
5 Schwingungen

Viele natürlichen Phänomene zeigen eine periodi-
sche Zeitabhängigkeit: der Zustand ändert sich, kehrt
aber nach einer festen Zeit in den Anfangszustand
zurück. Dieser Vorgang kann sich beliebig häufig
wiederholen. Dieses Phänomen wird als Schwin-
gung bezeichnet.

5.1 Allgemeines

5.1.1 Beispiele und Definition

Das klassische Beispiel eines schwingenden Sy-
stems ist das Pendel.
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Abbildung 5.1: Periodische Signale.

Allgemein ist eine Schwingung definiert als eine
periodische Zustandsänderung, d.h. als eine Zeitab-
hängigkeit, welche nach einer Periode T in den ur-
sprünglichen Zustand zurückkehrt:

y(t +T ) = y(t).

Abb. 5.1 zeigt einige Beispiele für periodische Be-
wegungen. Die Größe y, welche diese Zeitabhän-
gigkeit zeigt, kann eine mechanische Größe sein,
aber auch eine elektrische, chemische, thermische
. . . . Meist zeigen verschiedene Größen (z.B. Ort,
Geschwindigkeit) die gleiche periodische Zeitab-
hängigkeit. Schwingungen entstehen immer dann,

wenn einzelne Komponenten (mechanische, elektri-
sche etc.) nicht starr aneinander gekoppelt sind. Wie
sich das System während der Periode verhält spielt
hierbei zunächst keine Rolle.

5.1.2 Phänomenologie

Abbildung 5.2: Uhren in der Kunst.

Schwingungen spielen in vielen Systemen eine
wichtige Rolle; insbesondere bilden sie die Basis
von Zeitmessungen (! Abb. 5.2). Jede Armbanduhr
besitzt ein schwingendes Element; in mechanischen
Uhren ähnelt es einem Schwingpendel, in elektroni-
schen Uhren wurde dieses durch einen Quarzstab er-
setzt. In den Atomuhren, welche den internationalen
Zeitstandard definieren sind es Schwingungen der
Elektronenhülle von Atomen. Die Sekunde, als Ba-
sis der Zeitmessung, wird definiert als 9192631770
Perioden eines Resonanzübergangs in einem 133Cs
Atom.

Elektronische Oszillatoren sind die Basis aller mo-
dernen Elektronik, insbesondere aber der digitalen.
Abb. 5.3 zeigt typische Signalverläufe, welche durch
einen Taktgeber gesteuert werden.

Praktisch alle Systeme zeigen Schwingungen in der
einen oder anderen Art. Machmal, wie z.B. in einem
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5 Schwingungen

Abbildung 5.3: Periodische Signale in einem elek-
tronischen Gerät.

Lasertisch

 Schwingungen stören den 
 Betrieb empfindlicher Geräte, 
 z.B. eines Lasers 

Luftlager

Man versucht deshalb, deren 
Einfluss zu reduzieren, z.b. 
mit Luftlagern

Abbildung 5.4: Unterdrückung von störenden
Schwingungen in einem Laserlabor.

Laserlabor (! Abb. 5.4), können sie stören und man
muss man mit großem Aufwand versuchen, sie zu
reduzieren.

5.1.3 Atomare und molekulare
Schwingungen

In allen mikroskopischen Systemen spielen Schwin-
gungen eine große Rolle. So sind die Atome in Mo-
lekülen durch Kräfte zusammengehalten, die qua-
litativ wie eine Feder wirken. Unter dem Einfluss
dieser Bindungskräfte führen sie Schwingungen um
ihre Gleichgewichtslage durch, wie in Abb. 5.5 ge-
zeigt.

Die Schwingungen der Atome können im Experi-
ment gemessen werden. Abb. 5.6 zeigt als Beispiel
das Infrarot-Spektrum von Crotonaldehyd. Aus den
gemessenen Spektren kann man z.B. die Moleküle

Abbildung 5.5: Beispiele für Normalschwingungen
in einem Molekül.

IR Spektrum von Crotonaldehyd

Wellenzahl [cm-1]

Abbildung 5.6: Infrarotspektrum von Crotonalde-
hyd.

identifizieren oder die Kräfte zischen den einzelnen
Atomen messen.

Abbildung 5.7: Struktur (links) und Federmodell der
Atome in einem Festkörper.

Auch in einem Festkörper sind die Atome nicht starr
miteinander verbunden, sondern durch Bindungs-
kräfte, welche Schwingungen erlauben, welche mit
der Temperatur zunehmen. Eine Reihe von elektri-
schen, resp. elektromagnetischen Systemen zeigen
Schwingungsphänomene. Elektromagnetische Wel-
len, also auch Licht, stellen schwingende Systeme
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5 Schwingungen

dar. Abb. 5.7 zeigt schematisch ein entsprechendes
Modell: im linken Bild werden die mittleren Positio-
nen der Atome dargestellt, im rechten Bild sind sie
über Federn aneinander gekoppelt.

Kern
Elektron

Atom

Abbildung 5.8: Erzeugung von Licht über atomare
Anregungen.

Bei der Erzeugung von Licht gehen die Schwingun-
gen von atomaren Dipolen auf das elektromagneti-
sche Feld über und beim Nachweis, also auch im
Auge, überträgt das elektromagnetische Feld diese
Schwingungen wieder auf ein materielles System,
in diesem Fall die Sinneszellen der Netzhaut. Abb.
5.8 zeigt schematisch, wie atomare Anregungen zur
Emission von Licht führen können.

5.1.4 Klassifikation und Übersicht

ErregerErzwungene Schwingung

Auslenkung

Feder
Masse

Freie Schwingung

Abbildung 5.9: Freie Schwingung (oben) vs. durch
externe Kraft erzwungene Schwin-
gung (unten).

Man unterscheidet zwischen freien und erzwunge-
nen Schwingungen. Im ersten Fall wird dem System
Energie zugeführt, um es in Bewegung zu setzen,
dann entwickelt es sich ohne äußeren Einfluss (Abb.

5.9 oben). Eine erzwungene Schwingung (Abb. 5.9
unten) wird durch eine periodische äußere Kraft an-
geregt.

A
us
le
nk
un
g

Zeit

Abbildung 5.10: Gedämpfte Schwingung.

