
7 Optik

7.1 Grundlagen

7.1.1 Historisches
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Abbildung 7.1: Licht als Teil des elektromagneti-
schen Spektrums.

Heute betrachten wir Licht als einen Bereich des
elektromagnetischen Spektrums. Abb. 7.1 zeigt
einen Überblick über einen Teil des elektromagne-
tischen Spektrums, in dem das sichtbare Licht einen
kleinen Bereich abdeckt. Die theoretischen Grundla-
gen sind durch Maxwell’s Gleichungen (siehe Kapi-
tel 5), gut abgedeckt, wobei man für einige Aspekte
die Quantenmechanik berücksichtigen muss (siehe
Kapitel 7). Dabei stellt Licht nur einen kleinen Be-
reich des elektromagnetischen Spektrums dar, aller-
dings einen besonders wichtigen Teil, u. A. deshalb
weil wir es direkt mit unserem wichtigsten Sinnesor-
gan, dem Auge, wahrnehmen können.

Die Natur des Lichtes hat Philosophen und Natur-
wissenschaftler seit vielen Jahrhunderten beschäftigt
und zu engagierten Debatten geführt. Insbesondere
wurde heftig darüber debattiert, ob Licht aus Teil-
chen oder Wellen bestehe.

Abb. 7.2 zeigt zwei Physiker, welche im 17. Jahr-
hundert erste wissenschaftliche Arbeiten zur Natur
des Lichtes publiziert haben. 1672 stellte Newton ei-
ne Theorie auf, welche Wellen- und Teilchenaspekte

 Christiaan Huygens 
1678 Theorie von Licht 
  als Ätherwellen

  

Isaac Newton 
 1672 Licht als Teilchenwellen

Abbildung 7.2: Zwei Pioniere der naturwissen-
schaftlichen Theorie des Lichtes.

enthielt; die Wellenaspekte traten aber bald in den
Hintergrund und seine Theorie wurde im Wesent-
lichen als Teilchentheorie betrachtet. Dazu gehör-
te vor allem die geradlinige Ausbreitung; Brechung
und Reflexion wurden relativ leicht erklärbar. 1678
stellte Huygens eine Wellentheorie auf, welche In-
terferenz und Beugung erklären konnte. Newton’s
Ansehen in der Naturwissenschaft war aber so do-
minant, dass Huygens kaum beachtet wurde. Expe-
rimentelle Hinweise auf solche Effekte hatten zu-
vor die Experimente von Francesco Grimaldi (1618-
1663) ergeben.

Abb. 7.3 fasst weitere Stufen zusammen: 1808 un-
tersuchte Malus und 1815 Fresnel die Polarisations-
eigenschaften von Licht. Während wir das als einen
Beweis der Wellenaspekte ansehen war das damals
für die Wellentheorie eher eine Schwierigkeit, da da-
mals nur Longitudinalwellen bekannt waren, welche
Polarisationseigenschaften nicht erklären können.

1865 stellte Maxwell die Theorie des Elektromagne-
tismus. Diese stellt heute die Grundlage für die klas-
sische Theorie des Lichtes dar. Es dauerte allerdings
noch einige Jahre bis die Experimente von Hertz
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Jean Augustin Fresnel 

 1815 Polarisationseigentschaften, 
   Reflexion

James Clerk Maxwell 
 1865 Theorie elektromagnetischer 
  Wellen

Abbildung 7.3: Fresnel und Maxwell.

zeigten, dass Licht ein Beispiel einer elektromagne-
tischen Welle ist. Damit wurde die Optik ein Teil-
gebiet der Elektrodynamik. 1905 zeigte jedoch Ein-
stein, dass man bestimmte Phänomene nur verstehen
kann, wenn man dem Licht eine “Doppelnatur” zu-
schreibt: bei der Ausbreitung verhält es sich wie eine
Welle, bei der Wechselwirkung mit Materie wie eine
Teilchenstrom. Dies wird im Detail im Rahmen der
Quanten-Elektrodynamik behandelt.

Auch im Bereich des sichtbaren Lichts findet man
unterschiedliche Wellenlängen. Diese entsprechen
unterschiedlichen Farben des Lichts. Sichtbares
Licht enthält unterschiedliche Wellenlängen, wobei
wir den kurzwelligen Bereich blau sehen, den lang-
welligen Bereich rot.

Zerlegung von weißem Licht 
in Spektralfarben Wellenlänge groß

Wellenlänge klein

Abbildung 7.4: Spektralzerlegung mit einem Pris-
ma.

Abb. 7.4 zeigt das Prinzip eines Experiment welches
dies nachweist, indem es einen Strahl weißen Lichts
auf ein Prisma schickt. Rotes und blaues Licht wird
darin unterschiedlich gebrochen und kann deshalb

dahinter getrennt beobachtet werden. Es gibt eine
Reihe von Lehrbüchern zu diesem Thema.

7.1.2 Beschreibung

Die physikalische Optik befasst sich mit der Erzeu-
gung, Ausbreitung und dem Nachweis von Licht.
In einem weiteren Sinn gehören dazu auch ande-
re Wellen. Prinzipiell können alle Phänomene, die
elektromagnetische Strahlung involvieren durch die
Quantenelektrodynamik beschrieben werden. Diese
ist aber oft zu kompliziert und wird im Rahmen
der Grundvorlesungen nicht unterrichtet. Stattdessen
kann man unterschiedliche Beschreibungen verwen-
den, die für einen großen Bereich der interessanten
physikalischen Phänomene genügen.

    Klassische Optik 
   Welleneigenschaften 

geometrische Optik 
 Gegenstände » 
  Wellenlänge

    Quantenoptik 
   Teilcheneigenschaften 

  Wellenoptik 
Gegenstände ≈ 
 Wellenlänge

 Physikalische Optik 
Quantenelektrodynamik

Abbildung 7.5: Teildisziplinen der Optik.

Die meisten Phänomene kann man auch mit der klas-
sischen Elektrodynamik beschreiben, welche Licht
als eine elektromagnetische Welle betrachtet. Inner-
halb der klassischen Optik unterscheidet man, wie in
Abb. 7.5 gezeigt, zwischen den Teilgebieten

• geometrische Optik oder Strahlenoptik: Licht
kann mit als Strahlen beschrieben werden wenn
die interessanten Dimensionen groß sind im
Vergleich zur Wellenlänge des Lichts. Diesen
Bereich versucht man immer zu treffen wenn
man Abbildungen macht, also z.B. in der Foto-
grafie. Sie Bedingung führt aber z.B. dazu, dass
man auch bei sehr viel Licht die Blende nicht
beliebig klein machen kann.

• ist diese Bedingung nicht mehr erfüllt, so muss
man den Wellencharakter des Lichtes berück-
sichtigen; es treten zusätzliche Effekte wie Beu-
gung und Interferenz auf. Dieser allgemeinere
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Bereich wird durch die Maxwell Gleichungen
abgedeckt.

• Wenn die Wechselwirkung mit materiellen Sy-
stemen involviert ist, so müssen diese meist
quantenmechanisch beschrieben werden. Aller-
dings kann man die Beschreibung des elektro-
magnetischen Feldes selbst in den meisten Fäl-
len weiterhin klassisch halten. Man nennt dies
die semiklassische oder halbklassische Nähe-
rung.

• Mit Quantenoptik wird derjenige Teil der Optik
bezeichnet, welcher spezifisch quantenmecha-
nische Aspekte behandelt.

7.1.3 Erzeugung von Licht

Elektromagnetische Strahlen werden allgemein
durch beschleunigte Ladungen und oszillierende
Dipole erzeugt. Für eine effiziente Abstrahlung
müssen die Dipole dabei kleiner sein als die Wel-
lenlänge der Strahlung, bei sichtbarem Licht liegen
diese Dimensionen im Nanometer-Bereich. Die
eigentlichen Quellen sind meistens Schwingungen
von Elektronen in Atomen. Diese Schwingungen
können auf unterschiedliche Weise angeregt werden;
am Einfachsten geschieht dies durch Erwärmen.
Solche Quellen werden als thermische Quellen
bezeichnet. Das beste Beispiel dafür ist die Son-
ne, aber natürlich auch eine Glühlampe. Solche
Quellen verhalten sich in guter Näherung wie ein
Schwarzkörperstrahler, d.h. eine Quelle, welche alle
Wellenlängen vollständig absorbiert und nach einer
bestimmten Gesetzmäßigkeit wieder emittiert. Ein
wichtiger Aspekt solcher Quellen ist, dass die spek-
trale Verteilung der Strahlung nicht vom Material
der Quelle abhängt. Jeder schwarze Strahler hat ein
Spektrum, welches nur von der Temperatur abhängt.
Details dazu werden im Kapitel 8 behandelt.

Das Spektrum eines schwarzen Strahlers wird durch
das Planck’sche Strahlungsgesetz beschrieben:

dP
dl

=
2hc5

l 5
1

e
hc

kT l �1
.

Es besagt, dass das Maximum der emittierten Strah-
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Abbildung 7.6: Verteilung der Intensität über
die Wellenlängen bei verschie-
denen Temperaturen gemäß dem
Planck’schen Strahlungsgesetz.

lung sich mit höheren Temperaturen zu immer kür-
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Abbildung 7.7: Spektrum der Sonne.

Der wichtigste Strahler ist bei weitem die Sonne,
die eine Oberflächentemperatur von etwa 6000 Grad
aufweist. Das Emissionsmaximum liegt somit bei ca.
500 nm und der größte Teil der emittierten Leistung
liegt im Bereich des sichtbaren Lichtes. Allerdings
gelang nicht alle Strahlung bis auf die Erdoberfläche
- ein Teil wird durch die Atmosphäre absorbiert, ins-
besondere im UV-Bereich.

Eine weitere Möglichkeit zur Erzeugung von Licht
benutzt sogenannte elektronische Übergänge in ato-
maren Spektren: Hier gehen Elektronen von ener-
getisch höher liegenden Zuständen in tiefere über
und senden dabei Licht aus. Dies werden Sie in der
Quantenmechanik diskutieren. Die wohl Bekannte-
ste solcher Quellen sind Natriumdampflampen, wel-
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Wellenlänge / nm

Abbildung 7.8: Linienspektrum einer Hg-Xe Lam-
pe.

che vor allem für die Straßenbeleuchtung eingesetzt
werden.

Eine weitere Art der Erzeugung von Licht ist der
Laser. Dies ist eine Quelle die besonders nützliche
Eigenschaften hat. Laserlicht kann auf verschiedene
Arten erzeugt werden und hat je nach Erzeugungs-
art unterschiedliche Eigenschaften. Die Eigenschaf-
ten von Laserlicht werden in Kapitel 7.9 diskutiert.

7.1.4 Nachweis von Licht

ähnlich: Sehzellen im Auge 

 Photographische Filme: 
  AgI → Ag

Chemisch: 

 Chlorophyll

Abbildung 7.9: Umwandlung von Licht in chemi-
schen Systemen.

Chemische Sensoren: Hier regt das Licht ein Elek-
tron in einem Molekül in einen höher angeregten Zu-
stand an. Abb. 7.9 zeigt einige Beispiele. Das ange-
regte Elektron kann anschließend für chemische Re-
aktionen verwendet werden. Dieses Prinzip wird ins-
besondere in der Natur benutzt, z.B. durch die Sin-
neszellen im menschlichen Auge, aber auch durch
das Chlorophyll in Pflanzen etc. Die frühesten De-

tektoren für Licht (neben dem menschlichen Auge)
waren fotografische Filme, also dünne Schichten von
lichtempfindlichem Material, in dem beim Auftref-
fen von Licht eine chemische Umwandlung statt-
findet. Diese haben eine recht hohe Empfindlichkeit
und können in einer Fläche Licht detektieren.

hν

a) direkt
I oder V

b) indirekt ΔT : thermoelektrisch 
Δp : akustisch

Abbildung 7.10: Umwandlung von Licht in ein elek-
trisches Signal.

Chemische Detektoren werden heute kaum mehr
verwendet, weil die Information erst nach dem Ent-
wicklungsprozess zur Verfügung steht. Heute ist bei
praktisch allen verwendeten Detektoren das resul-
tierende Signal eine elektrische Spannung um, wie
in Abb. 7.10 gezeigt. Damit steht das resultieren-
de Signal unmittelbar für die Messung zur Ver-
fügung. Während einige Detektoren direkt Photo-
nen in einen Strom oder eine Spannung umwan-
deln benutzen andere Detektoren verschiedene Zwi-
schenstufen. So kann das einfallende Licht zunächst
in Wärme umgewandelt werden und anschließend
wird die Temperaturerhöhung in ein elektrisches Si-
gnal umgewandelt. Solche Detektoren kommen u.
A. dann zur Anwendung wenn der Detektor über
einen möglichst großen Wellenlängenbereich eine
konstante Empfindlichkeit aufweisen soll. Ein weite-
rer Anwendungsbereich ist der Nachweis von Strah-
lung im infraroten Teil des Spektrums, wo Detekto-
ren, die direkt ein elektrisches Signal erzeugen, eine
zu geringe Empfindlichkeit aufweisen. Dieses Prin-
zip benutzt man z.B. wenn man die Sonne auf der
Haut spürt. Physikalische Detektoren, die auf diesem
Prinzip basieren sind

• Bolometer: Widerstandsänderung in einem Me-
tall

• Thermistoren: Widerstandsänderung in einem
Halbleiter

• Pyroelektrische Detektoren: Die Temperaturer-
höhung ändert eine Oberflächenladung
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• Eine weitere Möglichkeit nutzt den Photoeffekt
(! Abb. 7.11): Licht, das auf eine Metallober-
fläche auftrifft kann aus dieser Elektronen her-
auslösen. Diese Elektronen werden anschlie-
ßend vervielfacht und nachgewiesen. Dieser-
Effekt wird im Rahmen der Quantenmechanik
noch genauer diskutiert.

e

Photokathode

-hν

Abbildung 7.11: Photoeffekt.

Wie in Abb. 7.11 gezeigt, lösen dabei Photonen aus
der Oberfläche eines Metalls Elektronen heraus. Ei-
ne solche Metalloberfläche wirkt also als Quelle für
Elektronen und wird als Photokathode bezeichnet.

Anode
Photo-
kathode

Licht

Abbildung 7.12: Photozelle.

Wie in Abb. 7.12 gezeigt, kann man die emittier-
ten Elektronen auf einer Anode einfangen und den
so erzeugten Photostrom direkt messen. Dafür muss
sich das Elektrodenpaar im Vakuum befinden. Die-
se Anordnung wird als Photozelle bezeichnet. Wenn
die Lichtintensität relativ gering ist kann es aber vor-
teilhaft sein, das Signal noch zu verstärken. Die ge-
schieht meistens über einen Sekundärelektronenver-
vielfacher:

Wie in Abb. 7.13 gezeigt, werden dabei die freiwer-
denden Elektronen in einem Potential beschleunigt
und auf die Oberfläche einer sekundären Elektrode
(Dynode) fokussiert. Elektronen, die mit einigen 100
eV auftreffen lösen aus der Metalloberfläche wieder-
um mehrere Elektronen heraus, welche anschließend

e- e-
e- e-hν

Abbildung 7.13: Sekundärelektronenvervielfacher.

wiederum beschleunigt werden können.

Abbildung 7.14: Vervielfachungskaskade in einem
Photomultiplier.

Eine Reihe solcher Vervielfacherstufen kann, wie in
Abb. 7.14 gezeigt, pro Photon z.B. 107 Elektronen
erzeugen, welche anschließend sehr viel einfacher
detektiert werden können. Diese Art von Detektoren
werden als Photomultiplier bezeichnet.

7.1.5 Halbleiterdetektoren

Eine andere Gruppe von Detektoren wandelt Photo-
nen in einen elektrischen Strom um, indem in einem
Halbleiter durch Einfangen der Photonen Elektron-
Loch Paare erzeugt werden.

+

-Leitungs
-band

Valenz-
band

- +

h�

Abbildung 7.15: Paarerzeugung in einem Halbleiter
als Basis der Photoleitung.

Wie in Abb. 7.15 gezeigt, machen die so erzeug-
ten Ladungen das Material photoleitend. Es ist so-
mit möglich, das Licht durch die Änderung des Wi-
derstandes zu detektieren. Voraussetzung für die Ab-
sorption des Photons ist, dass dessen Energie minde-
stens dem Energieunterschied zwischen den beiden
Bändern entspricht. Somit sind Halbleiterdetektoren
blind für Licht mit einer Wellenlänge, die größer ist
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als die charakteristische Wellenlänge des verwende-
ten Materials. Meist liegt diese im sichtbaren Be-
reich des Spektrums oder im nahen Infraroten.

p-dotiert

n-dotiert

-

+

Abbildung 7.16: Paarerzeugung am pn-Übergang ei-
ner Photodiode.

Wenn die in der Nähe eines p-n Übergangs ge-
schieht, wie in Abb. 7.16, so werden die Ladungen
getrennt, so dass die Rekombination vermieden wird
und ein elektrischer Strom fließt. Nach diesem Prin-
zip arbeiten Photodioden und Solarzellen. Photodi-
oden sind heute der weitaus häufigste Detektortyp.
Sie benötigen im Gegensatz zu einem Photomulti-
plier keine Hochspannung und kein Vakuum, son-
dern sind reine Festkörperdetektoren. Damit sind sie
sehr viel zuverlässiger und werden außerdem nicht
durch Magnetfelder beeinflusst. Sie sind sehr kom-
pakt und billig. Die Quantenausbeute kann mehr als
90% betragen, sofern die Oberfläche mit einer Anti-
reflexbeschichtung versehen wird: typische Halblei-
ter haben einen hohen Brechungsindex (z.B. GaAs
n = 3.6), so dass bei unbehandelten Oberflächen
auch bei senkrechtem Einfall 25% des Lichtes an der
Oberfläche reflektiert wird.

Die Empfindlichkeit als Funktion der Wellenlänge
hängt von der Bandlücke des verwendeten Materials
ab. Abb. 7.17 zeigt die spektrale Empfindlichkeit für
zwei unterschiedliche Materialien. Silizium hat ei-
ne etwas größere Bandlücke als GaAs und absorbiert
deshalb besser im sichtbaren Bereich des Spektrums,
während GaAs im nahen IR seine höchste Effizienz
erreicht.

Es ist auch bei Photodioden möglich, die erzeug-
ten Photoelektronen zu vervielfachen, indem man an
geeignete Photodioden eine hohe Spannung anlegt.
Die Beschleunigung erfolgt in diesem Fall inner-
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Abbildung 7.17: Spektrale Empfindlichkeit von 2
unterschiedlichen Photodioden.

halb des Halbleitermaterials. In diesen Avalanche-
Photodioden können die beschleunigten Elektronen
ihrerseits wieder Ladungsträger erzeugen, so dass
ein Photon einen hohen Spannungspuls erzeugen
kann, ähnlich wie bei Photomultipliern.

SiO2

Si Substrat

Verarmungszone

Metall-Elektrode

Abbildung 7.18: Aufbau einer CCD-Zelle.

Einer der populärsten Detektoren ist heute der CCD
(=Charge Coupled Device). CCD’s bestehen aus ein-
zelnen lichtempfindlichen Elementen, die in einem
zweidimensionalen Raster angeordnet sind. Die ein-
zelnen Elemente (! Abb. 7.18) sind enthalten ei-
ne Silizium-Verarmungszone, in der das einfallende
Licht Ladungen erzeugt. Durch eine geeignete Vor-
spannung und Dotierung wird eine Ansammlung der
Ladungen unterhalb der Oberfläche erreicht.
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7.2 Lichtausbreitung

7.2.1 Lichtgeschwindigkeit

Die Ausbreitungsgeschwindigkeit von Licht ist für
viele Anwendungen zu groß um messbar zu sein. So
versuchte Galilei 1667 die Lichtgeschwindigkeit zu
messen, indem zwei Personen sich gegenseitig mit
Hilfe von Laternen Lichtsignale zusandten. Es ge-
lang ihm jedoch nur, eine untere Grenze von ca. 3000
m/s zu setzen. Die erste Messung, welche einen end-
lichen Wert ergab, stammt vom Astronomen Ole Ro-
emer (1644-1710).

17 Min. 
Verzögerung

Messung der Zeiten

Abbildung 7.19: Roemer’s Interpretation seiner Ex-
perimente.

Er beobachtete die Zeiten, zu denen der Mond Io von
Jupiter verdunkelt wird. Die Umlaufbahn von Io um
Jupiter hat eine Periode von 42,5 Stunden. Währen
man erwarten würde, dass die Abstände zwischen
den Verdunkelungen sehr regelmäßig sein sollten,
findet man experimentell jahreszeitliche Schwan-
kungen. Abb. 7.19 zeigt, wie Roemer dieses Resul-
tat interpretierte. Befinden sich Erde und Jupiter auf
entgegen gesetzten Seiten der Sonne, so sind die Zei-
ten um etwa 17 Minuten verspätet gegenüber den-
jenigen, die man aufgrund von Messungen erwar-
ten würde, bei denen Erde und Jupiter auf der glei-
chen Seite der Sonne sind. Diese 17 Minuten ent-
sprechen der Zeit, welche das Licht benötigt, um
die Strecke von 300 Mio. km zurückzulegen, welche
dem Durchmesser der Erdbahn entsprechen:

cDt = 3 ·108 ·17 ·60m = 3 ·1011 m = 3 ·108 km.

Beobachter

Linsen

Linsen

Lichtquelle

halbdurchlässiger 
Spiegel

rotierendes Zahnrad

ebener 
Spiegel

Distanz: 
8,63 km

Abbildung 7.20: Prinzip von Fizeau’s Messung.

Die erste erfolgreiche terrestrische Messung der
Lichtgeschwindigkeit erfolgte 1849 durch Armand
Fizeau. Er verwendete, wie in Abb. 7.20 gezeigt,
ein schnell drehendes Zahnrad, welches einen Licht-
strahl unterbrach, der von einem Spiegel reflektiert
wurde. Wenn die Zeit, welche der Lichtstrahl benö-
tigt, bis er wieder beim Rad ist, gerade der Zeit ent-
spricht, in der das Rad sich um einen halben Abstand
zwischen zwei Zähnen dreht, erreicht der Strahl den
Beobachter nicht mehr.

7.2.2 Messung der Lichtgeschwindigkeit
nach Fizeau-Michelson

Eine moderne Variante davon, welche mit geringe-
ren Armlängen auskommt, verwendet anstelle eines
Zahnrades einen schnell drehenden Spiegel. Dreht
sich der Drehspiegel nicht oder nur langsam, so wird
der Laserstrahl in sich selber reflektiert. Bei genü-
gend schneller Drehung genügt die Zeit, welche das
Licht vom Drehspiegel bis zum Umlenkspiegel und
wieder zurück benötigt, um einen etwas anderen
Winkel zu erreichen. Der reflektierte Strahl wird des-
halb leicht abgelenkt.

Abbildung 7.21 zeigt den Aufbau. Die Zeit, wel-
che der Laserstrahl vom Drehspiegel zum Endspie-
gel und wieder zurück benötigt beträgt

Dt =
2L
c

.

Während dieser Zeit bewegt sich der Drehspiegel um
den Winkel

a = wDt =
4pnL

c
,
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Laser
Strahlteiler

 Skala 

Kamera

Dreh- 
spiegel

 Photomultiplier 

zum Frequenzzähler

d
a

L/2 = 7m

L/2 = 7m

Abbildung 7.21: Messung mit Drehspiegel.

wobei n die Rotationsgeschwindigkeit des Drehspie-
gels darstellt. Der Laserstrahl wird durch die Refle-
xion um den doppelten Drehwinkel des Spiegels ab-
gelenkt und auf der Skala um die Distanz

d = 2`a =
8pnL`

c

ausgelenkt, wobei ` die Distanz Drehspiegel – Ska-
la darstellt. Wir können diesen Ausdruck nach der
Lichtgeschwindigkeit auflösen:

c =
8pnL`

d
= 2,111 ·106 n

d
.

