
9 Atome, Moleküle und Festkörper

9.1 Atome als Grundbestandteile
der Materie

9.1.1 Historisches

Wir gehen heute als selbstverständliche Grundlage
davon aus, dass Atome die Bausteine der Materie
sind, die uns umgibt und aus der auch wir selber be-
stehen. Obwohl wir diese Tatsache heutzutage in der
Schule unterrichten, und Tageszeitungen sie als be-
kannt voraussetzen, ist es noch keine hundert Jahre
her, dass ihre Existenz auch wissenschaftlich nicht
gesichert war. Einzelheiten über ihre Verhalten, ja
sogar ihre Größe waren nur in sehr groben Umris-
sen bekannt.

Der Begriff “Atom” stammt aus dem Griechischen.
Zu den zentralen Fragen der griechischen Philoso-
phen gehörte die Suche nach Unvergänglichem, nach
einem ewigen Sein. Wenn aber es aber ein ewiges
Sein gab, so schien dies nicht vereinbar mit Verände-
rungen. Insbesondere Parmenides forderte, dass al-
les Seiende unwandelbar sein müsse. Veränderungen
waren deshalb nicht möglich, respektive nur Schein.

Abbildung 9.1: Zeitliche Abfolge der antiken Philo-
sophen.

Natürlich konnten nicht alle Philosophen diese The-
se akzeptieren (! Abb. 9.1). Insbesondere Demo-

krit1 suchte nach einer Lösung dafür. In heutiger
Ausdrucksweise kann man seine Lösung etwa so be-
schreiben: Die Welt besteht nach Demokrit aus lee-
rem Raum und unteilbaren, unwandelbaren Grund-
bestandteilen der Materie, den Atomen. Wir kennen
heute Demokrit deshalb als den Entdecker der Ato-
me. Genau so wichtig wie seine Forderung nach der
Existenz von Atomen war aber, dass er dem leeren
Raum eine eigenständige Existenz zubilligte. Da-
durch wurde die Existenz von Atomen in seinem
Sinn erst möglich. Diese bilden die Grundbausteine
der Materie, sie und der leere Raum sind unwandel-
bar. Damit besteht eine sichere Basis für das Sein,
und Veränderung ist trotzdem möglich, da die Ato-
me sich im leeren Raum bewegen und neu gruppie-
ren können. Demokrit forderte bereits die Existenz
unterschiedlicher Atome, welche sich durch Form,
Lage und Geschwindigkeit unterschieden. Auch un-
sere Sinneseindrücke werden gemäß Demokrit von
Atomen übertragen; in heutiger Lesart würden wir
sagen, dass auch Licht aus Atomen besteht. Ja so-
gar die Seele besteht gemäß Demokrit aus Atomen
- aus einer besonders glatten, feuerartigen Atomen,
welche von Körperatomen umgeben sind.

Demokrit war keineswegs der einzige, der eine sol-
che These vertrat; es gab auch schon frühere Ver-
suche, z.B. durch Leukipp2, von dem Demokrit we-
sentlich beeinflusst wurde.

Aber es gab auch Kritiker, welche sich mit die-
sem Konzept nicht anfreunden konnten, insbesonde-
re Aristoteles, der lehrte, dass die Materie aus den
vier Elementen Erde, Luft, Feuer und Wasser auf-
gebaut sei. Abb. 9.2 zeigt die vier Elemente und ih-
re Eigenschaften. Die Eigenschaften der Stoffe soll-
ten dann von der anteilmäßigen Zusammensetzung
bestimmt werden. Der große Einfluss von Aristote-
les war wohl auch der Hauptgrund dafür, dass die

1Demokrit von Abdera (ca. 460 v. Chr. - 370 v. Chr.)
2Leukipp (5. Jh. v. Chr., Lehrer von Demokrit)
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Abbildung 9.2: Elementelehre von Aristoteles (384-
322 v. Chr.).

Atomtheorie lange Zeit nicht akzeptiert wurde. 3

9.1.2 Die moderne Atomtheorie

Erst gegen Ende des achtzehnten Jahrhunderts
wurde die Atomhypothese auf wissenschaftlicher
Grundlage wieder entdeckt.

Wasser- 
 stoff

Wasser- 
 stoff

Sauer- 
 stoff Wasser+

Abbildung 9.3: Gesetz der konstanten Proportionen
von Antoine Lavoisier (1743-1794).

Den Anstoß dazu gab die Chemie, wo insbesonde-
re Lavoisier empirisch gefunden hatte, dass chemi-
sche Elemente in bestimmten Verhältnissen mitein-
ander reagieren. Wie in Abb. 9.3 gezeigt, entste-
hen z.B. aus zwei Teilen Wasserstoff und einem Teil
Sauerstoff Wasser. Dies war ein völlig unerwartetes
Resultat. Wenn die Materie aus den vier aristoteli-
schen Elementen aufgebaut wäre, würde man erwar-
ten, dass diese in beliebigen Verhältnissen reagieren
könnten und dabei Produkte mit unterschiedlichen
Eigenschaften entstehen würden.

John Dalton4 führte diese Experimente weiter. Er
fand insbesondere, dass die möglichen Verhältnis-
se, in denen die gleichen Elemente reagieren konn-
ten, durch kleine ganze Zahlen beschrieben werden

3Weitere Einzelheiten: [7, 6]
4John Dalton (1766 - 1844)

Abbildung 9.4: Gesetz der multiplen Proportionen
von John Dalton (1766-1844).

konnten. Abb. 9.4 zeigt als Beispiel verschiedene
Moleküle aus den Elementen Stickstoff und Sauer-
stoff. Diese experimentellen Resultate konnte Dalton
1808 so erklären, dass er die Existenz von Atomen
postulierte, die sich unterschiedlich zusammenfügen
und so die beobachtete Vielfalt der Substanzen er-
zeugen.

1811 zeigte Avogadro5, dass die Dalton’sche Hypo-
these auch die experimentellen Resultate von Gay-
Lussac erklären kann: Das Volumen eines idealen
Gases hängt nur von Druck, Temperatur und Teil-
chenzahl ab, nicht von der Art des Gases.

9.1.3 Experimentelle Hinweise für die
Existenz von Atomen

Periodisches System der Elemente 

Atomgewichte 

Brown'sche Bewegung

kinetische Gastheorie P T

Abbildung 9.5: Entwicklung der Theorie im 19.
JHd.

5Lorenzo Romano Amedeo Carlo Avogadro, Conte di Quare-
gna e Cerreto (1776 - 1856)
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Im Verlauf des 19. Jh. kam es zu einer Reihe von
weiteren Erkenntnissen, wie in Abb. 9.5 zusammen-
gefasst. So wurden die wichtigsten Arten von Ato-
men entdeckt und im periodischen System der Ele-
mente aufgelistet - zunächst entsprechend dem re-
lativen Gewicht, dann aufgrund der Ordnungszahl.
Die Entdeckung der Brown’schen Bewegung, einer
scheinbar zufälligen Bewegung von kleinen Rauch-
und Pollenteilchen, wurde als Hinweis auf die Exi-
stenz von Atomen gedeutet, welche zwar selber nicht
sichtbar sind, aber durch Stöße die Bewegung des
Teilchens beeinflussen. Die Annahme, dass Gase aus
Atomen aufgebaut seien, erlaubte auch, die Ther-
modynamik auf ein mechanisches Modell, nämlich
die kinetische Gastheorie zurückzuführen und insbe-
sondere den Druck als eine große Zahl von Stößen
der Atome mit den Gefäßwänden zu interpretieren.
Wenn das Volumen verkleinert oder die Temperatur
erhöht wurde, wurden die Stöße zahlreicher und hef-
tiger und der Druck damit größer.

Damit war eine der wichtigsten Grundlagen für die
Physik, wie auch für die Chemie geschaffen - ob-
wohl bisher noch niemand ein Atom gesehen hatte.
Man glaubte an ihre Existenz, doch niemand wusste,
wie die Atome aussehen, ja nicht einmal wie groß
sie sind.

Erste Hinweise darauf lieferte die Beugung von
Elektronen und Röntgenstrahlen an kristallinen Ma-
terialien. Diese ergaben nicht nur eine Bestätigung
der Wellenhypothese von de Broglie, sondern auch
eine erste Messung von Gitterkonstanten. Allerdings
ergeben sie Bilder im Impulsraum, nicht direkt im
gewohnten Ortsraum.

9.1.4 Feld-Ionen Mikroskopie

Die erste Methode, welche Atome direkt im Orts-
raum sichtbar machte, war die Feld-Ionen Mikrosko-
pie. Wie in Abb. 9.6 gezeigt handelt sich dabei um
ein relativ einfaches Gerät: im wesentlichen benötigt
man eine sehr scharfe Spitze, an die man eine positi-
ve elektrische Spannung anlegt. Dadurch erhält man
an der Spitze ein sehr hohes elektrisches Feld. Au-
ßerhalb der Spitze befindet sich mit niedrigem Druck
ein Gas, typischerweise Helium oder Barium. Wenn

Schirm

V

He

+Spitze

Abbildung 9.6: Schematische Darstellung des Feld-
Ionen-Mikroskops.

ein Heliumatom in die Nähe der Spitze gelangt, wird
es durch dieses enorme elektrische Feld ionisiert, das
heißt diese Metallspitze zieht eines der Elektronen
des Heliumatoms weg. Dadurch wird das Heliuma-
tom zu einem positiv geladenen Heliumion und wird
nun durch das starke elektrische Feld sehr rasch von
der Spitze weg beschleunigt. Nach einer Distanz von
etwa 10 cm trifft es auf einen Schirm, wo es sichtbar
gemacht wird. Da sich die Atome auf dem direkte-
sten Weg von der Spitze entfernen, entsteht dadurch
auf dem Schirm ein direktes Bild der Spitze. Die
Vergrößerung kommt direkt durch das Verhältnis des
Radius der Spitze zur Distanz vom Schirm zustande
und benötigt keine weiteren abbildenden Elemente.

Abbildung 9.7: Messaufbau und Bild eines Feld-
Ionen-Mikroskops.

Abb. 9.7 zeigt einen entsprechenden Messaufbau
und ein damit aufgenommenes Bild. Man erhält also
auf diese Weise auf dem Schirm ein Bild dieser Spit-
ze mit sehr hoher Auflösung. Allerdings ist das Bild
ziemlich stark verzerrt. [8] Diese Art von Mikrosko-
pie ist inzwischen mehr als 50 Jahre alt, sorgt aber
immer noch für spektakuläre Bilder.

Der Kontrast kommt dadurch zustande, dass die Io-
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Abbildung 9.8: Atomare Struktur und indizierte
Emissionsmaxima.

nisierung des Heliums davon abhängt, dass ein frei-
er Zustand für das Elektron im Metall vorhanden ist.
Diese Zustände haben bevorzugte Richtungen inner-
halb der Einheitszelle. In diese Richtungen werden
die Ionen von der Spitze weg beschleunigt und er-
geben dadurch ein Bild der atomaren Struktur der
Spitze, wie in Abb. 9.8 gezeigt.

9.1.5 Mikroskopie

Eine der heute am weitesten verbreiteten Metho-
den, mit denen man die atomare Struktur der Ma-
terie sichtbar machen kann, ist die Elektronenmi-
kroskopie. Dabei werden anstelle von Licht Elek-
tronenstrahlen verwendet, und anstelle von Linsen
aus Glas verwendet man dabei elektromagnetische
Linsen, um den Strahl zu fokussieren und abzubil-
den. Wie beim Lichtmikroskop kann man dabei Bil-
der erzeugen, wobei die Auflösung sehr viel grö-
ßer sein kann. Für hoch auflösende Elektronenmi-
kroskopie verwendet man Beschleunigungsspannun-
gen von mehreren 100 kV. Bei diesen Energien be-
wegen sich die Elektronen relativistisch und ihre
de Broglie Wellenlänge ist liegt in der Größenord-
nung von 10�12 m. Die Auflösung wird somit nicht
mehr durch Beugungseffekte beschränkt, sondern
nur noch durch experimentelle Probleme, wie z.B.
Linsenfehler.

Abb. 9.9 zeigt eine elektronenmikroskopische Auf-
nahme eines Molekülkristalls. Man sieht hier direkt
die einzelnen Atome und kann gut schwerere von
leichteren Atomen unterscheiden. Außerdem kann
man erkennen, wie diese Atome in Molekülen ge-
bunden sind.

Abbildung 9.9: Atomar aufgelöstes TEM-Bild eines
Molekülkristalls.
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Abbildung 9.10: Prinzip der Raster-Tunnel-Mi-
kroskopie.

Eine neue Art, Atome abzubilden, wurde 1982
in Zürich entwickelt: die Rastertunnelmikroskopie.
Wie in Abb. 9.10 gezeigt, wird dafür eine feine Spit-
ze über eine Oberfläche geführt, wobei der Abstand
zwischen der Spitze und der Oberfläche konstant ge-
halten wurde. Indem man die Position der Spitze auf-
zeichnet, kann man ein Bild der Oberfläche erhalten.
Man tastet also die Oberfläche mit einer Spitze ab,
benutzt also eine Art verfeinerten Tastsinn, um die
Oberfläche sichtbar zu machen.

Abbildung 9.11: Ein ”Kristall” aus Magnesium-
Ionen in einer Ionenfalle.

Auch mit optischen Methoden kann man einzelne
Atome sichtbar machen. Abbildung 9.11 zeigt einen
Kristall aus atomaren Ionen, welche in einer elektro-
magnetischen Falle gespeichert und mit Laserlicht
zur Fluoreszenz angeregt wurden. Der Grund, dass
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diese mit optischen Methoden sichtbar gemacht wer-
den können, liegt darin, dass ihr Abstand auf Grund
der Coulomb-Abstoßung in der Größenordnung von
10 µm liegt.

9.1.6 Größe eines Atoms

Es gibt heute eine Reihe von Möglichkeiten, die
Größe von Atomen zu bestimmen. Bereits erwähnt
wurden Rastertunnelmikroskopie und hochauflösen-
de Elektronenmikroskopie. Auch die Röntgenbeu-
gung, welche die Abstände von Atomen in einem
Kristallgitter bestimmt, kann als Messmethode be-
trachtet werden. Eine weitere Möglichkeit ist über
die Messung der van der Waals-Konstanten realer
Gase, welche das effektive Volumen bezeichnen,
welches ein Atom einnimmt. Das effektive Volu-
men kann auch über die Dichte eines Festkörpers be-
stimmt werden, sofern die Loschmidt’sche Zahl be-
kannt ist:

Atomvolumen : V0 =
4p
3

r3 =
mM

rNL
.

In enger Analogie dazu kann man die Oberfläche ei-
nes Öltröpfchens messen, welches z.B. auf eine Was-
seroberfläche aufgebracht wird: Der Ölfilm ist eine
Monolage dick, d.h. die Fläche ist gleich der Quer-
schnittsfläche eines Atoms, multipliziert mit der An-
zahl der Atome im Öltröpfchen.

Abbildung 9.12: Überblick über die Historische Ent-
wicklung der Atomtheorie.

9.2 Aufbau der Atome

9.2.1 Historische Grundlagen

Wenn man Atome als Bausteine der Materie iden-
tifiziert hat, stellt sich sofort die Frage, woraus denn
die Atome bestehen. Abb. 9.12 fasst die Entwicklung
zusammen.

Dabei besteht prinzipiell die Möglichkeit, dass sie
elementar, also nicht mehr teilbar sind. Dies ent-
spricht der Idee von Demokrit und auch der vorherr-
schenden Meinung gegen Ende des 19. Jh. Tatsäch-
lich hatte man aber schon im 19. Jh. erste Hinwei-
se darauf, dass Atome nicht die ewigen und unteil-
baren Grundbestandteile der Materie waren, welche
Demokrit postuliert hatte. Ein Hinweis auf die end-
liche Lebensdauer war die Radioaktivität.

Dass sie nicht unteilbar sind zeigte die Entdeckung
des Elektrons: bei der Elektrolyse, wie auch bei der
Entdeckung der Kathodenstrahlen schienen die La-
dungsträger aus den Atomen herauszukommen.

Diese Teilchen, welche z.B. auch in einem Funken
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Abbildung 9.13: Joseph John Thomson (1856-
1940).

Abbildung 9.14: Vakuumröhre, mit der Thomson
seine Messungen durchführte.

beobachtet werden können, sind für alle Arten von
Atomen identisch. Sie tragen eine negative elektri-
sche Ladung. Da die Atome elektrisch neutral sind,
mussten sie also außer den Elektronen auch einen
positiv geladenen Teil enthalten.

Lord Thomson stellte sich das in der zweiten Hälfte
des 19. JH. so vor, dass der positiv geladene Teil ei-
ne Art Teig oder Pudding darstellte, in dem sich die
Elektronen wie Rosinen aufhielten, wie in Abb. 9.15
gezeigt. Damit konnte er schon einige Punkte erklä-
ren. Allerdings gab es auch Diskrepanzen zum Expe-
riment; so stimmten die berechneten Schwingungs-
frequenzen nicht mit den beobachteten überein.

- -

-
+ 
 -

Abbildung 9.15: Atommodell “Pudding mit Rosi-
nen”.

9.2.2 Rutherford´s Experiment

Zu Beginn des 20. Jahrhunderts wurden verschiede-
ne Experimente durchgeführt, welche das Innere des
Atoms erkunden sollten. Dünne Metallfolien, wur-
den mit subatomaren Partikeln, insbesondere Elek-
tronen und a-Teilchen beschossen.

Blei

Rn (α-Quelle)

α

Zinksulfid-Schirm
Mikroskop

Metallfolie

Abbildung 9.16: Rutherford und sein Experiment.

Die bekanntesten Experimente wurden von E. Ru-
therford (1871-1937, Abb. 9.16) in den Jahren 1911-
1913 durchgeführt. Die Resultate zeigten, dass der
größte Teil der Teilchen durch die Folien durchflog,
ohne wesentlich abgelenkt zu werden.

Ein kleiner Teil aber wurde praktisch in die Richtung
zurück gestreut, aus der sie gekommen waren. Abb.
9.17 fasst die Trajektorien zusammen. Dies war ein
völlig unerwartetes Ergebnis, in krassem Gegensatz
zu den Voraussagen aufgrund des Thomson’schen
Modells des Atoms.

Rutherford beschrieb den Ausgang seiner Experi-
mente so, dass es aussah als wäre eine Kanonenku-
gel an einem Blatt Papier abgeprallt. Die Resulta-
te ließen sich nur interpretieren, wenn man annahm,
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Abbildung 9.17: Trajektorien der a-Teilchen.

dass der größte Teil der Masse des Atoms ist in ei-
nem sehr kleinen Gebiet konzentriert ist. Der Durch-
messer dieses Atomkerns ist von der Größenordnung
von 4 � 10 · 10�15 m, etwa 100’000 mal kleiner als
das Atom als ganzes. Auf die Erde übertragen, wür-
de dies bedeuten, dass die gesamte Masse der Er-
de in einer Kugel von wenigen Metern Durchmesser
konzentriert wäre. Dieser Kern musste die positive
Ladung des Atoms enthalten, während die negative
Ladung in den Elektronen lokalisiert war.

9.2.3 Das klassische Atommodell

Daraus folgte, dass der Kern positiv geladen sein
musste. Aufgrund der damals bekannten Naturgeset-
ze konnte man annehmen, dass das Atom durch elek-
trostatische Kräfte zusammengehalten wurde, also
die Anziehung zwischen entgegen gesetzten Ladun-
gen. Damit erinnerte dieses System stark an das Son-
nensystem.

Die Elektronen sollten also auf kreisförmigen oder
elliptischen Bahnen um den Atomkern kreisen, wo-
bei sie von der elektrostatischen Anziehung auf der
Bahn gehalten wurden, wie in Abb. 9.18 gezeigt. Da
die Masse des Kernes sehr viel größer war als die
der Elektronen, konnte man davon ausgehen, dass
der Kern praktisch in Ruhe bleibt, während sich die
Elektronen um ihn bewegen, analog zu Planeten um
die Sonne.

