
8 Grundlagen der Quantenmechanik

Die Quantenmechanik stellt die Grundlage der mei-
sten Bereiche der Physik dar. Beispiele sind die Li-
nienspektren von Atomen oder die unterschiedlichen
Eigenschaften von Isolatoren, Halbleitern, Metal-
len und Supraleitern. Die theoretischen Grundlagen
wurden in den ersten Jahrzehnten des 20. Jahrhun-
derts entwickelt, auf der Basis von experimentellen
Fakten aus dem 19. Jahrhundert.

Gegen Ende des 19. Jh. war man allgemein über-
zeugt, dass die enormen wissenschaftlichen Fort-
schritte der letzten Jahrzehnte ein fast perfektes Ver-
ständnis der Natur in Reichweite gebracht hatten. So
sagte z.B. Albert Abraham Michelson, einer der an-
gesehensten Physiker des 19. Jahrhunderts, welcher
mit der Entdeckung, dass die Lichtgeschwindigkeit
eine Konstante ist, einen der wichtigsten Widersprü-
che der Physik aufgedeckt hatte, noch 1903

Die wichtigsten Grundgesetze und Grundtatsa-
chen der Physik sind alle schon entdeckt; und
diese haben sich bis jetzt so fest bewährt, dass
die Möglichkeit, sie wegen neuer Entdeckungen
beiseite zu legen, außerordentlich fern zu liegen
scheint. .... Unsere künftigen Entdeckungen müs-
sen wir in den 6. Dezimalstellen suchen.

Im Jahre 1903, als Michelson seine Aussage mach-
te, waren die Revolutionen jedoch bereits losgetre-
ten. Die Basis dafür waren einige Diskrepanzen zwi-
schen den damaligen Theorien und den experimen-
tellen Befunden. Die Differenzen waren auf den er-
sten Blick relativ gering, doch sie waren mit den
existierenden Erklärungen auf die eine oder andere
Weise nicht in Übereinstimmung zu bringen.

8.1 Experimentelle Hinweise

8.1.1 Schwarze Strahler

Einer der Widersprüche zwischen klassischer Theo-
rie und experimentellen Befunden ist die Abhängig-
keit der Strahlungsenergie eines heissen Körpers von
der Wellenlänge, respektive der Frequenz. Dass die
Temperatur einen Einfluss auf die spektrale Vertei-
lung von Licht hat, kann man schon mit dem Au-
ge erkennen: ein Objekt mit einer Temperatur von x
Grad strahlt in der Farbe

Temperatur Farbe
600 �C rot
850 �C hellrot

1000 �C gelb
1300 �C weiß

idealer

realer

Abbildung 8.1: Frequenzspektrum eines idealen und
eines realen Strahlers.

Diese Art von Strahlungsquelle wird als schwarzer
Strahler bezeichnet. Ein schwarzer Strahler ist da-
durch definiert dass er alle eintreffende Strahlung
perfekt absorbiert (für jede Wellenlänge). Kirchhoff
hatte gezeigt, dass das Verhältnis zwischen der Ab-
sorptivität und dem Emissionsvermögen eines Kör-
pers nur von Temperatur und Frequenz abhängt. So-
mit bedingt eine perfekte Absorption eine ebenso
perfekte Emission. Die Strahlungsleistung pro Fre-
quenzbereich ist dann nur noch eine Funktion von
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Temperatur und Frequenz. Ein realer Körper hat im-
mer eine kleinere Abstrahlung als ein idealer Strah-
ler, wie z.B. in Abb. 8.1 gezeigt. Bei einem idealen
Spiegel wird die gesamte Strahlung reflektiert, also
nicht absorbiert, und damit auch keine eigene Strah-
lung emittiert.

Hohlraum

Temperatur T

DetektorRaumwinkel dΩ

Abbildung 8.2: Hohlraumstrahler.

Ein idealer schwarzer Körper kann genähert wer-
den durch einen Hohlraum mit schwarzen Wänden
und einer kleinen Öffnung, wie in Abb. 8.2 gezeigt.
Strahlung, welche durch diese Öffnung eindringt
wird mit sehr hoher Wahrscheinlichkeit absorbiert.
Befindet sich der Körper bei der Temperatur T , emit-
tiert er Strahlung durch die Öffnung. Die Leistung,
welche dabei in einen Raumwinkel dW abgestrahlt
wird, ist proportional zur Energiedichte U im Reso-
nator.

Heizung Prisma zur 
Spektralzerlegung

Messung der 
Intensität

Hohlraum
Wärmeisolation

Abbildung 8.3: Spektroskopische Analyse der Hohl-
raumstrahlung.

Die Strahlung aus einem Hohlraumstrahler kann,
wie in Abb. 8.3 gezeigt, spektral aufgelöst und quan-
titativ erfasst werden. Aus solchen Messungen hat
man bereits im 19. Jh. eine Reihe von interessanten
experimentellen Befunden zusammengetragen:

• Die gesamte abgestrahlte Energie ist proportio-
nal zur vierten Potenz der Temperatur,

P = AsT 4

Diese Abhängigkeit wird als Stefan-
Boltzmann’sches Strahlungsgesetz bezeichnet.

Es wurde 1879 von Stefan heuristisch auf
Grund von Messungen von Tyndall aufgestellt.
Boltzmann leitete es später thermodynamisch
her. Die Stefan-Boltzmann Konstante s hat
den Wert

s =
2p5k4

B
15h3 c2 = 5,670 ·10�8 W

m2K4 .

• Die Strahlung enthält alle Wellenlängen. Das
Maximum verschiebt sich mit zunehmender
Temperatur zu kleineren Wellenlängen:

lmaxT = const = 0,2898cmK.

Diese Abhängigkeit wird als Wien’sches Ver-
schiebungsgesetz bezeichnet.

• Bei großen Wellenlängen nimmt die Strah-
lungsintensität mit der vierten Potenz der Wel-
lenlänge ab:

∂ I
∂l

µ l�4.

Diese experimentellen Befunde waren Ende des 19
Jahrhunderts bekannt, aber es gab keine Theorie,
welche sie erklären konnte.

8.1.2 Strahlungsgesetze 1

Die Strahlungsleistung kann man berechnen, wenn
man den Hohlraum als Resonator mit diskreten Mo-
den beschreibt, und die mittlere Energiedichte der
Moden (abhängig von ihrer Frequenz) kennt. Die
Energiedichte des Resonators ist dann

U =
#Moden
Volumen

MittlereEnergie
Mode

=
dN
V

hEi.

Die Zahl der Moden erhält man leicht für einen
rechteckigen Resonator mit Kantenlänge L. Die Be-
dingung für stehende Wellen beträgt dann

L = n
l
2

n = 1, 2, 3, ...

in jeder Raumrichtung. Ein allgemeiner Wellenvek-
tor hat somit die Form

k2 = k2
x + k2

y + k2
z =

p2

L2 (n2
x +n2

y +n2
z ) =

w2

c2 .

1Mehr dazu findet man unter [1]
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Jede Mode wird somit durch einen Vektor

R2
n = n2

x +n2
y +n2

z =
4p2n2

c2
L2

p2

charakterisiert und wir können die Anzahl Moden
abzählen, indem wir die Zahl der Moden in einer
Kugel mit Radius R bestimmen. Da das Volumen (in
dieser Kugel) pro Mode gerade eins ist, entspricht
die Zahl der Moden gerade dem Volumen der Kugel:

N = Vn = R3
n µ L3 =

n3

c3 Volumen.

Somit ist die Modendichte N/V im Frequenz-
Intervall (n ,n +dn)

dn µ n2

c3 dn .

Die mittlere Energie einer Mode erhält man klas-
sisch aus dem Boltzmann-Gesetz als

hE i =
Z •

0
E p(E )dE

mit

p(E ) = e�E /kBT .

Das Integral ergibt

hE i = kBT.

Damit wird die Energiedichte

U(n ,T )dn µ n2

c3 kBT dn µ kBT
l 4 dl .

8.1.3 Grenzfälle

Den Grenzfall für große Wellenlängen erhält man re-
lativ einfach wenn man annimmt, dass die Strahlung
in einer Mode immer die Energie kBT besitzen soll.
Diese Bedingung ergibt sich aus dem Ansatz, dass
die Strahlung im Gleichgewicht mit der sie umge-
benden Materie sein soll. Ein harmonischer Oszil-
lator besitzt aber gerade die Energie kBT . Die Zahl
der Moden in einem Hohlraum steigt proportional
mit dem Quadrat der Frequenz. Deshalb beträgt die
Energiedichte pro Frequenz-Intervall

1
V

dE

dn
= 8p n2

c3 kBT.
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Abbildung 8.4: Vergleich des Planck’schen Strah-
lungsgesetzes mit dem Gesetz von
Rayleigh-Jeans.