In vielen Fällen sind Schwingungen nicht vollstän-
dig periodisch, sondern gedämpft, wie in Abb. 5.10
gezeigt. Die Dämpfung kommt dadurch zustande,
dass das System Energie an seine Umgebung ab-
gibt. Man spricht in diesem Fall von einer gedämpf-
ten Schwingung, im Gegensatz zu den ungedämpf-
ten Systemen, welche nur als Idealfälle existieren.

Schwingungen treten somit in sehr unterschiedli-
chen Situationen auf. Man kann sie trotzdem in sehr
analoger und kompakter Weise diskutieren, die ma-
thematische Behandlung dieser großen Zahl unter-
schiedlicher Phänomene ist weitgehend identisch;
sie werden deshalb hier gemeinsam diskutiert. Wie
in anderen Gebieten der Physik können wir hier sehr
viele Gemeinsamkeiten feststellen. So können wir
die Resultate, die uns die Diskussion des schwingen-
den Pendels liefert, direkt auf viele andere Systeme
übertragen. Es ist deshalb nützlich, zunächst einige
Eigenschaften zu diskutieren, die allen schwingen-
den Systemen gemeinsam sind.

5.2 Der Harmonische Oszillator

5.2.1 Harmonische Schwingungen

Die Zeitabhängigkeit einer allgemeinen Schwingung
ist beliebig, abgesehen von der Periodizität. Die ma-
thematische Behandlung solcher Systeme kann et-
was schwierig werden. Wir beschränken deshalb hier
die detaillierte Diskussion auf Systeme, bei denen
die Zeitabhängigkeit durch eine Winkelfunktion (si-
nus oder cosinus) beschrieben werden kann. Eine

217



5 Schwingungen

Zeit

harmonisch

anharmonisch

A
us
le
nk
un
g

A
us
le
nk
un
g

Abbildung 5.11: Harmonische Schwingung im Ge-
gensatz zu einer anharmonischen
Schwingung.

solche Zeitabhängigkeit (Abb. 5.11 oben) wird als
harmonisch bezeichnet, im Gegensatz zu einer an-
harmonischen (Abb. 5.11 unten).
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Abbildung 5.12: Relevante Parameter einer harmo-
nischen Schwingung.

Die zeitabhängige Auslenkung y(t) einer harmoni-
schen Schwingung (! Abb. 5.12) kann somit allge-
mein als

y(t) = y0 cos(wt +f0)

geschrieben werden. Hier sind w = 2pn die Kreis-
frequenz, n = 1/T die Frequenz, T die Periode der
Schwingung und f0 die Anfangsphase.

Anharmonische Schwingungen können immer als
Fourier-Reihe dargestellt werden, z.B.

y(t +T ) = y(t) =
a0

2
+

•

Â
k=1

Ak cos(kwt +fk).

Hier stellen Ak die Amplituden und fk die Phasen
der einzelnen Fourier-Komponenten dar.

y

beobachtete Schwingung

y

φ = ωt

zu Grunde liegende 
 Kreisbewegung

y0

xωt

Abbildung 5.13: Eine harmonischen Schwingung
(links) entspricht einer Komponen-
te einer Kreisbewegung.

Eine harmonische Oszillation erhält man z.B. wenn
man eine Komponente einer Kreisbewegung be-
trachtet, wie in Abb. 5.13 gezeigt. Die horizonta-
le Position eines rotierenden Zeigers kann z.B. als
x(t) = x0 cos(wt) geschrieben werden, die vertikale
Position y(t) = x0 sin(wt) = x0 cos(wt �p/2).

Kreisbewegung: 
Gezeiten“berg” 
läuft um die Erde

Beobachtung: 
periodische 
Auslenkung

Abbildung 5.14: Gezeiten als Resultat der Erdrotati-
on.

Ein Beispiel für eine Kreisbewegung, die wir als
Schwingung beobachten, sind Ebbe und Flut. Wie in
Abb. 5.14 gezeigt, entstehen sie dadurch, dass sich
die Erde dreht während ein doppelter “Berg” von
Wasser relativ zum Mond stehen bleibt. Der Tiden-
hub hat deshalb eine Periodizität von etwa 12 Stun-
den.
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Abbildung 5.15: Potenzial und Kraft als Funktion
der Auslenkung.

5.2.2 Bewegungsgleichung

Die Bewegungsgleichung des harmonischen Oszilla-
tors ist dadurch charakterisiert, dass auf den Körper
eine Kraft wirkt, deren Richtung auf den Gleichge-
wichtspunkt gerichtet ist, und deren Betrag propor-
tional zur Auslenkung aus dem Gleichgewicht ist,
wie in Abb. 5.15 gezeigt. Die Kraft als Funktion der
Auslenkung x kann somit geschrieben werden als
F = kx , wobei x die Auslenkung aus der Gleich-
gewichtslage darstellt und die Federkonstante k die
Stärke der Feder parametrisiert.

0

m

F(x) = -c x
x(t)

Abbildung 5.16: Federpendel.

Um zu verstehen wie eine Schwingung zustande
kommt betrachten wir zunächst ein einfaches Pen-
del wie das Federpendel in Abb. 5.16. Es bestehend
aus einer Masse und einer Feder, welche als masse-

los angenommen wird und für die das Hooke’sche
Gesetz gelten soll: F = �cx , wobei c die Federkon-
stante darstellt. Daraus folgt für die Masse eine Be-
wegungsgleichung

ma = F = �cx = m
d2x
dt2 . (5.1)

Dies ist eine eindimensionale (eine Variable), lineare
(d.h. die Variablen und deren Ableitung kommen nur
in der ersten Potenz vor) Differentialgleichung zwei-
ter Ordnung (d.h. maximal zweite Ableitung) mit
konstanten Koeffizienten (d.h. kein Koeffizient ist
explizit zeitabhängig). Die Kraft ist immer der Aus-
lenkung entgegen gerichtet und proportional zu ihr.
Bei maximaler Auslenkung ist auch die Kraft maxi-
mal, bei verschwindender Auslenkung verschwindet
die Kraft und damit die Beschleunigung.