Abbildung 9.18: Modell eines Atoms in der Form ei-
nes Sonnensystems.

Dabei tauchte aber ein großes Problem auf: Eine
Kreisbewegung ist eine beschleunigte Bewegung.
Die Elektrodynamik, welche im 19. Jh. durch Max-
well festgeschrieben worden war, sagte aber vor-
aus, dass beschleunigte elektrische Ladungen elek-
tromagnetische Strahlung aussenden. Diese Strah-
lung würde Energie aus dem Atom abführen. Das
Elektron müsste demgemäß immer näher zum Kern
rücken, dabei schneller werden und mehr Energie
abstrahlen und innert sehr kurzer Zeit in den Kern
stürzen. Nach diesem Modell wären also Atome
nicht stabil, es sollten gar keine Atome und deshalb
auch keine Materie existieren. Es gab hier also einen
Widerspruch zur experimentell beobachteten Tatsa-
che, dass Materie existiert. Damit war klar, dass die-
ses Modell die Wirklichkeit nicht korrekt beschrieb.

9.2.4 Das Wasserstoff-Spektrum

H 

He 

Ba 

Hg

Abbildung 9.19: Spektrum einer thermischen Quelle
und von vier atomaren Gasen.

Schon im 19. Jahrhundert hat man festgestellt, dass
freie Atome Licht bei einigen wenigen, scharf be-
stimmten Wellenlängen absorbieren oder emittieren,
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wie in Abb. 9.19 gezeigt. Dies war ebenfalls im Wi-
derspruch zu einem Modell der Atome, welche ge-
mäß der klassischen Elektrodynamik den Atomkern
umkreisen: die dabei erzeugte Strahlung müsste ein
kontinuierliches Spektrum aufweisen.

Um das Spektrum von Wasserstoff (! Abb. 9.19)
zu messen, werden Wasserstoffatome erzeugt und
mit einem Elektronenstrahl zum Glühen gebracht.
Wenn man das Licht, das insgesamt rosa aussieht,
spektral analysiert, findet man eine Reihe von dis-
kreten Emissionslinien. Diejenigen, die im sichtba-
ren Bereich des Spektrums liegen, können auf dem
Bildschirm dargestellt werden. Weitere Linien fin-
den sich im Ultravioletten und infraroten Bereich des
Spektrums. Allgemein kann man die Frequenz der
Resonanzlinien schreiben als

n = cRy

✓
1
n2 � 1

m2

◆
mit n < m

Ry =
mee4

8e2
0 h3c

= 109677,581cm�1.

Hier sind n und m sind ganzzahlige “Quantenzah-
len” und Ry stellt die Rydbergkonstante dar. Dies
entspricht einer Frequenz

cRy = 3,29 ·1015 Hz.

In Energieeinheiten hat sie den Wert

hcRy = 2,18 ·10�18 J = 13,6eV.

Sie gehört zu den wichtigsten Naturkonstanten und
bestimmt u. A. die Energieskala chemischer Bindun-
gen.

Abbildung 9.20: Numerische Werte für die
Rydberg-Konstante.

Abb. 9.20 gibt die Rydbergkonstante in unterschied-
lichen Energie-Einheiten an.

n legt die “Serie” fest: n = 1 definiert die Lyman Se-
rie, n = 2 die Balmer Serie etc. Somit gilt für die

Lyman-Serie

Em = R
✓

1� 1
m2

◆
,

für die Balmer Serie

Em = R
✓

1
4

� 1
m2

◆
,

Ähnliche Linien findet man im Spektrum einer
Quecksilberdampflampe. Ein besser bekanntes Bei-
spiel sind die Natriumdampflampen, welche als Stra-
ßenbeleuchtung verwendet werden. Wenn man die
Auflösung des Spektrometers hoch genug wählt,
sieht man, dass diese Linien sehr schmal sind.

Auch bei Molekülen, z.B. N2, findet man diskrete
Spektrallinien, doch sind sie in diesem Fall nicht
mehr ganz so schmal, und ihre Zahl wird größer.

Gemäß der Beziehung zwischen Energie und Fre-
quenz E = hn bedeutet dies, dass Atome Energie nur
in bestimmten Paketen aussenden oder absorbieren.
Dies, sowie die Tatsache, dass die klassische Elek-
trodynamik die Existenz von stabilen Atomen nicht
befriedigend erklären konnte, war eine der wichtig-
sten Triebfedern für die Entwicklung der Quanten-
mechanik.

Eine weitere wichtige Entdeckung war der Faraday
Effekt. Faraday, einer der Pioniere der klassischen
Elektrodynamik, hatte gezeigt, dass Magnetfelder
die Wechselwirkung zwischen Licht und Atomen be-
einflussen. Insbesondere können sie die Polarisati-
onsebene des Lichtes drehen.

9.2.5 Das Bohr’sche Atommodell

Aus diesen Tatsachen entwickelte Niels Bohr (1885-
1962) im Jahre 1913 ein Atommodell, welches sche-
matisch in Abb. 9.21 dargestellt ist. Er sah sich ge-
zwungen, dafür zusätzlich zu den bekannten physi-
kalischen Gesetzen weitere Annahmen zu machen.
Er postulierte insbesondere, dass die Bewegung der
Elektronen um den Kern nicht durch die Maxwell
Gleichungen beschrieben wurde, sondern dass es
stationäre Bahnen geben sollte:
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Abbildung 9.21: Schematische Darstellung des
Bohr’schen Atommodells.

• es sind nur solche Bahnen erlaubt, deren Bahn-
drehimpuls ein ganzzahliges Vielfaches des
Planck’schen Wirkungsquantums h̄ ist :

L = mer2w = nh̄.

r

λ

Abbildung 9.22: Stehwellen auf einem Kreis (links)
und in einem Fabry-Perot Resona-
tor (rechts).

Man kann dies mit Hilfe von

l =
2p
k

=
2p h̄

p
=

h̄2pr
L

=
Umfang

n

so interpretieren, dass der Umfang der Kreisbahn ge-
rade einem Vielfachen der Wellenlänge des Elek-
trons entspricht, wie in Abb. 9.22 gezeigt. Damit
sind Radius und Energie des Elektrons festgelegt.

• Bewegung auf diesen Bahnen ist strahlungslos;
Absorption und Emission finden beim Über-
gang zwischen unterschiedlichen Bahnen statt.

Wenn sich das Elektron auf einer dieser Bahnen be-
fand, so sollte es keine Energie abstrahlen. Energie
konnte hingegen zwischen Licht und den Atomen

ausgetauscht werden, indem ein Elektron von einer
dieser stationären Bahnen auf eine andere sprang -
auf diese Weise konnte Bohr das Linienspektrum des
Wasserstoffs erklären. Mit Hilfe der Einstein’schen
Beziehung E = hn konnte man damit wiederum die
Größe der Atome bestimmen.

Sommerfeld modifizierte die Bohr’schen Postulate:
Die Bahn der Elektronen soll elliptisch sein; die
große Halbachse ist bestimmt durch die Hauptquan-
tenzahl n, die kleine durch die Nebenquantenzahl k;
für diese gilt: 0  k < n. Diese Zustände sind im
einfachsten Modell entartet; genauere Betrachtun-
gen zeigen, dass relativistische Effekte die Entartung
aufheben: Bahnen, die näher beim Kern sind entspre-
chen höheren Geschwindigkeiten und damit stärker
relativistischen Effekten.

Das Bohr’sche Atommodell wurde parallel zu den
Anfängen der Quantenmechanik entwickelt. Da-
durch war seine Lebensdauer wohl von Anfang an
nur kurz. Insbesondere die Zuhilfenahme von adhoc-
Annahmen stellte natürlich einen Schönheitsfehler
dar. Wenige Jahre später wurde mit der Schrödinger-
Gleichung, resp. der Quantenmechanik von Schrö-
dinger und Heisenberg die Grundlage für eine Be-
schreibung des Atoms ohne zusätzliche ad hoc An-
nahmen geschaffen.
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- - Bestandteile 

  Kern 
   Z+ 
Spektrum

me = 9,11.10-31 kg 
mP = 1,67.10-27 kg 
 e = 1,60.10-19 C

z Elektronen

Wellenlänge

- -

Abbildung 9.23: Fakten zum Wasserstoffatom.

E

Abbildung 9.24: Coulomb-Potenzial des Kerns.

9.3 Die Quantenmechanik des
Wasserstoffatoms

9.3.1 Grundlagen, Hamiltonoperator

Das Wasserstoffatom besteht aus einem Proton (La-
dung +e) und einem Elektron (Ladung –e). Der Kern
des leichtesten Wasserstoffatoms besteht aus einem
Proton; er besitzt die Masse mP = 1,67 · 10�27 kg
und Ladung e = 1,602 ·10�19 C. Abb. 9.23 fasst die
wichtigsten Fakten zusammen.

Die Elektronen wurden 1897 von J.J. Thomson ent-
deckt. Sie besitzen eine Ladung �e = �1,602 ·
10�19 C und eine Masse me = 9,11 · 10�31 kg. Das
Elektron kann als Punktpartikel betrachtet werden;
man kann ihm aber auch einen Radius von 2,8 ·
10�15 m zuordnen.

Der Hamiltonoperator H des Systems hat die Form

H = � 1
4pe0

e2

r
� h̄2

2m
D. (9.1)

Hier stellt der erste Term die Coulomb-
Wechselwirkung zwischen Kern und Elektron
dar, mit r als Abstand zwischen Kern und Elektron.
Abb. 9.24 zeigt das Potenzial. Der zweite Term ist
die kinetische Energie des Elektrons.

9.3.2 Wasserstofforbitale

Die stationären Zustände des Wasserstoffs ergeben
sich laut dem Bohr-Sommerfeld’schen Modell da-
durch dass die elektronische Wellenfunktion gera-
de in ein Kreis-, resp. ellipsenförmige Umlaufbahn
passt. In der Heisenberg-Schrödinger’schen Quan-
tenmechanik stellen sie Eigenfunktionen des Hamil-
tonoperators dar. Diese Zustände sind für den Ha-
miltonoperator (9.1) exakt bestimmbar. Sie werden
als Orbitale bezeichnet und mit drei Indizes n, ` und
m indexiert. In Polarkoordinaten lauten sie

Yn`m(r,q ,j) = Rn`(r)Y`m(q ,j). (9.2)

Die Radialfunktion ist

Rn`(r) =
2
n2

s
(n� `�1)!
((n+ `)!)3

1

a3/2
0

e�r/na0 ·

·
✓

2r
na0

◆`

L2`+1
n+`

✓
2r
na0

◆
,

wobei L2`+1
n+` das entsprechende Laguerre Polynom

darstellt. Die Winkelfunktionen Y`m(q ,j) sind die
Kugel(flächen)funktionen.

Die Hauptquantenzahl n bestimmt die Energie des
Systems und gibt gleichzeitig an, wie groß das ent-
sprechende Orbital ist. Wie in anderen Systemen
nimmt die Anzahl der Nulldurchgänge (=Knoten)
der Funktion mit der Energie zu. Für Wasserstoff ist
die Zahl der Knoten jeweils n�1.

Für den oben angegebenen Hamiltonoperator ist die
Energie aller Zustände mit gleichem n identisch.
Man spricht von Entartung. Die Energie beträgt

En =
E1

n2 = �h
c

Ry

n2 .

Für n = 1 erhält man den Grundzustand des Wasser-
stoffatoms

E1 = �13,6eV.

Abb. 9.25 zeigt die Energien.
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Abbildung 9.25: Energien der Zustände im H-Atom.

9.3.3 Drehimpuls

Die Drehimpuls-Quantenzahl ` bezeichnet den
Bahndrehimpuls des Zustandes Yn`m:

L = h̄
p

`(`+1) ` = 0,1,2, . . .n�1 .

Während die Bahn selber nicht scharf bestimmt ist,
ist der Drehimpuls in jedem stationären Zustand eine
exakte Größe, d.h. sämtliche Messungen des Bahn-
drehimpulses an einem Elektron in einem bestimm-
ten Zustand würden den selben Wert ergeben. Für
Elektronen in einem Zustand mit ` = 0 (sog. s-
Elektronen) verschwindet der Bahndrehimpuls ex-
akt. Dies ist offenbar ein Resultat, welches in einem
klassischen Atom nicht möglich wäre.

Nicht nur der Betrag, sondern auch die Orientierung
des Drehimpulses sind quantisiert (siehe Abb. 9.26).
Deshalb bezeichnet die dritte Quantenzahl m in Glei-
chung (9.2) die Komponente des Drehimpulses ent-
lang der z-Achse:

Lz = mh̄; m = �`,�`+1, . . .�1,0,1,2, . . .`.

Die z-Komponente kann somit positiv oder negativ
sein, der Betrag kann jedoch nicht größer werden,
als der gesamte Drehimpuls `.

Die Orbitale können auf unterschiedliche Weise gra-
phisch dargestellt werden, wie z.B. in Abb. 9.27. Auf
diese Weise werden auch die Symmetrieeigenschaf-
ten besser sichtbar, welche z.B. für die Interpretati-
on der Spektren eine große Rolle spielen. Berechnet

Abbildung 9.26: Quantisierung des Drehimpulses.

L=1

L = 0 : s

px

py

pz

L=2

dz2

dxz

dxy

+ dxy, dxy2-y2

Abbildung 9.27: Graphische Darstellung einiger
Wasserstofforbitale.

man den Erwartungswert des Ortsoperators h~ri, so
findet man, dass er für alle Orbitale identisch ist:

h~riYn`m = 0,

d.h. das Elektron befindet sich im Schnitt beim Kern.
Allerdings ist das Quadrat des Abstandes,

h~r2iYn`m > 0,

d.h. die mittlere Entfernung vom Kern ist > 0; sie
wächst mit der Hauptquantenzahl n.

9.3.4 Das Wasserstoffspektrum

Damit kann das Linienspektrum des Wasserstoffs in-
terpretiert werden, welches in Abb. 9.28 dargestellt

366



9 Atome, Moleküle und Festkörper

Infrarot sichtbar UV

Abbildung 9.28: Übersicht über das Wasserstoff-
spektrum.

ist. Die einzelnen Linien entsprechen Übergängen
zwischen Zuständen mit Hauptquantenzahl n1, n2.
Die Lyman-Reihe entspricht den Übergängen in den
Grundzustand, n = 2 der Balmer Reihe, n = 3 der
Paschen Reihe und so weiter.

9.3.5 Elektronenspin

Dass Elektronen nicht nur eine Ladung und eine
Masse besitzen, wurde aus der Untersuchung der
atomaren Linienspektren sowie des periodischen Sy-
stems relativ bald klar. So konnten die beobachteten
Aufspaltungen im Magnetfeld (der Zeeman-Effekt)
nur erklärt werden, wenn man dem Elektron weitere
Eigenschaften zuschrieb.

Abbildung 9.29: Wolfgang Pauli (1900-1958).

Wolfgang Pauli (! Abb. 9.29) stellte die Vermu-
tung auf, dass die Elektronen durch eine zusätzli-
che Quantenzahl beschrieben werden müssen, wel-
che nur zwei mögliche Werte annehmen kann. Es

stellte sich heraus, dass diese Quantenzahl dem Spin
entspricht, einem quantisierten internen Drehimpuls.
Dieser Spin ist an ein magnetisches Moment gekop-
pelt.

Abbildung 9.30: Kraft auf einen magnetischen Di-
pol in einem inhomogenen Ma-
gnetfeld.

Wie in Abb. 9.30 gezeigt, spürt ein magnetisches
Moment, welches durch ein inhomogenes Magnet-
feld fliegt, eine Kraft in Richtung des Magnetfeldes,
welches von seiner Orientierung bezüglich dem Ma-
gnetfeld abhängt. Ist das Magnetfeld stärker beim
magnetischen Südpol des inhomogenen Magneten,
so wird der fliegende Magnet in die Richtung abge-
lenkt, in der sich sein magnetischer Nordpol befin-
det.

Abbildung 9.31: Resultat des Stern-Gerlach Experi-
mentes.

Stern und Gerlach konnten als erste zeigen, dass die-
se magnetischen Momente tatsächlich durch Ablen-
kung in einem inhomogenen Magnetfeld gemessen
werden konnten und dass sie praktisch nur zwei un-
terschiedliche Werte annehmen konnten. Abb. 9.31
zeigt schematisch das Experiment und das gemesse-
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ne Ergebnis. Ein Elektron besitzt einen internen Dre-
himpuls, welcher als Spin bezeichnet wird. Er hat die
Größe

s =
h̄
2

= 5,3 ·10�35 Js.

Man kann sich dies in einer ersten Annäherung als
eine rotierende Kugel vorstellen. Allerdings ist der
Drehimpuls fest, d.h. die Rotationsgeschwindigkeit
ist fix.

Eine rotierende, elektrisch geladene Kugel bedingt
einen Kreisstrom und damit ein magnetisches Mo-
ment. Dies trifft auch für das Elektron zu: es besitzt
ein magnetisches Moment

µ = gµB = g
eh̄

2me
.

Der Faktor g bezeichnet das Verhältnis zwischen
dem magnetischen Moment aufgrund des Spins und
demjenigen, welches für einen klassischen Kreis-
strom erwartet würde. Dieses wird mit µB = 9,3 ·
10�24 Am2 bezeichnet.

Der Spin ist neben der Ladung und der Masse
die dritte fundamentale Eigenschaft eines Elektrons
(und vieler anderer Elementarteilchen). Er spielt
auch eine wichtige Rolle für die Unterscheidung
zwischen Zuständen, welche in der Natur vorkom-
men (erlaubten Zuständen) und solchen, welche
nicht beobachtet werden. So gilt insbesondere, dass
zwei Teilchen mit einem Spin, der ein ungeradzah-
liges Vielfaches von h̄/2 ist (“Fermionen”) sich nie
im gleichen Quantenzustand befinden dürfen. Wenn
sich z.B. 2 Elektronen im gleichen räumlichen Zu-
stand, z.B. dem Orbital eines Atoms befinden, müs-
sen ihre Spins entgegengesetzt ausgerichtet sein. Für
vollständig gefüllte Schalen existiert deshalb zu je-
dem Drehimpuls ~̀i,~si auch der entgegengesetzte und
der Gesamt-Drehimpuls~L, ~S verschwindet:

~L = Â
i

~̀i = 0 ~S = Â
i
~si = 0.

Hier bezeichnet ~L, ~̀i den Bahndrehimpuls und ~S, ~si
den Spindrehimpuls.

Ähnlich wie Elektronen besitzen auch Atomkerne
einen Spin. Diesen kann man u.a. mit Hilfe der ma-

Abbildung 9.32: Kernspin-Tomographie bildet Pro-
tonendichte ab.

gnetischen Resonanz, resp. Kernspinresonanz unter-
suchen. Eine bildgebende Variante der Kernspinre-
sonanz, die Kernspintomographie oder MRI (=Ma-
gnetic Resonance Imaging) wird in der Medizin ver-
wendet. Abb. 9.32 zeigt ein Beispiel eines MRI Bil-
des.

9.3.6 Schwerere Atome

Atome mit mehreren Elektronen können ähnlich ver-
standen werden wie das Wasserstoff-Atom. Sie be-
stehen aus einem Kern mit Ladung +Ze und Z Elek-
tronen, jeweils mit Ladung �e. In einer ersten Nähe-
rung kann man die Wechselwirkung der Elektronen
untereinander vernachlässigen und die Zustände für
die einzelnen Elektronen entsprechend den Zustän-
den des Wasserstoffatoms schreiben, mit den Quan-
tenzahlen n, `, m und s. Die wichtigsten Unterschie-
de zum Wasserstoffatom sind

• In wasserstoffähnlichen Atomen (Kernladung =
+Ze, ein Elektron) ist die Energie der Zustände

En = �Z2 E1

n2 = �hZ2 Ry

n2 .

Bei mehreren Elektronen schirmen diese die
Kernladung teilweise ab.

