7 Optik
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7.1.1 Historisches

5 15
c ] ©
S " 5 3
c Ry < kel
:0 > © =
[i4 5 5 K s &
T T 1 T T 1 T T T T 1
1nm 1um 1 mm 1m  Wellenlange
O B O B |
Frequenz PHz THz GHz MHz

Abbildung 7.1: Licht als Teil des elektromagneti-
schen Spektrums.

Heute betrachten wir Licht als einen Bereich des
elektromagnetischen Spektrums. Abb. zeigt
einen Uberblick iiber einen Teil des elektromagne-
tischen Spektrums, in dem das sichtbare Licht einen
kleinen Bereich abdeckt. Die theoretischen Grundla-
gen sind durch Maxwell’s Gleichungen (siehe Kapi-
tel 5), gut abgedeckt, wobei man fiir einige Aspekte
die Quantenmechanik beriicksichtigen muss (siche
Kapitel 7). Dabei stellt Licht nur einen kleinen Be-
reich des elektromagnetischen Spektrums dar, aller-
dings einen besonders wichtigen Teil, u. A. deshalb
weil wir es direkt mit unserem wichtigsten Sinnesor-
gan, dem Auge, wahrnehmen konnen.

Die Natur des Lichtes hat Philosophen und Natur-
wissenschaftler seit vielen Jahrhunderten beschiftigt
und zu engagierten Debatten gefiihrt. Insbesondere
wurde heftig dariiber debattiert, ob Licht aus Teil-
chen oder Wellen bestehe.

Abb. zeigt zwei Physiker, welche im 17. Jahr-
hundert erste wissenschaftliche Arbeiten zur Natur
des Lichtes publiziert haben. 1672 stellte Newton ei-
ne Theorie auf, welche Wellen- und Teilchenaspekte

Isaac Newton
1672 Licht als Teilchenwellen

Christiaan Huygens

1678 Theorie von Licht
als Atherwellen

Pioniere der naturwissen-
Lichtes.

Abbildung 7.2: Zwei
schaftlichen Theorie des

enthielt; die Wellenaspekte traten aber bald in den
Hintergrund und seine Theorie wurde im Wesent-
lichen als Teilchentheorie betrachtet. Dazu gehor-
te vor allem die geradlinige Ausbreitung; Brechung
und Reflexion wurden relativ leicht erklidrbar. 1678
stellte Huygens eine Wellentheorie auf, welche In-
terferenz und Beugung erkldren konnte. Newton’s
Ansehen in der Naturwissenschaft war aber so do-
minant, dass Huygens kaum beachtet wurde. Expe-
rimentelle Hinweise auf solche Effekte hatten zu-
vor die Experimente von Francesco Grimaldi (1618-
1663) ergeben.

Abb. [1.3] fasst weitere Stufen zusammen: 1808 un-
tersuchte Malus und 1815 Fresnel die Polarisations-
eigenschaften von Licht. Wahrend wir das als einen
Beweis der Wellenaspekte ansehen war das damals
fiir die Wellentheorie eher eine Schwierigkeit, da da-
mals nur Longitudinalwellen bekannt waren, welche
Polarisationseigenschaften nicht erkldren kénnen.

1865 stellte Maxwell die Theorie des Elektromagne-
tismus. Diese stellt heute die Grundlage fiir die klas-
sische Theorie des Lichtes dar. Es dauerte allerdings
noch einige Jahre bis die Experimente von Hertz
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Jean Augustin Fresnel

1815 Polarisationseigentschaften,
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James Clerk Maxwell
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Wellen

Abbildung 7.3: Fresnel und Maxwell.

zeigten, dass Licht ein Beispiel einer elektromagne-
tischen Welle ist. Damit wurde die Optik ein Teil-
gebiet der Elektrodynamik. 1905 zeigte jedoch Ein-
stein, dass man bestimmte Phidnomene nur verstehen
kann, wenn man dem Licht eine “Doppelnatur” zu-
schreibt: bei der Ausbreitung verhilt es sich wie eine
Welle, bei der Wechselwirkung mit Materie wie eine
Teilchenstrom. Dies wird im Detail im Rahmen der
Quanten-Elektrodynamik behandelt.

Auch im Bereich des sichtbaren Lichts findet man
unterschiedliche Wellenlidngen. Diese entsprechen
unterschiedlichen Farben des Lichts. Sichtbares
Licht enthilt unterschiedliche Wellenldngen, wobei
wir den kurzwelligen Bereich blau sehen, den lang-
welligen Bereich rot.

Zerlegung von weillem Licht
in Spektralfarben

Wellenlange grof3

Abbildung 7.4: Spektralzerlegung mit einem Pris-
ma.

Abb.[7.4]zeigt das Prinzip eines Experiment welches
dies nachweist, indem es einen Strahl weiflen Lichts
auf ein Prisma schickt. Rotes und blaues Licht wird
darin unterschiedlich gebrochen und kann deshalb

dahinter getrennt beobachtet werden. Es gibt eine
Reihe von Lehrbiichern zu diesem Thema.

7.1.2 Beschreibung

Die physikalische Optik befasst sich mit der Erzeu-
gung, Ausbreitung und dem Nachweis von Licht.
In einem weiteren Sinn gehoren dazu auch ande-
re Wellen. Prinzipiell kénnen alle Phinomene, die
elektromagnetische Strahlung involvieren durch die
Quantenelektrodynamik beschrieben werden. Diese
ist aber oft zu kompliziert und wird im Rahmen
der Grundvorlesungen nicht unterrichtet. Stattdessen
kann man unterschiedliche Beschreibungen verwen-
den, die fiir einen groBen Bereich der interessanten
physikalischen Phinomene geniigen.

Physikalische Optik
Quantenelektrodynamik

-

Klassische Optik
Welleneigenschaften

H

Quantenoptik
Teilcheneigenschaften

geometrische Optik Wellenoptik
Gegenstande » Gegenstande =
Wellenlénge Wellenldnge

Abbildung 7.5: Teildisziplinen der Optik.

Die meisten Phinomene kann man auch mit der klas-
sischen Elektrodynamik beschreiben, welche Licht
als eine elektromagnetische Welle betrachtet. Inner-
halb der klassischen Optik unterscheidet man, wie in
Abb. [7.5]| gezeigt, zwischen den Teilgebieten

» geometrische Optik oder Strahlenoptik: Licht
kann mit als Strahlen beschrieben werden wenn
die interessanten Dimensionen grof sind im
Vergleich zur Wellenlidnge des Lichts. Diesen
Bereich versucht man immer zu treffen wenn
man Abbildungen macht, also z.B. in der Foto-
grafie. Sie Bedingung fiihrt aber z.B. dazu, dass
man auch bei sehr viel Licht die Blende nicht
beliebig klein machen kann.

* ist diese Bedingung nicht mehr erfiillt, so muss
man den Wellencharakter des Lichtes beriick-
sichtigen; es treten zusitzliche Effekte wie Beu-
gung und Interferenz auf. Dieser allgemeinere
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Bereich wird durch die Maxwell Gleichungen
abgedeckt.

* Wenn die Wechselwirkung mit materiellen Sy-
stemen involviert ist, so miissen diese meist
quantenmechanisch beschrieben werden. Aller-
dings kann man die Beschreibung des elektro-
magnetischen Feldes selbst in den meisten Fil-
len weiterhin klassisch halten. Man nennt dies
die semiklassische oder halbklassische Nahe-
rung.

* Mit Quantenoptik wird derjenige Teil der Optik
bezeichnet, welcher spezifisch quantenmecha-
nische Aspekte behandelt.

7.1.3 Erzeugung von Licht

Elektromagnetische Strahlen werden allgemein
durch beschleunigte Ladungen und oszillierende
Dipole erzeugt. Fiir eine effiziente Abstrahlung
miissen die Dipole dabei kleiner sein als die Wel-
lenldnge der Strahlung, bei sichtbarem Licht liegen
diese Dimensionen im Nanometer-Bereich. Die
eigentlichen Quellen sind meistens Schwingungen
von Elektronen in Atomen. Diese Schwingungen
konnen auf unterschiedliche Weise angeregt werden;
am FEinfachsten geschieht dies durch Erwirmen.
Solche Quellen werden als thermische Quellen
bezeichnet. Das beste Beispiel dafiir ist die Son-
ne, aber natiirlich auch eine Glithlampe. Solche
Quellen verhalten sich in guter Nidherung wie ein
Schwarzkorperstrahler, d.h. eine Quelle, welche alle
Wellenlidngen vollstindig absorbiert und nach einer
bestimmten GesetzméBigkeit wieder emittiert. Ein
wichtiger Aspekt solcher Quellen ist, dass die spek-
trale Verteilung der Strahlung nicht vom Material
der Quelle abhiingt. Jeder schwarze Strahler hat ein
Spektrum, welches nur von der Temperatur abhéngt.
Details dazu werden im Kapitel [§|behandelt.

Das Spektrum eines schwarzen Strahlers wird durch
das Planck’sche Strahlungsgesetz beschrieben:

dP _ 2hc® 1
dr A s

Es besagt, dass das Maximum der emittierten Strah-
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Abbildung 7.6: Verteilung der Intensitit {iiber
die Wellenldngen bei verschie-
denen Temperaturen gemil dem
Planck’schen Strahlungsgesetz.
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Abbildung 7.7: Spektrum der Sonne.

Der wichtigste Strahler ist bei weitem die Sonne,
die eine Oberflichentemperatur von etwa 6000 Grad
aufweist. Das Emissionsmaximum liegt somit bei ca.
500 nm und der grofite Teil der emittierten Leistung
liegt im Bereich des sichtbaren Lichtes. Allerdings
gelang nicht alle Strahlung bis auf die Erdoberfldche
- ein Teil wird durch die Atmosphire absorbiert, ins-
besondere im UV-Bereich.

Eine weitere Moglichkeit zur Erzeugung von Licht
benutzt sogenannte elektronische Ubergiinge in ato-
maren Spektren: Hier gehen Elektronen von ener-
getisch hoher liegenden Zustinden in tiefere iiber
und senden dabei Licht aus. Dies werden Sie in der
Quantenmechanik diskutieren. Die wohl Bekannte-
ste solcher Quellen sind Natriumdampflampen, wel-
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Abbildung 7.8: Linienspektrum einer Hg-Xe Lam-
pe.

che vor allem fiir die Stralenbeleuchtung eingesetzt
werden.

Eine weitere Art der Erzeugung von Licht ist der
Laser. Dies ist eine Quelle die besonders niitzliche
Eigenschaften hat. Laserlicht kann auf verschiedene
Arten erzeugt werden und hat je nach Erzeugungs-
art unterschiedliche Eigenschaften. Die Eigenschaf-
ten von Laserlicht werden in Kapitel [7.9] diskutiert.

7.1.4 Nachweis von Licht

Chemisch:

Chlorophyll , 2ol
AT ,;f',,{f
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Abbildung 7.9: Umwandlung von Licht in chemi-
schen Systemen.

Chemische Sensoren: Hier regt das Licht ein Elek-
tron in einem Molekiil in einen hoher angeregten Zu-
stand an. Abb. [7.9]zeigt einige Beispiele. Das ange-
regte Elektron kann anschliefend fiir chemische Re-
aktionen verwendet werden. Dieses Prinzip wird ins-
besondere in der Natur benutzt, z.B. durch die Sin-
neszellen im menschlichen Auge, aber auch durch
das Chlorophyll in Pflanzen etc. Die frithesten De-

tektoren fiir Licht (neben dem menschlichen Auge)
waren fotografische Filme, also diinne Schichten von
lichtempfindlichem Material, in dem beim Auftref-
fen von Licht eine chemische Umwandlung statt-
findet. Diese haben eine recht hohe Empfindlichkeit
und konnen in einer Fldche Licht detektieren.

hv

b) inth‘

Abbildung 7.10: Umwandlung von Licht in ein elek-
trisches Signal.
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Chemische Detektoren werden heute kaum mehr
verwendet, weil die Information erst nach dem Ent-
wicklungsprozess zur Verfiigung steht. Heute ist bei
praktisch allen verwendeten Detektoren das resul-
tierende Signal eine elektrische Spannung um, wie
in Abb. gezeigt. Damit steht das resultieren-
de Signal unmittelbar fiir die Messung zur Ver-
fligung. Wihrend einige Detektoren direkt Photo-
nen in einen Strom oder eine Spannung umwan-
deln benutzen andere Detektoren verschiedene Zwi-
schenstufen. So kann das einfallende Licht zunéchst
in Wirme umgewandelt werden und anschlieBend
wird die Temperaturerh6hung in ein elektrisches Si-
gnal umgewandelt. Solche Detektoren kommen u.
A. dann zur Anwendung wenn der Detektor iiber
einen moglichst groffen Wellenldngenbereich eine
konstante Empfindlichkeit aufweisen soll. Ein weite-
rer Anwendungsbereich ist der Nachweis von Strah-
lung im infraroten Teil des Spektrums, wo Detekto-
ren, die direkt ein elektrisches Signal erzeugen, eine
zu geringe Empfindlichkeit aufweisen. Dieses Prin-
zip benutzt man z.B. wenn man die Sonne auf der
Haut spiirt. Physikalische Detektoren, die auf diesem
Prinzip basieren sind

* Bolometer: Widerstandsidnderung in einem Me-
tall

e Thermistoren: Widerstandsidnderung in einem
Halbleiter

* Pyroelektrische Detektoren: Die Temperaturer-
hohung dndert eine Oberflichenladung

276



7 Optik

* Eine weitere Moglichkeit nutzt den Photoeffekt
(— ADD.[7.11): Licht, das auf eine Metallober-
flache auftrifft kann aus dieser Elektronen her-
auslosen. Diese Elektronen werden anschlie-
Bend vervielfacht und nachgewiesen. Dieser-
Effekt wird im Rahmen der Quantenmechanik
noch genauer diskutiert.

W
hode

7

Abbildung 7.11: Photoeftekt.

Wie in Abb. [7.11 gezeigt, 16sen dabei Photonen aus
der Oberflache eines Metalls Elektronen heraus. Ei-
ne solche Metalloberfliche wirkt also als Quelle fiir
Elektronen und wird als Photokathode bezeichnet.

Abbildung 7.12: Photozelle.

Wie in Abb. [7.12 gezeigt, kann man die emittier-
ten Elektronen auf einer Anode einfangen und den
so erzeugten Photostrom direkt messen. Dafiir muss
sich das Elektrodenpaar im Vakuum befinden. Die-
se Anordnung wird als Photozelle bezeichnet. Wenn
die Lichtintensitét relativ gering ist kann es aber vor-
teilhaft sein, das Signal noch zu verstirken. Die ge-
schieht meistens tiber einen Sekundérelektronenver-
vielfacher:

Wie in Abb. [7.13]gezeigt, werden dabei die freiwer-
denden Elektronen in einem Potential beschleunigt
und auf die Oberfliche einer sekundéren Elektrode
(Dynode) fokussiert. Elektronen, die mit einigen 100
eV auftreffen 16sen aus der Metalloberfliche wieder-
um mehrere Elektronen heraus, welche anschlieend

LS

Abbildung 7.13: Sekundérelektronenvervielfacher.

wiederum beschleunigt werden kdnnen.
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Abbildung 7.14: Vervielfachungskaskade in einem
Photomultiplier.

Eine Reihe solcher Vervielfacherstufen kann, wie in
Abb. [1.14 gezeigt, pro Photon z.B. 107 Elektronen
erzeugen, welche anschlieBend sehr viel einfacher
detektiert werden konnen. Diese Art von Detektoren
werden als Photomultiplier bezeichnet.

7.1.5 Halbleiterdetektoren

Eine andere Gruppe von Detektoren wandelt Photo-
nen in einen elektrischen Strom um, indem in einem
Halbleiter durch Einfangen der Photonen Elektron-
Loch Paare erzeugt werden.

hv
Leit -
e
- +
Valenz- I

band
Abbildung 7.15: Paarerzeugung in einem Halbleiter
als Basis der Photoleitung.

Wie in Abb. [7.I5 gezeigt, machen die so erzeug-
ten Ladungen das Material photoleitend. Es ist so-
mit moglich, das Licht durch die Anderung des Wi-
derstandes zu detektieren. Voraussetzung fiir die Ab-
sorption des Photons ist, dass dessen Energie minde-
stens dem Energieunterschied zwischen den beiden
Béndern entspricht. Somit sind Halbleiterdetektoren
blind fiir Licht mit einer Wellenlidnge, die grofer ist
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als die charakteristische Wellenldnge des verwende-
ten Materials. Meist liegt diese im sichtbaren Be-
reich des Spektrums oder im nahen Infraroten.

p-dotiert

n-dotiert

?

;\.'j

Abbildung 7.16: Paarerzeugung am pn-Ubergang ei-
ner Photodiode.

Wenn die in der Nihe eines p-n Ubergangs ge-
schieht, wie in Abb. [7.16, so werden die Ladungen
getrennt, so dass die Rekombination vermieden wird
und ein elektrischer Strom flieSt. Nach diesem Prin-
zip arbeiten Photodioden und Solarzellen. Photodi-
oden sind heute der weitaus haufigste Detektortyp.
Sie bendtigen im Gegensatz zu einem Photomulti-
plier keine Hochspannung und kein Vakuum, son-
dern sind reine Festkorperdetektoren. Damit sind sie
sehr viel zuverldssiger und werden auflerdem nicht
durch Magnetfelder beeinflusst. Sie sind sehr kom-
pakt und billig. Die Quantenausbeute kann mehr als
90% betragen, sofern die Oberfldche mit einer Anti-
reflexbeschichtung versehen wird: typische Halblei-
ter haben einen hohen Brechungsindex (z.B. GaAs
n = 3.6), so dass bei unbehandelten Oberflachen
auch bei senkrechtem Einfall 25% des Lichtes an der
Oberfliache reflektiert wird.

Die Empfindlichkeit als Funktion der Wellenlénge
hingt von der Bandliicke des verwendeten Materials
ab. Abb.[7.17 zeigt die spektrale Empfindlichkeit fiir
zwei unterschiedliche Materialien. Silizium hat ei-
ne etwas groflere Bandliicke als GaAs und absorbiert
deshalb besser im sichtbaren Bereich des Spektrums,
wihrend GaAs im nahen IR seine hochste Effizienz
erreicht.

Es ist auch bei Photodioden moglich, die erzeug-
ten Photoelektronen zu vervielfachen, indem man an
geeignete Photodioden eine hohe Spannung anlegt.
Die Beschleunigung erfolgt in diesem Fall inner-

Empfindlichkeit [A/W]

0.0 Bl | Py | ] 2

400 800 1200

Wellenlange [nm]

1600 2000

Abbildung 7.17: Spektrale Empfindlichkeit von 2
unterschiedlichen Photodioden.

halb des Halbleitermaterials. In diesen Avalanche-
Photodioden kénnen die beschleunigten Elektronen
ihrerseits wieder Ladungstriger erzeugen, so dass
ein Photon einen hohen Spannungspuls erzeugen
kann, dhnlich wie bei Photomultipliern.

Metall-Elektrode

Verarmungszone

Abbildung 7.18: Aufbau einer CCD-Zelle.

Einer der populérsten Detektoren ist heute der CCD
(=Charge Coupled Device). CCD’s bestehen aus ein-
zelnen lichtempfindlichen Elementen, die in einem
zweidimensionalen Raster angeordnet sind. Die ein-
zelnen Elemente (— Abb. [7.18) sind enthalten ei-
ne Silizium-Verarmungszone, in der das einfallende
Licht Ladungen erzeugt. Durch eine geeignete Vor-
spannung und Dotierung wird eine Ansammlung der
Ladungen unterhalb der Oberflidche erreicht.
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7.2 Lichtausbreitung

7.2.1 Lichtgeschwindigkeit

Die Ausbreitungsgeschwindigkeit von Licht ist fiir
viele Anwendungen zu grof3 um messbar zu sein. So
versuchte Galilei 1667 die Lichtgeschwindigkeit zu
messen, indem zwei Personen sich gegenseitig mit
Hilfe von Laternen Lichtsignale zusandten. Es ge-
lang ihm jedoch nur, eine untere Grenze von ca. 3000
m/s zu setzen. Die erste Messung, welche einen end-
lichen Wert ergab, stammt vom Astronomen Ole Ro-
emer (1644-1710).

17 Min.
Verzbgeryng

/

Messung der Zeiten

Abbildung 7.19: Roemer’s Interpretation seiner Ex-
perimente.

Er beobachtete die Zeiten, zu denen der Mond Io von
Jupiter verdunkelt wird. Die Umlaufbahn von o um
Jupiter hat eine Periode von 42,5 Stunden. Wihren
man erwarten wiirde, dass die Abstinde zwischen
den Verdunkelungen sehr regelmiéBig sein sollten,
findet man experimentell jahreszeitliche Schwan-
kungen. Abb. [7.19 zeigt, wie Roemer dieses Resul-
tat interpretierte. Befinden sich Erde und Jupiter auf
entgegen gesetzten Seiten der Sonne, so sind die Zei-
ten um etwa 17 Minuten verspétet gegeniiber den-
jenigen, die man aufgrund von Messungen erwar-
ten wiirde, bei denen Erde und Jupiter auf der glei-
chen Seite der Sonne sind. Diese 17 Minuten ent-
sprechen der Zeit, welche das Licht benétigt, um
die Strecke von 300 Mio. km zuriickzulegen, welche
dem Durchmesser der Erdbahn entsprechen:

cAt=3-108-17-60m=3-10"m = 3- 108 km.

Lichtquelle

/Linsen \

Linsen —
ebener

8,63km  Spiegel

Beobachter ' rotierendes Zahnrad

halbdurchlassiger
Spiegel

Abbildung 7.20: Prinzip von Fizeau’s Messung.

Die erste erfolgreiche terrestrische Messung der
Lichtgeschwindigkeit erfolgte 1849 durch Armand
Fizeau. Er verwendete, wie in Abb. [7.20 gezeigt,
ein schnell drehendes Zahnrad, welches einen Licht-
strahl unterbrach, der von einem Spiegel reflektiert
wurde. Wenn die Zeit, welche der Lichtstrahl bend-
tigt, bis er wieder beim Rad ist, gerade der Zeit ent-
spricht, in der das Rad sich um einen halben Abstand
zwischen zwei Zihnen dreht, erreicht der Strahl den
Beobachter nicht mehr.

7.2.2 Messung der Lichtgeschwindigkeit
nach Fizeau-Michelson

Eine moderne Variante davon, welche mit geringe-
ren Armlidngen auskommt, verwendet anstelle eines
Zahnrades einen schnell drehenden Spiegel. Dreht
sich der Drehspiegel nicht oder nur langsam, so wird
der Laserstrahl in sich selber reflektiert. Bei genii-
gend schneller Drehung geniigt die Zeit, welche das
Licht vom Drehspiegel bis zum Umlenkspiegel und
wieder zuriick benotigt, um einen etwas anderen
Winkel zu erreichen. Der reflektierte Strahl wird des-
halb leicht abgelenkt.

Abbildung [7.21 zeigt den Aufbau. Die Zeit, wel-
che der Laserstrahl vom Drehspiegel zum Endspie-
gel und wieder zuriick benétigt betrigt

2L
At = —.
c

Wihrend dieser Zeit bewegt sich der Drehspiegel um
den Winkel

4nvL
o= At = ,
C
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Abbildung 7.21: Messung mit Drehspiegel.