5.2.3 Freie Schwingung

Wir betrachten zunächst den Fall einer freien
Schwingung: das System wird zunächst ausgelenkt
(x(0) 6= 0) und entwickelt sich dann ohne äußere
Kräfte unter dem Einfluss von Gleichung (5.1). Sol-
che Gleichungen können allgemein durch den An-
satz

x(t) = x0 cos(w0t +f) (5.2)

gelöst werden. Hier stellt w0 die Kreisfrequenz, x0
die Amplitude, und f die Phase der Schwingung dar.
Um den Ansatz zu verifizieren und diese Parameter
zu bestimmen setzen wir den Ansatz in die Differen-
tialgleichung ein. Wir erhalten

cx = cx0 cos(w0t +f)

= �mx0
d2

dt2 cos(w0t +f)

= mx0w0
d
dt

sin(w0t +f)

= mx0w

2
0 cos(w0t +f).

Da die Zeitabhängigkeit auf beiden Seiten die glei-
che ist, muss nur noch die Amplitude übereinstim-
men. Dies ist der Fall für

c = mw

2
0 .
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5 Schwingungen

Auflösen nach der Kreisfrequenz w0, resp. Periode
T ergibt

w0 =

r
c
m

T = 2p

r
m
c

.

Allgemein ist die Bewegungsgleichung für einen
harmonischen Oszillator von der Form

d2x
dt2 = �w

2
0 x,

mit w0 als Kreisfrequenz.
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Abbildung 5.17: Lösung der Bewegungsgleichung.

Abb. 5.17 zeigt die Lösung dieser Bewegungsglei-
chung für den Fall v(0) = 0. Für den allgemeinen
Fall (5.2) erhält man die Amplitude x0 und die Phase
f aus den Anfangsbedingungen, welche meist durch
Ort und Geschwindigkeit gegeben sind:

x(0) = x0 cosf

ẋ(0) = �x0w0 sinf .

Dieses Gleichungssystem kann aufgelöst werden
nach den Parametern x0, f :

x0 =
x(0)

cosf

f = tan�1 �x(0)

ẋ(0)w0
.

Eine Schwingung, die bei t = 0 die maximale Aus-
lenkung besitzt, hat Phase f = 0. Ist die Auslenkung
minimal (x(0) = 0), und bewegt sich das System in
Richtung positive Auslenkung, d.h. ist es nach einer
viertel Periode bei der maximalen Auslenkung, so
ist die Phase f = �90� = �p/2. Bewegt sich das
System in Richtung negative Auslenkung, so ist die
Phase (mit dieser Definition) positiv.

Es ist auch interessant, die Phase von Ort, Geschwin-
digkeit und Beschleunigung zu vergleichen: Bewegt
sich die Masse mit

x(t) = x0 cos(w0t +f),

so ist die Geschwindigkeit

v(t) = ẋ(t) = �w0x0 sin(w0t +f).

Diese hat also die gleiche Frequenz, ist aber 90 Grad
außer Phase. Die Beschleunigung

a(t) = ẍ(t) = �w

2
0 x0 cos(w0t +f)

besitzt ebenfalls die gleiche Periode, ist aber weitere
90 Grad, also gegenüber dem Ort 180 Grad außer
Phase.

5.2.4 Energie

Das Federpendel (wie alle harmonischen Oszillato-
ren) enthält Energie in zwei unterschiedlichen For-
men: kinetische und potenzielle Energie. Die poten-
zielle Energie ist in der Feder gespeichert:

Epot =
c
2

x2 =
c
2

x2
0 cos2(w0t +f).

Wie bereits erwähnt stellt sie eine quadratische
Funktion der Auslenkung dar. Dies gilt nicht nur
beim Federpendel, sondern bei den meisten Syste-
men mindestens für einen gewissen Bereich. Die ki-
netische Energie ist

Ekin =
m
2

ẋ2 =
m
2

x2
0w

2
0 sin2(w0t +f).
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Abbildung 5.18: Kinetische und potenzielle Energie
als Funktion der Zeit.

220



5 Schwingungen

Damit ist die Gesamtenergie

Etot = Epot +Ekin =
c
2

x2
0,

unabhängig von der Zeit, d.h. konstant. Dies ist ei-
ne Manifestation der Energieerhaltung. Wie in Abb.
5.18 gezeigt, oszilliert die Energie jedoch zwischen
den beiden Beiträgen potenzielle und kinetische
Energie.

In der Ruhelage ist die Feder entspannt, die poten-
zielle Energie verschwindet somit, während die Ge-
schwindigkeit und damit die kinetische Energie ma-
ximal ist. Bei der maximalen Auslenkung ist hinge-
gen die Geschwindigkeit Null, die kinetische Ener-
gie verschwindet, während die potenzielle Energie
maximal wird. Die einzelnen Beiträge zur Energie
sind zeitabhängig, während die Gesamtenergie kon-
stant bleibt: die Energie wird somit zwischen ein-
zelnen Reservoirs periodisch ausgetauscht, wobei
die Periode des Energieaustausches halb so groß ist
wie die Periode der Auslenkung. Dieser Energieaus-
tausch tritt bei allen schwingenden Systemen auf.

5.2.5 Der h.O. als Modellsystem

allgemeines 
Potenzial 
U(x-x0)

parabolisches 
Potenzial
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lokales Minimum Auslenkung

harmonische 
Oszillation

Abbildung 5.19: Reales Potenzial in der Umgebung
eines Minimums und parabolische
Näherung.

Das mathematische Pendel, auch als harmonischer
Oszillator bekannt, ist einerseits ein attraktives Mo-
dellsystem, weil er analytisch leicht lösbar ist. Er
spielt aber auch in der Natur eine sehr wichtige Rol-
le. Der Grund dafür liegt darin, dass sich die poten-
zielle Energie sehr vieler Systeme in der Nähe ihres

Gleichgewichts in guter Näherung durch eine Para-
bel annähern lässt, wie in Abb. 5.19 gezeigt.

Das sieht man rasch, wenn man die Energie in der
Nähe eines lokalen Minimums als Taylor-Reihe ent-
wickelt:

U(x) = U(x0)+
dU
dx

����
x0

· (x� x0)

+
1
2!

d2U
dx2

����
x0

· (x� x0)
2

+
1
3!

d3U
dx3

����
x0

· (x� x0)
3 + . . .