• Die Orbitale zu einer Hauptquantenzahl n sind
nicht mehr entartet. Ihre Energie nimmt mit zu-
nehmendem Drehimpuls ` zu.
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Dies kann so interpretiert werden, dass ein Elek-
tron in einem s-Orbital sich näher beim Kern be-
findet und deshalb die vollständige Kernladungszahl
“spürt” und aufgrund dieser Coulomb-Energie eine
niedrigere Gesamtenergie besitzt, während ein Elek-
tron in einem höheren Drehimpulszustand nur die
effektive Kernladungszahl der Atomrumpfs (Kern +
tiefer liegende Elektronen) “sieht”. Man bezeichnet
Zustände mit Drehimpuls ` =0, h̄, 2h̄, 3h̄, . . . als s�,
p-, d�, f -, . . . Orbitale.

n=1 n=2 n=3

p

d

s

Abbildung 9.33: Konfiguration von Mehr-
Elektronen Atomen.

Gemäß Pauli-Prinzip kann jeder Zustand maximal
von 2 Elektronen mit entgegengesetztem Spin be-
setzt sein. Im Grundzustand sind dementsprechend
jeweils die Z/2 energetisch niedrigsten Orbitale mit
2 Elektronen besetzt. Daraus ergibt sich die Struktur
des Periodensystems. Abb. 9.33 zeigt einige Beispie-
le von besetzten Orbitalen.

9.3.7 Das Periodensystem

Bei der Betrachtung der Elemente als Funktion der
Kernladungszahl fallen unterschiedliche Regelmä-
ßigkeiten auf. Dmitri Iwanowitsch Mendelejew (!
Abb. 9.34) erarbeitete eine Systematik der chemi-
schen Elemente, die er periodische Gesetzmäßigkeit
nannte.

Sie werden deshalb in ein periodisches System ein-
geteilt, welches in Abb. 9.35 dargestellt ist. Am Be-
ginn der Periode steht jeweils ein Alkalimetall (Aus-
nahme: Wasserstoff), am Ende ein Edelgas. Die Peri-
oden haben unterschiedliche Länge: Sie betragen 2,
8, 8, 18, 18 und 32.

Die Zahlen entsprechen der Anzahl der Elektronen,

Die älteste Darstellung des 
Periodensystems

Dmitrij Iwanowitsch 
Mendlejew (1834-1907)

Abbildung 9.34: Dmitri Iwanowitsch Mendelejew
(1834 - 1907) und seine Darstel-
lung des Periodensystems.
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Abbildung 9.35: Aktuelle Darstellung des Perioden-
systems.

welche in einer vollständig gefüllten Schale unterge-
bracht werden kann. Es ist jeweils die Reihenfolge
zu berücksichtigen, in der die Orbitale gefüllt wer-
den. Die Periodizität schlägt sich in unterschiedli-
chen Größen nieder. So erreicht der Atomradius je-
weils bei den Alkalimetallen ein Maximum. Wenn
weitere Elektronen in die gleiche Schale eingefüllt
werden nimmt der Atomradius unter dem Einfluss
der zunehmenden (effektiven) Kernladungszahl ab.
Das Minimum wird kurz nach der Mitte der Periode
erreicht, danach nimmt der Atomradius wieder zu.

Die Ionisierungsenergie zeigt ebenfalls ein periodi-
sches Verhalten, wie in Abb. 9.36 dargestellt. Hier
wird das Maximum bei den Edelgasen erreicht:
Wenn eine Schale vollständig gefüllt ist wird für
die Entfernung eines Elektrons eine besonders hohe
Energie benötigt. Bei den Alkaliatomen hingegen ist
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Abbildung 9.36: Abhängigkeit der Ionisierungsener-
gie von der Ordnungszahl.

die Bindungsenergie des äußersten Elektrons rela-
tiv gering. Jedes Atom besitzt ein charakteristisches
Linienspektrum. Aus den Frequenzen dieses Spek-
trums kann man die Energien der elektronischen Zu-
stände berechnen.

9.4 Bindungen und Moleküle

9.4.1 Wechselwirkung und Bindungsenergie

Atome haben die Tendenz, sich zu größeren Syste-
men wie Molekülen oder Festkörpern zu verbinden.
Diese größeren Systeme bildet sich “spontan” durch
die Wechselwirkung zwischen den Molekülen, und
die Moleküle selber sind ebenfalls durch eine Anord-
nung minimaler Energie bestimmt. Man kann somit
die Struktur bestimmen, indem man die Abstand-
sabhängigkeit der Wechselwirkungsenergie berech-
net und deren Minimum als Funktion des Abstandes
bestimmt.

Abstand

neutrale 
Bestandteile

getrennt
in Ruhe

G
es

am
te

ne
rg

ie

Bindungsenergie

Gleichgesichts-
abstand

Abbildung 9.37: Definition der Bindungsenergie.

Bestimmt man die Gesamtenergie eines stabilen Mo-
leküls als Funktion der interatomaren Abstände, so
existiert bei einem endlichen Abstand ein Minimum.
Dieser Abstand ist der Gleichgewichtsabstand, wel-
cher die Struktur des Moleküls definiert und seine
Energie bestimmt die Bindungsenergie.

Die Energie, die man benötigt, um ein Molekül
in Atome zu zerlegen, wird als Bindungsenergie
bezeichnet.

Bindungsenergien werden meist in der Einheit eV
pro Molekül oder kJ pro Mol angegeben. Dabei ent-
spricht 1eV/Molekül

1
eV

Molekül
= 1,6 ·10�19 J

Molekül
Die Energie pro Molekül kann man auch umrechnen
in makroskopische Energien, z.B. Energie pro Mol,
indem man sie mit der Avogadro-Konstante multi-
pliziert:

1,6 ·10�19 J
Molekül

·6 ·1023 Moleküle
Mol

= 96
kJ

Mol
.
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Für die Berechnung der Energie benötigt man ei-
ne quantenmechanische Beschreibung. Allerdings
beschreibt man nie ein vollständiges Modell des
Systems, sondern man geht aus von der Born-
Oppenheimer Näherung. Diese Näherung behandelt
nur die Elektronen rein quantenmechanisch, wäh-
rend die Position der Kerne als klassische Größen
behandelt werden. Die Grundlage dafür ist, dass bei
gleichem Impuls die Kerne sich um mindestens drei
Größenordnungen langsamer bewegen als die Elek-
tronen, bei schwereren Atomen bis zu 5 Größenord-
nungen. Außerdem vernachlässigt man in erster Nä-
herung die Wechselwirkung zwischen den Elektro-
nen und behandelt sie als unabhängige Teilchen. Für
die Wechselwirkung mit den Kernen ist dann in er-
ster Linie der mittlere Aufenthaltsort relevant. Die
Elektronen bewegen sich in einem Potenzial, wel-
ches durch die Coulomb-Wechselwirkung mit den
Kernen und den übrigen Elektronen gegeben ist.

Die quantenmechanische Beschreibung benötigt in
der Born-Oppenheimer Näherung nur eine Zustands-
funktion für die Elektronen, in denen die Positionen
der Kerne als klassische Parameter auftauchen. Um
die Bewegung der Kerne zu diskutieren, kann man
anschließend die gemittelte Gesamtenergie für un-
terschiedliche Kern-Konfigurationen berechnen. In
diesem Potenzial folgt die Bewegung der Kerne ei-
nem Satz von harmonischen Oszillatoren.

9.4.2 Bindungstypen

Anziehende Wechselwirkungen zwischen Atomen,
welche zu einer stabilen Anordnung führen, können
sich auf qualitativ sehr unterschiedliche Weise be-
merkbar machen. Eine erste Klassifizierung unter-
scheidet vier Arten von Wechselwirkungen, welche
in Tabelle 9.1 und Abb. 9.38 zusammengefasst sind..

• kovalente Bindung

• van der Waals Bindung

• Wasserstoffbrücken

• Coulomb-Wechselwirkung

Grob vereinfacht kann man sich vorstellen, dass im
Fall der van der Waals Bindung die neutralen Be-
standteile (z.B. Argon im Festkörper oder Lipidmo-

Typ Beispiel Bindungs-
energie in

kJ/Mol

Konstitu-
enten

kovalent Diamant 710 C
van der
Waals

CH4 10 CH4

Wasserstoff-
brücken

H2O 50 H2O

Coulomb NaCl 780 Na+,Cl�

Tabelle 9.1: Einige Eigenschaften der wichtigsten
Bindungstypen

C

C

C

C

C

Abbildung 9.38: Schematischer Vergleich der Elek-
tronendichteverteilung bei kovalen-
ten Bindungen (links) und van der
Waals Bindungen (rechts).

leküle in einer Membran) sich gerade berühren und
durch schwache Kräfte aneinander gehalten werden.
Im Fall der kovalenten Bindung existiert ein ver-
stärkter Überlapp zwischen den Elektronen der ein-
zelnen Atome, welcher zu einer starken, gerichte-
ten Bindung führt. Die kovalente Bindung hält die
Atome innerhalb der Moleküle zusammen, die van
der Waals Bindung und die Wasserstoffbrücken wir-
ken zwischen den Molekülen und sind verantwort-
lich für die Kondensation der Moleküle zu Flüssig-
keiten und Festkörpern, sowie für die Bildung von
supramolekularen Strukturen, wie z.B. Zellmembra-
nen oder molekularen Aggregaten.

Die Coulomb-Wechselwirkung spielt eine wichtige
Rolle in wässrigen Lösungen, nicht nur bei gelade-
nen Molekülen (Ionen), sondern auch bei der Wech-
selwirkung zwischen Teil-Ladungen, d.h. polarisier-
ten Molekülen.
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9.4.3 Das Wasserstoffmolekül

Wir betrachten zunächst nur die Kräfte, welche bei
der Wechselwirkung zwischen zwei Atomen auftre-
ten. Das einfachste System, bei dem sich mehre-
re neutrale Teilchen zu einer bestimmten Struktur
zusammenfinden, ist das Wasserstoffmolekül. Mit
klassischer Mechanik allein ist es schwierig einzuse-
hen, wie zwischen zwei neutralen Teilchen eine bin-
dende Wechselwirkung zustande kommen soll. Um
dies zu verstehen, muss das System also quantenme-
chanisch analysiert werden.

�A
�B

S = h�A|�Bi Ort

|�|

A B

Abbildung 9.39: Überlapp der Atomorbitale im H2-
Molekül.

Ausgangspunkt sind zwei Wasserstoffatome A und
B, deren Elektronenhüllen sich zum Teil überla-
gern. Die Wellenfunktionen der beiden Elektronen
seien YA und YB. Sind die beiden Atome räum-
lich gut getrennt, so kann die Zustandsfunktion des
Gesamtsystems in guter Näherung als das Produkt
YA(1)YB(2) der beiden einzelnen Funktionen ge-
schrieben werden; hier sind die Koordinaten (Ort
und Spin) der beiden Elektronen zu den Indices (1,
2) zusammengefasst. Dies berücksichtigt nicht das
Pauliprinzip, nach dem der Zustand der beiden Elek-
tronen unter Vertauschung ihrer Koordinaten anti-
symmetrisch sein müsste.

Den Hamiltonoperator des Systems sei H . Er ent-
hält neben der kinetischen Energie die Coulomb-
Wechselwirkung mit beiden Atomkernen. Eine voll-
ständige Analyse des molekularen Hamiltonopera-
tors ist sehr aufwändig. Für ein qualitatives Ver-
ständnis genügt jedoch eine relativ einfache Be-
schreibung. Dafür wird die Eigenfunktion Y des
gesamten Hamiltonoperators benötigt, wobei nicht
die explizite Darstellung des Hamiltonoperators ver-

wendet wird, sondern lediglich die (unbekannten)
Matrixelemente in der Basis der Grundzustands-
Eigenfunktionen der einzelnen Atome.

9.4.4 Zustandsenergie

Als Ansatz für die Berechnung der Eigenfunktion
Y eines einzelnen Elektrons im Molekül verwendet
man eine Linearkombination der beiden atomaren
Zustände:

Y = cAYA + cBYB.

Die beiden Basisfunktionen sind für endliche Ab-
stände nicht orthogonal, sondern besitzen ein end-
liches Überlappintegral

S = hYA|YBi.

S ist ein Maß für die Stärke der Wechselwirkung
zwischen den beiden Atomen: je näher die Atome
zusammen liegen, desto größer ist der Überlapp zwi-
schen den beiden Orbitalen. Aufgrund der Normie-
rung ist S < 1. Die Energie E des Zustandes Y ist

E =
hY|H |Yi

hY|Yi

=
c2

AHAA + c2
BHBB +2cAcBHAB

c2
A + c2

B +2cAcBS
, (9.3)

wobei die Koeffizienten cA, cB und die Matrixele-
mente HAB = HBA als reell angenommen wurden.
Die Matrixelemente sind

Hxy = hYx|H |Yyi.

Das Überlappintegral S wurde ebenfalls als reell an-
genommen.

Erweitern von Gleichung (9.3) mit dem Nenner der
rechten Seite ergibt

E (c2
A + c2

B +2cAcBS)

= c2
AHAA + c2

BHBB +2cAcBHAB.

Diese Gleichung erlaubt es, die Energie zu mini-
mieren und so den Eigenzustand zu finden. Ableiten
nach cA ergibt

∂
∂cA

= cA(HAA �E )+ cB(HAB �E S) = 0.
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Die Ableitung nach cB ergibt entsprechend

∂
∂cB

= cA(HAB �E S)+ cB(HBB �E ) = 0.

Da die beiden Atome identisch sind, muss HAA =
HBB sein. Damit können die beiden Gleichungen in
Matrixschreibweise geschrieben werden:

✓
HAA �E HAB �E S
HAB �E S HAA �E

◆✓
cA
cB

◆
=

✓
0
0

◆
.

Damit dieses Gleichungssystem lösbar ist, muss die
Determinante

(HAA �E )2 � (HAB �E S)2 = 0

verschwinden. Dies ergibt eine Gleichung für die
Energie

E 2(1�S2)�2E (HAA +HABS)

+H 2
AA �H 2

AB = 0.

Die Lösungen dieser quadratischen Gleichung sind

E =
(HAA � HABS) ±

p
(HAA � HABS)2 � (H2

AA � H2
AB)(1 � S2)

1 � S2

=
(HAA � HABS) ±

p
H2

AA + H2
ABS2 � 2HAAHABS � H2

AA + H2
AB + H2

AAS2 � H2
ABS2

1 � S2

=
(HAA � HABS) ± (HAB � HAAS)

1 � S2

=
(HAA ⌥ HAB)(1 ± S)

1 � S2

oder

Es,a =
HAA ⌥HAB

1⌥S
.

9.4.5 Molekülorbitale

Die zugehörigen Eigenfunktionen, welche die mög-
lichen Zustände eines Elektrons im Molekül be-
schreiben, sind

Ys =
YA +YBp

2(1+S)

Ya =
YA �YBp

2(1�S)
,

d.h. die symmetrische und antisymmetrische Linear-
kombination der beiden Atomorbitale.

Die Energie Es des symmetrischen Zustandes ist ge-
genüber der Energie HAA der Atomorbitale um einen
Betrag abgesenkt, der vom Wechselwirkungsterm
HAB und dem Überlappintegral S abhängt. Die Ener-
gie Ea des antisymmetrischen Zustandes liegt dage-
gen höher, um einen Betrag der von den gleichen Pa-
rametern abhängt.

EA

EA

EB

Es

En
er
gi
e

Abbildung 9.40: Energie der Orbitale im H2-
Molekül.

Die Wechselwirkung zwischen den beiden Atomen
führt also zu einer Aufspaltung der Energiezustände,
die ohne Wechselwirkung entartet sind. Das symme-
trische Molekülorbital Ys liegt energetisch unterhalb
der Atomorbitale, die antisymmetrische Linearkom-
bination Yas oberhalb. Wie im Atom kann jedes die-
ser Molekülorbitale mit maximal zwei Elektronen
mit entgegengesetztem Spin besetzt werden. Offen-
sichtlich weist das neutrale Wasserstoffmolekül, bei
dem das tiefer liegende Orbital Ys von zwei Elektro-
nen besetzt wird, die stabilste Konfiguration auf.

�A

�B

�s

�as

Abbildung 9.41: Molekülorbitale im H2-Molekül.

Beim symmetrischen Molekülorbital Ys werden die
beiden Atomorbitale mit dem gleichen Vorzeichen
addiert. Es entsteht deshalb zwischen den beiden
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Atomen eine positive Interferenz und die Elektro-
nendichte steigt in diesem Gebiet. Das antibinden-
de Orbital Ya hingegen weist zwischen den beiden
Kernen eine Knotenebene auf; in dieser Ebene ver-
schwindet die Elektronendichte. Treten mehr als 2
Atome in Wechselwirkung, so ergeben sich weitere
Aufspaltungen.

9.4.6 Kovalente Bindung

74 pm  
Bindungslänge

H H
Abstand zu kurz

H   H

Abstand zu lang

H H

Kern-Kern Abstand in a0 = 0.53 Å

En
er

gi
e 

in
 R

y 
(1

3.
6 

eV
)

Abbildung 9.42: Energie der Molekülorbitale im
H2-Molekül als Funktion des Ab-
standes.

Das Überlappintegral und damit die Stärke der
Wechselwirkung nimmt mit abnehmendem Abstand
zu. Die Energie des antisymmetrischen Orbitals liegt
für alle Abstände über der Energie der Atomorbitale.
Bringt man das Molekül in diesen Zustand, so kann
das System immer Energie gewinnen, indem die bei-
den Atome sich voneinander entfernen - es fliegt so-
mit auseinander. Man nennt dieses Orbital deshalb
antibindend.

Im Gegensatz dazu liegt die Energie des symmetri-
schen Molekülorbitals für einen großen Abstandsbe-
reich unterhalb der Energie der freien Atome. Be-
findet sich das Atom in diesem Zustand, so müsste
Energie aufgebracht werden, um die Atome vonein-
ander zu trennen; sie bleiben deshalb aneinander ge-
bunden. Erst wenn der Abstand unter den Gleich-
gewichtswert fällt, führt die Abstoßung zwischen
den Kernen (und ev. zwischen den geschlossenen

Schalen) zu einer zusätzlichen abstoßenden Wech-
selwirkung, so dass die Gesamtenergie wieder an-
steigt. Das Energieminimum entspricht dem Gleich-
gewichtsabstand.

Insgesamt kann das System seine Energie erniedri-
gen, wenn jedes der beiden Atome ein Elektron zur
Bindung beiträgt. Solche Bindungen werden als ko-
valente Bindungen bezeichnet. Innerhalb von Mole-
külen werden die Atome durch kovalente Bindun-
gen zusammengehalten. Sind es mehr als 2 Elektro-
nen (z.B. bei gefüllten Schalen, wie den Edelgasen),
so müssen auch antibindende Orbitale belegt wer-
den. Dadurch erhöht sich die Gesamtenergie und ei-
ne Bindung findet nicht statt.

Kovalente Bindungen sind für alle Moleküle die
wichtigste Wechselwirkung. Bei den meisten Mole-
külen arrangieren sich die Atome so, dass sie ihre
Elektronen so teilen, dass jedes Atom lokal die Kon-
figuration eines Edelgasatoms annimmt. Dies bedeu-
tet z.B. beim Kohlenstoff, welcher vier Elektronen in
der äußersten Schale besitzt, dass er bevorzugt vier
einfache Bindungen eingeht und dadurch auf insge-
samt 8 Elektronen kommt. Sauerstoff benötigt noch
2 Elektronen, Wasserstoff eines.

9.4.7 Polare Bindungen

A

B

�s

Ort

Ort
�a

En
er
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e

Abbildung 9.43: Energie und Form der Molekülor-
bitale in einem polaren Molekül.

Die obige Diskussion ging aus von der Annahme,
dass es sich um zwei identische Atome handelt. Ko-
valente Bindungen können aber auch bei ungleichen
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Partnern entstehen. In diesem Fall sind auch die Ko-
effizienten cA und cB der Atomorbitale bei der Kom-
bination zu Molekülorbitalen

Ys = cAYA + cBYB

(und analog für Ya) nicht mehr vom gleichen Be-
trag, wie Abb. 9.43 zeigt. Das tiefer liegende Orbi-
tal ist dominiert durch das energetisch tiefer liegende
Atomorbital. Ist nur das bindende Orbital besetzt, ist
dementsprechend die Elektronendichte ist auf die-
sem Atom konzentriert. Beim antibindenden Orbi-
tal ist der größte Teil der Elektronendichte auf dem
energetisch höher liegenden Atom, wie in Abb. 9.43
gezeigt.

