieses Potenzials in sto-
rungstheoretischer Niherung und machen die iibli-
chen idealisierenden Annahmen (keine Kristallfeh-
ler, Fremdatome etc.). Wir verwenden weiterhin die
Niaherung, dass die Elektronen unabhéngig vonein-
ander betrachtet werden konnen, d.h. wir berechnen
nur Zustandsfunktionen und Energien fiir einzelne
Elektronen. Die Wechselwirkung mit den iibrigen
Elektronen erfolgt nur iiber ein effektives Potenzial.

kinetische Energie
dominiert

potenzielle Energie
dominiert

freie Elektronen /\ /\ /\ ﬁ
H p? lokalisierte
“2m quasi-freie Elektronen Elektronen

Abbildung 9.74: Freie, gestorte und lokalisierte
Elektronen.

Die Beriicksichtigung des periodischen Potenzials
stellt eine Interpolation zwischen zwei Grenzfillen
dar: Das eine Extrem ist das System freier Elektro-
nen. Hier ist der Hamiltonoperator eine Funktion des
Impulsoperators und die Eigenfunktionen des Ha-
miltonoperators dementsprechend die Eigenfunktio-
nen des Impulsoperators. Das andere Extrem ist das-

jenige isolierter Atome. Hier dominiert die potenzi-
elle Energie iiber die kinetische und die Eigenfunk-
tionen des Hamiltonoperators sind deshalb lokali-
siert. Ein wirklicher Kristall befindet sich zwischen
diesen beiden Extremen: Die kinetische Energie for-
dert die Delokalisierung, die potenzielle Energie der
Atomriimpfe eine Lokalisierung. Da die beiden Ope-
ratoren fiir Potenzial (d.h. der Ortsoperator) und ki-
netische Energie (d.h. Impulsoperator) nicht mitein-
ander vertauschen, [#%;,,V] # 0, sind die Eigen-
funktionen weder durch diejenigen des freien Elek-
trons, noch durch diejenigen der vollstindig gebun-
denen Elektronen gegeben.

Die wirkliche Situation liegt also zwischen diesen
beiden Extremen. Man nihert sich dieser Situation
entweder vom Modell der freien Elektronen, was in
diesem Kapitel geschehen soll, oder von der Seite
der lokalisierten Elektronen, was z.B. bei der “star-
ken Lokalisierung” gemacht wird, also bei Systemen
mit relativ stark gebundenen Elektronen. Geht man
von dieser Seite aus, so kann man die Zustinde des
Bandes durch Linearkombination aus Atomorbita-
len erzeugen (LCAO-Methode), dhnlich wie in Kap.
fiir Molekiilorbitale diskutiert.

9.7.3 Eigenfunktionen im periodischen
Potenzial

Unter Beriicksichtigung des periodischen Potenzials
sind die Eigenfunktionen nicht mehr die harmoni-
schen ebenen Wellen. Die allgemeine Form, welche
diese besitzen, wird durch ein Theorem von Felix
Bloch bestimmt: Die Zustandsfunktion ¥;(7) kann
als Produkt

P (F) = up (e

geschrieben werden, wobei u;(7) die gleiche Peri-
odizitdt hat wie das Potenzial,

u,(F+T) = uy(F),
und 7' einen Gittervektor darstellt. Diese wird mit

einer ebenen Welle X" multipliziert.

Abb. 9.75 zeigt ein Beispiel einer Blochfunktion:
oben die ebene Welle, in der Mitte die periodische
Funktion, und unten das Produkt.
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Rele™*]

*

u, (x)

Rely, (x)]

Abbildung 9.75: Blochfunktion und ihre Bestandtei-
le. Die blauen Kugeln sind Atom-
riimpfe.

Die Funktion u;(¥), welche die ebene Welle modu-
liert, stellt die Korrektur gegeniiber den freien Elek-
tronen dar, wo diese Funktion als konstant angenom-
men wurde. Sie stellt die Losung einer Schrodinger-
gleichung fiir eine primitive Einheitszelle dar. Wie
bei Atomen existiert eine unendliche Reihe solcher
Losungen, welche mit einem Index bezeichnet wer-
den kann, der in der Folge ein elektronisches Band
kennzeichnen wird. Der Wellenvektor k kann immer
so gewihlt werden, dass die Wellenlinge A groBer
ist als zwei Gitterkonstanten, A > 2a. Eine dquiva-
lente Formulierung des Bloch’schen Theorems ist

W (F+T) = T (7),

d.h. bei einer Translation um einen Gittervektor 4n-
dert sich der Zustand nur um einen Faktor mit Betrag
eins.

9.7.4 Zonenrand

Eine Niherungslosung fiir den Fall eines endlichen
Potenzials ldsst sich finden, wenn das Potenzial U
klein ist im Vergleich zur kinetischen Energie des
Elektrons an der Zonengrenze, d.h. bei k= é/ 2.
Hier ist G ein Vektor des reziproken Gitters. Ein
Wellenvektor k = G /2 entspricht einer Wellenlinge,
die doppelt so grof} ist wie die entsprechende Gitter-
periode.

Die Energie eines freien Elektrons ist

h2k?
A= —.
k 2m

Dann lautet die Bedingung fiir die Giiltigkeit der fol-
genden Rechnung U < Ay. In dieser Néherung kann
man zeigen, dass das periodische Potenzial nur Zu-
stande aneinander koppelt, deren Wellenvektor sich
um einen Vektor des reziproken Gitters unterschei-
den und die gleiche Energie haben. Dies ist z.B. der
Fall fiir Zustinde mit den Wellenvektoren k = =G /2
an der Zonengrenze. Die folgende Rechnung bezieht
sich deshalb auf diese beiden Zusténde.

Fiir diese beiden Zustéinde kann man eine Eigenwert-
Gleichungen aufstellen:

(A —&)C(G/2)+UC(=G/2) = 0
(M —E)C(=G/2)+UC(G/2) = 0.
Hier stellen C die Koeffizienten fiir die entsprechen-
den Basisfunktionen dar, & die Energie und U die
Amplitude des Potenzials. Fiir eine Losung muss
die Determinante verschwinden. An der Zonengren-
ze gilt M =A—_c = A und
(A—&)P=U?
oder
k>
E=A+U=—=U.
2m
Die Energien sind also um 2U aufgespalten.

Wenn wir nicht nur die Zustdnde direkt an der Zo-
nengrenze betrachten, sondern in der Nihe, erhalten
wir aus der Eigenwertgleichung

(M—E)CK)+UCK—-G) = 0
(MG — E)C(k—G) +UC(k)

Die Sékulargleichung wird dann

0 = M—8E)(Mc—8&)-U?
= (9@2—5)(7Lk7G+7Lk)+7Lklk70—U2.

Diese Gleichung hat die beiden Losungen

_ Me—g + Mk

&
2

1
+ 5\/ (M — M) +4U2,
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4
Liicke
=2U

V\
Band

n/a k

Abbildung 9.76: Bandaufspaltung an der Zonen-
grenze.

An der Zonengrenze, wo A;_g = A, wird die Ener-
gie der Eigenzustdnde um den Betrag U der potenzi-
ellen Energie nach unten, respektive nach oben ver-
schoben - die Aufspaltung betridgt somit 2U. Weiter
von der Zonengrenze entfernt ndhern sich die Ener-
gien quadratisch mit dem Abstand den ungestorten
Zustdnden an. In der Nihe der Zonengrenze kann
man die Ndherung

2
E(x) =& (%) + I (3k) (1 - 2/1)

2m U

benutzen, mit
Sk—k— LG
2

fiir die Differenz zwischen dem Wellenvektor und
der Zonengrenze. &) stellt die Energiec an der Zo-
nengrenze dar. Bei k= :l:é/ 2 erreicht die Energie
ein Maximum (respektive Minimum). Somit ist die
Gruppengeschwindigkeit v, = d®/dk = 0: die Elek-
tronen werden am periodischen Gitter reflektiert und
bilden stehende Wellen.

