8 Grundlagen der Quantenmechanik

Die Quantenmechanik stellt die Grundlage der mei-
sten Bereiche der Physik dar. Beispiele sind die Li-
nienspektren von Atomen oder die unterschiedlichen
Eigenschaften von Isolatoren, Halbleitern, Metal-
len und Supraleitern. Die theoretischen Grundlagen
wurden in den ersten Jahrzehnten des 20. Jahrhun-
derts entwickelt, auf der Basis von experimentellen
Fakten aus dem 19. Jahrhundert.

Gegen Ende des 19. Jh. war man allgemein iiber-
zeugt, dass die enormen wissenschaftlichen Fort-
schritte der letzten Jahrzehnte ein fast perfektes Ver-
standnis der Natur in Reichweite gebracht hatten. So
sagte z.B. Albert Abraham Michelson, einer der an-
gesehensten Physiker des 19. Jahrhunderts, welcher
mit der Entdeckung, dass die Lichtgeschwindigkeit
eine Konstante ist, einen der wichtigsten Widersprii-
che der Physik aufgedeckt hatte, noch 1903

Die wichtigsten Grundgesetze und Grundtatsa-
chen der Physik sind alle schon entdeckt; und
diese haben sich bis jetzt so fest bewihrt, dass
die Moglichkeit, sie wegen neuer Entdeckungen
beiseite zu legen, aulerordentlich fern zu liegen
scheint. .... Unsere kiinftigen Entdeckungen miis-
sen wir in den 6. Dezimalstellen suchen.

Im Jahre 1903, als Michelson seine Aussage mach-
te, waren die Revolutionen jedoch bereits losgetre-
ten. Die Basis dafiir waren einige Diskrepanzen zwi-
schen den damaligen Theorien und den experimen-
tellen Befunden. Die Differenzen waren auf den er-
sten Blick relativ gering, doch sie waren mit den
existierenden Erkldarungen auf die eine oder andere
Weise nicht in Ubereinstimmung zu bringen.

8.1 Experimentelle Hinweise

8.1.1 Schwarze Strahler

Einer der Widerspriiche zwischen klassischer Theo-
rie und experimentellen Befunden ist die Abhingig-
keit der Strahlungsenergie eines heissen Korpers von
der Wellenldnge, respektive der Frequenz. Dass die
Temperatur einen Einfluss auf die spektrale Vertei-
lung von Licht hat, kann man schon mit dem Au-
ge erkennen: ein Objekt mit einer Temperatur von x
Grad strahlt in der Farbe

Temperatur \ Farbe ‘

600 °C rot
850 °C hellrot
1000 °C gelb
1300 °C weill

abgestrahlte Leistung

Frequenz

Abbildung 8.1: Frequenzspektrum eines idealen und
eines realen Strahlers.

Diese Art von Strahlungsquelle wird als schwarzer
Strahler bezeichnet. Ein schwarzer Strahler ist da-
durch definiert dass er alle eintreffende Strahlung
perfekt absorbiert (fiir jede Wellenlénge). Kirchhoff
hatte gezeigt, dass das Verhéltnis zwischen der Ab-
sorptivitit und dem Emissionsvermogen eines Kor-
pers nur von Temperatur und Frequenz abhiingt. So-
mit bedingt eine perfekte Absorption eine ebenso
perfekte Emission. Die Strahlungsleistung pro Fre-
quenzbereich ist dann nur noch eine Funktion von
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8 Grundlagen der Quantenmechanik

Temperatur und Frequenz. Ein realer Korper hat im-
mer eine kleinere Abstrahlung als ein idealer Strah-
ler, wie z.B. in Abb. gezeigt. Bei einem idealen
Spiegel wird die gesamte Strahlung reflektiert, also
nicht absorbiert, und damit auch keine eigene Strah-
lung emittiert.

Hohlraum

Raumwinkel dQ Detektor

Temperatur T

Abbildung 8.2: Hohlraumstrahler.

Ein idealer schwarzer Korper kann genihert wer-
den durch einen Hohlraum mit schwarzen Winden
und einer kleinen Offnung, wie in Abb. gezeigt.
Strahlung, welche durch diese Offnung eindringt
wird mit sehr hoher Wahrscheinlichkeit absorbiert.
Befindet sich der Korper bei der Temperatur 7', emit-
tiert er Strahlung durch die Offnung. Die Leistung,
welche dabei in einen Raumwinkel dQ abgestrahlt
wird, ist proportional zur Energiedichte U im Reso-
nator.
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Abbildung 8.3: Spektroskopische Analyse der Hohl-
raumstrahlung.

Die Strahlung aus einem Hohlraumstrahler kann,
wie in Abb. [8.3|gezeigt, spektral aufgeldst und quan-
titativ erfasst werden. Aus solchen Messungen hat
man bereits im 19. Jh. eine Reihe von interessanten
experimentellen Befunden zusammengetragen:

* Die gesamte abgestrahlte Energie ist proportio-
nal zur vierten Potenz der Temperatur,

P=AoT?

Diese = Abhingigkeit wird als  Stefan-
Boltzmann’sches Strahlungsgesetz bezeichnet.

Es wurde 1879 von Stefan heuristisch auf
Grund von Messungen von Tyndall aufgestellt.
Boltzmann leitete es spéter thermodynamisch
her. Die Stefan-Boltzmann Konstante ¢ hat
den Wert

2wk,

=" "B _5670-1078
O 15w >

m2K*’

* Die Strahlung enthilt alle Wellenléingen. Das
Maximum verschiebt sich mit zunehmender
Temperatur zu kleineren Wellenldngen:

AmaxT = const = 0,2898 cmK.

Diese Abhingigkeit wird als Wien’sches Ver-
schiebungsgesetz bezeichnet.

* Bei groflen Wellenldngen nimmt die Strah-
lungsintensitdt mit der vierten Potenz der Wel-
lenlidnge ab:

al

— o A4,

A
Diese experimentellen Befunde waren Ende des 19
Jahrhunderts bekannt, aber es gab keine Theorie,
welche sie erkldren konnte.

8.1.2 Strahlungsgesetzeﬂ

Die Strahlungsleistung kann man berechnen, wenn
man den Hohlraum als Resonator mit diskreten Mo-
den beschreibt, und die mittlere Energiedichte der
Moden (abhingig von ihrer Frequenz) kennt. Die
Energiedichte des Resonators ist dann

#Moden MittlereEnergie  dN (E)
Mode Y '
Die Zahl der Moden erhilt man leicht fiir einen

rechteckigen Resonator mit Kantenldnge L. Die Be-
dingung fiir stehende Wellen betrigt dann

- Volumen

A
L=n— =1,2,3,...
na n
in jeder Raumrichtung. Ein allgemeiner Wellenvek-
tor hat somit die Form
2

kz—k2+k2+k2—”—2(n2+n2+n2)—w—
T y Z_LZ x y z/ c2’

IMehr dazu findet man unter [[1]
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Jede Mode wird somit durch einen Vektor

,  4Amv2 2

2 2, .2
R, =ni+n;+n. =
x Ty T 2 12

n =

charakterisiert und wir kénnen die Anzahl Moden
abzihlen, indem wir die Zahl der Moden in einer
Kugel mit Radius R bestimmen. Da das Volumen (in
dieser Kugel) pro Mode gerade eins ist, entspricht
die Zahl der Moden gerade dem Volumen der Kugel:

3
\%
N=V,= Rf’l o< L= — Volumen.
c

Somit ist die Modendichte N/V im Frequenz-
Intervall (v, v +dv)

2

1%
C

Die mittlere Energie einer Mode erhilt man klas-
sisch aus dem Boltzmann-Gesetz als

(&) = /Owé"p(é")déa
mit
p(&)=e¢/oT,

Das Integral ergibt

(&) = kpT.
Damit wird die Energiedichte
2
A% kBT
U(V, T)dv o< Cf:’,kBTdV < ﬁdl

8.1.3 Grenzfille

Den Grenzfall fiir grole Wellenléngen erhélt man re-
lativ einfach wenn man annimmt, dass die Strahlung
in einer Mode immer die Energie kg7 besitzen soll.
Diese Bedingung ergibt sich aus dem Ansatz, dass
die Strahlung im Gleichgewicht mit der sie umge-
benden Materie sein soll. Ein harmonischer Oszil-
lator besitzt aber gerade die Energie kgT. Die Zahl
der Moden in einem Hohlraum steigt proportional
mit dem Quadrat der Frequenz. Deshalb betrégt die
Energiedichte pro Frequenz-Intervall

\
\
A}
A}
\
\
\

_- Rayleigh-Jeans-Gesetz

~

\

Plancksches
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Abbildung 8.4: Vergleich des Planck’schen Strah-
lungsgesetzes mit dem Gesetz von
Rayleigh-Jeans.

Daraus ergibt sich das Rayleigh—]ean Gesetz (—
Abb. [8.4), nach dem die Intensitéit mit der vierten
Potenz der Wellenlidnge abnimmt:

2c
MAdA = FkBTdﬂL.