Der numerische Wert ist für die experimentellen Pa-
rameter L = 14 m und ` = 6 m bestimmt, wobei die
Frequenz n in Hertz und die Distanz d in mm einzu-
setzen sind. Ein experimenteller Datensatz ist

d[mm] n [s�1] n
2 [s�1] c[108 ms�1]

1 282 141,0 2,9767
2 563 281,5 2,9714
3 834 417,0 2,9345
4 1129 564,5 2,9794

Dies entspricht einem experimentellen Mittelwert
von cexp = 296550 km/s, während der genaue Wert
bei cexakt = 299792.458 km/s liegt.

1864 bemerkte James Clerk Maxwell, dass seine
Theorie der elektromagnetischen Wellen eine Ge-
schwindigkeit eine Phasengeschwindigkeit vorher-

sagte:

c =
1

pµ0e0

=
1q

4p 10�7 Vs
Am ·8,85418810�12 As

Vm

= 299792
km
s

.

Er verglich diesen Wert mit dem damals bekannten
experimentellen Wert und bemerkte

“This velocity is so nearly that of light, that it
seems we have strong reason to conclude that light
itself (including radiant heat, and other radiation if
any) is an electromagnetic disturbance in the form
of waves propagated through the electromagnetic
field according to electromagnetic laws.”

Später wurde die Lichtgeschwindigkeit ohne beweg-
liche Teile gemessen indem man gleichzeitig die
Frequenz und die Wellenlänge maß. Heute kann man
die Lichtgeschwindigkeit nicht mehr messen – sie ist
definiert als die Geschwindigkeit c = 299’792’458
m/s.

7.2.3 Brechungsindex

In Materie ist die Lichtgeschwindigkeit geringer.
Wie bereits im Kapitel 4 diskutiert, ist die allge-
meine Beziehung zwischen Frequenz und Wellen-
länge in einem Medium gegeben durch die Bezie-
hung w = kc/n, wobei c die Lichtgeschwindigkeit
im Vakuum bezeichnet. Die Ausbreitungsgeschwin-
digkeit im Medium ist deshalb reduziert, vM = c/n,
mit n = Brechungsindex.

Typische Werte für die Brechzahl liegen je nach Ma-
terial zwischen 1 und 3.

Die Brechzahl ist abhängig von der Wellenlänge. In
vielen Materialien steigt die Brechzahl an, wenn die
Wellenlänge kürzer wird, d.h. mit zunehmender Fre-
quenz, wie in Abb. 7.22 gezeigt.

Gemäß der elektromagnetischen Wellengleichung
ist der Brechungsindex gegeben als n =

perµr.
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Abbildung 7.22: Variation des Brechungsindexes
unterschiedlicher Glassorten mit
der Wellenlänge.

In den meisten Materialien liegt µr nahe bei eins,
so dass der Ausdruck vereinfacht werden kann zu
n =

p
er. Die Dielektrizitätskonstante und der Bre-

chungsindex sind stark von der Frequenz (resp. Wel-
lenlänge) der Strahlung abhängig.
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Abbildung 7.23: Typische Frequenzabhängigkeit
der Polarisierbarkeit.

So beträgt die Dielektrizitätskonstante von Wasser
bei statischen Feldern (w=0) 81, während der Bre-
chungsindex für sichtbares Licht in der Gegend von
1.33 liegt. Der Grund liegt darin, dass die unter-
schiedlichen Beiträge unterschiedlich schnell sind.
Abb. 7.23 zeigt schematisch, in welchen Frequenz-
bereichen die wichtigsten Beiträge liegen. Im opti-
schen Bereich können nur noch die elektronischen
Beiträge der äußeren Anregung folgen, während di-

polare oder ionische Anregungen gemittelt erschei-
nen. Im kurzwelligen Bereich des sichtbaren Spek-
trums nähert man sich den elektronischen Anregun-
gen. Deshalb nimmt in diesem Bereich der Bre-
chungsindex allgemein zu. Dies wird als “normale
Dispersion” bezeichnet (siehe auch Abb. 7.22).

7.2.4 Absorption und Dispersion

Distanz z
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Abbildung 7.24: Absorption schwächt die Intensität.

Wenn Licht sich in Materie ausbreitet, nimmt die In-
tensität ab, wie in Abb. 7.24 gezeigt. Dies ist auf Ab-
sorption zurückzuführen. In den meisten Fällen ist
die Verringerung der Intensität des Lichtes bei der
Durchquerung einer dünnen Schicht direkt propor-
tional zur Intensität des einfallenden Lichtes,

dI
dz

= �aI,

wobei die Proportionalitätskonstante a offenbar die
Dimension einer inversen Länge aufweist. Die Lö-
sung ist

I(z) = I0e�az,

d.h. die Intensität fällt exponentiell ab. Die Propor-
tionalitätskonstante a ist somit das Inverse der Di-
stanz, über welche die Intensität auf 1/e abfällt. Die-
se Distanz wird als Absorptionslänge bezeichnet.

Absorption und Dispersion sind eng miteinander
verknüpft; auf einer mikroskopischen Ebene stel-
len beide nur unterschiedliche Aspekte des gleichen
Phänomens dar, nämlich der resonanten Anregung
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von elektromagnetischen Schwingungen im Materi-
al, welche bei wohl definierten Wellenlängen, resp.
Frequenzen auftreten.
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vo

r d
er

 
Pr

ob
e

na
ch

 d
er

 
Pr

ob
e

Abbildung 7.25: Effekt von wellenlängenabhängi-
ger Absorption.

Die Absorption ist wiederum stark von der Wellen-
länge abhängig. In Abb. 7.25 ist unten das Spektrum
einer Bogenlampe dargestellt, im oberen Teil wur-
de der kurzwellige Teil des Spektrums (blau, vio-
lett) durch Fluorescein absorbiert. Da Blau absor-
biert wird erscheint eine Fluorescein-Lösung gelb.

Im Beispiel von Kaliumpermanganat wird blau, grün
und gelb absorbiert, während Rot und Violett trans-
mittiert werden. Die Stärke und Wellenlänge der Ab-
sorption werden durch die mikroskopische Struktur
des Materials bestimmt. Meist sind es Moleküle oder
Atome, welche bestimmen, welche Wellenlänge ab-
sorbiert wird.

Licht kann auch gestreut werden, wenn das Me-
dium inhomogen ist, wie in Abb. 7.26 gezeigt. In
diesem Fall ist die Wellenlängenabhängigkeit nicht
(nur) durch die molekulare Struktur des Materials
bestimmt, sondern (auch) durch die Größe der Par-
tikel, welche die Streuung verursachen. Über einen
gewissen Bereich ist die Streuung proportional zu
l�4, d.h. kürzere Wellenlängen werden wesentlich
stärker gestreut als lange. Diese Abhängigkeit führt
auch dazu, dass der Himmel blau ist: Der kurzwel-
lige Anteil des Sonnenlichtes wird durch Partikel in
der Erdatmosphäre stärker gestreut und erscheint als
diffuses Hintergrundlicht auf der Erde.

Der längerwellige rote Teil des Spektrums wird we-
niger stark gestreut. Der Effekt ist am stärksten,
wenn die Sonne einen langen Weg durch die Atmo-
sphäre zurückgelegt hat, z.B. am Abend. Deshalb er-
scheint die Sonne bei Sonnenuntergang rot, wie im

Vakuum

Laserstrahl

kein Licht

Teilchen

Streulicht ~ 1/λ4

blauer Himmel

Materie

Laserstrahl

Abbildung 7.26: Lichtausbreitung im Vakuum
(oben) und in einem inhomogenen
Medium (unten).

Abbildung 7.27: Blauer Himmel und rote Sonne am
Horizont.

Beispiel von Abb. 7.27.

7.2.5 Geometrische Optik

Die geometrische Optik (auch: Strahlenoptik) be-
schreibt die Lichtausbreitung mit Hilfe von Licht-
strahlen, die sich in einem homogenen Medium ge-
radlinig ausbreiten. Dieses Bild entspricht primär
dem Korpuskularbild. Man kann die geometrische
Optik aber sehr leicht aus der Wellenoptik ableiten:
die "Strahlen" beschreiben die Ausbreitung der Wel-
len und stehen an jeder Stelle senkrecht auf den Wel-
lenfronten.
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Quelle

λ ≪ d

Abbildung 7.28: Paralleles Lichtbündel aus einer
punktförmigen Quelle.

Bei einer punktförmigen Lichtquelle werden die
Strahlen kreisförmig abgestrahlt. Wie in Abb. 7.28
gezeigt, kann man sie "sichtbar machen" indem mit
Hilfe einer Blende ein Teil der Kugelwelle ausge-
blendet wird. Das resultierende Licht wird als Strah-
lenbündel bezeichnet. Ist die Dimension der Öffnung
sehr klein im Vergleich zum Abstand von der Licht-
quelle, so erhält man ein näherungsweise paralle-
les Lichtbündel. Eine andere Möglichkeit, ein par-
alleles Lichtbündel zu erhalten, erhält man indem
man einen Laser verwendet, d.h. kohärentes Licht.
Die geometrische Optik ist dann anwendbar wenn
die Dimensionen der Gegenstände groß sind im Ver-
gleich zur Wellenlänge des Lichtes. Da die Wellen-
länge von sichtbaren Licht deutlich unter 1 µm liegt
ist das für makroskopische Aspekte fast immer der
Fall.

Die geometrische Optik ist eine vereinfachte Theo-
rie für die Berechnung der Ausbreitung von Licht.
Sie gilt solange die Dimensionen der Apparate, wel-
che das Licht beschränken, groß sind gegenüber der
Wellenlänge. Dann kann das Licht in guter Nähe-
rung als eben Welle beschrieben werden, welche sich
geradlinig ausbreitet. Zu den hervorstechenden Ei-
genschaften von Licht gehört, dass die Lichtstrah-
len sich nicht gegenseitig beeinflussen. Außerdem ist
der Lichtweg immer umkehrbar. Dass Wellen durch
“Strahlen” approximiert werden können, gilt nicht
nur in der Optik. Auch Wasserwellen mit kurzen
Wellenlängen bewegen sich etwa linear durch eine
Öffnung, die groß ist im Vergleich mit der Wellen-
länge.

Werden die Dimensionen zu klein, so treten Beu-

Quelle

λ > d

Abbildung 7.29: Beugung am Spalt.

gungseffekte auf, wie in Abb. 7.29. Diese werden in
Kapitel 7.8 diskutiert.

7.2.6 Das Prinzip von Fermat

Abbildung 7.30: Pierre de Fermat (1601 - 1665).

Bei der Berechnung des Weges, welchen das Licht
beim passieren eines optischen Instrumentes nimmt,
leistet das Prinzip von Fermat (! Abb. 7.30) nütz-
liche Dienste. Es ist ein Extremalprinzip, welches
praktisch identisch ist mit dem Hamilton’schen Prin-
zip. Die Grundidee stammt von Hero von Alexan-
dria. Es lautete: Das Licht nimmt den kürzesten Weg
zwischen zwei Punkten. Fermat hat es erweitert auf
Systeme mit mehr als einem Brechungsindex. In der
Formulierung von Fermat lautet es: “Licht nimmt
den Weg, für den es die kürzeste Zeit braucht”. Ma-
thematisch ausgedrückt lautet dies

Z P1

P0

nds =
Z P1

P0

c
vp

ds = c
Z P1

P0

dt = Minimum,
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wobei P0,P1 Anfangs- und Endpunkt des Weges be-
zeichnen. ds und dt bezeichnen infinitesimale Weg,
resp. Zeiten auf dem zurückgelegten Weg, n den Bre-
chungsindex, vp die Phasengeschwindigkeit und das
Minimum bezieht sich auf all möglichen Wege. Heu-
te schreibt man diese Bedingung meist als Extremal-
prinzip. In der Form einer Variation lautet es

d
Z P1

P0

nds = 0.

Das einfachste Beispiel ist natürlich die Ausbreitung
im freien Raum in einem homogenen Medium. Hier
ist offenbar der direkte Weg der kürzeste, d.h. das
Licht läuft geradlinig von P0 nach P1, in Überein-
stimmung mit den Prinzipien der geometrischen Op-
tik.

.
.

α1

α2

Spiegel

a b

A

Kürzester Weg 
A - Spiegel - B

x c-x

c

Abbildung 7.31: Herleitung des Reflexionsgesetzes
aus dem Prinzip von Fermat.

Abb. 7.31 zeigt ein weiteres Beispiel: Ein Lichtstrahl
wird auf einem Spiegel reflektiert. Wir suchen also
den kürzesten Weg, auf dem das Licht vom Punkt
A über den Spiegel zu Punkt B gelangt. Aus dem
obigen Resultat entnehmen wir, dass es geradlinig
von A zur Oberfläche und von dort geradlinig zu B
läuft. Zu bestimmen sind die Winkel a1 und a2. Die
Länge des gesamten Weges beträgt

D =
p

a2 + x2 +
q

b2 +(c� x)2.

Dieser Weg wird minimal wenn er sich bei einer infi-
nitesimalen Änderung von x nicht ändert, d.h. wenn

dD
dx

=
xp

a2 + x2
� c� xp

b2 +(c� x)2
= 0.

Die beiden Brüche beschreiben jeweils den Si-
nus des Winkels. Damit müssen die beiden Win-
kel gleich sein, a1 = a2. Dies ist das Reflexionsge-
setz: Der Einfallswinkel und der Ausfallswinkel sind
gleich.

Wir können dieses Problem auf das Problem im frei-
en Raum zurückführen, indem wir (geometrisch) den
Ausgangspunkt und den Weg bis zum Spiegel in
diesem reflektieren. Damit ist wiederum die direkte
Verbindung die kürzeste, und man sieht leicht, dass
in diesem Fall der Reflexionswinkel gleich dem Ein-
fallswinkel wird, d.h. wir haben mit Hilfe des Prin-
zips von Fermat sehr einfach das Reflexionsgesetz
hergeleitet.

α2

.
α1a

A

B

x c-x

c

b

n2

n1

Abbildung 7.32: Herleitung des Brechungsgesetzes
aus dem Prinzip von Fermat.

Wirklich wichtig wird das Prinzip erst wenn das Me-
dium nicht mehr homogen ist, z.B. wenn wir zwei
Halbräume mit unterschiedlichem Brechungsindex
betrachten, wie in Abb. 7.32. Hier erreicht das Licht
offenbar das Ziel am schnellsten wenn der Weg im
langsameren Medium gering gehalten wird. Der op-
tische Weg beträgt jetzt

D = n1
p

a2 + x2 +n2

q
b2 +(c� x)2.

Der Extremalwert wird erreicht für

dD
dx

=
n1xp

a2 + x2
� n2(c� x)p

b2 +(c� x)2
= 0,

d.h. für

n1 sina1 = n2 sina2.
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Diese Beziehung wird als Snellius’sches Brechungs-
gesetz bezeichnet.

7.2.7 Gekrümmte Lichtstrahlen

Licht

Die Luft ist in Bodennähe wärmer

Abbildung 7.33: Weg der Lichtstrahlen bei einer Fa-
ta Morgana.

Wenn der Brechungsindex variiert, so kann der opti-
sche Weg auch krumm sein. Abb. 7.33 zeigt als Bei-
spiel den Fall, dass die Luft über dem Boden beson-
ders heiß, so ist dort der Brechungsindex kleiner und
der optische Weg entlang dem Boden kann kürzer
sein als der direkte Weg.

Abbildung 7.34: Spiegelung auf einer heissen Stra-
ße.

Dies kann dazu führen, dass Gegenstände scheinbar
am Boden gespiegelt werden, wie in Abb. 7.34.

Ein Sonnenstrahl erreicht uns am schnellsten wenn
er einen möglichst langen Teil des Weges in den dün-
nen oberen Luftschichten der Atmosphäre zurück-
legt und erst gegen Ende "nach unten abbiegt". Dies
führt z.B. auch dazu, dass wir die Sonne noch sehen

auch wenn sie sich rein geometrisch schon unter dem
Horizont befindet.

Abbildung 7.35: Gekrümmter Lichtstrahl in einer
geschichteten Flüssigkeit.

Dies kann man bei entsprechend großer Variation
des Brechungsindexes auch im Labormaßstab repro-
duzieren. Abb. 7.35 zeigt als Beispiel eine Wanne
mit einer Flüssigkeit, in der der Brechungsindex von
unten nach oben zunimmt. Der Lichtstrahl wählt den
Weg so, dass die Zeit vom Anfangs- zum Endpunkt
minimiert wird.

Abbildung 7.36: Ausbreitung von Erdbebenwellen.

Das gleiche Prinzip gilt auch für andere Arten von
Wellen, wie z.B. seismische Wellen. Wie in Abb.
7.36 gezeigt, verlaufen diese im Erdinneren nicht ge-
radlinig, sondern werden durch den Dichtegradien-
ten gebogen.

7.2.8 Huygens’sches Prinzip

Ein weiteres nützliches Prinzip für die Diskussion
der Lichtausbreitung (und Wellenausbreitung allge-
mein) ist das Prinzip von Huygens (! Abb. 7.37). Es
besagt, dass man die Lichtausbreitung beschreiben
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Abbildung 7.37: Christiaan Huygens (1629-1695).

kann, indem man annimmt, dass von jedem Punkt
der Welle eine kugelförmige Lichtwelle ausgeht.

Das Huygens’sche Prinzip kann man experimentell
sichtbar machen: Trifft eine Welle auf ein punktför-
miges Hindernis, so wird dieses zu einer Quelle einer
Sekundärwelle, welche sich kreisförmig um dieses
Hindernis ausbreitet. Die Ausbreitung des gesamten
Feldes ergibt sich durch Summierung über alle ele-
mentaren Sekundärwellen. Diese Beobachtung über-
trägt man von materiellen auf mathematische Punkte
und betrachtet jeden Punkt im Raum als die Quelle
einer Elementarwelle, wobei Amplitude, Phase und
Frequenz durch die einfallende Welle bestimmt wer-
den.

k
Wellenfläche

Elementarwellen
neue Wellenfront

Abbildung 7.38: Bildung von Wellenfronten nach
Huygens.

Wie dies funktioniert, kann man schon am Beispiel
einer ebenen Welle zeigen. Wir in Abb. 7.38 skiz-
ziert, kann jeder Punkt auf einer Wellenfront als
Quelle einer sekundären Elementarwelle verstanden

werden.

Abbildung 7.39: Ausbreitung von Wellen von einem
Punkt.

Dadurch kann man die Ausbreitung unterschied-
licher Wellen erklären, sowohl ebene wie Kugel-
wellen, elektromagnetische wie Wasserwellen. Abb.
7.39 zeigt das Prinzip (links) und ein entsprechendes
Experiment (rechts).

k

Abbildung 7.40: Reflexionsgesetz nach Huygens.

Auf ähnliche Weise erlaubt einem das Prinzip von
Huygens z.B. das Reflexionsgesetz im Wellenbild zu
erklären: trifft eine ebene Welle auf eine Oberfläche,
so werden dort zuerst Elementarwellen ausgestrahlt,
wo die Wellenfront zuerst eintrifft. Wie in Abb. 7.40
gezeigt, ergibt die Überlagerung der einzelnen Ele-
mentarwellen wieder eine ebene Welle, die im glei-
chen Winkel gegenüber der Normalen auf der Ober-
fläche läuft wie die einfallende Welle.
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7.3 Reflexion und Brechung

7.3.1 Reflexion: Grundlagen

Wie bereits bei den Seilwellen diskutiert, werden
Wellen reflektiert, wenn die Bedingungen für die
Ausbreitung sich ändern. Das einfachste Beispiel
war das Seil, welches am Ende befestigt war. In die-
sem Fall wurde die gesamte Welle reflektiert, es bil-
dete sich eine stehende Welle aus.

A

B

C

ω, k1 ω, k2

Abbildung 7.41: Reflexion an einer ebenen Grenz-
fläche.

Allgemein treten Reflexionen auf wenn sich Wellen
über Grenzflächen ausbreiten, unabhängig von der
Art der Welle. Grenzflächen sind hierbei Punkte, an
denen sich der Wellenwiderstand ändert, wie in Abb.
7.41 gezeigt. In der Optik ist der Wellenwiderstand
durch den Brechungsindex bestimmt, bei einer Seil-
welle z.B. durch die Dicke oder die Spannung des
Seils. Hier treten also z.B. Reflexionen auf, wenn die
Dicke des Seils sich ändert.

Für den einfachen Fall einer eindimensionalen Wel-
le kann man über die Erhaltung der Energie, welche
mit der Welle transportiert wird, allgemein folgende
Ausdrücke für die Reflexion und Transmission her-
leiten:

B =
k1 � k2

k1 + k2
A C =

2k1

k1 + k2
A

wobei A die Amplitude der einlaufenden Welle, B
diejenige der reflektierten, und C die Amplitude der
transmittierten Welle bezeichnen. Die Frequenz w
ist für alle drei Wellen identisch.

In drei (oder auch in zwei Dimensionen) tritt ebenso
Reflexion auf. Wir beschränken uns hier ausschließ-
lich auf ebene Wellen, so dass die Ausbreitung eben-
falls eindimensional erfolgt. Wenn wir eine ebene
Welle betrachten, die senkrecht auf eine Grenzfläche

einfällt, so ist das Problem exakt analog zum eindi-
mensionalen Fall. Trifft die Welle unter einem Win-
kel auf die Grenzfläche auf, so ist nicht mehr von
vornherein klar, unter welchem Winkel sie reflektiert
wird.

Zunächst unterscheidet man diffuse und spekuläre
Reflexion. Diffuse Reflexion ist eigentlich das allge-
meinere Phänomen. Es ist z.B. dafür verantwortlich,
dass Sie die Schrift an der Tafel lesen können.

spekuläre Reflexion

Diffuse Reflexion

Abbildung 7.42: Spekuläre und diffuse Reflexion an
einer Grenzfläche.

Wir können es zum mindesten qualitativ darauf zu-
rückführen, dass Licht auf eine raue Oberfläche auf-
trifft und in unterschiedliche Richtungen reflektiert
wird. Offensichtlich ist dieses Phänomen sehr stark
von der Beschaffenheit der Oberfläche abhängig,
wie in Abb. 7.42 gezeigt. Da wir hier an einfach zu
behandelnden Modellsystemen interessiert sind be-
handeln wir ausschließlich den Fall der spekulären
Reflexion, also der Reflexion an einer idealen glatten
Oberfläche, die entlang der gesamten Fläche identi-
sche Eigenschaften aufweist.

Eine einfache Messung bestätigt unser Erfahrungs-
wissen dass ein Lichtstrahl so reflektiert wird dass
die rücklaufende Welle einen Winkel zur Flächen-
normalen aufweist, der gerade gleich dem Winkel
der einlaufenden Welle ist, d.h.

• der einfallende und der reflektierende Strahl lie-
gen in einer Ebene mit dem Einfallslot.

• der Einfallswinkel und der Reflexionswinkel
sind gleich, qr = qe. Diese Beziehung hatten
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wir bereits aus dem Prinzip von Fermat herge-
leitet.

7.3.2 Herleitung des Reflexionsgesetzes

Dieses Gesetz wurde erstmals von Euklid 300 v Chr.
formuliert. Es ist im Rahmen der Korpuskulartheorie
leicht herleitbar aus den Gesetzen über den elasti-
schen Stoß: die Komponente des Impulses parallel
zur Grenzfläche wird durch die Reflexion nicht be-
einflusst, die senkrechte Komponente wird elastisch
invertiert.