9.7.5 Bandstruktur

Im Modell freier Elektronen hatten wir gesehen, dass
die Zustandsdichte mit der Wurzel aus der Energie
zunimmt. Dies ist im periodischen Potenzial offen-
bar nicht mehr der Fall.

An der Zonengrenze werden die beiden Bénder auf-
gespalten, es entsteht ein Bereich der Energieachse,

D(E)

Abbildung 9.77: Dispersion und Zustandsdichte fiir
freie Elektronen.

Bandliicke

D(E)

Abbildung 9.78: Dispersion und Zustandsdichte fiir
Elektronen in Béandern.

welcher keine Zustdnde enthilt. Man spricht von ei-
ner Energieliicke oder Bandliicke (engl. band gap).
Im einfachsten Fall enthilt jedes der beiden Bén-
der 2N Zustinde, wobei N die Anzahl Einheitszel-
len darstellt und der Faktor 2 von der Spin-Entartung
herriihrt.

E
n=2
n=1 2N Zustande
0 n/a k

Abbildung 9.79: In einem Band finden maximal 2N
Elektronen Platz.

Falls pro Einheitszelle ein Atom jeweils ein Elektron
in dieses Band abgibt, so ist es genau halb gefiillt
(n =1 in Abb.|9.79). In diesem Bereich ist die Ni-
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herung freier Elektronen recht gut, weil die Fermi-
Oberfldache relativ weit vom Zonenrand entfernt ist.

Umfasst die Einheitszelle ein zweiwertiges oder
zwei einwertige Atome, d.h. stehen pro Einheitszel-
le 2 freieElektronen zur Verfiigung, so ist das erste
Band genau gefiillt. Die Fermi-Energie fillt dann ge-
rade in eine Energieliicke. In einem solchen Fall gilt
die Theorie der Leitfdhigkeit, welche fiir die freien
Elektronen diskutiert wurde, nicht mehr. Dort hatten
wir gesehen, dass das externe Feld zu einer Ande-
rung des Elektronenimpulses fiihrt. Dies ist aber nur
moglich wenn entsprechende unbesetzte Impulszu-
stande zur Verfiigung stehen. In der Energieliicke ist
dies nicht moglich. Ein vollstindig besetztes Band
liefert deshalb keinen Beitrag zur Leitfihigkeit - we-
der zur elektrischen noch zur thermischen.

il

Metall Isolator Halbleiter Halbmetall
0

Abbildung 9.80: Bandliicke und Besetzung fiir Me-
tall, Isolator, Halbleiter und Halb-
metall.

Daraus folgt die qualitative Unterscheidung der Ma-
terialien in Metalle und Isolatoren: Bei Metallen ist
die Fermioberflache etwa in der Mitte des Bandes.
Die Elektronen in der Nidhe der Fermioberfldche sind
in diesem Fall weit von der Zonengrenzen entfernt
und spiiren deshalb den Einfluss des periodischen
Potenzials kaum. Ein elektrisches Feld kann damit
relativ ungestort die Fermikugel verschieben und es
fliefft ein Strom.

Anders die Situation bei einem Isolator: Hier ist die
Fermioberfliche zwischen zwei Béindern. Die Elek-
tronen spiiren deshalb das periodische Potenzial ma-
ximal, sie werden aufgrund der Bragg Bedingung
daran reflektiert. Das Modell freier Elektronen ist
hier deshalb nicht anwendbar. Dies kann man auch
so verstehen, dass in der Nihe der Fermioberfliche
keine Impulszustinde verfiigbar sind, so dass duf3e-
re Felder den Impuls der Elektronen nicht verdndern

konnen und somit kein Strom flieBen kann.
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Leitungsband

Thermische
Anregung

Valenzband

Abbildung 9.82: Thermische Anregung iiber die
Bandliicke.

9.8 Halbleiter

9.8.1 Grundlagen

Bei Halbleitern und Isolatoren befindet sich die Fer-
mienergie in der Mitte zwischen zwei Béndern.
Halbleiter unterscheiden sich von Isolatoren da-
durch, dass der Abstand zwischen den Béndern re-
lativ klein ist, so dass freie Ladungstriger einerseits
durch thermische Anregung, andererseits durch Ver-
unreinigungen in der Nédhe der Bandkante erzeugt
werden konnen. Daraus folgt, dass ein Isolator oder
ein Halbleiter, also Materialien bei denen die Fermi-
energie in eine Bandliicke féllt, immer eine gerade
Anzahl Elektronen in der primitiven Elementarzelle
haben muss. Dies ist aber keine hinreichende Bedin-
gung, da unterschiedliche Biander nicht immer durch
eine Energieliicke voneinander getrennt sind.

Zustandsdichte D(E)

Energie / eV

Abbildung 9.81: Uberlappende Biinder.

Uberlappen mehrere Binder, so konnen sie teilwei-
se gefiillt sein und das Material kann elektrischen

Strom leiten.

Halbleiter sind Kristalle mit einer Bandliicke, d.h.
ein Band ist vollstindig gefiillt und das nichstho-
here ist leer. Das untere Band wird als Valenzband
bezeichnet, das obere als Leitungsband. Am absolu-
ten Nullpunkt sind Halbleiter deshalb Isolatoren, d.h.
sie leiten keinen Strom. Wir beschreiben die Halb-
leiter im Folgenden mit Hilfe des Modells quasi-
freier Elektronen, also Einelektronenzustidnden, wel-
che in unterschiedliche Binder aufgespalten sind.
Diese sind durch Bandliicken getrennt.

Abbildung 9.83: Struktur von GaAs.

Wie bereits diskutiert, miissen Halbleiter (wie Iso-
latoren) immer eine gerade Anzahl Elektronen pro
Elementarzelle besitzen. Diese Bedingung ist z.B.
bei den Elementen der vierten Gruppe (C, Si, Ge,
...) erfiillt. Diese sind typische Beispiele fiir elemen-
tare Halbleiter. Ebenso ist die Bedingung erfiillt fiir
Verbindungen der Gruppen III und V des Perioden-
systems wie GaAs, AlAs, GaN, oder InP, Verbindun-
gen der Gruppen Il und VI wie ZnS, CdTe. Die Bin-
dung in diesen Materialien hat einen stark kovalen-
ten Charakter.

@@@@ razen

Abbildung 9.84: Tetrazen als organischer Halbleiter.

Auch organische Materialien konnen Halbleiterei-
genschaften aufweisen. Abb. [0.84 zeigt als ein Bei-
spiel Tetrazen. Diese Materialien werden erst seit
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wenigen Jahren untersucht, haben aber schon eine
erhebliche Bedeutung, z.B. in der Form von orga-
nischen Leuchtdioden (OLEDs), welche fiir Bild-
schirme oder Beleuchtungen verwendet werden. Ge-
geniiber den klassischen Fliissigkristallbildschirmen
bieten sie hoheren Kontrast und geringeren Strom-
verbrauch.

9.8.2 Ladungstriger-Statistik

Halbleiter haben die gleiche Bandstruktur wie Iso-
latoren. Da die Bandliicke aber nur eine endliche
Breite hat, konnen bei endlichen Temperaturen ein-
zelne Elektronen aus dem Valenzband ins Leitungs-
band angeregt werden. Dabei entstehen bewegliche
Ladungstriger, und zwar sowohl im Leitungsband,
wo die Elektronen sich bewegen konnen, wie auch
im Valenzband, wo Zustinde frei werden, so dass be-
nachbarte Elektronen unter dem Einfluss eines elek-
trischen Feldes ihren Impuls dndern kdnnen.