Abbildung 9.44: Ladungsverteilung im Wassermo-
lekül: negative Ladungsdichte ist
blau, positive grün.

Abb. 9.44 zeigt als Beispiel die Ladungsverteilung in
einem Wassermolekül. In der O-H Bindung werden
die Bindungselektronen näher zum Sauerstoff ver-
schoben. Dieser erhält dadurch eine partiell negative
Ladung, die Wasserstoffatome eine positive Partial-
ladung.

Abbildung 9.45: Verlauf der Elektronegativität im
Periodensystem.

Elektronegativität ist ein relatives Maß für die Kraft,
mit der ein Atom ein gemeinsames Elektron an sich

bindet und damit ein Maß für die Asymmetrie bei
polaren Bindungen. Sie ist für kleine Atome auf
der rechten Seite des Periodensystems am höchsten
(Bsp. : Fluor 3,98), während große Atome mit nur
wenigen Elektronen in der äußersten Schale (Bsp:
Cs 0,79) diese leichter abgeben. Je nach Differenz
der Elektronegativitäten kann dieser Transfer voll-
ständig sein (siehe auch Kapitel 9.4.12). Dies ent-
spricht dem Fall der ionischen Bindung. 2 Beispiele
:

Wasser : cO � cH = 3,44-2,2 = 1,24

! polare kovalenteBindung

NaCl : cCl � cNa = 3,16-0,93 = 2,23

! ionische kovalenteBindung

9.4.8 Van der Waals Bindung

Atome oder Moleküle können aber auch eine bin-
dende Wechselwirkung eingehen, bei der keine
Elektronen transferiert werden. Dies geschieht im-
mer dann, wenn die Bausteine schon gefüllte Elek-
tronenschalen aufweisen, sodass keine Elektronen
zur Verfügung stehen, welche geteilt werden könn-
ten und dadurch eine Bindung erzeugen könnten.
Diese Art der Wechselwirkungen tritt auch in rea-
len (van der Waals-) Gasen auf und wird als van der
Waals Wechselwirkung, London-Wechselwirkung
oder induzierte Dipol-Dipol Wechselwirkung be-
zeichnet. Sie kann so verstanden werden, dass die
beiden Atome gegenseitig Dipole induzieren, wel-
che sich anziehen. Allerdings handelt es sich nicht
um statische Dipole. In einem klassischen Bild (das
notwendigerweise unvollständig ist) müssten die
Atome oszillierende Dipolmomente besitzen. Wenn
diese in Phase oszillieren, stellt sich insgesamt eine
anziehende Wechselwirkung ein.

Um zu verstehen, wie die van der Waals Wechselwir-
kung zustande kommt, kann man das einfache elek-
trostatische Modell betrachten, welches in Abb. 9.46
dargestellt ist. Zwei Atome bestehen aus jeweils ei-
nem Kern und einer Elektronenhülle, die sich ge-
genüber dem Kern verschieben kann. Die elektro-
statische Anziehung zwischen Kern und Elektronen-
hülle stellt eine rücktreibende Kraft dar, welche zu
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R

~x1 ~x2

Abbildung 9.46: Schwingung benachbarter Atome.

einer oszillatorischen Bewegung führt. Die Schwin-
gungsfrequenz entspricht einer optischen Resonanz
mit Frequenz w0. Der Abstand zwischen den beiden
Atomen sei R und die Auslenkungen der Elektronen-
hülle aus der Ruhelage seien x1 und x2. In guter Nä-
herung können die Positionen der Kerne als konstant
betrachtet werden.

9.4.9 Wechselwirkung

Die anziehende Wechselwirkung zwischen den bei-
den Systemen entsteht, wenn man zusätzlich die
Coulomb-Wechselwirkungen zwischen Kern und
Elektronenhülle des ersten Systems mit den Kom-
ponenten des zweiten Systems berücksichtigt:

q2

4pe0


1
R

+
1

R� x1 + x2
� 1

R� x1
� 1

R+ x2
.

�

Hier ist die Ladung des Kerns +q und diejenige
der Elektronenhülle –q. Die beiden ersten (positiven)
Terme stellen die Abstoßung zwischen den Kernen
und zwischen den Elektronen dar, die beiden nega-
tiven Terme die Anziehung zwischen der Elektro-
nenhülle des einen Atoms und dem Kern des andern
Atoms. Offenbar sind alle vier Terme von der Grö-
ßenordnung

q2

4pe0R
.

Um zu verstehen, ob die abstoßende oder anziehen-
de Wechselwirkung dominiert, entwickelt man die-
sen Ausdruck für kleine Auslenkungen, x1,x2 ⌧ R.
Dazu verwendet man sinnvollerweise eine dimensi-
onslose Schreibweise:

q2

4pe0R


1+

1
1� x1

R + x2
R

� 1
1� x1

R
� 1

1+ x2
R

�
.

In erster Ordnung, d.h. für 1/(1+e) ⇡ 1�e , mit e =
x1,2/R, verschwindet der Ausdruck in der Klammer.
In zweiter Ordnung, d.h. mit

1
1+ e

⇡ 1� e + e2

erhält man

H1 ⇡ q2

4pe0R
1

R2

⇥
(x1 � x2)

2 � x2
1 � x2

2
⇤

= � q2

2pe0

x1x2

R3 . (9.4)

Offenbar ist der Kopplungsterm proportional zum
Produkt x1x2 der beiden Auslenkungen. Er ist ne-
gativ, d.h. anziehend, wenn die beiden Auslenkun-
gen das gleiche Vorzeichen haben, d.h. wenn beide
Elektronenhüllen in die gleiche Richtung verscho-
ben sind.

9.4.10 Eigenmoden

Der gesamte Hamiltonoperator ist die Summe

H = H0 +H1

des ungestörten Systems H0 und des Kopplungs-
terms H1. Die Eigenwerte dieses Operators, d.h. die
Energien des Systems, erhält man durch Verwen-
dung von symmetrieangepassten Koordinaten

xs =
1p
2
(x1 + x2) xa =

1p
2
(x1 � x2),

wobei s und a für symmetrische und antisymmetri-
sche Linearkombination stehen. In diesen Koordina-
ten sind

x1 =
1p
2
(xs + xa) x2 =

1p
2
(xs � xa).

In dieser Form besteht der Hamiltonoperator aus
zwei unabhängigen Termen, welche jeweils einen
harmonischen Oszillator darstellen. Der eine ent-
hält die Variablen xs und ps, der andere xa und pa.
Beim symmetrischen Term ist die Kraftkonstante re-
duziert, beim antisymmetrischen erhöht. Die beiden
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Terme besitzen deshalb unterschiedliche Frequen-
zen. Das System spaltet somit auf, wie bei gekop-
pelten klassischen Pendeln. Die beiden Eigenmoden
haben die Frequenzen

w =

s
C
m

✓
1± q2

2pe0R3C

◆
.

Mit Hilfe der Taylor-Reihe

p
1± x = 1± x

2
� x2

8
+ . . .

erhalten wir für x = q2/(2pe0R3C) in zweiter Ord-
nung die Näherung

w ⇡ w0

"
1± 1

2
q2

2pe0R3C
� 1

8

✓
q2

2pe0R3C

◆2
#

.

En
er

gi
e

�0

R → ∞

Aufspaltung

1. Ordnung 2. Ordnung

Verschiebung

Abbildung 9.47: Energieverschiebung durch die
Kopplung.

Offenbar sind die Frequenzen der beiden Eigenmo-
den leicht verschoben. Die Verschiebung erster Ord-
nung ist für die beiden Frequenzen entgegengesetzt,
die Verschiebung zweiter Ordnung ist für beide zu
kleineren Frequenzen.

9.4.11 Das Lennard-Jones Potenzial

Die bindende Wechselwirkung kommt dadurch zu-
stande, dass der Zustand niedrigster Energie, also der
Schwingungs-Grundzustand, nicht die Energie 0 be-
sitzt, sondern h̄w/2 (pro Freiheitsgrad). Die Energie
des Gesamtsystems ist somit

h̄
2
(ws +wa) = h̄w0

"
1� 1

8

✓
q2

2pe0R3C

◆2
#

.

Diese ist etwas geringer als die Grundzustandsener-
gie h̄w0 der beiden getrennten Atome, zwar um den
Beitrag zweiter Ordnung

DU = �h̄w0
1
8

✓
q2

2pe0R3C

◆2

= � A
R6 . (9.5)

Da diese Energie mit abnehmendem Abstand im Be-
trag zunimmt, stellt dies einen bindenden Beitrag
zur gesamten Energie des Systems dar. Die anzie-
hende Wechselwirkung ist indirekt proportional zur
sechsten Potenz des Abstandes. Da es sich um eine
Änderung der Nullpunktenergie handelt, sollte die-
ser induzierte Dipol nicht als schwingender Dipol
verstanden werden. Offensichtlich verschwindet die
Wechselwirkung im statischen Grenzfall (w0 ! 0),
wie auch im klassischen Grenzfall (h̄ ! 0).

Die Wechselwirkung (9.5) ergibt mit abnehmendem
Abstand eine immer stärkere Bindung µ R�6. Es exi-
stieren jedoch auch abstoßende Kräfte, welche bei
geringen Abständen dominieren. Ein wichtiger Bei-
trag kommt dazu, wenn sich die Elektronendichte-
verteilungen zweier Atome mit gefüllten Elektro-
nenschalen überlappen: dann muss auf Grund des
Pauli-Prinzips eines der beiden Elektronenpaare in
ein höher gelegenes Orbital ausweichen. Weil dafür
eine hohe Energie aufgebracht werden muss, ent-
spricht dies einer starken abstoßenden Wechselwir-
kung. Empirisch hat man für Edelgase ein Potenzi-
al gefunden, das etwa mit R�12 von der Distanz R
abhängt. Das gesamte Potenzial für die Wechselwir-
kung zwischen zwei Atomen mit gefüllten Orbitalen
kann damit geschrieben werden als

U(R) = 4e
⇣s

R

⌘12
�

⇣s
R

⌘6
�
.

-1

0

1

R/�

U

�

�
⇣ �

R

⌘6

⇣ �

R

⌘12

1,21,0 1,4 1,6 1,8

Abbildung 9.48: Abstandsabhängigkeit der Energi-
en im Lennard-Jones Potenzial.

Dieses Potenzial ist als Lennard-Jones Potenzial be-
kannt. Die genaue Form sollte nicht als Naturgesetz
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betrachtet werden. Sie bildet jedoch die folgenden
wichtigen Punkte ab:

• Bei großen Abständen ist die Energie propor-
tional to R�6.

• Bei kurzen Distanzen ist das Potenzial stark ab-
stoßend.

• Der Parameter s bestimmt die Distanz, bei der
das Potenzial zwischen anziehend und absto-
ßend wechselt, während e die Stärke der Wech-
selwirkung skaliert. Beide Parameter können in
der Gasphase gemessen werden.

Dieses Potenzial beschreibt qualitativ korrekt die
Wechselwirkung zwischen Edelgas-Atomen und
apolaren Molekülen. Typische Bindungsenergien
liegen im Bereich 0,01 .. 0.1 eV und typische Gleich-
gewichtsabstände bei ~4 Å. Damit sind sie deutlich
schwächer als z.B. die kovalente Bindung. Die van
der Waals Wechselwirkung spielt jedoch eine wich-
tige Rolle bei der Kondensation von Molekülen zu
Flüssigkeiten oder Festkörpern, oder auch als anzie-
hende Wechselwirkung zwischen biologischen Mo-
lekülen.

9.4.12 Metallische und ionische Bindung

Van der Waals Ionisch

Metallisch Kovalent

18+ 18+ 18+ 18+
18- 18- 18- 18-

18+ 18+ 18+ 18+
18- 18- 18- 18-

17+ 19+ 17+ 19+
18- 18- 18- 18-

19+ 17+ 19+ 17+
18- 18- 18- 18-

19+ 19+ 19+ 19+
18- 18- 18- 18-

19+ 19+ 19+ 19+
18- 18- 18- 18-

6+ 6+ 6+ 6+

6+ 6+ 6+ 6+

Abbildung 9.49: Schematische Darstellung von
Atomrümpfen und Valenzelektro-
nen für unterschiedliche Bindungs-
typen. Die Zahlen beziehen sich
auf Ar, KCl, K und Diamant.

In Metallen sind die Valenzelektronen weitgehend
delokalisiert und können sich frei durch den gesam-

ten Kristall bewegen. Typische Metalle zeigen des-
halb eine hohe elektrische Leitfähigkeit. Die Bin-
dung kann im Wesentlichen so verstanden werden,
dass die Delokalisierung der Elektronen ihre kineti-
sche Energie erniedrigt. Die Bindung ist, im Gegen-
satz zur kovalenten Bindung, nicht gerichtet, so dass
die Metalle häufig in dichtester Kugelpackung kri-
stallisieren.

Die metallische Bindung ist schwächer als die ko-
valente oder ionische Bindung. Alkalimetalle haben
deshalb einen relativ niedrigen Schmelz- und Siede-
punkt, da hier lediglich die metallische Bindung eine
Rolle spielt. Bei den Übergangsmetallen hingegen
tragen auch die nur teilweise gefüllten d-Orbitale zur
Bindung bei. Deren Beitrag ist eher kovalenter Natur
und ergibt deshalb eine sehr viel stärkere Bindung
und dementsprechend höhere Schmelzpunkte.

Die hier diskutierte Klassifizierung von Bindungsty-
pen ist hilfreich. Wirkliche Materialien lassen sich
aber selten exakt einer dieser Kategorien zuordnen.
Stattdessen tragen im allgemeinen unterschiedliche
Bindungsarten bei, wie das Beispiel der Übergangs-
metalle zeigt: hier spielen kovalente wie auch metal-
lische Bindung eine Rolle.
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Abbildung 9.50: Elektronegativität und ionischer
Charakter.

Auch zwischen kovalenter und ionischer Bindung
findet man alle Übergangsformen. So kann man bei
binären Verbindungen einen kontinuierlichen Über-
gang von kovalenter zu ionischer Bindung beobach-
ten (siehe Abb. 9.50). Der relevante Parameter ist die
Differenz der Elektronegativitäten der beiden Part-
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ner. Elemente wie z.B. Si, Ge sind naturgemäß nicht
ionisch gebunden, aber Alkalihalogenide sind prak-
tisch ideale ionische Verbindungen. Als Beispiel ist
RbF 96% ionisch.

9.4.13 Wasserstoffbrücken

Wasserstoffatome gehen in bestimmten Verbindun-
gen eine besondere Art von Bindungen ein. Mit sei-
nem einzelnen Elektron kann es nicht nur mit einem
Partner eine kovalente Bindung eingehen. Statt des-
sen geht es eine sehr stark polare Bindung ein, bei
der das Elektron größtenteils an den stärker elek-
tronegativen Partner (F, O oder N) abgegeben wird,
während das verbleibende Proton sich gleichzeitig
an ein weiteres Atom bindet, welches ein freies Elek-
tronenpaar aufweist.

OrtPo
te
nz
ia
l

Abbildung 9.51: Typische Form des Potenzials für
ein Wasserstoffatom in einer Was-
serstoffbrücke.

Diese Art der Bindung wird als Wasserstoffbrücke
bezeichnet. Wasserstoffkerne (=Protonen) können
solche Bindungen leichter eingehen als andere Ker-
ne, da ihr geringes Gewicht sie beweglicher macht
und da sie keine Rumpfelektronen besitzen. Wie in
Abb. 9.51 gezeigt, existieren häufig zwei Potenzial-
minima für den Wasserstoffkern.

kovalent

H-Brücken

Abbildung 9.52: Wasserstoffbrücken in Eis.

H-Brücken sind sehr wichtig für die besondere

Struktur von Eis oder die hohe Verdampfungswär-
me von Wasser. Die Wasserstoffbrücken führen da-
zu, dass ein Sauerstoff tetraedrisch von vier Was-
serstoffatomen umgeben ist, wobei zwei der Bin-
dungen lang sind (=H-Brücken), zwei kurz (=kova-
lent). Die Wasserstoffatome befinden sich in einem
(meist asymmetrischen) Doppelminimumpotenzial
und können leicht von einem zum anderen Sau-
erstoff wechseln. Wasserstoffbrücken werden dann
gebildet, wenn der Wasserstoff an einen Sauerstoff
oder einen Stickstoff gebunden ist und sich ein wei-
teres Sauerstoff oder Stickstoffatom mit einem freien
Elektronenpaar in der Nähe befindet.

9.4.14 Bedeutung von H-Brücken

Die Wasserstoffbrücken sind für die hohen Schmelz-
und Siedepunkte von Wasser verantwortlich: Bei ei-
nem Molekulargewicht von 18 siedet Wasser bei
+100�C. Als Vergleich kann man Neon betrachten,
welches ein Atomgewicht von 20 aufweist und bei
�246�C verdampft.

Wasserstoffbrücken spielen auch in der Biologie ei-
ne große Rolle. So werden z.B. die beiden Strän-
ge des DNS-Moleküls durch Wasserstoffbrücken zu-
sammengehalten. Wie in Abb. 9.53 gezeigt, kann das
Basenpaar Guanin/Cytosin 3 Wasserstoffbrücken
bilden, das Basenpaar Adenin/Thymin nur zwei.
Dies ist ein wesentlicher Grund für die Ausbildung
der Paare. Auch bei der Proteinfaltung spielen Was-
serstoffbrücken eine wichtige Rolle.

Wasserstoffbrücken sind stark orientiert: die Bin-
dungsenergie ist maximal wenn die drei beteilig-
ten Atome (z.B. N-H-O) auf einer Linie sind, d.h.
wenn der Bindungswinkel beim Wasserstoff ⇡ 180�

beträgt. Dies ist wichtig für die Wechselwirkung
von Molekülen, z.B. zwischen Substrat und Enzym
oder zwischen Antigen und Antikörper, welche nach
den “Schlüssel-Schloss” Prinzip funktioniert, wie in
Abb. 9.54 gezeigt.
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Thymin Adenin

Cytosin Guanin

Abbildung 9.53: Wasserstoffbrücken in DNA Mole-
külen.

9.5 Kristalline Festkörper

9.5.1 Symmetrie

In kristallinen Festkörpern werden Atome nicht nur
durch kovalente Wechselwirkungen zusammenge-
halten, sondern auch durch ionische oder metalle-
ne Bindungen. Der wichtigste Unterschied zu Mo-
lekülen liegt jedoch darin, dass die Struktur eines
Kristalls nicht nur durch die Paar-Wechselwirkung
bestimmt wird, sondern durch die Minimierung der
Gesamtenergie des Systems. Wir müssen deshalb
nicht nur einzelne Paare betrachten, sondern auch
das Gesamtsystem. Zum Glück findet man, dass
sich die Eigenschaften des Gitters in vielen Fällen
auf die Paarwechselwirkungen zurückführen lassen.
Dies gilt insbesondere bei der van der Waals und bei
der ionischen Bindung, nicht jedoch bei der metalli-
schen Bindung.

Seiten
ketten

Seitenketten

Substrat

H-Brücken
Enzym

Abbildung 9.54: Gerichtete H-Brücken in der mole-
kularen Erkennung.

Ga
Ga bevorzugt 
tetraedrische 
Umgebung aus As

As bevorzugt 
tetraedrische 
Umgebung aus Ga

Abbildung 9.55: Translationssymmetrie als Folge
von lokalen Wechselwirkungen.

Viele Festkörper besitzen im Zustand niedrigster
Energie eine Translationssymmetrie: verschiebt man
alle Bestandteile um bestimmte Vektoren (die so-
genannten Gittervektoren), so wird jedes Atom auf
ein identisches Atom abgebildet. Wie in Abb. 9.55
gezeigt, kann man dies als Konsequenz der lokalen
Wechselwirkungen jedes Atoms betrachten. Aus der
Translationssymmetrie ergeben sich wichtige Eigen-
schaften und ihre Berücksichtigung erleichtert die
theoretische Behandlung sehr stark.