Dieses Argument lässt sich direkt in das Wellenbild
überführen. Dafür beschreiben wir das Licht nicht
mehr als Strahl, sondern als Welle. Der einfallende
Strahl sei durch den Wellenvektor

k(i) = {kx,0,kz}

definiert, wobei kx die Komponente des k-Vektors
parallel und kz die Komponente senkrecht zur Grenz-
fläche bezeichnet. Damit sind die Abstände der
Knotenflächen auf der Grenzfläche festgelegt. Die
Grenzfläche legt immer gewisse Randbedingungen
für die Wellen fest; so müssen an einer metallischen
Grenzfläche die parallelen Komponenten des elek-
trischen Feldes verschwinden. Diese Randbedingun-
gen können nur dann eingehalten werden wenn die
einfallende und die reflektierte Welle an der Grenz-
fläche das gleiche zeitliche Verhalten (d.h. die glei-
che Frequenz w) und das gleiche räumliche Verhal-
ten (d.h. gleiche Wellenvektoren parallel zur Grenz-
fläche) aufweisen.

Da der Brechungsindex und somit die Phasenge-
schwindigkeit für die einfallende und die reflek-
tierte Welle gleich sind, muss somit auch die z-
Komponente des Wellenvektors den gleichen Betrag
haben - sie unterscheiden sich nur im Vorzeichen.
Somit ist der Wellenvektor der reflektierten Welle
gegeben durch

k(r) = {kx,0,�kz}

Die impliziert die obige Beziehung für die Winkel.

Diese Herleitung ist mit der Diskussion der Im-
pulserhaltung eng verbunden, da der Wellenvek-
tor proportional zum Impuls des Lichtes ist: die

z-Komponente wird invertiert, die beiden parallel
Komponenten bleiben erhalten.

7.3.3 Brechung des Lichts an einer ebenen
Grenzfläche

n1

n2>n1

Abbildung 7.43: Änderung der Wellenlänge bei Me-
dien mit unterschiedlichem Bre-
chungsindex.

Wir betrachten zunächst eine Welle, die senkrecht
auf die Grenzfläche einfällt, wie im Beispiel von
Abb. 7.43. Die Brechungsindizes seien n1 und n2.
Da wir bereits gesehen hatten, dass ein Teil der Wel-
le reflektiert wird muss die transmittierte Welle eine
geringere Intensität besitzen. Außerdem ist im All-
gemeinen ihre Wellenlänge anders: Die Frequenz ist
gleich, aber die Phasengeschwindigkeit unterschei-
det sich um das Verhältnis der Brechungsindizes,

v1n1 = v2n2 = c

oder

k1,2 = w n1,2

c
.

Abbildung 7.44: Brechung an einer Grenzfläche.
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Jetzt betrachten wir eine Welle, die in einem Win-
kel q von der Senkrechten auf eine Grenzfläche ein-
fällt, wie in Abb. 7.44. Wie bei einem Spiegel hat
der reflektierte Strahl den gleichen Winkel zur Senk-
rechten wie der einfallende Strahl. Der gebrochene
Strahl hat einen kleineren Winkel, q2 < q1, falls der
Übergang von einem optisch dünneren in ein optisch
dichteres Medium geht (z.B. Luft ! Wasser).

k 1
k 2

Wasserwelle

Abbildung 7.45: Brechung einer Wasserwelle an ei-
ner ebenen Grenzfläche.

Diesen Winkel kann man aus der Bedingung herlei-
ten, dass die Welle an der Grenzfläche stetig ins an-
dere Medium übergehen muss. Abb. 7.45 illustriert
dies für eine Oberflächenwelle. In den beiden Medi-
en beträgt die Wellenlänge, d. h. der Abstand zwi-
schen den Phasenflächen,

2p
k1

, resp.
2p
k2

,

Wie bereits bei der Reflexion diskutiert müssen die
Wellenvektoren parallel zur Grenzfläche gleich sein,
d.h. Knoten und Maxima der beiden Wellen müssen
an der Grenzfläche am gleichen Ort auftreten. Somit
ist die Projektion des Abstandes zwischen den Pha-
senflächen, d.h. 2p/ki auf die Grenzfläche identisch,

2p
k1 sinq1

=
2p

k2 sinq2
.

Mit ki = w ni/c erhalten wir
n1

sinq1
=

n2

sinq2

oder
sinq1

sinq2
=

n2

n1
.

Dies wird auch als das Brechungsgesetz von Snellius
bezeichnet. Wir hatten diesen Ausdruck auch schon
aus dem Prinzip von Fermat hergeleitet.

7.3.4 Reflexionsgesetz aus dem
Huygens’schen Prinzip

A

BC

D

BC

D

 A

θ1
θ2

θ1

Abbildung 7.46: Herleitung des Brechungsgesetzes
aus dem Prinzip von Huygens.

Eine weitere Erklärung des Brechungsgesetzes kann
man aus dem Prinzip von Huygens herleiten. Wie in
Abb. 7.46 gezeigt, nimmt man an dass an der Grenz-
fläche Elementarwellen ausgestrahlt werden, wobei
der Zeitpunkt für die Ausstrahlung vom Eintreffen
der einfallenden Wellenfronten bestimmt wird. Die
Ausbreitungsgeschwindigkeit in den beiden Medien
sei v1 = c/n1, resp. v2 = c/n2. Für die beiden Drei-
ecke DABC, DBCD gilt

sinq1 =
AB
CB

= t
v1

CB
=

t
n1

c
CB

sinq2 =
CD
CB

= t
v2

CB
=

t
n2

c
CB

.

Daraus folgt das Brechungsgesetz von Snellius:

sinq1

sinq2
=

n2

n1

oder

sinq1n1 = sinq2n2.

Ist der eine Brechungsindex ~1 (z.B. Luft), so kann
der Ausdruck vereinfacht werden

sinq2

sinq1
= n1.
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Abbildung 7.47: Einfallswinkel vs. Transmissions-
winkel für unterschiedliche Ver-
hältnisse der Brechungsindizes.

Abb. 7.47 stellt das Verhältnis von Einfalls- zu
Transmissionswinkel dar. Bei kleinen Einfallswin-
keln sind Einfalls- und Ausfallswinkel direkt propor-
tional. Qualitativ kann man das Resultat so zusam-
menfassen, dass beim Übergang vom optisch dün-
neren zum optisch dichteren Medium der Strahl in
Richtung auf die Senkrechte gebrochen wird, beim
Übergang vom optisch dichteren zum optisch dünne-
ren Medium weg von der Senkrechten. Offenbar er-
reicht der Transmissionswinkel im optisch dichteren
Medium einen Maximalwert, d.h. es gibt einen Win-
kelbereich, der von außen nicht zugänglich ist.

7.3.5 Reflexions- und
Transmissionskoeffizienten

Das einfallende Licht wird an der Grenzfläche in
zwei Teilwellen aufgeteilt, die reflektierte und die
transmittierte Welle. Um das Teilungsverhältnis zu
bestimmen, benötigt man offenbar zwei Gleichun-
gen um die beiden unbekannten Amplituden zu be-
rechnen. Die beiden Gleichungen erhält man aus der
Energieerhaltung sowie aus den Maxwell Gleichun-
gen.

Die Energieerhaltung sagt, dass die Leistung des ein-
fallenden Strahls gleich der Summe der Leistungen
des reflektierten und des transmittierten Strahles sein
muss. Die Leistung in einem Lichtstrahl kann be-
rechnet werden aus Energiedichte r , Lichtgeschwin-

digkeit c und Querschnitt A:

P = crA.

q 2

A1

Ee

n1

n2

Er

Et

A
A2

θ1
θ1

θ2

Abbildung 7.48: Energiebilanz aus Feldstärken und
Querschnittsflächen für Licht mit
senkrechter Polarisation.

Somit gilt

c1reA1 = c1rrA1 + c2r tA2.

Hier bezeichnet der Index 1 das Medium, aus dem
der Lichtstrahl einfällt, 2 das untere Medium; die
oberen Indices bezeichnen den einfallenden, reflek-
tierten und transmittierten Strahl. Wie in Abb. 7.48
gezeigt, können die Querschnitte A1 und A2 auf die
entsprechende Fläche auf der Grenzfläche bezogen
werden:

A1 = Acosq1 A2 = Acosq2.

Die Energiedichte beträgt jeweils

r i = e0eiE2
i

und die Lichtgeschwindigkeit im Medium ci = c/ni.

Somit wird die Energiebilanz

c
n1

e0e1E2
e Acosq1 =

c
n1

e0e1E2
r Acosq1

+
c
n2

e0e2E2
t Acosq2.

Mit ei = n2
i erhält man

n1
�
E2

e �E2
r
�

cosq1 = n2E2
t cosq2.
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Dies ist die erste der beiden notwendigen Glei-
chungen. Die zweite erhält man aus der Maxwell-
Gleichung: die elektrische Feldkomponente parallel
zur Grenzfläche muss stetig sein. Für eine Welle, die
senkrecht zur Einfallsebene polarisiert ist, sind alle
Feldkomponenten parallel zur Oberfläche. Damit ist

E1 = E2 = Ee,s +Er,s = Et,s.

Ee

Er

Et

θ1

θ2

θ1

Ee,p cos �1

Abbildung 7.49: Felder der Teilstrahlen für parallele
Polarisation.

Gemäß Abb. 7.49 muss für den Fall, dass die Polari-
sation in der Einfallsebene liegt gelten

(Ee,p �Er,p)cosq1 = Et,p cosq2.

7.3.6 Fresnel-Formeln

Aus den beiden Bedingungen erhält man

rs =

✓
Er

Ee

◆

?
=

n1 cosq1 �n2 cosq2

n1 cosq1 +n2 cosq2

= �sin(q1 �q2)

sin(q1 +q2)
.

ts =

✓
Et

Ee

◆

?
=

2n1 cosq1

n1 cosq1 +n2 cosq2

= 1� sin(q1 �q2)

sin(q1 +q2)
.

rp =

✓
Er

Ee

◆

||
=

n2 cosq1 �n1 cosq2

n2 cosq1 +n1 cosq2

= � tan(q1 �q2)

tan(q1 +q2)
.

tp =

✓
Et

Ee

◆

||
=

2n1 cosq1

n1 cosq2 +n2 cosq1
.

Diese Gleichungen werden als Fresnel-Gleichungen
bezeichnet.

r||
π /4

π /2

Einfallswinkel

r⊥

Abbildung 7.50: Reflexionskoeffizienten als Funkti-
on des Einfallswinkels.

Trägt man die beiden Reflexionskoeffizienten für
n1 = 1, n2 = 1.5 gegen den Einfallswinkel auf, wie
in Abb. 7.50, so findet man, dass die beiden Reflexi-
onskoeffizienten bei kleinem Winkel, also senkrech-
tem Einfall, den gleichen Betrag aufweisen. Dies ist
nicht verwunderlich: Bei senkrechtem Einfalls sind
die beiden Polarisationen nicht unterscheidbar. Sie
betragen dann

�rs(q1 = q2 = 0) = rp(q1 = q2 = 0) =
n2 �n1

n2 +n1
.

Das negative Vorzeichen zeigt dass die reflektierte
Welle einen Phasensprung von p gegenüber der ein-
fallenden Welle hat, falls sie an einem optisch dich-
teren Medium (n2 > n1) reflektiert wird, jedoch nicht
im umgekehrten Fall.

Einfallswinkel

Brewster-Winkel

π/2π/4

R||

R⊥

Abbildung 7.51: Reflexionsvermögen als Funktion
des Einfallswinkels.

Häufig verwendet man auch das Reflexionsvermö-
gen, welches definiert ist als das Verhältnis der re-
flektierten Intensität zur einfallenden Intensität. Abb.
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7.51 zeigt diese Größen als Funktion des Einfalls-
winkels. Für senkrechten Einfall

R =
Ir

Ie
=

✓
n2 �n1

n2 +n1

◆2

.

Typische Zahlen für die Grenzfläche Luft / Glas
(n1 = 1, n2 = 1.5) sind

r(a = 0) ⇡ 0,5
2,5

= 0,2. R = r2 ⇡ 0,04.

Sowohl beim Eintritt wie beim Austritt aus Glas wird
also rund 4% der Lichtintensität reflektiert.

Die Reflexion von parallel polarisiertem Licht weist
einen Nulldurchgang auf. Der zugehörige Win-
kel wird als Brewster-Winkel bezeichnet. Aus den
Fresnel-Gleichungen sieht man, dass die Bedingung
als

tan(q1 +q2) ! • d.h. (q1 +q2) =
p
2

geschrieben werden kann. Somit stehen der trans-
mittierte und reflektierte Strahl stehen senkrecht auf-
einander. Nach dem Brewster-Winkel nehmen bei-
de Reflexionskoeffizienten zu und erreichen eins bei
q1 = p/2, d.h. bei streifendem Einfall.

7.3.7 Totalreflexion

Ein interessanter Fall tritt ein wenn ein Strahl aus
dem optisch dichteren Medium ins optisch dünnere
Medium austritt, d.h. wenn das Verhältnis n2/n1 < 1
ist. Offenbar wird der Strahl dann von der Senkrech-
ten weg gebrochen. Da sinq1  1 ist kann die Glei-
chung nicht für alle Werte von q1 Lösungen aufwei-
sen. Am kritischen Winkel

qc = sin�1
✓

n2

n1

◆

wird der gebrochene Strahl unter einem Winkel von
p/2 abgestrahlt, d.h. parallel zur Grenzfläche. Wird
der Einfallswinkel weiter erhöht, so kann das Licht
nicht mehr aus dem Material austreten. Man be-
zeichnet diesen Bereich als Totalreflexion. Abb. 7.52
zeigt ein entsprechendes Experiment: Der Licht-
strahl kann das Wasser als optisch dichteres Medium

Abbildung 7.52: Totalreflexion von Lichtstrahlen an
einer Wasser-Luft Grenzfläche.

nicht verlassen, wenn der Einfallswinkel unterhalb
des Grenzwinkels liegt.

Das Feld im optisch dünneren Medium kann aber
nicht einfach verschwinden, da sonst die Kontinui-
tätsbedingungen verletzt wären. Der Feldverlauf im
Medium 2 ist in diesem Fall exponentiell. Diese Wel-
le, die parallel zur Grenzfläche läuft und deren Am-
plitude im Medium exponentiell mit dem Abstand
von der Grenzfläche abfällt, wird als evaneszente
oder quergedämpfte Welle bezeichnet.

Die Eindringtiefe divergiert am kritischen Winkel.
Für größere Winkel nimmt sie rasch ab bis auf die
Größe der optischen Wellenlänge, also typischerwei-
se weniger als ein µm. Dieser Teil des optischen Fel-
des wird auch gerne für Experimente verwendet. Das
interessante daran ist, dass es eine Möglichkeit dar-
stellt, Licht in der Nähe einer Grenz- oder Oberflä-
che zu lokalisieren.

Die Totalreflexion wird z.B. in Glasfasern für die
Übertragung von Licht verwendet. Geführt werden
kann das Licht wenn der Einfallswinkel kleiner als
der kritische Winkel ist, der durch die Differenz der
Brechungsindizes bestimmt ist. Typische Parameter
sind z.B. n1 = 1.474, n2 = 1.453 ! qc = 80,3�, resp.
rund 10 Grad von der Grenzfläche aus gemessen.

Abb. 7.53 zeigt, wie Licht in einer Glasfaser mit
variablem Brechungsindex geführt wird. Im Rah-
men der Strahlenoptik erscheinen die entsprechen-
den Pfade gekrümmt.

Glasfasern werden für die Datenübertragung ver-
wendet, aber auch für die Übermittlung von Bildern.
Im Beispiel von Abb. 7.54 überträgt jede Faser einen
einzelnen Bildpunkt. Diese Technik wird zum Bei-
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Kern 
 n2 ≤ n ≤ n1 

 Mantel n2

Abbildung 7.53: Totalreflexion in einer Glasfaser.

Glasfaserbündel

Abbildung 7.54: Bildübertragung in einem Glas-
faserbündel.

spiel in der Endoskopie (medizinische Bildgebung)
genutzt.

7.3.8 Brechung am Prisma

n’
n

ε1’
ε1 ε2’ε2

α

α

δ

Abbildung 7.55: Brechung am Prisma.

Wir betrachten einen Lichtstrahl, der durch ein Pris-
ma mit Brechungsindex n und Winkel a läuft, wie
in Abb. 7.55 gezeigt. Er wird beim Eintritt und beim
Austritt gebrochen. Der Ablenkwinkel d beträgt

d = e 0
1 + e 0

2 �a.

Nach Snellius ist

sine 0
1 = nsine1

sine 0
2 = nsine2.

Außerdem ist e1 + e2 = a . Mit

e 0
2 = sin�1(nsine2) = sin�1(nsin(a � e1)).

Wir eliminieren alle Variablen außer e1, indem wir
verwenden

sin(a �b ) = sina cosb � cosa sinb :

e 0
2 = sin�1(n(sina cose1 � cosa sine1))

= sin�1(nsina
q

1� sin2 e1 � cosa sine 0
1)

= sin�1(sina
q

n2 � sin2 e 0
1 � cosa sine 0

1).

Damit wird der Ablenkwinkel

d = e 0
1 �a +sin�1(sina

q
n2 � sin2 e 0

1 �cosa sine 0
1).

Ab
le

nk
w

in
ke

l δ
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sf
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lsw
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l ε
’ 2

Einfallswinkel ε’1

Abbildung 7.56: Ablenkung am Prisma.

Wie in Abb. 7.56 gezeigt, wird die Strahlablenkung
minimal, wenn der Eintrittswinkel gleich dem Aus-
trittswinkel ist, d.h. für einen symmetrischen Strah-
lengang:

e 0
1 = e 0

2 =
1
2
(d +a),

e1 = e2 =
a
2

dmin = 2sin�1(n sin
a
2

)�a.
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Prismen werden außerdem gerne verwendet für die
Umlenkung von Strahlen oder als Umkehrprismen
(durch 2-malige Reflexion), z.B. zur Umkehrung
von Bildern in Feldstechern.

Abbildung 7.57: Zerlegung von weissem Licht am
Prisma.

Ist der einfallende Lichtstrahl nicht eine einheitliche
Farbe, so ist der Brechungsindex für die einzelnen
Komponenten unterschiedlich und sie werden unter-
schiedlich stark gebrochen. Wie in Abb. 7.57 ge-
zeigt, wird violettes Licht am stärksten gebrochen,
Komponenten mit längerer Wellenlänge schwächer
(siehe auch Abb. 7.22).

7.4 Abbildende Optik

7.4.1 Bildentstehung

Gegenstand

 (z.B. 
Linse)

Bild

optisches 
 Gerät

Abbildung 7.58: Entstehung eines Bildes.

Zu den wichtigsten Anwendungen der Optik gehört
die Möglichkeit, mit Hilfe optischer Instrumente Ge-
genstände abzubilden. Wie in Abb. 7.58 gezeigt,
werden dafür Lichtstrahlen, die von einem Objekt
ausgehen, durch ein optisches Gerät (Linse, Spiegel,
Fernrohr, Auge ...) so geführt, dass sie ein Bild er-
zeugen. Das Bild ist dadurch charakterisiert, dass al-
le Strahlen, die durch einen bestimmten Bildpunkt
laufen, vom gleichen Punkt des Objektes stammen.
Somit kann man jeden Punkt des Bildes mit genau
einem Punkt des Objektes identifizieren.

Gegenstand 
Objekt

(virtuelles) Bild
a 
a

a

Gegenstand   Spiegel Bild

Abbildung 7.59: Spiegelbild.

Ein einfaches Beispiel für ein optisches Instrument
ist ein ebener Spiegel, wie in Abb. 7.59. Wie im
Rahmen des Kapitels “Reflexion” besprochen wer-
den die Strahlen so gebrochen, dass der Einfallswin-
kel gleich dem Ausfallswinkel ist. Dadurch scheinen
für den Betrachter alle Strahlen aus dem Spiegel zu
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kommen; er sieht das Objekt hinter dem Spiegel. Al-
lerdings wird in diesem Fall durch den Spiegel sel-
ber kein Bild erzeugt. Man bezeichnet das Spiegel-
bild als virtuelles Bild, da die Lichtstrahlen nie den
Punkt erreichen an dem der Apfel dem Betrachter
erscheint. Dieses virtuelle Bild hat trotzdem alle Ei-
genschaften eines reellen Bildes.

7.4.2 Parabolspiegel

F

Abbildung 7.60: Parabolspiegel.

Im Gegensatz dazu erzeugt ein Parabolspiegels ein
reelles Bild. In einem Parabolspiegel (! Abb. 7.60)
und näherungsweise auch in einem sphärischen
Spiegel kreuzen sich parallel einfallende Strahlen in
einen Punkt im Abstand f vom Spiegel.

paraxiale Strahlen

sphärischer 
Spiegel

optische 
Achse

R

Brennweite 
f ~ R/2

{

ε
ε

ε

Abbildung 7.61: Fokus eines sphärischen Spiegels.

Die Distanz zwischen dem Spiegel und dem Fokus
F , in dem sich die Strahlen kreuzen, lässt sich für
Strahlen in der Nähe der optischen Achse (sog. pa-
raxiale Strahlen) leicht berechnen. Wie in Abb. 7.61
gezeigt, werden die Strahlen an jedem Punkt nach
dem Reflexionsgesetz reflektiert. Das Dreieck CAF
ist somit gleichschenklig und für kleine Winkel e
ist offenbar die Brennweite SF gleich der Hälfte des
Spiegelradius R.

In einem entsprechenden Wellenbild erhält man nach

Wellenfronten

Abbildung 7.62: Fokussierung in einem Wellenbild.

Reflexion eine zusammenlaufende Kugelwelle, wie
in Abb. 7.62 gezeigt.

7.4.3 Bildweite und Maßstab

Db
f

g

Objekt 
Gegenstand

O

Abbildung 7.63: Maßstabverhältnisse bei der Bil-
dentstehung.

Wenn die Strahlen nicht parallel einfallen, sondern
von einem Objekt ausgehen, das um die Gegen-
standsweite g vom Spiegel entfernt ist, entsteht ein
Bild im Bildabstand b vom Spiegel, wie in Abb. 7.63
gezeigt. Diesen Bildabstand kann man mit Hilfe des
Strahlensatzes aus der Brennweite f berechnen:

f
g

=
FD
OD

und
f
b

=
OF
OD

.

Somit ist

f
g

+
f
b

=
FD
OD

+
OF
OD

=
OD
OD

= 1

oder

1
g

+
1
b

=
1
f
. (7.1)
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g

G

b
B

q
q

Abbildung 7.64: Berechnung des Abbildungsmaß-
stabs.

Der Abbildungsmaßstab b ist das Verhältnis der
Größe B des Bildes relativ zur Größe G des Gegen-
standes. Diese lässt sich z.B. berechnen, wenn wir,
wie in Abb. 7.64 gezeigt, zwei Strahlen betrachten,
welche vom gleichen Punkt des Objekts ausgehen
und sich am entsprechenden Punkt des Bildes wie-
der treffen. Diese zeigen, dass

B
b

=
G
g

und somit auch

b =
B
G

=
b
g
.

Mit Hilfe der Abbildungsgleichung (7.1) können wir
b eliminieren:

b =
f g

g� f
! b =

f
g� f

.

Offenbar erzeugt ein gekrümmter konkaver Spiegel
ein Bild, welches für den Betrachter an unterschied-
licher Stelle erscheinen kann: Befindet sich das Ori-
ginal in einem Abstand, der größer ist als die doppel-
te Brennweite, so erscheint ein reelles, verkleinertes,
umgekehrtes Bild zwischen f und 2 f .