Der erste Term hat keinen Einfluss auf die Dynamik
des Systems und kann auch =0 gesetzt werden. Am
Gleichgewichtspunkt x0 verschwindet außerdem die
erste Ableitung, dU/dx|x0 = 0. Der erste nicht ver-
schwindende Term ist damit der quadratische Term.
Mit zunehmender Entfernung spielen Terme höhe-
rer Ordnung eine zunehmende Rolle, während in der
Nähe nur die Terme niedriger Ordnung berücksich-
tigt werden müssen. Wenn der quadratische Term
nicht verschwindet, so ist in der Nähe des Minimums
immer ein Bereich vorhanden, in dem er den größten
Beitrag zur Dynamik des Systems liefert. Die Forde-
rung, dass das System sich in einem stabilen Gleich-
gewicht befindet, bedeutet dann, dass die Energie ein
Minimum besitzt, dass also die zweite Ableitung po-
sitiv ist.

Wenn wir die erste Ableitung bilden,

�dU(x)
dx

= F(x) = � d2U
dx2

����
x0

(x�x0)+O((x�x0)
2)

so finden wir durch Vergleich mit dem Hooke’schen
Gesetz

F(x) = �c(x� x0) =
d2U
dx2

����
x0

(x� x0)

und identifizieren die Kraftkonstante

c = mw

2
0 =

d2U
dx2

����
x0

.

Die Resonanzfrequenz w0 ist damit durch die Masse
des Oszillators und die zweite Ableitung des Poten-
zials am Gleichgewichtspunkt bestimmt.
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Abbildung 5.20: Lennard-Jones Potenzial mit har-
monischer Näherung.

Ein Beispiel eines solchen Potenzials ist das
Lennard-Jones Potenzial, welches in Abb. 5.20 dar-
gestellt ist. Es ist als
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definiert ist. Die Konstanten e und s bestimmen Po-
sition und Tiefe des Minimums. Dieses Potenzial be-
schreibt die Wechselwirkung zwischen Atomen oder
Molekülen, die durch die Van der Waals Wechselwir-
kung aneinander gebunden sind. Für kurze Abstän-
de überwiegt die Abstoßung, während für große Ab-
stände die Wechselwirkung mit 1/x6 abfällt. Dazwi-
schen gibt es ein Minimum der potenziellen Ener-
gie; die Position dieses Minimums bestimmt z.B.
den Abstand zwischen Molekülen in einem Kristall
und damit dessen Dichte. Obwohl das Potenzial si-
cher nicht die Form einer Parabel besitzt, kann man
es doch in der Nähe des Minimums durch eine Pa-
rabel annähern. Je näher man sich beim Minimum
befindet, desto besser ist die Approximation.

5.2.6 Anharmonizität

Dies zeigt, dass die meisten Systeme in der Nähe
des Gleichgewichts wie ein harmonischer Oszillator
verhalten. Für größere Auslenkungen werden natür-
lich die Terme höherer Ordnung wichtiger und die
Kräfte werden nichtlinear, resp. der Oszillator an-

harmonisch. Zu den wichtigsten damit im Zusam-
menhang stehenden Abweichungen gehört, dass für
große Auslenkungen die Frequenz von der Auslen-
kung abhängt.

Diese Abweichung kann man z.B. an diesem Kreis-
pendel zeigen. Für kleine Auslenkungen ist die (hal-
be) Schwingungsperiode konstant, für größere Aus-
lenkungen wird sie größer. Theoretisch sollte die
Schwingungsperiode mit der Anfangs-Auslenkung
b0 wie folgt zunehmen:

T (b0) = T (0)
2K (sinb0)

p

,

wobei

K(k) =
Z

p/2

0

djq
1� k2 sin2

j

ein vollständiges elliptisches Integral darstellt.
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�0 [Grad] T/2 [s]
10 0,972
30 0,985
60 1,040
90 1,15
100 1,23
120 1,34
130 1,52
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Abbildung 5.21: Periodendauer des anharmonischen
Oszillators als Funktion der Aus-
lenkung.

Abb. 5.21 zeigt die Periodendauer eines Kreispen-
dels als Funktion der anfänglichen Auslenkung. Sie
steigt mit zunehmender Auslenkung stark an. Als
Extremfall kann man sich vorstellen, dass das Pendel
senkrecht nach oben gerichtet ist, so dass es in dieser
Position bleibt seine Schwingungsperiode wird dann
unendlich.

5.2.7 Komplexe Amplitude

Auf den engen Zusammenhang zwischen harmoni-
schen Oszillatoren und Kreisbewegung wurde be-
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5 Schwingungen

b0 [Grad] T/2 [s]
10 0,972
30 0,985
60 1,040
90 1,15

100 1,23
120 1,34
130 1,52

Tabelle 5.1: Gemessene Periodendauer eines Kreis-
pendels als Funktion der Auslenkung.

reits in der Einleitung hingewiesen.
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Abbildung 5.22: Kreisbewegung und Zeitabhängig-
keit der beiden Quadraturkompo-
nenten.

Abb. 5.22 zeigt die Kreisbewegung eines Zeigers in
der xy-Ebene und die Zeitabhängigkeit der beiden
Komponenten. Die reelle Variable x wird dabei mit
dem Realteil der komplexen Variablen identifiziert:

x(t) = x0 coswt
y(t) = x0 sinwt.

Dabei ist es nicht notwendig, die beiden Koordina-
ten getrennt zu behandeln; man kann sie über die
Euler’sche Beziehung zu einer komplexen Variablen
kombinieren:

z = x0eiwt .

Dafür wird die 2-dimensionale Ebene der Kreisbe-
wegung wird mit der komplexen Ebene identifiziert.
Gemäß der Euler’schen Formel ist

x0ei(wt+f0) = x0 [cos(wt +f0)+ i sin(wt +f0)] .

Damit lässt sich mathematisch einfacher umgehen.
So ist die Ableitung

d
dt

ei(wt+f0) = iwei(wt+f0)

wieder die Funktion selber, lediglich mit einem kom-
plexen skalaren Faktor multipliziert. Diese Schreib-
weise kann nicht nur für Kreisbewegungen ver-
wendet werden, sondern mit beliebigen harmoni-
schen Oszillationen. Für eindimensionale Bewegun-
gen identifiziert man die physikalische Auslenkung
x mit dem Realteil der komplexen Funktion,

x(t) = ¬{x0ei(wt+f0)}.