Bei Metallen kann man die Gitterenergie nicht in
Paarwechselwirkungen zerlegen. Sie werden des-
halb hier nicht diskutiert. Ebenfalls nicht diskutiert
werden hier kovalent gebundene Kristalle. Deren
Gitterenergie ist vom Betrag her vergleichbar mit
derjenigen von ionischen Kristallen. Während die io-
nischen Kristalle möglichst dicht gepackt sind, fin-
det man bei kovalenten Kristallen offenere Struk-
turen, damit die ausgeprägte Richtungsabhängigkeit
der kovalenten Bindung befriedigt werden kann.
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9.5.2 Van der Waals

Für Festkörper, bei denen die Van der Waals Wech-
selwirkung dominiert, erhält man die Gitterenergie,
indem man über alle Paarwechselwirkungen sum-
miert. Die Stärke der Wechselwirkung

Ui j(R) = 4e
⇣s

R

⌘12
�

⇣s
R

⌘6
�

fällt mit der sechsten, respektive zwölften Potenz des
Abstandes ab, sodass hauptsächlich die Wechselwir-
kung zwischen nächsten Nachbarn eine Rolle spielt.

a

Abbildung 9.56: Nächste Nachbarn im fcc Gitter.

Abbildung 9.56 zeigt als Beispiel eine sogenann-
te kubisch flächenzentrierte (fcc)Struktur. Hier bil-
den die Atome ein kubisches Gitter, wobei sich zu-
sätzlich im Zentrum jeder Würfelfläche ein wei-
teres Atom befindet. Damit besitzt jedes Atom
12 nächste Nachbarn im Abstand a/

p
2 (4 in

jeder der drei rot markierten Ebenen von Abb.
9.56). Von der Stelle (0,0,0) aus sind dies
die Positionen (±1/2,±1/2,0), (±1/2,0,±1/2),
(0,±1/2,±1/2). In der zweiten Schale mit Ab-
stand a befinden sich 6 Nachbarn an den Positionen
(±100) , (0,±1,0), (0,0,±1).

Für die Berechnung der Gitterenergie schreiben wir
für Ri j = pi ja, so dass pi j den Abstand in Einheiten
des Abstandes R zwischen nächsten Nachbarn dar-
stellt. Für die nächsten Nachbarn ist damit die anzie-
hende Wechselwirkungsenergie µ 12/R6 und für die
zweitnächsten Nachbarn µ 6/(

p
2R)6 = 6/(8R)6.

Eine Summierung über alle Paarwechselwirkungen

ergibt für diese Struktur

Â
j

1
R6

i j
=

1
R6 Â

j

1
p6

i j

=
1

R6


12+

6
8

+
24
27

+
12
16

+
8

216

+
48

343
+

6
512

+ . . .

�

=
1

R6 14,45.

Analog erhält man

Â
j

1
R12

i j
=

1
R12 12,13.

Bei der abstoßenden Wechselwirkung spielen so-
mit praktisch nur die nächsten Nachbarn eine Rol-
le, während bei der anziehenden Wechselwirkung
auch etwas entferntere Schalen eine Rolle spielen.
Die Gesamtenergie wird damit

U(R) =
1
2 Â

i j
Ui j(Ri j)

= 2Ne


12,13
⇣s

R

⌘12
�14,45

⇣s
R

⌘6
�
,

wobei N die Anzahl der Gitteratome darstellt.

9.5.3 Gleichgewichtsabstand
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Abbildung 9.57: Gitterenergie als Funktion des Ab-
standes.

Die Gitterenergie verhält sich als Funktion des Ab-
standes zwischen nächsten Nachbarn qualitativ iden-
tisch zur Paar-Wechselwirkung. Allerdings sind die
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Achsen durch die Gittersumme umskaliert und das
Minimum leicht verschoben worden.

Den Gleichgewichtsabstand R0 erhält man aus der
Minimierung der Gitterenergie bezüglich des Ab-
standes:

dU
dR

����
R0

= 0

= �2Ne


12 ·12,13
s12

R13 �6 ·14,45
s6

R7

�
.

Somit muss der Ausdruck in eckigen Klammern ver-
schwinden:

145,56s6 = 86,7R6
0.

Dies entspricht einem Gleichgewichtsabstand R0 =
1,09s . Da sich der Parameter s aus Messungen in
der Gasphase bestimmen lässt, kann diese Vorhersa-
ge experimentell überprüft werden. Tatsächlich lie-
gen die Gitterkonstanten für alle Edelgase im Be-
reich zwischen 1.09 s und 1.14 s .

Indem man diesen Gleichgewichtsabstand in das Po-
tenzial einsetzt, erhält man die Bindungsenergie U =
�8,6Ne . Die Energieskala e kann man wiederum
aus Messdaten der Gasphase entnehmen, aber auch
aus Messungen am Festkörper, z.B. über die Kom-
pressibilität

k = � 1
V

∂V
∂ p

.

Dabei ändert sich die Energie bei einer Volumenän-
derung um

dU = �pdV.

Daraus folgt

∂ p
∂V

= �∂ 2U
∂V 2

und

1
k

= V
∂ 2U
∂V 2 .

Bei dieser Rechnung ist die Nullpunktenergie der
Bewegung der Atome noch nicht berücksichtigt,
welche insbesondere bei den leichten Atomen eine
signifikante Reduktion der Bindungsenergie von bis
zu 28% ergeben.

9.5.4 Ionische Bindung

Im Falle der ionischen Bindung gehen wir aus von
der Paarwechselwirkung

Ui j = le�pi jR/r +
1

4pe0

qiq j

pi jR
.

Der erste Term ist positiv und wirkt somit absto-
ßend, während der zweite Term je nach Vorzeichen
der Ladungen positive und negative Beiträge enthält.
Da der Abstoßungsterm exponentiell mit der Di-
stanz abfällt, kann er für alle Paare außer den näch-
sten Nachbarn vernachlässigt werden. Dieser Teil
der Gittersumme wird damit für das i-te Ion

Ui = zle�R/r ,

wobei z die Zahl der nächsten Nachbarn beschreibt.

Beim Coulomb Term schreiben wir die Summe als

UC = � 1
4pe0

ae2

R
,

wobei die Madelung-Konstante6

a = �Â
j

qiq j

pi j

eine Summe über alle Atome des Gitters darstellt.
qi, j sind jetzt die Ladungen in Einheiten der Ele-
mentarladung. Die Summe hängt nur von den rela-
tiven Koordinaten pi j ab und kann deshalb für einen
bestimmten Gittertyp berechnet werden, unabhängig
davon, durch welche Atome dieses Gitter gebildet
wird. Unterschiedliche Substanzen, welche im glei-
chen Gittertyp kristallisieren, besitzen somit die glei-
che Madelung-Konstante. Die Unterschiede in der
Gitterenergie sind (in dieser Näherung) lediglich auf
die unterschiedlichen Abstände R zurückzuführen.

Die Gitterkonstante a, resp. der Abstand R wird be-
stimmt durch die Minimierung der Energie bezüg-
lich R. Der Gleichgewichtsabstand R0 ist bestimmt
durch

∂U
∂R

����
R0

= 0 = �zl e�R0/r

r
+a 1

4pe0

e2

R2
0

6Nach Erwin Madelung (1881 - 1972).
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oder

zl4pe0R2
0e�R0/r = rae2.

Diese Gleichung kann man nach dem Gleichge-
wichtsabstand R0 auflösen. Wir können daraus auch
den exponentiellen Term aus der Abstoßungsenergie
ausrechnen:

zle�R0/r =
rae2

zl4pe0R2
0

= �UC
r
R0

.

Damit erhalten wir auch die Gesamtenergie:

Utot = � Nae2

4pe0R0
(1� r

R0
).

Die Energie ist somit proportional zur Madelung-
Konstante, und diese muss positiv sein, damit das
Gitter stabil ist.

9.5.5 Berechnung der
Madelung-Konstanten

+ - + - + -

a=R

Abbildung 9.58: Berechnung der Madelung-Kon-
stanten für einen eindimensionalen
Kristall.

Im eindimensionalen Fall kann die Madelung-
Konstante relativ einfach berechnet werden. Wir
summieren über eine alternierende Kette mit kon-
stantem Abstand und erhalten

a = 2(1� 1
2

+
1
3

� 1
4

. . .).

Für die Berechnung der Summe kann man die Rei-
henentwicklung

ln(1+ x) = x� x2

2
+

x3

3
� x4

4
+ . . .

verwenden und erhält

a = 2 ln2

Abbildung 9.59: Struktur von Kochsalz.

In drei Dimensionen ist die analytische Berechnung
der Summe im Allgemeinen sehr schwierig.

Wir betrachten als Beispiel zunächst das Natrium-
chlorid (Kochsalz), dessen Struktur in Abb. 9.59 dar-
gestellt ist. Wir können entweder ein Na+ oder ein
Cl�-Ion als Referenz benutzen und wählen Na+. Je-
des Na+ Ion ist von 6 Cl� Ionen in oktaedrischer
Anordnung umgeben, wobei der Abstand die Hälfte
der Gitterkonstante beträgt.

Schale ±pij # Nachbarn Yi
1
pij

1 +1 6 6
2 - 2 12 -2.49
3 + 3 8 2.13
4 -2 6 -0.87
5 + 5 24 9.87
6 - 6 24 0.07
7 - 8 12 -4.17
8 +3 30 5.83

Abbildung 9.60: Beiträge der Schalen zur Made-
lung-Konstanten.

Die erste Schale steuert somit einen Beitrag 6 zur
Madelung-Konstante bei. Die zweitnächsten Nach-
barn sind wieder Na+ Ionen: 12 sitzen im

p
2-fachen

Abstand. Bis zu dieser Koordinationshülle gerech-
net ist die Madelung-Konstante deshalb 6-12/

p
2 ⇡

�2,49. Die nächsten beiden Hüllen bestehen aus 8
Cl� Ionen im Abstand

p
3 und 6 Na Ionen im Ab-

stand 2. Die Konvergenz ist offenbar sehr langsam.

Eine etwas bessere Konvergenz erhält man durch
Aufsummieren über die Beiträge von entgegenge-
setzten Ionenpaaren. Auch hier muss man jedoch
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Abbildung 9.61: Konvergenz bei der Berechnung
der Madelung-Konstanten.

über viele Tausend Ionenpaare summieren, bis die
Schwankungen gering werden. Generell sind die Ab-
weichungen bei der Berechnung von Energien endli-
cher Kristalle physikalisch leicht interpretierbar: sie
entsprechen der Energie von Oberflächenladungen.

Diese Technik kann man verfeinern und anstelle von
Ionenpaaren andere neutrale Einheiten aufsummie-
ren, welche die Oberflächenladungen verkleinern.
Der Vorteil bei der Verwendung von neutralen Ein-
heiten liegt darin, dass deren Potenzial eine kürze-
re Reichweite hat, so dass die Konvergenz schneller
ist. Eine weitere Methode ist diejenige von Ewald,
bei der man kurzreichweitige Beiträge im direk-
ten Raum aufsummiert, langreichweitige im rezipro-
ken Raum. Dort erscheinen langreichweitige, d.h.
langsam variierende Beiträge, in der Nähe des Ur-
sprungs, so dass die Integrationsgrenzen eng gesetzt
werden können.

Für unterschiedliche Gittertypen erhält man die Wer-
te

Kristall NaCl ZnS CsCl CaF2

a 1,7476 1,6381 1,7627 5,0388
.

9.6 Elektronen im Festkörper

Metalle zeichnen sich dadurch aus, dass Elektro-
nen in diesen Materialien eine sehr hohe Beweg-
lichkeit besitzen. Sie sind somit nicht an einzelne
Atomrümpfe gebunden. Dies kann man mit Hilfe der
Quantenmechanik verstehen. Ein erstes Modell ist
jedoch etwas älter als die Quantenmechanik.

9.6.1 Das klassische Drude-Modell

Die klassische Theorie entstand drei Jahre nach
der Entdeckung des Elektrons durch J.J. Thomson
(1897). Im 19. Jh. hatte die kinetische Gastheorie
eine befriedigende Erklärung für viele bekannte Ef-
fekte im Bereich der Thermodynamik geliefert. Dies
mag ein Motiv gewesen sein dafür, dass Drude 7

die Elektronen in einem Metall als Gas modellierte
[4, 5]. Seine Annahme war, dass die äußersten Elek-
tronen jedes Atoms sich im Metall praktisch frei be-
wegen können. Zu diesen Leitungselektronen tragen
die Atome, welche das Gitter bilden normalerweise
ein oder zwei Elektronen bei. Diese Elektronen sind
im gesamten Kristall frei beweglich, wobei die posi-
tiv geladenen Atomrümpfe ein Potenzial bilden.

+ + + + +

+ + + + +

+ + + + +

Atomrümpfe:
- klein
- statisch-

-
-

-

Valenzelektronen:
- ballistische Bewegung
- kurze Stöße

Abbildung 9.62: Das Drude-Modell des freien Elek-
tronengases.

Nach Drude verhalten sich diese Elektronen ähnlich
wie ungeladene Teilchen in einem klassischen Gas:

• Die Atomrümpfe sind klein und statisch.

• Die Elektronen sollen eine freie Weglänge zwi-
schen Stößen haben, welche vielen Gitterkon-
stanten entspricht.

7Paul Karl Ludwig Drude (1863 – 1906)
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• Zwischen den Stößen ist die Bewegung frei,
d.h. unabhängig von den anderen Elektronen
(unabhängige Elektronen) und von den Atom-
rümpfen (freie Elektronen). Sind äußere Felder
vorhanden, so beeinflussen diese die Bewegung
wie in der Mechanik diskutiert.

• Stöße finden im Drude-Modell vor allem mit
den Ionenrümpfen statt; Stöße zwischen Elek-
tronen sind sehr selten. Die Stöße werden als
kurz angenommen und die Geschwindigkeit der
Elektronen nach dem Stoß ist unabhängig von
der Geschwindigkeit vor dem Stoß, sondern
wird durch die Temperatur des Kristalls be-
stimmt.

Mit Hilfe dieses einfachen klassischen Modells kön-
nen unterschiedliche Aspekte der Phänomenolo-
gie von Metallen erklärt werden. Beispiele dafür
sind die Herleitung der qualitativen Aspekte des
Ohm’schen Gesetzes, oder die Beziehung zwischen
elektrischer und thermischer Leitfähigkeit. Wir dis-
kutieren diese Resultate jedoch nicht im Rahmen des
klassischen Modells, sondern erst nach der Einfüh-
rung des quantenmechanischen Modells.

Element Z n (1022/cm3) r (Å)
Li (78 K) 1 4.70 1.72
Na (5K) 1 2.65 2.08
K (5K) 1 1.40 2.57
Be 2 24.7 0.99
Mg 2 8.61 1.41
Al 3 18.1 1.1
Ga 3 15.4 1.16

Abbildung 9.63: Dichte ndes Elektronengases für
verschiedene Elemente.

Ein wesentlicher Unterschied zwischen dem Elek-
tronengas eines Metalls und einem echten Gas ist
die Dichte: Im Vergleich zu einem echten Gas ist
die Dichte des Elektronengases um rund einen Fak-
tor 1000 größer: Pro Leitungselektron steht lediglich
ein Volumen zur Verfügung das etwa einem Atom-
volumen entspricht. Für ein Atom mit Radius 2 Å
erhält man ein Volumen von ca. 3 ·10�29m3, entspre-
chend einer Teilchendichte von 3 ·1028m�3. Dies ist
eine typische Größenordnung (ca. 1�20 ·1028m�3).

Die positiv geladenen Atomrümpfe sind relativ klein
und füllen lediglich einen kleinen Teil des Raumes.

Bei Natrium umfasst das Volumen der Atomrümp-
fe rund 15 % des gesamten Festkörpervolumens; bei
Edelmetallen wie Ag, Au steigt der Anteil. Sie sind
aber sehr viel schwerer als die Elektronen und blei-
ben unbeweglich auf ihren Plätzen.

Behandelt man das Elektronengas rein klassisch, ge-
langt man aber an Grenzen, ab denen ein wirkliches
Verständnis nur mit Hilfe der Quantenmechanik er-
reicht werden kann. Zu den qualitativen Unterschie-
den zwischen den Voraussagen der klassischen und
der quantenmechanischen Theorie gehört die Be-
rechnung der Stöße, die ein Elektron bei der Durch-
querung des Kristalls erleidet. Im klassischen Bild
würde man eine große Anzahl Stöße mit den Gittera-
tomen erwarten. Experimentell findet man, dass die
Distanz, über die sich die Elektronen frei bewegen
können, von der Qualität des Kristalls abhängt, so-
wie von der Temperatur. Während in gewöhnlichen
Metallen bei Raumtemperatur (z.B. Kupferdrähte)
die Elektronen nach wenigen Gitterperioden gestreut
werden und sich deshalb insgesamt diffusionsartig
bewegen, kann bei tiefen Temperaturen und guten
Kristallen die mittlere freie Weglänge größer als die
Kristalldimension werden. Aus experimentellen Da-
ten ist bekannt, dass die freie Weglänge bis zu ei-
nem Zentimeter betragen kann. In diesem Fall be-
wegt sich somit das Elektron ohne Streuung durch
rund 108 atomare Lagen; offenbar breiten sie sich
dann ballistisch aus, also ohne Streuung im Kristall.

Weitere experimentelle Befunde, die mit dem
Drude-Modell nicht erklärt werden konnten, wa-
ren die Temperaturabhängigkeit der elektrischen
und thermischen Leitfähigkeit. Außerdem sollten in
einem idealen Gas die Elektronen einen Beitrag
3/2RT zur spezifischen Wärme liefern; der experi-
mentell beobachtete Beitrag ist um rund 2 Größen-
ordnungen kleiner.

Ein besonders wichtiger Punkt ist eine Aussage
darüber, welche Festkörper metallischen Charakter
haben (hohe elektrische Leitfähigkeit) und welche
Halbleiter oder Isolatoren sind. Ein klassisches Mo-
dell, welches (teilweise) erklären kann, welche Ele-
mente metallischen Charakter haben, wurde 1927
durch Herzfeld vorgeschlagen8. Ein wirkliches Ver-

8Phys. Rev. 29, 701-705
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ständnis ist jedoch nur im Rahmen einer quantenme-
chanischen Behandlung möglich.

9.6.2 Das Sommerfeld-Modell

Die wichtigsten Beschränkungen des Drude Modells
können dadurch überwunden werden, dass man die
Elektronen als quantenmechanische Teilchen, d.h.
als Teilchen mit Wellencharakter behandelt. Ein ent-
sprechendes Modell wurde 1928 von Sommerfeld
vorgeschlagen, kurz nach der Entdeckung des Pauli-
Prinzips. Damit gelang es, die wichtigsten Inkonsi-
stenzen des Drude-Modells aufzulösen.

Ein Festkörper umfasst rund 1020 miteinander wech-
selwirkende Teilchen. Natürlich ist die exakte Be-
handlung eines solchen Systems nicht möglich. Wir
müssen deshalb zunächst einige drastische Vereinfa-
chungen durchführen: wir lassen Wechselwirkungen
zwischen den Elektronen wie auch von Kernen zu
Elektronen vorläufig vollständig weg und betrach-
ten zunächst nur freie und unabhängige Elektronen.
Ihre Zustände sind somit auch nur Einelektronen-
Zustände, die wir auch als Orbitale bezeichnen.

Ort x

En
er

gi
e 

E Metall

VakuumVakuum

Abbildung 9.64: Potenzial für Elektronen im
Sommerfeld-Modell.