Die Anzahl der Elektronen, welche durch thermische
Anregung ins Leitungsband gelangen, ist gegeben
durch die Zustandsdichte D(¢g) und die Besetzungs-
wahrscheinlichkeit f(¢€):

/ " deD(e)f(e)
1
= /dsD prm

Ist die thermische Energie klein im Vergleich mit
der Bandliicke, kgT < € — U, sind praktisch nur Zu-
stande im Bereich des Leitungsband-Minimums be-
setzt und die Gesamtzahl der Ladungstriger wird
proportional zum Boltzmannfaktor e~%/2%7  wobei
&, die Bandliicke darstellt und wir angenommen ha-
ben, dass das Ferminiveau in der Mitte der Band-
liicke liegt. Eine etwas genauere Rechnung ergibt
einen zusitzlichen Faktor 73/2,

N. =

N, oc T3/2¢=5/2%sT

Die Dichte der Ladungstriager nimmt deshalb mit zu-
nehmender Temperatur exponentiell zu. Je kleiner
die Bandliicke, desto rascher die Zunahme. Bei Ger-
manium ist die Bandliicke kleiner als bei Silizium,

10"4'——T'v ™ 0 : | ™
1 ? |-
| Eg=0.67eV l:g “1.4e

Elektronenkonzentration / cm-
Elektronenkonzentration / cm?

_+_

T
L

10% = — {
200 215 230 245 260 275 290 308 10275 300 325 350 375 400 425 4%

Temperatur / K Temperatur / K
Abbildung 9.85: Temperaturabhédngige Ladungstri-
gerdichte fiir Si und Ge.

deshalb ist die Zunahme rascher und die Leitfdhig-
keit bei Raumtemperatur um rund drei GréBenord-
nungen hoher als bei Silizium. Betrdgt die Band-
liicke z.B. 4 eV so ist die Anregungswahrscheinlich-
keit 1073, d.h. praktisch null. Fiir eine Bandliicke
von 0.25 eV hingegen betridgt der Boltzmannfaktor
bei Raumtemperatur rund 1%, so dass die Ladungs-
tragerdichte schon fast den Wert eines Metalls errei-
chen kann.

E, eV E, eV
Kristall Licke OK 300K Kristall Licke OK 300K
Diamant i 54 HgTe? d -030
Si i L7 1,14 PbS d 0,286 034 -037
Ge 1 0,744 0,67 PbSe d 0,165 0,27
aSn d 0,60 0,00 PbTe d 0,190 0,30
InSb d 024 0,18 CdS d 2,582 242
InAs d 043 035 CdSe d 1,840 1,74
InP d 142 135 CdTe d 1,607 145
GaP i 232 226 Zn0O 3436 3,2
GaAs d 1,52 1,43 InS 391 36
GaSb d 081 087 SnTe d 03 0,18
AlSb i 1,65 1,52 AgCl - 3,2
SiC (hex) 30 - Agl 2,8
Te d 033 - Cu,0 2,172 -
ZnSb 0,56 0,56 TiO, 3,03 -

Abbildung 9.86: Bandliicken der wichtigsten Halb-
leitermaterialien.

Wie in Abb.[9.86 gezeigt, liegen die Bandliicken der
wichtigsten Halbleitermaterialien im Bereich von
rund einem eV. Diamant hat eine wesentlich groBBere
Liicke und man findet deshalb erst bei Temperatu-
ren von mehreren hundert Grad eine wesentliche Ei-
genleitfahigkeit. Die Bandliicke hidngt auch von der
Temperatur ab, sie nimmt bei zunehmender Tempe-
ratur ab. Dies ist u.a. eine Folge der Ausdehnung des
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Kristalls und der dadurch abnehmenden Bindungs-
stiarke zwischen den Atomen.

9.8.3 Dotierung

Wihrend bei Metallen die Leitfihigkeit abnimmt
wenn das Material verunreinigt wird, ist bei Halblei-
tern das Gegenteil der Fall. Auch kleine Verunreini-
gungen konnen die Leitfahigkeit dramatisch verén-
dern. Dabei werden Fremdatome eingebracht, wel-
che mehr oder weniger Elektronen enthalten als das
Wirtsmaterial. Die zusitzlichen, respektive fehlen-
den Elektronen sind relativ gut beweglich und ste-
hen als freie Ladungstriger im Leitungs- respektive
im Valenzband zur Verfiigung.

Bei Silizium oder Germanium kann man z.B. Stick-
stoff oder Phosphor (5 Elektronen in der duBeren
Schalte) verwenden, um zusitzliche Elektronen ein-
zubringen. Man spricht dann von n-Dotierung. Ver-
wendet man Bor (3 Elektronen), so fehlt ein Elek-
tron. Dies entspricht einem freien Platz im Valenz-
band. Dieses verhilt sich wie ein Ladungstriger
mit positiver Ladung. Man spricht deshalb von p-
Dotierung.

m Konz.
i

, 7 == 1 [10'5cm-3]
109 I )é/// /§r O o O ] 0,53
U > Lo 0,93
n n 2 A 1,6
.a"// / / 2’3
L A 3,0
1061 = 7 52
8,5

13
24
35
45
55
54
74
84
120
130
270
950

Spez. Widerstand / Qcm

NNRNNNNNNON = 2o oo
ONOUBRWN 20N @D = Probe

0 02 04 06 08
100/T [1/K]
Abbildung 9.87: Einfluss von Dotierung und Tem-

peratur auf den spezifischen Wider-
stand.

Abb. [9.87 zeigt die Ladungstrigerdichte von Ger-
manium, das mit Antimon dotiert wurde{ﬂ Je hoher

H. Fritzsche, J. Phys. Chem. Solids, 6, 69 (1958).

die Konzentration der Verunreinigungen, desto ho-
her die Ladungstrigerdichte. Bei einer Variation der
Dichte der Verunreinigungen um 3 GroBenordnun-
gen variiert der Widerstand um mehr als 10 GroBen-
ordnungen. Diese grofen Unterschiede findet man
allerdings nur bei niedrigen Temperaturen. Fiir hthe-
re Temperaturen steigt die Leitfahigkeit in allen Fil-
len auf den gleichen Grenzwert an - man nennt die-
sen den “intrinsischen” Wert, also die Leitfihigkeit,
die das Material ohne Verunreinigungen aufweist.