Daraus ergibt sich das Rayleigh-Jeans2 Gesetz (!
Abb. 8.4), nach dem die Intensität mit der vierten
Potenz der Wellenlänge abnimmt:

Mldl =
2c
l 4 kBT dl .

Allerdings kann dieses Gesetz für kurze Wellenlän-
gen, d.h. hohe Frequenzen, nicht gültig sein. Da die
emittierte Leistung mit dem Quadrat der Frequenz
zunimmt, müsste jeder Körper eine intensive UV-,
und eine noch intensivere Röntgenquelle sein. Dies
ist offenbar nicht der Fall. Außerdem divergiert das
Integral dieses Ausdrucks, die emittierte Leistung
wäre also unendlich.

Den Bereich hoher Frequenzen (kurzer Wellenlän-
gen) konnte man bereits vor Planck durch das
sog. Wien’sche Strahlungsgesetz beschreiben. Die-
ses kann geschrieben werden als

F(l ) =
C
l 5 · 1

ec/lT ,

wobei C und c Konstanten sind. Es stimmt für
hohe Frequenzen sehr gut mit den experimentel-
len Daten überein und vermeidet insbesondere die
“Ultraviolett-Katastrophe”, d.h. die unbegrenzte Zu-
nahme der Strahlungsleistung bei hohen Frequen-
zen. Im langwelligen Bereich liefert es aber zu nied-
rige Werte (µ l �5 statt µ l�4).

2John William Strutt, Baron Rayleigh (1842 – 1919) und Sir
James Hopwood Jeans (1877 – 1946)
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8.1.4 Planck’s Quantisierung

Planck (! Abb. 8.5) hat diese beiden Strahlungsge-
setze, welche jeweils nur für einen Teilbereich gal-
ten, durch eine einheitliche Theorie ersetzt und da-
mit die theoretischen Probleme gelöst.

Abbildung 8.5: Max Planck (1858 – 1947).

Seine Annahme war, dass die Strahlung in diskreten
Einheiten abgegeben werden soll, wobei die Ener-
gie dieser einzelnen “Pakete” durch die Beziehung
E = hn gegeben ist. Die Planck’sche Konstante be-
sitzt den Wert

h = 6,6256 ·10�34Js.

Häufig wird auch die reduzierte Planck’sche Kon-
stante

h̄ =
h

2p
= 1,0546 ·10�34Js

verwendet. Auch Planck rechnet für einen Hohlraum
die Eigenfrequenzen. Hier wird jedoch jede Mode
mit einer Anzahl von Energiepaketen besetzt, wel-
che seinem thermischen Gleichgewicht entspricht.
Die mittlere Energie einer Mode ergibt sich als
Summe über alle möglichen Energien En, gewichtet
mit der entsprechenden Besetzungswahrscheinlich-
keit p(En):

hE i =
•

Â
n=0

En p(En) =
hn

ehn/kBT �1
.

Daraus erhält man die Planck’sche Strahlungsformel

U(n ,T )dn = C
n3dn

ehn/kBT �1
.

Das Stefan-Boltzmann Gesetz erhält man daraus
durch Integration über die Frequenz:

I µ
Z •

0
U(n ,T )dn µ T 4.

Ebenso das Verschiebungsgesetz als Ableitung:

dU
dl

= 0 ! lmax µ 1
T

.

Die Frequenz n liegt für sichtbares Licht im Bereich

n =
c
l

=
3 ·108m/s

0,5µm
= 6 ·1014 Hz,

also typischerweise etwas unterhalb von 1015 Hz.
Die Energie der einzelnen Pakete liegt somit für
sichtbares Licht bei

E = 6,6256 ·10�34 ·6 ·1014J ⇡ 4 ·10�19J.

Für unsere Begriffe ist dies eine relativ kleine Ener-
gie, was erklärt, weshalb wir sie meistens nicht be-
obachten.

Die emittierte Strahlung is proportional dazu.
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Abbildung 8.6: Leistung als Funktion der Wellen-
länge für schwarze Strahler mit un-
terschiedlichen Temperaturen.

Der Energieinhalt pro Frequenz-Intervall beträgt

Ldn =
2hn3

c2W0

1
ehn/kBT �1

dn .

Als Funktion der Wellenlänge erhält man entspre-
chend

Ldl =
2hc5

l 5W0

1
ehc/kBT l �1

dl .

Dies ist in Abb. 8.6 dargestellt.
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8.1.5 Kosmische Hintergrundstrahlung

1948 bemerkte Gamov3, dass der Kosmos als ganzes
auch Eigenschaften eines schwarzen Strahlers auf-
weist. Während der Frühzeit des Kosmos bestand er
aus einem Plasma, welches für elektromagnetische
Strahlung undurchsichtig war. Nach etwa 380000
Jahren war dieses Plasma soweit abgekühlt, dass sich
aus Elektronen und Protonen neutraler Wasserstoff
bildet. Dadurch wurde das Universum für Strahlung
weitgehend transparent. Zu diesem Zeitpunkt ent-
sprach die Strahlung im Wesentlichen einem schwar-
zen Körper mit einer Temperatur von etwa 4000 K.
Durch die weitere Ausdehnung des Kosmos redu-
zierte sich diese Temperatur bis auf den heutigen
Wert von 2,73 K.

Messungen 
(Penzias & Wilson; 1965)
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Abbildung 8.7: Frequenzspektrum der kosmischen
Hintergrundstrahlung.

Die erste Messung dieser kosmischen Hintergrund-
strahlung gelang 1964 Arno Penzias und Robert Wil-
son beim Testen einer neuartigen, hochempfindli-
chen Antenne. Ihre Messwerte passten sehr gut auf
die theoretischen Voraussagen, wie in Abb. 8.7 ge-
zeigt. Seither erfolgten noch deutlich genauere Mes-
sungen, vor allem mit einer Reihe von Satelliten-
Experimenten, welche ebenfalls mit der Theorie in
guter Übereinstimmung sind.

8.1.6 Photonen

Die Planck’sche Konstante h wurde von Planck zu-
nächst als rein rechnerische Hilfsgröße betrachtet.

3George Gamow (1904 – 1968)

Von anderen, z.B. Einstein, wurde sie aber als fun-
damentale physikalische Größe erkannt, welche in
sehr vielen Zusammenhängen erscheint. Die Ener-
giepakete, welche man heute als Photonen bezeich-
net, kann man heute ohne weiteres direkt beobach-
ten. Man benutzt dazu z.B. einen sog. Photomulti-
plier. In diesem Gerät werden die Photonen in elek-
tronische Impulse umgewandelt.

Wenn die Lichtmenge, die pro Zeiteinheit auf einen
Detektor fällt, gering ist, wird es möglich, einzel-
ne Photonen zu beobachten, welche jeweils einen
Spannungsimpuls erzeugen. Die Photonen gelangen
in unregelmäßigen, nicht voraussagbaren Abständen
auf den Detektor. Erst wenn man die Anzahl der
Photonen über einen Zeitraum mittelt, der lang ist im
Vergleich zum mittleren Abstand, erhält man einen
konstanten Wert. Die mittlere Anzahl Photonen pro
Zeiteinheit multipliziert mit der Energie der Photo-
nen ergibt die auf den Detektor einfallende Leistung.
Wenn man die Leistung erhöht so nimmt der mittle-
re Abstand zwischen zwei Photonen ab, die Zählrate
steigt entsprechend.

Die Idee, dass Licht aus einzelnen Photonen besteht,
wurde nicht sofort akzeptiert. So schrieb Max Planck
anlässlich der Aufnahme Einsteins in die Preussi-
sche Akademie der Wissenschaft (1913):

“Dass er in seinen Spekulationen gelegentlich
auch einmal über das Ziel hinausgeschossen ha-
ben mag, wie z.B. in seiner Hypothese der Licht-
quanten, wird man ihm nicht allzu sehr anrechnen
dürfen. Denn ohne einmal ein Risiko zu wagen,
lässt sich auch in der exaktesten Wissenschaft ei-
ne wirkliche Neuerung einführen.”

8.1.7 Einstein’s Theorie von Absorption und
Emission

Das Gleichgewicht zwischen Strahlung und Tempe-
ratur eines Körpers konnte durch Einstein’s Theo-
rie von Absorption und Emission verstanden wer-
den. Danach kommt die Absorption und Emission
von Licht durch einen materiellen Körper dadurch
zustande, dass der Körper zwischen diskreten Zu-
ständen Übergänge durchführt und dabei Photonen
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absorbiert oder emittiert, deren Energie gerade der
Energiedifferenz zwischen den Zuständen des Kör-
pers entspricht. Geht der Körper vom niedrigen in
den höheren Zustand über, so absorbiert er dabei
Licht; geht er vom höheren in den niedrigeren Zu-
stand über ohne dass er von außen dazu gebracht
wurde, so emittiert er spontan Licht. Treffen Photo-
nen der geeigneten Wellenlänge auf diesen Körper,
so können sie aber auch Emission stimulieren.