Damit brauchen wir lediglich freie Elektronen in ei-
nem (unendlich ausgedehnten) Kristall zu betrach-
ten. Die Ränder des Kristalls sind Potenzialwände.
Als Eigenzustände solcher freier Elektronen kann
man bekanntlich ebene Wellen verwenden; diese
sind allerdings im gesamten Raum nicht normier-
bar. Man kann zu normierbaren Funktionen gelan-
gen, indem man periodische Randbedingungen ein-
führt. Die entsprechende Periode, welche groß ge-
gen die Gitterkonstante sein sollte, kann anschlie-
ßend gegen Unendlich geführt werden.

Die Atomrümpfe bilden ein Hintergrundpotenzial.
Sie bestehen aus den Kernen plus den stark gebun-
denen Elektronen in den gefüllten Schalten. Je nach
Metall sind diese Rümpfe relativ klein und weit von-
einander entfernt, oder sie berühren sich und bilden
teilweise kovalente Bindungen.

Das Sommerfeld’sche Modell der freien Elektronen
passt am besten auf die Alkalimetalle. Hier entspre-
chen die Atomrümpfe den abgeschlossenen Schalen
mit Edelgaskonfiguration, das eine Valenzelektron
im s-Orbital ist das freie Elektron, welches ein Lei-
tungsband mit s-Charakter bildet.

Abbildung 9.65: Aufbau des Planeten Jupiter.

Wasserstoff, das leichteste und häufigste Element
des Universums, gehört zur gleichen Gruppe des Pe-
riodensystems wie die Alkaliatome. Gemäß theo-
retischen Vorhersagen sollte es bei hohen Drücken
metallisch werden. Versuche, im Labor Wasserstoff
in die metallische Form zu bringen, haben jedoch
bisher keine eindeutigen Resultate geliefert. Theo-
retische Vorhersagen gehen davon aus, dass dafür
Drücke im Bereich von 500 GPa (5 · 106 atm) not-
wendig sind. Solche Drücke im Labor zu erzeu-
gen ist schwierig. Es gibt jedoch Hinweise, dass
auf dem Jupiter, welcher zu einem wesentlichen Teil
aus Wasserstoff besteht, der Druck auf Grund der
Schwerkraft hoch genug ist, um metallischen Was-
serstoff zu erzeugen.
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9.6.3 Das Teilchen im Potenzialtopf

Um die quantenmechanischen Zustandsfunktionen
der Elektronen im Kristall zu bestimmen, rekapi-
tulieren wir zunächst das Problem eines Teilchens
in einem eindimensionalen Potenzialtopf. Man führt
zunächst Randbedingungen ein, welche in erster Li-
nie dazu dienen, die Zustände zu normieren und die
Zustandsdichte zu berechnen.

x

V

0 L
1

4

9

h=2L

h=L

h=2L/3

Abbildung 9.66: Eindimensionaler Potentialtopf.

Das Potenzial verschwindet auf der Strecke [0,L]
und ist unendlich hoch außerhalb. Der Hamiltonope-
rator dieses Systems beinhaltet im Bereich [0,L] le-
diglich die kinetische Energie

H =
p2

2m
= � h̄2

2m
d2

dx2 .

Die Eigenfunktionen dieses Operators sind die ebe-
nen Wellen

Yk = eikx

oder

Yk = a sinkx+b coskx

und die Eigenwerte sind

Ek =
h̄2k2

2m
=

p2

2m
.

Der Hamiltonoperator ist nur gültig für 0 < x < L.

Wir berücksichtigen das Potenzial über die Randbe-
dingung und verlangen, dass Y(0) = Y(L) = 0. Da-
mit erhalten wir als Lösungen

Yn = A sin
⇣

np x
L

⌘

und

En =
h̄2

2m

⇣np
L

⌘2
.

Wenn sich mehrere Elektronen in diesem Potenzial
befinden und wir deren elektrostatische Wechselwir-
kung zunächst vernachlässigen, so kann gemäß dem
Ausschließungsprinzip von Pauli jeder dieser Zu-
stände mit zwei Elektronen mit entgegen gesetztem
Spin besetzt werden. Das Gesamtsystem ist demnach
im Grundzustand wenn die niedrigsten N/2 Zustän-
de mit jeweils 2 Elektronen besetzt sind.

9.6.4 Drei Raumdimensionen

In Kristallen entspricht der Potenzialtopf der Rand-
bedingung, dass die Elektronen sich innerhalb des
Kristalls befinden müssen. Wir berücksichtigen dies
wiederum über periodische Randbedingungen

Y(x,y,z) = Y(x+L,y,z) = Y(x,y+L,z)
= Y(x,y,z+L),

wobei L groß gegenüber einer Einheitszelle sein soll.

Im dreidimensionalen Raum lautet der Hamilton-
operator für ein freies Elektron

H = � h̄2

2m

✓
d2

dx2 +
d2

dy2 +
d2

dz2

◆
.

Elektronen in einem Potenzialtopf mit Kantenlänge
L haben dann die Zustände

Yn = Asin
✓

2p
L

nxx
◆

sin
✓

2p
L

nyy
◆

sin
✓

2p
L

nzz
◆

und Energien

En =
h̄2k2

2m
=

h̄2

2m
�
k2

x + k2
y + k2

z
�

=
h̄2

2m

✓
2p
L

◆2 �
n2

x +n2
y +n2

z
�
. (9.6)

Der Impuls der Elektronen ist somit

~p =
1

Lh

0

@
nx
ny
nz

1

A . (9.7)
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Da wir uns hier in einem endlichen Bereich (mit Vo-
lumen L3) befinden, sind diese Zustände normierbar
und die möglichen Werte des Impulses diskret. Die
Energie steigt proportional zum Quadrat des Impul-
ses.

9.6.5 Fermi-Energie

Wir untersuchen nun die Frage, welche dieser Zu-
stände besetzt sind.

2ʌ/L

k

E

EF
Zustände leer

N Zustände 
besetzt

Fermi 
Energie

Abbildung 9.67: Links: Zustände im k-Raum;
rechts: Besetzung der Zustände bei
T = 0.

Da wir periodische Randbedingungen angenommen
haben, ist der Impulsraum diskret, mit Einheitszel-
len der Seitenlänge 2p/L. Das Volumen pro Zustand
beträgt somit im k-Raum (2p/L)3.

Am absoluten Nullpunkt besetzen N Elektronen die
N/2 energetisch niedrigsten Zustände. Da die Ener-
gie (im Rahmen dieses Modells) nur vom Betrag
des Impulses abhängt, bilden diese Zustände im Im-
pulsraum eine Kugel mit Radius kF und Volumen
k3

F4p/3. Die Anzahl der Zustände in dieser Kugel,
d.h. die Zahl der besetzten Zustände, muss der Zahl
der Elektronen entsprechen. Da Elektronen einen
Spin ½ besitzen, unterliegen sie der Fermi-Dirac Sta-
tistik und jeder räumliche Zustand kann maximal
von 2 Elektronen mit entgegengesetztem Spin be-
setzt sein. Die Zahl der Zustände innerhalb der Fer-
mikugel erhält man, indem ihr Volumen durch das
Volumen pro Zustand dividiert. Die Zahl N der Elek-
tronen ist dann das doppelte:

N = 2
4p
3 k3

F� 2p
L

�3 =
V k3

F
3p2 . (9.8)

Bei N Elektronen muss damit der Radius der Kugel

kF =
3

r
3p2N

V

sein. Die entsprechende Energie beträgt

EF =
h̄2

2m

✓
3p2N

V

◆ 2
3

(9.9)

und wird als Fermi-Energie bezeichnet. Die Fermi-
Energie ist somit die Energie der Elektronen im
höchsten besetzten Einelektronenzustand. In der
Fermi Energie tritt die Anzahl Elektronen und das
Volumen nicht mehr unabhängig auf, sondern sie
hängt lediglich von der Dichte N/V der Elektronen
ab. Damit muss die Fermienergie mit der Dichte der
Elektronen zunehmen.

Abbildung 9.68: Beispiele von Fermi-Energien.

Abb. 9.68 zeigt, dass die experimentellen Werte dies
bestätigen. Typische Größenordnungen für die Elek-
tronenzahldichte liegen bei 1029 m�3, für die Fermi-
energie bei 10 eV.

Häufig parametrisiert man die Fermi-Energie auch
über die Temperatur:

kBTF = EF .

Typische Werte für die Fermi-Temperatur liegen bei
105 K, also bei Temperaturen weit oberhalb des
Schmelzpunktes. Somit ist T ⌧ TF immer eine sehr
gute Näherung.

Wenn wir den Impuls der Elektronen in eine
Geschwindigkeit umrechnen, erhalten wir für die
Geschwindigkeit der Elektronen an der Fermi-
Oberfläche

vF =
h̄kF

m
=

h̄
m

3

r
3p2N

V
.

Typische Werte liegen im Bereich von 106 m/s, also
bei 0.003 c. Allerdings sollte man dies nicht mit ei-
nem entsprechend schnellen Massentransport asso-
ziieren.
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Insgesamt ist die kinetische Energie der Leitungs-
elektronen deutlich niedriger, als die entsprechende
kinetische Energie in einem isolierten Atom. Diese
Absenkung der kinetischen Energie ist im Wesentli-
chen für die metallische Bindung verantwortlich.

9.6.6 Die Fermi-Dirac Verteilung

Die Fermi-Energie bezeichnet die höchste Energie
eines besetzten Zustandes im Grundzustand des Sy-
stems, also bei der Temperatur T = 0 K. Bei end-
licher Temperatur ändert sich die Besetzungswahr-
scheinlichkeit. Sie ist gegeben durch die Fermi-
Dirac Statistik, welche für Fermionen gilt, also für
Teilchen, welche dem Pauli-Prinzip unterliegen. Sie
kann geschrieben werden als

f N
i =

1
e(ei�µ)/kBT +1

.

Hier ist ei die Energie des Zustandes und

µ =
∂U
∂N

das chemische Potenzial, also die Energieänderung,
welche durch Hinzufügen eines Elektrons zustan-
de kommt. Der Term +1 im Nenner stellt sicher,
dass die Funktion nicht größer als 1 wird, dass also
kein Zustand mehr als einmal besetzt werden kann.
Die Bose-Einstein Statistik, welche die Besetzungs-
wahrscheinlichkeit für Bosonen beschreibt, unter-
scheidet sich durch ein Minus an dieser Stelle. In
diesem Fall kann die Besetzungswahrscheinlichkeit
sehr groß werden. Bei tiefen Temperaturen konden-
sieren Bosonen deshalb alle in den Grundzustand.
Solche Phänomene sind für kollektive Quantenphä-
nomene verantwortlich, wie z.B. Supraleitung, Su-
prafluidität oder Bose-Einstein Kondensation.

Da die Fermi-Temperatur sehr viel höher ist als die
Raumtemperatur und für niedrige Temperaturen µ ⇡
kBTF , gilt meistens T ⌧ µkB. Wir betrachten die fol-
genden Grenzfälle:

a) ei ! 0 : Die Exponentialfunktion geht gegen null
und f N

i ! 1.

b) ei � µ: Die Exponentialfunktion wird groß ge-
gen 1 und f N

i ! e�(ei�µ)/kBT . In diesem Bereich nä-
hert sich die Fermi-Dirac Verteilung der Boltzmann-
Verteilung an und fällt exponentiell gegen Null ab.

kBT = µ

kBT = µ/10

�i/µEnergie

f i
Be

se
tz
un
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w
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ch
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1
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Abbildung 9.69: Fermi-Dirac Besetzungswahr-
scheinlichkeit bei verschiedenen
Temperaturen.

Bei der Temperatur 0 K beschreibt sie einen abrup-
ten Übergang von der 1 nach 0 an der Fermikante.
Bei höheren Temperaturen wird Population aus der
Nähe der Fermikante in energetisch höhere Zustände
verschoben, wie in Abb. 9.69 gezeigt. Die Breite die-
ses Übergangsbereiches ist von der Größenordnung
kBT . Das Zentrum des Übergang wird durch das che-
mische Potenzial µ bestimmt, welches am absoluten
Nullpunkt der Fermienergie entspricht.

9.6.7 Leitfähigkeit

Die Fähigkeit, elektrischen Strom zu leiten, gehört
zu den charakteristischen Eigenschaften der Metal-
le. Sowohl die klassische Drude-Theorie wie auch
die quantenmechanische Theorie bieten einen An-
satz für die Erklärung dieses Phänomens. Wir disku-
tieren hier einen halbklassische Beschreibung, d.h.
wir verwenden klassische Bewegungsgleichungen,
berücksichtigen aber die Fermi-Dirac Verteilung.

Elektrischer Strom wird durch die freien Elektronen
getragen. Deren Reaktion auf das angelegte elek-
trische Feld bestimmt deshalb die Beziehung zwi-
schen Strom und Spannung, welche im Rahmen die-
ser Theorie mit dem Ohm’schen Gesetz überein-
stimmt. Die meisten freien Elektronen bewegen sich
mit einer relativ hohen Geschwindigkeit; die Fer-
migeschwindigkeit liegt bei rund 106 m/s. Da die
Verteilung der Geschwindigkeiten ohne ein äußeres
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Feld isotrop ist, findet jedoch netto kein Ladungs-
transport statt.

Perfekte Metalle können prinzipiell Strom leiten
auch wenn kein elektrisches Feld anliegt. Reale Me-
talle weisen jedoch immer einen endlichen Wider-
stand auf – mit Ausnahme der Supraleiter, welche
nicht als normale Metalle beschrieben werden kön-
nen und in einem späteren Kapitel noch behandelt
werden.

Werden äußere Felder an ein Metall angelegt, so
bewirken diese auf die Elektronen eine zusätzliche
Kraft

~F = m
d~v
dt

= h̄
d~k
dt

= �e~E. (9.10)

Das Resultat ist somit eine lineare Zunahme des Im-
pulses:

~k(t)�~k(0) = �e~Et/h̄.

Diese Beschleunigung hält an bis die Elektronen
einen Stoß ausführen. Bei einem Stoß wird kineti-
sche Energie vom Elektron auf das Gitter übertragen.
Im Rahmen dieses Modells wird dabei angenom-
men, dass die Geschwindigkeit des Elektrons ther-
malisiert wird, d.h. sie kehrt zur Fermi-Dirac Ver-
teilung zurück. Wenn die Thermalisierung im Mittel
eine Zeit t beansprucht, erreichen die Elektronen im
Mittel einen Impuls, der sich um

d~k = �e~Et
h̄

vom thermischen Gleichgewicht unterscheidet. Die
Fermikugel im k-Raum wird somit um diesen Betrag
gegenüber dem Ursprung verschoben.

Da die Geschwindigkeit der Elektronen direkt pro-
portional zum k-Vektor ist,

~v =
h̄~k
m

= �e~Et
m

,

können wir daraus die Stromdichte berechnen:

~j = n(�e)~v = ne2t~E/m.

Hier stellt n die Anzahl Leitungselektronen pro Vo-
lumeneinheit dar. Der Strom ist somit proportional

E

Fermikugel bei E=0

kF

Fermikugel bei E>0

kx

ky

Abbildung 9.70: Verschobene Fermikugel im elek-
trischen Feld.

zur Feldstärke, wie im Ohm’schen Gesetz. Die Pro-
portionalitätskonstante ist die spezifische elektrische
Leitfähigkeit

s = ne2 t
m

; [s ] =
1

Wm
. (9.11)
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Abbildung 9.71: Größenordnung der Ladungsträger-
dichten.

9.7 Bänder

9.7.1 Probleme des Modells freier
Elektronen

Im Modell der freien Elektronen werden Wechsel-
wirkungen zwischen Valenzelektronen und Atom-
rümpfen vollständig vernachlässigt. Dies ist auch in
den meisten Fällen eine gute Näherung. Sie hat al-
lerdings auch ihre Grenzen. Die wichtigsten Diskre-
panzen zwischen der Näherung der freien Elektro-
nen und der experimentellen Wirklichkeit sind:

• Elektrische Leitfähigkeit. Experimentell beob-
achtet man vor allem drei Klassen von Materialien,
die sich qualitativ unterscheiden: Metalle, Halblei-
ter, und Isolatoren. Bei Isolatoren ist die elektrische
Leitfähigkeit sehr klein, der spezifische Widerstand
beträgt typischerweise mehr als 1012 Wm. Die unter-
schiedliche Leitfähigkeit verschiedener Materialien
kann direkt auf die Ladungsträgerdichte zurückge-
führt werden. Diese variiert zwischen Isolatoren und
Metallen um mehr als 10 Größenordnungen. Das
Modell der freien Elektronen sagt voraus, dass die
Zustandsdichte mit der Wurzel aus der Energie zu-
nimmt,

dN(E )

dE
=

p
2V m3/2

p2h̄3

p
E .

Dies gibt keinen Hinweis darauf, dass die Zahl frei-
er Elektronen in einem Material 10 Größenordnun-

gen höher liegt, als in einem anderen oder darüber,
weshalb ein Teil der Elektronen frei ist, andere aber
gebunden.

Metalle

Temperatur

lo
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ke
it)

Halblei
ter

Abbildung 9.72: Temperaturabhängigkeit der Leit-
fähigkeit von Metallen und Halb-
leitern.

Halbleiter verhalten sich am absoluten Nullpunkt
wie Isolatoren, doch ihre Leitfähigkeit nimmt mit
steigender Temperatur zu. Bei Metallen ist die Leit-
fähigkeit bei allen Temperaturen hoch, nimmt aber
mit steigender Temperatur ab. Offenbar ist die Som-
merfeld’sche Theorie nur auf Metalle anwendbar.
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Abbildung 9.73: Magnetfeldabhängigkeit des Hall-
Widerstandes in Aluminium.

• Hall-Widerstand: Gemäß dem Modell der freien
Elektronen sollte der Hall-Koeffizient RH = �1/ne
sein, unabhängig von Temperatur, Magnetfeld etc.
In vielen Metallen findet man jedoch Abweichun-
gen, welche von Temperatur und Magnetfeldstärke
abhängen. Teilweise unterscheiden sich berechnete
und experimentelle Werte um Faktoren im Bereich
1-10.

• Anisotropie: Die elektrische Leitfähigkeit ist in ei-
nigen Metallen von der Richtung abhängig. Dies ist
im Rahmen des Modell freier Elektronen nicht er-
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klärbar, da dort keine bevorzugten Richtungen exi-
stieren: Die Fermikugel ist isotrop.

9.7.2 Das periodische Potenzial

Alle diese Unterschiede können letztlich auf die
Wechselwirkung der Elektronen mit dem periodi-
schen Potenzial U(~r) erklärt werden, welches die
Atomrümpfe (Kerne plus stark gebundene Elektro-
nen) erzeugen. Diese bricht die vollständige Trans-
lationssymmetrie, so dass der Impuls der Elektronen
keine Erhaltungsgröße mehr ist.

Wie üblich beschränken wir uns auf ideale Kristalle.
Hier ist das effektive Potenzial periodisch,

U(~r +~T ) = U(~r),

wenn ~T ein Vektor des Gitters ist.

Wir diskutieren den Effekt dieses Potenzials in stö-
rungstheoretischer Näherung und machen die übli-
chen idealisierenden Annahmen (keine Kristallfeh-
ler, Fremdatome etc.). Wir verwenden weiterhin die
Näherung, dass die Elektronen unabhängig vonein-
ander betrachtet werden können, d.h. wir berechnen
nur Zustandsfunktionen und Energien für einzelne
Elektronen. Die Wechselwirkung mit den übrigen
Elektronen erfolgt nur über ein effektives Potenzial.

lokalisierte
Elektronen

eikx

freie Elektronen

H = p
2

2m

kinetische Energie 
dominiert

potenzielle Energie 
dominiert

quasi-freie Elektronen

Abbildung 9.74: Freie, gestörte und lokalisierte
Elektronen.