C{flotomultiplier

zum Frequenzzahler

wobei Vv die Rotationsgeschwindigkeit des Drehspie-
gels darstellt. Der Laserstrahl wird durch die Refle-
xion um den doppelten Drehwinkel des Spiegels ab-
gelenkt und auf der Skala um die Distanz

L
dZZE(X:SnV /

ausgelenkt, wobei ¢ die Distanz Drehspiegel — Ska-
la darstellt. Wir konnen diesen Ausdruck nach der
Lichtgeschwindigkeit auflosen:

8nvLl
CcC =

v
=2.111-10°=.
’ d

Der numerische Wert ist fiir die experimentellen Pa-
rameter L = 14 m und ¢ = 6 m bestimmt, wobei die
Frequenz v in Hertz und die Distanz d in mm einzu-
setzen sind. Ein experimenteller Datensatz ist

[ dlmm] [ v[s7'T [ ¥ [s7'] | c[10°ms™'] |

1 282 141,0 2,9767
2 563 281.,5 2,9714
3 834 417,0 2,9345
4 1129 564,5 2,9794

Dies entspricht einem experimentellen Mittelwert
VOn Ceyp = 296550 km/s, withrend der genaue Wert
bei Coxgir = 299792.458 km/s liegt.

1864 bemerkte James Clerk Maxwell, dass seine
Theorie der elektromagnetischen Wellen eine Ge-
schwindigkeit eine Phasengeschwindigkeit vorher-

sagte:

1
Uo&o

1
—7 Vs —12 As
VAT 107758 85418810124

= 299792 kTm

Er verglich diesen Wert mit dem damals bekannten
experimentellen Wert und bemerkte

“This velocity is so nearly that of light, that it
seems we have strong reason to conclude that light
itself (including radiant heat, and other radiation if
any) is an electromagnetic disturbance in the form
of waves propagated through the electromagnetic
field according to electromagnetic laws.”

Spiter wurde die Lichtgeschwindigkeit ohne beweg-
liche Teile gemessen indem man gleichzeitig die
Frequenz und die Wellenlénge maf3. Heute kann man
die Lichtgeschwindigkeit nicht mehr messen — sie ist
definiert als die Geschwindigkeit ¢ = 299°792°458
m/s.

7.2.3 Brechungsindex

In Materie ist die Lichtgeschwindigkeit geringer.
Wie bereits im Kapitel 4 diskutiert, ist die allge-
meine Beziehung zwischen Frequenz und Wellen-
lange in einem Medium gegeben durch die Bezie-
hung @ = kc/n, wobei ¢ die Lichtgeschwindigkeit
im Vakuum bezeichnet. Die Ausbreitungsgeschwin-
digkeit im Medium ist deshalb reduziert, vy; = ¢/n,
mit n = Brechungsindex.

Typische Werte fiir die Brechzahl liegen je nach Ma-
terial zwischen 1 und 3.

Die Brechzahl ist abhéngig von der Wellenlénge. In
vielen Materialien steigt die Brechzahl an, wenn die
Wellenlinge kiirzer wird, d.h. mit zunehmender Fre-
quenz, wie in Abb.[7.22] gezeigt.

GemdB der elektromagnetischen Wellengleichung
ist der Brechungsindex gegeben als n = /€.[,.
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Abbildung 7.22: Variation des Brechungsindexes
unterschiedlicher Glassorten mit

der Wellenlénge.

In den meisten Materialien liegt . nahe bei eins,
so dass der Ausdruck vereinfacht werden kann zu
n = /€. Die Dielektrizitdtskonstante und der Bre-
chungsindex sind stark von der Frequenz (resp. Wel-
lenldnge) der Strahlung abhingig.

Ditolar
| lonisch
1 R S e S
T
o %ektronisch
Q@
B b T
©
a
log. Frequenz w
Mikrowellen Infrarot Ultraviolett
Abbildung 7.23: Typische  Frequenzabhingigkeit

der Polarisierbarkeit.

So betrigt die Dielektrizitdtskonstante von Wasser
bei statischen Feldern (w=0) 81, wihrend der Bre-
chungsindex fiir sichtbares Licht in der Gegend von
1.33 liegt. Der Grund liegt darin, dass die unter-
schiedlichen Beitrdge unterschiedlich schnell sind.
Abb. [7.23] zeigt schematisch, in welchen Frequenz-
bereichen die wichtigsten Beitrdge liegen. Im opti-
schen Bereich konnen nur noch die elektronischen
Beitrdge der duleren Anregung folgen, wihrend di-

polare oder ionische Anregungen gemittelt erschei-
nen. Im kurzwelligen Bereich des sichtbaren Spek-
trums nédhert man sich den elektronischen Anregun-
gen. Deshalb nimmt in diesem Bereich der Bre-
chungsindex allgemein zu. Dies wird als “normale
Dispersion” bezeichnet (siehe auch Abb.[7.22).

7.2.4 Absorption und Dispersion

Material

Licht >

Intensitat /

Distanz z

Abbildung 7.24: Absorption schwécht die Intensitét.

‘Wenn Licht sich in Materie ausbreitet, nimmt die In-
tensitit ab, wie in Abb.[7.24 gezeigt. Dies ist auf Ab-
sorption zuriickzufiihren. In den meisten Fillen ist
die Verringerung der Intensitidt des Lichtes bei der
Durchquerung einer diinnen Schicht direkt propor-
tional zur Intensitét des einfallenden Lichtes,

al al
dz ’

wobei die Proportionalitidtskonstante ¢ offenbar die
Dimension einer inversen Linge aufweist. Die Lo-
sung ist

1(2) = Ipe™ =,

d.h. die Intensitit fillt exponentiell ab. Die Propor-
tionalititskonstante o ist somit das Inverse der Di-
stanz, iiber welche die Intensitiit auf 1 /e abfillt. Die-
se Distanz wird als Absorptionslidnge bezeichnet.

Absorption und Dispersion sind eng miteinander
verkniipft; auf einer mikroskopischen Ebene stel-
len beide nur unterschiedliche Aspekte des gleichen
Phinomens dar, ndmlich der resonanten Anregung
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von elektromagnetischen Schwingungen im Materi-
al, welche bei wohl definierten Wellenlédngen, resp.
Frequenzen auftreten.

Fluorescein

Kaliumpermanganat

nach der
Probe

vor der
Probe

Abbildung 7.25: Effekt von wellenlingenabhingi-
ger Absorption.

Die Absorption ist wiederum stark von der Wellen-
linge abhingig. In Abb.[7.25 ist unten das Spektrum
einer Bogenlampe dargestellt, im oberen Teil wur-
de der kurzwellige Teil des Spektrums (blau, vio-
lett) durch Fluorescein absorbiert. Da Blau absor-
biert wird erscheint eine Fluorescein-Losung gelb.

Im Beispiel von Kaliumpermanganat wird blau, griin
und gelb absorbiert, wihrend Rot und Violett trans-
mittiert werden. Die Stirke und Wellenlédnge der Ab-
sorption werden durch die mikroskopische Struktur
des Materials bestimmt. Meist sind es Molekiile oder
Atome, welche bestimmen, welche Wellenldnge ab-
sorbiert wird.

Licht kann auch gestreut werden, wenn das Me-
dium inhomogen ist, wie in Abb. [7.26] gezeigt. In
diesem Fall ist die Wellenldngenabhzngigkeit nicht
(nur) durch die molekulare Struktur des Materials
bestimmt, sondern (auch) durch die Grofe der Par-
tikel, welche die Streuung verursachen. Uber einen
gewissen Bereich ist die Streuung proportional zu
A~4, d.h. kiirzere Wellenliingen werden wesentlich
stirker gestreut als lange. Diese Abhingigkeit fiihrt
auch dazu, dass der Himmel blau ist: Der kurzwel-
lige Anteil des Sonnenlichtes wird durch Partikel in
der Erdatmosphire stirker gestreut und erscheint als
diffuses Hintergrundlicht auf der Erde.

Der lingerwellige rote Teil des Spektrums wird we-
niger stark gestreut. Der Effekt ist am stdrksten,
wenn die Sonne einen langen Weg durch die Atmo-
sphére zuriickgelegt hat, z.B. am Abend. Deshalb er-
scheint die Sonne bei Sonnenuntergang rot, wie im

Vakuum

p Laserstrahl >

kein Licht

Materie

| | Laserstrahl
¢ ; —
/ Teilchen

7

Streulicht ~ 1/M
==p>blauer Himmel

Abbildung 7.26: Lichtausbreitung im  Vakuum

(oben) und in einem inhomogenen
Medium (unten).

Abbildung 7.27: Blauer Himmel und rote Sonne am
Horizont.

Beispiel von Abb. [7.27.

7.2.5 Geometrische Optik

Die geometrische Optik (auch: Strahlenoptik) be-
schreibt die Lichtausbreitung mit Hilfe von Licht-
strahlen, die sich in einem homogenen Medium ge-
radlinig ausbreiten. Dieses Bild entspricht primir
dem Korpuskularbild. Man kann die geometrische
Optik aber sehr leicht aus der Wellenoptik ableiten:
die "Strahlen" beschreiben die Ausbreitung der Wel-
len und stehen an jeder Stelle senkrecht auf den Wel-
lenfronten.
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Axd

Quelle

Abbildung 7.28: Paralleles Lichtbiindel aus einer
punktformigen Quelle.

Bei einer punktférmigen Lichtquelle werden die
Strahlen kreisformig abgestrahlt. Wie in Abb. [7.28
gezeigt, kann man sie "sichtbar machen" indem mit
Hilfe einer Blende ein Teil der Kugelwelle ausge-
blendet wird. Das resultierende Licht wird als Strah-
lenbiindel bezeichnet. Ist die Dimension der Offnung
sehr klein im Vergleich zum Abstand von der Licht-
quelle, so erhilt man ein nidherungsweise paralle-
les Lichtbiindel. Eine andere Moglichkeit, ein par-
alleles Lichtbiindel zu erhalten, erhélt man indem
man einen Laser verwendet, d.h. kohirentes Licht.
Die geometrische Optik ist dann anwendbar wenn
die Dimensionen der Gegenstidnde grof3 sind im Ver-
gleich zur Wellenlidnge des Lichtes. Da die Wellen-
lange von sichtbaren Licht deutlich unter 1 pum liegt
ist das fiir makroskopische Aspekte fast immer der
Fall.

Die geometrische Optik ist eine vereinfachte Theo-
rie fiir die Berechnung der Ausbreitung von Licht.
Sie gilt solange die Dimensionen der Apparate, wel-
che das Licht beschrinken, grof} sind gegeniiber der
Wellenldnge. Dann kann das Licht in guter Nihe-
rung als eben Welle beschrieben werden, welche sich
geradlinig ausbreitet. Zu den hervorstechenden Ei-
genschaften von Licht gehort, dass die Lichtstrah-
len sich nicht gegenseitig beeinflussen. AuBerdem ist
der Lichtweg immer umkehrbar. Dass Wellen durch
“Strahlen” approximiert werden konnen, gilt nicht
nur in der Optik. Auch Wasserwellen mit kurzen
Wellenldngen bewegen sich etwa linear durch eine
Offnung, die groB ist im Vergleich mit der Wellen-
lange.

Werden die Dimensionen zu klein, so treten Beu-

Abbildung 7.29: Beugung am Spalt.

gungseffekte auf, wie in Abb.[7.29. Diese werden in
Kapitel [7.8] diskutiert.

7.2.6 Das Prinzip von Fermat

Abbildung 7.30: Pierre de Fermat (1601 - 1665).

Bei der Berechnung des Weges, welchen das Licht
beim passieren eines optischen Instrumentes nimmt,
leistet das Prinzip von Fermat (— Abb. [7.30) niitz-
liche Dienste. Es ist ein Extremalprinzip, welches
praktisch identisch ist mit dem Hamilton’schen Prin-
zip. Die Grundidee stammt von Hero von Alexan-
dria. Es lautete: Das Licht nimmt den kiirzesten Weg
zwischen zwei Punkten. Fermat hat es erweitert auf
Systeme mit mehr als einem Brechungsindex. In der
Formulierung von Fermat lautet es: “Licht nimmt
den Weg, fiir den es die kiirzeste Zeit braucht”. Ma-
thematisch ausgedriickt lautet dies

Py P Py o
/ nds = / —ds=c dt = Minimum,
R Vp R
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wobei Py, P; Anfangs- und Endpunkt des Weges be-
zeichnen. ds und dt bezeichnen infinitesimale Weg,
resp. Zeiten auf dem zuriickgelegten Weg, n den Bre-
chungsindex, v, die Phasengeschwindigkeit und das
Minimum bezieht sich auf all moéglichen Wege. Heu-
te schreibt man diese Bedingung meist als Extremal-
prinzip. In der Form einer Variation lautet es

Py
1) nds =0.
Py

Das einfachste Beispiel ist natiirlich die Ausbreitung
im freien Raum in einem homogenen Medium. Hier
ist offenbar der direkte Weg der kiirzeste, d.h. das
Licht lduft geradlinig von Py nach P;, in Uberein-
stimmung mit den Prinzipien der geometrischen Op-
tik.

Kirzester Weg
A - Spiegel - B

. G
ai al b

Spiegel

Abbildung 7.31: Herleitung des Reflexionsgesetzes
aus dem Prinzip von Fermat.

ADb.[7.31 zeigt ein weiteres Beispiel: Ein Lichtstrahl
wird auf einem Spiegel reflektiert. Wir suchen also
den kiirzesten Weg, auf dem das Licht vom Punkt
A iiber den Spiegel zu Punkt B gelangt. Aus dem
obigen Resultat entnehmen wir, dass es geradlinig
von A zur Oberfliche und von dort geradlinig zu B
ldauft. Zu bestimmen sind die Winkel o und o. Die
Lénge des gesamten Weges betrigt

A=Va?+x>+/b>+ (c—x)2.

Dieser Weg wird minimal wenn er sich bei einer infi-
nitesimalen Anderung von x nicht dndert, d.h. wenn

%_ X _ c—x
dx  Var+x2  \/b*+(c—x)?

Die beiden Briiche beschreiben jeweils den Si-
nus des Winkels. Damit miissen die beiden Win-
kel gleich sein, o = a. Dies ist das Reflexionsge-
setz: Der Einfallswinkel und der Ausfallswinkel sind
gleich.

Wir konnen dieses Problem auf das Problem im frei-
en Raum zuriickfiihren, indem wir (geometrisch) den
Ausgangspunkt und den Weg bis zum Spiegel in
diesem reflektieren. Damit ist wiederum die direkte
Verbindung die kiirzeste, und man sieht leicht, dass
in diesem Fall der Reflexionswinkel gleich dem Ein-
fallswinkel wird, d.h. wir haben mit Hilfe des Prin-
zips von Fermat sehr einfach das Reflexionsgesetz
hergeleitet.

n:z

Q
1\

X / ('

C

a al
n;

A

Abbildung 7.32: Herleitung des Brechungsgesetzes
aus dem Prinzip von Fermat.

Wirklich wichtig wird das Prinzip erst wenn das Me-
dium nicht mehr homogen ist, z.B. wenn wir zwei
Halbrdume mit unterschiedlichem Brechungsindex
betrachten, wie in Abb.[7.32. Hier erreicht das Licht
offenbar das Ziel am schnellsten wenn der Weg im
langsameren Medium gering gehalten wird. Der op-
tische Weg betrigt jetzt

A=mVa®+x2+n\/b*+ (c—x)2.

Der Extremalwert wird erreicht fiir

dA — mx na(c—x)
dx  Va>+x2 /P24 (c—x)?
d.h. fiir

nysin o = nyp Sin 0.
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Diese Beziehung wird als Snellius’sches Brechungs-
gesetz bezeichnet.

7.2.7 Gekriimmte Lichtstrahlen

Abbildung 7.33: Weg der Lichtstrahlen bei einer Fa-
ta Morgana.

Wenn der Brechungsindex variiert, so kann der opti-
sche Weg auch krumm sein. Abb. [7.33 zeigt als Bei-
spiel den Fall, dass die Luft iiber dem Boden beson-
ders heiB, so ist dort der Brechungsindex kleiner und
der optische Weg entlang dem Boden kann kiirzer
sein als der direkte Weg.

Abbildung 7.34: Spiegelung auf einer heissen Stra-
Be.

Dies kann dazu fiihren, dass Gegenstinde scheinbar
am Boden gespiegelt werden, wie in Abb.[7.34.

Ein Sonnenstrahl erreicht uns am schnellsten wenn
er einen moglichst langen Teil des Weges in den diin-
nen oberen Luftschichten der Atmosphire zuriick-
legt und erst gegen Ende "nach unten abbiegt". Dies
fithrt z.B. auch dazu, dass wir die Sonne noch sehen

auch wenn sie sich rein geometrisch schon unter dem
Horizont befindet.

Abbildung 7.35: Gekriilmmter Lichtstrahl in einer
geschichteten Fliissigkeit.

Dies kann man bei entsprechend groBer Variation
des Brechungsindexes auch im Labormafstab repro-
duzieren. Abb. [7.35 zeigt als Beispiel eine Wanne
mit einer Fliissigkeit, in der der Brechungsindex von
unten nach oben zunimmt. Der Lichtstrahl wéhlt den
Weg so, dass die Zeit vom Anfangs- zum Endpunkt
minimiert wird.

Focus oF EARTHOUAKE

SURFACE
WAVES

SURFACE
WAVES

CrusT

o
&
,9" OUTER CORE
e
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Abbildung 7.36: Ausbreitung von Erdbebenwellen.

Das gleiche Prinzip gilt auch fiir andere Arten von
Wellen, wie z.B. seismische Wellen. Wie in Abb.
7.36/gezeigt, verlaufen diese im Erdinneren nicht ge-
radlinig, sondern werden durch den Dichtegradien-
ten gebogen.

7.2.8 Huygens’sches Prinzip

Ein weiteres niitzliches Prinzip fiir die Diskussion
der Lichtausbreitung (und Wellenausbreitung allge-
mein) ist das Prinzip von Huygens (— Abb.[7.37). Es
besagt, dass man die Lichtausbreitung beschreiben
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Abbildung 7.37: Christiaan Huygens (1629-1695).

kann, indem man annimmt, dass von jedem Punkt
der Welle eine kugelformige Lichtwelle ausgeht.

Das Huygens’sche Prinzip kann man experimentell
sichtbar machen: Trifft eine Welle auf ein punktfor-
miges Hindernis, so wird dieses zu einer Quelle einer
Sekundirwelle, welche sich kreisformig um dieses
Hindernis ausbreitet. Die Ausbreitung des gesamten
Feldes ergibt sich durch Summierung iiber alle ele-
mentaren Sekundarwellen. Diese Beobachtung iiber-
tragt man von materiellen auf mathematische Punkte
und betrachtet jeden Punkt im Raum als die Quelle
einer Elementarwelle, wobei Amplitude, Phase und
Frequenz durch die einfallende Welle bestimmt wer-
den.

neue Wellenfront

bk

Elementarwelle|

Wellenfliche

Abbildung 7.38: Bildung von Wellenfronten nach
Huygens.

Wie dies funktioniert, kann man schon am Beispiel
einer ebenen Welle zeigen. Wir in Abb. skiz-
ziert, kann jeder Punkt auf einer Wellenfront als
Quelle einer sekundiren Elementarwelle verstanden

werden.

Abbildung 7.39: Ausbreitung von Wellen von einem
Punkt.

Dadurch kann man die Ausbreitung unterschied-
licher Wellen erklidren, sowohl ebene wie Kugel-
wellen, elektromagnetische wie Wasserwellen. Abb.
[7.39 zeigt das Prinzip (links) und ein entsprechendes
Experiment (rechts).

A
i

Abbildung 7.40: Reflexionsgesetz nach Huygens.

Auf dhnliche Weise erlaubt einem das Prinzip von
Huygens z.B. das Reflexionsgesetz im Wellenbild zu
erkldren: trifft eine ebene Welle auf eine Oberfldche,
so werden dort zuerst Elementarwellen ausgestrahlt,
wo die Wellenfront zuerst eintrifft. Wie in Abb.[7.40
gezeigt, ergibt die Uberlagerung der einzelnen Ele-
mentarwellen wieder eine ebene Welle, die im glei-
chen Winkel gegeniiber der Normalen auf der Ober-
flache l4uft wie die einfallende Welle.
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7.3 Reflexion und Brechung

7.3.1 Reflexion: Grundlagen

Wie bereits bei den Seilwellen diskutiert, werden
Wellen reflektiert, wenn die Bedingungen fiir die
Ausbreitung sich dndern. Das einfachste Beispiel
war das Seil, welches am Ende befestigt war. In die-
sem Fall wurde die gesamte Welle reflektiert, es bil-
dete sich eine stehende Welle aus.

w, ki w, k2
D47AVAVA
B

Abbildung 7.41: Reflexion an einer ebenen Grenz-
flache.

Allgemein treten Reflexionen auf wenn sich Wellen
iiber Grenzflichen ausbreiten, unabhingig von der
Art der Welle. Grenzflachen sind hierbei Punkte, an
denen sich der Wellenwiderstand dndert, wie in Abb.
[7.41 gezeigt. In der Optik ist der Wellenwiderstand
durch den Brechungsindex bestimmt, bei einer Seil-
welle z.B. durch die Dicke oder die Spannung des
Seils. Hier treten also z.B. Reflexionen auf, wenn die
Dicke des Seils sich dndert.

Fiir den einfachen Fall einer eindimensionalen Wel-
le kann man iiber die Erhaltung der Energie, welche
mit der Welle transportiert wird, allgemein folgende
Ausdriicke fiir die Reflexion und Transmission her-
leiten:

_ ki —k2A
ki + ko

2k

B —
ki + ko

wobei A die Amplitude der einlaufenden Welle, B
diejenige der reflektierten, und C die Amplitude der
transmittierten Welle bezeichnen. Die Frequenz ®
ist fiir alle drei Wellen identisch.

In drei (oder auch in zwei Dimensionen) tritt ebenso
Reflexion auf. Wir beschrianken uns hier ausschliel3-
lich auf ebene Wellen, so dass die Ausbreitung eben-
falls eindimensional erfolgt. Wenn wir eine ebene
Welle betrachten, die senkrecht auf eine Grenzflache

einfillt, so ist das Problem exakt analog zum eindi-
mensionalen Fall. Trifft die Welle unter einem Win-
kel auf die Grenzfliche auf, so ist nicht mehr von
vornherein klar, unter welchem Winkel sie reflektiert
wird.

Zunichst unterscheidet man diffuse und spekulidre
Reflexion. Diffuse Reflexion ist eigentlich das allge-
meinere Phdnomen. Es ist z.B. dafiir verantwortlich,
dass Sie die Schrift an der Tafel lesen konnen.

Abbildung 7.42: Spekuldre und diffuse Reflexion an
einer Grenzfliache.

Wir kénnen es zum mindesten qualitativ darauf zu-
riickfithren, dass Licht auf eine raue Oberfliche auf-
trifft und in unterschiedliche Richtungen reflektiert
wird. Offensichtlich ist dieses Phianomen sehr stark
von der Beschaffenheit der Oberfliche abhingig,
wie in Abb. [7.42) gezeigt. Da wir hier an einfach zu
behandelnden Modellsystemen interessiert sind be-
handeln wir ausschlieflich den Fall der spekuldren
Reflexion, also der Reflexion an einer idealen glatten
Oberflache, die entlang der gesamten Fliche identi-
sche Eigenschaften aufweist.

Eine einfache Messung bestitigt unser Erfahrungs-
wissen dass ein Lichtstrahl so reflektiert wird dass
die riicklaufende Welle einen Winkel zur Flichen-
normalen aufweist, der gerade gleich dem Winkel
der einlaufenden Welle ist, d.h.

¢ der einfallende und der reflektierende Strahl lie-
gen in einer Ebene mit dem Einfallslot.

e der Einfallswinkel und der Reflexionswinkel
sind gleich, 6, = 6,. Diese Beziehung hatten
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wir bereits aus dem Prinzip von Fermat herge-
leitet.

7.3.2 Herleitung des Reflexionsgesetzes

Dieses Gesetz wurde erstmals von Euklid 300 v Chr.
formuliert. Es ist im Rahmen der Korpuskulartheorie
leicht herleitbar aus den Gesetzen iiber den elasti-
schen Stof3: die Komponente des Impulses parallel
zur Grenzfliche wird durch die Reflexion nicht be-
einflusst, die senkrechte Komponente wird elastisch
invertiert.