Befinden sich N1 Atome im Grundzustand und N2
Atome im angeregten Zustand, so ergibt sich die Ab-
sorptionsrate von |1i nach |2i als

✓
dN
dt

◆

abs
= B12u f (n)N1.

Hier stellt der “Einsteinkoeffizient” B12 eine Propor-
tionalitätskonstante dar, die für den Übergang cha-
rakteristisch ist. u f (n) ist die Energiedichte im be-
treffenden Frequenz-Intervall, also die Anzahl Pho-
tonen pro Volumen.

Genau so berechnet man die spontane Emission
✓

dN
dt

◆

sp.Em.

= A21N2

und die induzierte Emission
✓

dN
dt

◆

ind.Em.

= B21u f (n)N2

Im thermodynamischen Gleichgewicht gilt
✓

dN
dt

◆

abs
=

✓
dN
dt

◆

sp.Em.

+

✓
dN
dt

◆

ind.Em.

Somit muss

N2

N1
=

B12u f (n)

A21 +B12u f (n)
.

Außerdem ergibt sich das Verhältnis der Besetzungs-
zahlen auch aus der Boltzmann-Verteilung:

N2

N1
= e�(E2�E1)/kBT .

Aus dem Vergleich dieser Ausrücke erhält man

u f (n) =
A21

B12ehn/kBT �B21
.

Außerdem gilt für hohe Temperaturen, T ! • dass
die Energiedichte ebenfalls divergiert, u f (n) ! •.
Somit muss

B12 = B21,

d.h. induzierte Absorption und induzierte Emission
sind gleich wahrscheinlich. Damit wird

u f (n) =
A21

B12
�
ehn/kBT �1

� .

Dieser Ausdruck kann für den Grenzfall hn ⌧ kBT
vereinfacht werden zu

u f (n) =
8pn2

c3 kBT.

8.1.8 Photoeffekt

einfallen-
des Licht

Abbildung 8.8: Prinzipieller Aufbau zur Messung
des Photoeffekts.

Ein weiterer Effekt, der mit der klassischen Theo-
rie nicht erklärt werden konnte, war der Photoeffekt.
Abb. 8.8 zeigt ein entsprechendes Experiment: hier
werden Metalloberflächen, insbesondere Alkalime-
talle, mit Licht bestrahlt. Dadurch werden Elektro-
nen freigesetzt, die sich mit einer bestimmten Ge-
schwindigkeit von der Oberfläche weg bewegen, al-
so eine kinetische Energie besitzen.

Die kinetische Energie kann gemessen werden,
wenn man bestimmt, wie groß eine Spannung sein
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kann oder muss, damit die Elektronen gegen das
äußere Potential einen bestimmten Punkt erreichen
können. Wenn man also die Spannung erhöht, mit
der die Elektronen gebremst werden, so treffen ir-
gendwann keine mehr auf die Anode und der gemes-
sene Strom geht gegen Null.

Spektrallampe Prisma

Photozelle

Abbildung 8.9: Aufbau zur wellenlängenabhängi-
gen Messung des Photoeffekts.

Abb. 8.9 zeigt einen Messaufbau, der es gestattet,
die Abhängigkeit der kinetischen Energie von der
Wellenlänge des Lichtes zu messen. Die vorhandene
Lichtquelle erzeugt Licht bei verschiedenen diskre-
ten Wellenlängen, welche man jeweils einzeln auf
die Probe fallen lässt.

Spannung U-U0

hohe Intensität

niedrige Intensität

Strom I

Abbildung 8.10: Qualitatives Resultat der Messung
des Photoeffekts.

Misst man den Photostrom als Funktion der Be-
schleunigungsspannung, so findet man, wie in Abb.
8.10 gezeigt, dass bei genügend stark negativer
Spannung der Strom verschwindet. Offenbar errei-
chen die Elektronen die Anode nicht. Wird das Po-
tential der Anode höher, so erhält man einen wach-
senden Strom, und ab einer schwach positiven Span-
nung bleibt der Strom konstant.

Steigert man die Intensität des Lichtes, so nimmt der
Strom linear mit der Lichtintensität zu. Die Sperr-
spannung bleibt hingegen konstant. Dies ist vorläu-
fig nicht erklärbar: offenbar ist die Energie der Elek-
tronen nicht von der optischen Leistung abhängig.
Dagegen ist die Anzahl der Elektronen proportional
zur optischen Leistung.

8.1.9 Wellenlängenabhängigkeit

Ändert man die Wellenlänge des Lichts, so ändert
zum einen die Spannung U0, zum andern die Sät-
tigungsstromstärke. Bei zunehmender Wellenlänge
wird die Sperrspannung geringer, der Sättigungs-
strom größer. Dies scheint aus zwei Gründen merk-
würdig: Offenbar hängt also die Energie der Elektro-
nen von der Wellenlänge des Lichtes ab, nicht aber
von der Intensität des Lichtes. Bei konstanter Inten-
sität nimmt jedoch die Zahl der emittierten Elektro-
nen mit zunehmender Frequenz des Lichtes ab.
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Abbildung 8.11: Kinetische Energie der Photoelek-
tronen als Funktion der Frequenz
des Lichts.

In Abb. 8.11 ist die gemessenen Sperrspannungen
gegen die Frequenz des einfallenden Lichtes aufge-
tragen. Die Resultate zeigen, dass für Frequenzen
unterhalb eines bestimmten Grenzwertes n0 keine
Elektronen austreten. Oberhalb dieses Grenzwertes
steigt die Energie der Elektronen linear an. Die kine-
tische Energie kann somit geschrieben werden als

Ekin = h(n �n0) = hn �A.

Es gibt somit eine Grenzfrequenz n0, unterhalb derer
keine Elektronen mehr emittiert werden.

Man interpretiert dieses Verhalten so, dass die Ener-
gie des Lichtes paketweise absorbiert wird. Ein ein-
zelnes Paket erhält den Namen “Photon”. Jedes Pho-
ton kann ein Elektron aus dem Metall herauslösen.
Jedes Elektron besitzt also nur die Energie, die ihm
ein einzelnes Photon übergeben kann:

hn = Ee,kin +A.
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Ein Teil der Energie wird benötigt, um das Elektron
aus dem Metall herauszulösen. Diese Energie wird
als Austrittsarbeit A bezeichnet. Der Rest ergibt die
kinetische Energie Ee,kin des Elektrons.

Aus der Steigung der Geraden kann man direkt die
Planck’sche Konstante bestimmen. Benutzt man z.B.
den Unterschied zwischen der kinetischen Energie
bei rotem und violettem Licht,

DE = (1,176�0.078)eV = 1.098eV
= 1.76 ·10�19 J

dann beträgt die entsprechende Frequenz-Differenz

Dn = (7,35�4,81) ·1014 Hz = 2,54 ·1014 Hz.

Daraus erhalten wir für die Planck’sche Konstante
DE

Dn
=

1,76 ·10�19 J
2,54 ·1014 Hz

= 6,9 ·10�34 Js.

Das Einstein’sche Postulat erklärt nicht nur das Auf-
treten einer maximalen Wellenlänge, sondern auch
die Abnahme des Photostroms mit zunehmender op-
tischer Frequenz bei konstanter Intensität: die glei-
che Lichtenergie wird jetzt auf weniger Photonen
verteilt, so dass weniger Elektronen erzeugt werden
können, allerdings besitzt jedes einzelne Elektron ei-
ne höhere kinetische Energie.

8.1.10 Austrittsarbeit

Die Austrittsarbeit A ist eine Materialkonstante und
beträgt für Kalium:

A = 4,5 ·1014 Hzh = 3,10�19 J = 1.9eV.

Meistens verwendet man hier als Einheit nicht Joule,
sondern Elektronenvolt (eV), wobei

1eV = 1,6 ·10�19 J

derjenigen Energie entspricht, die ein Elektron beim
Durchlaufen einer Spannungsdifferenz von 1 V er-
hält.

Bei anderen Materialien beträgt die Austrittsarbeit
einige eV (siehe Abb. 8.12). Der Photoeffekt wird
u.a. im Photomultiplier verwendet, wo die Photo-
nen zunächst aus der Oberfläche eines Alkalimetalls
Elektronen herausschlagen. Man wandelt also sozu-
sagen Photonen in Elektronen um.

Metall 
Na 
Cs 
Ca 
Sr 
Cu 
Zn 
Cr 
Fe 
Ni 
Pt 

Na2KSb

A/eV 

2.28 
1.94 
3.20 
2.74 
4.48 
4.27 
4.45 
4.63 
4.91 
5.36 

1.46

lmax 

543 
639 
387 
452 
277 
290 
278 
268 
252 
231 

859

Abbildung 8.12: Austrittsarbeit für unterschiedliche
Metalle (links) und Photozelle.