Allerdings kann dieses Gesetz fiir kurze Wellenlén-
gen, d.h. hohe Frequenzen, nicht giiltig sein. Da die
emittierte Leistung mit dem Quadrat der Frequenz
zunimmt, miisste jeder Korper eine intensive UV-,
und eine noch intensivere Rontgenquelle sein. Dies
ist offenbar nicht der Fall. AuBlerdem divergiert das
Integral dieses Ausdrucks, die emittierte Leistung
wire also unendlich.

Den Bereich hoher Frequenzen (kurzer Wellenlén-
gen) konnte man bereits vor Planck durch das
sog. Wien’sche Strahlungsgesetz beschreiben. Die-
ses kann geschrieben werden als

C 1

P =35 gt

wobei C und ¢ Konstanten sind. Es stimmt fiir
hohe Frequenzen sehr gut mit den experimentel-
len Daten iiberein und vermeidet insbesondere die
“Ultraviolett-Katastrophe™, d.h. die unbegrenzte Zu-
nahme der Strahlungsleistung bei hohen Frequen-
zen. Im langwelligen Bereich liefert es aber zu nied-
rige Werte (o< A7 statt o< 1 ~%).

2John William Strutt, Baron Rayleigh (1842 — 1919) und Sir
James Hopwood Jeans (1877 — 1946)
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8.1.4 Planck’s Quantisierung

Planck (— Abb. hat diese beiden Strahlungsge-
setze, welche jeweils nur fiir einen Teilbereich gal-
ten, durch eine einheitliche Theorie ersetzt und da-
mit die theoretischen Probleme gelost.

Abbildung 8.5: Max Planck (1858 — 1947).

Seine Annahme war, dass die Strahlung in diskreten
Einheiten abgegeben werden soll, wobei die Ener-
gie dieser einzelnen “Pakete” durch die Beziehung
& = hv gegeben ist. Die Planck’sche Konstante be-
sitzt den Wert

h=6,6256-10"s.

Hiufig wird auch die reduzierte Planck’sche Kon-
stante

he b _ 1,0546- 107 34Js
2

verwendet. Auch Planck rechnet fiir einen Hohlraum
die Eigenfrequenzen. Hier wird jedoch jede Mode
mit einer Anzahl von Energiepaketen besetzt, wel-
che seinem thermischen Gleichgewicht entspricht.
Die mittlere Energie einer Mode ergibt sich als
Summe iiber alle moéglichen Energien &, gewichtet
mit der entsprechenden Besetzungswahrscheinlich-
keit p(&,):

o hv
(&) :};gnp(é”n) = kT _ 1

Daraus erhilt man die Planck’sche Strahlungsformel

v3dv

Das Stefan-Boltzmann Gesetz erhdlt man daraus
durch Integration iiber die Frequenz:

1o</ U(v,T)dv o< T*.
0

Ebenso das Verschiebungsgesetz als Ableitung:

du 1

Die Frequenz v liegt fiir sichtbares Licht im Bereich

_e 3 10m/s ooy,
A 0,5um
also typischerweise etwas unterhalb von 10'°Hz.
Die Energie der einzelnen Pakete liegt somit fiir

sichtbares Licht bei
& =6,6256-10"3*.6-10"T ~4-107"J.

Fiir unsere Begriffe ist dies eine relativ kleine Ener-
gie, was erkldrt, weshalb wir sie meistens nicht be-
obachten.

Die emittierte Strahlung is proportional dazu.

6000 K 2he5 1
/\ \5Q), ehc/kTA dA
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Abbildung 8.6: Leistung als Funktion der Wellen-
lange fiir schwarze Strahler mit un-
terschiedlichen Temperaturen.

Der Energieinhalt pro Frequenz-Intervall betrdgt

2hv3 1
Ldv = 20 T — 1dv.
Als Funktion der Wellenldnge erhilt man entspre-

chend

_2he? 1
~ A5Qp he/ksTA —
Dies ist in Abb. [8.6|dargestellt.

LdA dA.
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8.1.5 Kosmische Hintergrundstrahlung

1948 bemerkte Gamo dass der Kosmos als ganzes
auch Eigenschaften eines schwarzen Strahlers auf-
weist. Wihrend der Frithzeit des Kosmos bestand er
aus einem Plasma, welches fiir elektromagnetische
Strahlung undurchsichtig war. Nach etwa 380000
Jahren war dieses Plasma soweit abgekiihlt, dass sich
aus Elektronen und Protonen neutraler Wasserstoff
bildet. Dadurch wurde das Universum fiir Strahlung
weitgehend transparent. Zu diesem Zeitpunkt ent-
sprach die Strahlung im Wesentlichen einem schwar-
zen Korper mit einer Temperatur von etwa 4000 K.
Durch die weitere Ausdehnung des Kosmos redu-
zierte sich diese Temperatur bis auf den heutigen
Wert von 2,73 K.

10+
Messungen

8- (Penzias & Wilson; 1965)
T 6
g " Vorhersage
= 273K £ -270.412°C

2_.

G ) 1 T o L LA 1 T A

12 L 6 8 10 12 W 16 18 20

Frequenz [cm-1]

Abbildung 8.7: Frequenzspektrum der kosmischen
Hintergrundstrahlung.

Die erste Messung dieser kosmischen Hintergrund-
strahlung gelang 1964 Arno Penzias und Robert Wil-
son beim Testen einer neuartigen, hochempfindli-
chen Antenne. Thre Messwerte passten sehr gut auf
die theoretischen Voraussagen, wie in Abb. ge-
zeigt. Seither erfolgten noch deutlich genauere Mes-
sungen, vor allem mit einer Reihe von Satelliten-
Experimenten, welche ebenfalls mit der Theorie in
guter Ubereinstimmung sind.

8.1.6 Photonen

Die Planck’sche Konstante & wurde von Planck zu-
nichst als rein rechnerische Hilfsgroe betrachtet.

3George Gamow (1904 — 1968)

Von anderen, z.B. Einstein, wurde sie aber als fun-
damentale physikalische GroBe erkannt, welche in
sehr vielen Zusammenhingen erscheint. Die Ener-
giepakete, welche man heute als Photonen bezeich-
net, kann man heute ohne weiteres direkt beobach-
ten. Man benutzt dazu z.B. einen sog. Photomulti-
plier. In diesem Gerit werden die Photonen in elek-
tronische Impulse umgewandelt.

Wenn die Lichtmenge, die pro Zeiteinheit auf einen
Detektor fillt, gering ist, wird es moglich, einzel-
ne Photonen zu beobachten, welche jeweils einen
Spannungsimpuls erzeugen. Die Photonen gelangen
in unregelméaBigen, nicht voraussagbaren Abstinden
auf den Detektor. Erst wenn man die Anzahl der
Photonen iiber einen Zeitraum mittelt, der lang ist im
Vergleich zum mittleren Abstand, erhilt man einen
konstanten Wert. Die mittlere Anzahl Photonen pro
Zeiteinheit multipliziert mit der Energie der Photo-
nen ergibt die auf den Detektor einfallende Leistung.
Wenn man die Leistung erhéht so nimmt der mittle-
re Abstand zwischen zwei Photonen ab, die Zihlrate
steigt entsprechend.

Die Idee, dass Licht aus einzelnen Photonen besteht,
wurde nicht sofort akzeptiert. So schrieb Max Planck
anlisslich der Aufnahme Einsteins in die Preussi-
sche Akademie der Wissenschaft (1913):

“Dass er in seinen Spekulationen gelegentlich
auch einmal iiber das Ziel hinausgeschossen ha-
ben mag, wie z.B. in seiner Hypothese der Licht-
quanten, wird man ihm nicht allzu sehr anrechnen
diirfen. Denn ohne einmal ein Risiko zu wagen,
lasst sich auch in der exaktesten Wissenschaft ei-

ne wirkliche Neuerung einfithren.”

8.1.7 Einstein’s Theorie von Absorption und
Emission

Das Gleichgewicht zwischen Strahlung und Tempe-
ratur eines Korpers konnte durch Einstein’s Theo-
rie von Absorption und Emission verstanden wer-
den. Danach kommt die Absorption und Emission
von Licht durch einen materiellen Korper dadurch
zustande, dass der Korper zwischen diskreten Zu-
stainden Ubergiinge durchfiihrt und dabei Photonen
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absorbiert oder emittiert, deren Energie gerade der
Energiedifferenz zwischen den Zustinden des Kor-
pers entspricht. Geht der Korper vom niedrigen in
den hoheren Zustand iiber, so absorbiert er dabei
Licht; geht er vom hoheren in den niedrigeren Zu-
stand liber ohne dass er von auBlen dazu gebracht
wurde, so emittiert er spontan Licht. Treffen Photo-
nen der geeigneten Wellenldnge auf diesen Korper,
so konnen sie aber auch Emission stimulieren.