Dieses Argument lisst sich direkt in das Wellenbild
iiberfiihren. Dafiir beschreiben wir das Licht nicht
mehr als Strahl, sondern als Welle. Der einfallende
Strahl sei durch den Wellenvektor

kD = {k,,0,k;}

definiert, wobei k, die Komponente des k-Vektors
parallel und k, die Komponente senkrecht zur Grenz-
flaiche bezeichnet. Damit sind die Abstinde der
Knotenflachen auf der Grenzfliche festgelegt. Die
Grenzfliche legt immer gewisse Randbedingungen
fiir die Wellen fest; so miissen an einer metallischen
Grenzfliche die parallelen Komponenten des elek-
trischen Feldes verschwinden. Diese Randbedingun-
gen konnen nur dann eingehalten werden wenn die
einfallende und die reflektierte Welle an der Grenz-
flache das gleiche zeitliche Verhalten (d.h. die glei-
che Frequenz ®) und das gleiche rdumliche Verhal-
ten (d.h. gleiche Wellenvektoren parallel zur Grenz-
fliche) aufweisen.

Da der Brechungsindex und somit die Phasenge-
schwindigkeit fiir die einfallende und die reflek-
tierte Welle gleich sind, muss somit auch die z-
Komponente des Wellenvektors den gleichen Betrag
haben - sie unterscheiden sich nur im Vorzeichen.
Somit ist der Wellenvektor der reflektierten Welle
gegeben durch

kD = {k:, 0, —k:}
Die impliziert die obige Beziehung fiir die Winkel.

Diese Herleitung ist mit der Diskussion der Im-
pulserhaltung eng verbunden, da der Wellenvek-
tor proportional zum Impuls des Lichtes ist: die

z-Komponente wird invertiert, die beiden parallel
Komponenten bleiben erhalten.

7.3.3 Brechung des Lichts an einer ebenen
Grenzfliche

Abbildung 7.43: Anderung der Wellenlinge bei Me-
dien mit unterschiedlichem Bre-
chungsindex.

Wir betrachten zunidchst eine Welle, die senkrecht
auf die Grenzflache einfillt, wie im Beispiel von
Abb. [7.43. Die Brechungsindizes seien n; und no.
Da wir bereits gesehen hatten, dass ein Teil der Wel-
le reflektiert wird muss die transmittierte Welle eine
geringere Intensitét besitzen. AuBerdem ist im All-
gemeinen ihre Wellenldnge anders: Die Frequenz ist
gleich, aber die Phasengeschwindigkeit unterschei-
det sich um das Verhiltnis der Brechungsindizes,

Viny =VvVonp =c¢

oder

Abbildung 7.44: Brechung an einer Grenzfliche.
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Jetzt betrachten wir eine Welle, die in einem Win-
kel 6 von der Senkrechten auf eine Grenzflache ein-
fallt, wie in Abb. [7.44. Wie bei einem Spiegel hat
der reflektierte Strahl den gleichen Winkel zur Senk-
rechten wie der einfallende Strahl. Der gebrochene
Strahl hat einen kleineren Winkel, 6, < 0y, falls der
Ubergang von einem optisch diinneren in ein optisch
dichteres Medium geht (z.B. Luft — Wasser).

Abbildung 7.45: Brechung einer Wasserwelle an ei-
ner ebenen Grenzflache.

Diesen Winkel kann man aus der Bedingung herlei-
ten, dass die Welle an der Grenzfliche stetig ins an-
dere Medium iibergehen muss. Abb. [7.45 illustriert
dies fiir eine Oberflichenwelle. In den beiden Medi-
en betrdgt die Wellenldnge, d. h. der Abstand zwi-
schen den Phasenfldchen,

2r b4

ki’ k'
Wie bereits bei der Reflexion diskutiert miissen die
Wellenvektoren parallel zur Grenzfliache gleich sein,
d.h. Knoten und Maxima der beiden Wellen miissen
an der Grenzfliche am gleichen Ort auftreten. Somit
ist die Projektion des Abstandes zwischen den Pha-
senflachen, d.h. 27 /k; auf die Grenzfliche identisch,

2, 2m
k] sin 91 B k2 sin 92.

resp.

Mit k; = wn; /c erhalten wir

n om
sin@;  sin6,
oder
sinf;  np
sin 92 - 1’71

Dies wird auch als das Brechungsgesetz von Snellius
bezeichnet. Wir hatten diesen Ausdruck auch schon
aus dem Prinzip von Fermat hergeleitet.

7.3.4 Reflexionsgesetz aus dem
Huygens’schen Prinzip

Abbildung 7.46: Herleitung des Brechungsgesetzes
aus dem Prinzip von Huygens.

Eine weitere Erkldrung des Brechungsgesetzes kann
man aus dem Prinzip von Huygens herleiten. Wie in
Abb.[7.46] gezeigt, nimmt man an dass an der Grenz-
fliche Elementarwellen ausgestrahlt werden, wobei
der Zeitpunkt fiir die Ausstrahlung vom Eintreffen
der einfallenden Wellenfronten bestimmt wird. Die
Ausbreitungsgeschwindigkeit in den beiden Medien
sei vi = ¢/ny, resp. v, = ¢/ny. Fir die beiden Drei-
ecke AABC, ABCD gilt

CB~ 'CB n CB
CB~ 'CB mCB

sinf; =
sinf, =

Daraus folgt das Brechungsgesetz von Snellius:

sin 91 ny

sin 92 N ni
oder

sin 911’11 =sin 921’12.

Ist der eine Brechungsindex ~1 (z.B. Luft), so kann
der Ausdruck vereinfacht werden

sin 6,

. =n
sin 0
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0 /4 0 )
e

Abbildung 7.47: Einfallswinkel vs. Transmissions-
winkel fiir unterschiedliche Ver-
hiltnisse der Brechungsindizes.

Abb. [7.47 stellt das Verhiltnis von Einfalls- zu
Transmissionswinkel dar. Bei kleinen Einfallswin-
keln sind Einfalls- und Ausfallswinkel direkt propor-
tional. Qualitativ kann man das Resultat so zusam-
menfassen, dass beim Ubergang vom optisch diin-
neren zum optisch dichteren Medium der Strahl in
Richtung auf die Senkrechte gebrochen wird, beim
Ubergang vom optisch dichteren zum optisch diinne-
ren Medium weg von der Senkrechten. Offenbar er-
reicht der Transmissionswinkel im optisch dichteren
Medium einen Maximalwert, d.h. es gibt einen Win-
kelbereich, der von auB3en nicht zugénglich ist.

7.3.5 Reflexions- und
Transmissionskoeffizienten

Das einfallende Licht wird an der Grenzfliche in
zwei Teilwellen aufgeteilt, die reflektierte und die
transmittierte Welle. Um das Teilungsverhiltnis zu
bestimmen, bendtigt man offenbar zwei Gleichun-
gen um die beiden unbekannten Amplituden zu be-
rechnen. Die beiden Gleichungen erhélt man aus der
Energieerhaltung sowie aus den Maxwell Gleichun-
gen.

Die Energieerhaltung sagt, dass die Leistung des ein-
fallenden Strahls gleich der Summe der Leistungen
des reflektierten und des transmittierten Strahles sein
muss. Die Leistung in einem Lichtstrahl kann be-
rechnet werden aus Energiedichte p, Lichtgeschwin-

digkeit ¢ und Querschnitt A:

P =cpA.

Abbildung 7.48: Energiebilanz aus Feldstidrken und
Querschnittsflachen fiir Licht mit
senkrechter Polarisation.

Somit gilt
c1p®Al =c1p"A| +c2p'As.

Hier bezeichnet der Index 1 das Medium, aus dem
der Lichtstrahl einféllt, 2 das untere Medium; die
oberen Indices bezeichnen den einfallenden, reflek-
tierten und transmittierten Strahl. Wie in Abb. [7.48
gezeigt, konnen die Querschnitte A; und A, auf die
entsprechende Fliache auf der Grenzfliche bezogen
werden:

Ay =AcosB; A; =Acos0;.
Die Energiedichte betrigt jeweils
p' = eo&iE]
und die Lichtgeschwindigkeit im Medium ¢; = ¢/n;.

Somit wird die Energiebilanz

c c
—eoelEezA cosO; = —eolerzA cos 6;
ni ni
¢ 2
—i-fSoEQEt Acos 0.
np

Mit & = n? erhilt man

ni (Ee2 — Erz) COS 91 = antz COS 92.
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Dies ist die erste der beiden notwendigen Glei-
chungen. Die zweite erhilt man aus der Maxwell-
Gleichung: die elektrische Feldkomponente parallel
zur Grenzflache muss stetig sein. Fiir eine Welle, die
senkrecht zur Einfallsebene polarisiert ist, sind alle
Feldkomponenten parallel zur Oberfliche. Damit ist

Ei=FE, = Ee,s +Er,s = Et,s-

Ee

E. p, cos b

Abbildung 7.49: Felder der Teilstrahlen fiir parallele
Polarisation.

Gemil Abb.[7.49 muss fiir den Fall, dass die Polari-
sation in der Einfallsebene liegt gelten

(Ee7p - Er7p) COS 91 = EEP Cos 92.

7.3.6 Fresnel-Formeln
Aus den beiden Bedingungen erhélt man
n1cos 0 —n,cos 6,

E,
r = _— =
s E,) |, nicos6+nycosb,

_sin(6; — 6,) )
sm((—)1 + 92

L (B
Y_EL

sin(6, — 65)
L Sin(6, 1 0)

2]’11 COS 91
nicos 6 + nycos 6,
0, —6,)
0, + 92)
_ Mmacos 6, —njcos 6,

"~ npcos ) +njcos6

tan( )
an(61 + 92

-

2n7 cos 0;
I n1 cos0, +nycos0;

=

[t

Diese Gleichungen werden als Fresnel-Gleichungen
bezeichnet.

1
0.75
0.5
0.25
0 m/4 Einfallswinkel
-0.25 /2
-0.5 r.
-0.75

-1

Abbildung 7.50: Reflexionskoeffizienten als Funkti-
on des Einfallswinkels.

Tragt man die beiden Reflexionskoeffizienten fiir
n; =1, np = 1.5 gegen den Einfallswinkel auf, wie
in Abb.[7.50, so findet man, dass die beiden Reflexi-
onskoeffizienten bei kleinem Winkel, also senkrech-
tem Einfall, den gleichen Betrag aufweisen. Dies ist
nicht verwunderlich: Bei senkrechtem Einfalls sind
die beiden Polarisationen nicht unterscheidbar. Sie
betragen dann

np —ny

—15(01 =0,=0)=r,(6; =6,=0) = ——

Das negative Vorzeichen zeigt dass die reflektierte
Welle einen Phasensprung von m gegeniiber der ein-
fallenden Welle hat, falls sie an einem optisch dich-
teren Medium (n, > n;) reflektiert wird, jedoch nicht
im umgekehrten Fall.

1

0.75

0.5
Brewster-Winkel

0.25

=3

I
n/4 /2
Einfallswinkel

Abbildung 7.51: Reflexionsvermogen als Funktion
des Einfallswinkels.

Hiaufig verwendet man auch das Reflexionsvermo-
gen, welches definiert ist als das Verhiltnis der re-
flektierten Intensitét zur einfallenden Intensitédt. Abb.
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7.51 zeigt diese GroBen als Funktion des Einfalls-
winkels. Fiir senkrechten Einfall

R— I (m—m 2_
A ny +np
Typische Zahlen fiir die Grenzfliche Luft / Glas
(n1 =1,ny=1.5) sind

0,5

=0,2. R=r>~0,04.
275 b r b

r(a=0)

Sowohl beim Eintritt wie beim Austritt aus Glas wird
also rund 4% der Lichtintensitit reflektiert.

Die Reflexion von parallel polarisiertem Licht weist
einen Nulldurchgang auf. Der zugehdrige Win-
kel wird als Brewster-Winkel bezeichnet. Aus den
Fresnel-Gleichungen sieht man, dass die Bedingung
als

T
(61+6,) ==

tan(91 + 92) — oo d.h. >

geschrieben werden kann. Somit stehen der trans-
mittierte und reflektierte Strahl stehen senkrecht auf-
einander. Nach dem Brewster-Winkel nehmen bei-
de Reflexionskoeffizienten zu und erreichen eins bei
0, = /2, d.h. bei streifendem Einfall.

7.3.7 Totalreflexion

Ein interessanter Fall tritt ein wenn ein Strahl aus
dem optisch dichteren Medium ins optisch diinnere
Medium austritt, d.h. wenn das Verhiltnis ny /n; < 1
ist. Offenbar wird der Strahl dann von der Senkrech-
ten weg gebrochen. Da sin 8 < 1 ist kann die Glei-
chung nicht fiir alle Werte von 0; Losungen aufwei-
sen. Am kritischen Winkel

.1 (M
6. = sin L=
n

wird der gebrochene Strahl unter einem Winkel von
7 /2 abgestrahlt, d.h. parallel zur Grenzfliche. Wird
der Einfallswinkel weiter erhoht, so kann das Licht
nicht mehr aus dem Material austreten. Man be-
zeichnet diesen Bereich als Totalreflexion. Abb.[7.52
zeigt ein entsprechendes Experiment: Der Licht-
strahl kann das Wasser als optisch dichteres Medium

Abbildung 7.52: Totalreflexion von Lichtstrahlen an
einer Wasser-Luft Grenzflache.

nicht verlassen, wenn der Einfallswinkel unterhalb
des Grenzwinkels liegt.

Das Feld im optisch diinneren Medium kann aber
nicht einfach verschwinden, da sonst die Kontinui-
tiatsbedingungen verletzt wiren. Der Feldverlauf im
Medium 2 ist in diesem Fall exponentiell. Diese Wel-
le, die parallel zur Grenzfliche l4uft und deren Am-
plitude im Medium exponentiell mit dem Abstand
von der Grenzfliche abfillt, wird als evaneszente
oder quergedampfte Welle bezeichnet.

Die Eindringtiefe divergiert am kritischen Winkel.
Fiir grofBere Winkel nimmt sie rasch ab bis auf die
GroBe der optischen Wellenlédnge, also typischerwei-
se weniger als ein um. Dieser Teil des optischen Fel-
des wird auch gerne fiir Experimente verwendet. Das
interessante daran ist, dass es eine Moglichkeit dar-
stellt, Licht in der Nihe einer Grenz- oder Oberfli-
che zu lokalisieren.

Die Totalreflexion wird z.B. in Glasfasern fiir die
Ubertragung von Licht verwendet. Gefiihrt werden
kann das Licht wenn der Einfallswinkel kleiner als
der kritische Winkel ist, der durch die Differenz der
Brechungsindizes bestimmt ist. Typische Parameter
sind z.B. ny = 1.474, n, = 1.453 — 6, = 80,3°, resp.
rund 10 Grad von der Grenzflache aus gemessen.

ADb. [7.53 zeigt, wie Licht in einer Glasfaser mit
variablem Brechungsindex gefiihrt wird. Im Rah-
men der Strahlenoptik erscheinen die entsprechen-
den Pfade gekriimmt.

Glasfasern werden fiir die Dateniibertragung ver-
wendet, aber auch fiir die Ubermittlung von Bildern.
Im Beispiel von Abb.[7.54 iibertrigt jede Faser einen
einzelnen Bildpunkt. Diese Technik wird zum Bei-
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LKern
n<n<n

— Mantel n,

Abbildung 7.53: Totalreflexion in einer Glasfaser.

L/

Abbildung 7.54: Bildiibertragung in einem Glas-
faserbiindel.

spiel in der Endoskopie (medizinische Bildgebung)
genutzt.

7.3.8 Brechung am Prisma

Abbildung 7.55: Brechung am Prisma.

Wir betrachten einen Lichtstrahl, der durch ein Pris-
ma mit Brechungsindex n und Winkel o lduft, wie
in Abb.[7.55 gezeigt. Er wird beim Eintritt und beim
Austritt gebrochen. Der Ablenkwinkel & betréigt

! !
o=¢+&—o.

Nach Snellius ist

. / .
sing;, = nsing

. / .
sing, = nsing.
AuBlerdem ist € + & = o. Mit
/ . — . . — .
& =sin"!(nsing) = sin" ! (nsin(a — g;)).

Wir eliminieren alle Variablen aufler &, indem wir
verwenden

sin(x — B) =sinccos B —cosasinf :

!/

& = sin !(n(sinacose —cosasing;))

o .1 . ) . /

= sin (nsinoy/ 1 —sin“ g —cosasing;)
. — . . . /

= sin '(sinory/n? —sin® €, — cosasing;).

Damit wird der Ablenkwinkel

/ . . . s
8 =g —a+sin ! (sinoy/n? —sin* g, —cos asing;).

90 - - 90
Grad ] i I Grad
o PO
3 60 &} -60 -5
= S
2 S
= b3
2 S
230 .30 @
<<

(o) S — r 0

0 30 60  Grad 90

Einfallswinkel €4

Abbildung 7.56: Ablenkung am Prisma.

Wie in Abb. [7.56 gezeigt, wird die Strahlablenkung
minimal, wenn der Eintrittswinkel gleich dem Aus-
trittswinkel ist, d.h. fiir einen symmetrischen Strah-
lengang:

6 = 6=5(0+a)
o
& = &= E
Smin = 2sin'(n sin%) —a.
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Prismen werden aullerdem gerne verwendet fiir die
Umlenkung von Strahlen oder als Umkehrprismen
(durch 2-malige Reflexion), z.B. zur Umkehrung
von Bildern in Feldstechern.

Abbildung 7.57: Zerlegung von weissem Licht am
Prisma.

Ist der einfallende Lichtstrahl nicht eine einheitliche
Farbe, so ist der Brechungsindex fiir die einzelnen
Komponenten unterschiedlich und sie werden unter-
schiedlich stark gebrochen. Wie in Abb. [7.57 ge-
zeigt, wird violettes Licht am stdrksten gebrochen,
Komponenten mit lingerer Wellenldnge schwécher
(siehe auch Abb.[7.22).

7.4 Abbildende Optik

7.4.1 Bildentstehung

optisches

Gegenstand -
Gerat

(z.B.
Linse)

Abbildung 7.58: Entstehung eines Bildes.

Zu den wichtigsten Anwendungen der Optik gehort
die Moglichkeit, mit Hilfe optischer Instrumente Ge-
genstinde abzubilden. Wie in Abb. [7.58] gezeigt,
werden dafiir Lichtstrahlen, die von einem Objekt
ausgehen, durch ein optisches Gerit (Linse, Spiegel,
Fernrohr, Auge ...) so gefiihrt, dass sie ein Bild er-
zeugen. Das Bild ist dadurch charakterisiert, dass al-
le Strahlen, die durch einen bestimmten Bildpunkt
laufen, vom gleichen Punkt des Objektes stammen.
Somit kann man jeden Punkt des Bildes mit genau
einem Punkt des Objektes identifizieren.

Gegenstand Spiegel Bild

(virtuelles) Bild

Gegenstan
Objekt

b,
C9e/
Abbildung 7.59: Spiegelbild.

Ein einfaches Beispiel fiir ein optisches Instrument
ist ein ebener Spiegel, wie in Abb. [7.59] Wie im
Rahmen des Kapitels “Reflexion™ besprochen wer-
den die Strahlen so gebrochen, dass der Einfallswin-
kel gleich dem Ausfallswinkel ist. Dadurch scheinen
fiir den Betrachter alle Strahlen aus dem Spiegel zu
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kommen; er sieht das Objekt hinter dem Spiegel. Al-
lerdings wird in diesem Fall durch den Spiegel sel-
ber kein Bild erzeugt. Man bezeichnet das Spiegel-
bild als virtuelles Bild, da die Lichtstrahlen nie den
Punkt erreichen an dem der Apfel dem Betrachter
erscheint. Dieses virtuelle Bild hat trotzdem alle Ei-
genschaften eines reellen Bildes.

7.4.2 Parabolspiegel

Abbildung 7.60: Parabolspiegel.

Im Gegensatz dazu erzeugt ein Parabolspiegels ein
reelles Bild. In einem Parabolspiegel (— Abb. [7.60)
und ndherungsweise auch in einem sphirischen
Spiegel kreuzen sich parallel einfallende Strahlen in
einen Punkt im Abstand f vom Spiegel.

\A

paraxiale Strahlen

€

spharischer
R € Spiegel
optische € F
Achse C~ / ’S
Brennweite
f~R/2 '

Abbildung 7.61: Fokus eines sphirischen Spiegels.

Die Distanz zwischen dem Spiegel und dem Fokus
F, in dem sich die Strahlen kreuzen, ldsst sich fiir
Strahlen in der Néhe der optischen Achse (sog. pa-
raxiale Strahlen) leicht berechnen. Wie in Abb.[7.61
gezeigt, werden die Strahlen an jedem Punkt nach
dem Reflexionsgesetz reflektiert. Das Dreieck CAF
ist somit gleichschenklig und fiir kleine Winkel &
ist offenbar die Brennweite SF gleich der Hilfte des
Spiegelradius R.

In einem entsprechenden Wellenbild erhilt man nach

eIIenfronte :
): \. H L:
i : \ i\ \'.

i t i

C V

e

Abbildung 7.62: Fokussierung in einem Wellenbild.

Reflexion eine zusammenlaufende Kugelwelle, wie
in Abb.[7.62 gezeigt.

7.4.3 Bildweite und MafBstab

Objekt
Gegenstand

Abbildung 7.63: MaBstabverhiltnisse bei der Bil-
dentstehung.

Wenn die Strahlen nicht parallel einfallen, sondern
von einem Objekt ausgehen, das um die Gegen-
standsweite g vom Spiegel entfernt ist, entsteht ein
Bild im Bildabstand b vom Spiegel, wie in Abb.[7.63
gezeigt. Diesen Bildabstand kann man mit Hilfe des
Strahlensatzes aus der Brennweite f berechnen:

f_FD

/ _OF

g OD un b

oD’
Somit ist

f,f_FD OF 0D _

g b OD OD oD
oder
1 1
§+B:?' (7.1)
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Abbildung 7.64: Berechnung des Abbildungsmal-
stabs.

Der AbbildungsmafBstab 8 ist das Verhiltnis der
GroBe B des Bildes relativ zur GroBle G des Gegen-
standes. Diese lisst sich z.B. berechnen, wenn wir,
wie in Abb. [7.64 gezeigt, zwei Strahlen betrachten,
welche vom gleichen Punkt des Objekts ausgehen
und sich am entsprechenden Punkt des Bildes wie-
der treffen. Diese zeigen, dass

B_G
b g

und somit auch

B b
8
Mit Hilfe der Abbildungsgleichung (7.1) kénnen wir
b eliminieren:

b:£—>[3 f

§—f §—f
Offenbar erzeugt ein gekriimmter konkaver Spiegel
ein Bild, welches fiir den Betrachter an unterschied-
licher Stelle erscheinen kann: Befindet sich das Ori-
ginal in einem Abstand, der grof3er ist als die doppel-
te Brennweite, so erscheint ein reelles, verkleinertes,
umgekehrtes Bild zwischen f und 2f.

Befindet sich das Original im Bereich zwischen f
und 2f, so erscheint das reelle Bild groBer und im
Abstand > 2f. Betrdgt der Abstand weniger als f,
so erscheint ein virtuelles Bild, d.h. hinter dem Spie-
gel, wie in Abb. [7.65 gezeigt. Das virtuelle Bild ist
grofer als das Objekt.

Parabolspiegel werden z.B. fiir Teleskope eingesetzt,
sowohl fiir optische wie auch fiir Radioteleskope wie
im Beispiel von Abb. [7.66, oder als Satellitenanten-
nen.

Abbildung 7.65: Virtuelles Bild hinter konkavem
Spiegel.