Befindet sich das Original im Bereich zwischen f
und 2 f , so erscheint das reelle Bild größer und im
Abstand > 2 f . Beträgt der Abstand weniger als f ,
so erscheint ein virtuelles Bild, d.h. hinter dem Spie-
gel, wie in Abb. 7.65 gezeigt. Das virtuelle Bild ist
größer als das Objekt.

Parabolspiegel werden z.B. für Teleskope eingesetzt,
sowohl für optische wie auch für Radioteleskope wie
im Beispiel von Abb. 7.66, oder als Satellitenanten-
nen.

M

f b

Abbildung 7.65: Virtuelles Bild hinter konkavem
Spiegel.

Empfangsantenne 
= „Okular“ 

Sie liegt im Brenn- 
punkt des Hohl- 
spiegels.

Hohlspiegel

Abbildung 7.66: Das Radioteleskop Effelsberg.

Ein konvexer Spiegel wie in Abb. 7.67 erzeugt kein
reelles Bild, sondern immer ein virtuelles, welches
kleiner ist als das Original. Diese Art von Spiegel
wird z.B. in Rückspiegeln verwendet, wo ein großes
Blickfeld gewünscht wird.

7.4.4 Brechung an einer sphärischen
Oberfläche

Trifft ein Lichtstrahl auf eine gekrümmte Grenzflä-
che, so hängt seine Richtung nach der Grenzfläche
davon ab, an welchem Punkt er auf die Grenzfläche
auftrifft. Dies wird z.B. in Sammellinsen benutzt.

Wir betrachten zunächst den Fall einer einzelnen
sphärischen Oberfläche, d.h. eines Glaskörpers, der
nach rechts unendlich weit ausgedehnt ist, wie in
Abb. 7.68 gezeigt. Wir berechnen den Weg, den ein
Lichtstrahl nimmt, wenn er an der Oberfläche gebro-
chen wird, indem wir das Prinzip von Fermat ver-
wenden. Das Brechungsgesetz liefert das gleiche Re-
sultat, aber mit größerem Aufwand.
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G

a b

Abbildung 7.67: Konvexer Spiegel.

optische Achseg b

Abbildung 7.68: Brechung an einer sphärischen
Grenzfläche.

Für Strahlen mit einem geringen Abstände von
der optischen Achse, sogenannte paraxiale Strahlen,
kann man die Oberfläche durch eine Parabel annä-
hern. Die Zeit, welche das Licht für den Weg OPO’
durch einen Punkt P im Abstand h von der optischen
Achse benötigt, ist

n1OP+n2PO’.

Im Rahmen der paraxialen Näherung h ⌧ g ist die
Strecke OP

OP = OV +V Q+
h2

2g

und analog für PO’. Damit wird die Zeit für den Weg
OPO’:

n1OP+n2PO’ = n1(OV +V Q+
h2

2g
)

+n2(QO’+
h2

2b
).

Gemäß dem Prinzip von Fermat sollte dies gleich der

Zeit für den direkten Weg sein, also

n1(OV +V Q+
h2

2g
)+n2(QO’+

h2

2b
)

= n1OV +n2(V Q+QO’).

Somit muss gelten

V Q(n1 �n2)+
h2

2g
n1 +

h2

2b
n2 = 0.

In der gewählten Näherung ist V Q = h2/2R mit R
dem Radius der Grenzfläche und

n1

g
+

n2

b
=

n2 �n1

R
, (7.2)

also unabhängig von h. Somit benötigt das Licht auf
allen Pfaden die gleiche Zeit und erfüllt damit das
Prinzip von Fermat. Diese Gleichung wird als Ab-
bildungsgleichung bezeichnet: Bei gegebenem Ra-
dius R, Brechungsindex n1,2 und Objektdistanz g be-
stimmt sie die Bilddistanz b.

b = f

Abbildung 7.69: Fokus in einer Kugel.

Einen Spezialfall erhält man, wenn man die Objekt-
distanz g gegen Unendlich gehen lässt, wenn also
parallele Strahlen auf die Grenzfläche einfallen. Die
Bilddistanz b wird dann als Brennweite f bezeichnet
(! Abb. 7.69). Offenbar ist

n2

f
=

n2 �n1

R

oder

f = R
n2

n2 �n1

Die Sammelwirkung einer gekrümmten Oberfläche
ist somit bestimmt durch den Krümmungsradius R
und die Differenz zwischen den Brechungsindizes.
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Die Tatsache, dass die Brechkraft von der Differenz
der Brechungsindizes abhängt kann man sehr ein-
fach nachprüfen wenn man beim Schwimmen unter
Wasser die Augen öffnet: Man sieht nicht scharf, da
hier die Brechkraft der Linse im Auge kleiner ist.

7.4.5 Entstehung des Regenbogens

Die Entstehung des Regenbogens kann auf Bre-
chung in Wassertropfen und Dispersion zurückge-
führt werden.

42o

Abbildung 7.70: Strahlenverlauf in einem Wasser-
tropfen und Regenbogen.

Der Strahlenverlauf in einem Regentropfen wurde
von Descartes untersucht. Wie in Abb. 7.70 ge-
zeigt, betrachtet man zunächst alle Strahlen, welche
beim Eintritt in den Wassertropfen gebrochen, an der
Rückseite reflektiert und beim Austritt wiederum ge-
brochen werden. Während ein Strahl, der zentral ein-
fällt, in sich selbst reflektiert wird, weisen alle Strah-
len, die abseits vom Zentrum einfallen, nach dem
Durchgang durch den Wassertropfen einen Winkel
zwischen einfallendem und austretenden Strahl auf.
Dieser Winkel nimmt mit dem Abstand vom Zen-
trum zunächst zu, erreicht bei 42 Grad ein Maximum
und nimmt dann wieder ab. Dadurch erhält man bei
42 Grad eine Häufung.

Für einen Beobachter mit der Sonne im Rücken er-
gibt sich ein heller Kreiskegel mit halbem Öffnungs-
winkel 42 Grad, wobei die Symmetrieachse durch
die Sonne läuft (siehe Abb. 7.71). Mindestens die
Hälfte des theoretischen Kreises befindet sich unter
dem Horizont; einen Halbkreis erhält man wenn die
Sonne gerade auf dem Horizont steht.

von der Sonne

 Häufung von 
Reflexionen erzeugt 
einen Kegel

Abbildung 7.71: Strahlenverlauf für einen Beobach-
ter.

Im Experiment verwenden wir eine einzelne, mit
Wasser gefüllte Glaskugel. Der weiße Lichtstrahl der
Bogenlampe wird hier ebenfalls in einem Winkel
von 42 Grad reflektiert und spektral aufgefächert.

Sonne

Beobachter

Abbildung 7.72: Dispersion der Regenbogenfarben.

Aufgrund der Dispersion ist der Ablenkwinkel nicht
für alle Farben der gleiche. Kurze Wellenlängen, al-
so blau und violett, werden stärker gebrochen. Wie
in Abb. 7.72 gezeigt erscheinen die entsprechenden
Maxima deshalb bei einem kleineren Öffnungswin-
kel, also innerhalb des roten Kreisbogens.

7.4.6 Linsen

Anstelle einer einzelnen sphärisch gekrümmten
Oberfläche betrachten wir nun einen Glaskörper mit
zwei sphärisch gekrümmten Oberflächen. Dies ent-
spricht einer Linse, wobei der Krümmungsradius
von beiden Oberflächen positiv, negativ oder unend-
lich sein kann.

Den Strahlengang für eine bikonvexe Linse (! Abb.
7.73) finden wir, indem wir das Resultat für eine

298



7 Optik

F’ F’

Abbildung 7.73: Sammellinse.

sphärische Oberfläche zweimal anwenden. Wir ver-
einfachen dabei Gleichung (7.2) für den Fall n1 = 1,
n2 = n. Zunächst für die erste Grenzfläche gilt

1
g

+
n
z

=
n�1

R1
.

Hier stellt z die Bildweite für das Zwischenbild dar,
welches rechts von der ersten Grenzfläche entstehen
würde. Für dieses einfache Modell nehmen wir je-
doch an, dass die Dicke der Linse sehr klein ist, so
dass wir sie vernachlässigen können und sich die
zweite Grenzfläche am gleichen Ort befindet wie die
erste Grenzfläche. Dann entspricht die Bildweite für
das Zwischenbild gleichzeitig der negativen Gegen-
standsweite für die zweite Grenzfläche. Damit lautet
die Gleichung für die zweite Brechung

�n
z

+
1
b

= �n�1
R2

.

Dabei muss das Vorzeichen von z und R beach-
tet werden: es hängt von der Richtung ab. Bei der
Objekt- / Bilddistanz ist es gemäß unserer Definiti-
on positiv wenn das Objekt / Bild links / rechts der
Grenzfläche liegt. Beim Krümmungsradius entspre-
chend positiv wenn das Zentrum auf der rechten Sei-
te liegt, negativ im umgekehrten Fall.

Wir addieren die beiden Gleichungen um z zu elimi-
nieren und erhalten

1
g

+
1
b

= (n�1)

✓
1

R1
� 1

R2

◆
=

1
f
.

Somit ist die Brennweite

f =
R1R2

(n�1)(R2 �R1)

der Linse durch die Radien R1,2 der beiden Linsen-
flächen gegeben, welche jeweils vorzeichenbehaftet

sind. Man kann dieses Resultat einfach so interpre-
tieren dass sich die Brechkraft (n � 1)/R der beiden
Oberflächen addiert, wobei bei der zweiten Ober-
fläche aufgrund des umgekehrten Verhältnisses der
Brechungsindizes ein positiver Radius eine negative
Sammelwirkung, d.h. eine aufweitende Wirkung hat.

Die “Brechkraft” oder Sammelwirkung einer Linse
ist das Inverse der Brennweite und wird oft in “Diop-
trien” = 1/m gemessen. 5 Dioptrien bezeichnen eine
Brennweite von 20 cm.

Strahlengang Wellenfronten

Abbildung 7.74: Strahlengang und Wellenfronten
durch eine Sammellinse.

Abb. 7.74 zeigt, wie man den Strahlengang im Ex-
periment mit Hilfe von Laserstrahlen messen kann.
Im Rahmen der Wellenoptik wird die Sammellin-
se über eine Verbiegung der Wellenfronten disku-
tiert. Mit Hilfe von Pulslasern und holographischen
Abbildungsverfahren kann diese ebenfalls gemessen
werden.

7.4.7 Linsentypen

Linsenform

bi-
konvex

 plan- 
konvex

 positiver         bi- 
Mensikus    konkav

 plan-    negativer 
konav   Mensikus

Radien R1 > 0    R1 = ∞ 
R2 < 0    R2 < 0

R1 < R2 < 0 R1 < 0    R1 = ∞   R2 <R1 
R2 > 0    R2 > 0  <0

Brennweite f>0 f<0

Bezeich-
nung { {

Abbildung 7.75: Linsenformen.

Je nach Vorzeichen und Betrag der beiden Radien
unterscheiden man bikonvexe, plankonvexe, bikon-
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kave, plankonkave und Meniskus- Linsen. Abb. 7.75
zeigt einige Beispiele.

F’

Abbildung 7.76: Strahlengang und Wellenfronten
durch eine Zerstreuungslinse.

Bei einer Zerstreuungslinse (siehe Abb. 7.76) wer-
den die Wellenfronten im Außenbereich der Linse
verzögert, resp. die Strahlen nach außen gebrochen.

Abbildung 7.77: Prinzip und Beispiel für eine Gra-
vitationslinse.

Linsen müssen nicht aus Glas bestehen. Die Licht-
ausbreitung wird z. B. auch durch Gravitationskräf-
te beeinflusst, wie in Abb. 7.77 gezeigt. Schwere
Objekte im Weltraum wirken deshalb als sogenann-
te Gravitationslinsen: sie biegen Lichtstrahlen. Dies
kann z.B. dazu führen, dass ein entferntes Objekt
mehrfach sichtbar wird, wie im Beispiel von Abb.
7.77 ein Quasar, dessen Licht durch eine auf dem
optischen Weg liegende Galaxis fokussiert wird.

Diesen Effekt kann man mit Hilfe eines einfachen
Modells auch im Hörsaal nachvollziehen. Hier wird
ein Weinglas als Linse verwendet.

7.4.8 Abbildung und Vergrösserung

Das Bild eines bestimmten Objekts, das durch eine
dünne Linse erzeugt wird, kann durch die in Abb.

Objekt

Bild

{

x

{

f

{

f

{

x’

Abbildung 7.78: Optische Abbildung.

7.78 gezeigte Konstruktion erhalten werden:

• Jeder Strahl parallel zur Achse geht durch den
Fokus auf der gegenüberliegenden Seite

• Ein Strahl, der durch den Fokus läuft, tritt auf
der anderen Seite parallel zur Achse aus.

Damit erhalten wir folgenden Gleichungen zwischen
Größe und Abstand von Objekt und Bild:

B
f

=
G
x

und
B
x0 =

G
f
. (7.3)

Das Abbildungsverhältnis, also das Verhältnis der
Größe B des Bildes relativ zur Größe G des Objekts
wird

B
G

=
f
x

=
x’
f
.

Das Verhältnis ist somit gegeben durch das Verhält-
nis der Brennweite f zum Abstand x des Objekts
vom Brennpunkt, resp. durch das Verhältnis des Ab-
standes x0 des Bildes vom zweiten Brennpunkt. Den
Ort des Bildes erhält man aus den beiden Gleichun-
gen (7.3) z.B. indem man die erste auflöst nach

B = G
f
x

und dies in die zweite einsetzt:

G f
(xx’)

=
G
f

! xx0 = f 2.

Das Produkt von Objekt- und Bilddistanz (gemessen
vom Brennpunkt) ist somit immer gleich dem Qua-
drat der Brennweite. Diese Form ist äquivalent zur
Linsengleichung

1
g

+
1
b

=
1
f
,

wenn die Distanzen durch g = x + f und b = x’ + f
ersetzt werden.
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Abbildung 7.79: Spezialfälle für die Abbildungs-
gleichung.

Abb. 7.79 stellt einige wichtige Spezialfälle der Lin-
sengleichung dar. Im Fall x = x’ = f sind Objekt und
Bild je um f von den Brennpunkten entfernt, resp.
um 2 f von der Linse. Dabei sind Objekt- und Bild-
distanz identisch und das Abbildungsverhältnis ge-
rade gleich 1. Wenn einer der beiden Abstände vom
Brennpunkt gegen Null geht, so muss der andere
gegen Unendlich gehen. Dies entspricht den beiden
Fällen wo ein paralleler Strahl in den Brennpunkt der
Linse fokussiert wird, resp. wo eine punktförmige
Quelle im Brennpunkt der Linse kollimiert wird.

Objekte Film

Abbildung 7.80: Abbildung von unterschiedlich
weit entfernten Objekten in einer
Kamera.

Die Tatsache, dass unterschiedlich entfernte Gegen-
stände auf unterschiedliche Bildebenen abgebildet
werden, ist jedem Hobby-Fotografen bekannt. Sie
führt zur endlichen “Tiefenschärfe” eines Bildes.
Wie in Abb. 7.80 gezeigt, weist der Bildsensor oder
Film einen bestimmten Abstand zum Objektiv auf-
weist. Deshalb werden nur Gegenstände in der “rich-
tigen” Entfernung scharf abgebildet.

7.4.9 Linsenfehler

Bisher sind wir davon ausgegangen, dass die Lin-
sen perfekt seien. Allerdings haben wir bei der Her-
leitung der Linsengleichung verschiedene vereinfa-
chende Annahmen gemacht, die in der Praxis nie
exakt erfüllt sind. So hatten wir z.B. angenommen,
dass die Dicke der Linsen vernachlässigt werden
kann, oder dass die Oberfläche durch eine Parabel
angenähert werden kann. In der Praxis benutzt man
hingegen sphärische Oberflächen, da solche Linsen
sehr viel einfacher herzustellen sind. Aus diesen
Unterschieden ergeben sich sogenannte “Linsenfeh-
ler”, d.h. Unterschiede zwischen den hier angenom-
menen “Gesetzen” und den wirklichen Strahlengän-
gen. Technisch werden diese folgendermaßen klas-
sifiziert:

1) sphärische Aberration: Die hier benutzten Glei-
chungen gelten nur für Strahlen in der Nähe der op-
tischen Achse. Strahlen, die zu weit davon entfernt
sind, werden nicht mehr in den gleichen Punkt fo-
kussiert. Natürlich kann man eine Linse immer klein
genug machen, dass solche Fehler vernachlässig-
bar sind. Andererseits ist die Lichtstärke einer Linse
proportional zu ihrer Fläche, also zum Quadrat des
Durchmessers. Es gibt zwei Möglichkeiten, sphäri-
sche Aberration auch bei großen Linsen gering zu
halten:

i) Man kombiniert verschiedene Linsen in ein Ob-
jektiv

Abbildung 7.81: Plankonvexe Linse mit sphärischer
Aberration (links) und asphärisch
optimierte Linse (rechts).

ii) Man benutzt asphärische Linsen, d.h. man op-
timiert die Form der Linse so, dass diese Fehler
verschwinden. Abb. 7.81 zeigt ein solches Beispiel.
Dies wird allerdings nur für teure Spezialoptiken
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gemacht, weil das Herstellungsverfahren wesentlich
aufwendiger ist. Heute ist dies aber eindeutig ein zu-
nehmender Trend.

Kron Flint

Abbildung 7.82: Chromatische Aberration: Korrek-
tur durch Linsenkombination.

2) Chromatische Aberration: Aufgrund der Disper-
sion des Glases werden unterschiedliche Wellenlän-
gen unterschiedlich stark gebrochen. Auch dieses
Problem kann durch die Kombination unterschied-
licher Linsen weitgehend vermieden werden. Dabei
werden Linsen mit unterschiedlichen Brechungsin-
dizes und unterschiedlicher Dispersion kombiniert.
Solche Linsenkombinationen werden kommerziell
als “Achromaten” angeboten. Das Beispiel von Abb.
7.82 reduziert die Dispersion über den sichtbaren
Spektralbereich auf weniger als 0.5%.

3) Coma, Astigmatismus: Weitere Aberrationen wer-
den als Coma und Astigmatismus bezeichnet. Da-
bei handelt es sich um Fehler, die dadurch zustande
kommen, dass Objekt und Bild nicht auf der Achse
der Linse liegen.

7.4.10 Maximale Auflösung

Aus den Linsengleichung ergibt sich, dass Objek-
te durch Abbildungen beliebig vergrößert oder ver-
kleinert werden können. Dies ist aber nicht möglich,
wenn man in einen Bereich kommt, wo die geome-
trische Optik nicht mehr gültig ist. Voraussetzung für
deren Anwendbarkeit ist, dass die relevanten Dimen-
sionen groß sind im Vergleich zur Wellenlänge des
Lichtes.

Eine Abschätzung für das maximal erreichbare Auf-
lösungsvermögen eines Mikroskops erhält man mit
folgender Überlegung: Zwei Punkte P und P0 befin-
den sich im Abstand d voneinander, wie in Abb. 7.83
gezeigt. Damit man sie unterscheiden kann, müs-
sen Kugelwellen, die von den beiden Punkten aus-
gesandt werden, mindestens auf einem Teil der Linse

θ

θ

P

P’

d

d sin θ

Abbildung 7.83: Auflösungsgrenze für optische Ab-
bildungen.

unterschiedliche Phasen aufweisen. Wir nehmen der
Einfachheit halber an, dass sie sich in der Nähe der
Linsenachse befinden, so dass zwei Kugelwellen, die
zu gleicher Zeit von den beiden Punkten ausgehen,
auf der Achse mit identischer Phase eintreffen. Als
unterscheidbar betrachten wir die Punkte dann, wenn
die beiden Wellen am Rand der Linse eine Phasen-
differenz Df � p besitzen, d.h. wenn die Weglängen-
differenz mindestens l/2 beträgt. Beträgt der Win-
kel zwischen dem Zentrum und dem Rand der Linse
q , so ist der Weglängenunterschied

d sinq � l
2

.

Eine hohe Auflösung erhält man somit, wenn

- die Wellenlänge klein

- und der Öffnungswinkel groß ist.

Die maximale Auflösung wird dann erzielt wenn das
Objekt sich in der Brennebene befindet. Der Öff-
nungswinkel q kann somit als das Verhältnis aus Ra-
dius und Brennweite geschrieben werden. Man be-
zeichnet den Sinus des Öffnungswinkels (sinq ) als
numerische Apertur (NA).

Die hier verwendete Bedingung gibt nur die Größen-
ordnung an. Es werden anstelle von l/2 auch die
Werte von 0.62 l und 0.82 l verwendet, welche z.B.
aus der Theorie der Beugung stammen. Für eine un-
endlich große Linse und sichtbares Licht würde man
somit erhalten 2d � 0.6µm oder d � 0.3µm. In der
Praxis ist der Winkel q immer kleiner als p/2. Für
ein Mikroskop mit hoher numerischer Apertur kann
die Auflösungsgrenze trotzdem deutlich unter 1 µm
liegen.
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500 nm

Abbildung 7.84: Bild einer punktförmigen Quelle
als Auflösungstest.

Abb. 7.84 zeigt als Beispiel ein Bild einer punktför-
migen Lichtquelle, welches mit Hilfe eines konfoka-
len Mikroskops aufgenommen wurde.

Das gleiche Prinzip der maximalen Auflösung gilt
auch für den umgekehrten Prozess, die Erzeugung
eines möglichst kleinen Bildes aus einer größeren
Vorlage. Bilddetails können nur dann mit einer Lin-
se dargestellt werden, wenn sie nicht kleiner als l /(2
sinq ) sind. Diese Abbildungsgrenze ist u. A. rele-
vant für die Photolithographie, welche für die Her-
stellung elektronischer Schaltkreise verwendet wird.
Die Dimensionen der auf diese Weise erzeugten
Schaltungen können nicht wesentlich kleiner sein
als die Wellenlänge des verwendeten Lichts. Des-
halb werden heute in der Chipherstellung ultravio-
lette Lichtwellen verwendet.

Sehnerv

Abbildung 7.85: Querschnitt durch ein Auge.

7.5 Optische Instrumente

7.5.1 Das Auge

Das Auge ist das wichtigste optische Instrument,
welches von der Natur stark optimiert wurde. Wie
in Abb. 7.85 gezeigt, besteht es aus einem kugelför-
migen Körper von ca. 25 mm Durchmesser. Darin
enthalten ist eine Linse, welche durch einen Muskel
verformt werden kann. Da Linse und Augenkörper
ähnliche Brechkraft besitzen, dient diese Anpassung
nur für geringe Korrekturen. Die lichtempfindlichen
Zellen befinden sich auf der Rückseite des Auges, in
der Netzhaut. Man unterscheidet zwischen den stäb-
chenförmigen Zellen, welche tagsüber farbige Bil-
der liefern und den zapfenförmigen, nicht farbemp-
findlichen Zellen, welche nachts geringe Lichtstär-
ken wahrnehmen können.

Kurzsichtig: Brennweite zu kurz
unkorrigiert korrigiert

Weitsichtig: Brennweite zu lang

unkorrigiert korrigiert

Abbildung 7.86: Ursache von Sehfehlern und Kor-
rektur durch Brille.

Sehfehler entstehen wenn die Brechkraft der Lin-
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se nicht mit der Größe des Auges übereinstimmt.
Im Falle der Kurzsichtigkeit ist die Brechkraft zu
groß und das Bild entsteht vor der Netzhaut. Wie
in Abb. 7.86 gezeigt, kann dies korrigiert werden,
indem man eine Zerstreuungslinse einsetzt. Bei der
Weitsichtigkeit ist die Brechkraft zu gering. Sie wird
korrigiert durch eine Sammellinse.

α
d

Abbildung 7.87: Auflösungsgrenze für das Auge.