8.1.11 Spektrallinien von Atomen

Die Existenz von stabilen Atomen ist eines der
wichtigsten Tatsachen, welche im Rahmen der klas-
sischen Physik nicht befriedigend erklärt werden
kann. Stellt man sich ein Atom als eine Art Son-
nensystem vor, in dem negativ geladene Elektro-
nen um positiv geladene Kerne kreisen, dann führen
sie eine beschleunigte Bewegung durch. Im Rahmen
der klassischen Elektrodynamik stellen beschleunig-
te Ladungen die Quelle einer elektromagnetischen
Welle dar. Durch die Abstrahlung müsste das ato-
mare System an Energie verlieren. Dadurch verrin-
gert sich der Abstand, die Rotationsbewegung wird
schneller, die Beschleunigung und damit die Ab-
strahlung nehmen zu und das Elektron müsste in kur-
zer Zeit in den Kern stürzen, unter Aussendung ei-
nes kontinuierlichen Spektrums von elektromagneti-
scher Strahlung.

Tatsächlich sind Atome stabil. Im Grundzustand
strahlen sie keine Energie ab. Werden sie angeregt,
strahlen sie die Energie wieder ab, allerdings nur in
Form von spektral klar getrennten, schmalen Emis-
sionslinien, wie in Abb. 8.13 gezeigt. Dies deu-
tet darauf hin, dass Atome Strahlung in der Form
von “Energiepaketen” aufnehmen und abgeben. Die-
se Photonenenergien entsprechen Differenzen zwi-
schen stationären Zuständen der Energie; Details da-
zu werden im Kapitel 9.1 behandelt. Die Farbe des
Lichtes ist unabhängig von der Temperatur der Ato-
me, im Gegensatz zum schwarzen Strahler.

342



8 Grundlagen der Quantenmechanik

Wasserstoff (Balmer-Serie)

Natrium

Rubidium

Abbildung 8.13: Spektren von unterschiedlichen
Atomen.

8.1.12 Das Franck-Hertz Experiment

Ein weiteres wichtiges Experiment, welches als un-
abhängiger Beleg für die Existenz von diskreten
Energiezuständen in Atomen angesehen wird, ist das
Franck-Hertz Experiment, welches erstmals in den
Jahren 1911 bis 1914 von Franck4 und Hertz5 durch-
geführt wurde. Dieser Befund stützte das Bohr’sche
Atommodell (! Kapitel 9.2.5) und trug zur Fortent-
wicklung der Quantenmechanik bei. Die beiden er-
hielten dafür 1925 den Nobelpreis für Physik.

 1

Elektronen

Gegenfeld
Ua ≈ -1 V

Abbildung 8.14: Franck-Hertz Experiment: Elektro-
nen werden emittiert und in einem
Feld zwischen Kathode und Anode
/ Gitter beschleunigt.

Abb. 8.14 zeigt den Versuchsaufbau. An der Glüh-

4James Franck (1882 - 1964)
5Gustav Ludwig Hertz (1887 - 1975)

kathode werden Elektronen erzeugt. Diese werden
im elektrischen Feld zwischen Kathode und Anode /
Gitter beschleunigt. Die Röhre enthält ein Gas, wel-
ches meist aus Quecksilber oder Neon besteht. Die
beschleunigten Elektronen stoßen deshalb mit Ato-
men zusammen. Ist die Energie der Elektronen hoch
genug, um das Atom in einen höher liegenden Zu-
stand anzuregen, erfolgt der Stoß sehr viel effizien-
ter und inelastisch und das Elektron gibt den größten
Teil seiner kinetischen Energie an das Atom ab. Auf
Grund dieses Energieverlustes sind sie danach nicht
mehr in der Lage, die Anode zu erreichen, so dass
der dort gemessene Strom abnimmt.

Neon

Gitterspannung

A
no

de
ns

tro
m

4,9 V

Quecksilber:

Abbildung 8.15: Franck-Hertz Experiment: Links
ein Bild der Lichtemission. Rechts
der Anodenstrom als Funktion der
Gitterspannung.

8.1.13 Der Comptoneffekt

Röntgenlicht �

�

� ��
Det

Wellenlänge / pm

In
te

ns
itä

t

70 75

θ = 0o

45o

90o

135o

Abbildung 8.16: Compton Effekt.

Streut man Röntgenlicht an freien (d.h. schwach ge-
bundenen) Elektronen, so stellt man fest, dass das
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gestreute Licht neben der Wellenlänge des einfallen-
den Lichtes auch Licht einer anderen Wellenlänge
enthält. Abb. 8.16 zeigt einige Beispiele. Diese zwei-
te Wellenlänge ist eine Funktion des Streuwinkels q :

Dl = (l–l 0) = lc(1� cosq) lc = 2,4pm.

Am größten ist der Wellenlängenunterschied somit
in Rückwärtsstreuung, also für q = p . Der Effekt ist
unabhängig vom verwendeten Probenmaterial. Die-
ses Experiment wurde erstmals 1923 von Arthur
Compton durchgeführt.

Dieser Effekt kann im Rahmen der Wellentheo-
rie der Röntgenstrahlung nicht interpretiert werden.
Man erhält diesen Befund jedoch als Resultat ei-
ner einfachen Rechnung sofern man dem Röntgen-
licht Teilchencharakter zuschreibt, d.h. indem man
es als einen Strom von Photonen behandelt. Da die
Art der Atome keinen Einfluss auf den Streuprozess
hat kann man davon ausgehen, dass die Photonen an
Elektronen gestreut werden, welche nur schwach ge-
bunden sind.

gestreutes Photon 
Energie E

�

�

Elektron 
Energie

x

y

Ekin

m
pe

Abbildung 8.17: Compton Streuung eines Photons
an einem freien Elektron.

Man geht also davon aus, dass jedes Photon einzeln
an einem Elektron gestreut wird, wie in Abb. 8.17
gezeigt. Für jeden dieser Streuprozesse gilt Energie-
erhaltung:

hn +m0c2 = hn 0 +mc2.

Hier stellt m0 die Ruhemasse des Elektrons und

m =
m0q
1� v2

c2

die relativistische Masse des gestreuten Elektrons.
Außerdem gilt ein Erhaltungsgesetz für den Impuls

des Gesamtsystems. Der Impuls des Photons beträgt

pPh = mPhc =
hn
c2 c =

hn
c

=
h
l

und der Gesamtimpuls des Systems in x-Richtung

h
l

=
h
l 0 cosq +mvcosf

und in y-Richtung

0 =
h
l 0 sinq �mvsinf .

Die drei Gleichungen können aufgelöst werden nach
der Änderung der Wellenlänge

Dl = l �l 0 =
h

m0c
(1�cosq) = lc(1�cosq).

Hier stellt

lc =
h

m0c
= 2,426 ·10�12 m

die Compton-Wellenlänge dar. Sie enthält nur Natur-
konstanten, d.h. sie hängt nicht vom Material oder
von der Wellenlänge des Röntgenlichtes ab. Da sie
im Picometer-Bereich liegt, muss man Licht mit ei-
ner vergleichbaren Wellenlänge, also Röntgenlicht,
verwenden, um den Effekt beobachten zu können.

8.2 Wellencharakter der Materie

8.2.1 Wellen und Teilchen

Teilchen 
 Photoeffekt 
 Impuls 
 Nullpunktsenergie

 Welle 
Beugung 
Interferenz

Teilchen 
 definierter Ort 
 definierte 
 Geschwindigkeit

Welle 
delokalisiert 
Beugung 
Interferenz

MaterieLicht

Abbildung 8.18: “Typische” Eigenschaften von
Licht und Materie.
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Licht besitzt sowohl Teilchen- wie auch Wellencha-
rakter, wie in Abb. 8.18 zusammengefasst. Bei der
Diskussion des Strahlungsgesetzes hatten wir gese-
hen, dass es einen Teilchencharakter aufweist, eben-
so beim Photoeffekt. Allgemein tritt der Teilchen-
charakter bei der Wechselwirkung mit Materie in
den Vordergrund. Andererseits hatten wir im Zusam-
menhang mit der Ausbreitung, insbesondere bei In-
terferenz und Beugung sowie bei der Polarisation
deutliche Zeichen des Wellencharakters kennen ge-
lernt. Die Beziehung zwischen den Wellen- und den
Teilcheneigenschaften wird durch die Beziehungen

E = hn = h̄w und p = h̄k =
h
l

hergestellt, welche die Energie E und den Impuls p
eines Teilchens in Beziehung setzen zu den Wellen-
eigenschaften Frequenz n und Wellenlänge l , resp.
Wellenzahl k.

Genauso wie für Licht findet man auch bei Mate-
rie beide Aspekte. Mit Materie sind hierbei Teilchen
gemeint, die eine nicht verschwindende Ruhemasse
aufweisen, wie z.B. Elektronen, Neutronen, Atome,
Golfbälle, Planeten, .... . Dafür verwendet man übli-
cherweise den Begriff “Teilchen”. Gewöhnliche Ma-
terie besitzt aber nicht nur einen Teilchencharakter,
sondern ebenso Welleneigenschaften. Allerdings tre-
ten die Welleneigenschaften weniger häufig zu Tage
als der Teilchencharakter.