Die Berücksichtigung des periodischen Potenzials
stellt eine Interpolation zwischen zwei Grenzfällen
dar: Das eine Extrem ist das System freier Elektro-
nen. Hier ist der Hamiltonoperator eine Funktion des
Impulsoperators und die Eigenfunktionen des Ha-
miltonoperators dementsprechend die Eigenfunktio-
nen des Impulsoperators. Das andere Extrem ist das-

jenige isolierter Atome. Hier dominiert die potenzi-
elle Energie über die kinetische und die Eigenfunk-
tionen des Hamiltonoperators sind deshalb lokali-
siert. Ein wirklicher Kristall befindet sich zwischen
diesen beiden Extremen: Die kinetische Energie för-
dert die Delokalisierung, die potenzielle Energie der
Atomrümpfe eine Lokalisierung. Da die beiden Ope-
ratoren für Potenzial (d.h. der Ortsoperator) und ki-
netische Energie (d.h. Impulsoperator) nicht mitein-
ander vertauschen, [Hkin,V ] 6= 0, sind die Eigen-
funktionen weder durch diejenigen des freien Elek-
trons, noch durch diejenigen der vollständig gebun-
denen Elektronen gegeben.

Die wirkliche Situation liegt also zwischen diesen
beiden Extremen. Man nähert sich dieser Situation
entweder vom Modell der freien Elektronen, was in
diesem Kapitel geschehen soll, oder von der Seite
der lokalisierten Elektronen, was z.B. bei der “star-
ken Lokalisierung” gemacht wird, also bei Systemen
mit relativ stark gebundenen Elektronen. Geht man
von dieser Seite aus, so kann man die Zustände des
Bandes durch Linearkombination aus Atomorbita-
len erzeugen (LCAO-Methode), ähnlich wie in Kap.
9.4.5 für Molekülorbitale diskutiert.

9.7.3 Eigenfunktionen im periodischen
Potenzial

Unter Berücksichtigung des periodischen Potenzials
sind die Eigenfunktionen nicht mehr die harmoni-
schen ebenen Wellen. Die allgemeine Form, welche
diese besitzen, wird durch ein Theorem von Felix
Bloch bestimmt: Die Zustandsfunktion Y~k(~r) kann
als Produkt

Y~k(~r) = u~k(~r)e
i~k·~r

geschrieben werden, wobei u~k(~r) die gleiche Peri-
odizität hat wie das Potenzial,

u~k(~r +~T ) = u~k(~r),

und ~T einen Gittervektor darstellt. Diese wird mit
einer ebenen Welle ei~k·~r multipliziert.

Abb. 9.75 zeigt ein Beispiel einer Blochfunktion:
oben die ebene Welle, in der Mitte die periodische
Funktion, und unten das Produkt.
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a

��k(~r) = u�k(~r)ei�k·�r

Abbildung 9.75: Blochfunktion und ihre Bestandtei-
le. Die blauen Kugeln sind Atom-
rümpfe.

Die Funktion u~k(~r), welche die ebene Welle modu-
liert, stellt die Korrektur gegenüber den freien Elek-
tronen dar, wo diese Funktion als konstant angenom-
men wurde. Sie stellt die Lösung einer Schrödinger-
gleichung für eine primitive Einheitszelle dar. Wie
bei Atomen existiert eine unendliche Reihe solcher
Lösungen, welche mit einem Index bezeichnet wer-
den kann, der in der Folge ein elektronisches Band
kennzeichnen wird. Der Wellenvektor~k kann immer
so gewählt werden, dass die Wellenlänge l größer
ist als zwei Gitterkonstanten, l > 2a. Eine äquiva-
lente Formulierung des Bloch’schen Theorems ist

Y~k(~r +~T ) = ei~k·~T Y~k(~r),

d.h. bei einer Translation um einen Gittervektor än-
dert sich der Zustand nur um einen Faktor mit Betrag
eins.

9.7.4 Zonenrand

Eine Näherungslösung für den Fall eines endlichen
Potenzials lässt sich finden, wenn das Potenzial U
klein ist im Vergleich zur kinetischen Energie des
Elektrons an der Zonengrenze, d.h. bei ~k = ~G/2.
Hier ist ~G ein Vektor des reziproken Gitters. Ein
Wellenvektor~k = ~G/2 entspricht einer Wellenlänge,
die doppelt so groß ist wie die entsprechende Gitter-
periode.

Die Energie eines freien Elektrons ist

lk =
h̄2k2

2m
.

Dann lautet die Bedingung für die Gültigkeit der fol-
genden Rechnung U ⌧ lk. In dieser Näherung kann
man zeigen, dass das periodische Potenzial nur Zu-
stände aneinander koppelt, deren Wellenvektor sich
um einen Vektor des reziproken Gitters unterschei-
den und die gleiche Energie haben. Dies ist z.B. der
Fall für Zustände mit den Wellenvektoren~k = ±~G/2
an der Zonengrenze. Die folgende Rechnung bezieht
sich deshalb auf diese beiden Zustände.

Für diese beiden Zustände kann man eine Eigenwert-
Gleichungen aufstellen:

(lk �E )C(~G/2)+U C(�~G/2) = 0
(lk�G �E )C(�~G/2)+U C(~G/2) = 0.

Hier stellen C die Koeffizienten für die entsprechen-
den Basisfunktionen dar, E die Energie und U die
Amplitude des Potenzials. Für eine Lösung muss
die Determinante verschwinden. An der Zonengren-
ze gilt lk = lk�G = l und

(l �E )2 = U2

oder

E = l ±U =
h̄2k2

2m
±U.

Die Energien sind also um 2U aufgespalten.

Wenn wir nicht nur die Zustände direkt an der Zo-
nengrenze betrachten, sondern in der Nähe, erhalten
wir aus der Eigenwertgleichung

(lk �E )C(~k)+U C(~k � ~G) = 0
(lk�G �E )C(~k � ~G)+U C(~k) = 0.

Die Säkulargleichung wird dann

0 = (lk �E )(lk�G �E )�U2

= E 2 �E (lk�G +lk)+lklk�G �U2.

Diese Gleichung hat die beiden Lösungen

E =
lk�G +lk

2
± 1

2

q
(lk�G �lk)2 +4U2.
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Abbildung 9.76: Bandaufspaltung an der Zonen-
grenze.

An der Zonengrenze, wo lk�G = lk, wird die Ener-
gie der Eigenzustände um den Betrag U der potenzi-
ellen Energie nach unten, respektive nach oben ver-
schoben - die Aufspaltung beträgt somit 2U . Weiter
von der Zonengrenze entfernt nähern sich die Ener-
gien quadratisch mit dem Abstand den ungestörten
Zuständen an. In der Nähe der Zonengrenze kann
man die Näherung

E (±) = E1(±)+
h̄2 (dk)2

2m

✓
1± 2l

U

◆

benutzen, mit

dk = k � 1
2

G

für die Differenz zwischen dem Wellenvektor und
der Zonengrenze. E1 stellt die Energie an der Zo-
nengrenze dar. Bei ~k = ±~G/2 erreicht die Energie
ein Maximum (respektive Minimum). Somit ist die
Gruppengeschwindigkeit vg = dw/dk = 0: die Elek-
tronen werden am periodischen Gitter reflektiert und
bilden stehende Wellen.

9.7.5 Bandstruktur

Im Modell freier Elektronen hatten wir gesehen, dass
die Zustandsdichte mit der Wurzel aus der Energie
zunimmt. Dies ist im periodischen Potenzial offen-
bar nicht mehr der Fall.

An der Zonengrenze werden die beiden Bänder auf-
gespalten, es entsteht ein Bereich der Energieachse,

0 k

E

0 D(E)

E

Abbildung 9.77: Dispersion und Zustandsdichte für
freie Elektronen.

0 D(E)

E

Bandlücke

0 k

E

Abbildung 9.78: Dispersion und Zustandsdichte für
Elektronen in Bändern.

welcher keine Zustände enthält. Man spricht von ei-
ner Energielücke oder Bandlücke (engl. band gap).
Im einfachsten Fall enthält jedes der beiden Bän-
der 2N Zustände, wobei N die Anzahl Einheitszel-
len darstellt und der Faktor 2 von der Spin-Entartung
herrührt.

0 k

E

π/a

n=1 2N Zustände

n=2

Abbildung 9.79: In einem Band finden maximal 2N
Elektronen Platz.

Falls pro Einheitszelle ein Atom jeweils ein Elektron
in dieses Band abgibt, so ist es genau halb gefüllt
(n = 1 in Abb. 9.79). In diesem Bereich ist die Nä-
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herung freier Elektronen recht gut, weil die Fermi-
Oberfläche relativ weit vom Zonenrand entfernt ist.

Umfasst die Einheitszelle ein zweiwertiges oder
zwei einwertige Atome, d.h. stehen pro Einheitszel-
le 2 freieElektronen zur Verfügung, so ist das erste
Band genau gefüllt. Die Fermi-Energie fällt dann ge-
rade in eine Energielücke. In einem solchen Fall gilt
die Theorie der Leitfähigkeit, welche für die freien
Elektronen diskutiert wurde, nicht mehr. Dort hatten
wir gesehen, dass das externe Feld zu einer Ände-
rung des Elektronenimpulses führt. Dies ist aber nur
möglich wenn entsprechende unbesetzte Impulszu-
stände zur Verfügung stehen. In der Energielücke ist
dies nicht möglich. Ein vollständig besetztes Band
liefert deshalb keinen Beitrag zur Leitfähigkeit - we-
der zur elektrischen noch zur thermischen.

Halbmetall
0

E

Metall

EF

Isolator Halbleiter

Abbildung 9.80: Bandlücke und Besetzung für Me-
tall, Isolator, Halbleiter und Halb-
metall.

Daraus folgt die qualitative Unterscheidung der Ma-
terialien in Metalle und Isolatoren: Bei Metallen ist
die Fermioberfläche etwa in der Mitte des Bandes.
Die Elektronen in der Nähe der Fermioberfläche sind
in diesem Fall weit von der Zonengrenzen entfernt
und spüren deshalb den Einfluss des periodischen
Potenzials kaum. Ein elektrisches Feld kann damit
relativ ungestört die Fermikugel verschieben und es
fließt ein Strom.

Anders die Situation bei einem Isolator: Hier ist die
Fermioberfläche zwischen zwei Bändern. Die Elek-
tronen spüren deshalb das periodische Potenzial ma-
ximal, sie werden aufgrund der Bragg Bedingung
daran reflektiert. Das Modell freier Elektronen ist
hier deshalb nicht anwendbar. Dies kann man auch
so verstehen, dass in der Nähe der Fermioberfläche
keine Impulszustände verfügbar sind, so dass äuße-
re Felder den Impuls der Elektronen nicht verändern

können und somit kein Strom fließen kann.
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Leitungsband

Valenzband

Thermische
Anregung

E

Eg

Abbildung 9.82: Thermische Anregung über die
Bandlücke.

9.8 Halbleiter

9.8.1 Grundlagen

Bei Halbleitern und Isolatoren befindet sich die Fer-
mienergie in der Mitte zwischen zwei Bändern.
Halbleiter unterscheiden sich von Isolatoren da-
durch, dass der Abstand zwischen den Bändern re-
lativ klein ist, so dass freie Ladungsträger einerseits
durch thermische Anregung, andererseits durch Ver-
unreinigungen in der Nähe der Bandkante erzeugt
werden können. Daraus folgt, dass ein Isolator oder
ein Halbleiter, also Materialien bei denen die Fermi-
energie in eine Bandlücke fällt, immer eine gerade
Anzahl Elektronen in der primitiven Elementarzelle
haben muss. Dies ist aber keine hinreichende Bedin-
gung, da unterschiedliche Bänder nicht immer durch
eine Energielücke voneinander getrennt sind.

Energie / eV
0 1 2 3 4 5 6
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ds
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)

s-Band

d-Band
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EF

Abbildung 9.81: Überlappende Bänder.

Überlappen mehrere Bänder, so können sie teilwei-
se gefüllt sein und das Material kann elektrischen

Strom leiten.

Halbleiter sind Kristalle mit einer Bandlücke, d.h.
ein Band ist vollständig gefüllt und das nächsthö-
here ist leer. Das untere Band wird als Valenzband
bezeichnet, das obere als Leitungsband. Am absolu-
ten Nullpunkt sind Halbleiter deshalb Isolatoren, d.h.
sie leiten keinen Strom. Wir beschreiben die Halb-
leiter im Folgenden mit Hilfe des Modells quasi-
freier Elektronen, also Einelektronenzuständen, wel-
che in unterschiedliche Bänder aufgespalten sind.
Diese sind durch Bandlücken getrennt.

Abbildung 9.83: Struktur von GaAs.

Wie bereits diskutiert, müssen Halbleiter (wie Iso-
latoren) immer eine gerade Anzahl Elektronen pro
Elementarzelle besitzen. Diese Bedingung ist z.B.
bei den Elementen der vierten Gruppe (C, Si, Ge,
...) erfüllt. Diese sind typische Beispiele für elemen-
tare Halbleiter. Ebenso ist die Bedingung erfüllt für
Verbindungen der Gruppen III und V des Perioden-
systems wie GaAs, AlAs, GaN, oder InP, Verbindun-
gen der Gruppen II und VI wie ZnS, CdTe. Die Bin-
dung in diesen Materialien hat einen stark kovalen-
ten Charakter.

Tetrazen

Abbildung 9.84: Tetrazen als organischer Halbleiter.

Auch organische Materialien können Halbleiterei-
genschaften aufweisen. Abb. 9.84 zeigt als ein Bei-
spiel Tetrazen. Diese Materialien werden erst seit
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wenigen Jahren untersucht, haben aber schon eine
erhebliche Bedeutung, z.B. in der Form von orga-
nischen Leuchtdioden (OLEDs), welche für Bild-
schirme oder Beleuchtungen verwendet werden. Ge-
genüber den klassischen Flüssigkristallbildschirmen
bieten sie höheren Kontrast und geringeren Strom-
verbrauch.

9.8.2 Ladungsträger-Statistik

Halbleiter haben die gleiche Bandstruktur wie Iso-
latoren. Da die Bandlücke aber nur eine endliche
Breite hat, können bei endlichen Temperaturen ein-
zelne Elektronen aus dem Valenzband ins Leitungs-
band angeregt werden. Dabei entstehen bewegliche
Ladungsträger, und zwar sowohl im Leitungsband,
wo die Elektronen sich bewegen können, wie auch
im Valenzband, wo Zustände frei werden, so dass be-
nachbarte Elektronen unter dem Einfluss eines elek-
trischen Feldes ihren Impuls ändern können.

Die Anzahl der Elektronen, welche durch thermische
Anregung ins Leitungsband gelangen, ist gegeben
durch die Zustandsdichte D(e) und die Besetzungs-
wahrscheinlichkeit f (e):

Nc =
Z •

0
de D(e) f (e)

=
Z •

0
de D(e)

1
e(e�µ)/kBT +1

.

Ist die thermische Energie klein im Vergleich mit
der Bandlücke, kBT ⌧ e � µ , sind praktisch nur Zu-
stände im Bereich des Leitungsband-Minimums be-
setzt und die Gesamtzahl der Ladungsträger wird
proportional zum Boltzmannfaktor e�Eg/2kBT , wobei
Eg die Bandlücke darstellt und wir angenommen ha-
ben, dass das Ferminiveau in der Mitte der Band-
lücke liegt. Eine etwas genauere Rechnung ergibt
einen zusätzlichen Faktor T 3/2,

Nc µ T 3/2e�Eg/2kBT .

Die Dichte der Ladungsträger nimmt deshalb mit zu-
nehmender Temperatur exponentiell zu. Je kleiner
die Bandlücke, desto rascher die Zunahme. Bei Ger-
manium ist die Bandlücke kleiner als bei Silizium,
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Abbildung 9.85: Temperaturabhängige Ladungsträ-
gerdichte für Si und Ge.

deshalb ist die Zunahme rascher und die Leitfähig-
keit bei Raumtemperatur um rund drei Größenord-
nungen höher als bei Silizium. Beträgt die Band-
lücke z.B. 4 eV so ist die Anregungswahrscheinlich-
keit 10�35, d.h. praktisch null. Für eine Bandlücke
von 0.25 eV hingegen beträgt der Boltzmannfaktor
bei Raumtemperatur rund 1%, so dass die Ladungs-
trägerdichte schon fast den Wert eines Metalls errei-
chen kann.

Abbildung 9.86: Bandlücken der wichtigsten Halb-
leitermaterialien.

Wie in Abb. 9.86 gezeigt, liegen die Bandlücken der
wichtigsten Halbleitermaterialien im Bereich von
rund einem eV. Diamant hat eine wesentlich größere
Lücke und man findet deshalb erst bei Temperatu-
ren von mehreren hundert Grad eine wesentliche Ei-
genleitfähigkeit. Die Bandlücke hängt auch von der
Temperatur ab, sie nimmt bei zunehmender Tempe-
ratur ab. Dies ist u.a. eine Folge der Ausdehnung des
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Kristalls und der dadurch abnehmenden Bindungs-
stärke zwischen den Atomen.

9.8.3 Dotierung

Während bei Metallen die Leitfähigkeit abnimmt
wenn das Material verunreinigt wird, ist bei Halblei-
tern das Gegenteil der Fall. Auch kleine Verunreini-
gungen können die Leitfähigkeit dramatisch verän-
dern. Dabei werden Fremdatome eingebracht, wel-
che mehr oder weniger Elektronen enthalten als das
Wirtsmaterial. Die zusätzlichen, respektive fehlen-
den Elektronen sind relativ gut beweglich und ste-
hen als freie Ladungsträger im Leitungs- respektive
im Valenzband zur Verfügung.

Bei Silizium oder Germanium kann man z.B. Stick-
stoff oder Phosphor (5 Elektronen in der äußeren
Schalte) verwenden, um zusätzliche Elektronen ein-
zubringen. Man spricht dann von n-Dotierung. Ver-
wendet man Bor (3 Elektronen), so fehlt ein Elek-
tron. Dies entspricht einem freien Platz im Valenz-
band. Dieses verhält sich wie ein Ladungsträger
mit positiver Ladung. Man spricht deshalb von p-
Dotierung.

HALL COEFFICIENT OF ANTIMONY-DOPED GERMANIUM 73 

I/Absolute Temperature ( 
FICJ. 1. Hall coefficient of antimony-doped germanium 

(n-type) as a function of l/T. 

slope of the corresponding resistivity curve. Some 
of the resistivity curves of this concentration range 
have an intermediate slope which decreases rapidly 
with increasing impurity concentration. 

(iii) High concentration range 

Only a few samples could be obtained with 

FIG. 2. Resistivity of antimony-doped germanium 
(n-type) as a function of l/T. 

No > 1017/cm3. Up to lOl*jcm5 bothp-type and n- 
type samples show a small Hall maximum and a 
rise of the resistivity near SOoK, but otherwise the 
samples show temperature-independent values of 
R and p down to 1~3°K. 

No change of sign of the Hall coeflicient has 
ever been observed at the onset or in the tempera- 
ture range of impurity conduction. There is no 
reason to believe that such a sign change should 
occur for a random distribution of impurities.(rs) 
It should be pointed out, however, that the sudden 
drop of the Hall curves of the samples -7 to -15 
at temperature below the Hall maximum can be 
ascribed to the conduction band carriers alone.(5) 
They carry a smaller and smaller fraction of the 
total current as the temperature is lowered. The 
Hall coefficient of impurity conduction must be 
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Abbildung 9.87: Einfluss von Dotierung und Tem-
peratur auf den spezifischen Wider-
stand.

Abb. 9.87 zeigt die Ladungsträgerdichte von Ger-
manium, das mit Antimon dotiert wurde9. Je höher

9H. Fritzsche, J. Phys. Chem. Solids, 6, 69 (1958).

die Konzentration der Verunreinigungen, desto hö-
her die Ladungsträgerdichte. Bei einer Variation der
Dichte der Verunreinigungen um 3 Größenordnun-
gen variiert der Widerstand um mehr als 10 Größen-
ordnungen. Diese großen Unterschiede findet man
allerdings nur bei niedrigen Temperaturen. Für höhe-
re Temperaturen steigt die Leitfähigkeit in allen Fäl-
len auf den gleichen Grenzwert an - man nennt die-
sen den “intrinsischen” Wert, also die Leitfähigkeit,
die das Material ohne Verunreinigungen aufweist.