Empfangsantenne
= ,Okular”

Sie liegt im Brenn-

punkt des Hohl-
spiegels.

Hohlspiegel

Abbildung 7.66: Das Radioteleskop Effelsberg.

Ein konvexer Spiegel wie in Abb. [7.67 erzeugt kein
reelles Bild, sondern immer ein virtuelles, welches
kleiner ist als das Original. Diese Art von Spiegel
wird z.B. in Riickspiegeln verwendet, wo ein grofes
Blickfeld gewiinscht wird.

7.4.4 Brechung an einer sphirischen
Oberfliche

Trifft ein Lichtstrahl auf eine gekriimmte Grenzfla-
che, so hingt seine Richtung nach der Grenzflache
davon ab, an welchem Punkt er auf die Grenzfliche
auftrifft. Dies wird z.B. in Sammellinsen benutzt.

Wir betrachten zunichst den Fall einer einzelnen
sphérischen Oberfliche, d.h. eines Glaskorpers, der
nach rechts unendlich weit ausgedehnt ist, wie in
ADb. [7.68 gezeigt. Wir berechnen den Weg, den ein
Lichtstrahl nimmt, wenn er an der Oberfliche gebro-
chen wird, indem wir das Prinzip von Fermat ver-
wenden. Das Brechungsgesetz liefert das gleiche Re-
sultat, aber mit gréBerem Aufwand.
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optische Achse

Abbildung 7.68: Brechung an einer sphirischen
Grenzfliche.

Fir Strahlen mit einem geringen Abstinde von
der optischen Achse, sogenannte paraxiale Strahlen,
kann man die Oberfliche durch eine Parabel anni-
hern. Die Zeit, welche das Licht fiir den Weg OPO’
durch einen Punkt P im Abstand /4 von der optischen
Achse bendtigt, ist

nOP +n PO’.
Im Rahmen der paraxialen Niherung i < g ist die

Strecke OP

h2
OP=0V+VQ+ —
2g

und analog fiir PO’. Damit wird die Zeit fiir den Weg
OPO’:

2

h
mOP+mPO" = m(OV+VQ+ )
g

h2

Gemal dem Prinzip von Fermat sollte dies gleich der

Zeit fiir den direkten Weg sein, also

h? h?
n(OV+VQ+ £) +m(Q0 + =)

2b
= 0V +nm(VQ+Q0).

Somit muss gelten

h? h?
VO(n —np)+ @nl + 2719”2 =0.
In der gewihlten Niherung ist VQ = h?/2R mit R
dem Radius der Grenzfliche und

ng ny np—m

g b R

(7.2)

also unabhiingig von /. Somit benétigt das Licht auf
allen Pfaden die gleiche Zeit und erfiillt damit das
Prinzip von Fermat. Diese Gleichung wird als Ab-
bildungsgleichung bezeichnet: Bei gegebenem Ra-
dius R, Brechungsindex n; > und Objektdistanz g be-
stimmt sie die Bilddistanz b.

4

Abbildung 7.69: Fokus in einer Kugel.

Einen Spezialfall erhilt man, wenn man die Objekt-
distanz g gegen Unendlich gehen lédsst, wenn also
parallele Strahlen auf die Grenzfliche einfallen. Die
Bilddistanz b wird dann als Brennweite f bezeichnet
(— Abb.[7.69). Offenbar ist

ny  np—n
f R
oder
np
f=R
ny —np

Die Sammelwirkung einer gekriimmten Oberfliche
ist somit bestimmt durch den Kriimmungsradius R
und die Differenz zwischen den Brechungsindizes.
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Die Tatsache, dass die Brechkraft von der Differenz
der Brechungsindizes abhingt kann man sehr ein-
fach nachpriifen wenn man beim Schwimmen unter
Wasser die Augen 6ffnet: Man sieht nicht scharf, da
hier die Brechkraft der Linse im Auge kleiner ist.

7.4.5 Entstehung des Regenbogens

Die Entstehung des Regenbogens kann auf Bre-
chung in Wassertropfen und Dispersion zuriickge-
fiihrt werden.

Abbildung 7.70: Strahlenverlauf in einem Wasser-
tropfen und Regenbogen.

Der Strahlenverlauf in einem Regentropfen wurde
von Descartes untersucht. Wie in Abb. [7.70 ge-
zeigt, betrachtet man zunichst alle Strahlen, welche
beim Eintritt in den Wassertropfen gebrochen, an der
Riickseite reflektiert und beim Austritt wiederum ge-
brochen werden. Wihrend ein Strahl, der zentral ein-
fillt, in sich selbst reflektiert wird, weisen alle Strah-
len, die abseits vom Zentrum einfallen, nach dem
Durchgang durch den Wassertropfen einen Winkel
zwischen einfallendem und austretenden Strahl auf.
Dieser Winkel nimmt mit dem Abstand vom Zen-
trum zunéchst zu, erreicht bei 42 Grad ein Maximum
und nimmt dann wieder ab. Dadurch erhilt man bei
42 Grad eine Haufung.

Fiir einen Beobachter mit der Sonne im Riicken er-
gibt sich ein heller Kreiskegel mit halbem Offnungs-
winkel 42 Grad, wobei die Symmetrieachse durch
die Sonne lduft (siche Abb. [7.71). Mindestens die
Hilfte des theoretischen Kreises befindet sich unter
dem Horizont; einen Halbkreis erhilt man wenn die
Sonne gerade auf dem Horizont steht.

Haufung von
Reflexionen erzeugt
einen Kegel

Abbildung 7.71: Strahlenverlauf fiir einen Beobach-
ter.

Im Experiment verwenden wir eine einzelne, mit
Wasser gefiillte Glaskugel. Der weille Lichtstrahl der
Bogenlampe wird hier ebenfalls in einem Winkel
von 42 Grad reflektiert und spektral aufgefiachert.

Beobachter
Abbildung 7.72: Dispersion der Regenbogenfarben.

Aufgrund der Dispersion ist der Ablenkwinkel nicht
fiir alle Farben der gleiche. Kurze Wellenlidngen, al-
so blau und violett, werden stirker gebrochen. Wie
in Abb. [7.72 gezeigt erscheinen die entsprechenden
Maxima deshalb bei einem kleineren Offnungswin-
kel, also innerhalb des roten Kreisbogens.

7.4.6 Linsen

Anstelle einer einzelnen sphirisch gekriimmten
Oberflache betrachten wir nun einen Glaskorper mit
zwei sphirisch gekriimmten Oberflichen. Dies ent-
spricht einer Linse, wobei der Kriimmungsradius
von beiden Oberflichen positiv, negativ oder unend-
lich sein kann.

Den Strahlengang fiir eine bikonvexe Linse (— Abb.
7.73) finden wir, indem wir das Resultat fiir eine
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Abbildung 7.73: Sammellinse.

sphérische Oberfliche zweimal anwenden. Wir ver-
einfachen dabei Gleichung (7.2) fiir den Fall n; =1,
ny = n. Zunichst fiir die erste Grenzfliche gilt

I n_ n—1

g z R

Hier stellt z die Bildweite fiir das Zwischenbild dar,
welches rechts von der ersten Grenzfliche entstehen
wiirde. Fiir dieses einfache Modell nehmen wir je-
doch an, dass die Dicke der Linse sehr klein ist, so
dass wir sie vernachlédssigen konnen und sich die
zweite Grenzflache am gleichen Ort befindet wie die
erste Grenzflache. Dann entspricht die Bildweite fiir
das Zwischenbild gleichzeitig der negativen Gegen-
standsweite fiir die zweite Grenzfliche. Damit lautet
die Gleichung fiir die zweite Brechung

n 1

n—1
z b R,

Dabei muss das Vorzeichen von z und R beach-
tet werden: es hingt von der Richtung ab. Bei der
Objekt- / Bilddistanz ist es gemil unserer Definiti-
on positiv wenn das Objekt / Bild links / rechts der
Grenzflache liegt. Beim Kriimmungsradius entspre-
chend positiv wenn das Zentrum auf der rechten Sei-
te liegt, negativ im umgekehrten Fall.

Wir addieren die beiden Gleichungen um z zu elimi-
nieren und erhalten

g b R R f
Somit ist die Brennweite
RIR>
I = - D)(® =)

der Linse durch die Radien R; > der beiden Linsen-
flachen gegeben, welche jeweils vorzeichenbehaftet

sind. Man kann dieses Resultat einfach so interpre-
tieren dass sich die Brechkraft (n — 1) /R der beiden
Oberflichen addiert, wobei bei der zweiten Ober-
flache aufgrund des umgekehrten Verhéltnisses der
Brechungsindizes ein positiver Radius eine negative
Sammelwirkung, d.h. eine aufweitende Wirkung hat.

Die “Brechkraft” oder Sammelwirkung einer Linse
ist das Inverse der Brennweite und wird oft in “Diop-
trien” = 1/m gemessen. 5 Dioptrien bezeichnen eine
Brennweite von 20 cm.

Strahlengang Wellenronten

| R

Abbildung 7.74: Strahlengang und Wellenfronten
durch eine Sammellinse.

Abb. [1.74 zeigt, wie man den Strahlengang im Ex-
periment mit Hilfe von Laserstrahlen messen kann.
Im Rahmen der Wellenoptik wird die Sammellin-
se liber eine Verbiegung der Wellenfronten disku-
tiert. Mit Hilfe von Pulslasern und holographischen
Abbildungsverfahren kann diese ebenfalls gemessen
werden.

7.4.7 Linsentypen

Linsenform

Bezeich- bi- plan-  positiver bi- plan- negativer

nung konvex konvex Mensikus konkav ~ konav Mensikus

Radien Ri>0 Ri=« Ri<Rp<0 R1<0 Ri== R2<R;
R2<0 R2<0 R2>0 R2>0 <0

Brennweite >0 <0

Abbildung 7.75: Linsenformen.

Je nach Vorzeichen und Betrag der beiden Radien
unterscheiden man bikonvexe, plankonvexe, bikon-
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kave, plankonkave und Meniskus- Linsen. Abb.[7.75
zeigt einige Beispiele.

&

Abbildung 7.76: Strahlengang und Wellenfronten
durch eine Zerstreuungslinse.

Bei einer Zerstreuungslinse (siehe Abb. 7.7§) wer-
den die Wellenfronten im Auf3enbereich der Linse
verzogert, resp. die Strahlen nach auflen gebrochen.

Abbildung 7.77: Prinzip und Beispiel fiir eine Gra-
vitationslinse.

Linsen miissen nicht aus Glas bestehen. Die Licht-
ausbreitung wird z. B. auch durch Gravitationskraf-
te beeinflusst, wie in Abb. [7.77 gezeigt. Schwere
Objekte im Weltraum wirken deshalb als sogenann-
te Gravitationslinsen: sie biegen Lichtstrahlen. Dies
kann z.B. dazu fiihren, dass ein entferntes Objekt
mehrfach sichtbar wird, wie im Beispiel von Abb.
[7.77 ein Quasar, dessen Licht durch eine auf dem
optischen Weg liegende Galaxis fokussiert wird.

Diesen Effekt kann man mit Hilfe eines einfachen
Modells auch im Horsaal nachvollziehen. Hier wird
ein Weinglas als Linse verwendet.

7.4.8 Abbildung und Vergrosserung

Das Bild eines bestimmten Objekts, das durch eine
diinne Linse erzeugt wird, kann durch die in Abb.

Objekt

Abbildung 7.78: Optische Abbildung.

7.78 gezeigte Konstruktion erhalten werden:

¢ Jeder Strahl parallel zur Achse geht durch den
Fokus auf der gegeniiberliegenden Seite

¢ Ein Strahl, der durch den Fokus lauft, tritt auf
der anderen Seite parallel zur Achse aus.

Damit erhalten wir folgenden Gleichungen zwischen
GroBe und Abstand von Objekt und Bild:
B G B G
—=— un =—.
foox X f
Das Abbildungsverhiltnis, also das Verhiltnis der

GroBe B des Bildes relativ zur GroB3e G des Objekts
wird

(7.3)

=~

j— x’
7

Das Verhiltnis ist somit gegeben durch das Verhilt-
nis der Brennweite f zum Abstand x des Objekts
vom Brennpunkt, resp. durch das Verhiltnis des Ab-
standes x’ des Bildes vom zweiten Brennpunkt. Den
Ort des Bildes erhilt man aus den beiden Gleichun-
gen ([7.3) z.B. indem man die erste auflost nach

B=cl
X

und dies in die zweite einsetzt:

G6r _6
() f
Das Produkt von Objekt- und Bilddistanz (gemessen
vom Brennpunkt) ist somit immer gleich dem Qua-
drat der Brennweite. Diese Form ist dquivalent zur
Linsengleichung

1 1 1

+-=-,
g b f

wenn die Distanzen durch g =x+ fund b=x"+ f

ersetzt werden.

xx' = f2
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1 1 1

;o

Abbildung 7.79: Spezialfille fiir die Abbildungs-
gleichung.

ADbb.[7.79 stellt einige wichtige Spezialfille der Lin-
sengleichung dar. Im Fall x = x* = f sind Objekt und
Bild je um f von den Brennpunkten entfernt, resp.
um 2f von der Linse. Dabei sind Objekt- und Bild-
distanz identisch und das Abbildungsverhéltnis ge-
rade gleich 1. Wenn einer der beiden Abstinde vom
Brennpunkt gegen Null geht, so muss der andere
gegen Unendlich gehen. Dies entspricht den beiden
Fillen wo ein paralleler Strahl in den Brennpunkt der
Linse fokussiert wird, resp. wo eine punktférmige
Quelle im Brennpunkt der Linse kollimiert wird.

Objekte Film

Abbildung 7.80: Abbildung von unterschiedlich
weit entfernten Objekten in einer
Kamera.

Die Tatsache, dass unterschiedlich entfernte Gegen-
stinde auf unterschiedliche Bildebenen abgebildet
werden, ist jedem Hobby-Fotografen bekannt. Sie
fiihrt zur endlichen “Tiefenschirfe” eines Bildes.
Wie in Abb. [7.80 gezeigt, weist der Bildsensor oder
Film einen bestimmten Abstand zum Objektiv auf-
weist. Deshalb werden nur Gegenstiinde in der “rich-
tigen” Entfernung scharf abgebildet.

7.4.9 Linsenfehler

Bisher sind wir davon ausgegangen, dass die Lin-
sen perfekt seien. Allerdings haben wir bei der Her-
leitung der Linsengleichung verschiedene vereinfa-
chende Annahmen gemacht, die in der Praxis nie
exakt erfiillt sind. So hatten wir z.B. angenommen,
dass die Dicke der Linsen vernachldssigt werden
kann, oder dass die Oberfliche durch eine Parabel
angendhert werden kann. In der Praxis benutzt man
hingegen sphirische Oberflichen, da solche Linsen
sehr viel einfacher herzustellen sind. Aus diesen
Unterschieden ergeben sich sogenannte “Linsenfeh-
ler”, d.h. Unterschiede zwischen den hier angenom-
menen “Gesetzen” und den wirklichen Strahlengén-
gen. Technisch werden diese folgendermallen klas-
sifiziert:

1) sphirische Aberration: Die hier benutzten Glei-
chungen gelten nur fiir Strahlen in der Niéhe der op-
tischen Achse. Strahlen, die zu weit davon entfernt
sind, werden nicht mehr in den gleichen Punkt fo-
kussiert. Natiirlich kann man eine Linse immer klein
genug machen, dass solche Fehler vernachlissig-
bar sind. Andererseits ist die Lichtstidrke einer Linse
proportional zu ihrer Flidche, also zum Quadrat des
Durchmessers. Es gibt zwei Moglichkeiten, sphéri-
sche Aberration auch bei groflen Linsen gering zu
halten:

1) Man kombiniert verschiedene Linsen in ein Ob-
jektiv

ha_
Y

s

Abbildung 7.81: Plankonvexe Linse mit sphérischer
Aberration (links) und asphérisch
optimierte Linse (rechts).

ii) Man benutzt asphérische Linsen, d.h. man op-
timiert die Form der Linse so, dass diese Fehler
verschwinden. Abb. [7.8T zeigt ein solches Beispiel.
Dies wird allerdings nur fiir teure Spezialoptiken
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gemacht, weil das Herstellungsverfahren wesentlich
aufwendiger ist. Heute ist dies aber eindeutig ein zu-
nehmender Trend.

Kron /

Abbildung 7.82: Chromatische Aberration: Korrek-
tur durch Linsenkombination.

2) Chromatische Aberration: Aufgrund der Disper-
sion des Glases werden unterschiedliche Wellenldn-
gen unterschiedlich stark gebrochen. Auch dieses
Problem kann durch die Kombination unterschied-
licher Linsen weitgehend vermieden werden. Dabei
werden Linsen mit unterschiedlichen Brechungsin-
dizes und unterschiedlicher Dispersion kombiniert.
Solche Linsenkombinationen werden kommerziell
als “Achromaten” angeboten. Das Beispiel von Abb.
[7.82 reduziert die Dispersion iiber den sichtbaren
Spektralbereich auf weniger als 0.5%.

3) Coma, Astigmatismus: Weitere Aberrationen wer-
den als Coma und Astigmatismus bezeichnet. Da-
bei handelt es sich um Fehler, die dadurch zustande
kommen, dass Objekt und Bild nicht auf der Achse
der Linse liegen.

7.4.10 Maximale Auflosung

Aus den Linsengleichung ergibt sich, dass Objek-
te durch Abbildungen beliebig vergroB3ert oder ver-
kleinert werden konnen. Dies ist aber nicht méglich,
wenn man in einen Bereich kommt, wo die geome-
trische Optik nicht mehr giiltig ist. Voraussetzung fiir
deren Anwendbarkeit ist, dass die relevanten Dimen-
sionen grof} sind im Vergleich zur Wellenlidnge des
Lichtes.

Eine Abschitzung fiir das maximal erreichbare Auf-
losungsvermogen eines Mikroskops erhilt man mit
folgender Uberlegung: Zwei Punkte P und P’ befin-
den sich im Abstand d voneinander, wie in Abb.[7.83
gezeigt. Damit man sie unterscheiden kann, miis-
sen Kugelwellen, die von den beiden Punkten aus-
gesandt werden, mindestens auf einem Teil der Linse

P 6
d
p'e dsin®

Abbildung 7.83: Auflosungsgrenze fiir optische Ab-
bildungen.

unterschiedliche Phasen aufweisen. Wir nehmen der
Einfachheit halber an, dass sie sich in der Nihe der
Linsenachse befinden, so dass zwei Kugelwellen, die
zu gleicher Zeit von den beiden Punkten ausgehen,
auf der Achse mit identischer Phase eintreffen. Als
unterscheidbar betrachten wir die Punkte dann, wenn
die beiden Wellen am Rand der Linse eine Phasen-
differenz A¢ > m besitzen, d.h. wenn die Wegldngen-
differenz mindestens A /2 betriigt. Betrigt der Win-
kel zwischen dem Zentrum und dem Rand der Linse
0, so ist der Wegldngenunterschied

A
o>
dsin 9 > >

Eine hohe Auflésung erhélt man somit, wenn
- die Wellenlédnge klein
- und der Offnungswinkel groR ist.

Die maximale Auflosung wird dann erzielt wenn das
Objekt sich in der Brennebene befindet. Der Off-
nungswinkel 8 kann somit als das Verhéltnis aus Ra-
dius und Brennweite geschrieben werden. Man be-
zeichnet den Sinus des Offnungswinkels (sin ) als
numerische Apertur (NA).

Die hier verwendete Bedingung gibt nur die Gréen-
ordnung an. Es werden anstelle von A/2 auch die
Werte von 0.62 A und 0.82 A verwendet, welche z.B.
aus der Theorie der Beugung stammen. Fiir eine un-
endlich grofe Linse und sichtbares Licht wiirde man
somit erhalten 2d > 0.6um oder d > 0.3um. In der
Praxis ist der Winkel 6 immer kleiner als n/2. Fiir
ein Mikroskop mit hoher numerischer Apertur kann
die Auflosungsgrenze trotzdem deutlich unter 1 pm
liegen.
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Abbildung 7.84: Bild einer punktférmigen Quelle
als Auflosungstest.

Abb. [7.84 zeigt als Beispiel ein Bild einer punktfor-
migen Lichtquelle, welches mit Hilfe eines konfoka-
len Mikroskops aufgenommen wurde.

Das gleiche Prinzip der maximalen Auflosung gilt
auch fiir den umgekehrten Prozess, die Erzeugung
eines moglichst kleinen Bildes aus einer groferen
Vorlage. Bilddetails kdnnen nur dann mit einer Lin-
se dargestellt werden, wenn sie nicht kleiner als A/(2
sin @) sind. Diese Abbildungsgrenze ist u. A. rele-
vant fiir die Photolithographie, welche fiir die Her-
stellung elektronischer Schaltkreise verwendet wird.
Die Dimensionen der auf diese Weise erzeugten
Schaltungen konnen nicht wesentlich kleiner sein
als die Wellenldnge des verwendeten Lichts. Des-
halb werden heute in der Chipherstellung ultravio-
lette Lichtwellen verwendet.

Sehnerv

Abbildung 7.85: Querschnitt durch ein Auge.

7.5 Optische Instrumente

7.5.1 Das Auge

Das Auge ist das wichtigste optische Instrument,
welches von der Natur stark optimiert wurde. Wie
in Abb.[7.85 gezeigt, besteht es aus einem kugelfor-
migen Korper von ca. 25 mm Durchmesser. Darin
enthalten ist eine Linse, welche durch einen Muskel
verformt werden kann. Da Linse und Augenkorper
dhnliche Brechkraft besitzen, dient diese Anpassung
nur fiir geringe Korrekturen. Die lichtempfindlichen
Zellen befinden sich auf der Riickseite des Auges, in
der Netzhaut. Man unterscheidet zwischen den stib-
chenformigen Zellen, welche tagsiiber farbige Bil-
der liefern und den zapfenférmigen, nicht farbemp-
findlichen Zellen, welche nachts geringe Lichtstér-
ken wahrnehmen konnen.

Kurzsichtig: Brennweite zu kurz

unkorrigiert korrigiert

Weitsichtig: Brennweite zu lang

unkorrigiert korrigiert

P pr

Abbildung 7.86: Ursache von Sehfehlern und Kor-
rektur durch Brille.

Sehfehler entstehen wenn die Brechkraft der Lin-
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se nicht mit der Grofe des Auges iibereinstimmt.
Im Falle der Kurzsichtigkeit ist die Brechkraft zu
gro} und das Bild entsteht vor der Netzhaut. Wie
in Abb. [7.86 gezeigt, kann dies korrigiert werden,
indem man eine Zerstreuungslinse einsetzt. Bei der
Weitsichtigkeit ist die Brechkraft zu gering. Sie wird
korrigiert durch eine Sammellinse.

N
W

Abbildung 7.87: Auflosungsgrenze fiir das Auge.

d

Die Auflosungsgrenze gilt auch fiir das Bild auf der
Netzhaut. Fiir einen Abstand von 25 mm (= Durch-
messer des Auges) und eine Wellenldnge von 600
nm findet man eine Auflosungsgrenze von ca. 3-4.8
um. Die Abstdnde zwischen den Sehzellen betragen
ca. 3-5 um (im "gelben Fleck": 1 um), also opti-
miert auf die Auflosung. Die Auflésungsgrenze kon-
nen wir auch auf das Objekt beziehen: die Grofle von
3 um entspricht einem Winkel des Bildes (— Abb.
7.87) von
3um _4

= Smm 1,2-107".
Damit kann man z.B. ein Objekt von der Grofe 1.2
cm in einer Distanz von 100 m noch erkennen.

7.5.2 VergroBlerung und Mikroskop

Eine Motivation fiir das Studium der Optik war
immer die Entwicklung von Geridten, welche das
menschliche Sehvermdgen erweitern. Das einfachste
derartige Instrument ist die Lupe. Sie kann als zu-
sdtzliche Linse vors Auge gehalten werden, so dass
man Gegenstinde betrachten kann, die sich ndher
beim Auge befinden. Die VergroBerung wird somit
primir durch die Verringerung des Objektabstandes
erreicht.