Abbildung 8.19: Louis Victor de Broglie, 1892–
1987.

Die Möglichkeit, dass auch Materie Welleneigen-
schaften aufweisen könnte, wurde erstmals von
Louis de Broglie (! Abb. 8.19) 1923 geäußert.
Ausgangspunkt seiner Überlegungen waren das Fer-
mat’sche Prinzips der Optik und des Hamilton’schen

Prinzips der Mechanik, welche beide besagen, dass
das Licht, resp. ein Körper, unter den möglichen
Wegen denjenigen “wählen”, welcher am wenigsten
Zeit benötigt.

Er spekulierte, dass für Materie die gleichen Bezie-
hungen zwischen Energie und Frequenz, resp. Im-
puls und Wellenlänge gelten könnten wie für Licht.
Dann müsste jedes Teilchen durch eine Welle

Y = Aei(wt�~k·~r)

mit Wellenlänge, resp. Wellenzahl

l =
h
p

k =
p
h̄

und Frequenz

w =
E

h̄
oder n =

E

h

beschrieben werden.

8.2.2 Ausbreitung und Dispersion

Allerdings ist eine ebene Welle nicht die optima-
le Darstellung für ein Teilchen, da es damit über
den gesamten Raum delokalisiert wäre. Eine bessere
Darstellung ist statt dessen eine Wellengruppe, wel-
che in der Nähe der klassischen Position des Teil-
chens lokalisiert ist. Diese Postulate wurden 1927
experimentell belegt und 1929 erhielt de Broglie da-
für den Nobelpreis.

Wenn diese Annahme sinnvoll ist würde man erwar-
ten, dass die Wellengruppe in der Nähe des Teilchens
lokalisiert bleibt, wenn sich dieses bewegt. Wir be-
trachten somit ein bewegtes Teilchen mit Masse m
und Geschwindigkeit v. Seine kinetische Energie ist
dann

E =
m
2

v2.

Damit wird die Kreisfrequenz

w =
E

h̄
=

mv2

2h̄

und der Betrag des Wellenvektors

k =
p
h̄

=
mv
h̄

. (8.1)
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Wir lösen auf nach der Geschwindigkeit v = h̄k/m
und eliminieren diese aus dem Ausdruck für

w =
h̄k2

2m
.

Die Geschwindigkeit der Wellengruppe sollte nun
gegeben sein als

vG =
dw
dk

=
h̄k
m

= v.

Somit ist sichergestellt, dass sich die Wellengruppe
mit der gleichen Geschwindigkeit bewegt wie das
klassische Teilchen.

8.2.3 Beispiel: Elektronenwellen

Die Wellenlänge der Materiewelle sollte damit in-
vers proportional zum Impuls des Teilchens sein, sei-
ne Frequenz proportional zur Energie. Aufgrund der
Kleinheit der Planck’schen Konstante folgt, dass für
massive Körper die Frequenz sehr groß wird und die
Wellenlänge sehr klein. Um sie überhaupt beobach-
ten zu können, sollte man deshalb möglichst leichte
Teilchen verwenden. Das leichteste stabile Teilchen
ist das Elektron, welches auch leicht zu erzeugen ist.

Für die Berechnung der Wellenlänge wird zunächst
die Geschwindigkeit benötigt. Wir betrachten Elek-
tronen mit einer kinetischen Energie, wie sie z.B. in
Kathodenstrahlen verwendet werden, also z.B.

Ekin = 100eV = 1.6 ·10�17 J.

Ihre Geschwindigkeit ist damit

v =

s
2Ekin

me
=

r
3,2 ·10�17

9 ·10�31
m
s

= 6 ·106 m
s

.

Sie ist damit noch weit unterhalb der Lichtgeschwin-
digkeit und rechtfertigt die nichtrelativistische Rech-
nung. Die Wellenlänge ist damit

l =
h
p

=
h

mev
=

6 ·10�34

9 ·10�31 ·6 ·106 m ⇡ 10�10 m,

also etwa 1 Angström. Diese Wellenlänge ist sehr
klein im Vergleich zu makroskopischen Distanzen,
aber sie ist vergleichbar mit atomaren Distanzen.

Eine Bestätigung der Wellenhypothese kann somit
erreicht werden, wenn man zeigen kann, dass peri-
odische Anordnungen von Atomen Beugungseffek-
te erzeugen. Diese Möglichkeit wurde 1925 von El-
sasser vorgeschlagen. Eine Voraussetzung dafür ist,
dass Elektronen elastisch gestreut werden, so dass
die reflektierte Welle eine feste Wellenlänge auf-
weist.

Elektronen-
quelle

Det
ek

to
r

Vergleich der 
Beugungsmuster von 
Röntgen und 
Elektronenstrahlen

Röntgen Elektronen

Abbildung 8.20: Beugung von Elektronen an einem
Kristall.

Die erste experimentelle Bestätigung für de Bro-
glie’s Vermutung wurde 1927 von Davisson und
Germer publiziert. Sie benutzten Streuung von Elek-
tronen an einer Kristalloberfläche. Davisson hat da-
für 1937 den Nobelpreis erhalten. Seine Rede anläs-
slich der Preisverleihung ist u.a. deshalb interessant
weil sie zeigt, wie Forschung wirklich abläuft, d.h.
nicht immer so geradlinig wie es beim Studium von
Lehrbüchern teilweise erscheint, sondern u.a. durch
eher zufällige Begegnungen, Diskussionen und ex-
perimentelle oder technische Randbedingungen dik-
tiert. Auszugsweise ist diese Rede auch im “Berke-
ley Physics Course, Band 4 (QM), Kapitel 5.12 wie-
dergegeben”.

Es stellt sich natürlich die Frage, weshalb solche
Beugungseffekte im Alltag nicht beobachtet werden.
Dafür kann man z.B. die Wellenlänge eines Staub-
korns ausrechnen, welches einen Durchmesser von
1 µm, eine Masse von m = 10�15 kg und eine Ge-
schwindigkeit von 1 mm/s besitzt:

l =
h
p

=
h

mv
= 6,6 ·10�16m.
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So kurze Wellenlängen, weniger als der Durchmes-
ser eines Atomkerns, sind sehr schwierig zu beob-
achten.

8.2.4 Interferenz und Beugung

Unabhängig davon fand G.P. Thomson das glei-
che Resultat mittels Transmission eines Elektronen-
strahls durch einen dünnen Kristall. Das Experiment
wie auch das Resultat ist sehr ähnlich wie bei der
Röntgenbeugung: Man verwendet einen Elektronen-
strahl anstelle eines Röntgenstrahls und misst die In-
tensität der gestreuten Elektronen als Funktion der
Orientierung, wie in Abb. 8.20 gezeigt. Genau wie
bei Röntgenstrahlen erhält man ein Beugungsmaxi-
mum wenn die Bragg - Bedingung

a sinq = nl =
nh
p

mit n = 1,2,3, ... erfüllt ist.

Abbildung 8.21: Interferenzmuster von Elektronen,
welche durch einen Doppelspalt
geflogen sind.

Genau wie bei Lichtwellen kann man bei Materie-
wellen Interferenzeffekte beobachten. Im Beispiel
von Abb. 8.21 wurde eine Elektronenwelle durch
einen Doppelspalt geschickt. Die Interferenz zwi-
schen den beiden Pfaden erzeugt eine Modulation
der Intensität auf dem Schirm, welche mit zuneh-
mender gesamter Teilchenzahl beobachtet wird. Das
interessante an diesem Experiment ist, dass es die
Teilchen- und Wellenaspekte im gleichen Experi-
ment aufzeigt. So messen wir die Ankunft jedes Teil-
chens auf dem Schirm z.B. mit einem Zähler, der für

jedes Teilchen einen Ort und eine Zeit des Auftref-
fens liefert. Dieser Teil entspricht somit dem Teil-
chencharakter. Andererseits können wir von den ein-
zelnen Teilchen nicht sagen, ob sie durch den unte-
ren oder oberen Spalt durchgetreten sind. Diese In-
formation wäre bei einem klassischen Teilchen ver-
fügbar, würde aber das Interferenzmuster zerstören.

Bildschirm

Elektronen- 
quelle

Objekt
magnetische

 Linsen

Abbildung 8.22: Schematische Darstellung eines
Elektronenmikroskops.

Elektronenwellen können auch durch Linsen ge-
beugt und damit für die Mikroskopie verwendet wer-
den. Abb. 8.22 zeigt schematisch den Aufbau ei-
nes Elektronenmikroskops. Die Elektronen werden
durch ein System von elektrischen und magneti-
schen Linsen fokussiert und auf einen Bildschirm
projiziert.