Befinden sich N; Atome im Grundzustand und N,
Atome im angeregten Zustand, so ergibt sich die Ab-
sorptionsrate von |1) nach |2) als

(dN) Bpus(V)N
— = Bouy 1-
dr abs

Hier stellt der “Einsteinkoeffizient” B}, eine Propor-
tionalititskonstante dar, die fiir den Ubergang cha-
rakteristisch ist. ug(v) ist die Energiedichte im be-
treffenden Frequenz-Intervall, also die Anzahl Pho-
tonen pro Volumen.

Genau so berechnet man die spontane Emission

dN
<dt> =AnN;
sp.Em.

und die induzierte Emission

dN
4 ind.Em.

Im thermodynamischen Gleichgewicht gilt

aNY _(dNY (N
dr abs_ dt sp.Em. dt ind.Em.

Somit muss

N> Biug(v)

Ni Ay +Bpup(v)

AuBerdem ergibt sich das Verhéltnis der Besetzungs-
zahlen auch aus der Boltzmann- Verteilung:

N _ 68 T
Ni

Aus dem Vergleich dieser Ausriicke erhilt man

_ A
BipehV/ksT — By

up(v)

AuBerdem gilt fiir hohe Temperaturen, T — oo dass
die Energiedichte ebenfalls divergiert, us(v) — oco.
Somit muss

Biy = By,

d.h. induzierte Absorption und induzierte Emission
sind gleich wahrscheinlich. Damit wird

_ Az
Byp (ehV/ksT — 1)

ug(v)
Dieser Ausdruck kann fiir den Grenzfall hv < kgT
vereinfacht werden zu

8mv?
I/tf(V) = 3

kpT.

8.1.8 Photoeffekt

éinfallen-
des Licht

Ll

I
|

Abbildung 8.8: Prinzipieller Aufbau zur Messung
des Photoeffekts.

Ein weiterer Effekt, der mit der klassischen Theo-
rie nicht erklart werden konnte, war der Photoeffekt.
Abb. zeigt ein entsprechendes Experiment: hier
werden Metalloberflichen, insbesondere Alkalime-
talle, mit Licht bestrahlt. Dadurch werden Elektro-
nen freigesetzt, die sich mit einer bestimmten Ge-
schwindigkeit von der Oberfliche weg bewegen, al-
so eine kinetische Energie besitzen.

Die kinetische Energie kann gemessen werden,
wenn man bestimmt, wie grof} eine Spannung sein
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kann oder muss, damit die Elektronen gegen das
dufere Potential einen bestimmten Punkt erreichen
konnen. Wenn man also die Spannung erhoht, mit
der die Elektronen gebremst werden, so treffen ir-
gendwann keine mehr auf die Anode und der gemes-
sene Strom geht gegen Null.

Photozelle

D:fﬂ_‘::%flﬁﬂ AU:Z:‘/‘{::;J(%

Spektrallampe Prisma

Abbildung 8.9: Aufbau zur wellenldngenabhingi-
gen Messung des Photoeffekts.

Abb. zeigt einen Messaufbau, der es gestattet,
die Abhingigkeit der kinetischen Energie von der
Wellenlidnge des Lichtes zu messen. Die vorhandene
Lichtquelle erzeugt Licht bei verschiedenen diskre-
ten Wellenlidngen, welche man jeweils einzeln auf
die Probe fallen lésst.

Strom |
hohe Intensitat

niedrige Intensitat

-Uo Spannung U

Abbildung 8.10: Qualitatives Resultat der Messung
des Photoeffekts.

Misst man den Photostrom als Funktion der Be-
schleunigungsspannung, so findet man, wie in Abb.
8.10 gezeigt, dass bei geniigend stark negativer
Spannung der Strom verschwindet. Offenbar errei-
chen die Elektronen die Anode nicht. Wird das Po-
tential der Anode hoher, so erhilt man einen wach-
senden Strom, und ab einer schwach positiven Span-
nung bleibt der Strom konstant.

Steigert man die Intensitét des Lichtes, so nimmt der
Strom linear mit der Lichtintensitit zu. Die Sperr-
spannung bleibt hingegen konstant. Dies ist vorldu-
fig nicht erklérbar: offenbar ist die Energie der Elek-
tronen nicht von der optischen Leistung abhéngig.
Dagegen ist die Anzahl der Elektronen proportional
zur optischen Leistung.

8.1.9 Wellenlkingenabhiingigkeit

Andert man die Wellenlinge des Lichts, so indert
zum einen die Spannung Up, zum andern die Sét-
tigungsstromstirke. Bei zunehmender Wellenlinge
wird die Sperrspannung geringer, der Séattigungs-
strom grofer. Dies scheint aus zwei Griinden merk-
wiirdig: Offenbar hédngt also die Energie der Elektro-
nen von der Wellenldnge des Lichtes ab, nicht aber
von der Intensitét des Lichtes. Bei konstanter Inten-
sitdt nimmt jedoch die Zahl der emittierten Elektro-
nen mit zunehmender Frequenz des Lichtes ab.

N
o
|

kinetische Energie / eV
\

0 1 T T T
4 5 6 7 8

Frequenz v/ 10" Hz

Abbildung 8.11: Kinetische Energie der Photoelek-
tronen als Funktion der Frequenz
des Lichts.

In Abb. [.IT ist die gemessenen Sperrspannungen
gegen die Frequenz des einfallenden Lichtes aufge-
tragen. Die Resultate zeigen, dass fiir Frequenzen
unterhalb eines bestimmten Grenzwertes Vg keine
Elektronen austreten. Oberhalb dieses Grenzwertes
steigt die Energie der Elektronen linear an. Die kine-
tische Energie kann somit geschrieben werden als

Ekin =h(v—vy) = hv —A.

Es gibt somit eine Grenzfrequenz vy, unterhalb derer
keine Elektronen mehr emittiert werden.

Man interpretiert dieses Verhalten so, dass die Ener-
gie des Lichtes paketweise absorbiert wird. Ein ein-
zelnes Paket erhilt den Namen “Photon”. Jedes Pho-
ton kann ein Elektron aus dem Metall herauslosen.
Jedes Elektron besitzt also nur die Energie, die ihm
ein einzelnes Photon iibergeben kann:

hv = ge,kin +A.
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Ein Teil der Energie wird benétigt, um das Elektron
aus dem Metall herauszulésen. Diese Energie wird
als Austrittsarbeit A bezeichnet. Der Rest ergibt die
kinetische Energie &, 4, des Elektrons.

Aus der Steigung der Geraden kann man direkt die
Planck’sche Konstante bestimmen. Benutzt man z.B.
den Unterschied zwischen der kinetischen Energie
bei rotem und violettem Licht,

A& = (1,176 —0.078)eV = 1.098eV

1.76-107197

dann betrigt die entsprechende Frequenz-Differenz
Av = (7,35—4,81)-10""Hz = 2,54 - 10" Hz.
Daraus erhalten wir fiir die Planck’sche Konstante
AE  1,76-107"°)
Av  2,54-10'%Hz
Das Einstein’sche Postulat erklért nicht nur das Auf-
treten einer maximalen Wellenlénge, sondern auch
die Abnahme des Photostroms mit zunehmender op-
tischer Frequenz bei konstanter Intensitét: die glei-
che Lichtenergie wird jetzt auf weniger Photonen
verteilt, so dass weniger Elektronen erzeugt werden

konnen, allerdings besitzt jedes einzelne Elektron ei-
ne hohere kinetische Energie.

=6,9-107*Js.

8.1.10 Austrittsarbeit

Die Austrittsarbeit A ist eine Materialkonstante und
betrigt fiir Kalium:

A=4,5-10"Hzh=3,107°T = 1.9eV.

Meistens verwendet man hier als Einheit nicht Joule,
sondern Elektronenvolt (eV), wobei

leV=1,6-10""J

derjenigen Energie entspricht, die ein Elektron beim
Durchlaufen einer Spannungsdifferenz von 1 V er-
hilt.

Bei anderen Materialien betrigt die Austrittsarbeit
einige eV (siehe Abb. [8.12). Der Photoeffekt wird
u.a. im Photomultiplier verwendet, wo die Photo-
nen zunichst aus der Oberfldche eines Alkalimetalls
Elektronen herausschlagen. Man wandelt also sozu-
sagen Photonen in Elektronen um.

Metall AleV Imax
Na 2.28 543
Cs 1.94 639
Ca 3.20 387 \
Sr 274 452
Cu 4.48 277
Zn 427 290
Cr 4.45 278
Fe 4.63 268
Ni 4.91 252
Pt 5.36 231
Na2KSb 1.46 859

Abbildung 8.12: Austrittsarbeit fiir unterschiedliche
Metalle (links) und Photozelle.