Mit blolem Auge kann man typischerweise bis auf
eine Distanz von sg = 25cm scharf sehen. Das Bild
eines Objektes der Grofle G erscheint dann maximal
unter dem Winkel & ~ G/so (— Abb.[7.88 links).

mit VergroRerungsglas

= [

Objekt im

——_—

ohne VergréRerungsglas

minimale Distanz so = 25 cm

Fokus
der Linse

Abbildung 7.88: Vergroferungsglas.

Verwendet man dagegen eine Linse, so kann man das
Objekt bis auf die Brennweite f an die Linse heran-
bringen, ohne dass das Auge angestrengt wird. Das
Objekt erscheint jetzt unter dem Winkel € = G/f,
das hei3t um den Faktor

(;/f‘ SO
(;/So .f

vergroBert. Je kleiner die Brennweite einer Lupe, de-
sto hoher ist somit der VergroBBerungsfaktor.

Okular

Objektiv

Abbildung 7.89: Mikroskop.

Eine wesentlich stéirkere Vergroferung erzielt man
mit dem Mikroskop. Wie in Abb. [7.89 gezeigt, be-
steht dieses aus einer Kombination von mindestens
2 Linsen. Die erste Linse, das Objektiv, erzeugt ein
Zwischenbild, welches grofler ist als das Objekt.
“Grof3” bezieht sich hier immer auf den Winkel &,
unter dem das Objekt fiir den Betrachter erscheint.

Der Vergrosserungsfaktor betriagt

Vzp = —(—.

fow
Eine zusitzliche Vergroerung dieses Zwischenbil-
des erreicht man, indem man es nicht mit dem nack-
ten Auge betrachtet, sondern mit einem Okular und
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damit wie bei einer Lupe einen geringeren Objektab-
stand erreicht. Dadurch wird eine weiter Vergrofe-
rung um den Faktor

S0

o

erreicht, wobei 5o &~ 25 cm die “deutliche Sehweite”
beschreibt. Die gesamte VergroBerung betrigt somit

Vo

tSo

fovfor’

V=VzpVo =

7.5.3 Fernrohr

Ein Fernrohr ist wie das Mikroskop aus einem Ob-
jektiv und einem Okular aufgebaut.

Abbildung 7.90: Querschnitt durch ein Fernrohr.

Der wesentliche Unterschied zum Mikroskop be-
steht darin, dass hier ein weit entferntes Objekt in
ein Zwischenbild abgebildet wird. Damit ist vzp im-
mer kleiner als 1, d.h. das Zwischenbild ist kleiner
als das Objekt. Es ist aber auch néher als das Objekt
und erscheint deshalb - nach Betrachtung durch das
Okular - groBer. Der VergroBerungsfaktor wird hier
sinnvollerweise iiber den Sehwinkel berechnet.

T L5
=

—

f1 f2

Abbildung 7.91: Schema des Kepler’'schen Fern-
rohrs.

Ein einfaches Kepler’sches Fernrohr kann man aus
zwei Linsen aufbauen, wie in Abb.[7.91 gezeigt. Wie
man leicht erkennt, wird ein Zwischenbild im Brenn-
punkt der ersten Linse erzeugt, d.h. beim Abstand
f1. Die zweite Linse stellt man so ein, dass das Zwi-
schenbild ebenfalls in der Brennebene liegt.

Abbildung 7.92: Kepler’sches Fernrohr im Horsaal.

Abb. [7.92 zeigt eine Realisierung des Kepler’schen
Fernrohrs im Horsaal.

Der Sehwinkel (genauer: dessen Sinus) vergroflert
sich demnach um das Verhiltnis der beiden Brenn-
weiten,

o« _fi

/
afi=a'fh, — —==—.
a

Galilei'sches Fernrohr

Kepler'sches Fernrohr

zB

— <N\ A

;ﬁ;?
F/Vi _W N |
s
= i N
o ’4
() fox fox
"Oh g—

—Foy

Abbildung 7.93: Kepler’sches
Fernrohr.

und Galilei’sches

Das Objekt ist aber auch invertiert, d.h. es steht auf
dem Kopf. Dies ist bei astronomischen Fernrohren
weniger relevant, bei terrestrischen Anwendungen
jedoch storend. Man kann dies auf unterschiedliche
Arten korrigieren, indem man fiir das Okular eine
Zerstreuungslinse verwendet und diese vor das Zwi-
schenbild stellt, wie im Galilei’schen Fernrohr (Abb.
[7.93 rechts), oder indem man eine dritte Sammellin-
se einsetzt, welche das Bild nochmals invertiert (sie-
he Abb.[7.90). In diesem Fall wird das Gerit jedoch
sehr lang.

In einem Fernglas (siehe Abb. [7.94) richtet man das
Bild auf, indem man es durch zwei Prismen noch-
mals invertiert. Diese falten gleichzeitig den Strah-
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Abbildung 7.94: Strahlengang durch ein Fernglas.

lengang, so dass auch relative grof3e Distanzen zwi-
schen Objektiv und Okular noch in ein handliches
Geriit passen.

Die grofiten Fernrohre werden in der Astronomie be-
nutzt. Allerdings benutzt man dort nicht Linsen fiir
die Abbildung. Diese wiren zum einen zu grof3 und
wiirden andererseits zu starke Abbildungsfehler, ins-
besondere chromatische Aberration erzeugen.

Objektiv-
Spiegel
zweiter
Spiegel Betrachter-
Bereich

Abbildung 7.95: Spiegelteleskop.

Dies wird eliminiert, indem man Spiegel verwendet:
diese weisen keine chromatische Aberration auf, da
die Wellenldnge beim Reflexionswinkel nicht auf-
taucht. Abb. [7.95 zeigt den entsprechenden Strah-
lengang in einem Spiegelteleskop. Spiegelteleskope
haben auBerdem den Vorteil, dass sie zu wesentlich
groBeren Durchmessern skaliert werden konnen.

7.5.4 Photometrie

Die Messung von Licht (Intensitit, Helligkeit, Strah-
lungsleistung, raumliche und spektrale Verteilung
...) ist eine eigene Wissenschaft. Die Strahlungslei-
stung (Einheit: W) bezeichnet die Energie, die pro
Zeiteinheit auf den Detektor trifft.

Offensichtlich hingt diese z.B. davon ab, wie weit
der Detektor von der Quelle entfernt ist. Bei einer

punktformigen Quelle ist die Leistung durch eine
Fliiche A proportional zum Raumwinkel Q = A/r?,
wobei r den Abstand darstellen. Fiir eine volle Kugel
wird der Maximalwert von 4r erreicht.

Lichtquelle Lichtstrom
Leuchtdiode 1072 Im
Gliithlampe 220 V, 60 W 730 Im
Glihlampe 220 V, 100 W 1 380 lm
Leuchtstoffrohre 220 V, 40 W 2 300 lm
Quecksilberdampflampe

220V, 125 W 5400 lm
Quecksilberdampflampe

220V, 2000 W 125 000 Im

Abbildung 7.96: Lichtstirke.

Die wichtigsten photometrischen Grofien sind der
Lichtstrom und die Beleuchtungsstérke. Der Licht-
strom bezeichnet die von einer Quelle ausgehende
optische Leistung. Die Einheit ist das Lumen (Im).
Davon abgeleitet ist die Lichtstirke (— Abb. [7.96),
definiert als Lichtstrom pro Raumwinkel. Die Ein-
heit betrdgt 1 Candela, 1 cd =1 Im/sr. Sie ist als eine
der physikalischen Grundeinheiten, definiert als die
Lichtstirke einer Strahlung der Frequenz 540 - 10'?
Hertz mit einer Strahlstirke von 1/683 Watt pro
Steradiant.

Beleuchtung Beleuch-
tungsstirke
Sonne, Sommer 70 000 1x
Sonne, Winter 55001x
Tageslicht, bedeckter Himmel 1 000 bis
20001x
Vollmond 0,25 Ix
Sterne ohne Mond, klare Nacht 1073
Grenze der Farbwahrnehmung 31x
Arbeitsplatzbeleuchtung, hohe
Anspriiche 1 0000 Kk
Wohnzimmerbeleuchtung 120 Ix
StraBenbeleuchung 1 Ix bis 16 Ix

Abbildung 7.97: Beleuchtungsstirke.

Die Beleuchtungsstirke (— Abb. [7.97) bezeichnet
die Lichtleistung, welche auf eine Fldcheneinheit des
Objektes fillt. Thre Einheit ist das Lux (Ix). Da es
sich bei Licht letztlich um elektromagnetische Fel-
der handelt, kann man die photometrischen Gro3en
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auch mit entsprechenden physikalischen GréBen in
Beziehung setzen. Die kann zum Beispiel iiber die
abgestrahlte Leistung des schwarzen Strahlers ge-
schehen. Integriert man diese iiber den gesamten
spektralen Bereich, gewichtet aber mit der spektra-
len Empfindlichkeit des Auges, so erhilt man das
Verhiltnis zwischen Lichtstrom und Energiestrom
zu K = 680 Im/W .

7.6 Polarisation und
Doppelbrechung

7.6.1 Polarisation

Wie andere elektromagnetische Wellen ist Licht ei-
ne Transversalwelle. Es existieren deshalb zwei or-
thogonale Polarisationsrichtungen. Licht mit unter-
schiedlicher Polarisation kann in vielen Fillen ein
unterschiedliches Verhalten zeigen; ein Beispiel da-
fiir hatten wir bei der Reflexion diskutiert, wo un-
terschiedliche Polarisationen unterschiedliches Re-
flexionsverhalten zeigen. Polarisationseffekte spie-
len deshalb in der Optik eine wichtige Rolle.

Vertikale Polarisation Horizontale Polarisation

X, ,E X .
Kk k

Abbildung 7.98: Elektrische und magnetische Fel-
der fiir lineare Polarisation.

Fiir eine mathematische Beschreibung von polari-
siertem Licht zerlegt man die Feldamplitude in zwei
linear unabhiingige Transversalwellen, welche un-
terschiedlichen Richtungen der Auslenkung entspre-
chen (— Abb.[7.98). Allgemein kann man eine Basis
von solchen Polarisationszustdnden wihlen und die
allgemeine Welle als Superpositionszustand schrei-
ben. Wir beschreiben die beiden Polarisationen iiber
die Einheitsvektoren €], €, und das Feld eines allge-
meinen Polarisationszustand als

E(7,t) = (6|E| + &E>) exp(ﬁé-?— iot).

Dabei sind die Amplituden E; und E, komplexe
Zahlen: der Imagindrteil bezeichnet den Phasenun-
terschied zwischen den beiden Wellen.

Als ein Beispiel wihlen wir die Polarisationszustéin-
de €, und ¢, entlang der x— und y—Achse. Fiir
E| = E; =1 erhalten wir lineare Polarisation entlang
der Winkelhalbierenden. Allgemein erhélt man line-
ar polarisiertes Licht wenn E| und E, dieselbe Phase
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aufweisen, also z.B. beide reell oder beide rein ima-
gindr sind. Das Verhiltnis der Amplituden gibt den
Winkel der Polarisationsebene an.

weite Halbkugel
daher miiss- 8
nt sein.'

_pensieren, so d
i dien und die

Y™ . ei Kalks
zu deuten . - ochte, an Han

ey NS NonlERpe Wiisy Vg N el

Abbildung 7.99: Doppelbrechung in einem

Kalkspat-Kristall.

Je nach Material kann die Polarisation einen groflen
Einfluss auf die Ausbreitung des Lichts haben. Ein
einfaches Beispiel ist ein doppelbrechender Kristall
auf einer Unterlage. Im Beispiel von Abb. [7.99
besteht der Kristall aus Kalkspat. Man sieht, dass
die darunter liegende Schrift doppelt sichtbar ist.
Was nicht direkt erkennbar ist: die beiden Bilder
sind unterschiedlich polarisiert. Den gleichen Effekt
kann man auch zeigen, indem man einen Laserstrahl
durch den Kristall laufen l1dsst. Auf dem Schirm sieht
man dann zwei dazugehdrige Punkte. Mit dem Pola-
risationsfilter kann man feststellen, dass die Polari-
sationsrichtung der beiden Strahlen sich um 90 Grad
unterscheidet.

7.6.2 Erzeugung und Umwandlung

In einem Laser wird Licht direkt polarisiert erzeugt.
In einer Gliihbirne hingegen ist die Polarisation der
einzelnen Photonen voneinander unabhingig und
das Licht insgesamt nicht polarisiert. Man kann in
diesem Fall nachtriglich polarisiertes Licht herstel-
len, indem man es entweder in die beiden unter-
schiedlichen Polarisationen trennt oder eine Polari-
sationsrichtung herausfiltert. Es existieren viele op-
tische Elemente, die dafiir konstruiert wurden, um
unterschiedliche Polarisationszustdnde zu erzeugen,
resp. ineinander umzuwandeln.

Am bekanntesten ist sicher der Polarisator, welcher

" Transmis-
"\ sionsachse

E

Polarisator

Abbildung 7.100: Transmission durch Polarisator.

auch in Sonnenbrillen Verwendung findet (— Abb.
[7.100). Er erzeugt linear polarisiertes Licht, indem
die Anteile des Lichtes, welche die orthogonale Po-
larisation aufweisen, abgelenkt oder absorbiert wer-
den. Dass solche optischen Elemente in der Fotogra-
fie oder in Sonnenbrillen verwendet werden ist nur
sinnvoll, weil das Licht in der Natur polarisiert ist.
So ist Licht, welches auf einer Wasseroberflache re-
flektiert ist, horizontal polarisiert. Auch das blaue
Licht des Himmels, welches durch Streuung von
Sonnenlicht entsteht, ist polarisiert, wobei die Po-
larisationsrichtung von der Richtung beziiglich der
Sonne abhéngt. Dies kann man einfach iiberpriifen,
wenn man durch einen Polarisator, also z.B. eine
polarisierende Sonnenbrille den Himmel betrachtet:
Die Helligkeit ist richtungsabhéngig, auch wenn der
Himmel ohne Sonnenbrille keine Helligkeitsunter-
schiede zeigt.

05 Brewster Winkel

\I‘L
0

Einfallswinkel

N
-0.5

-1

Abbildung 7.101: Reflexionskoeffizienten als Funk-
tion des Einfallswinkels.

Eine wichtige Moglichkeit fiir die Erzeugung von
polarisiertem Licht ist die Reflexion. Wie in Abb.
7.101] gezeigt, weist der Reflexionskoeffizient fiir
Licht, das parallel zur Einfallsebene polarisiert ist,
als Funktion des Einfallswinkels einen Nulldurch-
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gang auf. Somit verschwindet die Reflexion bei ei-
nem Winkel

0 = tan" ! n.

Z.B. Kronglas ist n = 1.51 und somit 8z = 56,5°.
Dieser Winkel wird als Brewsterwinkel bezeichnet
(— Kap. [7.3.6). Somit wird nur die senkrecht pola-
risierte Komponente reflektiert, und der reflektierte
Strahl ist vollstdndig polarisiert.

.~ Transmis-
.\ sionsachse
]

E
X

S

Transmlssmnsachse

Polarisator

Analysator

0= 45°

.@

Abbildung 7.102: Transmission durch 2 Polarisa-
toren unterschiedlicher Orientie-
rung.

Im Beispiel von Abb. erzeugt der erste Polari-
sator aus unpolarisiertem Licht polarisiertes Licht.
Diese wird durch einen weiteren Polarisator ge-
schickt, welcher die Funktion eines Analysators hat.
Je nach Winkel zwischen den beiden kann Licht
durch die Kombination hindurch oder nicht. Man fin-
det eine sinus-formige Abhingigkeit der Intensitét
vom Winkel zwischen den beiden Polarisatoren:

I =1 cos2 6.

Stellt man einen dritten Polarisator zwischen zwei
gekreuzte Polarisatoren, so erhoht man damit die
Transmission, falls dieser nicht die gleiche Stellung
hat wie einer der beiden anderen. Betrigt der Winkel
zwischen zwei aufeinander folgenden Polarisatoren
z.B. 45 Grad, so wird jeweils cos?(45°) = 1/2, ins-
gesamt somit 1/4 transmittiert.

7.6.3 Doppelbrechung

Eine andere Moglichkeit ist die Doppelbrechung:
Kristalle mit niedriger Symmetrie besitzen fiir un-
terschiedliche Polarisation des Lichtes unterschiedli-
che Brechungsindizes. Man kann sich das so vorstel-
len, dass die schwingenden Dipole in einem Kristall
beziiglich der Kristallachsen fest orientiert sind. Die
Stirke der Wechselwirkung zwischen der optischen
Welle und den schwingenden Dipolen hingt deshalb
davon ab, ob die Polarisation der Welle parallel oder
senkrecht zum Dipol orientiert ist.

B X 3

X E I

- oeo -
*J optische
“Achse

Abbildung 7.103: Strahlengiinge in einem doppel-
brechenden Material.

Dadurch werden Strahlen je nach Polarisation un-
terschiedlich gebrochen (— Abb. [7.103). Man un-
terscheidet die beiden Polarisationen danach, ob der
Brechungsindex von der Ausbreitungsrichtung ab-
hingt. Bei einer Polarisation ist der Brechungsin-
dex unabhingig von der Ausbreitungsrichtung; diese
Komponente wird als ordentlicher Strahl bezeichnet.
Bei der anderen Komponente, welche senkrecht zum
ordentlichen Strahl polarisiert ist, variiert der Bre-
chungsindex mit der Ausbreitungsrichtung. Dieser
Strahl wird als auBerordentlich bezeichnet. Die bei-
den Brechungsindizes werden als n, und n, bezeich-
net. Die Unterschiede zwischen den beiden kénnen
sich im Bereich < 0.3 bewegen, wie in Tabelle
gezeigt.

Beispiele:
Material  no Ne
Kalkspat 1.6584 1.4864
Turmalin  1.6425 1.6220
Quarz 1.5442 1.5533
Rutil 2.6158 2.9029

Tabelle 7.1: Brechungsindizes einiger doppelbre-
chender Materialien.
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Die unterschiedliche Ausbreitungsgeschwindigkeit
fiir die beiden senkrechten Polarisationen fiihrt auch
dazu, dass der auBerordentliche Strahl beim senk-
rechten Auftreffen auf eine ebene Fliche gebrochen
wird — dies ist ein qualitativ anderes Verhalten als bei
Materialien ohne Doppelbrechung.

vertikale Polarisation wird
abgelenkt und geblockt

T

-

polarisiertes
Licht

unpolarisiertes
Licht

-

2 Prismen mit unterschiedlicher
Orientierung

Abbildung 7.104: Aufbau eines Glan-Thompson Po-
larisators.

Doppelbrechende Materialien werden z.B. in einem
Glan-Thompson Polarisator verwendet. Abb.
zeigt schematisch den Aufbau eines solchen Polari-
sators. Man kann solche Polarisatoren dazu verwen-
den, die beiden Polarisationen zu trennen. Blockt
man einen der beiden Teilstrahlen, kann damit po-
larisiertes Licht erzeugt werden.

AuBerdem gibt es optische Elemente, welche ver-
schiedene Polarisationen ineinander umwandeln.
Die wichtigsten sind sogenannte Verzdgerungsplat-
ten. Dazu verwendet man doppelbrechende Kristal-
le, bei denen der Brechungsindex von der Polarisati-
on des Lichtes abhédngt. Dadurch erscheint der Kri-
stall fiir unterschiedliche Polarisationen unterschied-
lich dick.

7.6.4 Anwendungen

Abbildung 7.105: Spannungs-Doppelbrechung.

Die Doppelbrechung kann von duleren Parametern
abhingen. Insbesondere mechanische Spannungen
konnen die optische Weglidnge verdndern. Man kann
diesen Effekt nachweisen, indem man das Material
zwischen zwei gekreuzte Polarisatoren (lineare oder
zirkulare) bringt, wie in Abb. gezeigt. Ist ei-
ne Spannungs-Doppelbrechung vorhanden so wird
die Polarisation in der Probe gedreht und es kommt
zu einer Transmission durch den zweiten Polarisa-
tor. Der Effekt ist wellenldngenabhingig, so dass bei
der Bestrahlung mit weilem Licht unterschiedliche
Farben beobachtet werden. Man kann diesen Effekt
u. A. zur Untersuchung der Spannungsverteilung be-
nutzen.

Quarz aus vulkanischem
Gestein

Quarz aus Meteorit; Schichtstruktur
als Resultat der Schockwellen

Abbildung 7.106: Spannungs-Doppelbrechung  in
Quarz unterschiedlicher Herkunft.

Viele Mineralien zeigen Doppelbrechung. Bringt
man sie zwischen gekreuzte Polarisatoren, wird des-
halb ein Teil des Lichtes transmittiert. Die Verzoge-
rung ist, wie der Brechungsindex selber, wellenlidn-
genabhingig. Unterschiedliche Wellenldngen wer-
den deshalb unterschiedlich stark verzégert und da-
mit unterschiedlich stark abgeschwicht, so dass far-
bige Muster entstehen. Abb. zeigt zwei Bilder
von Quarzkristallen.

In Abb[7.107] sind Eiskristalle dargestellt, welche
dhnliche Effekte zeigen. AuBBerdem gibt es Materia-
lien, bei denen der Brechungsindex durch Anlegen
von dulleren Feldern variiert werden kann, wie z.B.
in elektro-optischen Modulatoren (durch elektrische
Felder) oder in akustooptischen Modulatoren durch
die Wechselwirkung mit Schallwellen.
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Abbildung 7.107: Unterschiedlich orientierte Eiskri-
stalle mit eingeschlossenen Luft-
blasen.

7.6.5 Optische Aktivitiit

Viele organische Substanzen zeigen optische Aktivi-
tét, d.h. sie besitzen unterschiedlichen Brechungsin-
dex fiir die beiden entgegengesetzten zirkularen Po-
larisationen. Dies ist auf ihre molekulare Struktur
zuriickzufiihren. Diese Figenschaft findet man z.B.
in Quarz; sie ist allerdings ca. 100 mal kleiner als
die lineare Doppelbrechung.

Schickt man linear polarisiertes Licht durch eine
Zuckerlosung, wird die Polarisationsebene gedreht.
Diesen Effekt findet man bei allen Molekiilen, die
keine Inversionssymmetrie aufweisen.

7.7 Interferenz

Meist hat man nicht nur eine einzelne Welle, sondern
mehrere Wellen mit gleichen oder unterschiedlichen
Frequenzen, Phasen, Amplituden und Ausbreitungs-
richtungen. Bei ihrer Uberlagerung spielt Interferenz
zwischen einzelnen (Teil-)Wellen eine wichtige Rol-
le.

Abbildung 7.108: Uberlagerte Wasserwellen.

7.7.1 Linearitit fiir Felder, nicht fiir
Intensititen

Die Maxwell Gleichungen sind linear, sofern die da-
zu gehorigen Materialgleichungen auch linear sind.
Dementsprechend ist auch die daraus abgeleitete
Wellengleichung (6.14) linear, genau so wie die iib-
rigen in Kapitel [6] (Wellen) behandelten Gleichun-
gen. Verschiedene Wellen beeinflussen sich deshalb
nicht, genau so wie fiir die Wasserwellen in Abb.
Mathematisch bedeutet dies: wenn ¥ und ¥,
Losungen einer bestimmten Wellengleichung sind,
so sind auch alle Linearkombinationen

Y= al‘Pl +(12‘Pz

Losungen dieser Wellengleichung.

Teilwellen Summe

in Phase

konstruktive
Interferenz

Teilwellen

destruktive / W W

Interferenz
Abbildung 7.109: Konstruktive und destruktive In-
terferenz.