Die Auflösungsgrenze gilt auch für das Bild auf der
Netzhaut. Für einen Abstand von 25 mm (= Durch-
messer des Auges) und eine Wellenlänge von 600
nm findet man eine Auflösungsgrenze von ca. 3-4.8
µm. Die Abstände zwischen den Sehzellen betragen
ca. 3-5 µm (im "gelben Fleck": 1 µm), also opti-
miert auf die Auflösung. Die Auflösungsgrenze kön-
nen wir auch auf das Objekt beziehen: die Größe von
3 µm entspricht einem Winkel des Bildes (! Abb.
7.87) von

a =
3µm

25mm
= 1,2 ·10�4.

Damit kann man z.B. ein Objekt von der Größe 1.2
cm in einer Distanz von 100 m noch erkennen.

7.5.2 Vergrößerung und Mikroskop

Eine Motivation für das Studium der Optik war
immer die Entwicklung von Geräten, welche das
menschliche Sehvermögen erweitern. Das einfachste
derartige Instrument ist die Lupe. Sie kann als zu-
sätzliche Linse vors Auge gehalten werden, so dass
man Gegenstände betrachten kann, die sich näher
beim Auge befinden. Die Vergrößerung wird somit
primär durch die Verringerung des Objektabstandes
erreicht.

Mit bloßem Auge kann man typischerweise bis auf
eine Distanz von s0 ⇡ 25cm scharf sehen. Das Bild
eines Objektes der Größe G erscheint dann maximal
unter dem Winkel e0 ⇡ G/s0 (! Abb. 7.88 links).

Objekt im 
Fokus 
der Linse

G
minimale Distanz s0 ≈ 25 cm

ohne Vergrößerungsglas

ε

mit Vergrößerungsglas

 G 

ε

f

Abbildung 7.88: Vergrößerungsglas.

Verwendet man dagegen eine Linse, so kann man das
Objekt bis auf die Brennweite f an die Linse heran-
bringen, ohne dass das Auge angestrengt wird. Das
Objekt erscheint jetzt unter dem Winkel e = G/ f ,
das heißt um den Faktor

V =
G/ f
G/s0

=
s0

f

vergrößert. Je kleiner die Brennweite einer Lupe, de-
sto höher ist somit der Vergrößerungsfaktor.

G

Objektiv Okular

Abbildung 7.89: Mikroskop.

Eine wesentlich stärkere Vergrößerung erzielt man
mit dem Mikroskop. Wie in Abb. 7.89 gezeigt, be-
steht dieses aus einer Kombination von mindestens
2 Linsen. Die erste Linse, das Objektiv, erzeugt ein
Zwischenbild, welches größer ist als das Objekt.
“Groß” bezieht sich hier immer auf den Winkel e ,
unter dem das Objekt für den Betrachter erscheint.

Der Vergrösserungsfaktor beträgt

vZB =
t

fOb
.

Eine zusätzliche Vergrößerung dieses Zwischenbil-
des erreicht man, indem man es nicht mit dem nack-
ten Auge betrachtet, sondern mit einem Okular und
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damit wie bei einer Lupe einen geringeren Objektab-
stand erreicht. Dadurch wird eine weiter Vergröße-
rung um den Faktor

vO =
s0

fOk

erreicht, wobei s0 ⇡ 25 cm die “deutliche Sehweite”
beschreibt. Die gesamte Vergrößerung beträgt somit

v = vZBvO =
t sO

fOb fOk
.

7.5.3 Fernrohr

Ein Fernrohr ist wie das Mikroskop aus einem Ob-
jektiv und einem Okular aufgebaut.

Abbildung 7.90: Querschnitt durch ein Fernrohr.

Der wesentliche Unterschied zum Mikroskop be-
steht darin, dass hier ein weit entferntes Objekt in
ein Zwischenbild abgebildet wird. Damit ist vZB im-
mer kleiner als 1, d.h. das Zwischenbild ist kleiner
als das Objekt. Es ist aber auch näher als das Objekt
und erscheint deshalb - nach Betrachtung durch das
Okular - größer. Der Vergrößerungsfaktor wird hier
sinnvollerweise über den Sehwinkel berechnet.

f1 f2

α α’

Abbildung 7.91: Schema des Kepler’schen Fern-
rohrs.

Ein einfaches Kepler’sches Fernrohr kann man aus
zwei Linsen aufbauen, wie in Abb. 7.91 gezeigt. Wie
man leicht erkennt, wird ein Zwischenbild im Brenn-
punkt der ersten Linse erzeugt, d.h. beim Abstand
f1. Die zweite Linse stellt man so ein, dass das Zwi-
schenbild ebenfalls in der Brennebene liegt.

Abbildung 7.92: Kepler’sches Fernrohr im Hörsaal.

Abb. 7.92 zeigt eine Realisierung des Kepler’schen
Fernrohrs im Hörsaal.

Der Sehwinkel (genauer: dessen Sinus) vergrößert
sich demnach um das Verhältnis der beiden Brenn-
weiten,

a f1 = a 0 f2 ! a 0

a
=

f1

f2
.

Abbildung 7.93: Kepler’sches und Galilei’sches
Fernrohr.

Das Objekt ist aber auch invertiert, d.h. es steht auf
dem Kopf. Dies ist bei astronomischen Fernrohren
weniger relevant, bei terrestrischen Anwendungen
jedoch störend. Man kann dies auf unterschiedliche
Arten korrigieren, indem man für das Okular eine
Zerstreuungslinse verwendet und diese vor das Zwi-
schenbild stellt, wie im Galilei’schen Fernrohr (Abb.
7.93 rechts), oder indem man eine dritte Sammellin-
se einsetzt, welche das Bild nochmals invertiert (sie-
he Abb. 7.90). In diesem Fall wird das Gerät jedoch
sehr lang.

In einem Fernglas (siehe Abb. 7.94) richtet man das
Bild auf, indem man es durch zwei Prismen noch-
mals invertiert. Diese falten gleichzeitig den Strah-
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Abbildung 7.94: Strahlengang durch ein Fernglas.

lengang, so dass auch relative große Distanzen zwi-
schen Objektiv und Okular noch in ein handliches
Gerät passen.

Die größten Fernrohre werden in der Astronomie be-
nutzt. Allerdings benutzt man dort nicht Linsen für
die Abbildung. Diese wären zum einen zu groß und
würden andererseits zu starke Abbildungsfehler, ins-
besondere chromatische Aberration erzeugen.

zweiter 
Spiegel

Objektiv- 
Spiegel

Betrachter-
Bereich

Abbildung 7.95: Spiegelteleskop.

Dies wird eliminiert, indem man Spiegel verwendet:
diese weisen keine chromatische Aberration auf, da
die Wellenlänge beim Reflexionswinkel nicht auf-
taucht. Abb. 7.95 zeigt den entsprechenden Strah-
lengang in einem Spiegelteleskop. Spiegelteleskope
haben außerdem den Vorteil, dass sie zu wesentlich
größeren Durchmessern skaliert werden können.

7.5.4 Photometrie

Die Messung von Licht (Intensität, Helligkeit, Strah-
lungsleistung, räumliche und spektrale Verteilung
. . . ) ist eine eigene Wissenschaft. Die Strahlungslei-
stung (Einheit: W) bezeichnet die Energie, die pro
Zeiteinheit auf den Detektor trifft.

Offensichtlich hängt diese z.B. davon ab, wie weit
der Detektor von der Quelle entfernt ist. Bei einer

punktförmigen Quelle ist die Leistung durch eine
Fläche A proportional zum Raumwinkel W = A/r2,
wobei r den Abstand darstellen. Für eine volle Kugel
wird der Maximalwert von 4p erreicht.

Abbildung 7.96: Lichtstärke.

Die wichtigsten photometrischen Größen sind der
Lichtstrom und die Beleuchtungsstärke. Der Licht-
strom bezeichnet die von einer Quelle ausgehende
optische Leistung. Die Einheit ist das Lumen (lm).
Davon abgeleitet ist die Lichtstärke (! Abb. 7.96),
definiert als Lichtstrom pro Raumwinkel. Die Ein-
heit beträgt 1 Candela, 1 cd = l lm/sr. Sie ist als eine
der physikalischen Grundeinheiten, definiert als die
Lichtstärke einer Strahlung der Frequenz 540 · 1012

Hertz mit einer Strahlstärke von 1/683 Watt pro
Steradiant.

Abbildung 7.97: Beleuchtungsstärke.

Die Beleuchtungsstärke (! Abb. 7.97) bezeichnet
die Lichtleistung, welche auf eine Flächeneinheit des
Objektes fällt. Ihre Einheit ist das Lux (lx). Da es
sich bei Licht letztlich um elektromagnetische Fel-
der handelt, kann man die photometrischen Größen
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auch mit entsprechenden physikalischen Größen in
Beziehung setzen. Die kann zum Beispiel über die
abgestrahlte Leistung des schwarzen Strahlers ge-
schehen. Integriert man diese über den gesamten
spektralen Bereich, gewichtet aber mit der spektra-
len Empfindlichkeit des Auges, so erhält man das
Verhältnis zwischen Lichtstrom und Energiestrom
zu K = 680 lm/W .

7.6 Polarisation und
Doppelbrechung

7.6.1 Polarisation

Wie andere elektromagnetische Wellen ist Licht ei-
ne Transversalwelle. Es existieren deshalb zwei or-
thogonale Polarisationsrichtungen. Licht mit unter-
schiedlicher Polarisation kann in vielen Fällen ein
unterschiedliches Verhalten zeigen; ein Beispiel da-
für hatten wir bei der Reflexion diskutiert, wo un-
terschiedliche Polarisationen unterschiedliches Re-
flexionsverhalten zeigen. Polarisationseffekte spie-
len deshalb in der Optik eine wichtige Rolle.

k
x

y z

E
k

x

y z

E

Vertikale Polarisation Horizontale Polarisation

Abbildung 7.98: Elektrische und magnetische Fel-
der für lineare Polarisation.

Für eine mathematische Beschreibung von polari-
siertem Licht zerlegt man die Feldamplitude in zwei
linear unabhängige Transversalwellen, welche un-
terschiedlichen Richtungen der Auslenkung entspre-
chen (! Abb. 7.98). Allgemein kann man eine Basis
von solchen Polarisationszuständen wählen und die
allgemeine Welle als Superpositionszustand schrei-
ben. Wir beschreiben die beiden Polarisationen über
die Einheitsvektoren~e1,~e2 und das Feld eines allge-
meinen Polarisationszustand als

~E(~r, t) = (~e1E1 +~e2E2)exp(i~k ·~r � iwt).

Dabei sind die Amplituden E1 und E2 komplexe
Zahlen: der Imaginärteil bezeichnet den Phasenun-
terschied zwischen den beiden Wellen.

Als ein Beispiel wählen wir die Polarisationszustän-
de ~e1 und ~e2 entlang der x� und y�Achse. Für
E1 = E2 = 1 erhalten wir lineare Polarisation entlang
der Winkelhalbierenden. Allgemein erhält man line-
ar polarisiertes Licht wenn E1 und E2 dieselbe Phase
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aufweisen, also z.B. beide reell oder beide rein ima-
ginär sind. Das Verhältnis der Amplituden gibt den
Winkel der Polarisationsebene an.

Abbildung 7.99: Doppelbrechung in einem
Kalkspat-Kristall.

Je nach Material kann die Polarisation einen großen
Einfluss auf die Ausbreitung des Lichts haben. Ein
einfaches Beispiel ist ein doppelbrechender Kristall
auf einer Unterlage. Im Beispiel von Abb. 7.99
besteht der Kristall aus Kalkspat. Man sieht, dass
die darunter liegende Schrift doppelt sichtbar ist.
Was nicht direkt erkennbar ist: die beiden Bilder
sind unterschiedlich polarisiert. Den gleichen Effekt
kann man auch zeigen, indem man einen Laserstrahl
durch den Kristall laufen lässt. Auf dem Schirm sieht
man dann zwei dazugehörige Punkte. Mit dem Pola-
risationsfilter kann man feststellen, dass die Polari-
sationsrichtung der beiden Strahlen sich um 90 Grad
unterscheidet.

7.6.2 Erzeugung und Umwandlung

In einem Laser wird Licht direkt polarisiert erzeugt.
In einer Glühbirne hingegen ist die Polarisation der
einzelnen Photonen voneinander unabhängig und
das Licht insgesamt nicht polarisiert. Man kann in
diesem Fall nachträglich polarisiertes Licht herstel-
len, indem man es entweder in die beiden unter-
schiedlichen Polarisationen trennt oder eine Polari-
sationsrichtung herausfiltert. Es existieren viele op-
tische Elemente, die dafür konstruiert wurden, um
unterschiedliche Polarisationszustände zu erzeugen,
resp. ineinander umzuwandeln.

Am bekanntesten ist sicher der Polarisator, welcher

Polarisator

E

Transmis-
sionsachse

Abbildung 7.100: Transmission durch Polarisator.

auch in Sonnenbrillen Verwendung findet (! Abb.
7.100). Er erzeugt linear polarisiertes Licht, indem
die Anteile des Lichtes, welche die orthogonale Po-
larisation aufweisen, abgelenkt oder absorbiert wer-
den. Dass solche optischen Elemente in der Fotogra-
fie oder in Sonnenbrillen verwendet werden ist nur
sinnvoll, weil das Licht in der Natur polarisiert ist.
So ist Licht, welches auf einer Wasseroberfläche re-
flektiert ist, horizontal polarisiert. Auch das blaue
Licht des Himmels, welches durch Streuung von
Sonnenlicht entsteht, ist polarisiert, wobei die Po-
larisationsrichtung von der Richtung bezüglich der
Sonne abhängt. Dies kann man einfach überprüfen,
wenn man durch einen Polarisator, also z.B. eine
polarisierende Sonnenbrille den Himmel betrachtet:
Die Helligkeit ist richtungsabhängig, auch wenn der
Himmel ohne Sonnenbrille keine Helligkeitsunter-
schiede zeigt.

0.5 

   0 

-0.5 

  -1

Einfallswinkel

r⊥

r||

Brewster Winkel

Abbildung 7.101: Reflexionskoeffizienten als Funk-
tion des Einfallswinkels.

Eine wichtige Möglichkeit für die Erzeugung von
polarisiertem Licht ist die Reflexion. Wie in Abb.
7.101 gezeigt, weist der Reflexionskoeffizient für
Licht, das parallel zur Einfallsebene polarisiert ist,
als Funktion des Einfallswinkels einen Nulldurch-
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gang auf. Somit verschwindet die Reflexion bei ei-
nem Winkel

qB = tan�1 n.

Z.B. Kronglas ist n = 1.51 und somit qB = 56,5�.
Dieser Winkel wird als Brewsterwinkel bezeichnet
(! Kap. 7.3.6). Somit wird nur die senkrecht pola-
risierte Komponente reflektiert, und der reflektierte
Strahl ist vollständig polarisiert.

x

Polarisator

E

x’
x

Transmissionsachse
Analysator

Transmis-
sionsachse

θ

θ = 0 θ = 45o θ = 90o

Abbildung 7.102: Transmission durch 2 Polarisa-
toren unterschiedlicher Orientie-
rung.

Im Beispiel von Abb. 7.102 erzeugt der erste Polari-
sator aus unpolarisiertem Licht polarisiertes Licht.
Diese wird durch einen weiteren Polarisator ge-
schickt, welcher die Funktion eines Analysators hat.
Je nach Winkel zwischen den beiden kann Licht
durch die Kombination hindurch oder nicht. Man fin-
det eine sinus-förmige Abhängigkeit der Intensität
vom Winkel zwischen den beiden Polarisatoren:

It = I0 cos2 q .

Stellt man einen dritten Polarisator zwischen zwei
gekreuzte Polarisatoren, so erhöht man damit die
Transmission, falls dieser nicht die gleiche Stellung
hat wie einer der beiden anderen. Beträgt der Winkel
zwischen zwei aufeinander folgenden Polarisatoren
z.B. 45 Grad, so wird jeweils cos2(45�) = 1/2, ins-
gesamt somit 1/4 transmittiert.

7.6.3 Doppelbrechung

Eine andere Möglichkeit ist die Doppelbrechung:
Kristalle mit niedriger Symmetrie besitzen für un-
terschiedliche Polarisation des Lichtes unterschiedli-
che Brechungsindizes. Man kann sich das so vorstel-
len, dass die schwingenden Dipole in einem Kristall
bezüglich der Kristallachsen fest orientiert sind. Die
Stärke der Wechselwirkung zwischen der optischen
Welle und den schwingenden Dipolen hängt deshalb
davon ab, ob die Polarisation der Welle parallel oder
senkrecht zum Dipol orientiert ist.

e

o

optische 
Achse

Abbildung 7.103: Strahlengänge in einem doppel-
brechenden Material.

Dadurch werden Strahlen je nach Polarisation un-
terschiedlich gebrochen (! Abb. 7.103). Man un-
terscheidet die beiden Polarisationen danach, ob der
Brechungsindex von der Ausbreitungsrichtung ab-
hängt. Bei einer Polarisation ist der Brechungsin-
dex unabhängig von der Ausbreitungsrichtung; diese
Komponente wird als ordentlicher Strahl bezeichnet.
Bei der anderen Komponente, welche senkrecht zum
ordentlichen Strahl polarisiert ist, variiert der Bre-
chungsindex mit der Ausbreitungsrichtung. Dieser
Strahl wird als außerordentlich bezeichnet. Die bei-
den Brechungsindizes werden als ne und no bezeich-
net. Die Unterschiede zwischen den beiden können
sich im Bereich < 0.3 bewegen, wie in Tabelle 7.1
gezeigt.

Beispiele:

Material 
Kalkspat 
Turmalin 
Quarz 
Rutil

no 

1. 6584 
1.6425 
1.5442 
2.6158

ne 

1.4864 
1.6220 
1.5533 
2.9029

Tabelle 7.1: Brechungsindizes einiger doppelbre-
chender Materialien.
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Die unterschiedliche Ausbreitungsgeschwindigkeit
für die beiden senkrechten Polarisationen führt auch
dazu, dass der außerordentliche Strahl beim senk-
rechten Auftreffen auf eine ebene Fläche gebrochen
wird – dies ist ein qualitativ anderes Verhalten als bei
Materialien ohne Doppelbrechung.

unpolarisiertes 
Licht

 polarisiertes 
 Licht 

2 Prismen mit unterschiedlicher 
Orientierung

vertikale Polarisation wird 
abgelenkt und geblockt

Abbildung 7.104: Aufbau eines Glan-Thompson Po-
larisators.

Doppelbrechende Materialien werden z.B. in einem
Glan-Thompson Polarisator verwendet. Abb. 7.104
zeigt schematisch den Aufbau eines solchen Polari-
sators. Man kann solche Polarisatoren dazu verwen-
den, die beiden Polarisationen zu trennen. Blockt
man einen der beiden Teilstrahlen, kann damit po-
larisiertes Licht erzeugt werden.

Außerdem gibt es optische Elemente, welche ver-
schiedene Polarisationen ineinander umwandeln.
Die wichtigsten sind sogenannte Verzögerungsplat-
ten. Dazu verwendet man doppelbrechende Kristal-
le, bei denen der Brechungsindex von der Polarisati-
on des Lichtes abhängt. Dadurch erscheint der Kri-
stall für unterschiedliche Polarisationen unterschied-
lich dick.

7.6.4 Anwendungen

Abbildung 7.105: Spannungs-Doppelbrechung.

Die Doppelbrechung kann von äußeren Parametern
abhängen. Insbesondere mechanische Spannungen
können die optische Weglänge verändern. Man kann
diesen Effekt nachweisen, indem man das Material
zwischen zwei gekreuzte Polarisatoren (lineare oder
zirkulare) bringt, wie in Abb. 7.105 gezeigt. Ist ei-
ne Spannungs-Doppelbrechung vorhanden so wird
die Polarisation in der Probe gedreht und es kommt
zu einer Transmission durch den zweiten Polarisa-
tor. Der Effekt ist wellenlängenabhängig, so dass bei
der Bestrahlung mit weißem Licht unterschiedliche
Farben beobachtet werden. Man kann diesen Effekt
u. A. zur Untersuchung der Spannungsverteilung be-
nutzen.

Quarz aus Meteorit; Schichtstruktur 
als Resultat der Schockwellen

Quarz aus vulkanischem 
Gestein

Abbildung 7.106: Spannungs-Doppelbrechung in
Quarz unterschiedlicher Herkunft.

Viele Mineralien zeigen Doppelbrechung. Bringt
man sie zwischen gekreuzte Polarisatoren, wird des-
halb ein Teil des Lichtes transmittiert. Die Verzöge-
rung ist, wie der Brechungsindex selber, wellenlän-
genabhängig. Unterschiedliche Wellenlängen wer-
den deshalb unterschiedlich stark verzögert und da-
mit unterschiedlich stark abgeschwächt, so dass far-
bige Muster entstehen. Abb. 7.106 zeigt zwei Bilder
von Quarzkristallen.

In Abb.7.107 sind Eiskristalle dargestellt, welche
ähnliche Effekte zeigen. Außerdem gibt es Materia-
lien, bei denen der Brechungsindex durch Anlegen
von äußeren Feldern variiert werden kann, wie z.B.
in elektro-optischen Modulatoren (durch elektrische
Felder) oder in akustooptischen Modulatoren durch
die Wechselwirkung mit Schallwellen.
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Abbildung 7.107: Unterschiedlich orientierte Eiskri-
stalle mit eingeschlossenen Luft-
blasen.

7.6.5 Optische Aktivität

Viele organische Substanzen zeigen optische Aktivi-
tät, d.h. sie besitzen unterschiedlichen Brechungsin-
dex für die beiden entgegengesetzten zirkularen Po-
larisationen. Dies ist auf ihre molekulare Struktur
zurückzuführen. Diese Eigenschaft findet man z.B.
in Quarz; sie ist allerdings ca. 100 mal kleiner als
die lineare Doppelbrechung.

Schickt man linear polarisiertes Licht durch eine
Zuckerlösung, wird die Polarisationsebene gedreht.
Diesen Effekt findet man bei allen Molekülen, die
keine Inversionssymmetrie aufweisen.

7.7 Interferenz

Meist hat man nicht nur eine einzelne Welle, sondern
mehrere Wellen mit gleichen oder unterschiedlichen
Frequenzen, Phasen, Amplituden und Ausbreitungs-
richtungen. Bei ihrer Überlagerung spielt Interferenz
zwischen einzelnen (Teil-)Wellen eine wichtige Rol-
le.

Abbildung 7.108: Überlagerte Wasserwellen.

7.7.1 Linearität für Felder, nicht für
Intensitäten

Die Maxwell Gleichungen sind linear, sofern die da-
zu gehörigen Materialgleichungen auch linear sind.
Dementsprechend ist auch die daraus abgeleitete
Wellengleichung (6.14) linear, genau so wie die üb-
rigen in Kapitel 6 (Wellen) behandelten Gleichun-
gen. Verschiedene Wellen beeinflussen sich deshalb
nicht, genau so wie für die Wasserwellen in Abb.
7.108. Mathematisch bedeutet dies: wenn Y1 und Y2
Lösungen einer bestimmten Wellengleichung sind,
so sind auch alle Linearkombinationen

Y = a1Y1 +a2Y2

Lösungen dieser Wellengleichung.

Summe

Summe

Teilwellen 
in Phase

Teilwellen 
außer Phase

konstruktive 
Interferenz

destruktive 
Interferenz

Abbildung 7.109: Konstruktive und destruktive In-
terferenz.

Wellen gleicher Frequenz und Wellenlänge sum-
mieren sich je nach Phasendifferenz zu einer Ge-
samtwelle, die der Summe, der Differenz oder ei-
nem Wert dazwischen entsprechen kann, wie in Abb.
7.109 gezeigt. Dargestellt sind hier jeweils die Am-
plituden der Felder.