8.1.11 Spektrallinien von Atomen

Die Existenz von stabilen Atomen ist eines der
wichtigsten Tatsachen, welche im Rahmen der klas-
sischen Physik nicht befriedigend erkldart werden
kann. Stellt man sich ein Atom als eine Art Son-
nensystem vor, in dem negativ geladene Elektro-
nen um positiv geladene Kerne kreisen, dann fithren
sie eine beschleunigte Bewegung durch. Im Rahmen
der klassischen Elektrodynamik stellen beschleunig-
te Ladungen die Quelle einer elektromagnetischen
Welle dar. Durch die Abstrahlung miisste das ato-
mare System an Energie verlieren. Dadurch verrin-
gert sich der Abstand, die Rotationsbewegung wird
schneller, die Beschleunigung und damit die Ab-
strahlung nehmen zu und das Elektron miisste in kur-
zer Zeit in den Kern stiirzen, unter Aussendung ei-
nes kontinuierlichen Spektrums von elektromagneti-
scher Strahlung.

Tatsdchlich sind Atome stabil. Im Grundzustand
strahlen sie keine Energie ab. Werden sie angeregt,
strahlen sie die Energie wieder ab, allerdings nur in
Form von spektral klar getrennten, schmalen Emis-
sionslinien, wie in Abb. [8.13 gezeigt. Dies deu-
tet darauf hin, dass Atome Strahlung in der Form
von “Energiepaketen” aufnehmen und abgeben. Die-
se Photonenenergien entsprechen Differenzen zwi-
schen stationdren Zustinden der Energie; Details da-
zu werden im Kapitel behandelt. Die Farbe des
Lichtes ist unabhingig von der Temperatur der Ato-
me, im Gegensatz zum schwarzen Strahler.
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‘Walframlampe (thermisch, kentinuierlich)

‘Wasserstoff (Balmer-Serie)

Natrium

Rubidium

Abbildung 8.13: Spektren von unterschiedlichen
Atomen.

8.1.12 Das Franck-Hertz Experiment

Ein weiteres wichtiges Experiment, welches als un-
abhéngiger Beleg fiir die Existenz von diskreten
Energiezustinden in Atomen angesehen wird, ist das
Franck-Hertz Experiment, welches erstmals in den
Jahren 1911 bis 1914 von Franck@ und Hert durch-
gefithrt wurde. Dieser Befund stiitzte das Bohr’sche
Atommodell (— Kapitel und trug zur Fortent-
wicklung der Quantenmechanik bei. Die beiden er-
hielten dafiir 1925 den Nobelpreis fiir Physik.

Gegenfeld

Hg-Gas

Elektronen

Abbildung 8.14: Franck-Hertz Experiment: Elektro-
nen werden emittiert und in einem
Feld zwischen Kathode und Anode
/ Gitter beschleunigt.

Abb. [8.14 zeigt den Versuchsaufbau. An der Gliih-

4James Franck (1882 - 1964)
SGustav Ludwig Hertz (1887 - 1975)

kathode werden Elektronen erzeugt. Diese werden
im elektrischen Feld zwischen Kathode und Anode /
Gitter beschleunigt. Die Rohre enthélt ein Gas, wel-
ches meist aus Quecksilber oder Neon besteht. Die
beschleunigten Elektronen stolen deshalb mit Ato-
men zusammen. Ist die Energie der Elektronen hoch
genug, um das Atom in einen hoher liegenden Zu-
stand anzuregen, erfolgt der Stof3 sehr viel effizien-
ter und inelastisch und das Elektron gibt den grofiten
Teil seiner kinetischen Energie an das Atom ab. Auf
Grund dieses Energieverlustes sind sie danach nicht
mehr in der Lage, die Anode zu erreichen, so dass
der dort gemessene Strom abnimmt.

0

Quecksilber:

¥

~
8
|

H

Anodenstrom

&

Gitterspannung

Abbildung 8.15: Franck-Hertz Experiment: Links
ein Bild der Lichtemission. Rechts
der Anodenstrom als Funktion der
Gitterspannung.

8.1.13 Der Comptoneffekt

I
Tg;so
\;ﬁw
vy

o
I

Rontgenlicht

&

R v S,

Intensitat

70 75
Wellenldnge / pm
Abbildung 8.16: Compton Effekt.

Streut man Rontgenlicht an freien (d.h. schwach ge-
bundenen) Elektronen, so stellt man fest, dass das
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gestreute Licht neben der Wellenldnge des einfallen-
den Lichtes auch Licht einer anderen Wellenlinge
enthilt. Abb.[8.16/zeigt einige Beispiele. Diese zwei-
te Wellenlédnge ist eine Funktion des Streuwinkels 0:

AL = (A-A")=A(1 —cosB) A.=24pm.

Am grofiten ist der Wellenldngenunterschied somit
in Riickwirtsstreuung, also fiir 6 = &. Der Effekt ist
unabhiingig vom verwendeten Probenmaterial. Die-
ses Experiment wurde erstmals 1923 von Arthur
Compton durchgefiihrt.

Dieser Effekt kann im Rahmen der Wellentheo-
rie der Rontgenstrahlung nicht interpretiert werden.
Man erhilt diesen Befund jedoch als Resultat ei-
ner einfachen Rechnung sofern man dem Rontgen-
licht Teilchencharakter zuschreibt, d.h. indem man
es als einen Strom von Photonen behandelt. Da die
Art der Atome keinen Einfluss auf den Streuprozess
hat kann man davon ausgehen, dass die Photonen an
Elektronen gestreut werden, welche nur schwach ge-
bunden sind.

Elektron
m/ﬁe Energie Ekin
e
/7
\/\/\,{’ 2 4 Y X
) AL
p1= X ~ 0
R gestreutes Photon
_\‘\E:ifa
h
Y p2 = 5V

Abbildung 8.17: Compton Streuung eines Photons
an einem freien Elektron.

Man geht also davon aus, dass jedes Photon einzeln
an einem Elektron gestreut wird, wie in Abb. [8.17
gezeigt. Fiir jeden dieser Streuprozesse gilt Energie-
erhaltung:

hv + moc2 = hv' +mc?.

Hier stellt m( die Ruhemasse des Elektrons und

mo
m =

2
)%
-z

die relativistische Masse des gestreuten Elektrons.
AuBlerdem gilt ein Erhaltungsgesetz fiir den Impuls

des Gesamtsystems. Der Impuls des Photons betrigt

hv hv  h
=m cC=——C=— = —
PpPh Ph 2 - 1

und der Gesamtimpuls des Systems in x-Richtung

h h
1= Tcos@—i—mvcosd)

und in y-Richtung

h
0= —-sin@ —mysin¢.

A

Die drei Gleichungen konnen aufgelost werden nach
der Anderung der Wellenlinge

h
A =A—-A =—(1—-cos8)=A.(1—cosH).
moc
Hier stellt
h ~12
Ae=—— =2,426-10"2m

moc

die Compton-Wellenldnge dar. Sie enthélt nur Natur-
konstanten, d.h. sie hdngt nicht vom Material oder
von der Wellenldnge des Rontgenlichtes ab. Da sie
im Picometer-Bereich liegt, muss man Licht mit ei-
ner vergleichbaren Wellenlidnge, also Rontgenlicht,
verwenden, um den Effekt beobachten zu konnen.

8.2 Wellencharakter der Materie

8.2.1 Wellen und Teilchen

o

Licht '.‘f; Materie o
- ('@?_- & 3,
# K \
(@~

'

t((‘wz\lW\/v

Teilchen Welle Teilchen Welle
Photoeffekt Beugung definierter Ort  delokalisiert
Impuls Interferenz ~ definierte Beugung

Nullpunktsenergie Geschwindigkeit Interferenz

Abbildung 8.18: “Typische”  Eigenschaften
Licht und Materie.

von
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Licht besitzt sowohl Teilchen- wie auch Wellencha-
rakter, wie in Abb. [8.18 zusammengefasst. Bei der
Diskussion des Strahlungsgesetzes hatten wir gese-
hen, dass es einen Teilchencharakter aufweist, eben-
so beim Photoeffekt. Allgemein tritt der Teilchen-
charakter bei der Wechselwirkung mit Materie in
den Vordergrund. Andererseits hatten wir im Zusam-
menhang mit der Ausbreitung, insbesondere bei In-
terferenz und Beugung sowie bei der Polarisation
deutliche Zeichen des Wellencharakters kennen ge-
lernt. Die Beziehung zwischen den Wellen- und den
Teilcheneigenschaften wird durch die Beziehungen

h
&=hv=how und p:hk:Z
hergestellt, welche die Energie & und den Impuls p
eines Teilchens in Beziehung setzen zu den Wellen-
eigenschaften Frequenz v und Wellenldnge A, resp.
Wellenzahl k.

Genauso wie fiir Licht findet man auch bei Mate-
rie beide Aspekte. Mit Materie sind hierbei Teilchen
gemeint, die eine nicht verschwindende Ruhemasse
aufweisen, wie z.B. Elektronen, Neutronen, Atome,
Golfbdlle, Planeten, .... . Dafiir verwendet man tibli-
cherweise den Begriff “Teilchen”. Gewohnliche Ma-
terie besitzt aber nicht nur einen Teilchencharakter,
sondern ebenso Welleneigenschaften. Allerdings tre-
ten die Welleneigenschaften weniger hiaufig zu Tage
als der Teilchencharakter.