Wellen gleicher Frequenz und Wellenldnge sum-
mieren sich je nach Phasendifferenz zu einer Ge-
samtwelle, die der Summe, der Differenz oder ei-
nem Wert dazwischen entsprechen kann, wie in Abb.
gezeigt. Dargestellt sind hier jeweils die Am-
plituden der Felder.

In der Optik beobachtet man in den meisten Fillen
nicht die Felder selbst, sondern die Intensitit oder
Leistung einer Welle. Diese sind proportional zum
Quadrat des Feldes,

I |E]%
Deshalb bezeichnet man optische Detektoren als

quadratische Detektoren. Praktisch alle Detektoren
funktionieren nach diesem Prinzip, so z.B. auch das
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menschliche Auge, Halbleiterdetektoren oder foto-
grafische Filme. Fiir die direkt gemessenen Grofien,
wie die Intensitét, ist die Physik nicht-linear. Damit
haben wir eine weitere Grenze der geometrischen
Optik erreicht, welche davon ausgeht, dass einzelne
Strahlen voneinander unabhéngig sind.

7.7.2 Der Interferenzterm

Wenn zwei Felder A und B auf einen Detektor fal-
len, so misst dieser das Quadrat des resultierenden
Feldes, d.h. das Signal ist proportional zu

Io< |E> = (A+B)>=A>+B>+2AB.

Dieses enthdlt, zusitzlich zur Summe der beiden
Teilsignale (= A + B?), einen zusiitzlichen Term
2AB, der als Interferenzterm bezeichnet wird.

Fiir komplexe Amplituden A, B hingt dieser Term
von der relativen Phase der beiden Wellen ab. Das
Signal ist in diesem Fall proportional zum Absolut-
quadrat der Gesamtwelle, d.h.

|A+B|>=(A+B)(A+B)*
= AA*+AB*+A*B+ BB*
A]* + |B* +2R{AB"}.

Der Interferenzterm kann auch geschrieben werden
als

2R{AB*} =2|AB|cos(ps — @p),

wobei @4 p die Phasen der einzelnen Wellen dar-
stellen. Die Interferenz wird somit maximal wenn
die beiden Phasen identisch sind. Man spricht dann
von konstruktiver Interferenz. Unterscheiden sich
die beiden Phasen um =, so wird der Signalbeitrag
negativ und man spricht von destruktiver Interferenz.
Die Interferenz verschwindet, wenn die beiden Wel-
len um 1/2 auBer Phase sind, so dass cos(@4 — @p) =
0.

Abb. |7.110] zeigt die resultierende Intensitdt fiir
gleich starke Felder, IAl = IBI als Funktion der Pha-
sendifferenz

1=2|A]*(1+4cos(@a — @p)).

Gesamtintensitat fur |A| = |B|

N /

0 /2 m 3mn/2 2n
Phasendifferenz 1 — @2

Abbildung 7.110: Gesamtintensitédt von 2 interferie-
renden Feldern als Funktion ihrer
Phasendifferenz.

lo—¢| 0 [=m/2] m/2 [3m/2] 27 |
s/|AJ? 4 2 0 2 4
Interfer. | konstr. 0 destr. 0 konstr.

Neben der Phasenlage muss auch die Polarisation
der beiden Felder iibereinstimmen: Sind die beiden
Felder orthogonal polarisiert (z.B. x-, und y-), so ent-
steht keine Interferenz.

7.7.3 Interferenz von 2 ebenen Wellen

Eine gute Moglichkeit fiir die Untersuchung sol-
cher Interferenzeffekte bietet die Uberlagerung von
zwei Laserstrahlen. Die beiden Strahlen konnen ni-
herungsweise als ebene Wellen betrachtet werden.

Abb. zeigt die Uberlagerung von zwei ebe-
nen Wellen, die unter einem kleinen Winkel 6 auf
einen Schirm fallen. Die beiden Felder verstirken
sich gegenseitig wenn sie in Phase sind und interfe-
rieren destruktiv wenn sie aufler Phase sind. Dies ge-
schieht jeweils entlang einer Geraden senkrecht zum
Schirm. Den Abstand zwischen zwei solchen Gera-
den findet man, indem man verlangt, dass die Pha-
sendifferenz ein ganzzahliges Vielfaches von 27 be-
triagt. In der Richtung senkrecht zum Schirm ist die-
ser Abstand eine Wellenlidnge. Parallel zum Schirm
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Intensitat

Abbildung 7.111: Gesamtintensitédt von 2 interferie-
renden Feldern, die unter einem
Winkel 0 auf einen Schirm fallen.

entspricht er

A A

=302~ 0

wobei die Niherung fiir kleine Winkel gilt, 8 < 1.
Der Abstand wird also umso grofer, je kleiner der
Winkel wird. Fiir parallele Strahlen verschwindet die
Ortsabhéngigkeit, fiir gegenldufige Strahlen (6 = )
erreicht der Abstand sein Minimum bei der halben
Wellenldnge, dyi, = A /2.

7.7.4 Zweistrahlinterferenz an diilnnen
Schichten

Wenn Licht an einer planparallelen Platte reflektiert
wird, so erhilt man je einen Reflex von der Vorder-
und der Riickseite. Diese beiden reflektierten Wellen
stammen von der gleichen Welle und konnen des-
halb interferieren. Die erste Welle erhilt au3erdem
eine Phasenverschiebung um 7, da sie am optisch
dichteren Medium reflektiert wird.

Wie in Abb. [7.112|dargestellt, betrdgt die Phasendif-
ferenz fiir senkrechten Einfall

d
0¢p = n+4nn—,
Y %0

mit Ay als Vakuumwellenlinge und n und d Bre-
chungsindex und Dicke der Platte oder des diinnen
Films. Somit wird der reflektierte Strahl minimal

Phasensprung

Abbildung 7.112: Reflexionen an einer diinnen

Schicht.

wenn die Weglédngendifferenz ein Vielfaches der op-
tischen Wellenlinge A ist, resp.

2dn=mA, m=0,1,2,...,
d.h. wenn die Dicke der Schicht ein ganzzahliges
Vielfaches der halben Wellenldnge ist. m = 0 ent-

spricht einer Schicht verschwindender Dicke; in die-
sem Fall tritt keine Reflexion auf.

Verstiarkte Reflexion durch konstruktive Interferenz
erhilt man, wenn die Phasendifferenz ein Vielfaches
von 2x ist, d.h. wenn

2dn = (2m+ 1)%

Abbildung 7.113: Interferenzfarben auf einer Sei-
fenlamelle.

Eine solche diinne Schicht kann man z.B. sehr gut
durch eine Seifenhaut darstellen, wie z.B. in Abb.
Da die Interferenzbedingung von der Wel-
lenlinge abhingt wird sie nicht fiir alle Farben des
Spektrums gleichzeitig erfiillt.
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Auflerdem ist die Dicke der Seifenhaut nicht tiberall
gleich: Die Schwerkraft zieht die Losung nach unten
und fiihrt deshalb zu einer Abfolge von Interferenz-
streifen.

7.7.5 Farben diinner Filme

Interferenz kann auch Farbwirkungen erzeugen.
Man findet solche Effekte z.B. bei Seifenlamel-
len, Olfilmen, Aufdampfschichten, Oxidschichten,
Schmetterlingen oder Vogelfedern. Die Bedingung
fiir konstruktive Interferenz héngt von der Wellen-
lange ab. Wir betrachten als Beispiel eine Lamellen-
dicke 350 nm, Brechungsindex n = 1.33. Dann er-
wartet man bei folgenden Wellenldngen positive In-
terferenz:

4dn

)“"’szﬂ‘

Die maximale Wellenldnge ist somit
Ao = 4dn = 1862nm.

Die weiteren Wellenldngen sind

’ m ‘ 2m+1 \ Apm/nm ‘
0 1 1862
1 3 621
2 5 372
3 7 266

Nur die Wellenldnge 621 nm ist sichtbar. Somit ist
diese Lamelle rot. Variiert die Dicke der Schicht, wie
z.b. bei einem Seifenfilm, so dndert sich die Wel-
lenlénge, bei der Reflexion maximal wird. Dadurch
werden Seifenblasen oder diinne Olfilme farbig.

Interferenzfarben kommen auch in der Natur vor,
wobei entweder die Dicke einer Schicht oder die
Grofle von kleinen Partikeln angepasst wird. Abb.

7.114|zeigt einige Beispiele.

7.7.6 Entspiegelung

Man kann die Interferenz an diinnen Schichten be-
nutzen, um Reflexionen zu eliminieren, z.B. auf ei-
nem Brillenglas, einer Kameralinse oder der Optik in

Abbildung 7.114: Interferenzfarben auf einer Sei-
fenblase, einem Olfilm und bei
Tieren.

einem Laser. Wir betrachten als Beispiel eine Glaso-
berfliche mit Brechungsindex ny = 1,5. Monochro-
matisches Licht der Wellenlinge Ay soll senkrecht
auf diese Oberfliche auftreffen. Normalerweise er-
hilt man von der Oberfldache eine Reflexion von etwa
4% des Lichtes.

noil ’)’Ll

—

Abbildung 7.115: Reflexion an einer diinnen Schicht
auf einem Substrat.

na

Bringt man auf diese Oberfliche eine Schicht der
Dicke d mit dem Brechungsindex n; auf, dann er-
geben sich zwei Grenzflichen: eine zwischen Luft
(no = 1) und n; und die andere von n; nach n;. An
beiden Grenzflichen wird eine Teilwelle reflektiert,
wie in Abb. gezeigt, und die beiden iiberlagern
sich. Der Brechungsindex dieser Schicht liegt zwi-
schen dem Brechungsindex von Glas und dem von
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Luft, so dass beide Wellen einen Phasensprung er-
leiden. Monochromatisches Licht der Wellenlinge A
soll senkrecht auf diese Oberfliche auftreffen.

Die Reflektivitit der ersten Grenzfliache ist, fiir ni-
herungsweise senkrechten Einfall,

EM  p—1

E(Z) o n+1 '

Als Vereinfachung kann die Abschwichung der
transmittierten Welle vernachlédssigt werden. Dann
ist die Amplitude der zweiten reflektierten Teilwelle

E(rZ) _nz_nl
E®) _nz—l—n]'

Diese Teilwelle hat dabei eine zusitzliche optische
Weglédnge von 2n;d und dadurch eine Phasenverzo-
gerung um

d
8 (p = 4757’11 % y
wobei Ay die Vakuum-Wellenlidnge darstellt.
Diese Summe der beiden Teilwellen ist

np—np ;
+ %% ) |
ny +ny

np—1
n+1

B 4 g — g0 (

Entspiegelung, also Elimination der reflektierten
Welle tritt dann auf, wenn destruktive Interferenz
zwischen den beiden Teilwellen dazu fiihrt, dass die-
se Summe verschwindet. Damit dies der Fall ist,
miissen zwei Bedingungen erfiillt sein:

1. Der zweite Term muss reell und negativ sein,
d.h. der Phasenfaktor ¢/®? = —1 oder

_ )
op=n1 — d—a.

Man spricht deshalb von einer A /4 Beschich-
tung.

2. Der Betrag der beiden Terme muss gleich sein,

n—1 ny—ng
n+1 nm+n’

Daraus folgt

(I’l] — 1)(112-1-711) =
nmz—i—n%—nz—m =

(m +1) (np —ny)
nlnz—n%—i—ng—n]

NS

n =

Die reflektierte Feldstirke verschwindet somit genau
dann, wenn

Ao

ny =+/ny un o

Fiir Glas (n = 1,5) ist somit eine Entspiegelung mit
einem Material mit Brechungsindex n; ~ 1,22 mog-
lich. Dabei ist die Wirkung nur bei einer Wellenlinge
vollstandig. Wird ein breiterer Wellenlidngenbereich
benotigt, muss man mehrere Schichten aufbringen.

7.7.7 Newton’sche Ringe

Abbildung 7.116: Newton’sche Ringe.

Eine andere Anwendung sind die Newton’schen Rin-
ge: Sie ergeben sich durch Zweistrahlinterferenz
wenn man eine Linse auf einen ebenen Spiegel
legt. Wir betrachten die beiden Strahlen, welche sich
durch Reflexion an der unteren Linsenfldche und der
Oberfliache des Spiegels ergeben. Da die zweite Teil-
welle einen bei der Reflexion einen Phasensprung
macht, 16schen sich die beiden Wellen aus, wenn die
Weglingendifferenz ein ganzzahliges Vielfaches der
Wellenldnge ist, d.h. wenn

2d = mA.

Immer wenn die Dicke des Luftspaltes um A /2 zu-
nimmt, entsteht ein zusétzlicher Interferenzring. Die
Dicke des Luftspaltes nimmt quadratisch mit dem
Abstand r vom Zentrum der sphérischen Linse zu:
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Dies kann man aufldsen nach den Radien r,,, bei de-
nen Ausloschung stattfindet:

rm:\/2Rm;:

Offenbar nimmt der Abstand zwischen aufeinander-
folgenden dunklen Ringen ab. Dies ist in Abb.
deutlich erkennbar. Solche Muster werden z.B. zur
Qualitdtssicherung verwendet, da man sehr genau
die Oberfliche ausmessen kann.

mAR.

Interferenz kommt nur zustande, wenn die interfe-
rierenden Wellen die gleiche Polarisation aufweisen.
So interferieren die beiden Teilstrahlen nicht, welche
beim Durchgang von unpolarisiertem Licht durch
Kalkspat entstehen. Bringt man jedoch einen Polari-
sator in den Strahl, so werden beide Teilstrahlen da-
durch auf eine gemeinsame Polarisationsebene pro-
jiziert und konnen deshalb interferieren. Die resul-
tierenden Interferenzmuster sind farbig, da die Diffe-
renz der optischen Weglidngen von der Wellenldnge
abhingt. Verwendet man monochromatisches Licht
so sind entsprechend mehr Interferenzringe sichtbar.

7.7.8 Interferometer als Messinstrumente

FTIR Spektrometer

Abbildung 7.117: Michelson
Spektrometer
Infrarot.

als
Fern-

Interferometer
fir das

Wahrscheinlich das bekannteste optische Interfero-
meter ist der Typ des Michelson Interferometers,
welches in Abb. schematisch dargestellt ist.
Dieses System wurde von Michelson und Morley
zur Messung der Lichtgeschwindigkeit verwendet.
Dabei wird ein Lichtstrahl an einem Strahlteiler

in zwei Teile aufgeteilt, die zwei unterschiedliche
Wege durchlaufen. Nach Reflexion an einem Spie-
gel werden sie auf dem gleichen Strahlteiler wieder
kombiniert. Haben beide Strahlen den gleichen op-
tischen Weg zuriickgelegt, so beobachtet man kon-
struktive Interferenz; ist der Wegunterschied gerade
gleich der halben Wellenldnge, so beobachtet man
destruktive Interferenz.

Verwendet man einen Strahl, der nicht vollstindig
einer ebenen Welle entspricht, so erscheinen auf dem
Schirm Ringe, die mit den Newton’schen Ringen
vergleichbar sind. Man kann sich aber auf das Zen-
trum des Ringsystems konzentrieren. Bei diesem In-
terferometer kann die Linge des einen Arms durch-
gefahren werden. Fihrt man mit einem Motor einen
der Arme durch, wo sieht man die Ringe iiber den
Schirm wandern.

Michelson Interferometer haben unterschiedlichste
Verwendungen. Bei einem Weglidngenunterschied
von d = 0 ist die Interferenz fiir alle Wellenldngen
positiv, resp. negativ. Bei einer endlichen Weglin-
gendifferenz kann positive Interferenz fiir bestimm-
te Wellenldngen auftreten, negative fiir andere. Man
kann Michelson Interferometer deshalb fiir die Ana-
lyse von Lichtwellenldngen verwenden. So enthalten
die sog. FTIR (=Fourier Transform Infrarot) Spek-
trometer ein Michelson Interferometer, in dessen ei-
nem Arm die zu untersuchende Probe steht. Andere
Anwendungen verwenden diese Interferometer um
Wegldngen oder Brechungsindizes zu bestimmen.

Abbildung 7.118: Gravitationswellen-
Interferometer GEO600.

Abb. [7.118|zeigt einige Bilder vom GEO600 Gravi-
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tationswellen Interferometer, welches eine Armlin-
ge von 600 m aufweist. Die grofiten Gerite dieses
Typs weisen eine Armlidnge von mehreren km auf
und werden fiir den Nachweis von Gravitationswel-
len verwendet. Solche Geréte existieren in mehreren
Léndern und kénnen relative Lingenénderungen von
weniger als10~2° nachweisen. Das bedeutet auf die
Armlinge von etwa 3 km bezogen eine Lingenén-
derung um weniger als 1 Prozent eines Atomkern-
durchmessers. Damit wurden seit September 2015
mehrere Male Gravitationswellen nachgewiesen.

7.7.9 Vielstrahlinterferenz

Abbildung 7.119: Interferenz von n Quellen.

In vielen Fillen interferieren mehr als zwei Wellen.
Als ein einfaches Beispiel dafiir betrachten wir n
gleiche Quellen, die sich auf einer Geraden befinden.
Sie sollen die gleiche Frequenz haben. Wir betrach-
ten das resultierende Intensititsmuster in einer Rich-
tung, die durch den Winkel o gegeniiber der Nor-
malen gegeben sei. Die Weglidngendifferenz in diese
Richtung zwischen den Beitrigen zweier benachbar-

ten Quellen betrigt (siehe Abb.[7.119)
A= Dsinc.

Sind alle Quellen in Phase, so fiihrt diese Weglén-
gendifferenz beim Beobachter zu einer Phasendiffe-
renz zwischen den Beitrdgen benachbarter Quellen
von

Dsino

A
6:275%:27[ 2

Je nach Richtung o koénnen die Phasendifferenzen
zu konstruktiver oder destruktiver Interferenz fiih-
ren.

Wir suchen nun die Bedingung dafiir, dass die ver-
schiedenen Beitriage konstruktiv interferieren, dass
also 6 ein ganzzahliges Vielfaches von 27 ist:

sin o

6 =2nD =27m
A{ )
d.h. wenn
Dsino = mA
oder
sindk=m—, m=0,=%1,£2,
“‘l‘ \' 14“ |f'vy
”;\ \‘ Il 11!
#y‘ [“ “1 4” H
]‘v‘ “ l“ H‘ ‘11 ; i ‘ll
[ | ‘1 f i l‘ \
/ [H“ (I ug"l‘l
FUEY Y (1
*“J]\“ “i.y' FI
— ,// [‘ | \‘ ‘v‘/\) [l \ '.l ‘1' " [| \ &7’:_3
,’_/\&-._au“‘ w‘ Lf A “N‘ A )XJL\J \rv‘én_-.,~&r
-1/2 0 /2

Abbildung 7.120: Interferenzmuster von n Quellen.

In diese Richtungen erhalten wir eine maximale po-
sitive Interferenz, d.h. maximale Intensitit. Falls A <
D existieren mehrere Losungen.

Fiir den Fall von n = 2 Quellen variiert die Inten-
sitdt zwischen den beiden Maxima cosinus-formig.
Fiir n Quellen addieren sich n Cosinus-Funktionen
zur Amplitude

A(sina) = Z agcos(kd).
k=1.,n

Wie man sich leicht iiberzeugen kann, ist das Re-
sultat proportional zu n, wenn die obige Bedingung
fiir konstruktive Interferenz erfiillt ist. Das Resul-
tat stellt eine Fourier-Reihe dar, deren Koeffizienten
ay durch die Amplituden der einzelnen Quellen ge-
geben sind. Wir betrachten hier zunédchst identische
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Amplituden, a; = ag. Zwischen den Interferenzma-
xima nihert sich die Kurve der Nulllinie. Da die In-
terferenz nur in eine Richtung (resp. eine diskrete
Zahl von Richtungen) konstruktiv ist, erreicht man
auf diese Weise eine Richtungsabhingigkeit der ab-
gestrahlten Welle. Je groer die Anzahl der beteilig-
ten Wellen, desto stidrker die Richtungsabhéingigkeit.
In Abb. [7.120/sind die Intensititen als Funktion des
Winkels o fiir eine Zahl von n = 2, 3, 10 Quellen
dargestellt.

Die Richtung, in die konstruktive Interferenz auftritt,
ist durch die obige Bedingung, aber auch durch die
Phase der Quellen bestimmt. Indem man die Pha-
se der einzelnen Quellen verschiebt, kann man die
Richtung des Interferenzmaximums steuern. Wird
zwischen benachbarten Quellen eine Phasendiffe-
renz von ¢ geschaltet, so verschiebt sich die Inter-
ferenzbedingung zu

Dsino — ¢ = mA.
Damit kann man die Abstrahlrichtung verschieben.

f ' l R

n=10

|
AN e e

Ablenkrichtung a

s AL AN D . Dl A0

2 0

2

Abbildung 7.121: Effekt von unterschiedlichen Pha-
sen der Quellen.

Im Beispiel von Abb. wurde die Phasendiffe-
renz ¢ = m/2 gewihlt. Dadurch verschiebt sich die
Lage der Interferenzmaxima um (7/2)/2n = 1/4
des Abstandes der Maxima.

Diese Moglichkeit wird z.B. beim Radar verwen-
det. Man kann Radarstrahlen in bestimmte Richtun-
gen abstrahlen, die durch die relative Phase zwischen
einer grolen Zahl von kleinen Antennen festgelegt
sind. Diese Art von Radaranlagen wird als “Phased
Array Radar” bezeichnet und vor allem im militéri-
schen Bereich verwendet. Abb. zeigt eine typische
Antenne.

« Gesamtantenne
Einzelantennen |
T\ b

LR N
-

/ PN

(] { b 47

/ N 4

Abbildung 7.122: Phased-Array Radar Antenne.

7.7.10 Kohirenz

Wir haben bisher angenommen, dass die verschie-
denen Lichtquellen eine konstante Phasendifferenz
(die gleich null sein kann) besitzen. Dies ist nicht
immer der Fall. Wenn man in einem Zimmer meh-
rere Lichtquellen einschaltet, wird es iiberall heller
— offenbar gibt es keine Interferenz. Der Grund ist
dass Wellen (z.B. Licht) nur dann Interferenzmuster
bilden kdnnen wenn sie eine definierte Phasenbezie-
hung zueinander aufweisen.

Welle A

Welle B Phasenspriinge
Uberlagert

Summe

M\~

Abbildung 7.123: Kohdrenzlinge eines Wellenzu-
ges.

Die Phase einer optischen Lichtquelle kann zeitlich
und ridumlich variieren, wie in Abb. gezeigt.
Man quantifiziert die Phasenkonstanz sowohl be-
ziiglich ihres rdumlichen, wie auch ihres zeitlichen
Verhaltens und bezeichnet diese als Kohédrenz. Eine
zeitlich kohirente Lichtquelle ist per Definitionem
monochromatisch. Diese Bedingung wird fiir keine
Lichtquelle absolut erfiillt.

Abb.[7.124|zeigt zwei etwas unterschiedliche Aspek-
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zeitliche Kohérenz

rdumliche Koharenz

Wellenfronten  |asfasern Wellenfronten

Glasfasern
(gleich lang)

(unterschiedlich lang)

Inter-
ferenz

Abbildung 7.124: Zeitliche vs. riumliche Kohérenz.

te der Kohirenz. Fiir die zeitliche Kohirenz ist die
Korrelationsfunktion ¢,(7) durch das Produkt der
Feldamplituden an einem bestimmten Ort zu unter-
schiedlichen Zeiten gemessen:

¢ (1) =(E(F,t) E*(F,t +1)).

Bei raumlicher Kohédrenz wird die Feldamplitude an
zwei unterschiedlichen Orten verglichen:

¢/(B) = (E(F.1) E*(F+.1)).

Die Kohirenzlinge bezeichnet diejenige Distanz,
iiber welche die Kohérenz c,(p) auf ¢,(0) /e abfillt.
Entsprechend bezeichnet die Kohérenzzeit die Zeit,
bei der ¢,(7) auf 1/e des Maximalwerts abgefallen
ist.