9.8.4 Absorption von Licht

Ein weiterer interessanter Aspekt ist, dass die Leit-
fahigkeit durch einfallendes Licht wesentlich ge-
steigert werden kann. Diesen Effekt, den man als
Photo-Leitfdhigkeit bezeichnet, deutet darauf hin,
dass Ladungstriager nicht nur thermisch erzeugt wer-
den, sondern auch durch Energiezufuhr iiber die Ab-
sorption von Photonen. Diese miissen eine Energie
aufweisen, die mindestens so grof ist wie die Band-
liicke. Fiir die Bandliicken der Halbleiter benotigt
man deshalb Photonen mit einer Wellenlidnge im
Sichtbaren oder nahen Infraroten, also ca. 500 nm
bis 2 um. Bei Silizium z.B. muss die Wellenlinge des
Lichtes kleiner als 1.1 um sein. Diese Eigenschaften,
die Photovoltaik und die Photoleitfihigkeit, haben
heute eine grofe technische Bedeutung, indem Halb-
leiter als Solarzellen und Detektoren fiir Licht zum
Einsatz kommen, z.B. als Photodioden und CCD’s in
Kameras. Umgekehrt konnen Halbleiter auch Licht
erzeugen; dies wird in LED’s und Laserdioden be-
nutzt.

direkte Halbleiter indirekte Halbleiter

& E E

Leitungsband

&g &g

Valenzband
k

=~

o4
o

Abbildung 9.88: Lichtabsorption bei direkten und
indirekten Halbleitern.
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Bei der Anregung vom Valenzband ins Leitungs-
band muss der Impuls des Systems erhalten bleiben.
Die Wellenlidnge von optischem Licht ist sehr viel
grofer als eine typische Gitterkonstante; der Impuls
py = Tk = h/A eines optischen Photons ist deshalb
klein im Vergleich zu einem typischen Impuls eines
Elektrons p, = h/a. Die Absorption eines Photons
dndert deshalb den Impuls des Elektrons kaum, er
bleibt praktisch konstant. Das Elektron wechselt des-
halb bei der Absorption auf einen Zustand gleicher
Wellenzahl; man nennt dies einen vertikalen Uber-
gang.

Bei Energien am Rande der Bandliicke ist dies aber
nicht immer moglich. So ist es moglich, dass das
Minimum des Leitungsbandes bei einem Wert k = 0
auftritt, wie in Abb.[9.88 in der rechten Hilfte darge-
stellt. Photonen mit dieser Energie kdnnen somit nur
dann absorbiert werden, wenn die Impulsidnderung
des Elektrons durch das System kompensiert wer-
den kann. Dies geschieht normalerweise durch die
Erzeugung eines Phonons, d.h. einer quantisierten
Anregung einer Gitterschwingung. Geméd$ der Be-
ziehung von de Broglie besitzen auch diese Wellen
eine Energie 7@ und einen Impuls k. Somit kann
die Impulserhaltung erfiillt werden durch die Erzeu-
gung eines Phonons mit dem richtigen Impuls, re-
spektive durch die Vernichtung eines Phonons mit
entgegengesetztem Impuls, falls entsprechende Pho-
nonen auf Grund thermischer Anregung vorhanden
sind. Da die Energie der Phononen sehr viel kleiner
ist als die Photonenenergie, braucht sie bei der Ener-
gieerhaltung nicht beriicksichtigt werden.

indirekter HL

direkter HL

Abbildung 9.89: Lichtabsorption und Relaxation bei
direkten und indirekten Halblei-
tern.

Absorptionsprozesse konnen nicht nur an der
Bandkante stattfinden, sondern auch bei hoheren
Photonen-Energien. Dabei wird ein Loch im In-

nern des Valenzbandes erzeugt, zusammen mit ei-
nem Elektron im Innern des Leitungsbandes. Die
auf diese Weise erzeugten Ladungstriger relaxieren
tiber Stofe rasch zum Energieminimum ihrer Binder

(Abb.9.89).

direkter HL indirekter HL

S| = c direkter
e Q el Ubergan
ol s
o Q o
2| 2 Sl .
g @ & | indirekter

= <C | Ubergang

Tiog

Energie hw des Photons Energie 7w des Photons

Abbildung 9.90: Absorptionswahrscheinlichkeit bei
direkten und indirekten Halblei-
tern.

Aus der Wahrscheinlichkeit fiir solche Absorptions-
prozesse erhilt man ein Absorptionsspektrum. Wie
in Abb.[9.90 gezeigt, ist die Absorptionskante bei ei-
nem direkten Halbleiter schirfer als bei einem indi-
rekten.

9.8.5 Lichtemission

Der Umkehrprozess der Absorption ist die Emissi-
on von Licht. Dabei geht ein Elektron aus dem Lei-
tungsband ins Valenzband iiber und strahlt die Ener-
giedifferenz in der Form eines Photons ab. Auch
hier muss die Erhaltung von Energie und Impuls ge-
wiihrleistet sein. Bei einem Ubergang von Bandkan-
te zu Bandkante wird somit ein Photon mit Energie
hw = &, frei. Bei der Emission ist diese Bedingung
jedoch schwieriger zu erfiillen als bei der Absorp-
tion: Ein Elektron aus dem Leitungsband muss mit
einem Loch im Valenzband rekombinieren, welches
den gleichen Impuls besitzen. Dies ist bei direkten
Halbleitern unproblematisch, bei indirekten Halblei-
tern jedoch nicht, da dort die freien Zustinde (= be-
setzten Lochzustidnde) nicht bei der gleichen Wel-
lenzahl auftreten. Der Unterschied zwischen direk-
ten und indirekten Halbleitern spielt deshalb fiir die
optischen Eigenschaften eine zentrale Rolle.

Silizium, z.B. ist ein indirekter Halbleiter, wie in
Abb.[9.91 gezeigt. Das entartete Valenzband hat sein
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indirekter HL
direkter HL

Energie (eV)
Energie in eV

[000]

[111] [100]

Abbildung 9.91: Bandstruktur von Si und GaAs.

Maximum im Zentrum der Brillouin-Zone, wihrend
das Leitungsband-Minimum relativ weit vom Zen-
trum entfernt ist, ndmlich ca. 80 % der Brillouin-
Zone in Richtung 100. Aus Symmetriegriinden exi-
stieren 6 dquivalente Richtungen entlang der 6 Koor-
dinatenachsen. Unter typischen Bedingungen ist die
Dichte von Elektronen im Leitungsband in der Niher
des Leitungsband-Minimums am grof3ten. Bei einem
senkrechten Ubergang ins Valenzband wiirden die-
se Elektronen aber nur besetzte Zustinde antreffen.
Dadurch ist in Si die Emission von Licht stark er-
schwert. Si wird deshalb z.B. nicht fiir den Bau von
Leuchtdioden oder Halbleiterlasern verwendet. Ein
typischer direkter Halbleiter, welcher hauptséichlich
fiir optoelektronische Komponenten wie z.B. Halb-
leiterlaser verwendet wird, ist GaAs.

Erst seit kurzem kann man auch eine Modifikati-
on von Si herstellen, welche leuchtet. Wihrend man
sich iiber den Mechanismus noch nicht ganz einig
ist, scheint es dafiir notig zu sein, dass das Material
auf so kleinen Skalen strukturiert ist, dass die iibli-
che Beschreibung des Materials als unendlich ausge-
dehnter Kristall, die wir hier verwenden, nicht mehr
giiltig sind.

9.9 Supraleitung

9.9.1 Entdeckung

In normalen Metallen findet man, dass der elektri-
sche Widerstand bei tiefen Temperaturen abnimmt,
bis er einen Grenzwert erreicht, der durch Kristall-
fehler bestimmt ist. Diesen experimentellen Befund
kann man durch die Theorie der Leitfdhigkeit gut
verstehen und auf StoBe zwischen Elektronen und
Gitterfehlern oder Gitterschwingungen zuriickfiih-
ren. Wie jedes Modell hat jedoch auch dieses sei-
ne Grenzen. Experimentelle Tests dieser Aussage in
einem Bereich nahe des absoluten Nullpunkts wa-
ren erstmals ab 1908 moglich, als es Kamerlingh
Onne in Leiden gelang, ein Kiihlmittel zu erzeu-
gen, welches sehr tiefe Temperaturen erlaubt, ndm-
lich fliissiges Helium, das bei Normaldruck einen
Siedepunkt von 4 K besitzt. Er benutzte dieses Kil-
temittel bald um die elektrische Leitfihigkeit bei tie-
fen Temperaturen zu messen. Im Jahre 1911 fand er
ein merkwiirdiges Verhalten, das sich von der oben
genannten Erwartung qualitativ unterscheidet.

g 15,
q125 =
"/
T ;’
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] . 2
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=
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a’aoq 00 4H0 420 3 440
Temperatur T (K)
Abbildung 9.92: Spezifischer =~ Widerstand  von
Quecksilber als Funktion der
Temperatur.