Abbildung 8.19: Louis Victor de Broglie, 1892-
1987.

Die Moglichkeit, dass auch Materie Welleneigen-
schaften aufweisen konnte, wurde erstmals von
Louis de Broglie (— Abb. [8.19) 1923 geiuBert.
Ausgangspunkt seiner Uberlegungen waren das Fer-
mat’sche Prinzips der Optik und des Hamilton’schen

Prinzips der Mechanik, welche beide besagen, dass
das Licht, resp. ein Korper, unter den moglichen
Wegen denjenigen “wéhlen”, welcher am wenigsten
Zeit benotigt.

Er spekulierte, dass fiir Materie die gleichen Bezie-
hungen zwischen Energie und Frequenz, resp. Im-
puls und Wellenlidnge gelten konnten wie fiir Licht.
Dann miisste jedes Teilchen durch eine Welle

-

p :Aei(wt—k?)

mit Wellenlidnge, resp. Wellenzahl

h
A=" k=L
)4 h
und Frequenz
a)—é oder v—€
h h

beschrieben werden.

8.2.2 Ausbreitung und Dispersion

Allerdings ist eine ebene Welle nicht die optima-
le Darstellung fiir ein Teilchen, da es damit iiber
den gesamten Raum delokalisiert wire. Eine bessere
Darstellung ist statt dessen eine Wellengruppe, wel-
che in der Nihe der klassischen Position des Teil-
chens lokalisiert ist. Diese Postulate wurden 1927
experimentell belegt und 1929 erhielt de Broglie da-
fiir den Nobelpreis.

Wenn diese Annahme sinnvoll ist wiirde man erwar-
ten, dass die Wellengruppe in der Nihe des Teilchens
lokalisiert bleibt, wenn sich dieses bewegt. Wir be-
trachten somit ein bewegtes Teilchen mit Masse m
und Geschwindigkeit v. Seine kinetische Energie ist
dann

&= %vz.
Damit wird die Kreisfrequenz
_E&_m’
h 2h

und der Betrag des Wellenvektors

Lo b _m

r= (8.1)

345



8 Grundlagen der Quantenmechanik

Wir 16sen auf nach der Geschwindigkeit v = hik/m
und eliminieren diese aus dem Ausdruck fiir

e
C2m’

Die Geschwindigkeit der Wellengruppe sollte nun

gegeben sein als

_do  hk

VG = dk = m =W

Somit ist sichergestellt, dass sich die Wellengruppe
mit der gleichen Geschwindigkeit bewegt wie das
klassische Teilchen.

8.2.3 Beispiel: Elektronenwellen

Die Wellenldnge der Materiewelle sollte damit in-
vers proportional zum Impuls des Teilchens sein, sei-
ne Frequenz proportional zur Energie. Aufgrund der
Kleinheit der Planck’schen Konstante folgt, dass fiir
massive Korper die Frequenz sehr grof3 wird und die
Wellenlidnge sehr klein. Um sie iiberhaupt beobach-
ten zu konnen, sollte man deshalb moglichst leichte
Teilchen verwenden. Das leichteste stabile Teilchen
ist das Elektron, welches auch leicht zu erzeugen ist.

Fiir die Berechnung der Wellenlidnge wird zunichst
die Geschwindigkeit benotigt. Wir betrachten Elek-
tronen mit einer kinetischen Energie, wie sie z.B. in
Kathodenstrahlen verwendet werden, also z.B.

Ein = 100eV = 1.6-107177J.

Ihre Geschwindigkeit ist damit

Sie ist damit noch weit unterhalb der Lichtgeschwin-
digkeit und rechtfertigt die nichtrelativistische Rech-
nung. Die Wellenlénge ist damit

h 6-1073*

_ ~ —10
moy 910316106 10T

h
A = — =
4
also etwa 1 Angstrom. Diese Wellenldnge ist sehr
klein im Vergleich zu makroskopischen Distanzen,
aber sie ist vergleichbar mit atomaren Distanzen.

Eine Bestitigung der Wellenhypothese kann somit
erreicht werden, wenn man zeigen kann, dass peri-
odische Anordnungen von Atomen Beugungseffek-
te erzeugen. Diese Moglichkeit wurde 1925 von El-
sasser vorgeschlagen. Eine Voraussetzung dafiir ist,
dass Elektronen elastisch gestreut werden, so dass
die reflektierte Welle eine feste Wellenlédnge auf-
weist.

Elektronen-
quelle

Vergleich der
Beugungsmuster von
Réntgen und
Elektronenstrahlen

Abbildung 8.20: Beugung von Elektronen an einem
Kristall.

Die erste experimentelle Bestitigung fiir de Bro-
glie’s Vermutung wurde 1927 von Davisson und
Germer publiziert. Sie benutzten Streuung von Elek-
tronen an einer Kristalloberfliche. Davisson hat da-
fiir 1937 den Nobelpreis erhalten. Seine Rede anlas-
slich der Preisverleihung ist u.a. deshalb interessant
weil sie zeigt, wie Forschung wirklich ablauft, d.h.
nicht immer so geradlinig wie es beim Studium von
Lehrbiichern teilweise erscheint, sondern u.a. durch
eher zufillige Begegnungen, Diskussionen und ex-
perimentelle oder technische Randbedingungen dik-
tiert. Auszugsweise ist diese Rede auch im “Berke-
ley Physics Course, Band 4 (QM), Kapitel 5.12 wie-
dergegeben”.

Es stellt sich natiirlich die Frage, weshalb solche
Beugungseffekte im Alltag nicht beobachtet werden.
Dafiir kann man z.B. die Wellenlédnge eines Staub-
korns ausrechnen, welches einen Durchmesser von
1 um, eine Masse von m = 10~!% kg und eine Ge-
schwindigkeit von 1 mm/s besitzt:

h
=—=6,6-10""m.
my

A=

< s

346



8 Grundlagen der Quantenmechanik

So kurze Wellenldngen, weniger als der Durchmes-
ser eines Atomkerns, sind sehr schwierig zu beob-
achten.

8.2.4 Interferenz und Beugung

Unabhingig davon fand G.P. Thomson das glei-
che Resultat mittels Transmission eines Elektronen-
strahls durch einen diinnen Kristall. Das Experiment
wie auch das Resultat ist sehr @hnlich wie bei der
Rontgenbeugung: Man verwendet einen Elektronen-
strahl anstelle eines Rontgenstrahls und misst die In-
tensitdt der gestreuten Elektronen als Funktion der
Orientierung, wie in Abb. [8.20 gezeigt. Genau wie
bei Rontgenstrahlen erhélt man ein Beugungsmaxi-
mum wenn die Bragg - Bedingung

h
asin@=nl ="
p
mitn =1,2,3,... erfiillt ist.

Abbildung 8.21: Interferenzmuster von Elektronen,
welche durch einen Doppelspalt
geflogen sind.

Genau wie bei Lichtwellen kann man bei Materie-
wellen Interferenzeffekte beobachten. Im Beispiel
von Abb. [8.21 wurde eine Elektronenwelle durch
einen Doppelspalt geschickt. Die Interferenz zwi-
schen den beiden Pfaden erzeugt eine Modulation
der Intensitdt auf dem Schirm, welche mit zuneh-
mender gesamter Teilchenzahl beobachtet wird. Das
interessante an diesem Experiment ist, dass es die
Teilchen- und Wellenaspekte im gleichen Experi-
ment aufzeigt. So messen wir die Ankunft jedes Teil-
chens auf dem Schirm z.B. mit einem Zhler, der fiir

jedes Teilchen einen Ort und eine Zeit des Auftref-
fens liefert. Dieser Teil entspricht somit dem Teil-
chencharakter. Andererseits konnen wir von den ein-
zelnen Teilchen nicht sagen, ob sie durch den unte-
ren oder oberen Spalt durchgetreten sind. Diese In-
formation wére bei einem klassischen Teilchen ver-
fligbar, wiirde aber das Interferenzmuster zerstoren.

Elektronen- ’j—
quelle % I
Objekt )
agnetische
HTTHH Linsen
-{{}
————
Bildschirm

Abbildung 8.22: Schematische Darstellung eines
Elektronenmikroskops.

Elektronenwellen konnen auch durch Linsen ge-
beugt und damit fiir die Mikroskopie verwendet wer-
den. Abb. [8.22 zeigt schematisch den Aufbau ei-
nes Elektronenmikroskops. Die Elektronen werden
durch ein System von elektrischen und magneti-
schen Linsen fokussiert und auf einen Bildschirm
projiziert.

(&\HHHH
u‘é‘.,

‘"mi}

Abbildung 8.23: Stehende Elektronenwellen in ei-
nem Ring aus Eisenatomen. [3]

Heute konnen Welleneigenschaften u.a. auch mit ei-
nem Tunnelmikroskop nachgewiesen werden. Abb.
[8.23 zeigt ein Experiment, bei dem 48 Eisenato-
me auf einer Kupferoberfliche in einem Ring an-
geordnet wurden. Die Elektronenwellen werden an
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diesen Fremdatomen reflektiert und bilden stehende
Oberflaichenwellen, welche mit einem Rastertunnel-
mikroskop abgebildet wurde [3].