Licht Bandbreite Kohirenz-
lange
“weisses Licht” 200 THz 1.5 um
Spektrallampe 1.5 GHz 20 cm
Halbleiterlaser 10 MHz 30 m
HeNe Laser, stab. 150 kHz 2 km
stab. Laser 1 Hz 300000 km

Tabelle 7.2: Bandbreite und Kohidrenzlinge von ei-
nigen typischen Lichtquellen.

Diese GrofBen variieren iiber einen weiten Bereich.
Tabelle vergleicht sie fiir einige typische Licht-
quellen. Die Bandbreite entspricht der inversen Ko-
hirenzzeit. Eine thermische Lichtquelle hat ein brei-
tes Frequenzspektrum. Die Frequenz und damit die
Phase sind nicht exakt definiert, resp. sie variie-
ren rasch. Thermische Lichtquellen haben deshalb
vollstindig zufillige Phasen. Einzelne Atome besit-
zen ein scharfes Linienspektrum und somit relativ

gut definierte Frequenz. Die Phase ist jedoch immer
noch zufillig, da der Zeitpunkt, zu dem das Atom
sein Photon aussendet, durch den Zufall bestimmt
wird. Im Gegensatz dazu weist ein Laser iiber ei-
ne gewisse Zeit eine konstante Phase auf. Fiir einen
kommerziellen Laser liegt diese Zeit bei etwa ei-
ner us, bei einem hochgeziichteten Forschungsgerit
kann sie bis auf etwa eine Sekunde verldngert wer-
den. Man kann solche Kohidrenzzeiten praktisch nur
messen, indem man die Phasen von zwei unabhiingi-
gen Lasersystemen vergleicht.

Auch mit thermischen Quellen kénnen raumlich ko-
hirente Quellen erzeugt werden, indem man z.B.
einen diinnen Spalt oder ein kleines Loch beleuch-
tet. Sofern die Dimensionen dieser Sekundérquellen
klein sind im Vergleich zur Kohirenzldnge der Pri-
mirquelle, verbessert man damit die Kohirenzeigen-
schaft. Die raumliche Kohérenz bestimmt, z.B., wie
gut das entsprechende Licht fokussiert werden kann.
Man kann zwei (zueinander) rdaumlich und zeitlich
kohérente Lichtstrahlen erzeugen, indem man einen
Lichtstrahl an einem Strahlteiler trennt. Allerdings
darf die Weglidngendifferenz zwischen den beiden
Teilstrahlen nicht mehr als die Kohédrenzlidnge sein.

7.7.11 Anwendungen

Die Messung der raumlichen Kohirenz einer Licht-
quelle erlaubt z.B. die Messung des Durchmessers
von Sternen: eine punktformige Quelle ist immer
rdumlich (aber nicht unbedingt zeitlich) kohirent.
Ein Stern hat aber eine endliche Oberfliche, deren
Teile zueinander nicht kohérent sind.

Indem man die Phase von Lichtstrahlen im Abstand
von einigen Dutzend Metern misst (— Abb. [7.125),
kann man die Ausdehnung eines Sterns bestimmen.
Die Bedingung hierfiir ist praktisch identisch wie
die Auflosungsbedingung von Abbé. Fiir eine Punkt-
quelle bildet die Uberlagerung der beiden Strahlwe-
ge, wie bei einem Doppelspaltexperiment, ein In-
terferenzmuster. Durch den endlichen Durchmesser
tiberlagern sich mehrere solche Interferenzmuster. Je
grofer der Abstand zwischen den beiden Spiegeln,
desto geringer die Periode des Interferenzmusters.
Durch die Uberlagerung von vielen solchen Interfe-
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I

Abbildung 7.125: Messung eines Sterndurchmes-
sers mit Hilfe eines Interferome-
ters.

renzmustern, welche von raumlich getrennten Punk-
ten auf dem Stern erzeugt werden, verschwindet das
Interferenzmuster, wenn der Spiegelabstand und der
Sterndurchmesser grof3 genug sind.

Das grundsitzliche Idee dafiir stammt von Fizeau,
ein genauer Vorschlag von Michelson. Er wurde zu-
erst am Mount Wilson Observatorium in den USA
realisiert und dazu verwendet, den Durchmesser von
Beteigeuze zu bestimmen (1920). Nach aktuellem
Wissensstand betrigt er etwa 662 Sonnendurchmes-
ser. Im Bereich der Radioastronomie verwendet man
dhnliche Interferometer mit Basislinien von bis zu
10000 km.

In der Medizin verwendet man Kohirenztomogra-
phie fiir optische Messungen in streuendem Gewebe,
z.B. in der Haut.

7.8 Beugung

Mit Beugung bezeichnet man die Ausbreitung von
Wellen, welche nicht mehr durch die Strahlenoptik
beschrieben werden kann.

7.8.1 Grenzen der geometrischen Optik

Die geometrische Optik ist eine gute Niherung in
den Fillen, in denen die Wellenlidnge des Lichts
klein ist im Vergleich zu allen relevanten Distanzen.
Wenn diese Niherung nicht erfiillt ist, ergeben sich
zusitzliche Effekte, welche als Beugung bezeichnet
werden. Ein typisches Beispiel ist der Fall, dass eine
weit entfernte Quelle ein Loch in einem Schirm be-
leuchtet. Im Rahmen der geometrischen Optik wiirde
man erwarten, dass sich vom Loch aus ein paralleles
Lichtbiindel, also ein Lichtstrahl ausbreitet. Dies ist
allerdings nicht der Fall, wenn das Loch geniigend
klein ist, wie man z.B. anhand eines Experimentes
mit einer Wellenwanne nachweisen kann.

Abbildung 7.126: Beugung am Spalt.

Das Experiment zeigt, dass diese Nidherung durch-
aus sinnvoll ist, wenn das Loch gro3 genug ist. Wenn
das Loch kleiner ist als die Wellenldnge (— Abb.
), so wirkt es als eine punktférmige Quelle
einer Kugelwelle. Diese erzeugt eine praktisch iso-
trope Intensitétsverteilung. Im Zwischenbereich, wo
die Dimension des Spaltes vergleichbar wird mit der
Wellenlinge, findet man auf einem Schirm rechts des
Spalts nicht nur einen einzelnen Fleck, sondern zu-
sétzlich konzentrische Ringe.

Dieses Phidnomen tritt bei optischen Wellen ge-
nau so auf wie bei Wasserwellen. Allerdings sind
sie aufgrund der geringen Wellenldnge nicht so
leicht beobachtbar. Die ersten Beugungseffekte wur-
den von Francesco Grimaldi 1660 berichtet, aber
kaum beachtet. Klare Belege kamen 1801 von Tho-
mas Young (1773-1829), doch auch diese wurden
nicht allgemein anerkannt. Erst Augustin Fresnel
(1788-1827) konnte der Wellentheorie wirklich zum
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Durchbruch verhelfen.

Scheibe

Schirm

Abbildung 7.127: Poisson’s Vorhersage fiir Beu-
gung an einer Scheibe.

Eine wichtige Rolle bei dieser Kontroverse spiel-
te die Beugung an einer undurchsichtigen runden
Scheibe. Der Mathematiker und Physiker Denis
Poisson wendete die Fresnel’sche Wellentheorie auf
diese Scheibe an und zeigte, dass man dann in der
Mitte des Schattens einen hellen Fleck erwarten wiir-
de — eine Konsequenz, die er als klaren Beweis da-
fiir ansah, dass die Theorie falsch sein miisse. Abb.
[7.127|zeigt schematisch, wie dieser zustande kommt.
Fresnel konnte aber kurze Zeit spiter experimentell
diesen Punkt zeigen, der seither als Poisson’scher
Fleck bekannt ist.

/
\
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Abbildung 7.128: Camera Obscura.

Beugungseffekte miissen u. A. beriicksichtigt wer-
den, wenn es um die optimale Abbildungsschitfe ei-
ner Kamera geht. Bei einer “Camera obscura”, wel-
che keine Linse hat, fiihrt eine Verkleinerung der
Offnung zu einer besseren Schirfe der Abbildung,
wie in Abb. gezeigt. Das gleiche gilt bei Ka-
meras mit Linsen eingeschrinkt, weil bei kleinerer
Blendeno6ffnung die Linsenfehler geringer werden.

Beugungseffekte erzeugen bei kleinen Offnungen je-
doch Abweichungen, welche wieder zu einer Ver-
schlechterung der Abbildung fiihren.

Auch Licht, das ein ausgedehntes Objekt trifft, er-

OPTICA

v 035mm V

Abbildung 7.129: Bild in einer Camera Obscura fiir
unterschiedliche Blenden.

Schatten

Intensitat

Kalnte Abstand

Abbildung 7.130: Beugungsmuster an einer Kante.

zeugt keinen exakt geradlinigen Schatten. Jede Kan-
te erzeugt ein Beugungsmuster wie in Abb.
gezeigt. Allerdings ist dieses nur fiir monochromati-
sches Licht gut sichtbar. Der Abstand zwischen den
Interferenzmaxima héngt von der Wellenldnge ab.
Verwendet man weilles Licht, so verwischen sich
deshalb die verschiedenen Interferenzmuster, resp.
manifestieren sich als regenbogenfarbiger Rand.

7.8.2 Beugung am Spalt

Wir betrachten zunichst das Beugungsmuster das
durch einen eindimensionalen Spalt erzeugt wird.
Wir betrachten dabei nur den Fall eines weit ent-
fernten Schirms. Dabei spricht man von Fraunhofer-
Beugung. Ein typisches Beugungsmuster enthilt ne-
ben dem direkten Bild des Spalts auch helle Streifen
parallel dazu.

Dass neben dem zentralen Maximum weiteres Licht
den Schirm erreicht, kann leicht an einem sehr
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Exp. Beugungsmuster

Abbildung 7.131: Beugung an einem Spalt.

Elementarwelle am Spalt

)

schmalen Spalt eingesehen werden: Ist der Spalt
schmaler als die Lichtwellenldnge, so wirkt er als
Quelle einer zylinderformigen Welle, welche den
rechten Halbraum ausleuchtet, wie in Abb. ge-

zeigt.
I l

Ausléschung auf
Schirm in groBer
Distanz

Abbildung 7.132: Beugung an einem Spalt.

Dass neben den hellen Streifen auch dunkle auftre-
ten, erkennt man, wenn man einen Spalt betrachtet,
der etwas breiter ist als die Lichtwellenlidnge. Fiir
die in Abb. eingezeichnete Richtung ¢ hat die
Welle, die aus dem Zentrum des Spalts stammt, ge-
geniiber der Welle vom unteren Rand einen Weg, der
um asin @ linger ist. Fiir

asin@Q = )
sind die beiden Teilwellen um m auBler Phase. So-
mit wird jeder Beitrag der unteren Hilfte durch einen
Beitrag der oberen Hilfte exakt aufgehoben und auf
dem Schirm erscheint ein dunkler Streifen.

Gemil dem Prinzip von Huygens konnen wir die
Feldamplitude in Richtung ¢ als Integral iiber Ku-
gelwellen ausrechnen, die entlang dem Spalt ange-
ordnet sind. Im Fernfeld ist der Term 1/r fiir alle

Beitrige praktisch gleich grofl und kann vernachlis-
sigt werden. Bei der Phase ¢* = ¢2*/* muss nur
die Differenz der Weglidngen beriicksichtig werden.
Diese betrigt laut Abb. [7.132]x sin ¢, mit x der Po-
sition im Spalt an dem die Elementarwelle ihren Ur-
sprung hat und ¢ der Richtung zum Punkt P. Die
resultierende Phasenverschiebung ist damit

2
Ao = xsin (p%.

Die gesamte Amplitude an einem Punkt in der Rich-
tung ¢ erhalten wir als Integral iiber die Beitrige
iber den gesamten Spalt:

a2

dx ei27rxsin o/A

E(sing) = Ej /2
—a
ei27txsin(p/)L a/2

Eh——— —
0 2rsing/A

—a/2

B sin(rasing/A) _ sinf
= B e T Bg

mit
sin @

A
Wir finden somit, dass das Beugungsmuster als
Funktion von sing gerade als die Fouriertransfor-
mierte des Spaltes gegeben ist. Im Falle eines ein-
fachen Spaltes ist dies die sinc-Funktion.

B = ma

3] +l T 2
o sin 3 I 511/1 B
5 B
_ masing
D)
A DA
\J Vv

A

Abbildung 7.133: Winkelabhéngigkeit von Feldstir-
ke und Intensitit bei Beugung an
einem Spalt.

Beugungsrichtung 3

Die Intensitit ist wie immer proportional zum Qua-
drat des Feldes, also zum Quadrat der sinc-Funktion,

()
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wie in Abb.[7.133|gezeigt. Es bilden sich eine Reihe
von Beugungsmaxima, deren Abstinde durch
op=mn sinp=m—, m=0,1,...
a
gegeben sind. Je schmaler der Spalt, desto groBer
wird damit der Abstand zwischen den Beugungsma-
Xxima.

In einem experimentellen Beispiel ist der Spalt 0.1
mm breit. Verwendet man mit Licht der Wellenlinge
630 nm, findet man die Maxima in einem Abstand
von

A 630- 1077

— = W :6,3mrad.
a

Bei einer Distanz von 5 m entspricht dies etwa 3 cm.

7.8.3 Beugung am Doppelspalt

Man kann beliebige andere Beugungsmuster aus-
rechnen, indem man die Fourier-Transformierte bil-
det. Ein historisch besonders wichtiges Experiment
war die Beugung am Doppelspalt von Young; zu-
sammen mit den Arbeiten von Fresnel verhalf die-
ses Experiment der Wellentheorie des Lichtes zum
Durchbruch. Die beiden Spalte erzeugen jeder ein
Beugungsmuster, gleich wie im Falle des einzelnen
Spaltes. Zwischen den beiden Wellen erhalten wir
jetzt aber zusitzlich Interferenz.

Abbildung 7.134: Beugung am Doppelspalt.

Man kann sich den Vorgang anhand von Wellenfron-
ten darstellen, wie in Abb.[7.134|gezeigt. Bei jedem

Spalt erhalten wir eine zylinderférmige Wellenfront.
Die beiden Teilwellen sind zueinander kohdrent und
interferieren deshalb wenn sie sich iiberlagern.

einlaufende Welle

Abbildung 7.135: Uberlagerung von Wellenfronten
am Doppelspalt.

Der einzelne Spalt erzeugt auf dem Schirm eine sinc-
Funktion, wobei der Abstand zwischen den Maxi-
ma invers proportional zur Breite des Spaltes ist.
Zusitzlich erhidlt man immer dann positive Interfe-
renz, wenn die beiden Teilwellen gleiche Phase be-
sitzen, d.h. wenn sich ihre Weglinge um ein Vielfa-
ches der optischen Wellenlidnge unterscheidet. Abb.
zeigt diese Maxima auf einem Schirm.

gis

Abbildung 7.136: Wegldngendifferenzen
pelspalt.

v

|
|
o]\t

| D sin a

v

am Dop-

Abb. zeigt den Fall, dass der Schirm, auf dem
das Interferenzmuster abgebildet wird, sich in einem
Abstand vom Doppelspalt befindet, der groB3 ist im
Vergleich zum Abstand D der beiden Spalte. Die
Weglingendifferenz zwischen zwei Strahlen, die von
den beiden Spalten ausgehen, betrigt dann Dsin ¢.
Somit ist der Phasenunterschied

2r
A

Die Bedingung fiir das Auftreten eines Maximums
ist, dass dieses ein Vielfaches von 27 ist, d.h.

o =—Dsing.

D
—sing=m m=0,1,2,....

A

323



7 Optik

Minima treten auf, wenn der Phasenunterschied ein
ungeradzahliges Vielfaches von r ist, d.h. bei
. 2m—+1
I sSimmQ@ = 2
Die Intensitit fiir einen beliebigen Winkel ergibt sich
aus dem Quadrat der Summe der beiden Amplituden
als proportional zu

m=0,1,2,....

2T .
l1+cosax = 1-+cos TDsm(p

= 2cos’ (%D sin (p)

(04
= at(8).
COS 5

Irei

0,5

A
sin ¢ D D

Abbildung 7.137: Intensititsmodulation auf Grund
der Weglédngendifferenz.

Durch die Interferenz zwischen den beiden Teil-
strahlen erhélt man somit eine Cosinus-formige Ab-
hingigkeit der Intensitit von sin ¢. (Fiir kleine Win-
kel somit auch vom Beugungswinkel ¢.) In Abb.
ist jedes Maximum mit der entsprechenden
Ordnung m markiert.

Abb. zeigt die gesamte Intensititsabhingig-
keit als Funktion des Beugungswinkels. Man er-
hilt sie, indem man die Teilwellen addiert. Da die
Beugungsmuster der einzelnen Spalten als Funkti-
on des Beugungswinkels ¢ schwicher werden, wird
auch das Interferenzmuster schwécher. Das gesam-
te Interferenz-Beugungsbild erhilt man durch Multi-
plikation der Funktion des Einzelspalts mit der Dop-
pelspaltfunktion fiir d < D:

siné  al? nd .
Ips = ; cos > ‘g':Tsm(p
oa = 2E—Dsin
= 1 0.

I, rel

0,5

D sin ¢ D D

Abbildung 7.138: Intensitdtsmodulation hinter ei-
nem Doppelspalt unter Beriick-
sichtigung der endlichen Spalt-
breite.

Die Einhiillende entspricht einer sinc-Funktion, die
harmonische Abhingigkeit besitzt die Periode A /D.

Dieses Zusammensetzen des gesamten Beugungs-
musters aus dem Beugungsmuster des Einzelspalts
und dem Beugungsmuster von zwei diinnen Spal-
ten kann aus dem Faltungstheorem hergeleitet wer-
den: Die gesamte Spaltfunktion erhélt man als Fal-
tung der einzelnen Spaltfunktion mit der Funktion
fiir zwei schmale Spalten. Das Beugungsbild ist je-
weils die Fouriertransformierte dieser Funktionen.
Gemidl dem Faltungstheorem ist die Fouriertrans-
formierte einer Faltung von 2 Funktionen durch das
Produkt der Fouriertransformierten gegeben.

7.8.4 Komplementire Objekte

Beugung basiert immer auf Anderungen der Trans-
missionsfunktion, also der Amplitude im Objektbe-
reich. Sie bildet die riumlichen Frequenzen ab.

Objekt Strahlteiler
[n~|

\
Laser ] Beugungsbild

Linse

Spiegel Bild

Abbildung 7.139: Erzeugung eines Bildes und eines
Beugungsbildes.

Der Vergleich zwischen einem Objekt und dem ent-
sprechenden Beugungsbild kann experimentell er-
folgen, indem man mit einem Laser das Objekt (z.B.
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einen Spalt) beleuchtet. Das transmittierte Licht er-
zeugt auf der Wand ein Beugungsmuster. Wie i Abb.
gezeigt, kann auBerdem ein Teil des Lich-
tes mit Hilfe eines Strahlteilers abgetrennt werden.
Daraus kann eine Linse ein Bild des Objektes an
der Wand erzeugen. Wie bereits diskutiert entspricht
das Beugungsbild einer sinc-Funktion und damit der
Fourier-Transformierten der Transferfunktion.

Anstelle des Spalts kann man einen Draht betrach-
ten, das komplementire Objekt zum Spalt. Komple-
mentidre Objekte sind solche, deren Transferfunktio-
nen sich zu 1 addieren. Beispiele dazu sind das Beu-
gungsbild eines Drahtes und eines Spaltes. Ist die
Transferfunktion des Spaltes h(x), so ist offenbar
diejenige des Drahtes 1 — h(x). Das Beugungsmu-
ster kann in diesem Fall ebenfalls durch eine sinc-
Funktion beschrieben werden. Dies ist ein allgemei-
nes Muster: Beugung basiert immer auf Anderun-
gen der Transmissionsfunktion, also der Amplitude
im Objektbereich. Sie kann als Fouriertransformati-
on beschrieben werden, bildet also die raumlichen
Frequenzen ab.

Spalt Draht
Transferfunktion
—_— -
. - X X
F ﬂ Feld "AV/\ T AVA"
153 E(q) sin 8 e
Fxl1l——
” & B q
v V V W —
q
Intensitat

Abbildung 7.140: Beugungsbilder von komplemen-
tdren Objekten.

Dies hat eine relativ interessante und einfache Kon-
sequenz: Beugungsbilder von komplementédren Ob-
jekten sind identisch, abgesehen vom geometrischen
Bildpunkt - dieser entspricht der Komponente mit
raumlicher Frequenz 0. Die Fourier-transformierten
sind damit H(g) und

F{1—h(x)} = 6(0) - H(q)

und die Intensititen fiir beide H?(g), abgesehen vom
Bildpunkt 6(0). Abb. [7.140| zeigt als Beispiel das

Paar Draht / Spalt, wo H(q) = sinq/q. Weitere Bei-
spiele dazu in 2 Dimensionen sind die Bilder von
einem Loch vs. die Bilder einer Scheibe. Diese all-
gemeine Aussage wird als Babinet’sches Prinzip be-

zeichnet.

7.8.5 Das optische Gitter

A\

D sina

Abbildung 7.141: Signal von N Quellen.

Man kann die Anzahl von Spalten natiirlich auch
groBer als 2 wihlen. Dies entspricht dem Fall von N
interferierenden Quellen. Abb. zeigt dies fiir
den Fall dass die einzelnen Spalte unendlich diinn
sind, welcher dem bereits behandelten Fall von N
interferierenden punktformigen Quellen entspricht.
Man bezeichnet eine solche periodische Anordnung
als Gitter. Je nach Art der Beleuchtung unterschei-
det man zwischen Transmissionsgitter und Reflexi-
onsgitter.

a=1,5A

—
-T1/2 /2

Abbildung 7.142: Beugungsmuster von N Quellen.
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Anstelle der harmonischen Funktion erhélt man bei
N Spalten ein Beugungsmuster, welches zunehmend
schirfer wird. Abb. zeigt die Muster fiir ver-
schiedene Anzahl von Quellen. Die Details dieser
Rechnung hatten wir im Rahmen der Vielstrahlinter-
ferenz diskutiert. Die Beugung am Gitter ist somit
auch eine Anwendung der Vielstrahlinterferenz.

Bei einem Gitter wird jeder Strich wiederum zu ei-
ner Lichtquelle. Fiir identische Striche und homoge-
ne Beleuchtung werden die Quellen gleich stark. Die
Richtung, in der die Maxima auftreten, ist die glei-
che wie beim Doppelspalt:

Dsing = mA. (7.4)
Im Grenzfall einer unendlichen Zahl von Spalten, re-
sp. Strichen werden die einzelnen Beugungsmaxima
unendlich schmal. Die Einhiillende wird wiederum
durch das Beugungsmuster des einzelnen Spalts be-
stimmt. Fiir schmale Spalten ist das Beugungsmu-
ster sehr breit; somit sind sdmtliche Beugungsmaxi-
ma gleich intensiv. Der (Sinus des) Beugungswin-
kel ist gemal proportional zur Wellenldnge,
d.h. groe Wellenliingen werden stéirker gebeugt. Er
ist indirekt proportional zum Abstand der Gitterlini-
en; somit erzeugen enge Gitter einen stirkeren Beu-
gungseffekt.

Beugungsordnung
3 2 -1 0 1 2 3
Abbildung 7.143: Spektrum  einer
Dampflampe.

Quecksilber-

Fiir m = 0 ist der Beugungswinkel ¢ = O fiir alle
Wellenldngen. In diesem Fall ergibt weiles Licht,
das durch das Gitter gebeugt wird, wiederum wei-
Bes Licht. Fiir m # 0 werden unterschiedliche Wel-
lenldngen unterschiedlich stark gebeugt. Man kann
deshalb Gitter verwenden um unterschiedliche Far-
ben zu trennen. Je kleiner der Abstand zwischen den

Linien des Gitters, desto stirker werden die Wellen-
langen aufgetrennt. Abb.|[/.143|zeigt als Beispiel das
Spektrum einer Quecksilber-Dampflampe.