5.3 Schwingende Systeme

Schwingungen erhält man immer dann, wenn die
Kraft der Auslenkung entgegen gerichtet ist. Ist sie
außerdem proportional zur Kraft, so erhält man eine
harmonische Schwingung.

Abbildung 5.23: Orbit unseres Sonnensystems in
der Milchstraße, Oszillation durch
die Ebene.

Schwingungen treten auf sehr unterschiedlichen
Zeit- und Größenskalen auf, wie z.B. die Bewegung
unseres Sonnensystems in der Galaxis, welche in
Abb. 5.23 dargestellt ist. Sie führt mit den übrigen
Sternen eine Rotationsbewegung um das Zentrum
durch und oszilliert durch die Ebene.

Im Folgenden werden einige einfache Beispiele auf-
geführt, welche auch analytisch lösbar sind.

5.3.1 Das mathematische Pendel

Das in Abb. 5.24 gezeigte System besteht aus einer
punktförmigen Masse, die an einer masselosen, un-
elastischen Schnur der Länge ` aufgehängt ist. Die
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Abbildung 5.24: Mathematisches Pendel.

Masse sei um einen Winkel b aus der Vertikalen
ausgelenkt. Dieser Winkel ist die relevante Variable
für die Beschreibung der Schwingung. Da die Masse
an einer gespannten Schnur hängt, kann sie sich nur
senkrecht dazu bewegen, in einer Dimension entlang
dem Kreissegment. Wir erhalten eine Bewegungs-
gleichung, indem wir das Newton’sche Gesetz mit
der Schwerkraft kombinieren:

F? = �mgsinb = ma? = m`b̈ .

Das Symbol ? deutet darauf hin, dass hier nur die
Komponente senkrecht zur Schnur relevant ist.

Für kleine Auslenkungen kann man den Sinus durch
den Winkel annähern und erhält eine Bewegungs-
gleichung für einen harmonischen Oszillator

b̈ = �b

g
`
.

Durch Vergleich mit der allgemeinen Bewegungs-
gleichung des harmonischen Oszillators,

d2x
dt2 = �w

2
0 x

findet man, dass dieser Oszillator mit der Kreisfre-
quenz

w0 =

r
g
`

schwingt, welche nicht von der Masse des Pendels
abhängt. Die Periode ist demnach

T = 2p

s
`

g
. (5.3)

Ein Fadenpendel mit einer Länge von `=1 m müsste
demnach eine Schwingungsdauer von

T = 2p

s
1

9,81
s ⇡ 2,0s

haben – in guter Übereinstimmung mit dem Expe-
riment. Wird die Länge des Fadens auf 0.25 m ver-
kürzt, so halbiert sich die Periode auf 1 s.

Dieser einfache Zusammenhang, und die Tatsache,
dass nur die Länge des Pendels für seine Schwin-
gungsdauer verantwortlich ist, gehörten zu den größ-
ten Erfolgen der frühen physikalischen Forschung.

Der Legende nach hat Galilei 1581 die Schwin-
gungsperiode von hängenden Leuchtern gemessen
und festgestellt, dass sie unabhängig war von der
Amplitude. Dies wird durch den Ausdruck (5.3) be-
stätigt, gilt aber nur für kleine Auslenkungen. Ver-
wendet man die Näherung sinb ⇡ b nicht, findet
man eine Periode, die man als Reihenentwicklung in
b schreiben kann. Bei einer Auslenkung von 30� ist
der Fehler etwa 2%; bei 10� beträgt der Fehler etwa
1%.

5.3.2 Torsionsschwinger

Abbildung 5.25: Torsionsschwinger: Pohl’sches Rad
mit Spiralfeder und Trommel an
Draht aufgehängt.

Ein Torsionsschwinger oder Drehpendel kann sich
um eine Achse drehen, wobei eine Rückstellkraft
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wirkt, die proportional zur Auslenkung b ist. Diese
erzeugt ein Drehmoment

M = Ib̈ = �cb .

I ist das Trägheitsmoment für diese Achse und c
die Winkelrichtgröße (Federkonstante). Somit erhält
man eine Schwingung mit der Kreisfrequenz

w0 =

r
c
I
.

Diese Beziehung kann man u. a. verwenden, um
Trägheitsmomente zu messen:

I =
c

w

2
0
.

Die Winkelrichtgröße c wird zunächst mit Hilfe ei-
nes Körpers mit bekanntem Massenträgheitsmoment
bestimmt, danach wird der unbekannte Körper ein-
gesetzt und dessen Trägheitsmoment bestimmt.

5.3.3 Das physikalische Pendel

Aufhängepunkt

S

mg

d

d sin φ

φ

Schwerpunkt

A

Abbildung 5.26: Physikalisches Pendel.

Ein physikalisches Pendel ist ein starrer Körper, der
um einen Punkt A drehbar gelagert ist. Abb. 5.26
zeigt ein Beispiel. Wie beim Drehpendel ist das Pro-
dukt aus Winkelbeschleunigung j̈ und Trägheitsmo-
ment I gegeben durch die Rückstellkraft. Diese ist
hier gegeben durch das Drehmoment als Produkt aus
Schwerkraft FG = mg und Auslenkung des Schwer-
punktes, d sinj:

M = Ij̈ = �mgd sinj.

Wir können wiederum die Näherung sinj ⇡ j für
kleine Auslenkungen machen. Damit wird die Kreis-
frequenz

w0 =

r
mgd

I
.

Dies entspricht der Schwingungsdauer eines mathe-
matischen Pendels mit der Pendellänge

`red =
I

md
.

R

Abbildung 5.27: Reifenpendel.

Wir betrachten das Beispiel von Abb. 5.27, ein Rad
mit Radius R, welches sich um einen Aufhängepunkt
am Rand dreht. Der Abstand vom Drehpunkt beträgt
somit d = R. Gemäß dem Steiner’schen Satz beträgt
das Trägheitsmoment

IA = I0 +mR2 = 2mR2.

Somit ist die Kreisfrequenz

w0 =

r
g

2R
= 4,34s�1

wenn R = 26 cm. Dies entspricht einer Periode

T =
2p

w0
= 2p

s
2R
g

⇡ 1,47s,

in vernünftiger Übereinstimmung mit dem experi-
mentellen Wert (T = 1.38 s), den man für einen Ra-
dius von 26 cm erhält.