8.2.5 Neutronen

Ein anderes wichtiges Beispiel sind Neutronen, wel-
che ebenfalls fiir Sruktur-Untersuchungen verwen-
det werden. Insbesondere werden sogenannte ther-
mische Neutronen verwendet, d.h. Neutronen, deren
kinetische Energie der mittleren thermischen Ener-
gie bei Raumtemperatur entspricht

2 3
P _CheT i

= T =300K.
2mN 2

In Elektronenvolt entspricht diese Energie etwa 26
meV.

Aus der Energie kann man den Impuls von thermi-
schen Neutronen berechnen:

P = 3kBTmN

und ihre Wellenlédnge

Lo M h
N p_\/3kBTmN
6-1073*
= m
V/3-1,4-10723.300-1,7-10-27
~ 107'%m,

also wiederum etwa ein Angstrém, wie bei den 100
eV Elektronen aus Kapitel Die hier diskutier-
ten Neutronen haben jedoch eine kinetische Energie,
die um einen Faktor 100/0,026=3846 niedriger ist.
Dieser wird kompensiert durch das Massenverhilt-

nis
"N 1836.

ne

Bei gleicher Energie ist der Impuls p = v/2méy;, von
Neutronen um den Faktor

% ~ /1836 ~ 43

groBer als bei den Elektronen und die Wellenlinge
deshalb um den gleichen Faktor kiirzer.

8.2.6 Schwerere und zusammengesetzte
Teilchen

Welleneigenschaften kann man nicht nur Elementar-
teilchen zuordnen, sondern auch zusammengesetz-
ten Teilchen wie Neutronen, Atome oder Molekiile.
GemiB Gleichung wird jedoch mit zunehmen-
der Masse die de Broglie Wellenlidnge kiirzer. Er-
ste Versuche dazu wurden 1930 von Estermann und
Sterlﬁ mit Helium durchgefiihrt.

L"‘\/
174 He; 100°K
Dreburg 0°
7
v F K He ; 600°K
Dretung 0°

W Hey 300K |57
Dreturng 45°

Hos 650K
Drehurng 0° |7

L1

x

~

)

—

Z He; 300K |5

z
7

e

Abbildung 8.24: Beugung von He und H; an NaCl.

Ein Heliumatom hat eine Masse von 6,7 - 10727 kg,
also dhnlich wie ein Neutron (4 mal), und damit bei
thermischen Geschwindigkeiten die halbe Wellen-
lange. Estermann und Stern haben die Beugungsma-
xima bei der Reflexion an NaCl Kristallen gemessen.
Wenn die Bragg-Bedingung erfiillt ist, findet man ei-
ne erhohte Reflektivitit, wie in Abb. [8.24 gezeigt.
Da es sich um thermische Strahlen handelt, besitzen
die Teilchen eine relativ breite Verteilung von Ge-
schwindigkeiten und Wellenldngen und die Reflexi-
onsmaxima sind relativ breit. Es ist aber moglich, die
mittlere Wellenlédnge der Strahlen zu &dndern, indem
man die Temperatur und / oder die Art des Atoms /
Molekiils dndert. Dadurch werden die Positionen der
Beugungsmaxima verschoben.

Der nichste Schritt ist von Atomen zu Molekiilen.
Auch dieser Schritt wurde bereits von Estermann

6. Estermann and O. Stern, Z. Phys. 61 (1930) 95.
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und Stern durchgefiihrt, welche neben He auch die
Beugung von molekularem Wasserstoff, H,, unter-
suchten. An groferen Molekiilen wurden erst vor
wenigen Jahren Beugungseffekte nachgewiesen.

Wave-particle duality
of Cgy molecules

100 nm diffraction
grating

Scanning photo-
lonization stage

OVt‘lW“_ ///)f //'l/
Lo g

10 pm 10 ym

Collimation slits

Abbildung 8.25: Doppelspaltexperiment mit Cgp-
Molekiilen.

Dafiir wurde ein Strahl von Cgy Molekiilen zu-
nichst kollimiert und dann auf ein Beugungsgitter
geschickt, wie in Abb. [8.25 gezeigt [2]. In einer Di-
stanz von ca. 1 m wurden dann die Beugungsmaxima
gemessen.

Werden aber die Massen grofler, so werden die Wel-
lenldngen extrem kurz. Bei einer Kegelkugel, z.B.,
der wir der Einfachheit halber eine Masse von 1 kg
und eine Geschwindigkeit von 1 m/s zuordnen, wird
der Impuls p=1 mkg/s und die de Broglie Wellenlédn-

ge

=" _610%m,
p

Bei der Diskussion der Optik hatten wir gefunden,
dass wir die Welleneigenschaften eines Teilchens
nicht beobachten konnen, wenn die Dimensionen
des Apparates grof} sind im Vergleich mit der Wel-
lenldnge. Diese Voraussetzung ist offensichtlich fiir
eine Kegelbahn erfiillt. In diesem Bereich kann die
Ausbreitung mit Hilfe der geometrischen Optik, re-
spektive der klassischen Mechanik diskutiert wer-
den.

Man kann noch weitergehen und z.B. die Wellenlin-
ge der Erde bestimmen. Deren Masse betriigt 6 - 10%*
kg. Auf der Bahn um die Sonne hat sie eine Ge-
schwindigkeit von ca. 30 km/sec und damit eine

Wellenlinge von 4 - 1075 m. Deshalb ist die klassi-
sche Mechanik, welche die Welleneigenschaften der
Materie vollstindig vernachléssigt, eine ausgezeich-
nete Niherung fiir die Beschreibung von astronomi-
schen Objekten.

8.3 Der quantenmechanische
Formalismus

8.3.1 Historische Vorbemerkungen

Rydberg Rifz

Spektrum : :

lenarc \
Thomson  Rutherford \

Afom
Heisenberg

’) & s
schwarze Strahlung s ;q(" Sommerfeld Quaontenmerhanik

/ de Broglie
Licht- /

quanten
L. O_ _____ O—

wien Einstein

Schrodinger

Quantenfeldtheorie

Abbildung 8.26: Schematische Darstellung der Ent-
wicklung der Quantenmechanik.

Die oben dargestellten experimentellen Hinweise
wurden im Laufe der ersten Jahrzehnte des 20.
Jahrhunderts durch die neu entwickelte Theorie der
Quantenmechanik iiberwunden. Abb. [8.26 fasst die
konzeptionelle Entwicklung zusammen.

Lingemann

ubens e Hasendhe!
Sommerfeld  De Broge Hastelet

Somvay Lorentz Nnugsen ' Werzen Jeans Rutherford
’ wie

war n
Becein* Meme Cure Poincaré

Einstein  Langerin
Kamertingh Ones

Abbildung 8.27: Teilnehmer der 1. Solvay-Konfe-
renz.

Im Vergleich zu heute war es eine relativ kleine Zahl
von Physikern, welche diese Theorie entwickelten.
Abb. [8.27 zeigt einige von ihnen anlisslich der 1.
Solvay Konferenz.
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8.3.2 Grundlagen

Der Formalismus der Quantenmechanik verwendet

¢ Die Zustandsfunktionen ¥: sie enthilt alle In-
formationen iiber den Zustand des relevanten
Systems.

* Operatoren A, welche auf die Zustandsfunktion
wirken. Diese beschreiben physikalische Grii-
Ben wie Ort, Impuls oder Energie.

Die Zustandsfunktion fasst das vorhandene Wissen
iber den Zustand des Systems zusammen. Sie be-
schreibt eine Welle, welche im einfachsten Fall (ebe-
ne Welle) dargestellt werden kann als
\P()C,[) _ aei(kxxfa)t) — aei(pxxfé”t)/h’

wobei die Beziehungen & = hw, p = hk verwendet
wurden.

Zu den charakteristischen Eigenschaften der Quan-
tenmechanik gehort, dass sie linear ist. Die bedeutet,
dass wenn 2 Zustinde ¥, und ¥, erlaubte Zustidnde
sind, dass immer auch die Uberlagerung

Y =c¥ +c¥; c%—i—c%:l

ein erlaubter Zustand ist.

Die Wahrscheinlichkeit, ein Teilchen, das durch die-
se Wellenfunktion beschrieben wird, am Ort x zu fin-
den, ist

Hier wurde vorausgesetzt, dass die Funktion nor-
miert ist, d.h.

/_i](x)dx:l

fiir ein Teilchen. Die Wahrscheinlichkeit, das Teil-
chen in einem bestimmten Volumenelement zu fin-
den, ist entsprechend gegeben durch das Integral
iiber das betreffende Volumenelement.

Es existieren verschieden Darstellungen dieser
Funktionen und Operatoren. Eine beliebte ist die
Darstellung der Funktionen als Vektoren und der
Operatoren als Matrizen.