Wie in Abbildung 9.92 gezeigt, nahm der elektri-
sche Widerstand von Quecksilber zunéchst linear
mit der Temperatur ab, bis er bei 4.2 K plétzlich

10Hejke Kamerlingh Onnes (1853 — 1926)
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auf einen sehr kleinen Wert sprang. Genauere Mes-
sungen zeigten, dass dieser Wert innerhalb der expe-
rimentellen Fehlergrenzen mit Null iibereinstimmt.
Das heif}t, dass es z.B. moglich ist, in einer geschlos-
senen Leiterspule einen Strom flieen zu lassen oh-
ne, dass dieser abklingt.

Ein vergleichbares Phinomen findet man auch bei
den FlieBeigenschaften von fliissigem Helium 4: Un-
terhalb einer Temperatur von 2,17 K verschwindet
die Viskositidt. Man nennt diesen Zustand Supraflui-
ditét.

9.9.2 Leitfihigkeit

Abbildung 9.93: Anwendungen: supraleitender Ma-
gnet fiir die Kernresonanz (links)
und Hochgeschwindigkeitszug
(rechts).

Die Supraleitung benutzt man z.B. fiir die Erzeu-
gung starker Magnetfelder: Man wickelt einen Draht
zu einer Spule und regt darin einen Strom an. Da-
durch konnen permanente Magnetfelder von mehre-
ren Tesla erzeugt werden, wie man sie z.B. in der
Kernspinresonanz oder in der Kernspintomographie
benotigt. Supraleitende Magneten werden auch in
einem japanischen Hochgeschwindigkeitszug einge-
setzt.

Wihrend der Widerstand eines supraleitenden Ma-
terials nicht direkt messbar ist, kann man ihn in ei-
nem Magneten indirekt messen: das Magnetfeld ist

Drift: -1,68 Hz / Tag

o
wn

Frequenz/ Hz

o
o
w -
S

Zeit / Stunden

Abbildung 9.94: Abschwichung des Magnetfeldes
eines supraleitenden Magneten als
Funktion der Zeit.

nicht exakt konstant, sondern es schwicht sich lang-
sam ab. Abb. [0.94/zeigt eine typische Messung iiber
Kernspinresonanz: Die Resonanzfrequenz der Kern-
spins sinkt um etwa 1,68 Hz/Tag. Bei einer absoluten
Frequenz von 360 MHz sinkt das Magnetfeld also
mit einer Rate

1dB 1,68 1 467-10° 1,7-1077
Bdt 3,6-108Tag ~ Jahr

Tag
d.h. die Zerfallszeit betrédgt etwa 17 Millionen Jahre.

9.9.3 Diamagnetismus

Diese Klasse von Materialien wird als Supraleiter
und der Zustand als Supraleitung bezeichnet. Da-
mit charakterisiert man zunichst die elektrischen
Eigenschaften dieser Materialien. Sie besitzen aber
auch sehr charakteristische magnetische Eigenschaf-
ten. Der wichtigste ist, dass sie sich wie perfekte
Diamagneten verhalten, d.h., dass das Magnetfeld in
ihrem Inneren verschwindet.

M
H

C

Abbildung 9.95: Magnetisierung als Funktion des
duBeren Feldes.

Dies ist bekannt als MeiBBner-Ochsenfeld Effek

Mentdeckt 1933 durch Walther MeiBner (1882 - 1974) und Ro-
bert Ochsenfeld (1901 - 1993)
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Die Magnetisierung M des Materials betrdgt dann

Der Diamagnetismus eines Supraleiters ist damit um
etwa 5 GroBenordnungen stirker als der eines nor-
malen diamagnetischen Materials (z.B. Wasser: x =
—7-1079).

AAAAA A
Magnetfeld wir
ausgestofen

Abbildung 9.96: Meissner-Effekt: Ein Supraleiter ist
ein perfekter Diamagnet.

Ein perfekter Diamagnet erzeugt eine Magnetisie-
rung, die das externe Feld innerhalb des Magneten
vollstindig kompensiert. Die Magnetfeldlinien wer-
den deshalb aus dem Material ausgesto3en. Dies ge-
schieht, indem am Rand des supraleitenden Bereichs
ein Strom flieB3t, dessen Magnetfeld gerade das dufle-
re Magnetfeld kompensiert.

Magnet schwebt iiber Supraleiter

Abbildung 9.97: Der

normal leitend

supraleitend
S
N
z N

Meissner-Effekt den

ldsst
Magneten iiber dem Supraleiter
schweben.

Oberhalb der kritischen Temperatur ist das Mate-
rial normalleitend und praktisch nichtmagnetisch.

Das Feld eines externen Magneten durchdringt des-
halb das Material. Kiihlt man das Material unter die
Sprungtemperatur, so wird es zu einem perfekten
Diamagneten. Man kann dies z.B. dadurch sichtbar
machen, dass ein kleiner Permanentmagnet iiber ei-
nem Stiick Supraleiter schwebt, welcher mit fliissi-
gem Stickstoff gekiihlt wird.

Im Raum zwischen dem Magneten und dem su-
praleitenden Material werden sie deshalb konzen-
triert und das System kann seine Energie ernied-
rigen, indem der Supraleiter iiber dem Magneten
schwebt. Dies ist nicht einfach eine Folge der ver-
lustlosen Leitung von elektrischem Strom. Ein per-
fekter Leiter wiirde zwar durch Eddy-Stréme einer
Anderung des Magnetfeldes in seinem Innern wider-
stehen. Dies bedeutet, dass das Magnetfeld in seinem
Innern zeitlich unverinderlich sein muss, dE/dt =
0. Damit miisste aber das vorher vorhandene Feld
erhalten bleiben, wihrend es beim Meifiner-Effekt
ausgestoflen wird, so dass B=0.

9.9.4 Kritische Temperatur und kritisches
Feld

Dies funktioniert allerdings nur bei Magnetfeldern
unterhalb einer gewissen Stirke. Uberschreitet die
Stiarke des duBeren Feldes das kritische Feld H,, so
bricht der perfekte Diamagnetismus wie auch die Su-
praleitung zusammen. Supraleitung tritt somit nur
bei geniigend tiefen Temperaturen und geniigend
schwachem Magnetfeld auf.

Zwischen der normal leitenden Phase und der supra-
leitenden Phase liegt ein Phaseniibergang, der vom
Magnetfeld und der Temperatur (und, in Abb. [9.98
nicht eingezeichnet, der Stromdichte) abhingt. Ei-
ne etwas genauere Betrachtung zeigt, dass der Uber-
gang vom supraleitenden in den normalleitenden Zu-
stand auch von der Form des Korpers abhingt. So
ist bei der in Abb. [0.96 gezeigten Kugel die Feld-
stirke an der Kugeloberfliche teilweise hoher als
im ungestorten Feld. Das Feld beginnt deshalb an
den entsprechenden Stellen schon unterhalb der kri-
tischen Feldstarke einzudringen. Dies ist nicht der
Fall, wenn die Probe eine diinne Schicht ist, die par-
allel zu den Feldlinien angeordnet ist. Die kritische
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kritische Temperaturen
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Abbildung 9.98: Zustandsdiagramm und kritische
Temperatur einiger Supraleiter.