9.8.4 Absorption von Licht

Ein weiterer interessanter Aspekt ist, dass die Leit-
fähigkeit durch einfallendes Licht wesentlich ge-
steigert werden kann. Diesen Effekt, den man als
Photo-Leitfähigkeit bezeichnet, deutet darauf hin,
dass Ladungsträger nicht nur thermisch erzeugt wer-
den, sondern auch durch Energiezufuhr über die Ab-
sorption von Photonen. Diese müssen eine Energie
aufweisen, die mindestens so groß ist wie die Band-
lücke. Für die Bandlücken der Halbleiter benötigt
man deshalb Photonen mit einer Wellenlänge im
Sichtbaren oder nahen Infraroten, also ca. 500 nm
bis 2 µm. Bei Silizium z.B. muss die Wellenlänge des
Lichtes kleiner als 1.1 µm sein. Diese Eigenschaften,
die Photovoltaik und die Photoleitfähigkeit, haben
heute eine große technische Bedeutung, indem Halb-
leiter als Solarzellen und Detektoren für Licht zum
Einsatz kommen, z.B. als Photodioden und CCD’s in
Kameras. Umgekehrt können Halbleiter auch Licht
erzeugen; dies wird in LED’s und Laserdioden be-
nutzt.

direkte Halbleiter indirekte Halbleiter
E

k

E

Eg

Leitungsband

Valenzband

0
k

E

Eg

0

Abbildung 9.88: Lichtabsorption bei direkten und
indirekten Halbleitern.
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Bei der Anregung vom Valenzband ins Leitungs-
band muss der Impuls des Systems erhalten bleiben.
Die Wellenlänge von optischem Licht ist sehr viel
größer als eine typische Gitterkonstante; der Impuls
pn = h̄k = h/l eines optischen Photons ist deshalb
klein im Vergleich zu einem typischen Impuls eines
Elektrons pe = h/a. Die Absorption eines Photons
ändert deshalb den Impuls des Elektrons kaum, er
bleibt praktisch konstant. Das Elektron wechselt des-
halb bei der Absorption auf einen Zustand gleicher
Wellenzahl; man nennt dies einen vertikalen Über-
gang.

Bei Energien am Rande der Bandlücke ist dies aber
nicht immer möglich. So ist es möglich, dass das
Minimum des Leitungsbandes bei einem Wert k 6= 0
auftritt, wie in Abb. 9.88 in der rechten Hälfte darge-
stellt. Photonen mit dieser Energie können somit nur
dann absorbiert werden, wenn die Impulsänderung
des Elektrons durch das System kompensiert wer-
den kann. Dies geschieht normalerweise durch die
Erzeugung eines Phonons, d.h. einer quantisierten
Anregung einer Gitterschwingung. Gemäß der Be-
ziehung von de Broglie besitzen auch diese Wellen
eine Energie h̄w und einen Impuls h̄k. Somit kann
die Impulserhaltung erfüllt werden durch die Erzeu-
gung eines Phonons mit dem richtigen Impuls, re-
spektive durch die Vernichtung eines Phonons mit
entgegengesetztem Impuls, falls entsprechende Pho-
nonen auf Grund thermischer Anregung vorhanden
sind. Da die Energie der Phononen sehr viel kleiner
ist als die Photonenenergie, braucht sie bei der Ener-
gieerhaltung nicht berücksichtigt werden.

indirekter HLdirekter HL

Eg
hi > Eg hi > Eg

Abbildung 9.89: Lichtabsorption und Relaxation bei
direkten und indirekten Halblei-
tern.

Absorptionsprozesse können nicht nur an der
Bandkante stattfinden, sondern auch bei höheren
Photonen-Energien. Dabei wird ein Loch im In-

nern des Valenzbandes erzeugt, zusammen mit ei-
nem Elektron im Innern des Leitungsbandes. Die
auf diese Weise erzeugten Ladungsträger relaxieren
über Stöße rasch zum Energieminimum ihrer Bänder
(Abb. 9.89).
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Abbildung 9.90: Absorptionswahrscheinlichkeit bei
direkten und indirekten Halblei-
tern.

Aus der Wahrscheinlichkeit für solche Absorptions-
prozesse erhält man ein Absorptionsspektrum. Wie
in Abb. 9.90 gezeigt, ist die Absorptionskante bei ei-
nem direkten Halbleiter schärfer als bei einem indi-
rekten.

9.8.5 Lichtemission

Der Umkehrprozess der Absorption ist die Emissi-
on von Licht. Dabei geht ein Elektron aus dem Lei-
tungsband ins Valenzband über und strahlt die Ener-
giedifferenz in der Form eines Photons ab. Auch
hier muss die Erhaltung von Energie und Impuls ge-
währleistet sein. Bei einem Übergang von Bandkan-
te zu Bandkante wird somit ein Photon mit Energie
h̄w = Eg frei. Bei der Emission ist diese Bedingung
jedoch schwieriger zu erfüllen als bei der Absorp-
tion: Ein Elektron aus dem Leitungsband muss mit
einem Loch im Valenzband rekombinieren, welches
den gleichen Impuls besitzen. Dies ist bei direkten
Halbleitern unproblematisch, bei indirekten Halblei-
tern jedoch nicht, da dort die freien Zustände (= be-
setzten Lochzustände) nicht bei der gleichen Wel-
lenzahl auftreten. Der Unterschied zwischen direk-
ten und indirekten Halbleitern spielt deshalb für die
optischen Eigenschaften eine zentrale Rolle.

Silizium, z.B. ist ein indirekter Halbleiter, wie in
Abb. 9.91 gezeigt. Das entartete Valenzband hat sein
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Abbildung 9.91: Bandstruktur von Si und GaAs.

Maximum im Zentrum der Brillouin-Zone, während
das Leitungsband-Minimum relativ weit vom Zen-
trum entfernt ist, nämlich ca. 80 % der Brillouin-
Zone in Richtung 100. Aus Symmetriegründen exi-
stieren 6 äquivalente Richtungen entlang der 6 Koor-
dinatenachsen. Unter typischen Bedingungen ist die
Dichte von Elektronen im Leitungsband in der Näher
des Leitungsband-Minimums am größten. Bei einem
senkrechten Übergang ins Valenzband würden die-
se Elektronen aber nur besetzte Zustände antreffen.
Dadurch ist in Si die Emission von Licht stark er-
schwert. Si wird deshalb z.B. nicht für den Bau von
Leuchtdioden oder Halbleiterlasern verwendet. Ein
typischer direkter Halbleiter, welcher hauptsächlich
für optoelektronische Komponenten wie z.B. Halb-
leiterlaser verwendet wird, ist GaAs.

Erst seit kurzem kann man auch eine Modifikati-
on von Si herstellen, welche leuchtet. Während man
sich über den Mechanismus noch nicht ganz einig
ist, scheint es dafür nötig zu sein, dass das Material
auf so kleinen Skalen strukturiert ist, dass die übli-
che Beschreibung des Materials als unendlich ausge-
dehnter Kristall, die wir hier verwenden, nicht mehr
gültig sind.

9.9 Supraleitung

9.9.1 Entdeckung

In normalen Metallen findet man, dass der elektri-
sche Widerstand bei tiefen Temperaturen abnimmt,
bis er einen Grenzwert erreicht, der durch Kristall-
fehler bestimmt ist. Diesen experimentellen Befund
kann man durch die Theorie der Leitfähigkeit gut
verstehen und auf Stöße zwischen Elektronen und
Gitterfehlern oder Gitterschwingungen zurückfüh-
ren. Wie jedes Modell hat jedoch auch dieses sei-
ne Grenzen. Experimentelle Tests dieser Aussage in
einem Bereich nahe des absoluten Nullpunkts wa-
ren erstmals ab 1908 möglich, als es Kamerlingh
Onnes10 in Leiden gelang, ein Kühlmittel zu erzeu-
gen, welches sehr tiefe Temperaturen erlaubt, näm-
lich flüssiges Helium, das bei Normaldruck einen
Siedepunkt von 4 K besitzt. Er benutzte dieses Käl-
temittel bald um die elektrische Leitfähigkeit bei tie-
fen Temperaturen zu messen. Im Jahre 1911 fand er
ein merkwürdiges Verhalten, das sich von der oben
genannten Erwartung qualitativ unterscheidet.
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Abbildung 9.92: Spezifischer Widerstand von
Quecksilber als Funktion der
Temperatur.

Wie in Abbildung 9.92 gezeigt, nahm der elektri-
sche Widerstand von Quecksilber zunächst linear
mit der Temperatur ab, bis er bei 4.2 K plötzlich
10Heike Kamerlingh Onnes (1853 – 1926)
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auf einen sehr kleinen Wert sprang. Genauere Mes-
sungen zeigten, dass dieser Wert innerhalb der expe-
rimentellen Fehlergrenzen mit Null übereinstimmt.
Das heißt, dass es z.B. möglich ist, in einer geschlos-
senen Leiterspule einen Strom fließen zu lassen oh-
ne, dass dieser abklingt.

Ein vergleichbares Phänomen findet man auch bei
den Fließeigenschaften von flüssigem Helium 4: Un-
terhalb einer Temperatur von 2,17 K verschwindet
die Viskosität. Man nennt diesen Zustand Supraflui-
dität.

9.9.2 Leitfähigkeit

Abbildung 9.93: Anwendungen: supraleitender Ma-
gnet für die Kernresonanz (links)
und Hochgeschwindigkeitszug
(rechts).

Die Supraleitung benutzt man z.B. für die Erzeu-
gung starker Magnetfelder: Man wickelt einen Draht
zu einer Spule und regt darin einen Strom an. Da-
durch können permanente Magnetfelder von mehre-
ren Tesla erzeugt werden, wie man sie z.B. in der
Kernspinresonanz oder in der Kernspintomographie
benötigt. Supraleitende Magneten werden auch in
einem japanischen Hochgeschwindigkeitszug einge-
setzt.

Während der Widerstand eines supraleitenden Ma-
terials nicht direkt messbar ist, kann man ihn in ei-
nem Magneten indirekt messen: das Magnetfeld ist
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Abbildung 9.94: Abschwächung des Magnetfeldes
eines supraleitenden Magneten als
Funktion der Zeit.

nicht exakt konstant, sondern es schwächt sich lang-
sam ab. Abb. 9.94 zeigt eine typische Messung über
Kernspinresonanz: Die Resonanzfrequenz der Kern-
spins sinkt um etwa 1,68 Hz/Tag. Bei einer absoluten
Frequenz von 360 MHz sinkt das Magnetfeld also
mit einer Rate

1
B

dB
dt

=
1,68

3,6 ·108
1

Tag
=

4,67 ·10�9

Tag
=

1,7 ·10�7

Jahr
,

d.h. die Zerfallszeit beträgt etwa 17 Millionen Jahre.

9.9.3 Diamagnetismus

Diese Klasse von Materialien wird als Supraleiter
und der Zustand als Supraleitung bezeichnet. Da-
mit charakterisiert man zunächst die elektrischen
Eigenschaften dieser Materialien. Sie besitzen aber
auch sehr charakteristische magnetische Eigenschaf-
ten. Der wichtigste ist, dass sie sich wie perfekte
Diamagneten verhalten, d.h., dass das Magnetfeld in
ihrem Inneren verschwindet.

H

M
Hc

Abbildung 9.95: Magnetisierung als Funktion des
äußeren Feldes.

Dies ist bekannt als Meißner-Ochsenfeld Effekt11.
11entdeckt 1933 durch Walther Meißner (1882 - 1974) und Ro-

bert Ochsenfeld (1901 - 1993)
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Die Magnetisierung M des Materials beträgt dann

M = �H ! c = �1.

Der Diamagnetismus eines Supraleiters ist damit um
etwa 5 Größenordnungen stärker als der eines nor-
malen diamagnetischen Materials (z.B. Wasser: c =
�7 ·10�6).

Magnetfeld wird 
ausgestoßen

Abbildung 9.96: Meissner-Effekt: Ein Supraleiter ist
ein perfekter Diamagnet.

Ein perfekter Diamagnet erzeugt eine Magnetisie-
rung, die das externe Feld innerhalb des Magneten
vollständig kompensiert. Die Magnetfeldlinien wer-
den deshalb aus dem Material ausgestoßen. Dies ge-
schieht, indem am Rand des supraleitenden Bereichs
ein Strom fließt, dessen Magnetfeld gerade das äuße-
re Magnetfeld kompensiert.

Magnet schwebt über Supraleiter normal leitend

supraleitend

Abbildung 9.97: Der Meissner-Effekt lässt den
Magneten über dem Supraleiter
schweben.

Oberhalb der kritischen Temperatur ist das Mate-
rial normalleitend und praktisch nichtmagnetisch.

Das Feld eines externen Magneten durchdringt des-
halb das Material. Kühlt man das Material unter die
Sprungtemperatur, so wird es zu einem perfekten
Diamagneten. Man kann dies z.B. dadurch sichtbar
machen, dass ein kleiner Permanentmagnet über ei-
nem Stück Supraleiter schwebt, welcher mit flüssi-
gem Stickstoff gekühlt wird.

Im Raum zwischen dem Magneten und dem su-
praleitenden Material werden sie deshalb konzen-
triert und das System kann seine Energie ernied-
rigen, indem der Supraleiter über dem Magneten
schwebt. Dies ist nicht einfach eine Folge der ver-
lustlosen Leitung von elektrischem Strom. Ein per-
fekter Leiter würde zwar durch Eddy-Ströme einer
Änderung des Magnetfeldes in seinem Innern wider-
stehen. Dies bedeutet, dass das Magnetfeld in seinem
Innern zeitlich unveränderlich sein muss, d~B/dt =
0. Damit müsste aber das vorher vorhandene Feld
erhalten bleiben, während es beim Meißner-Effekt
ausgestoßen wird, so dass ~B = 0.

9.9.4 Kritische Temperatur und kritisches
Feld

Dies funktioniert allerdings nur bei Magnetfeldern
unterhalb einer gewissen Stärke. Überschreitet die
Stärke des äußeren Feldes das kritische Feld Hc, so
bricht der perfekte Diamagnetismus wie auch die Su-
praleitung zusammen. Supraleitung tritt somit nur
bei genügend tiefen Temperaturen und genügend
schwachem Magnetfeld auf.

Zwischen der normal leitenden Phase und der supra-
leitenden Phase liegt ein Phasenübergang, der vom
Magnetfeld und der Temperatur (und, in Abb. 9.98
nicht eingezeichnet, der Stromdichte) abhängt. Ei-
ne etwas genauere Betrachtung zeigt, dass der Über-
gang vom supraleitenden in den normalleitenden Zu-
stand auch von der Form des Körpers abhängt. So
ist bei der in Abb. 9.96 gezeigten Kugel die Feld-
stärke an der Kugeloberfläche teilweise höher als
im ungestörten Feld. Das Feld beginnt deshalb an
den entsprechenden Stellen schon unterhalb der kri-
tischen Feldstärke einzudringen. Dies ist nicht der
Fall, wenn die Probe eine dünne Schicht ist, die par-
allel zu den Feldlinien angeordnet ist. Die kritische
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Stoff TC/K

Al 1.19
Be 0.026
Hg 4.15
Zn 0.9
Wo 0.012
Pb 7.2
V3Si 17.1
Nb3Sn 18.0
Nb3Al8Ge0.2 20.7
YBa2Cu3O6+x 90
HgBa2CuO4+b 133
CsRb2C60 31

kritische Temperaturen

Temperatur
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Abbildung 9.98: Zustandsdiagramm und kritische
Temperatur einiger Supraleiter.

Temperatur, unterhalb der ein Material supraleitend
wird, kann von mK bis zu 133 K variieren. Abb. 9.98
listet sie für einige Materialien.
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Abbildung 9.99: Temperaturabhängigkeit des kriti-
schen Feldes bei Typ I Supraleiter.

Der Betrag des kritischen Feldes hängt ebenfalls
vom Material ab, variiert aber auch mit der Tem-
peratur. Beim Überschreiten des kritischen Feldes
bricht auch der Meißner-Effekt zusammen. Beim
kritischen Feld sinkt die Magnetisierung abrupt auf
Null, d.h. das Feld dringt in das Material ein.

Diese Verhalten kann erklärt werden, wenn man an-
nimmt, dass sich die Elektronen paarweise zu ei-
ner neuen Form von Teilchen zusammenfinden. Die-
se Elektronenpaare werden als “Cooper-Paare” be-
zeichnet. Sie besitzen die Ladung �2e, einen ver-
schwindenden Impuls und einen verschwindenden
Spin. Damit sind sie Bosonen und können alle

den gleichen Quantenzustand einnehmen. Dieser ge-
meinsame Zustand ist der Grundzustand des Supra-
leiters.

9.9.5 Typ II Supraleiter

äußeres Magnetfeld / Gauß

A: Blei
B: Blei + 2.8%In
C: Blei + 8.3%In
D: Blei + 20.4%In

-µ
0M

 / 
G
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Abbildung 9.100: Magnetisierung als Funktion der
Temperatur für Blei mit unter-
schiedlicher Dotierung.

Das bisher diskutierte Verhalten bezieht sich auf so-
genannte Typ I Supraleiter oder Supraleiter der er-
sten Art der Fall. Dementsprechend existieren Su-
praleiter der zweiten Art. Diese Materialien verhal-
ten sich unterhalb des kritischen Feldes Hc1 wie die
Supraleiter der 1. Art. Beim kritischen Feld dringen
die Feldlinien ebenfalls in das Material ein, aber die
Magnetisierung sinkt nicht auf Null.

Temperatur
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ag
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tfe

ld

Meissner-Zustand
ρ = 0, B = 0

Tc

gemischter Zustandρ = 0, B ≠ 0
HC1(T)

HC2(T)

Abbildung 9.101: Unterschiedliche Phasen bei ei-
nem Typ II Supraleiter.

Diese teilweise supraleitende Eigenschaft bleibt bis
zu einem zweiten kritischen Feld Hc2 erhalten. Das
Material bleibt auch bis zu diesem kritischen Feld
supraleitend. Dieses zweite kritische Feld kann um
mehrere Größenordnungen oberhalb des ersten kriti-
schen Feldes liegen. Dieses kritische Feld ist deshalb
dasjenige, das für technische Anwendungen wichtig
ist.
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Abbildung 9.102: Temperaturabhängigkeit des obe-
ren kritischen Feldes bei Typ II
Supraleiter.

Für Typ 2 Supraleiter liegt das obere kritische Feld
im Bereich von bis zu 50 Tesla. Im Bereich zwischen
den beiden kritischen Feldern findet ein teilweises
Eindringen des Magnetfeldes in den Supraleiter statt.

Abbildung 9.103: Hexagonales Gitter aus Flus-
squanten.

Diese teilweise Durchdringung erfolgt durch einzel-
ne Flussquanten. Wie in Abb. 9.103 gezeigt, ord-
nen sich diese in der Form eines Gitters an, welches
durch kleine ferromagnetische Teilchen sichtbar ge-
macht werden kann. Heute kann man sie auch durch
Raster-Kraftmikroskopie sichtbar machen.

Typ II Supraleiter sind größtenteils Legierungen,
während Typ I Supraleiter eher Elemente sind. Es
ist möglich, Typ I Supraleiter durch die Zugabe ge-
ringer Anteile an legierenden Elementen zu Typ II
Supraleitern zu machen.

Die meisten Supraleiter sind Metalle, aber seit eini-
gen Jahren gibt es auch organische Supraleiter, al-
so Polymere, die unterhalb einer bestimmten Tem-
peratur supraleitend werden. Die wichtigste Ausnah-
me aber sind die 1986 entdeckten Hochtemperatur-
Supraleiter12: Hier handelt es sich um keramische
Materialien, die oberhalb der kritischen Temperatur
Isolatoren sind.

Einheitszelle von YBa2Cu3O7

Abbildung 9.104: Typische Struktur eines Hoch-
temperatur-Supraleiters.

Diese Klasse von Materialien hat eine ziemlich ein-
heitliche Struktur: es handelt sich um schichtförmige
Materialien, bei denen Ebenen von CuO Schichten
sich mit anderen Schichten abwechseln.

12Karl Alexander Müller und Johannes Georg Bednorz, Nobel-
preis 1987
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