8.3.3 Quantenmechanische Messungen;
Erwartungswerte

Aus den Anfiangen der Quantenmechanik hat man
einen Formalismus fiir die Beschreibung von Mes-
sungen entwickelt. Misst man eine GroB3e, die einem
Operator A entspricht, so ist der Erwartungswert fiir
die Messung

(WlA|Y)

= Ty

Hier stellt (a|b) das Skalarprodukt dar.

Ist der Zustand W; ein Eigenzustand von A, gilt also
A‘Pi = ai‘Pi
fiir einen Eigenwert q;, so ist offenbar

(Wi|¥7)
(A) = q; T a;.

Meist wihlt man die Zustandsfunktionen ¥; nor-
miert, (¥;|¥;) = 1. Die Eigenwerte von A sind die
moglichen Resultate von dispersionsfreien Messun-
gen. Ist das System vor der Messung nicht in einem
Eigenzustand, so wird es durch die Messung in einen
Eigenzustand gebracht. Eine Messung im Sinne des
quantenmechanischen Messprozesses ist somit nicht
ein einfaches “Hinschauen und Ablesen des Resulta-
tes”, es beeinflusst im Allgemeinen den Zustand des
Systems. Die Ausnahme ist nur der Fall wo sich das
System bereits in einem Eigenzustand der Observa-
blen (d.h. des Operators, welcher gerade gemessen
wird) befindet.

Ein allgemeiner Anfangszustand kann als Linear-
kombination der Eigenzustinde geschrieben werden,

Y=Y ¥ 1) Zyci\Z =1,
i

1

da diese eine vollstidndige Basis darstellen. Bei einer
Messung geht der Zustand dann mit Wahrscheinlich-
keit |c;|? in den Zustand ¥; iiber, und das Resultat
der Messung ist durch a; gegeben, also den Eigen-
wert des Operators, der zum entsprechenden End-
zustand gehort. Mehrere Messungen an einem Su-
perpositionszustand ergeben deshalb unterschiedli-
che Resultate. Die Breite der Verteilung der Messre-
sultate hdngt von der Art des Superpositionszustands
ab.
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Beispiel: Ein Teilchen sei in einem Zustand, welcher
als Superpositionszustand einer Verteilung von ebe-
nen Wellen beschrieben werden kann,

ko .
Y= / c(k)e™*,
—ko

Hier stellt ko die Breite der Verteilung dar. Offen-
bar hat dieses Teilchen (im Gegensatz zu einem Teil-
chen, das als ebene Welle beschrieben werden kann),
keinen scharfen Impuls.

Fiihrt man an diesem Teilchen eine (ideale) Messung
des Impulses durch, so kann man als Resultat nur ei-
ne Eigenfunktion des Impulses, d.h. eine ebene Wel-
le erhalten. Nach der Messung befindet sich das Teil-
chen somit im Zustand ¢***. Wird an diesem Zustand
nochmals der Impuls gemessen, so ist das Resultat
immer #ik, und der Zustand dndert sich nicht mehr.

8.3.4 Die wichtigsten Operatoren

Die wichtigsten Operatoren der Quantenmechanik
sind Ort X, Impuls ﬁ und Energie . Der Ortsope-
rator entspricht in der Ortsdarstellung einer Multipli-
kation mit X, d.h.

Y = .

Beim Photon hatten wir bereits gesehen, dass der Im-
puls einer harmonischen Welle als

p=hk
geschrieben werden kann. Dies kann verallgemei-

nert werden. Im eindimensionalen Fall erhidlt man
die Wellenzahl k als

PR O (G
= —l— =1 .
etkx ¥ (x)

Damit wird der Impulsoperator in 3 Dimensionen

p=—ihV = —ih

FlooM

Der Energicoperator wird iiblicherweise als % (Ha-
miltonoperator) geschriebe Man erhilt ihn aus

"Das *-Zeichen markiert Operatoren. Wenn keine Verwechs-
lungsgefahr besteht wird es meist weggelassen

dem klassischen Ausdruck fiir die Energie eines Sy-
stems, indem man Ort und Impuls durch die entspre-
chenden Operatoren ersetzt. So ist der Hamiltonope-
rator eines freien Teilchens gegeben durch die kine-
tische Energie:

2

@([)kin == 57’/”
und somit
N2
7 ﬁz B <—ihV> B H2V2
2m 2m  2m

8.3.5 Schrodingergleichung

Die zeitliche Entwicklung des Systems, d.h. die
Zeitentwicklung von W(x,7) ist gegeben durch die
Schrodingergleichung
. 0y
V(7 1) = lhE‘P(r,t).

€ bezeichnet den Hamiltonoperator des Systems.
Dieser Operator entspricht dem quantenmechani-
schen Ausdruck fiir die Energie.

Besonders wichtig sind diejenigen Losungen der
zeitabhdngigen Schrodingergleichung, die Eigen-
funktionen W; des Hamilton-Operators darstellen,
d.h.

%q"i(??l‘) = éilpl(?J) (82)

Hier entspricht &;, der Eigenwert, der Energie des
entsprechenden Zustandes. Aus Eigenzustidnden er-
hidlt man Losungen der Schrodingergleichung, in-
dem man sie als Produkt eines rdumlichen An-
teils W;(7) mit einem zeitabhingigen Phasenfaktor
e~t/M schreibt:

W,(7,1) = W (F)e /M,

Die Phase ist somit linear in der Zeit und in der Ener-
gie &; des Zustandes. Setzt man diese Funktion in die
urspriingliche Gleichung (8.2) ein, so erhilt man

SO, (F)e 4t/ ih\ﬂ-(?)ie—i@”‘ﬂ/h

= &¥(F)e /N,
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Division durch den zeitabhiingigen Faktor e ~4/% er

gibt die “stationére” oder zeitunabhingige Schrodin-
gergleichung

V(7)) = EWi(F).

Hier handelt es sich um eine Eigenwertgleichung,
die nicht mehr von der Zeit abhéngt.

Q4

2

[

C

L

——

&3 ——— g
Es ——
(91 qjl

Abbildung 8.28: Energie-Eigenwerte und Eigenzu-
stinde.

Die Losungen dieser Gleichung stellen die statio-
niren Zustinde des Systems dar (— Abb. [8.28). Sie
bilden die natiirliche Basis fiir die Beschreibung ei-
nes quantenmechanischen Systems. Diese Zustén-
de werden oft einfach als “die Zustinde des Sy-
stems”’ bezeichnet, auch wenn nur die zeitunabhin-
gigen (bis auf den Phasenfaktor) Zustinde gemeint
sind. Die zeitunabhingige Schrodingergleichung be-
schreibt somit nur die stationdren Zustéinde.

Die zeitabhingige Schrodingergleichung gilt fiir alle
quantenmechanischen Zustidnde und beschreibt die
zeitliche Entwicklung eines Systems, welches sich
in einem beliebigen Zustand befindet.

8.3.6 Heisenberg’s Unschirfenrelation

In Kap. wurde gezeigt, dass nach einer idealen
quantenmechanischen Messung des Impulses das
Teilchen in eine ebene Welle kollabiert. Der Ort
des entsprechenden Teilchens ist nicht scharf defi-
niert, das Teilchen ist gleichmiBig tiber den gesam-
ten Raum verteilt. Fiir einen allgemeinen Zustand
sind weder Ort noch Impuls exakt bestimmt sind. Ist
z.B.

Wy / —(k—ko)2/ AR ik

d.h. die Verteilung im Impulsraum ist eine Gaul-
Funktion, so ist auch die Verteilung im Ortsraum ei-
ne Gauf3-Funktion.

Fiihrt man zwei Messungen A und B hintereinander
durch, so hingt das Ergebnis offensichtlich von der
Reihenfolge der Messungen ab: das System ist am
Schluss in einem Eigenzustand des zuletzt gemesse-
nen Operators. Beide Messungen nacheinander erge-
ben das Resultat

¥ ABY.

Fiir eine andere Reihenfolge der Messungen ist der
Endzustand i.A. unterschiedlich, sofern

AB—BA—[A,B #0.

Dann ist es nicht moglich, beide Gréen mit belie-
biger Genauigkeit zu messen. Der Operator [A,E]
wird als Kommutator (Vertauschungsoperator) be-
zeichnet.

d > A: Ort unscharf d < A: Ort scharf

IH\L

Impuls scharf (=0)

Impuls unscharf

Abbildung 8.29: Unschirfe bei Beugung von Wel-
len.