Temperatur, unterhalb der ein Material supraleitend
wird, kann von mK bis zu 133 K variieren. Abb.[9.98
listet sie fiir einige Materialien.
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Abbildung 9.99: Temperaturabhéngigkeit des kriti-
schen Feldes bei Typ I Supraleiter.
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Der Betrag des kritischen Feldes héngt ebenfalls
vom Material ab, variiert aber auch mit der Tem-
peratur. Beim Uberschreiten des kritischen Feldes
bricht auch der Meilner-Effekt zusammen. Beim
kritischen Feld sinkt die Magnetisierung abrupt auf
Null, d.h. das Feld dringt in das Material ein.

Diese Verhalten kann erklirt werden, wenn man an-
nimmt, dass sich die Elektronen paarweise zu ei-
ner neuen Form von Teilchen zusammenfinden. Die-
se Elektronenpaare werden als “Cooper-Paare” be-
zeichnet. Sie besitzen die Ladung —2e, einen ver-
schwindenden Impuls und einen verschwindenden
Spin. Damit sind sie Bosonen und konnen alle

den gleichen Quantenzustand einnehmen. Dieser ge-
meinsame Zustand ist der Grundzustand des Supra-
leiters.

9.9.5 Typ II Supraleiter
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Abbildung 9.100: Magnetisierung als Funktion der
Temperatur fiir Blei mit unter-
schiedlicher Dotierung.

Das bisher diskutierte Verhalten bezieht sich auf so-
genannte Typ I Supraleiter oder Supraleiter der er-
sten Art der Fall. Dementsprechend existieren Su-
praleiter der zweiten Art. Diese Materialien verhal-
ten sich unterhalb des kritischen Feldes H.; wie die
Supraleiter der 1. Art. Beim kritischen Feld dringen
die Feldlinien ebenfalls in das Material ein, aber die
Magnetisierung sinkt nicht auf Null.

ke}
[
“5 Hci(T)
5 Meissner-Zustand
g p=0,B=0
Temperatur Tc

Abbildung 9.101: Unterschiedliche Phasen bei ei-
nem Typ II Supraleiter.

Diese teilweise supraleitende Eigenschaft bleibt bis
zu einem zweiten kritischen Feld H, erhalten. Das
Material bleibt auch bis zu diesem kritischen Feld
supraleitend. Dieses zweite kritische Feld kann um
mehrere Grolenordnungen oberhalb des ersten kriti-
schen Feldes liegen. Dieses kritische Feld ist deshalb
dasjenige, das fiir technische Anwendungen wichtig
1st.
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Abbildung 9.102: Temperaturabhingigkeit des obe-
ren kritischen Feldes bei Typ II
Supraleiter.

Fiir Typ 2 Supraleiter liegt das obere kritische Feld
im Bereich von bis zu 50 Tesla. Im Bereich zwischen
den beiden kritischen Feldern findet ein teilweises
Eindringen des Magnetfeldes in den Supraleiter statt.
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Abbildung 9.103: Hexagonales
squanten.

Gitter aus Flus-

Diese teilweise Durchdringung erfolgt durch einzel-
ne Flussquanten. Wie in Abb. 0.103] gezeigt, ord-
nen sich diese in der Form eines Gitters an, welches
durch kleine ferromagnetische Teilchen sichtbar ge-
macht werden kann. Heute kann man sie auch durch
Raster-Kraftmikroskopie sichtbar machen.

Typ II Supraleiter sind groBtenteils Legierungen,
wihrend Typ I Supraleiter eher Elemente sind. Es
ist moglich, Typ I Supraleiter durch die Zugabe ge-
ringer Anteile an legierenden Elementen zu Typ II
Supraleitern zu machen.

Die meisten Supraleiter sind Metalle, aber seit eini-
gen Jahren gibt es auch organische Supraleiter, al-
so Polymere, die unterhalb einer bestimmten Tem-
peratur supraleitend werden. Die wichtigste Ausnah-
me aber sind die 1986 entdeckten Hochtemperatur-
Supraleite Hier handelt es sich um keramische
Materialien, die oberhalb der kritischen Temperatur
Isolatoren sind.

Einheitszelle von YBa,CuszO7

Barium

([D Yttrium
(] -
I — @y ) Copper
’*.* %
® %) Oxygen
BN S~

Abbildung 9.104: Typische Struktur eines Hoch-
temperatur-Supraleiters.

Diese Klasse von Materialien hat eine ziemlich ein-
heitliche Struktur: es handelt sich um schichtférmige
Materialien, bei denen Ebenen von CuO Schichten
sich mit anderen Schichten abwechseln.

12K arl Alexander Miiller und Johannes Georg Bednorz, Nobel-
preis 1987

404



	Einleitung
	Organisatorisches
	Inhaltsübersicht
	Übungen
	Klausur
	Literaturangaben

	Was ist Physik ?
	Physikalische Fragestellungen
	Erkenntnisprozess
	Experimente
	Messgeräte
	Abschätzungen
	Bedeutung für den Alltag
	Bedeutung für Ingenieure

	Physik in Dortmund
	Struktur der Fakultät
	Festkörperphysik
	Teilchenphysik
	Beschleunigerphysik / DELTA
	Medizinphysik

	Physikalische Größen, Maßeinheiten
	Grundlagen und Definitionen
	Grundgrößen im SI-System
	Zehnerpotenzen: Vorsilben und Abkürzungen
	Abgeleitete Größen
	Naturkonstanten

	Messfehler
	Systematische Fehler
	Statistische Fehler
	Verteilungsfunktion
	Fehlerfortpflanzung
	Differenzmessungen
	Fitten

	Differentialoperatoren

	Mechanik
	Kinematik
	Grundbegriffe
	Eindimensionale Kinematik
	Konstante Beschleunigung
	Senkrechter Wurf nach oben
	Kinematik in zwei und drei Dimensionen
	Wurfparabel
	Unabhängigkeitsprinzip

	Dynamik von Massenpunkten
	Definitionen
	Newton'sche Axiome
	Kraft und Beschleunigung
	Zusammenfassung und Gültigkeit
	Masse
	Schwere und träge Masse

	Kräfte in der Dynamik
	Kräfte und Felder
	Elementare und phänomenologische Kräfte
	Reibungskräfte
	Dynamik mit Reibung
	Kräfte als Vektoren
	Raketen
	Beispiele

	Arbeit, Leistung und Energie
	Motivation und Definition
	Arbeit
	Beispiele mit konstanter Kraft
	Variable Kraft
	Energie
	Leistung
	Potenzielle Energie
	Konservative Kräfte
	Gleichgewicht
	Austausch von Energie
	Energieerhaltung
	Anwendungen

	Stoßprozesse
	Definition und Motivation
	Klassifikation von Stoßprozessen
	Kraftstoß
	Elastischer 2-Körperstoß
	Fallende Gummibälle
	Stoß an Kugelreihe
	Unelastischer 2-Körperstoß
	Elastischer Stoß in zwei Dimensionen

	Drehbewegungen
	Kreisbewegung
	Drehimpuls eines Massenpunkts
	Trägheitsmoment
	Kinetische Energie
	Energieerhaltung
	Drehmoment
	Rotationsachse
	Kräftegleichgewicht
	Pirouette
	Kreisel

	Astronomische Anwendungen
	Drehimpuls und Planetenbahnen
	Die Kepler'schen Gesetze
	2. Kepler'sches Gesetz
	3. Kepler'sches Gesetz
	Theorie der Gravitation

	Mechanik in bewegten Bezugssystemen
	Galilei'sche Relativität
	Relativgeschwindigkeit
	Gleichförmig beschleunigte Bezugssysteme
	Schwerelosigkeit
	Kreisbewegung
	Bewegungsgleichung im rotierenden Bezugssystem
	Scheinkräfte im rotierenden Koordinatensystem
	Zentrifugalkraft
	Beispiele
	Corioliskraft
	Die Einstein'sche Relativitätstheorie