Abbildung 7.144: Farbeffekte durch Beugung an ei-
ner CD.

Diesen Effekt kann man z.B. auch an einer CD be-
obachten: die kleinen Strukturen, welche die Infor-
mation der CD tragen, beugen Licht und erzeugen
dadurch Farbeffekte, wie in Abb. gezeigt.

Abbildung 7.145: Schematische Darstellung eines
Gitter-Spektrometers.

Man verwendet deshalb Reflexionsgitter in Spektro-
metern, welche dazu dienen, unterschiedliche Far-
ben von Licht aufzutrennen. Abb.[7.145]zeigt ein sol-
ches Spektrometer. Es enthélt zunéchst einen Hohl-
spiegel S, welcher das einfallende Licht kollimiert
und auf das Gitter lenkt. Der zweite Hohlspiegel bil-
det das gebeugte Licht auf den Austrittspalt ab.

7.8.6 Beugung an zweidimensionalen
Objekten

Die bisher behandelten Objekte (Spalt, Doppelspalt
etc.) wurden eindimensional diskutiert. In Wirklich-
keit sind Blenden natiirlich zweidimensionale Ob-
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jekte und es soll deshalb anhand einiger Beispiele
erldutert werden wie deren Beugungsmuster ausse-
hen.

Mit Hilfe des Huygens’schen Prinzips kdnnen wir
die Amplitude des Feldes beim Punkt P berech-
nen als Integral iiber Kugelwellen. Dieses Vorgehen
kann man so motivieren: Wir kennen die Losung
fiir punktférmige Quellen und berechnen die L&-
sung fiir beliebige Quellen, indem wir tiber die Ver-
teilung von punktformigen Quellen integrieren. Wir
vernachléssigen dabei allerdings den Teil der Kugel-
welle, die nach hinten abgestrahlt wird. Das Feld am
Punkt P erhalten wir, indem wir iiber alle moglichen
Lichtwege integrieren, also liber die Fldche der Blen-
de. Die Beleuchtung soll durch eine ebene Welle er-
folgen, die senkrecht auf die Blende einfillt.

Damit kann man z.B. das Beugungsbild einer Blende
berechnen, welche durch eine ebene Welle beleuch-
tet wird. Die Amplitude des Feldes bei einem Punkt
P auf dem Schirm ist das Integral tiber Kugelwellen,
welche von Punkten einer Wellenfront ausgehen. Bei
diesem Vorgehen wird meist der Vektorcharakter des
elektromagnetischen Feldes vernachldssigt und das
Licht als eine skalare Welle beschrieben. Fiir die
Ausbreitung von der Blende zum Schirm geht man
von einer geradlinigen Ausbreitung aus. Dann ist das
Feld A am Punkt P, welcher weit von der Blende ent-
fernt ist,

eikr
A(P) = //BlendeA(x,y)dedy. (7.5)

Dabei bezeichnet e*”

sition in der Blende.

eine Kugelwelle, und x die Po-

Als konkretes Beispiel berechnen wir das Beugungs-
bild einer rechteckigen Blende mit Seiten a und
b. Das Beugungsmuster ist somit wiederum die
Fourier-Transformierte des Spaltes, diesmal in zwei

Dimensionen:
A(Ot,ﬁ) = //eikSinxeikSinhydxdy
sin sin 3
o<
a p

und die Intensitiitsverteilung ist entsprechend das
Quadrat I < |A(a, 8)|%. Hier sind o und 8 Funktio-

nen der Beugungswinkel ¢ und ¢,:
Tasin @ thsin @
o=—" =—.
A P A

Abbildung 7.146: Beugung an einem Kreuzgitter
und an einem kreisférmigen Loch.

Das zweidimensionale Analogon zur Beugung an
einem Gitter ist die Beugung an einem Drahtnetz.
Hier erhidlt man ein zweidimensionales Muster von
Beugungsmaxima, wobei die horizontale Richtung
die Fouriertransformierten des Gitters in horizon-
taler Richtung darstellt, die vertikale Richtung die
Fouriertransformierte in vertikaler Richtung. Man
erhélt hier zwei Bedingungen fiir das Auftreten ei-
nes Reflexes:

mA,
nA,

m=0,1,2,...
n=20,1,2,....

a(sina—sinfy) =
b(sinf —sinfy) =

Ein Gitter mit rechteckigen Maschen ergibt deshalb
unterschiedliche Abstinde der Beugungsmaxima in
horizontaler und vertikaler Richtung.

Eine runde Blende erzeugt ein radial symmetrisches
Beugungsmuster, welches in Abb. [7.146|rechts dar-
gestellt ist. Das Muster wird als Airy Disk bezeich-
net.

Wie in Abb. gezeigt, ist die Intensititsvertei-
lung rotationssymmetrisch und die radiale Abhén-
gigkeit ist durch die Besselfunktion erster Art J;(r)
gegeben:

r
Der Radius der einzelnen Ringe ist indirekt propor-
tional zum Lochdurchmesser D. Der Offnungswin-
kel des ersten dunklen Rings ist

A
~1,2—.
0 25
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Abbildung 7.147: Beugungsmuster einer runden

Scheibe.

7.8.7 Fresnel’sche Zonenplatte

10um150kU 11BE3 7860-01 SE

Abbildung 7.148: Fresnel’sche Zonenplatte als Lin-
se fiir Atome.

Die Fresnel’sche Zonenplatte verwendet Beugung an
kreisformigen Zonen, um ein Bild zu erzeugen. Sie
stellt damit eine Alternative zu Linsen dar, welche u.
A. dann verwendet wird, wenn keine geeigneten Ma-
terialien fiir Linsen verfiigbar sind. Abb. zeigt
als Beispiel einen Ausschnitt aus einer solchen Zo-
nenplatte, welche fiir die Fokussierung von Atom-
strahlen benutzt wurde.

Zur Berechnung der Linsenwirkung kann man das
Licht einer ebenen Welle, welches durch eine kreis-
formige Blende tritt, gedanklich in kreisférmige Rin-
ge unterteilen und fiir jeden Ring die Phase berech-
nen, welche dieses Licht erhilt wenn es als Elemen-
tarwelle beim Punkt P eintrifft.

Diese Phase ist durch den Weg und die optische Wel-
lenlinge bestimmt. Abb. zeigt eine einfache
Zonenplatte. Im zentralen Bereich A1, zwischen den
Radien 0 und r; betrigt sie ca. 2rR/A, d.h. dieser

/th%-

Abbildung 7.149: Fresnel’sche Zonenplatte; links:
Querschnitt; rechts : Aufsicht.

Teil interferiert positiv. Der Bereich A,, zwischen
den Radien r, und r3, durchliuft einen Weg, der et-
wa um A /2 langer ist. Dieses Licht 16scht deshalb
den Beitrag der zentralen Scheibe teilweise aus. Man
kann dies vermeiden, indem man diesen Ring nicht
transparent macht. Der Bereich Az hat eine Phase,
die 2r groBer ist als der zentrale Bereich; er inter-
feriert somit positiv. Durch Abwechseln von trans-
parenten und undurchsichtigen Bereichen mit geeig-
netem Radius erhilt man deshalb ein optisches Ele-
ment, welches die einfallende ebene Welle in einem
Bildpunkt sammelt.

7.8.8 Beugung an dreidimensionalen
Objekten

CI”

Strahl 2 Strahl 1

% & J

[N

Abbildung 7.150: Beugung von Rontgenstrahlen an
einem Kristallgitter.

Eine wichtige Erweiterung dieses Beugungsgeset-
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zes erhilt man in 3 Dimensionen, wenn man kiirze-
re Wellenldngen (A =~ 10~'° m) benutzt: diese wer-
den von den atomaren Strukturen, deren Dimensio-
nen von der gleichen GroéBenordnung sind, gebeugt.
Abb. zeigt das Prinzip fiir die Beugung von
Rontgenstrahlen an einem Kristall.

Fiir die Analyse des Beugungsprozesses fiithrt man
am besten Netzebenen ein; dabei handelt es sich
um eine Hilfskonstruktion: Netzebenen sind geome-
trische Ebenen, welche identische Atome enthalten
und sich periodisch wiederholen. Da jedes Atom
einen geringen Teil des Rontgenlichtes streut, wir-
ken solche Netzebenen als teildurchlidssige Spiegel.
Positive Interferenz erhilt man dann, wenn die Weg-
langendifferenz zwischen zwei Netzebenen gerade
einem Vielfachen der Wellenldnge des Rontgenlich-
tes entspricht. Die Bragg’sche Beugungsbedingung
ist

2dsin 0 = mA.

Hier stellt d den Abstand zwischen Netzebenen dar,
0 den Einfallswinkel (=Reflexionswinkel), und m
die Beugungsordnung.

Abbildung 7.151: Beugungsbild von Kupfer.

Die Messung von Beugungsreflexen an Kristallen ist
eine Standardmethode fiir die Bestimmung der ato-
maren Struktur dieser Kristalle. Abb. zeigt ein
typisches Beugungsmuster fiir einen einfachen Kri-
stall aus Kupfer.

Man kann Rontgenbeugung an Kristallen machen
(ideal), muss dafiir die Kristalle aber drehen, da
sonst meistens keine Reflexion stattfindet. Eine an-
dere Moglichkeit ist es, polychromatische Ront-
genstrahlung zu verwenden. Dies wird als Laue-
Methode bezeichnet. Abb. [7.152] zeigt eine einfache
Apparatur fiir Laue-Aufnahmen.

Abbildung 7.153: Rontgenbeugung an LiF mit
kontinuierlichem und diskretem
Spektrum.

Verwendet man Strahlung mit einem kontinuierli-
chen Spektrum, so wird die Beugungsbedingung fiir
die einzelnen Komponenten separat erfiillt. Man fin-
det als Funktion des Drehwinkels deshalb ein brei-
tes Signal. Abb. zeigt ein Beispiel, welches
sowohl diskrete Anteile (K, Kg) enthilt, wie auch
einen kontinuierlichen Anteil'] Die beiden schmalen
der K- und Kg- Strahlung erlauben einem, die Di-
mensionen der Einheitszelle im Kristall bestimmen.
In diesem Beispiel wurde LiF gemessen.

Hat man keine Kristalle zur Verfiigung so kann man
(statisch) an Pulverproben messen. Daraus kann man
zwar nicht die gesamte Struktur bestimmen, aber
mindestens die Gitterkonstanten und die Symmetrie
des Materials. Abb. zeigt das Prinzip und ein
Beispiel einer Aufnahme.

IDiese entstammt dem sog. Bremsstrahlanteil der Réntgenrsh-
re.
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Abbildung 7.154: Rontgenbeugung an einem Pulver
nach Debye-Scherrer.

7.8.9 Holographie

Eine wichtige Anwendung der Beugung ist auch die
Holographie.

Referenzstrahl

"

Strahiteiler

/'/
/,
/ %

! Punkte
Lascr konstruktiver
Interferenz

abzubildender |

Gegenstand —D5 \\\\\\

Gegenstands-

strahl eSS <

belichtete
\r—ﬂ (I / photogmphische

Abbildung 7.155: Aufnahme eines Hologramm:s.

Wir in Abb. gezeigt wird durch die Inter-
ferenz zweier Wellenfelder in einer photographi-
schen Emulsion ein Beugungsgitter erzeugt, das die
gesamte Information iiber das Wellenfeld enthilt.
Durch Beleuchtung mit einer ebenen Welle erhilt
man ein Beugungsmuster, das beim Betrachter das
urspriingliche Objekt rekonstruiert.

Abb. zeigt, wie man das Hologramm ausliest.

Holographie kann auch zur Informationsspeicherung
oder zur Korrelation (d.h. Vergleich) von Bildern
verwendet werden. Damit ist es auch moglich, Be-
wegungen sehr genau zu messen: Man vergleicht die
Wellenfelder des gleichen Objektes zu unterschied-

entwickelte
photographische
Platte (Hologramm)

Betrachier

Abbildung 7.156: Wiedergabe eines Hologramm:s.

lichen Zeiten.

7.9 Laser

Laser sind in den letzten Jahrzehnten zu einer der
wichtigsten Lichtquellen geworden. Thr Einsatzbe-
reich ist extrem vielseitig und die Art der Quellen
reicht von sub-mikroskopischen Halbleiterlasern bis
zu gigantischen Forschungsgeriten.
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Abbildung 7.157: Laserlicht vs. thermisches Licht.

7.9.1 Grundlagen

Phinomenologisch unterscheidet sich Laserlicht
vom Licht einer Glithlampe zunichst dadurch dass
es nur eine bestimmte Wellenlinge, resp. Farbe ent-
hilt. Dies kann man im Experiment sehr einfach ve-
rifizieren: Anstelle eines weilen Strahls einer Bo-
genlampe schicken wir den roten Strahl eines He-
Ne Lasers durch das Prisma. In diesem Fall wird
das Licht nicht in Spektralfarben aufgetrennt, son-
dern wir sehen nur eine scharfe rote Linie, welche
zeigt, dass das Licht aus diesem Laser eine bestimm-
te Wellenldnge aufweist.

In der Funktionsweise unterscheidet sich ein Laser
von einer Glithlampe (— Abb. dadurch, dass
er als Verstirker arbeitet. Wihrend bei einer Gliih-
lampe die einzelnen Lichtquanten praktisch zufél-
lig ausgestrahlt werden, werden sie bei einem Laser
praktisch nach Maf hergestellt und sind deshalb zu-
einander kohédrent. Wie das genau funktioniert kann
hier nicht diskutiert werden. Wir beschrinken uns
auf eine qualitative Diskussion und auf eine Uber-
sicht iiber Anwendungsméglichkeiten.

monochromatisches

Licht koharentes Licht

weisses Licht

VWY AR

AMAMAMAN
%WW
NN RRRRRA

Abbildung 7.158: Weisses, monochromatisches und
thermisches Licht.

Abb. zeigt vereinfacht den Unterschied zwi-

schen weilem, monochromatischem und kohi-
rentem Licht. Bei gewohnlichem Licht besitzen
die einzelnen Komponenten unterschiedliche Farbe,
d.h. unterschiedliche Wellenldngen. Bei einfarbigem
Licht konnen verschiedene Teile immer noch unter-
schiedliche Phase aufweisen, d.h. die entsprechen-
den Wellen haben zu unterschiedlichen Zeiten ihren
Nulldurchgang. Das besondere am Laserlicht ist dass
alle Komponenten nicht nur die gleiche Farbe (d.h.
Wellenlinge) aufweisen, sie sind zudem in Phase,
d.h. ihr Nulldurchgang findet zur gleichen Zeit statt.

7.9.2 Funktionsprinzip

Der Name Laser enthilt eigentlich schon die
wichtigste Zusammenfassung des Funktionsprin-
zips: LASER = light amplification by stimulated
emission of radiation = Lichtverstarkung durch sti-
mulierte Emission von Strahlung. Mit stimulierter
Emission ist folgendes gemeint: ist ein Atom oder
Molekiil nicht im energetisch niedrigsten Zustand,
sondern in einem sogenannten angeregten Zustand,
so kann es beim Durchgang eines Photons dazu an-
geregt werden, in den Grundzustand iiberzugehen
und dabei ein zweites Photon zu emittieren. Die-
ses zweite Photon, welches durch das erste stimu-
liert wurde, besitzt die gleichen Eigenschaften wie
das erste, insbesondere die gleiche Frequenz.

Dabei kommt es zur Verstirkung des Lichtes, wobei
auch bereits eine Richtung bevorzugt wird. Um ei-
ne geniigende Verstarkung zu erhalten und die Rich-
tung der stimulierten Emission festzulegen benotigt
man zusitzlich zum aktiven Medium einen Resona-
tor. Dieser sorgt dafiir dass die Lichtwelle mehrfach
durch das Verstirkungsmedium lduft.

Abbildung 7.159: Aufbau eines Rubinlasers.
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Es gibt sehr viele Moglichkeiten, Laser zu bauen,
aber einige wesentliche Elemente sind allen Model-
len gemeinsam. So wird ein so genanntes aktives
Medium benétigt, welches das Licht verstirkt. Es
wird von einer Energiepumpe in den angeregten Zu-
stand versetzt, aus dem es dann unter Emission von
Photonen in den Grundzustand iibergehen und das
einfallende Licht verstirken kann. AuBlerdem wer-
den mindestens zwei Spiegel benétigt, welche den
groBiten Teil des emittierten Lichtes wieder in das
Medium zuriickschicken, damit es weiter verstarkt
werden kann. Abb. zeigt als Beispiel den Auf-
bau eines Rubinlasers.
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Abbildung 7.160: Ubergiinge im Rubinlaser.

stimulierte
Emission

Grundzustand

Die Hauptschwierigkeit beim Bau eines Lasers be-
steht darin, die Populationsinversion zu erzeugen.
Dafiir bendtigt man mindestens drei quantenmecha-
nische Zustinde. Das &lteste bekannte Lasermedium
ist der Rubin, dessen Niveauschema in Abb. [7.160)]
dargestellt ist. In diesem Material werden mit Hilfe
von Blitzlampen Elektronen angeregt, welche durch
strahlungslose Uberginge in einen metastabilen Zu-
stand fallen. Von hier aus findet die eigentliche La-
seremission mit einer Wellenldnge von 694 nm statt,
sobald eine geniigend grof3e Inversion erreicht ist.

7.9.3 Lasertypen

Es existieren sehr unterschiedliche Typen von La-
sern.

Mit Abstand der wichtigste Lasertyp ist heute der
Halbleiterlaser (— Abb. [7.161). Hier verwendet

Abbildung 7.161: Beispiele fiir Halbleiterlaser.

man einen Ubergang zwischen zwei unterschied-
lichen Halbleitermaterialien. Halbleiterlaser haben
zweil Vorteile, welche schwer zu iiberbieten sind:
Zum einen konnen sie billig in groBen Stiickzahlen
hergestellt werden, zum andern werden sie mit elek-
trischem Strom gepumpt, und haben dabei die hoch-
ste Energieausbeute aller bekannten Lichtquellen.

Ein Halbleiterlaser wie er in einem Laserzeiger ver-
wendet wird ist weniger als 1 mm groB3. Es gibt noch
weitere Typen von Lasern, welche noch kleiner sind.
Sie bestehen aus einer Abfolge von Schichten, wel-
che nur wenige Atomlagen dick sind. Insgesamt sind
sie weniger als ein Mikrometer grof.

NOVA

Lawrence Livermore
National Laboratory

Abbildung 7.162: Hochleistungslaser fiir die Fusi-
onsforschung.

Am anderen Ende der Skala findet man spezielle La-
ser wie z.B. den NOVA Laser am Lawrence Liver-
more National Laboratory in den USA. Dieser Laser
ist tiber 100 m lang und 10 m hoch. Abb. gibt
eine Idee seiner GroBe; das obere Bild ist ein Blick in
die Halle des Lasers, das untere gibt einen Uberblick
iiber das Gebdude in dem er steht. Dieser Laser soll
u.a. fiir die Fusionsforschung verwendet werden.
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7.9.4 Anwendungen

Medizin
Optische
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Abbildung 7.163: Beispiele fiir die Anwendung von
Lasern.

Laser sind heute aus vielen Bereichen des tdglichen
Lebens nicht mehr wegzudenken. Abb. zeigt
eine kleine Auswahl von Anwendungen. Am direk-
testen verwenden wir sie in elektronischen Geréten
wie z.B. CD und DVD Spielern oder Laserdruckern.
Der grofite Teil der Telekommunikation (inkl. Inter-
net) lduft heute iiber Glasfasern, wobei die Lichtpul-
se von Lasern erzeugt werden. In der Medizin wer-
den Laser fiir Diagnostik und Operationen eingesetzt
und in der Industrie fiir die Materialbearbeitung. In
der Unterhaltungsindustrie werden Laser fiir Licht-
effekte verwendet.

Auch in der Forschung werden Laser in sehr vielen
Bereichen verwendet. So macht die aullerordentlich
hohe Prézision, mit der die Frequenz eines Lasers
bestimmt werden kann macht, ihn auch zu einem
moglichen Messgerit fiir Zeitmessungen. Man kann
heute die Frequenz eines Lasers auf etwa 108 ge-
nau messen. Die Unsicherheit liegt somit bei etwa
einer Schwingung des Lasers pro Stunde. Wenn wir
den Laser als Uhr verwenden wiirde er die Zeit nach
31 Milliarden Jahren um eine Sekunde falsch anzei-
gen. Man kann dies auch iiber die sog. Kohédrenzldn-
ge messen. Bei einer Wellenldnge von etwa 1 um ist
die Kohirenzldnge bei rund einer Milliarde km liegt;
dies entspricht etwa der Strecke zum Jupiter.

7.9.5 Pulslaser

Nicht alle Laser sind auf méglichst hohe Frequenz-
auflosung optimiert; andere werden auf moglichst
hohe Zeitauflésung optimiert, d.h. sie erzeugen sehr
kurze Pulse.

Autokorrelationsfunktion

Zeit [fs]

Abbildung 7.164: Gemessene Pulsform eines fs-
Pulses.

“Kurz” heiflit in diesem Zusammenhang einige
Femtosekunden, wie im Beispiel von Abb.
Dariiber hinaus sind auch Pulse mit einer Lén-
ge von weniger als einer fs verfiigbar, sogenannte
“Attosekunden-Pulse”.

1 Sekunde

Laserpuls yProzessor Blitzlicht ‘ 1 Stunde 1 Jahr Dinosaurier

fs

T T T T T T T T T T T
1015 1012 10 106 103 1 103 106 100 1012 1015

Abbildung 7.165: Vergleich von Zeitskalen.

Abb. [1.165] soll die Dauer einer Femtosekunde
(=10~ s) illustrieren. Die Mitte dieser logarith-
mischen Achse entspricht einer Sekunde, der linke
Rand einer fs. Dann entspricht der rechte Rand einer
Dauer von etwa 60 Mio Jahre, was etwa dem Zeit-
punkt des Aussterbens der Dinosaurier entspricht.

Kurze Pulse verwendet man generell dort, wo man
sich fiir schnelle Prozesse interessiert (— Abb.
[7.166). Dazu gehort z.B. in der Physik die Dynamik
von Ladungstrigern in Halbleitern. Bessere Kennt-
nis dieser Prozesse kommt anschlieBend u. A. der
Produktion von Halbleiter-Lasern zu Gute. In der
Chemie verwendet man kurze Pulse vor allem fiir die
Untersuchung molekularer Bewegungsprozesse und
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Physik: Chemie:
schnelle Prozesse in Halbleitern chemische Reaktionen

2

Abbildung 7.166: Beispiele fiir Messungen mit kur-
zen Pulsen.

Energie

Reaktionen. Laserpulse ergeben hier in einem gewis-
sen Sinne die Moglichkeit, atomare Bewegungen in
Molekiilen zu filmen oder sogar zu kontrollieren.
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Abbildung 7.167: Funktionsprinzip eines freie-
Elektronen Lasers.

Ein ganz besonderer Lasertyp ist der freie Elektro-
nenlaser (FEL, Abb. [7.167). Hier ist das Medium
ein Elektronenstrahl, welcher in einem Teilchenbe-
schleuniger erzeugt und durch Ablenkmagneten in
eine wellenformige Bahn gebracht wird. Der Vorteil
davon ist dass die Wellenldnge des Lasers iiber einen
sehr breiten Bereich einstellbar wird. Die Emissions-
wellenldnge wird einerseits vom Abstand der Ab-
lenkmagneten bestimmt, andererseits von der Ge-
schwindigkeit der Elektronen. Beide Parameter kon-
nen iiber einen recht breiten Bereich variiert werden.
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