Löst man die Arretierung, so dass das Rad sich nicht
um den Aufhängepunkt drehen muss, so erhält man
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näherungsweise ein mathematische Pendel, bei dem
die Schwingungsperiode

T = 2p

s
R
g

⇡ 1,02s

beträgt.

5.3.4 Flüssigkeitspendel im U-Rohr

mFl

Abbildung 5.28: Flüssigkeitspendel im U-Rohr.

Wir betrachten eine Flüssigkeitssäule in einem U-
Rohr. Sind beide Enden auf gleicher Höhe so ist das
System im Gleichgewicht. Ist die Säule um die Di-
stanz y verschoben (! Abb. 5.28), so entsteht eine
rücktreibende Gewichtskraft, welche durch die rote
Fläche bestimmt wird.

Die Bewegungsgleichung enthält die Gesamtmasse
m der Flüssigkeit

m = `Ar,

wobei ` die Länge der Flüssigkeitssäule darstellt, A
die Querschnittsfläche und r die Dichte. Die resul-
tierende Gewichtskraft ist proportional zur Massen-
differenz zwischen den beiden Armen,

FG = �Dmg = �2yArg.

Damit ist die Bewegungsgleichung

F = ma = `Ar ÿ = �2yArg

oder

ÿ = �2g
`

y.

Somit beträgt hier die Kreisfrequenz

w0 =

r
2g
`

,

unabhängig vom Querschnitt der Flüssigkeit oder
ihrer Dichte. Sie entspricht einem mathematischen
Pendel mit der Länge `math = `/2.

Abbildung 5.29: Gezeitenhöhen in der Bay of Fundy
(Kanada).

Ein interessantes Beispiel eines solchen Flüssig-
keitspendels befindet sich an der kanadischen Ost-
küste: der nördliche Teil der Bay of Fundy zwischen
New Brunswick (Neu Braunschweig) und Nova Sco-
tia (Neu Schottland) bildet ein Flüssigkeitspendel.
Wie in Abb. 5.29 gezeigt, wird es von Mond zu
Schwingungen angeregt und man findet Gezeitenun-
terschiede bis zu 16 m. Allerdings ist das System viel
zu klein für eine Periode von 12 Stunden, die Anre-
gung ist somit nicht resonant.

5.3.5 Elektromagnetische Schwingkreise

Das einfachste elektronische System, das Schwin-
gungen ausführen kann, besteht aus einem Konden-
sator C und einer Spule L, wie in Abb. 5.30 gezeigt.
Eine Bewegungsgleichung für die Schwingung er-
hält man aus der Maschenregel: Die Spannung über
der Spule muss entgegengesetzt gleich der Spannung
über dem Kondensator sein:

UL +UC = 0 = L
dI
dt

+
Q
C

.

Mit I = dQ/dt erhält man

d2Q
dt2 = � Q

LC
.
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( )I t

Abbildung 5.30: LC-Schwingkreis.

Die Kreisfrequenz beträgt somit

w0 =
1p
LC

.

C L

t=T/4 t=T/2

+++
- - -
+++
- - -

- - -
+++

L

t=0

C - - -
+++

Abbildung 5.31: LC-Schwingkreis zu unterschiedli-
chen Zeiten während einer Schwin-
gung.

Wir können die Oszillation verfolgen indem wir z.B.
bei einem geladenen Kondensator anfangen, wobei
der Strom verschwinden soll. Das System entwickelt
sich somit wie

Q(t) = Q0 coswt.

Die Spannung über dem Kondensator führt zu einem
Stromfluss durch die Spule, wobei deren Induktivi-
tät den Anstieg des Stromes beschränkt. Nach ei-
ner Viertelperiode ist der Kondensator entladen und
der Strom durch die Spule auf ein Maximum ange-
stiegen, wie in Abb. 5.31 gezeigt. Der Strom lädt
jetzt den Kondensator umgekehrt auf. Dadurch ent-
steht eine Spannung, welche dem Stromfluss entge-
genwirkt. Nach einer weiteren Viertelperiode ist der
Stromfluss auf Null abgesunken, während der Kon-
densator umgekehrt geladen ist.

In diesem System erhält man einen Austausch von
Energie zwischen der elektrostatischen Energie im
Kondensator und der magnetischen Energie in der
Spule. Bei t = 0,T/2,T, . . . ist die Energie im Kon-
densator gespeichert, bei t = T/4,3T/4,. . . in der
magnetischen Energie der Spule.

5.3.6 Zusammenfassung

d  Q
dt

C L

elektron. 
Schwingkreis

2

2 =- Q 
 L

C
 1 
LC

Abbildung 5.32: Übersicht über verschiedene
schwingende Systeme.

Abb. 5.32 fasst die behandelten schwingenden Sy-
steme zusammen. Die Bewegungsgleichung hat im-
mer die Form

ẍ = �w

2
0 x.

Die Unterscheidung ist jeweils die Variable x und die
Form von w

2
0 .
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5.4 Gedämpfte Schwingung

5.4.1 Dämpfung und Reibung

Wie bei jeder Bewegung gibt es bei Schwingun-
gen auch dissipative Effekte, d.h. es wird Schwin-
gungsenergie in Wärmeenergie umgewandelt, so
dass die Schwingungsamplitude abnimmt. Dies ge-
schieht z.B. über Reibung oder Luftwiderstand.

Abbildung 5.33: Gedämpftes Federpendel: Kupfer-
blech als Wirbelstrombremse.

Bei einem Federpendel kann, wie in Abb. 5.33 ge-
zeigt, eine Dämpfung eingestellt werden, wenn man
eine Pendelmasse aus einem Kupferblech verwen-
det, welches sich zwischen zwei Elektromagneten
bewegt. Wird ein Magnetfeld angelegt, so werden im
Kupferblech Wirbelströme induziert, welche wie bei
einer Wirbelstrombremse die Bewegung abbremsen.
Die Auslenkung wird auf dem Oszilloskop sicht-
bar gemacht indem man das Licht misst, welche am
Kupferblech vorbei auf eine Photozelle gelangt.

Bei einem Drehpendel (=Torsionsschwinger) wie
dem Pohl’schen Rad kann ebenfalls über eine Wir-
belstrombremse eine geschwindigkeitsproportionale
Dämpfung eingestellt werden.