	Hydrostatik
	Aggregatzustände
	Spannung
	Flüssigkeitsoberfläche
	Hydrostatischer Druck
	Schweredruck
	Hydrostatischer Druck in Gasen
	Das Prinzip von Archimedes
	Auftriebsmessungen
	Auftrieb in Luft
	Kompressibilität

	Grenzflächeneffekte
	Oberflächenspannung
	Minimalflächen
	Seifenblasen
	Benetzung
	Kapillarkräfte

	Hydrodynamik und Aerodynamik
	Stromlinien und Geschwindigkeitsfelder
	Kontinuitätsgleichung
	Druck und kinetische Energie
	Druckänderung in einer Strömung
	Demonstrationen zur Bernoulli-Gleichung
	Viskosität
	Reibungswiderstand in Flüssigkeiten
	Turbulente Reibung und Luftwiderstand
	Rohrdurchfluss
	Das Gesetz von Hagen-Poiseuille
	Ähnlichkeit von Strömungen
	Strömende Gase (Aerodynamik)
	Der Magnus-Effekt


	Wärmelehre und Thermodynamik
	Temperatur und Wärme
	Historische Entwicklung
	Wärme als Energieform
	Temperatur und thermisches Gleichgewicht
	Temperaturskalen
	Temperaturmessung
	Wärmeausdehnung

	Gastheorie
	Gase
	Das ideale Gas
	Druck
	Zustandsgleichung

	Wärme
	Wärmemenge, Wärmeäquivalent
	Wärmekapazität
	Anwendungsbeispiele
	Wärmetransport
	Wärmeleitung
	Wärmeleitfähigkeit
	Wärmewiderstand
	Wärmeleitungsgleichung
	Wärmeleitung in 1D

	Thermodynamik
	Der 1. Hauptsatz
	Arbeit und Weg
	Der Stirling Motor
	Carnot'scher Kreisprozess
	Der 2. Hauptsatz
	Entropie
	Der 3. Hauptsatz der Thermodynamik


	Elektrizität und Magnetismus
	Ladung und Feld
	Übersicht
	Ladungsquantisierung
	Elektrostatische Wechselwirkung
	Abstandsabhängigkeit
	Elektrisches Feld
	Feldlinien
	Elektrostatisches Potenzial
	Äquipotenzialflächen
	Verschiebungsdichte
	Feldgleichung
	Feld eines geladenen Drahtes
	Homogene Kugelladung
	Elektrische Dipole

	Materie im elektrischen Feld
	Leiter und Isolatoren
	Felder und elektrische Leiter
	Oberflächenladungen und Spiegelladungen
	Feldfreie Räume
	Influenzladung
	Bandgenerator
	Bewegung geladener Teilchen im elektrischen Feld
	Dipole in einem äußeren Feld
	Dipol im inhomogenen Feld

	Kondensatoren
	Der Plattenkondensator
	Felder im Plattenkondensator
	Beispiele
	Kugelkondensator
	Ladungstrennung im Kondensator
	Energie des elektrischen Feldes
	Kräfte auf Kondensatorplatten

	Dielektrika
	Polarisation in Dielektrika
	Mikroskopisches Modell
	Depolarisationsfeld
	Kräfte auf Dielektrika in Feldrichtung
	Kräfte auf Dielektrika senkrecht zur Feldrichtung

	Stationäre Ströme
	Ladungstransport
	Phänomenologie
	Definitionen
	Widerstand
	Spezifischer Widerstand in Ohm'schen Leitern
	Modelle für die Leitfähigkeit
	Driftgeschwindigkeit
	Supraleiter
	Halbleiter
	Ladungstransport in Gasen und Flüssigkeiten

	Schaltungen
	Kirchhoff'sche Gesetze
	Einfache Schaltungen
	Wheatstone'sche Brückenschaltung
	Elektrische Schaltelemente

	Magnetfelder
	Grundlagen
	Dipole im Magnetfeld
	Feldlinien und Magnetpole
	Erdmagnetfeld und Kompass
	Magnetfeld elektrischer Ströme
	Das Durchflutungsgesetz
	Spulen
	Das Biot-Savart Gesetz
	Magnetfeld ringförmiger Spulen
	Flussdichte und magnetische Feldenergie

	Bewegte Ladungen im Magnetfeld
	Lorentzkraft
	Geladene Teilchen im Magnetfeld
	Anwendungen
	Bahnen im Magnetfeld
	Geladene Teilchen im Erdmagnetfeld
	Gekreuzte E- und B-Felder
	Zyklotron
	Hall Effekt
	Messung der Ladungsträgerdichte
	Stromdurchflossene Leiter im Magnetfeld
	Parallele stromdurchflossene Leiter
	Drehmoment auf Leiterschleife
	Elektromotoren
	Elektromagnetische Bezugsysteme
	Lorentz-Transformation

	Materie im Magnetfeld
	Elementare magnetische Dipole
	Magnetisierung
	Klassifikation magnetischen Verhaltens
	Mikroskopisches Modell
	Ferromagnetismus
	Magnetische Domänen
	Magnetische Hysterese
	Weitere magnetische Ordnungseffekte
	Ferrofluide
	Magnetische Eigenschaften von Supraleitern
	Anwendungen

	Zeitabhängige Felder und Ströme
	Induktion: Phänomenologie
	Magnetischer Fluss
	Induktionsgesetz
	Wechselstromgenerator
	Induzierte Ströme und Lenz'sche Regel
	Wirbelströme
	Selbstinduktion
	Magnetische Feldenergie
	Periodische Ströme und Felder
	Komplexe Schreibweise, Impedanz
	Rechnen mit Impedanzen
	Transformatoren
	Anwendungen
	Aperiodische Ströme

	Die Maxwell Gleichungen
	Felder
	Die Grundgleichungen von Elektrizitätslehre und Magnetismus
	Der Verschiebungsstrom
	Die Maxwell-Gleichungen
	Grenzflächen


	Schwingungen
	Allgemeines
	Beispiele und Definition
	Phänomenologie
	Atomare und molekulare Schwingungen
	Klassifikation und Übersicht

	Der Harmonische Oszillator
	Harmonische Schwingungen
	Bewegungsgleichung
	Freie Schwingung
	Energie
	Der h.O. als Modellsystem
	Anharmonizität
	Komplexe Amplitude

	Schwingende Systeme
	Das mathematische Pendel
	Torsionsschwinger
	Das physikalische Pendel
	Flüssigkeitspendel im U-Rohr
	Elektromagnetische Schwingkreise
	Zusammenfassung

	Gedämpfte Schwingung
	Dämpfung und Reibung
	Geschwindigkeitsproportionale Reibung
	Schwache Dämpfung, 0>
	Gedämpfte elektromagnetische Schwingungen
	Überkritische Dämpfung (Kriechfall)
	Der aperiodische Grenzfall: 0=

	Erzwungene Schwingung
	Bewegungsgleichung
	Energiebillanz
	Lösungsweg
	Stationäre Lösung
	Resonante Anregung
	Absolutbetrag und Phase
	Einschwingvorgang

	Schwingungen mit mehreren Freiheitsgraden
	Das Doppelpendel
	Eigenschwingungen
	Schwebungen
	Gekoppelte elektronische Schwingkreise
	Transversalschwingungen
	Schwingungen von mehrdimensionalen Systemen
	Akustische Schwingungen, Musikinstrument