In der Optik beobachtet man in den meisten Fällen
nicht die Felder selbst, sondern die Intensität oder
Leistung einer Welle. Diese sind proportional zum
Quadrat des Feldes,

I µ |E|2.

Deshalb bezeichnet man optische Detektoren als
quadratische Detektoren. Praktisch alle Detektoren
funktionieren nach diesem Prinzip, so z.B. auch das
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menschliche Auge, Halbleiterdetektoren oder foto-
grafische Filme. Für die direkt gemessenen Größen,
wie die Intensität, ist die Physik nicht-linear. Damit
haben wir eine weitere Grenze der geometrischen
Optik erreicht, welche davon ausgeht, dass einzelne
Strahlen voneinander unabhängig sind.

7.7.2 Der Interferenzterm

Wenn zwei Felder A und B auf einen Detektor fal-
len, so misst dieser das Quadrat des resultierenden
Feldes, d.h. das Signal ist proportional zu

I µ |E|2 = (A+B)2 = A2 +B2 +2AB.

Dieses enthält, zusätzlich zur Summe der beiden
Teilsignale (= A2 + B2), einen zusätzlichen Term
2AB, der als Interferenzterm bezeichnet wird.

Für komplexe Amplituden A, B hängt dieser Term
von der relativen Phase der beiden Wellen ab. Das
Signal ist in diesem Fall proportional zum Absolut-
quadrat der Gesamtwelle, d.h.

I µ |A+B|2 = (A+B)(A+B)⇤

= AA⇤ +AB⇤ +A⇤B+BB⇤

= |A|2 + |B|2 +2¬{AB⇤}.

Der Interferenzterm kann auch geschrieben werden
als

2¬{AB⇤} = 2|AB|cos(jA �jB),

wobei jA,B die Phasen der einzelnen Wellen dar-
stellen. Die Interferenz wird somit maximal wenn
die beiden Phasen identisch sind. Man spricht dann
von konstruktiver Interferenz. Unterscheiden sich
die beiden Phasen um p, so wird der Signalbeitrag
negativ und man spricht von destruktiver Interferenz.
Die Interferenz verschwindet, wenn die beiden Wel-
len um p/2 außer Phase sind, so dass cos(jA �jB) =
0.

Abb. 7.110 zeigt die resultierende Intensität für
gleich starke Felder, |A| = |B| als Funktion der Pha-
sendifferenz

I = 2|A|2(1+ cos(jA �jB)).

Gesamtintensität für |A| = |B|

�1 � �2

0 2ππ/2 π 3π/2
0

1

2

3

4

I

|A|2

konstruktiv

destruktiv

Phasendifferenz

Abbildung 7.110: Gesamtintensität von 2 interferie-
renden Feldern als Funktion ihrer
Phasendifferenz.

j1 �j2 0 p/2 p/2 3p/2 2p
s/|A|2 4 2 0 2 4

Interfer. konstr. 0 destr. 0 konstr.

Neben der Phasenlage muss auch die Polarisation
der beiden Felder übereinstimmen: Sind die beiden
Felder orthogonal polarisiert (z.B. x-, und y-), so ent-
steht keine Interferenz.

7.7.3 Interferenz von 2 ebenen Wellen

Eine gute Möglichkeit für die Untersuchung sol-
cher Interferenzeffekte bietet die Überlagerung von
zwei Laserstrahlen. Die beiden Strahlen können nä-
herungsweise als ebene Wellen betrachtet werden.

Abb. 7.111 zeigt die Überlagerung von zwei ebe-
nen Wellen, die unter einem kleinen Winkel q auf
einen Schirm fallen. Die beiden Felder verstärken
sich gegenseitig wenn sie in Phase sind und interfe-
rieren destruktiv wenn sie außer Phase sind. Dies ge-
schieht jeweils entlang einer Geraden senkrecht zum
Schirm. Den Abstand zwischen zwei solchen Gera-
den findet man, indem man verlangt, dass die Pha-
sendifferenz ein ganzzahliges Vielfaches von 2p be-
trägt. In der Richtung senkrecht zum Schirm ist die-
ser Abstand eine Wellenlänge. Parallel zum Schirm
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Intensität

θ
θ

λ

Abbildung 7.111: Gesamtintensität von 2 interferie-
renden Feldern, die unter einem
Winkel q auf einen Schirm fallen.

entspricht er

d =
l

2sinq/2
⇡ l

q
,

wobei die Näherung für kleine Winkel gilt, q ⌧ 1.
Der Abstand wird also umso größer, je kleiner der
Winkel wird. Für parallele Strahlen verschwindet die
Ortsabhängigkeit, für gegenläufige Strahlen (q = p)
erreicht der Abstand sein Minimum bei der halben
Wellenlänge, dmin = l/2.

7.7.4 Zweistrahlinterferenz an dünnen
Schichten

Wenn Licht an einer planparallelen Platte reflektiert
wird, so erhält man je einen Reflex von der Vorder-
und der Rückseite. Diese beiden reflektierten Wellen
stammen von der gleichen Welle und können des-
halb interferieren. Die erste Welle erhält außerdem
eine Phasenverschiebung um p , da sie am optisch
dichteren Medium reflektiert wird.

Wie in Abb. 7.112 dargestellt, beträgt die Phasendif-
ferenz für senkrechten Einfall

dj = p+4pn
d
l0

,

mit l0 als Vakuumwellenlänge und n und d Bre-
chungsindex und Dicke der Platte oder des dünnen
Films. Somit wird der reflektierte Strahl minimal

d

Phasensprung

Abbildung 7.112: Reflexionen an einer dünnen
Schicht.

wenn die Weglängendifferenz ein Vielfaches der op-
tischen Wellenlänge l ist, resp.

2dn = ml , m = 0,1,2, . . . ,

d.h. wenn die Dicke der Schicht ein ganzzahliges
Vielfaches der halben Wellenlänge ist. m = 0 ent-
spricht einer Schicht verschwindender Dicke; in die-
sem Fall tritt keine Reflexion auf.

Verstärkte Reflexion durch konstruktive Interferenz
erhält man, wenn die Phasendifferenz ein Vielfaches
von 2p ist, d.h. wenn

2dn = (2m+1)
l
2

.

Abbildung 7.113: Interferenzfarben auf einer Sei-
fenlamelle.

Eine solche dünne Schicht kann man z.B. sehr gut
durch eine Seifenhaut darstellen, wie z.B. in Abb.
7.113. Da die Interferenzbedingung von der Wel-
lenlänge abhängt wird sie nicht für alle Farben des
Spektrums gleichzeitig erfüllt.
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Außerdem ist die Dicke der Seifenhaut nicht überall
gleich: Die Schwerkraft zieht die Lösung nach unten
und führt deshalb zu einer Abfolge von Interferenz-
streifen.

7.7.5 Farben dünner Filme

Interferenz kann auch Farbwirkungen erzeugen.
Man findet solche Effekte z.B. bei Seifenlamel-
len, Ölfilmen, Aufdampfschichten, Oxidschichten,
Schmetterlingen oder Vogelfedern. Die Bedingung
für konstruktive Interferenz hängt von der Wellen-
länge ab. Wir betrachten als Beispiel eine Lamellen-
dicke 350 nm, Brechungsindex n = 1.33. Dann er-
wartet man bei folgenden Wellenlängen positive In-
terferenz:

lm =
4dn

2m+1
.

Die maximale Wellenlänge ist somit

l0 = 4dn = 1862nm.

Die weiteren Wellenlängen sind

m 2m+1 lm/nm
0 1 1862
1 3 621
2 5 372
3 7 266

Nur die Wellenlänge 621 nm ist sichtbar. Somit ist
diese Lamelle rot. Variiert die Dicke der Schicht, wie
z.b. bei einem Seifenfilm, so ändert sich die Wel-
lenlänge, bei der Reflexion maximal wird. Dadurch
werden Seifenblasen oder dünne Ölfilme farbig.

Interferenzfarben kommen auch in der Natur vor,
wobei entweder die Dicke einer Schicht oder die
Größe von kleinen Partikeln angepasst wird. Abb.
7.114 zeigt einige Beispiele.

7.7.6 Entspiegelung

Man kann die Interferenz an dünnen Schichten be-
nutzen, um Reflexionen zu eliminieren, z.B. auf ei-
nem Brillenglas, einer Kameralinse oder der Optik in

Abbildung 7.114: Interferenzfarben auf einer Sei-
fenblase, einem Ölfilm und bei
Tieren.

einem Laser. Wir betrachten als Beispiel eine Glaso-
berfläche mit Brechungsindex n2 = 1,5. Monochro-
matisches Licht der Wellenlänge l0 soll senkrecht
auf diese Oberfläche auftreffen. Normalerweise er-
hält man von der Oberfläche eine Reflexion von etwa
4% des Lichtes.

d

n0 = 1

Abbildung 7.115: Reflexion an einer dünnen Schicht
auf einem Substrat.

Bringt man auf diese Oberfläche eine Schicht der
Dicke d mit dem Brechungsindex n1 auf, dann er-
geben sich zwei Grenzflächen: eine zwischen Luft
(n0 = 1) und n1 und die andere von n1 nach n2. An
beiden Grenzflächen wird eine Teilwelle reflektiert,
wie in Abb. 7.115 gezeigt, und die beiden überlagern
sich. Der Brechungsindex dieser Schicht liegt zwi-
schen dem Brechungsindex von Glas und dem von
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Luft, so dass beide Wellen einen Phasensprung er-
leiden. Monochromatisches Licht der Wellenlänge l
soll senkrecht auf diese Oberfläche auftreffen.

Die Reflektivität der ersten Grenzfläche ist, für nä-
herungsweise senkrechten Einfall,

E(r1)

E(i) =
n1 �1
n1 +1

.

Als Vereinfachung kann die Abschwächung der
transmittierten Welle vernachlässigt werden. Dann
ist die Amplitude der zweiten reflektierten Teilwelle

E(r2)

E(i) =
n2 �n1

n2 +n1
.

Diese Teilwelle hat dabei eine zusätzliche optische
Weglänge von 2n1d und dadurch eine Phasenverzö-
gerung um

dj = 4pn1
d
l0

,

wobei l0 die Vakuum-Wellenlänge darstellt.

Diese Summe der beiden Teilwellen ist

E(r1) +E(r2) = E(i)
✓

n1 �1
n1 +1

+
n2 �n1

n2 +n1
eidj

◆
.

Entspiegelung, also Elimination der reflektierten
Welle tritt dann auf, wenn destruktive Interferenz
zwischen den beiden Teilwellen dazu führt, dass die-
se Summe verschwindet. Damit dies der Fall ist,
müssen zwei Bedingungen erfüllt sein:

1. Der zweite Term muss reell und negativ sein,
d.h. der Phasenfaktor eidj = �1 oder

dj = p ! d =
l0

4n1
.

Man spricht deshalb von einer l/4 Beschich-
tung.

2. Der Betrag der beiden Terme muss gleich sein,

n1 �1
n1 +1

=
n2 �n1

n2 +n1
.

Daraus folgt

(n1 �1)(n2 +n1) = (n1 +1)(n2 �n1)

n1n2 +n2
1 �n2 �n1 = n1n2 �n2

1 +n2 �n1

n1 =
p

n2.

Die reflektierte Feldstärke verschwindet somit genau
dann, wenn

n1 =
p

n2 und d =
l0

4n1
.

Für Glas (n ⇡ 1,5) ist somit eine Entspiegelung mit
einem Material mit Brechungsindex n1 ⇡ 1,22 mög-
lich. Dabei ist die Wirkung nur bei einer Wellenlänge
vollständig. Wird ein breiterer Wellenlängenbereich
benötigt, muss man mehrere Schichten aufbringen.

7.7.7 Newton’sche Ringe

Abbildung 7.116: Newton’sche Ringe.

Eine andere Anwendung sind die Newton’schen Rin-
ge: Sie ergeben sich durch Zweistrahlinterferenz
wenn man eine Linse auf einen ebenen Spiegel
legt. Wir betrachten die beiden Strahlen, welche sich
durch Reflexion an der unteren Linsenfläche und der
Oberfläche des Spiegels ergeben. Da die zweite Teil-
welle einen bei der Reflexion einen Phasensprung
macht, löschen sich die beiden Wellen aus, wenn die
Weglängendifferenz ein ganzzahliges Vielfaches der
Wellenlänge ist, d.h. wenn

2d = ml .

Immer wenn die Dicke des Luftspaltes um l/2 zu-
nimmt, entsteht ein zusätzlicher Interferenzring. Die
Dicke des Luftspaltes nimmt quadratisch mit dem
Abstand r vom Zentrum der sphärischen Linse zu:

d =
r2

2R
.
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Dies kann man auflösen nach den Radien rm, bei de-
nen Auslöschung stattfindet:

rm =

r
2R

ml
2

=
p

mlR.

Offenbar nimmt der Abstand zwischen aufeinander-
folgenden dunklen Ringen ab. Dies ist in Abb. 7.116
deutlich erkennbar. Solche Muster werden z.B. zur
Qualitätssicherung verwendet, da man sehr genau
die Oberfläche ausmessen kann.

Interferenz kommt nur zustande, wenn die interfe-
rierenden Wellen die gleiche Polarisation aufweisen.
So interferieren die beiden Teilstrahlen nicht, welche
beim Durchgang von unpolarisiertem Licht durch
Kalkspat entstehen. Bringt man jedoch einen Polari-
sator in den Strahl, so werden beide Teilstrahlen da-
durch auf eine gemeinsame Polarisationsebene pro-
jiziert und können deshalb interferieren. Die resul-
tierenden Interferenzmuster sind farbig, da die Diffe-
renz der optischen Weglängen von der Wellenlänge
abhängt. Verwendet man monochromatisches Licht
so sind entsprechend mehr Interferenzringe sichtbar.

7.7.8 Interferometer als Messinstrumente

Probe

FTIR Spektrometer

Abbildung 7.117: Michelson Interferometer als
Spektrometer für das Fern-
Infrarot.

Wahrscheinlich das bekannteste optische Interfero-
meter ist der Typ des Michelson Interferometers,
welches in Abb. 7.117 schematisch dargestellt ist.
Dieses System wurde von Michelson und Morley
zur Messung der Lichtgeschwindigkeit verwendet.
Dabei wird ein Lichtstrahl an einem Strahlteiler

in zwei Teile aufgeteilt, die zwei unterschiedliche
Wege durchlaufen. Nach Reflexion an einem Spie-
gel werden sie auf dem gleichen Strahlteiler wieder
kombiniert. Haben beide Strahlen den gleichen op-
tischen Weg zurückgelegt, so beobachtet man kon-
struktive Interferenz; ist der Wegunterschied gerade
gleich der halben Wellenlänge, so beobachtet man
destruktive Interferenz.

Verwendet man einen Strahl, der nicht vollständig
einer ebenen Welle entspricht, so erscheinen auf dem
Schirm Ringe, die mit den Newton’schen Ringen
vergleichbar sind. Man kann sich aber auf das Zen-
trum des Ringsystems konzentrieren. Bei diesem In-
terferometer kann die Länge des einen Arms durch-
gefahren werden. Fährt man mit einem Motor einen
der Arme durch, wo sieht man die Ringe über den
Schirm wandern.

Michelson Interferometer haben unterschiedlichste
Verwendungen. Bei einem Weglängenunterschied
von d = 0 ist die Interferenz für alle Wellenlängen
positiv, resp. negativ. Bei einer endlichen Weglän-
gendifferenz kann positive Interferenz für bestimm-
te Wellenlängen auftreten, negative für andere. Man
kann Michelson Interferometer deshalb für die Ana-
lyse von Lichtwellenlängen verwenden. So enthalten
die sog. FTIR (=Fourier Transform Infrarot) Spek-
trometer ein Michelson Interferometer, in dessen ei-
nem Arm die zu untersuchende Probe steht. Andere
Anwendungen verwenden diese Interferometer um
Weglängen oder Brechungsindizes zu bestimmen.

Abbildung 7.118: Gravitationswellen-
Interferometer GEO600.

Abb. 7.118 zeigt einige Bilder vom GEO600 Gravi-
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tationswellen Interferometer, welches eine Armlän-
ge von 600 m aufweist. Die größten Geräte dieses
Typs weisen eine Armlänge von mehreren km auf
und werden für den Nachweis von Gravitationswel-
len verwendet. Solche Geräte existieren in mehreren
Ländern und können relative Längenänderungen von
weniger als10�20 nachweisen. Das bedeutet auf die
Armlänge von etwa 3 km bezogen eine Längenän-
derung um weniger als 1 Prozent eines Atomkern-
durchmessers. Damit wurden seit September 2015
mehrere Male Gravitationswellen nachgewiesen.

7.7.9 Vielstrahlinterferenz

D sinα

D α

Abbildung 7.119: Interferenz von n Quellen.

In vielen Fällen interferieren mehr als zwei Wellen.
Als ein einfaches Beispiel dafür betrachten wir n
gleiche Quellen, die sich auf einer Geraden befinden.
Sie sollen die gleiche Frequenz haben. Wir betrach-
ten das resultierende Intensitätsmuster in einer Rich-
tung, die durch den Winkel a gegenüber der Nor-
malen gegeben sei. Die Weglängendifferenz in diese
Richtung zwischen den Beiträgen zweier benachbar-
ten Quellen beträgt (siehe Abb. 7.119)

D = Dsina.

Sind alle Quellen in Phase, so führt diese Weglän-
gendifferenz beim Beobachter zu einer Phasendiffe-
renz zwischen den Beiträgen benachbarter Quellen
von

d = 2p D
l

= 2p Dsina
l

.

Je nach Richtung a können die Phasendifferenzen
zu konstruktiver oder destruktiver Interferenz füh-
ren.

Wir suchen nun die Bedingung dafür, dass die ver-
schiedenen Beiträge konstruktiv interferieren, dass
also d ein ganzzahliges Vielfaches von 2p ist:

d = 2pD
sina

l
= 2pm,

d.h. wenn

Dsina = ml

oder

sina = m
l
D

, m = 0, ±1, ±2, . . . .

n=2

n=3

n=10

0 π/2-π/2

Abbildung 7.120: Interferenzmuster von n Quellen.

In diese Richtungen erhalten wir eine maximale po-
sitive Interferenz, d.h. maximale Intensität. Falls l <
D existieren mehrere Lösungen.

Für den Fall von n = 2 Quellen variiert die Inten-
sität zwischen den beiden Maxima cosinus-förmig.
Für n Quellen addieren sich n Cosinus-Funktionen
zur Amplitude

A(sina) = Â
k=1,n

ak cos(kd ).

Wie man sich leicht überzeugen kann, ist das Re-
sultat proportional zu n, wenn die obige Bedingung
für konstruktive Interferenz erfüllt ist. Das Resul-
tat stellt eine Fourier-Reihe dar, deren Koeffizienten
ak durch die Amplituden der einzelnen Quellen ge-
geben sind. Wir betrachten hier zunächst identische
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Amplituden, ak = a0. Zwischen den Interferenzma-
xima nähert sich die Kurve der Nulllinie. Da die In-
terferenz nur in eine Richtung (resp. eine diskrete
Zahl von Richtungen) konstruktiv ist, erreicht man
auf diese Weise eine Richtungsabhängigkeit der ab-
gestrahlten Welle. Je größer die Anzahl der beteilig-
ten Wellen, desto stärker die Richtungsabhängigkeit.
In Abb. 7.120 sind die Intensitäten als Funktion des
Winkels a für eine Zahl von n = 2, 3, 10 Quellen
dargestellt.

Die Richtung, in die konstruktive Interferenz auftritt,
ist durch die obige Bedingung, aber auch durch die
Phase der Quellen bestimmt. Indem man die Pha-
se der einzelnen Quellen verschiebt, kann man die
Richtung des Interferenzmaximums steuern. Wird
zwischen benachbarten Quellen eine Phasendiffe-
renz von f geschaltet, so verschiebt sich die Inter-
ferenzbedingung zu

Dsina �f = ml .

Damit kann man die Abstrahlrichtung verschieben.

φ =π/2

φ =0

D=1,5λ 
n=10

-π/2 π/20 Ablenkrichtung α

Abbildung 7.121: Effekt von unterschiedlichen Pha-
sen der Quellen.

Im Beispiel von Abb. 7.121 wurde die Phasendiffe-
renz f = p/2 gewählt. Dadurch verschiebt sich die
Lage der Interferenzmaxima um (p/2)/2p = 1/4
des Abstandes der Maxima.

Diese Möglichkeit wird z.B. beim Radar verwen-
det. Man kann Radarstrahlen in bestimmte Richtun-
gen abstrahlen, die durch die relative Phase zwischen
einer großen Zahl von kleinen Antennen festgelegt
sind. Diese Art von Radaranlagen wird als “Phased
Array Radar” bezeichnet und vor allem im militäri-
schen Bereich verwendet. Abb. zeigt eine typische
Antenne.

(Sci. Am., Feb. 1985)

← Gesamtantenne
Einzelantennen ↓

Abbildung 7.122: Phased-Array Radar Antenne.

7.7.10 Kohärenz

Wir haben bisher angenommen, dass die verschie-
denen Lichtquellen eine konstante Phasendifferenz
(die gleich null sein kann) besitzen. Dies ist nicht
immer der Fall. Wenn man in einem Zimmer meh-
rere Lichtquellen einschaltet, wird es überall heller
– offenbar gibt es keine Interferenz. Der Grund ist
dass Wellen (z.B. Licht) nur dann Interferenzmuster
bilden können wenn sie eine definierte Phasenbezie-
hung zueinander aufweisen.

Welle A

Welle B Phasensprünge

Summe

Überlagert

Abbildung 7.123: Kohärenzlänge eines Wellenzu-
ges.

Die Phase einer optischen Lichtquelle kann zeitlich
und räumlich variieren, wie in Abb. 7.123 gezeigt.
Man quantifiziert die Phasenkonstanz sowohl be-
züglich ihres räumlichen, wie auch ihres zeitlichen
Verhaltens und bezeichnet diese als Kohärenz. Eine
zeitlich kohärente Lichtquelle ist per Definitionem
monochromatisch. Diese Bedingung wird für keine
Lichtquelle absolut erfüllt.

Abb. 7.124 zeigt zwei etwas unterschiedliche Aspek-
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Inter- 
ferenz

zeitliche Kohärenz

Wellenfronten Glasfasern 
(unterschiedlich lang)

räumliche Kohärenz

Inter- 
ferenz

Glasfasern 
(gleich lang)

Wellenfronten

Abbildung 7.124: Zeitliche vs. räumliche Kohärenz.

te der Kohärenz. Für die zeitliche Kohärenz ist die
Korrelationsfunktion ct(t) durch das Produkt der
Feldamplituden an einem bestimmten Ort zu unter-
schiedlichen Zeiten gemessen:

ct(t) = hE(~r, t)E⇤(~r, t + t)i.

Bei räumlicher Kohärenz wird die Feldamplitude an
zwei unterschiedlichen Orten verglichen:

cr(~r) = hE(~r, t)E⇤(~r +~r, t)i.

Die Kohärenzlänge bezeichnet diejenige Distanz,
über welche die Kohärenz cr(~r) auf cr(0)/e abfällt.
Entsprechend bezeichnet die Kohärenzzeit die Zeit,
bei der ct(t) auf 1/e des Maximalwerts abgefallen
ist.

Licht Bandbreite Kohärenz-
länge

“weisses Licht” 200 THz 1.5 µm
Spektrallampe 1.5 GHz 20 cm
Halbleiterlaser 10 MHz 30 m

HeNe Laser, stab. 150 kHz 2 km
stab. Laser 1 Hz 300000 km

Tabelle 7.2: Bandbreite und Kohärenzlänge von ei-
nigen typischen Lichtquellen.