Die Reibungskraft (oder der Luftwiderstand) ist im-
mer der Geschwindigkeit entgegen gerichtet, wie in
Abb. 5.34 gezeigt. Der Betrag kann unabhängig von
der Geschwindigkeit sein (bei Roll- oder Gleitrei-
bung), proportional zur Geschwindigkeit (viskose
Reibung, Wirbelströme) oder näherungsweise pro-
portional zum Quadrat der Geschwindigkeit (Luft-
widerstand in turbulenter Strömung).

Fr(x)
0

Feder, c

Masse m

Dämpfung b

Kolben

m

x(t)

Abbildung 5.34: Federpendel: links ohne, rechts mit
Reibung.

5.4.2 Geschwindigkeitsproportionale
Reibung

Hier soll nur der wichtige und mathematisch ein-
fache Fall der geschwindigkeitsproportionalen Rei-
bung behandelt werden. In diesem Fall muss die
Bewegungsgleichung des harmonischen Oszillators
durch einen Reibungsterm ergänzt werden, der pro-
portional zur Geschwindigkeit ist

mẍ = �cx�bẋ.

Die standardisierte Form dieser Bewegungsglei-
chung lautet

ẍ+2b ẋ+w

2
0 x = 0 b =

b
2m

, w

2
0 =

c
m

. (5.4)

Die Größe b wird als Abklingkoeffizient bezeichnet.

Eine solche lineare Differenzialgleichung mit kon-
stanten Koeffizienten ist immer lösbar mit dem An-
satz

x(t) = Ael t

in komplexer Schreibweise. Damit werden die Ab-
leitungen

ẋ(t) = lAel t ẍ(t) = l

2Ael t .

Einsetzen in die Bewegungsgleichung (5.4) ergibt

l

2 +2bl +w

2
0 = 0.
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Damit reduziert sich die Lösung der Differenzial-
gleichung (5.4) auf das Auffinden von Nullstellen
der algebraischen Gleichung

l1,2 = �b ±
q

b

2 �w

2
0 = �b ± iws

mit

ws =
q

w

2
0 �b

2. (5.5)

Die allgemeine Lösung ist

x(t) = A1el1t +A2el2t = e�b t(A1eiwst +A2e�iwst).

Physikalisch sinnvolle Lösungen müssen reell sein;
dies ist dann der Fall, wenn die beiden Konstanten
konjugiert komplex sind, A1 = A⇤

2. In diesem Fall
kann der Ausdruck in der Klammer auf die Form
Acos(wst + f) gebracht werden, sofern ws reell ist.
In diesem Fall bleiben zwei reelle Parameter für die
Amplituden, welche durch die beiden Anfangsbe-
dingungen (z.B. Ort und Geschwindigkeit) bestimmt
sind.

Die Art der Lösung wird durch die Wurzel ws be-
stimmt; man kann drei Bereiche unterscheiden, in
denen ws reell, null oder imaginär ist, d.h.

w0 > b , w0 = b , w0 < b .

Die drei Bereiche werden als schwache, kritische
und überkritische Dämpfung bezeichnet und werden
im folgenden einzeln behandelt.

5.4.3 Schwache Dämpfung, w0 > b

Im Bereich der schwachen Dämpfung ist die Eigen-
frequenz größer als die Dämpfungskonstante; das
System verhält sich dann in erster Näherung wie ein
ungedämpfter Oszillator mit abfallender Amplitude.

Die Lösung kann in diesem Bereich geschrieben
werden als

x(t) = x0e�b t cos(wst +f),

wobei die Amplitude x0 und die Phase f wiederum
aus den Anfangsbedingungen zu bestimmen sind.

2 π 
 ω 4 π 

 ω 6 π 
 ω 8 π 

 ω
Zeit

A
us

le
nk

un
g 

x(
t)

Abbildung 5.35: Gedämpfte Schwingung.

Wie in Abb. 5.35 gezeigt, fällt die Amplitude so-
mit exponentiell ab, und die Schwingungsfrequenz
ist niedriger als im ungedämpften Fall, ws < w0.

Die Energie ist proportional zum Quadrat der Am-
plitude x0e�b t , sie fällt somit mit der doppelten Rate
ab:

Etot = Etot(0)e�2b t .

Zeit

2 π 
 w

4 π 
 w

6 π 
 w

8 π 
 w

Zeit

e-βt

Abbildung 5.36: Abnahme der Amplitude einer ge-
dämpften Schwingung (links) und
semilogarithmische Darstellung als
Funktion der Zeit (rechts).

Aus gemessenen Daten können die Parameter ws
und b bestimmt werden. ws erhält man aus der Pe-
riode T ; der Abklingkoeffizient b kann durch Ver-
gleich der Amplitude zu verschiedenen Zeiten ermit-
telt werden, wie in Abb. 5.36 gezeigt. Vergleicht man
die Auslenkungen bei zwei Zeiten, welche sich um
eine Periode unterscheiden, fällt der oszillatorische
Teil heraus und man erhält

x(t +T )

x(t)
= e�bT ,

d.h.

b =
1
T

ln
✓

x(t)
x(t +T )

◆
.
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In der Praxis trägt man z.B. die Amplitude als Funk-
tion der Zeit logarithmisch auf und bestimmt die Zer-
fallszeit aus einem linearen Fit, wie in Abb. 5.36 ge-
zeigt.

5.4.4 Gedämpfte elektromagnetische
Schwingungen

L

R

C

I(t)

Abbildung 5.37: RLC-Schwingkreis.

Als ein Beispiel für gedämpfte Schwingungen be-
trachten wir den LRC Schwingkreis (! Abb. 5.37).
Er kann abgeleitet werden aus dem LC Kreis. Durch
Zufügen eines Ohm’schen Widerstandes (der in je-
dem Schwingkreis existiert) erhält man eine modifi-
zierte Maschenregel:

UL +UC +UR = 0 = L
dI
dt

+
Q
C

+RI

= L
d2Q
dt2 +R

dQ
dt

+
Q
C

.

Durch Vergleich mit der allgemeinen Bewegungs-
gleichung (5.4) erhält man die Resonanzfrequenz
des ungedämpften Systems:

w0 =
1p
LC

.

Für den Abklingkoeffizienten erhält man

b =
R
2L

.

Der LRC Schwingkreis verhält sich ähnlich wie der
LC Schwingkreis, ist aber gedämpft.