Abbildung 8.23: Stehende Elektronenwellen in ei-
nem Ring aus Eisenatomen. [3]

Heute können Welleneigenschaften u.a. auch mit ei-
nem Tunnelmikroskop nachgewiesen werden. Abb.
8.23 zeigt ein Experiment, bei dem 48 Eisenato-
me auf einer Kupferoberfläche in einem Ring an-
geordnet wurden. Die Elektronenwellen werden an
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diesen Fremdatomen reflektiert und bilden stehende
Oberflächenwellen, welche mit einem Rastertunnel-
mikroskop abgebildet wurde [3].

8.2.5 Neutronen

Ein anderes wichtiges Beispiel sind Neutronen, wel-
che ebenfalls für Sruktur-Untersuchungen verwen-
det werden. Insbesondere werden sogenannte ther-
mische Neutronen verwendet, d.h. Neutronen, deren
kinetische Energie der mittleren thermischen Ener-
gie bei Raumtemperatur entspricht

E =
p2

2mN
=

3
2

kBT für T = 300K.

In Elektronenvolt entspricht diese Energie etwa 26
meV.

Aus der Energie kann man den Impuls von thermi-
schen Neutronen berechnen:

p =
p

3kBT mN

und ihre Wellenlänge

l =
h
p

=
hp

3kBT mN

=
6 ·10�34

p
3 ·1,4 ·10�23 ·300 ·1,7 ·10�27

m

⇡ 10�10 m,

also wiederum etwa ein Angström, wie bei den 100
eV Elektronen aus Kapitel 8.2.3. Die hier diskutier-
ten Neutronen haben jedoch eine kinetische Energie,
die um einen Faktor 100/0,026=3846 niedriger ist.
Dieser wird kompensiert durch das Massenverhält-
nis

mN

me
⇡ 1836.

Bei gleicher Energie ist der Impuls p =
p

2mEkin von
Neutronen um den Faktor

r
mN

me
⇡

p
1836 ⇡ 43

größer als bei den Elektronen und die Wellenlänge
deshalb um den gleichen Faktor kürzer.

8.2.6 Schwerere und zusammengesetzte
Teilchen

Welleneigenschaften kann man nicht nur Elementar-
teilchen zuordnen, sondern auch zusammengesetz-
ten Teilchen wie Neutronen, Atome oder Moleküle.
Gemäß Gleichung (8.1) wird jedoch mit zunehmen-
der Masse die de Broglie Wellenlänge kürzer. Er-
ste Versuche dazu wurden 1930 von Estermann und
Stern6 mit Helium durchgeführt.

Abbildung 8.24: Beugung von He und H2 an NaCl.

Ein Heliumatom hat eine Masse von 6,7 · 10�27 kg,
also ähnlich wie ein Neutron (4 mal), und damit bei
thermischen Geschwindigkeiten die halbe Wellen-
länge. Estermann und Stern haben die Beugungsma-
xima bei der Reflexion an NaCl Kristallen gemessen.
Wenn die Bragg-Bedingung erfüllt ist, findet man ei-
ne erhöhte Reflektivität, wie in Abb. 8.24 gezeigt.
Da es sich um thermische Strahlen handelt, besitzen
die Teilchen eine relativ breite Verteilung von Ge-
schwindigkeiten und Wellenlängen und die Reflexi-
onsmaxima sind relativ breit. Es ist aber möglich, die
mittlere Wellenlänge der Strahlen zu ändern, indem
man die Temperatur und / oder die Art des Atoms /
Moleküls ändert. Dadurch werden die Positionen der
Beugungsmaxima verschoben.

Der nächste Schritt ist von Atomen zu Molekülen.
Auch dieser Schritt wurde bereits von Estermann

6I. Estermann and O. Stern, Z. Phys. 61 (1930) 95.
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und Stern durchgeführt, welche neben He auch die
Beugung von molekularem Wasserstoff, H2, unter-
suchten. An größeren Molekülen wurden erst vor
wenigen Jahren Beugungseffekte nachgewiesen.

Laser

Abbildung 8.25: Doppelspaltexperiment mit C60-
Molekülen. [2]

Dafür wurde ein Strahl von C60 Molekülen zu-
nächst kollimiert und dann auf ein Beugungsgitter
geschickt, wie in Abb. 8.25 gezeigt [2]. In einer Di-
stanz von ca. 1 m wurden dann die Beugungsmaxima
gemessen.

Werden aber die Massen größer, so werden die Wel-
lenlängen extrem kurz. Bei einer Kegelkugel, z.B.,
der wir der Einfachheit halber eine Masse von 1 kg
und eine Geschwindigkeit von 1 m/s zuordnen, wird
der Impuls p=1 mkg/s und die de Broglie Wellenlän-
ge

l =
h
p

= 6 ·10�34 m.

Bei der Diskussion der Optik hatten wir gefunden,
dass wir die Welleneigenschaften eines Teilchens
nicht beobachten können, wenn die Dimensionen
des Apparates groß sind im Vergleich mit der Wel-
lenlänge. Diese Voraussetzung ist offensichtlich für
eine Kegelbahn erfüllt. In diesem Bereich kann die
Ausbreitung mit Hilfe der geometrischen Optik, re-
spektive der klassischen Mechanik diskutiert wer-
den.

Man kann noch weitergehen und z.B. die Wellenlän-
ge der Erde bestimmen. Deren Masse beträgt 6 ·1024

kg. Auf der Bahn um die Sonne hat sie eine Ge-
schwindigkeit von ca. 30 km/sec und damit eine

Wellenlänge von 4 · 10�63 m. Deshalb ist die klassi-
sche Mechanik, welche die Welleneigenschaften der
Materie vollständig vernachlässigt, eine ausgezeich-
nete Näherung für die Beschreibung von astronomi-
schen Objekten.

8.3 Der quantenmechanische
Formalismus

8.3.1 Historische Vorbemerkungen

Abbildung 8.26: Schematische Darstellung der Ent-
wicklung der Quantenmechanik.

Die oben dargestellten experimentellen Hinweise
wurden im Laufe der ersten Jahrzehnte des 20.
Jahrhunderts durch die neu entwickelte Theorie der
Quantenmechanik überwunden. Abb. 8.26 fasst die
konzeptionelle Entwicklung zusammen.

Abbildung 8.27: Teilnehmer der 1. Solvay-Konfe-
renz.

Im Vergleich zu heute war es eine relativ kleine Zahl
von Physikern, welche diese Theorie entwickelten.
Abb. 8.27 zeigt einige von ihnen anlässlich der 1.
Solvay Konferenz.
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8.3.2 Grundlagen

Der Formalismus der Quantenmechanik verwendet

• Die Zustandsfunktionen Y: sie enthält alle In-
formationen über den Zustand des relevanten
Systems.

• Operatoren A, welche auf die Zustandsfunktion
wirken. Diese beschreiben physikalische Grü-
ßen wie Ort, Impuls oder Energie.

Die Zustandsfunktion fasst das vorhandene Wissen
über den Zustand des Systems zusammen. Sie be-
schreibt eine Welle, welche im einfachsten Fall (ebe-
ne Welle) dargestellt werden kann als

Y(x, t) = aei(kxx�wt) = aei(pxx�E t)/h̄,

wobei die Beziehungen E = h̄w , p = h̄k verwendet
wurden.

Zu den charakteristischen Eigenschaften der Quan-
tenmechanik gehört, dass sie linear ist. Die bedeutet,
dass wenn 2 Zustände Y1 und Y2 erlaubte Zustände
sind, dass immer auch die Überlagerung

Y = c1Y1 + c2Y2 c2
1 + c2

1 = 1

ein erlaubter Zustand ist.

Die Wahrscheinlichkeit, ein Teilchen, das durch die-
se Wellenfunktion beschrieben wird, am Ort x zu fin-
den, ist

I(x) = |Y(x)|2.

Hier wurde vorausgesetzt, dass die Funktion nor-
miert ist, d.h.

Z •

�•
I(x)dx = 1

für ein Teilchen. Die Wahrscheinlichkeit, das Teil-
chen in einem bestimmten Volumenelement zu fin-
den, ist entsprechend gegeben durch das Integral
über das betreffende Volumenelement.

Es existieren verschieden Darstellungen dieser
Funktionen und Operatoren. Eine beliebte ist die
Darstellung der Funktionen als Vektoren und der
Operatoren als Matrizen.

8.3.3 Quantenmechanische Messungen;
Erwartungswerte

Aus den Anfängen der Quantenmechanik hat man
einen Formalismus für die Beschreibung von Mes-
sungen entwickelt. Misst man eine Größe, die einem
Operator A entspricht, so ist der Erwartungswert für
die Messung

hAi =
hY|A|Yi
hY|Yi .

Hier stellt ha|bi das Skalarprodukt dar.