Diese Größen variieren über einen weiten Bereich.
Tabelle 7.2 vergleicht sie für einige typische Licht-
quellen. Die Bandbreite entspricht der inversen Ko-
härenzzeit. Eine thermische Lichtquelle hat ein brei-
tes Frequenzspektrum. Die Frequenz und damit die
Phase sind nicht exakt definiert, resp. sie variie-
ren rasch. Thermische Lichtquellen haben deshalb
vollständig zufällige Phasen. Einzelne Atome besit-
zen ein scharfes Linienspektrum und somit relativ

gut definierte Frequenz. Die Phase ist jedoch immer
noch zufällig, da der Zeitpunkt, zu dem das Atom
sein Photon aussendet, durch den Zufall bestimmt
wird. Im Gegensatz dazu weist ein Laser über ei-
ne gewisse Zeit eine konstante Phase auf. Für einen
kommerziellen Laser liegt diese Zeit bei etwa ei-
ner µs, bei einem hochgezüchteten Forschungsgerät
kann sie bis auf etwa eine Sekunde verlängert wer-
den. Man kann solche Kohärenzzeiten praktisch nur
messen, indem man die Phasen von zwei unabhängi-
gen Lasersystemen vergleicht.

Auch mit thermischen Quellen können räumlich ko-
härente Quellen erzeugt werden, indem man z.B.
einen dünnen Spalt oder ein kleines Loch beleuch-
tet. Sofern die Dimensionen dieser Sekundärquellen
klein sind im Vergleich zur Kohärenzlänge der Pri-
märquelle, verbessert man damit die Kohärenzeigen-
schaft. Die räumliche Kohärenz bestimmt, z.B., wie
gut das entsprechende Licht fokussiert werden kann.
Man kann zwei (zueinander) räumlich und zeitlich
kohärente Lichtstrahlen erzeugen, indem man einen
Lichtstrahl an einem Strahlteiler trennt. Allerdings
darf die Weglängendifferenz zwischen den beiden
Teilstrahlen nicht mehr als die Kohärenzlänge sein.

7.7.11 Anwendungen

Die Messung der räumlichen Kohärenz einer Licht-
quelle erlaubt z.B. die Messung des Durchmessers
von Sternen: eine punktförmige Quelle ist immer
räumlich (aber nicht unbedingt zeitlich) kohärent.
Ein Stern hat aber eine endliche Oberfläche, deren
Teile zueinander nicht kohärent sind.

Indem man die Phase von Lichtstrahlen im Abstand
von einigen Dutzend Metern misst (! Abb. 7.125),
kann man die Ausdehnung eines Sterns bestimmen.
Die Bedingung hierfür ist praktisch identisch wie
die Auflösungsbedingung von Abbé. Für eine Punkt-
quelle bildet die Überlagerung der beiden Strahlwe-
ge, wie bei einem Doppelspaltexperiment, ein In-
terferenzmuster. Durch den endlichen Durchmesser
überlagern sich mehrere solche Interferenzmuster. Je
größer der Abstand zwischen den beiden Spiegeln,
desto geringer die Periode des Interferenzmusters.
Durch die Überlagerung von vielen solchen Interfe-
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Abbildung 7.125: Messung eines Sterndurchmes-
sers mit Hilfe eines Interferome-
ters.

renzmustern, welche von räumlich getrennten Punk-
ten auf dem Stern erzeugt werden, verschwindet das
Interferenzmuster, wenn der Spiegelabstand und der
Sterndurchmesser groß genug sind.

Das grundsätzliche Idee dafür stammt von Fizeau,
ein genauer Vorschlag von Michelson. Er wurde zu-
erst am Mount Wilson Observatorium in den USA
realisiert und dazu verwendet, den Durchmesser von
Beteigeuze zu bestimmen (1920). Nach aktuellem
Wissensstand beträgt er etwa 662 Sonnendurchmes-
ser. Im Bereich der Radioastronomie verwendet man
ähnliche Interferometer mit Basislinien von bis zu
10000 km.

In der Medizin verwendet man Kohärenztomogra-
phie für optische Messungen in streuendem Gewebe,
z.B. in der Haut.

7.8 Beugung

Mit Beugung bezeichnet man die Ausbreitung von
Wellen, welche nicht mehr durch die Strahlenoptik
beschrieben werden kann.

7.8.1 Grenzen der geometrischen Optik

Die geometrische Optik ist eine gute Näherung in
den Fällen, in denen die Wellenlänge des Lichts
klein ist im Vergleich zu allen relevanten Distanzen.
Wenn diese Näherung nicht erfüllt ist, ergeben sich
zusätzliche Effekte, welche als Beugung bezeichnet
werden. Ein typisches Beispiel ist der Fall, dass eine
weit entfernte Quelle ein Loch in einem Schirm be-
leuchtet. Im Rahmen der geometrischen Optik würde
man erwarten, dass sich vom Loch aus ein paralleles
Lichtbündel, also ein Lichtstrahl ausbreitet. Dies ist
allerdings nicht der Fall, wenn das Loch genügend
klein ist, wie man z.B. anhand eines Experimentes
mit einer Wellenwanne nachweisen kann.

Quelle

λ > d

Abbildung 7.126: Beugung am Spalt.

Das Experiment zeigt, dass diese Näherung durch-
aus sinnvoll ist, wenn das Loch groß genug ist. Wenn
das Loch kleiner ist als die Wellenlänge (! Abb.
7.126 ), so wirkt es als eine punktförmige Quelle
einer Kugelwelle. Diese erzeugt eine praktisch iso-
trope Intensitätsverteilung. Im Zwischenbereich, wo
die Dimension des Spaltes vergleichbar wird mit der
Wellenlänge, findet man auf einem Schirm rechts des
Spalts nicht nur einen einzelnen Fleck, sondern zu-
sätzlich konzentrische Ringe.

Dieses Phänomen tritt bei optischen Wellen ge-
nau so auf wie bei Wasserwellen. Allerdings sind
sie aufgrund der geringen Wellenlänge nicht so
leicht beobachtbar. Die ersten Beugungseffekte wur-
den von Francesco Grimaldi 1660 berichtet, aber
kaum beachtet. Klare Belege kamen 1801 von Tho-
mas Young (1773-1829), doch auch diese wurden
nicht allgemein anerkannt. Erst Augustin Fresnel
(1788-1827) konnte der Wellentheorie wirklich zum
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Durchbruch verhelfen.

Scheibe
Schirm

Abbildung 7.127: Poisson’s Vorhersage für Beu-
gung an einer Scheibe.

Eine wichtige Rolle bei dieser Kontroverse spiel-
te die Beugung an einer undurchsichtigen runden
Scheibe. Der Mathematiker und Physiker Denis
Poisson wendete die Fresnel’sche Wellentheorie auf
diese Scheibe an und zeigte, dass man dann in der
Mitte des Schattens einen hellen Fleck erwarten wür-
de – eine Konsequenz, die er als klaren Beweis da-
für ansah, dass die Theorie falsch sein müsse. Abb.
7.127 zeigt schematisch, wie dieser zustande kommt.
Fresnel konnte aber kurze Zeit später experimentell
diesen Punkt zeigen, der seither als Poisson’scher
Fleck bekannt ist.

Abbildung 7.128: Camera Obscura.

Beugungseffekte müssen u. A. berücksichtigt wer-
den, wenn es um die optimale Abbildungsschärfe ei-
ner Kamera geht. Bei einer “Camera obscura”, wel-
che keine Linse hat, führt eine Verkleinerung der
Öffnung zu einer besseren Schärfe der Abbildung,
wie in Abb. 7.128 gezeigt. Das gleiche gilt bei Ka-
meras mit Linsen eingeschränkt, weil bei kleinerer
Blendenöffnung die Linsenfehler geringer werden.

Beugungseffekte erzeugen bei kleinen Öffnungen je-
doch Abweichungen, welche wieder zu einer Ver-
schlechterung der Abbildung führen.

Auch Licht, das ein ausgedehntes Objekt trifft, er-

Abbildung 7.129: Bild in einer Camera Obscura für
unterschiedliche Blenden.

AbstandKante

geometrischer 
Schatten

In
te
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t

Abbildung 7.130: Beugungsmuster an einer Kante.

zeugt keinen exakt geradlinigen Schatten. Jede Kan-
te erzeugt ein Beugungsmuster wie in Abb. 7.130
gezeigt. Allerdings ist dieses nur für monochromati-
sches Licht gut sichtbar. Der Abstand zwischen den
Interferenzmaxima hängt von der Wellenlänge ab.
Verwendet man weißes Licht, so verwischen sich
deshalb die verschiedenen Interferenzmuster, resp.
manifestieren sich als regenbogenfarbiger Rand.

7.8.2 Beugung am Spalt

Wir betrachten zunächst das Beugungsmuster das
durch einen eindimensionalen Spalt erzeugt wird.
Wir betrachten dabei nur den Fall eines weit ent-
fernten Schirms. Dabei spricht man von Fraunhofer-
Beugung. Ein typisches Beugungsmuster enthält ne-
ben dem direkten Bild des Spalts auch helle Streifen
parallel dazu.

Dass neben dem zentralen Maximum weiteres Licht
den Schirm erreicht, kann leicht an einem sehr
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Elementarwelle am SpaltExp. Beugungsmuster

Abbildung 7.131: Beugung an einem Spalt.

schmalen Spalt eingesehen werden: Ist der Spalt
schmaler als die Lichtwellenlänge, so wirkt er als
Quelle einer zylinderförmigen Welle, welche den
rechten Halbraum ausleuchtet, wie in Abb. 7.131 ge-
zeigt.

Auslöschung auf 
Schirm in großer 
Distanz

φ

x

a

Abbildung 7.132: Beugung an einem Spalt.

Dass neben den hellen Streifen auch dunkle auftre-
ten, erkennt man, wenn man einen Spalt betrachtet,
der etwas breiter ist als die Lichtwellenlänge. Für
die in Abb. 7.132 eingezeichnete Richtung j hat die
Welle, die aus dem Zentrum des Spalts stammt, ge-
genüber der Welle vom unteren Rand einen Weg, der
um asinj länger ist. Für

asinj =
l
2

sind die beiden Teilwellen um p außer Phase. So-
mit wird jeder Beitrag der unteren Hälfte durch einen
Beitrag der oberen Hälfte exakt aufgehoben und auf
dem Schirm erscheint ein dunkler Streifen.

Gemäß dem Prinzip von Huygens können wir die
Feldamplitude in Richtung j als Integral über Ku-
gelwellen ausrechnen, die entlang dem Spalt ange-
ordnet sind. Im Fernfeld ist der Term 1/r für alle

Beiträge praktisch gleich groß und kann vernachläs-
sigt werden. Bei der Phase eikr = ei2pr/l muss nur
die Differenz der Weglängen berücksichtig werden.
Diese beträgt laut Abb. 7.132 x sinj , mit x der Po-
sition im Spalt an dem die Elementarwelle ihren Ur-
sprung hat und j der Richtung zum Punkt P. Die
resultierende Phasenverschiebung ist damit

Da = xsinj 2p
l

.

Die gesamte Amplitude an einem Punkt in der Rich-
tung j erhalten wir als Integral über die Beiträge
über den gesamten Spalt:

E(sinj) = E0

Z a/2

�a/2
dxei2pxsinj/l

= E0
ei2pxsinj/l

i2p sinj/l

�����

a/2

�a/2

= E0
sin(pasinj/l )

p sinj/l
= E0a

sinb
b

mit

b = pa
sinj

l
.

Wir finden somit, dass das Beugungsmuster als
Funktion von sinj gerade als die Fouriertransfor-
mierte des Spaltes gegeben ist. Im Falle eines ein-
fachen Spaltes ist dies die sinc-Funktion.

Beugungsrichtung β

E � sin �

�

� =
�a sin �

�

I �
✓

sin �

�

◆2

Abbildung 7.133: Winkelabhängigkeit von Feldstär-
ke und Intensität bei Beugung an
einem Spalt.

Die Intensität ist wie immer proportional zum Qua-
drat des Feldes, also zum Quadrat der sinc-Funktion,

I µ
✓

sinb
b

◆2

,
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wie in Abb. 7.133 gezeigt. Es bilden sich eine Reihe
von Beugungsmaxima, deren Abstände durch

db = p sinj = m
l
a

, m = 0,1, . . .

gegeben sind. Je schmaler der Spalt, desto größer
wird damit der Abstand zwischen den Beugungsma-
xima.

In einem experimentellen Beispiel ist der Spalt 0.1
mm breit. Verwendet man mit Licht der Wellenlänge
630 nm, findet man die Maxima in einem Abstand
von

l
a

=
630 ·10�9

10�4 = 6,3mrad.

Bei einer Distanz von 5 m entspricht dies etwa 3 cm.

7.8.3 Beugung am Doppelspalt

Man kann beliebige andere Beugungsmuster aus-
rechnen, indem man die Fourier-Transformierte bil-
det. Ein historisch besonders wichtiges Experiment
war die Beugung am Doppelspalt von Young; zu-
sammen mit den Arbeiten von Fresnel verhalf die-
ses Experiment der Wellentheorie des Lichtes zum
Durchbruch. Die beiden Spalte erzeugen jeder ein
Beugungsmuster, gleich wie im Falle des einzelnen
Spaltes. Zwischen den beiden Wellen erhalten wir
jetzt aber zusätzlich Interferenz.

Abbildung 7.134: Beugung am Doppelspalt.

Man kann sich den Vorgang anhand von Wellenfron-
ten darstellen, wie in Abb. 7.134 gezeigt. Bei jedem

Spalt erhalten wir eine zylinderförmige Wellenfront.
Die beiden Teilwellen sind zueinander kohärent und
interferieren deshalb wenn sie sich überlagern.

einlaufende Welle

S1

S2

Max

Max

Max
Max
Max

Max
Max
Max

Max

Max

Max

Abbildung 7.135: Überlagerung von Wellenfronten
am Doppelspalt.

Der einzelne Spalt erzeugt auf dem Schirm eine sinc-
Funktion, wobei der Abstand zwischen den Maxi-
ma invers proportional zur Breite des Spaltes ist.
Zusätzlich erhält man immer dann positive Interfe-
renz, wenn die beiden Teilwellen gleiche Phase be-
sitzen, d.h. wenn sich ihre Weglänge um ein Vielfa-
ches der optischen Wellenlänge unterscheidet. Abb.
7.135 zeigt diese Maxima auf einem Schirm.

D sin α

α

d 
 D

Abbildung 7.136: Weglängendifferenzen am Dop-
pelspalt.

Abb. 7.136 zeigt den Fall, dass der Schirm, auf dem
das Interferenzmuster abgebildet wird, sich in einem
Abstand vom Doppelspalt befindet, der groß ist im
Vergleich zum Abstand D der beiden Spalte. Die
Weglängendifferenz zwischen zwei Strahlen, die von
den beiden Spalten ausgehen, beträgt dann Dsinj .
Somit ist der Phasenunterschied

a =
2p
l

Dsinj.

Die Bedingung für das Auftreten eines Maximums
ist, dass dieses ein Vielfaches von 2p ist, d.h.

D
l

sinj = m m = 0,1,2, . . . .
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Minima treten auf, wenn der Phasenunterschied ein
ungeradzahliges Vielfaches von p ist, d.h. bei

D
l

sinj =
2m+1

2
m = 0,1,2, . . . .

Die Intensität für einen beliebigen Winkel ergibt sich
aus dem Quadrat der Summe der beiden Amplituden
als proportional zu

1+ cosa = 1+ cos
✓

2p
l

Dsinj
◆

= 2cos2
⇣p

l
Dsinj

⌘

= 2cos2
⇣a

2

⌘
.

m =  … -2  -1  0  1  2  …

Irel

1

0,5

0

sin ϕ
�8

�

D
�4

�

D
4

�

D
8

�

D

0

Abbildung 7.137: Intensitätsmodulation auf Grund
der Weglängendifferenz.

Durch die Interferenz zwischen den beiden Teil-
strahlen erhält man somit eine Cosinus-förmige Ab-
hängigkeit der Intensität von sinj . (Für kleine Win-
kel somit auch vom Beugungswinkel j .) In Abb.
7.137 ist jedes Maximum mit der entsprechenden
Ordnung m markiert.

Abb. 7.138 zeigt die gesamte Intensitätsabhängig-
keit als Funktion des Beugungswinkels. Man er-
hält sie, indem man die Teilwellen addiert. Da die
Beugungsmuster der einzelnen Spalten als Funkti-
on des Beugungswinkels j schwächer werden, wird
auch das Interferenzmuster schwächer. Das gesam-
te Interferenz-Beugungsbild erhält man durch Multi-
plikation der Funktion des Einzelspalts mit der Dop-
pelspaltfunktion für d ⌧ D:

IDS =


sinx

x
cos

a
2

�2

x =
pd
l

sinj

a =
2pD

l
sinj.

Irel

1

0,5

0

sin ϕ
�8

�

D
�4

�

D
4

�

D
8

�

D

0

Abbildung 7.138: Intensitätsmodulation hinter ei-
nem Doppelspalt unter Berück-
sichtigung der endlichen Spalt-
breite.

Die Einhüllende entspricht einer sinc-Funktion, die
harmonische Abhängigkeit besitzt die Periode l/D.

Dieses Zusammensetzen des gesamten Beugungs-
musters aus dem Beugungsmuster des Einzelspalts
und dem Beugungsmuster von zwei dünnen Spal-
ten kann aus dem Faltungstheorem hergeleitet wer-
den: Die gesamte Spaltfunktion erhält man als Fal-
tung der einzelnen Spaltfunktion mit der Funktion
für zwei schmale Spalten. Das Beugungsbild ist je-
weils die Fouriertransformierte dieser Funktionen.
Gemäß dem Faltungstheorem ist die Fouriertrans-
formierte einer Faltung von 2 Funktionen durch das
Produkt der Fouriertransformierten gegeben.

7.8.4 Komplementäre Objekte

Beugung basiert immer auf Änderungen der Trans-
missionsfunktion, also der Amplitude im Objektbe-
reich. Sie bildet die räumlichen Frequenzen ab.

Laser

Linse

Spiegel

Objekt    Strahlteiler

Beugungsbild

Bild

Abbildung 7.139: Erzeugung eines Bildes und eines
Beugungsbildes.

Der Vergleich zwischen einem Objekt und dem ent-
sprechenden Beugungsbild kann experimentell er-
folgen, indem man mit einem Laser das Objekt (z.B.
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einen Spalt) beleuchtet. Das transmittierte Licht er-
zeugt auf der Wand ein Beugungsmuster. Wie i Abb.
7.139 gezeigt, kann außerdem ein Teil des Lich-
tes mit Hilfe eines Strahlteilers abgetrennt werden.
Daraus kann eine Linse ein Bild des Objektes an
der Wand erzeugen. Wie bereits diskutiert entspricht
das Beugungsbild einer sinc-Funktion und damit der
Fourier-Transformierten der Transferfunktion.

Anstelle des Spalts kann man einen Draht betrach-
ten, das komplementäre Objekt zum Spalt. Komple-
mentäre Objekte sind solche, deren Transferfunktio-
nen sich zu 1 addieren. Beispiele dazu sind das Beu-
gungsbild eines Drahtes und eines Spaltes. Ist die
Transferfunktion des Spaltes h(x), so ist offenbar
diejenige des Drahtes 1 � h(x). Das Beugungsmu-
ster kann in diesem Fall ebenfalls durch eine sinc-
Funktion beschrieben werden. Dies ist ein allgemei-
nes Muster: Beugung basiert immer auf Änderun-
gen der Transmissionsfunktion, also der Amplitude
im Objektbereich. Sie kann als Fouriertransformati-
on beschrieben werden, bildet also die räumlichen
Frequenzen ab.

Spalt

Transferfunktion

Draht

 x 

E(q)

q

x 

 q

Feld

Intensität

E � sin �

�
E � 1 � sin �

�

I � (
sin �

�
)2 + �(0)

I � (
sin �

�
)2

Abbildung 7.140: Beugungsbilder von komplemen-
tären Objekten.

Dies hat eine relativ interessante und einfache Kon-
sequenz: Beugungsbilder von komplementären Ob-
jekten sind identisch, abgesehen vom geometrischen
Bildpunkt - dieser entspricht der Komponente mit
räumlicher Frequenz 0. Die Fourier-transformierten
sind damit H(q) und

F{1�h(x)} = d (0)�H(q)

und die Intensitäten für beide H2(q), abgesehen vom
Bildpunkt d (0). Abb. 7.140 zeigt als Beispiel das

Paar Draht / Spalt, wo H(q) = sinq/q. Weitere Bei-
spiele dazu in 2 Dimensionen sind die Bilder von
einem Loch vs. die Bilder einer Scheibe. Diese all-
gemeine Aussage wird als Babinet’sches Prinzip be-
zeichnet.

7.8.5 Das optische Gitter

D sin α

αD

Abbildung 7.141: Signal von N Quellen.

Man kann die Anzahl von Spalten natürlich auch
größer als 2 wählen. Dies entspricht dem Fall von N
interferierenden Quellen. Abb. 7.141 zeigt dies für
den Fall dass die einzelnen Spalte unendlich dünn
sind, welcher dem bereits behandelten Fall von N
interferierenden punktförmigen Quellen entspricht.
Man bezeichnet eine solche periodische Anordnung
als Gitter. Je nach Art der Beleuchtung unterschei-
det man zwischen Transmissionsgitter und Reflexi-
onsgitter.

n=2

n=3

n=10

0 π/2-π/2

α=1,5 λ

Abbildung 7.142: Beugungsmuster von N Quellen.
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Anstelle der harmonischen Funktion erhält man bei
N Spalten ein Beugungsmuster, welches zunehmend
schärfer wird. Abb. 7.142 zeigt die Muster für ver-
schiedene Anzahl von Quellen. Die Details dieser
Rechnung hatten wir im Rahmen der Vielstrahlinter-
ferenz diskutiert. Die Beugung am Gitter ist somit
auch eine Anwendung der Vielstrahlinterferenz.

Bei einem Gitter wird jeder Strich wiederum zu ei-
ner Lichtquelle. Für identische Striche und homoge-
ne Beleuchtung werden die Quellen gleich stark. Die
Richtung, in der die Maxima auftreten, ist die glei-
che wie beim Doppelspalt:

Dsinj = ml . (7.4)

Im Grenzfall einer unendlichen Zahl von Spalten, re-
sp. Strichen werden die einzelnen Beugungsmaxima
unendlich schmal. Die Einhüllende wird wiederum
durch das Beugungsmuster des einzelnen Spalts be-
stimmt. Für schmale Spalten ist das Beugungsmu-
ster sehr breit; somit sind sämtliche Beugungsmaxi-
ma gleich intensiv. Der (Sinus des) Beugungswin-
kel ist gemäß (7.4) proportional zur Wellenlänge,
d.h. große Wellenlängen werden stärker gebeugt. Er
ist indirekt proportional zum Abstand der Gitterlini-
en; somit erzeugen enge Gitter einen stärkeren Beu-
gungseffekt.

0 1-1-2-3 2 3
Beugungsordnung

Abbildung 7.143: Spektrum einer Quecksilber-
Dampflampe.

Für m = 0 ist der Beugungswinkel j = 0 für alle
Wellenlängen. In diesem Fall ergibt weißes Licht,
das durch das Gitter gebeugt wird, wiederum wei-
ßes Licht. Für m 6= 0 werden unterschiedliche Wel-
lenlängen unterschiedlich stark gebeugt. Man kann
deshalb Gitter verwenden um unterschiedliche Far-
ben zu trennen. Je kleiner der Abstand zwischen den

Linien des Gitters, desto stärker werden die Wellen-
längen aufgetrennt. Abb. 7.143 zeigt als Beispiel das
Spektrum einer Quecksilber-Dampflampe.