	Wellen
	Grundlagen
	Beispiele und Definition
	Ausbreitung von Wellen
	Harmonische Wellen
	Longitudinale und transversale Wellen
	Mathematische Beschreibung harmonischer Wellen
	Lineare Kette
	Harmonische Longitudinalwelle
	Phasengeschwindigkeit
	Überlagerung von Wellen; Gruppengeschwindigkeit

	Akustische Wellen
	Wellengleichung für Druck
	Schallwellen
	Schallimpedanz und Schallschnelle
	Intensität und Lautstärke
	Physiologische Lautstärken-Skala
	Empfindlichkeitsgrenze

	Mechanische Wellen
	Druckwellen in Flüssigkeiten und Festkörpern
	Seismische Wellen
	Transversalwellen in einer Massenkette
	Energie einer Transversalwelle
	Seilwellen
	Wellen in 2D und 3D
	Übersicht Phasengeschwindigkeiten

	Ausbreitung
	Reflexion und Transmission
	Stehwellen
	Abstandsabhängigkeit
	Der Dopplereffekt
	Überschallgeschwindigkeit

	Elektromagnetische Wellen
	Das elektromagnetische Spektrum
	Elektromagnetische Wellengleichung
	Ebene Wellen
	Magnetfeld
	Transversalwellen: Polarisation
	Hertz'scher Dipol
	Eigenschaften des Hertz'schen Dipols
	Übertragung von Energie und Impuls
	Dopplereffekt


	Optik
	Grundlagen
	Historisches
	Beschreibung
	Erzeugung von Licht
	Nachweis von Licht
	Halbleiterdetektoren

	Lichtausbreitung
	Lichtgeschwindigkeit
	Messung der Lichtgeschwindigkeit nach Fizeau-Michelson
	Brechungsindex
	Absorption und Dispersion
	Geometrische Optik
	Das Prinzip von Fermat
	Gekrümmte Lichtstrahlen
	Huygens’sches Prinzip

	Reflexion und Brechung
	Reflexion: Grundlagen
	Herleitung des Reflexionsgesetzes
	Brechung des Lichts an einer ebenen Grenzfläche
	Reflexionsgesetz aus dem Huygens'schen Prinzip
	Reflexions- und Transmissionskoeffizienten
	Fresnel-Formeln
	Totalreflexion
	Brechung am Prisma

	Abbildende Optik
	Bildentstehung
	Parabolspiegel
	Bildweite und Maßstab
	Brechung an einer sphärischen Oberfläche
	Entstehung des Regenbogens
	Linsen
	Linsentypen
	Abbildung und Vergrösserung
	Linsenfehler
	Maximale Auflösung

	Optische Instrumente
	Das Auge
	Vergrößerung und Mikroskop
	Fernrohr
	Photometrie

	Polarisation und Doppelbrechung
	Polarisation
	Erzeugung und Umwandlung
	Doppelbrechung
	Anwendungen
	Optische Aktivität

	Interferenz
	Linearität für Felder, nicht für Intensitäten
	Der Interferenzterm
	Interferenz von 2 ebenen Wellen
	Zweistrahlinterferenz an dünnen Schichten
	Farben dünner Filme
	Entspiegelung
	Newton'sche Ringe
	Interferometer als Messinstrumente
	Vielstrahlinterferenz
	Kohärenz
	Anwendungen

	Beugung
	Grenzen der geometrischen Optik
	Beugung am Spalt
	Beugung am Doppelspalt
	Komplementäre Objekte
	Das optische Gitter
	Beugung an zweidimensionalen Objekten
	Fresnel'sche Zonenplatte
	Beugung an dreidimensionalen Objekten
	Holographie

	Laser
	Grundlagen
	Funktionsprinzip
	Lasertypen
	Anwendungen
	Pulslaser


	Grundlagen der Quantenmechanik
	Experimentelle Hinweise
	Schwarze Strahler
	Strahlungsgesetze Mehr dazu findet man unter SpektrumStrahlungsgesetz
	Grenzfälle
	Planck's Quantisierung
	Kosmische Hintergrundstrahlung
	Photonen
	Einstein's Theorie von Absorption und Emission
	Photoeffekt
	Wellenlängenabhängigkeit
	Austrittsarbeit
	Spektrallinien von Atomen
	Das Franck-Hertz Experiment
	Der Comptoneffekt

	Wellencharakter der Materie
	Wellen und Teilchen
	Ausbreitung und Dispersion
	Beispiel: Elektronenwellen
	Interferenz und Beugung
	Neutronen
	Schwerere und zusammengesetzte Teilchen

	Der quantenmechanische Formalismus
	Historische Vorbemerkungen
	Grundlagen
	Quantenmechanische Messungen; Erwartungswerte
	Die wichtigsten Operatoren
	Schrödingergleichung
	Heisenberg's Unschärfenrelation

	Eindimensionale Probleme
	Der harmonische Oszillator
	Teilchen im Potenzialtopf
	Anwendung: Halbleiter-Quantenstrukturen


	Atome, Moleküle und Festkörper
	Atome als Grundbestandteile der Materie
	Historisches
	Die moderne Atomtheorie
	Experimentelle Hinweise für die Existenz von Atomen
	Feld-Ionen Mikroskopie
	Mikroskopie
	Größe eines Atoms

	Aufbau der Atome
	Historische Grundlagen
	Rutherford´s Experiment
	Das klassische Atommodell
	Das Wasserstoff-Spektrum
	Das Bohr'sche Atommodell

	Die Quantenmechanik des Wasserstoffatoms
	Grundlagen, Hamiltonoperator
	Wasserstofforbitale
	Drehimpuls
	Das Wasserstoffspektrum
	Elektronenspin
	Schwerere Atome
	Das Periodensystem

	Bindungen und Moleküle
	Wechselwirkung und Bindungsenergie
	Bindungstypen
	Das Wasserstoffmolekül
	Zustandsenergie
	Molekülorbitale
	Kovalente Bindung
	Polare Bindungen
	Van der Waals Bindung
	Wechselwirkung
	Eigenmoden
	Das Lennard-Jones Potenzial
	Metallische und ionische Bindung
	Wasserstoffbrücken
	Bedeutung von H-Brücken

	Kristalline Festkörper
	Symmetrie
	Van der Waals
	Gleichgewichtsabstand
	Ionische Bindung
	Berechnung der Madelung-Konstanten

	Elektronen im Festkörper
	Das klassische Drude-Modell
	Das Sommerfeld-Modell
	Das Teilchen im Potenzialtopf
	Drei Raumdimensionen
	Fermi-Energie
	Die Fermi-Dirac Verteilung
	Leitfähigkeit

	Bänder
	Probleme des Modells freier Elektronen
	Das periodische Potenzial
	Eigenfunktionen im periodischen Potenzial
	Zonenrand
	Bandstruktur

	Halbleiter
	Grundlagen
	Ladungsträger-Statistik
	Dotierung
	Absorption von Licht
	Lichtemission

	Supraleitung
	Entdeckung
	Leitfähigkeit
	Diamagnetismus
	Kritische Temperatur und kritisches Feld
	Typ II Supraleiter


	Kerne und Teilchen
	Atomkerne
	Hierarchie der Größenskalen
	Nukleonen
	Bindungsenergie und Massendefekt
	Das Tröpfchenmodell
	Das Schalenmodell des Kerns
	Das Standardmodell der Teilchenphysik

	Radioaktivität
	Historisches, Grundlagen
	Alpha-Zerfall
	Beta-Zerfall
	Gamma-Zerfall

	Kernenergie
	Kernspaltung
	Kernreaktoren
	Probleme der Kernspaltung
	Kernfusion
	Kernfusion in Sternen


	Literaturverzeichnis