Ist der Zustand Yi ein Eigenzustand von A, gilt also

AYi = aiYi

für einen Eigenwert ai, so ist offenbar

hAi = ai
hYi|Yii
hYi|Yii

= ai.

Meist wählt man die Zustandsfunktionen Yi nor-
miert, hYi|Yii = 1. Die Eigenwerte von A sind die
möglichen Resultate von dispersionsfreien Messun-
gen. Ist das System vor der Messung nicht in einem
Eigenzustand, so wird es durch die Messung in einen
Eigenzustand gebracht. Eine Messung im Sinne des
quantenmechanischen Messprozesses ist somit nicht
ein einfaches “Hinschauen und Ablesen des Resulta-
tes”, es beeinflusst im Allgemeinen den Zustand des
Systems. Die Ausnahme ist nur der Fall wo sich das
System bereits in einem Eigenzustand der Observa-
blen (d.h. des Operators, welcher gerade gemessen
wird) befindet.

Ein allgemeiner Anfangszustand kann als Linear-
kombination der Eigenzustände geschrieben werden,

Y = Â
i

ciYi(~r, t) Â
i

|ci|2 = 1,

da diese eine vollständige Basis darstellen. Bei einer
Messung geht der Zustand dann mit Wahrscheinlich-
keit |ci|2 in den Zustand Yi über, und das Resultat
der Messung ist durch ai gegeben, also den Eigen-
wert des Operators, der zum entsprechenden End-
zustand gehört. Mehrere Messungen an einem Su-
perpositionszustand ergeben deshalb unterschiedli-
che Resultate. Die Breite der Verteilung der Messre-
sultate hängt von der Art des Superpositionszustands
ab.
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Beispiel: Ein Teilchen sei in einem Zustand, welcher
als Superpositionszustand einer Verteilung von ebe-
nen Wellen beschrieben werden kann,

Y =
Z k0

�k0

c(k)eikx.

Hier stellt k0 die Breite der Verteilung dar. Offen-
bar hat dieses Teilchen (im Gegensatz zu einem Teil-
chen, das als ebene Welle beschrieben werden kann),
keinen scharfen Impuls.

Führt man an diesem Teilchen eine (ideale) Messung
des Impulses durch, so kann man als Resultat nur ei-
ne Eigenfunktion des Impulses, d.h. eine ebene Wel-
le erhalten. Nach der Messung befindet sich das Teil-
chen somit im Zustand eikx. Wird an diesem Zustand
nochmals der Impuls gemessen, so ist das Resultat
immer h̄k, und der Zustand ändert sich nicht mehr.

8.3.4 Die wichtigsten Operatoren

Die wichtigsten Operatoren der Quantenmechanik
sind Ort ~̂x, Impuls ~̂p und Energie Ĥ . Der Ortsope-
rator entspricht in der Ortsdarstellung einer Multipli-
kation mit~x, d.h.

~̂xY =~xY.

Beim Photon hatten wir bereits gesehen, dass der Im-
puls einer harmonischen Welle als

~̂p = h̄~k

geschrieben werden kann. Dies kann verallgemei-
nert werden. Im eindimensionalen Fall erhält man
die Wellenzahl k als

k = �i
d
dx eikx

eikx = �i
Y0

(x)
Y(x)

.

Damit wird der Impulsoperator in 3 Dimensionen

~̂p = �ih̄~— = �ih̄

0

B@

∂
∂x
∂
∂y
∂
∂ z

1

CA .

Der Energieoperator wird üblicherweise als Ĥ (Ha-
miltonoperator) geschrieben7. Man erhält ihn aus

7Das .̂-Zeichen markiert Operatoren. Wenn keine Verwechs-
lungsgefahr besteht wird es meist weggelassen

dem klassischen Ausdruck für die Energie eines Sy-
stems, indem man Ort und Impuls durch die entspre-
chenden Operatoren ersetzt. So ist der Hamiltonope-
rator eines freien Teilchens gegeben durch die kine-
tische Energie:

Ekin =
p2

2m

und somit

Ĥ =
~̂p2

2m
=

⇣
�ih̄~—

⌘2

2m
= � h̄2—2

2m
.

8.3.5 Schrödingergleichung

Die zeitliche Entwicklung des Systems, d.h. die
Zeitentwicklung von Y(x, t) ist gegeben durch die
Schrödingergleichung

H Yi(~r, t) = ih̄
∂
∂ t

Y(~r, t).

H bezeichnet den Hamiltonoperator des Systems.
Dieser Operator entspricht dem quantenmechani-
schen Ausdruck für die Energie.

Besonders wichtig sind diejenigen Lösungen der
zeitabhängigen Schrödingergleichung, die Eigen-
funktionen Yi des Hamilton-Operators darstellen,
d.h.

H Yi(~r, t) = EiYi(~r, t). (8.2)

Hier entspricht Ei, der Eigenwert, der Energie des
entsprechenden Zustandes. Aus Eigenzuständen er-
hält man Lösungen der Schrödingergleichung, in-
dem man sie als Produkt eines räumlichen An-
teils Yi(~r) mit einem zeitabhängigen Phasenfaktor
e�iEit/h̄ schreibt:

Yi(~r, t) = Yi(~r)e�iEit/h̄.

Die Phase ist somit linear in der Zeit und in der Ener-
gie Ei des Zustandes. Setzt man diese Funktion in die
ursprüngliche Gleichung (8.2) ein, so erhält man

H Yi(~r)e�iEit/h̄ = ih̄Yi(~r)
∂
∂ t

e�iEit/h̄

= EiYi(~r)e�iEit/h̄.
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Division durch den zeitabhängigen Faktor e�iEit/h̄ er-
gibt die “stationäre” oder zeitunabhängige Schrödin-
gergleichung

H Yi(~r) = EiYi(~r).

Hier handelt es sich um eine Eigenwertgleichung,
die nicht mehr von der Zeit abhängt.

E
ne
rg
ie

�1

�2

�3E3

E2

E1

Abbildung 8.28: Energie-Eigenwerte und Eigenzu-
stände.

Die Lösungen dieser Gleichung stellen die statio-
nären Zustände des Systems dar (! Abb. 8.28). Sie
bilden die natürliche Basis für die Beschreibung ei-
nes quantenmechanischen Systems. Diese Zustän-
de werden oft einfach als “die Zustände des Sy-
stems” bezeichnet, auch wenn nur die zeitunabhän-
gigen (bis auf den Phasenfaktor) Zustände gemeint
sind. Die zeitunabhängige Schrödingergleichung be-
schreibt somit nur die stationären Zustände.

Die zeitabhängige Schrödingergleichung gilt für alle
quantenmechanischen Zustände und beschreibt die
zeitliche Entwicklung eines Systems, welches sich
in einem beliebigen Zustand befindet.

8.3.6 Heisenberg’s Unschärfenrelation

In Kap. 8.3.3 wurde gezeigt, dass nach einer idealen
quantenmechanischen Messung des Impulses das
Teilchen in eine ebene Welle kollabiert. Der Ort
des entsprechenden Teilchens ist nicht scharf defi-
niert, das Teilchen ist gleichmäßig über den gesam-
ten Raum verteilt. Für einen allgemeinen Zustand
sind weder Ort noch Impuls exakt bestimmt sind. Ist
z.B.

Y =
Z •

�•
e�(k�k0)2/Dk2

eikx,

d.h. die Verteilung im Impulsraum ist eine Gauß-
Funktion, so ist auch die Verteilung im Ortsraum ei-
ne Gauß-Funktion.

Führt man zwei Messungen A und B hintereinander
durch, so hängt das Ergebnis offensichtlich von der
Reihenfolge der Messungen ab: das System ist am
Schluss in einem Eigenzustand des zuletzt gemesse-
nen Operators. Beide Messungen nacheinander erge-
ben das Resultat

Y ! ÂB̂Y.

Für eine andere Reihenfolge der Messungen ist der
Endzustand i.A. unterschiedlich, sofern

ÂB̂� B̂Â = [Â, B̂] 6= 0.

Dann ist es nicht möglich, beide Größen mit belie-
biger Genauigkeit zu messen. Der Operator [Â, B̂]
wird als Kommutator (Vertauschungsoperator) be-
zeichnet.

d > λ: Ort unscharf

Impuls scharf (=0) Impuls unscharf

d < λ: Ort scharf

Abbildung 8.29: Unschärfe bei Beugung von Wel-
len.

Den Einfluss einer Messung auf das Resultat einer
späteren Messung eines konjugierten Operators (z.B.
Ort / Impuls) kann man gut anhand einer Welle be-
schreiben. Wie im Beispiel von Abb. 8.29 lässt man
die Welle durch einen schmalen Spalt laufen. Da-
mit kann man ihren Ort (senkrecht zur Ausbreitungs-
richtung) mit beliebiger Genauigkeit (der Breite des
Spaltes) bestimmt. Die Beugungseffekte führen je-
doch dazu, dass die Wellenlänge (d.h. der Impuls) in
die entsprechende Richtung nicht mehr gut definiert
ist.
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Für Ort- und Impuls gilt

[a, pa ] = �ih̄ [a, pb ] = 0 a,b = x,y,z.