Den Einfluss einer Messung auf das Resultat einer
spateren Messung eines konjugierten Operators (z.B.
Ort / Impuls) kann man gut anhand einer Welle be-
schreiben. Wie im Beispiel von Abb. [8.29 lisst man
die Welle durch einen schmalen Spalt laufen. Da-
mit kann man ihren Ort (senkrecht zur Ausbreitungs-
richtung) mit beliebiger Genauigkeit (der Breite des
Spaltes) bestimmt. Die Beugungseffekte fiihren je-
doch dazu, dass die Wellenlédnge (d.h. der Impuls) in
die entsprechende Richtung nicht mehr gut definiert
1st.
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Fiir Ort- und Impuls gilt
[avl’a] = —ih [a7pﬁ] =0 a?ﬁ:x7yvz'

Fiir das mittlere Schwankungsquadrat der Messre-
sultate gilt:

(Aa)* = (0 — @)* ApgAa >

N S

Dies wird als Heisenberg’sche Unschirfenrelation
oder Unbestimmtheitsrelation bezeichnet. Sie wurde
1927 von Werner Heisenberg formuliert.

8.4 Eindimensionale Probleme

Wihrend realistische Quantensysteme nur nume-
risch behandelt werden konnen, gibt es eine Reihe
von einfachen Modellen, welche analytisch behan-
delt werden konnen und trotzdem relevante Resulta-
te Uiber reale Systeme liefern. In vielen Fillen reicht
es, diese in einer Dimension zu behandeln.

8.4.1 Der harmonische Oszillator

Ein wichtiges Beispiel fiir ein quantenmechanisches
System in einer Dimension ist der harmonische Os-
zillator. Er beschreibt zum Beispiel die Schwingung
von Atomen in Molekiilen und Festkorpern, aber
auch alle anderen schwingungsfihigen Systeme in
der Nihe ihres Potenzialminimums.

Wie in der klassischen Physik ist der harmonische
Oszillator gegeben durch ein quadratisches Potenzial
V(x) = ax®.
Unter Beriicksichtigung der kinetischen Energie er-
hilt man den Hamiltonoperator
2

2.2
p m-x
A, =L
ho = om 2

Setzt man dieses Potenzial in die Schrodingerglei-
chung ein, so findet man, dass die Energien durch
den Ausdruck

1
&= —)h
(n+5)hv

gegeben sind, d.h. sie sind dquidistant und der Zu-
stand niedrigster Energie liegt um ein halbes Quant
tiber dem Minimum der Potenzialkurve. Die Ener-
giedifferenz v hingt ab von der Kriimmung des
Potenzials und von der Masse des bewegten Teil-
chens. Dies ist einer der wichtigsten Unterschiede
zwischen der klassischen und der Quantenmecha-
nik. Die Frequenz v ist die Schwingungsfrequenz
des entsprechenden Systems, z.B. die Frequenz ei-
ner Molekiilschwingung.

E
v [/
En=mn+ ;)hx ‘ Z

X

Abbildung 8.30: Energien und Eigenzustinde (Re-
alteile) des harmonischen Oszilla-
tors.

Abbildung [8.30 zeigt eine graphische Darstellung
der Eigenzustinde des harmonischen Oszillators. Im
Grundzustand ist das Maximum der Zustandsfunkti-
on in der Mitte des Potenzials. Der erste angeregte
Zustand weist einen Nulldurchgang auf, der zweite
zZwei etc.

8.4.2 Teilchen im Potenzialtopf

Ein weiteres einfaches Beispiel ist gegeben durch
das Potenzial

Ux) = 0 firO<x<L

oo sonst.

Die potenzielle Energie verschwindet somit im Be-
reich des “Kastens” [0,L] und ist unendlich auBer-
halb. Man bezeichnet es deshalb als Teilchen im Po-
tenzialtopf (particle in a box). Dies ist ein wichtiges,
wenn auch idealisiertes System, das eine gute Néhe-
rung fiir viele reale Systeme darstellt. So werden in
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der Halbleiterphysik haufig Elektronen in sogenann-
te Potentialtopfe gebracht, u.a. um damit Halbleiter-
laser herzustellen. Auf dhnliche Weise wird Licht in
Glasfasern gefiihrt, z.B. bei der Dateniibertragung.
Dies ist auch ein gutes Modell fiir die Bindung von
gewissen Elementarteilchen in Atomkernen.

Der Hamiltonoperator fiir dieses System enthilt wie
beim freien Teilchen kinetische Energie, sowie zu-
sétzlich den Beitrag der potentiellen Energie

P’ 297 1

H = %—FU(X) =—h ﬁ%+U(x).
Da das Potential auflerhalb der Mulde unendlich
grof ist, wiirde eine Komponente der Wellenfunkti-
on in diesem Bereich zu einer unendlich hohen Ener-
gie filhren. Wir interessieren uns aber nur fiir Zustén-
de mit endlicher Energie, so dass wir fordern miis-
sen, dass die Zustandsfunktion auflerhalb der Mul-
de verschwindet. Da die Zustandsfunktion stetig sein
muss, gilt auch

W(0) =P(L) =0. (8.3)

Damit kénnen wir unsere Betrachtungen auf den Be-
reich der Potentialmulde O < x < L beschrinken und
die Gegenwart des Potentials iiber die Randbedin-
gungen (8.3) beriicksichtigen. Das Teilchen ist somit
gebunden, es muss sich mit Wahrscheinlichkeit 1 in-
nerhalb des Potentialtopfs aufhalten:

L
L/)athKx)P:: 1.
0

Innerhalb des Potentialtopfs verhélt sich das System
wie ein freies Teilchen, welches durch eine ebe-
ne Welle beschrieben wird. Mit der Randbedingung
(8.3) erhdlt man folgende Funktionen als Losung der
Schrodingergleichung:

nmwx

an(x,t) = Cn Sin(T)e_iw”l n= 1,2,. e

Der Wellenvektor ist somit k = n7 /L und die Energie

ist gleich der kinetischen Energie

n? 2 h? _ n*h?
2ml?  8ml?’

K2k?
éakin - m -

Die Energie steigt somit quadratisch mit dem Index
n. Die Zustandsfunktionen weisen mit zunehmender

w,m

w2

0 L Ort x

Abbildung 8.31: Die 3 niedrigsten Zustinde fiir ein
Teilchen in einem Potenzialtopf.

Energie eine groer werdende Zahl von Nulldurch-
gingen, so genannten Knoten auf. In Abb. [8.31 sind
jeweils die Aufenthaltswahrscheinlichkeiten darge-
stellt. Mit zunehmender Energie werden die Wellen-
langen kiirzer, was einem zunehmenden Impuls und
damit zunehmender kinetischen Energie entspricht.
Interessant ist auch, dass damit die Zustandsfunkti-
on des Teilchens in Bereiche aufgeteilt wird, zwi-
schen denen die Wahrscheinlichkeit, das Teilchen zu
finden, verschwindet. Solche Zustinde, in denen das
Elektron sich nicht mehr frei bewegen kann, sondern
auf einen lokalen Bereich beschrinkt ist, werden als
lokalisierte Zustidnde bezeichnet.

8.4.3 Anwendung:
Halbleiter-Quantenstrukturen

Abbildung 8.32: GaAs Quantenfilm.

Obwohl das Teilchen im Potentialtopf zunédchst nur
ein mathematisch angenehmes Modellsystem ist,
kann man solche Systeme heute in guter Ndherung
verwirklichen. Zu den wichtigsten Beispielen geho-
ren Elektronen in Halbleiter-Schichtstrukturen. Abb.
[8.32 zeigt eine entsprechendes Beispiel,
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Indem man die Zusammensetzung auf atomarer Ska-
la kontrolliert, kann man ein effektives Potenzial
fiir die Elektronen erzeugen, welches sie z.B. in
einen sog. “Quantentopf” einschlieft. Solche Struk-
turen sind inzwischen bei der Herstellung von La-
sern sehr wichtig geworden. Natiirlich stimmt das
Modell nicht exakt, aber es stellt eine erste Nihe-
rung dar. Die wichtigste Abweichung ist, dass das
Potenzial auBerhalb des ‘Topfs’ endlich ist.

Dicke des

Quantentopfs 8 10 12 15 19nm
= THHHEL

70 8do 810 850
Wellenlange A [nm]

Abbildung 8.33: Photolumineszenz einer Probe mit
5 unterschiedlich dicken Quan-
tentopfen.

Vergleicht man Quantentdpfe mit unterschiedlicher
Dicke, so erwartet man, dass die Energie der Elek-
tronen etwa proportional zu 1/L? ansteigt. Dies wird
durch experimentelle Daten bestitigt. In der Indu-
strie wird dieser Effekt benutzt, um die Wellen-
linge von Halbleiterlasern anzupassen. Abb. [8.33
zeigt entsprechende Messdaten. Gemessen wird hier
die Energiedifferenz zwischen Elektronen im Lei-
tungsband und dem oberen Rand des Valenzbandes.
Dabei wird die Elektronenenergie um die Energie
des Grundzustands erhoht. Man kann die Grund-
zustandsenergie fiir einen bestimmten Quantenfilm
bestimmen, indem man die Frequenz der emittier-
ten Photonen vergleicht mit Frequenz der Photonen,
die vom Volumen-Material emittiert werden (Linie
ganz rechts in Abb.[8.33). Das Volumenmaterial ent-
spricht dem Grenzfall L — oo.
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