Abbildung 7.144: Farbeffekte durch Beugung an ei-
ner CD.

Diesen Effekt kann man z.B. auch an einer CD be-
obachten: die kleinen Strukturen, welche die Infor-
mation der CD tragen, beugen Licht und erzeugen
dadurch Farbeffekte, wie in Abb. 7.144 gezeigt.

E AG

S1 S2

Abbildung 7.145: Schematische Darstellung eines
Gitter-Spektrometers.

Man verwendet deshalb Reflexionsgitter in Spektro-
metern, welche dazu dienen, unterschiedliche Far-
ben von Licht aufzutrennen. Abb. 7.145 zeigt ein sol-
ches Spektrometer. Es enthält zunächst einen Hohl-
spiegel S1, welcher das einfallende Licht kollimiert
und auf das Gitter lenkt. Der zweite Hohlspiegel bil-
det das gebeugte Licht auf den Austrittspalt ab.

7.8.6 Beugung an zweidimensionalen
Objekten

Die bisher behandelten Objekte (Spalt, Doppelspalt
etc.) wurden eindimensional diskutiert. In Wirklich-
keit sind Blenden natürlich zweidimensionale Ob-

326



7 Optik

jekte und es soll deshalb anhand einiger Beispiele
erläutert werden wie deren Beugungsmuster ausse-
hen.

Mit Hilfe des Huygens’schen Prinzips können wir
die Amplitude des Feldes beim Punkt P berech-
nen als Integral über Kugelwellen. Dieses Vorgehen
kann man so motivieren: Wir kennen die Lösung
für punktförmige Quellen und berechnen die Lö-
sung für beliebige Quellen, indem wir über die Ver-
teilung von punktförmigen Quellen integrieren. Wir
vernachlässigen dabei allerdings den Teil der Kugel-
welle, die nach hinten abgestrahlt wird. Das Feld am
Punkt P erhalten wir, indem wir über alle möglichen
Lichtwege integrieren, also über die Fläche der Blen-
de. Die Beleuchtung soll durch eine ebene Welle er-
folgen, die senkrecht auf die Blende einfällt.

Damit kann man z.B. das Beugungsbild einer Blende
berechnen, welche durch eine ebene Welle beleuch-
tet wird. Die Amplitude des Feldes bei einem Punkt
P auf dem Schirm ist das Integral über Kugelwellen,
welche von Punkten einer Wellenfront ausgehen. Bei
diesem Vorgehen wird meist der Vektorcharakter des
elektromagnetischen Feldes vernachlässigt und das
Licht als eine skalare Welle beschrieben. Für die
Ausbreitung von der Blende zum Schirm geht man
von einer geradlinigen Ausbreitung aus. Dann ist das
Feld A am Punkt P, welcher weit von der Blende ent-
fernt ist,

A(P) =
ZZ

Blende
A(x,y)

eikr

r
dxdy. (7.5)

Dabei bezeichnet eikr eine Kugelwelle, und x die Po-
sition in der Blende.

Als konkretes Beispiel berechnen wir das Beugungs-
bild einer rechteckigen Blende mit Seiten a und
b. Das Beugungsmuster ist somit wiederum die
Fourier-Transformierte des Spaltes, diesmal in zwei
Dimensionen:

A(a,b ) =
ZZ

eik sinaxeik sinbydxdy

µ sina
a

sinb
b

und die Intensitätsverteilung ist entsprechend das
Quadrat I µ |A(a,b )|2. Hier sind a und b Funktio-

nen der Beugungswinkel j1 und j2:

a =
pasinj1

l
b =

pbsinj2

l
.

1, 22
�

d

Abbildung 7.146: Beugung an einem Kreuzgitter
und an einem kreisförmigen Loch.

Das zweidimensionale Analogon zur Beugung an
einem Gitter ist die Beugung an einem Drahtnetz.
Hier erhält man ein zweidimensionales Muster von
Beugungsmaxima, wobei die horizontale Richtung
die Fouriertransformierten des Gitters in horizon-
taler Richtung darstellt, die vertikale Richtung die
Fouriertransformierte in vertikaler Richtung. Man
erhält hier zwei Bedingungen für das Auftreten ei-
nes Reflexes:

a(sina � sinb0) = ml , m = 0,1,2, . . .

b(sinb � sinb0) = nl , n = 0,1,2, . . . .

Ein Gitter mit rechteckigen Maschen ergibt deshalb
unterschiedliche Abstände der Beugungsmaxima in
horizontaler und vertikaler Richtung.

Eine runde Blende erzeugt ein radial symmetrisches
Beugungsmuster, welches in Abb. 7.146 rechts dar-
gestellt ist. Das Muster wird als Airy Disk bezeich-
net.

Wie in Abb. 7.147 gezeigt, ist die Intensitätsvertei-
lung rotationssymmetrisch und die radiale Abhän-
gigkeit ist durch die Besselfunktion erster Art J1(r)
gegeben:

A(r) = A0
J1(2pr)

pr
.

Der Radius der einzelnen Ringe ist indirekt propor-
tional zum Lochdurchmesser D. Der Öffnungswin-
kel des ersten dunklen Rings ist

q ⇡ 1,2
l
D

.
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Abbildung 7.147: Beugungsmuster einer runden
Scheibe.

7.8.7 Fresnel’sche Zonenplatte

Abbildung 7.148: Fresnel’sche Zonenplatte als Lin-
se für Atome.

Die Fresnel’sche Zonenplatte verwendet Beugung an
kreisförmigen Zonen, um ein Bild zu erzeugen. Sie
stellt damit eine Alternative zu Linsen dar, welche u.
A. dann verwendet wird, wenn keine geeigneten Ma-
terialien für Linsen verfügbar sind. Abb. 7.148 zeigt
als Beispiel einen Ausschnitt aus einer solchen Zo-
nenplatte, welche für die Fokussierung von Atom-
strahlen benutzt wurde.

Zur Berechnung der Linsenwirkung kann man das
Licht einer ebenen Welle, welches durch eine kreis-
förmige Blende tritt, gedanklich in kreisförmige Rin-
ge unterteilen und für jeden Ring die Phase berech-
nen, welche dieses Licht erhält wenn es als Elemen-
tarwelle beim Punkt P eintrifft.

Diese Phase ist durch den Weg und die optische Wel-
lenlänge bestimmt. Abb. 7.149 zeigt eine einfache
Zonenplatte. Im zentralen Bereich A1, zwischen den
Radien 0 und r1 beträgt sie ca. 2pR/l , d.h. dieser

Abbildung 7.149: Fresnel’sche Zonenplatte; links:
Querschnitt; rechts : Aufsicht.

Teil interferiert positiv. Der Bereich A2, zwischen
den Radien r2 und r3, durchläuft einen Weg, der et-
wa um l/2 länger ist. Dieses Licht löscht deshalb
den Beitrag der zentralen Scheibe teilweise aus. Man
kann dies vermeiden, indem man diesen Ring nicht
transparent macht. Der Bereich A3 hat eine Phase,
die 2p größer ist als der zentrale Bereich; er inter-
feriert somit positiv. Durch Abwechseln von trans-
parenten und undurchsichtigen Bereichen mit geeig-
netem Radius erhält man deshalb ein optisches Ele-
ment, welches die einfallende ebene Welle in einem
Bildpunkt sammelt.

7.8.8 Beugung an dreidimensionalen
Objekten

Einfallende 
Röntgenstrahlen

Strahl 1Strahl 2

Abbildung 7.150: Beugung von Röntgenstrahlen an
einem Kristallgitter.

Eine wichtige Erweiterung dieses Beugungsgeset-
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zes erhält man in 3 Dimensionen, wenn man kürze-
re Wellenlängen (l ⇡ 10�10 m) benutzt: diese wer-
den von den atomaren Strukturen, deren Dimensio-
nen von der gleichen Größenordnung sind, gebeugt.
Abb. 7.150 zeigt das Prinzip für die Beugung von
Röntgenstrahlen an einem Kristall.

Für die Analyse des Beugungsprozesses führt man
am besten Netzebenen ein; dabei handelt es sich
um eine Hilfskonstruktion: Netzebenen sind geome-
trische Ebenen, welche identische Atome enthalten
und sich periodisch wiederholen. Da jedes Atom
einen geringen Teil des Röntgenlichtes streut, wir-
ken solche Netzebenen als teildurchlässige Spiegel.
Positive Interferenz erhält man dann, wenn die Weg-
längendifferenz zwischen zwei Netzebenen gerade
einem Vielfachen der Wellenlänge des Röntgenlich-
tes entspricht. Die Bragg’sche Beugungsbedingung
ist

2d sinq = ml .

Hier stellt d den Abstand zwischen Netzebenen dar,
q den Einfallswinkel (=Reflexionswinkel), und m
die Beugungsordnung.

Abbildung 7.151: Beugungsbild von Kupfer.

Die Messung von Beugungsreflexen an Kristallen ist
eine Standardmethode für die Bestimmung der ato-
maren Struktur dieser Kristalle. Abb. 7.151 zeigt ein
typisches Beugungsmuster für einen einfachen Kri-
stall aus Kupfer.

Man kann Röntgenbeugung an Kristallen machen
(ideal), muss dafür die Kristalle aber drehen, da
sonst meistens keine Reflexion stattfindet. Eine an-
dere Möglichkeit ist es, polychromatische Rönt-
genstrahlung zu verwenden. Dies wird als Laue-
Methode bezeichnet. Abb. 7.152 zeigt eine einfache
Apparatur für Laue-Aufnahmen.

Abbildung 7.152: Einfache Laue Kamera.

Kβ

100

α

Kα

Kβ

200

Kα

Abbildung 7.153: Röntgenbeugung an LiF mit
kontinuierlichem und diskretem
Spektrum.

Verwendet man Strahlung mit einem kontinuierli-
chen Spektrum, so wird die Beugungsbedingung für
die einzelnen Komponenten separat erfüllt. Man fin-
det als Funktion des Drehwinkels deshalb ein brei-
tes Signal. Abb. 7.153 zeigt ein Beispiel, welches
sowohl diskrete Anteile (Ka , Kb ) enthält, wie auch
einen kontinuierlichen Anteil1. Die beiden schmalen
der Ka - und Kb - Strahlung erlauben einem, die Di-
mensionen der Einheitszelle im Kristall bestimmen.
In diesem Beispiel wurde LiF gemessen.

Hat man keine Kristalle zur Verfügung so kann man
(statisch) an Pulverproben messen. Daraus kann man
zwar nicht die gesamte Struktur bestimmen, aber
mindestens die Gitterkonstanten und die Symmetrie
des Materials. Abb. 7.154 zeigt das Prinzip und ein
Beispiel einer Aufnahme.

1Diese entstammt dem sog. Bremsstrahlanteil der Röntgenröh-
re.
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Abbildung 7.154: Röntgenbeugung an einem Pulver
nach Debye-Scherrer.

7.8.9 Holographie

Eine wichtige Anwendung der Beugung ist auch die
Holographie.

Abbildung 7.155: Aufnahme eines Hologramms.

Wir in Abb. 7.155 gezeigt wird durch die Inter-
ferenz zweier Wellenfelder in einer photographi-
schen Emulsion ein Beugungsgitter erzeugt, das die
gesamte Information über das Wellenfeld enthält.
Durch Beleuchtung mit einer ebenen Welle erhält
man ein Beugungsmuster, das beim Betrachter das
ursprüngliche Objekt rekonstruiert.

Abb. 7.156 zeigt, wie man das Hologramm ausliest.

Holographie kann auch zur Informationsspeicherung
oder zur Korrelation (d.h. Vergleich) von Bildern
verwendet werden. Damit ist es auch möglich, Be-
wegungen sehr genau zu messen: Man vergleicht die
Wellenfelder des gleichen Objektes zu unterschied-

Abbildung 7.156: Wiedergabe eines Hologramms.

lichen Zeiten.

7.9 Laser

Laser sind in den letzten Jahrzehnten zu einer der
wichtigsten Lichtquellen geworden. Ihr Einsatzbe-
reich ist extrem vielseitig und die Art der Quellen
reicht von sub-mikroskopischen Halbleiterlasern bis
zu gigantischen Forschungsgeräten.
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LLaasseerr

Taschenlampe

Abbildung 7.157: Laserlicht vs. thermisches Licht.

7.9.1 Grundlagen

Phänomenologisch unterscheidet sich Laserlicht
vom Licht einer Glühlampe zunächst dadurch dass
es nur eine bestimmte Wellenlänge, resp. Farbe ent-
hält. Dies kann man im Experiment sehr einfach ve-
rifizieren: Anstelle eines weißen Strahls einer Bo-
genlampe schicken wir den roten Strahl eines He-
Ne Lasers durch das Prisma. In diesem Fall wird
das Licht nicht in Spektralfarben aufgetrennt, son-
dern wir sehen nur eine scharfe rote Linie, welche
zeigt, dass das Licht aus diesem Laser eine bestimm-
te Wellenlänge aufweist.

In der Funktionsweise unterscheidet sich ein Laser
von einer Glühlampe (! Abb. 7.156) dadurch, dass
er als Verstärker arbeitet. Während bei einer Glüh-
lampe die einzelnen Lichtquanten praktisch zufäl-
lig ausgestrahlt werden, werden sie bei einem Laser
praktisch nach Maß hergestellt und sind deshalb zu-
einander kohärent. Wie das genau funktioniert kann
hier nicht diskutiert werden. Wir beschränken uns
auf eine qualitative Diskussion und auf eine Über-
sicht über Anwendungsmöglichkeiten.

weisses Licht monochromatisches 
Licht kohärentes Licht

Abbildung 7.158: Weisses, monochromatisches und
thermisches Licht.

Abb. 7.158 zeigt vereinfacht den Unterschied zwi-

schen weißem, monochromatischem und kohä-
rentem Licht. Bei gewöhnlichem Licht besitzen
die einzelnen Komponenten unterschiedliche Farbe,
d.h. unterschiedliche Wellenlängen. Bei einfarbigem
Licht können verschiedene Teile immer noch unter-
schiedliche Phase aufweisen, d.h. die entsprechen-
den Wellen haben zu unterschiedlichen Zeiten ihren
Nulldurchgang. Das besondere am Laserlicht ist dass
alle Komponenten nicht nur die gleiche Farbe (d.h.
Wellenlänge) aufweisen, sie sind zudem in Phase,
d.h. ihr Nulldurchgang findet zur gleichen Zeit statt.

7.9.2 Funktionsprinzip

Der Name Laser enthält eigentlich schon die
wichtigste Zusammenfassung des Funktionsprin-
zips: LASER = light amplification by stimulated
emission of radiation = Lichtverstärkung durch sti-
mulierte Emission von Strahlung. Mit stimulierter
Emission ist folgendes gemeint: ist ein Atom oder
Molekül nicht im energetisch niedrigsten Zustand,
sondern in einem sogenannten angeregten Zustand,
so kann es beim Durchgang eines Photons dazu an-
geregt werden, in den Grundzustand überzugehen
und dabei ein zweites Photon zu emittieren. Die-
ses zweite Photon, welches durch das erste stimu-
liert wurde, besitzt die gleichen Eigenschaften wie
das erste, insbesondere die gleiche Frequenz.

Dabei kommt es zur Verstärkung des Lichtes, wobei
auch bereits eine Richtung bevorzugt wird. Um ei-
ne genügende Verstärkung zu erhalten und die Rich-
tung der stimulierten Emission festzulegen benötigt
man zusätzlich zum aktiven Medium einen Resona-
tor. Dieser sorgt dafür dass die Lichtwelle mehrfach
durch das Verstärkungsmedium läuft.

Blitzlampe (=Pumpe)

Laserstrahl

Abbildung 7.159: Aufbau eines Rubinlasers.
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Es gibt sehr viele Möglichkeiten, Laser zu bauen,
aber einige wesentliche Elemente sind allen Model-
len gemeinsam. So wird ein so genanntes aktives
Medium benötigt, welches das Licht verstärkt. Es
wird von einer Energiepumpe in den angeregten Zu-
stand versetzt, aus dem es dann unter Emission von
Photonen in den Grundzustand übergehen und das
einfallende Licht verstärken kann. Außerdem wer-
den mindestens zwei Spiegel benötigt, welche den
größten Teil des emittierten Lichtes wieder in das
Medium zurückschicken, damit es weiter verstärkt
werden kann. Abb. 7.159 zeigt als Beispiel den Auf-
bau eines Rubinlasers.

En
er

gi
e 

/ e
V

Zustände von Cr3+

Relaxation 
(strahlungslos)

Photon 
694.2 nm

metastabile 
Zustände

Grundzustand

stimulierte 
Emission

Laser

1

2

3

grün
blau

Absorption

Abbildung 7.160: Übergänge im Rubinlaser.

Die Hauptschwierigkeit beim Bau eines Lasers be-
steht darin, die Populationsinversion zu erzeugen.
Dafür benötigt man mindestens drei quantenmecha-
nische Zustände. Das älteste bekannte Lasermedium
ist der Rubin, dessen Niveauschema in Abb. 7.160
dargestellt ist. In diesem Material werden mit Hilfe
von Blitzlampen Elektronen angeregt, welche durch
strahlungslose Übergänge in einen metastabilen Zu-
stand fallen. Von hier aus findet die eigentliche La-
seremission mit einer Wellenlänge von 694 nm statt,
sobald eine genügend große Inversion erreicht ist.

7.9.3 Lasertypen

Es existieren sehr unterschiedliche Typen von La-
sern.

Mit Abstand der wichtigste Lasertyp ist heute der
Halbleiterlaser (! Abb. 7.161). Hier verwendet

5 mm
100 nm

VCSEL

Abbildung 7.161: Beispiele für Halbleiterlaser.

man einen Übergang zwischen zwei unterschied-
lichen Halbleitermaterialien. Halbleiterlaser haben
zwei Vorteile, welche schwer zu überbieten sind:
Zum einen können sie billig in großen Stückzahlen
hergestellt werden, zum andern werden sie mit elek-
trischem Strom gepumpt, und haben dabei die höch-
ste Energieausbeute aller bekannten Lichtquellen.

Ein Halbleiterlaser wie er in einem Laserzeiger ver-
wendet wird ist weniger als 1 mm groß. Es gibt noch
weitere Typen von Lasern, welche noch kleiner sind.
Sie bestehen aus einer Abfolge von Schichten, wel-
che nur wenige Atomlagen dick sind. Insgesamt sind
sie weniger als ein Mikrometer groß.

NOVA
Lawrence Livermore 
National Laboratory

Abbildung 7.162: Hochleistungslaser für die Fusi-
onsforschung.

Am anderen Ende der Skala findet man spezielle La-
ser wie z.B. den NOVA Laser am Lawrence Liver-
more National Laboratory in den USA. Dieser Laser
ist über 100 m lang und 10 m hoch. Abb. 7.162 gibt
eine Idee seiner Größe; das obere Bild ist ein Blick in
die Halle des Lasers, das untere gibt einen Überblick
über das Gebäude in dem er steht. Dieser Laser soll
u.a. für die Fusionsforschung verwendet werden.
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7.9.4 Anwendungen

Laserdrucker

Materialverarbeitung 
Unterhaltung

Medizin 
Messtechnik

Optische 
Datenübertragung

Medizin

Abbildung 7.163: Beispiele für die Anwendung von
Lasern.

Laser sind heute aus vielen Bereichen des täglichen
Lebens nicht mehr wegzudenken. Abb. 7.163 zeigt
eine kleine Auswahl von Anwendungen. Am direk-
testen verwenden wir sie in elektronischen Geräten
wie z.B. CD und DVD Spielern oder Laserdruckern.
Der größte Teil der Telekommunikation (inkl. Inter-
net) läuft heute über Glasfasern, wobei die Lichtpul-
se von Lasern erzeugt werden. In der Medizin wer-
den Laser für Diagnostik und Operationen eingesetzt
und in der Industrie für die Materialbearbeitung. In
der Unterhaltungsindustrie werden Laser für Licht-
effekte verwendet.

Auch in der Forschung werden Laser in sehr vielen
Bereichen verwendet. So macht die außerordentlich
hohe Präzision, mit der die Frequenz eines Lasers
bestimmt werden kann macht, ihn auch zu einem
möglichen Messgerät für Zeitmessungen. Man kann
heute die Frequenz eines Lasers auf etwa 10�18 ge-
nau messen. Die Unsicherheit liegt somit bei etwa
einer Schwingung des Lasers pro Stunde. Wenn wir
den Laser als Uhr verwenden würde er die Zeit nach
31 Milliarden Jahren um eine Sekunde falsch anzei-
gen. Man kann dies auch über die sog. Kohärenzlän-
ge messen. Bei einer Wellenlänge von etwa 1 µm ist
die Kohärenzlänge bei rund einer Milliarde km liegt;
dies entspricht etwa der Strecke zum Jupiter.

7.9.5 Pulslaser

Nicht alle Laser sind auf möglichst hohe Frequenz-
auflösung optimiert; andere werden auf möglichst
hohe Zeitauflösung optimiert, d.h. sie erzeugen sehr
kurze Pulse.
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Abbildung 7.164: Gemessene Pulsform eines fs-
Pulses.

“Kurz” heißt in diesem Zusammenhang einige
Femtosekunden, wie im Beispiel von Abb. 7.164.
Darüber hinaus sind auch Pulse mit einer Län-
ge von weniger als einer fs verfügbar, sogenannte
“Attosekunden-Pulse”.

10-15 10-12 10-9 10-6 10-3 1 103 106 109 1012 1015

fs
BlitzlichtµProzessor 1 StundeLaserpuls 1 Jahr Dinosaurier

1 Sekunde

Abbildung 7.165: Vergleich von Zeitskalen.

Abb. 7.165 soll die Dauer einer Femtosekunde
(=10�15 s) illustrieren. Die Mitte dieser logarith-
mischen Achse entspricht einer Sekunde, der linke
Rand einer fs. Dann entspricht der rechte Rand einer
Dauer von etwa 60 Mio Jahre, was etwa dem Zeit-
punkt des Aussterbens der Dinosaurier entspricht.

Kurze Pulse verwendet man generell dort, wo man
sich für schnelle Prozesse interessiert (! Abb.
7.166). Dazu gehört z.B. in der Physik die Dynamik
von Ladungsträgern in Halbleitern. Bessere Kennt-
nis dieser Prozesse kommt anschließend u. A. der
Produktion von Halbleiter-Lasern zu Gute. In der
Chemie verwendet man kurze Pulse vor allem für die
Untersuchung molekularer Bewegungsprozesse und
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Physik: 
schnelle Prozesse in Halbleitern

Chemie: 
chemische Reaktionen
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Abbildung 7.166: Beispiele für Messungen mit kur-
zen Pulsen.

Reaktionen. Laserpulse ergeben hier in einem gewis-
sen Sinne die Möglichkeit, atomare Bewegungen in
Molekülen zu filmen oder sogar zu kontrollieren.

Abbildung 7.167: Funktionsprinzip eines freie-
Elektronen Lasers.

Ein ganz besonderer Lasertyp ist der freie Elektro-
nenlaser (FEL, Abb. 7.167). Hier ist das Medium
ein Elektronenstrahl, welcher in einem Teilchenbe-
schleuniger erzeugt und durch Ablenkmagneten in
eine wellenförmige Bahn gebracht wird. Der Vorteil
davon ist dass die Wellenlänge des Lasers über einen
sehr breiten Bereich einstellbar wird. Die Emissions-
wellenlänge wird einerseits vom Abstand der Ab-
lenkmagneten bestimmt, andererseits von der Ge-
schwindigkeit der Elektronen. Beide Parameter kön-
nen über einen recht breiten Bereich variiert werden.
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