Für das mittlere Schwankungsquadrat der Messre-
sultate gilt:

(Da)2 = (a � ā)2 DpaDa � h̄
2
.

Dies wird als Heisenberg’sche Unschärfenrelation
oder Unbestimmtheitsrelation bezeichnet. Sie wurde
1927 von Werner Heisenberg formuliert.

8.4 Eindimensionale Probleme

Während realistische Quantensysteme nur nume-
risch behandelt werden können, gibt es eine Reihe
von einfachen Modellen, welche analytisch behan-
delt werden können und trotzdem relevante Resulta-
te über reale Systeme liefern. In vielen Fällen reicht
es, diese in einer Dimension zu behandeln.

8.4.1 Der harmonische Oszillator

Ein wichtiges Beispiel für ein quantenmechanisches
System in einer Dimension ist der harmonische Os-
zillator. Er beschreibt zum Beispiel die Schwingung
von Atomen in Molekülen und Festkörpern, aber
auch alle anderen schwingungsfähigen Systeme in
der Nähe ihres Potenzialminimums.

Wie in der klassischen Physik ist der harmonische
Oszillator gegeben durch ein quadratisches Potenzial

V (x) = ax2.

Unter Berücksichtigung der kinetischen Energie er-
hält man den Hamiltonoperator

Hho =
p2

2m
+

mw2x2

2
.

Setzt man dieses Potenzial in die Schrödingerglei-
chung ein, so findet man, dass die Energien durch
den Ausdruck

En = (n+
1
2
)hn

gegeben sind, d.h. sie sind äquidistant und der Zu-
stand niedrigster Energie liegt um ein halbes Quant
über dem Minimum der Potenzialkurve. Die Ener-
giedifferenz hn hängt ab von der Krümmung des
Potenzials und von der Masse des bewegten Teil-
chens. Dies ist einer der wichtigsten Unterschiede
zwischen der klassischen und der Quantenmecha-
nik. Die Frequenz n ist die Schwingungsfrequenz
des entsprechenden Systems, z.B. die Frequenz ei-
ner Molekülschwingung.

x

E

En = (n +
1

2
)h�

Ψ

Abbildung 8.30: Energien und Eigenzustände (Re-
alteile) des harmonischen Oszilla-
tors.

Abbildung 8.30 zeigt eine graphische Darstellung
der Eigenzustände des harmonischen Oszillators. Im
Grundzustand ist das Maximum der Zustandsfunkti-
on in der Mitte des Potenzials. Der erste angeregte
Zustand weist einen Nulldurchgang auf, der zweite
zwei etc.

8.4.2 Teilchen im Potenzialtopf

Ein weiteres einfaches Beispiel ist gegeben durch
das Potenzial

U(x) = 0 für 0 < x < L
• sonst.

Die potenzielle Energie verschwindet somit im Be-
reich des “Kastens” [0,L] und ist unendlich außer-
halb. Man bezeichnet es deshalb als Teilchen im Po-
tenzialtopf (particle in a box). Dies ist ein wichtiges,
wenn auch idealisiertes System, das eine gute Nähe-
rung für viele reale Systeme darstellt. So werden in
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der Halbleiterphysik häufig Elektronen in sogenann-
te Potentialtöpfe gebracht, u.a. um damit Halbleiter-
laser herzustellen. Auf ähnliche Weise wird Licht in
Glasfasern geführt, z.B. bei der Datenübertragung.
Dies ist auch ein gutes Modell für die Bindung von
gewissen Elementarteilchen in Atomkernen.

Der Hamiltonoperator für dieses System enthält wie
beim freien Teilchen kinetische Energie, sowie zu-
sätzlich den Beitrag der potentiellen Energie

H =
p2

2m
+U(x) = �h̄2 ∂ 2

∂x2
1

2m
+U(x).

Da das Potential außerhalb der Mulde unendlich
groß ist, würde eine Komponente der Wellenfunkti-
on in diesem Bereich zu einer unendlich hohen Ener-
gie führen. Wir interessieren uns aber nur für Zustän-
de mit endlicher Energie, so dass wir fordern müs-
sen, dass die Zustandsfunktion außerhalb der Mul-
de verschwindet. Da die Zustandsfunktion stetig sein
muss, gilt auch

Y(0) = Y(L) = 0. (8.3)

Damit können wir unsere Betrachtungen auf den Be-
reich der Potentialmulde 0 < x < L beschränken und
die Gegenwart des Potentials über die Randbedin-
gungen (8.3) berücksichtigen. Das Teilchen ist somit
gebunden, es muss sich mit Wahrscheinlichkeit 1 in-
nerhalb des Potentialtopfs aufhalten:

Z L

0
dx|Y(x)|2 = 1.

Innerhalb des Potentialtopfs verhält sich das System
wie ein freies Teilchen, welches durch eine ebe-
ne Welle beschrieben wird. Mit der Randbedingung
(8.3) erhält man folgende Funktionen als Lösung der
Schrödingergleichung:

Yn(x, t) = Cn sin(
npx

L
)e�iwnt n = 1,2, . . . .

Der Wellenvektor ist somit k = np/L und die Energie
ist gleich der kinetischen Energie

Ekin =
h̄2k2

2m
=

n2p2h̄2

2mL2 =
n2h2

8mL2 .

Die Energie steigt somit quadratisch mit dem Index
n. Die Zustandsfunktionen weisen mit zunehmender

Ort x

E

0 L

1

2

3
|�|2

Abbildung 8.31: Die 3 niedrigsten Zustände für ein
Teilchen in einem Potenzialtopf.

Energie eine größer werdende Zahl von Nulldurch-
gängen, so genannten Knoten auf. In Abb. 8.31 sind
jeweils die Aufenthaltswahrscheinlichkeiten darge-
stellt. Mit zunehmender Energie werden die Wellen-
längen kürzer, was einem zunehmenden Impuls und
damit zunehmender kinetischen Energie entspricht.
Interessant ist auch, dass damit die Zustandsfunkti-
on des Teilchens in Bereiche aufgeteilt wird, zwi-
schen denen die Wahrscheinlichkeit, das Teilchen zu
finden, verschwindet. Solche Zustände, in denen das
Elektron sich nicht mehr frei bewegen kann, sondern
auf einen lokalen Bereich beschränkt ist, werden als
lokalisierte Zustände bezeichnet.

8.4.3 Anwendung:
Halbleiter-Quantenstrukturen

Abbildung 8.32: GaAs Quantenfilm.

Obwohl das Teilchen im Potentialtopf zunächst nur
ein mathematisch angenehmes Modellsystem ist,
kann man solche Systeme heute in guter Näherung
verwirklichen. Zu den wichtigsten Beispielen gehö-
ren Elektronen in Halbleiter-Schichtstrukturen. Abb.
8.32 zeigt eine entsprechendes Beispiel,
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Indem man die Zusammensetzung auf atomarer Ska-
la kontrolliert, kann man ein effektives Potenzial
für die Elektronen erzeugen, welches sie z.B. in
einen sog. “Quantentopf” einschließt. Solche Struk-
turen sind inzwischen bei der Herstellung von La-
sern sehr wichtig geworden. Natürlich stimmt das
Modell nicht exakt, aber es stellt eine erste Nähe-
rung dar. Die wichtigste Abweichung ist, dass das
Potenzial außerhalb des ‘Topfs’ endlich ist.

15 19 nm
Dicke des 
Quantentopfs   8   10    12 

 E

790 800 810 820

PL

Wellenlänge λ [nm]

Abbildung 8.33: Photolumineszenz einer Probe mit
5 unterschiedlich dicken Quan-
tentöpfen.

Vergleicht man Quantentöpfe mit unterschiedlicher
Dicke, so erwartet man, dass die Energie der Elek-
tronen etwa proportional zu 1/L2 ansteigt. Dies wird
durch experimentelle Daten bestätigt. In der Indu-
strie wird dieser Effekt benutzt, um die Wellen-
länge von Halbleiterlasern anzupassen. Abb. 8.33
zeigt entsprechende Messdaten. Gemessen wird hier
die Energiedifferenz zwischen Elektronen im Lei-
tungsband und dem oberen Rand des Valenzbandes.
Dabei wird die Elektronenenergie um die Energie
des Grundzustands erhöht. Man kann die Grund-
zustandsenergie für einen bestimmten Quantenfilm
bestimmen, indem man die Frequenz der emittier-
ten Photonen vergleicht mit Frequenz der Photonen,
die vom Volumen-Material emittiert werden (Linie
ganz rechts in Abb. 8.33). Das Volumenmaterial ent-
spricht dem Grenzfall L ! •.
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