Man kann die unterschiedlichen Bereiche starker
und schwacher Dämpfung im RLC System leicht
durch Verändern eines Widerstandes einstellen. In

RC L

schwache 
Dämpfung

mittlere 
Dämpfung

„Kriechfall“

Anregungs- 
impuls

ω0>β ω0<β

Abbildung 5.38: Unterschiedlich starke Dämpfung
in einem RLC-Schwingkreis.

Abb. 5.38 ist links ist ein schwach gedämpftes Si-
gnal gezeigt, welches durch einen elektrischen Puls
angestoßen wird und danach etwa 50 Schwingungen
durchführt. Die Situation im rechten Bild entspricht
dem Fall w0 < b .

Es ist nützlich, den Dämpfungsgrad

D =
b

w0
,

resp. den Gütefaktor

Q =
1

2D
=

w0

2b

einzuführen, das Verhältnis von Dämpfungskonstan-
te und Resonanzfrequenz, respektive seinen halb-
en Kehrwert. Im Bereich der schwachen Dämpfung
kann der Dämpfungsgrad den Wertebereich von 0 <
D < 1 annehmen, der Gütefaktor ist > 0.5.

In natürlichen Systemen kommen sehr unterschied-
liche Werte vor. Atomare Systeme z.B. können ei-
ne extrem geringe Dämpfung aufweisen. Übergänge,
die für Atomuhren benutzt werden, haben Gütefak-
toren von mehr als 1010. Heute ist es auch möglich,
makroskopische Systeme herzustellen, deren Güte-
faktor von einer ähnlichen Größenordnung ist.

5.4.5 Überkritische Dämpfung (Kriechfall)

Wir betrachten jetzt den Fall, dass die Dämpfung
größer ist als die Resonanzfrequenz,

b > w0, D > 1, Q < 0,5.
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Damit wird der Radikand w

2
0 � b

2 < 0 in (5.5) und
die Wurzel imaginär. Die allgemeine Lösung lautet
in diesem Bereich

x(t) = e�b t(c1ewt + c2e�wt), w =
q

b

2 �w

2
0 ,

wobei c1,2 Integrationskonstanten darstellen, die
durch die Anfangsbedingungen bestimmt sind. Das
System nähert sich biexponentiell seinem Gleichge-
wicht.
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Abbildung 5.39: Zeitabhängigkeit im Bereich der
überkritischen Dämpfung für 2
unterschiedliche Anfangsbedin-
gungen.

In diesem Fall tritt keine Schwingung mehr auf, wie
in Abb. 5.39 gezeigt. Es kann maximal einen Null-
durchgang aufweisen wenn die beiden Amplituden
entgegengesetztes Vorzeichen aufweisen.

Das in Abb. 5.38 gezeigte Experiment ermöglicht es,
durch Änderung eines Widerstandes zwischen den
unterschiedlichen Bereichen zu wechseln.

5.4.6 Der aperiodische Grenzfall: w0 = b

Dies wird auch als der Fall der kritischen Dämpfung
bezeichnet. Die Wurzel verschwindet und die beiden
Eigenwerte sind entartet. In diesem Fall kann die Lö-
sung der Differentialgleichung als

x(t) = (c1 + c2t)e�b t

geschrieben werden. Diese Situation führt dazu, dass
der Gleichgewichtswert am schnellsten (näherungs-
weise) erreicht wird. Dies ist nützlich (und wird
deshalb angestrebt) in Messgeräten, wo man den

x 

x 

schwache Dämpfung : ω0>β

kritische Dämpfung : ω0=β 
aperiodischer Grenzfall

Kriechfall : ω0<β

Zeit t

Zeit t

Zeit t

x

Abbildung 5.40: Zusammenfassung der drei Berei-
che der Dämpfung.

(Gleichgewichts) Messwert möglichst rasch errei-
chen möchte.

Abb. 5.40 fasst die drei relevanten Fälle zusammen:

• Schwache Dämpfung (b < w0)

• Der aperiodische Grenzfall oder kritische
Dämpfung (b = w0)

• Stärke Dämpfung oder Kriechfall (b > w0)

5.5 Erzwungene Schwingung

Bis hierher wurden Systeme betrachtet, auf die keine
äußere Kraft wirkt. Bei erzwungenen Schwingungen
wird von außen eine periodische Kraft angelegt, wel-
che dem System Energie zuführt.

5.5.1 Bewegungsgleichung

Abb. 5.41 zeigt typische Beispiele, wie eine Uhr
oder eine Klingel. Im Uhrwerk stammt die Energie
von einem Gewicht oder eine Feder. In einer Klingel
wird eine elektromagnetische Kraft verwendet, wel-
che durch die mechanische Bewegung ein und aus-
geschaltet wird.

Abb. 5.42 zeigt als Beispiel ein Drehpendel, das über
einen Exzenter angeregt wird.
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Beispiel: Uhr

Klingel

Resonator
Erreger

Abbildung 5.41: Schwingendes System mit äußerem
Antrieb.

Abbildung 5.42: Pohl’sches Rad: Torsionsschwinger
mit äußerem Antrieb.

Ein getriebener Oszillator, resp. eine erzwungene
Schwingung wird durch folgende Bewegungsglei-
chung beschrieben:

ẍ+2b ẋ+w

2
0 x =

K(t)
m

, (5.6)

wobei K(t) eine äußere Kraft beschreibt, welche hier
als periodisch angenommen wird.

5.5.2 Energiebillanz

Die äußere Kraft leistet am System Arbeit, so dass
die Energie des Systems zu-, aber auch abnehmen
kann. Dies hängt davon ab, ob die Kraft in Rich-
tung der Geschwindigkeit oder in entgegengesetz-
ter Richtung wirkt. Die ins System hinein fließende
Leistung P ist das Produkt aus Kraft F = K(t) und
Geschwindigkeit v = ẋ, P = Fv. Man erhält sie aus

Gleichung (5.6) durch Multiplikation mit mẋ:

P = K(t)ẋ = mẍẋ+2bmẋ2 +w

2
0 mxẋ.

Mit der Substitution w

2
0 m = c und umschreiben des

ersten und dritten Terms erhält man

P =
d
dt

⇣m
2

ẋ2 +
c
2

x2
⌘

+2bmẋ2.

Die beiden Terme in der Klammer stellen gerade
die kinetische und potenzielle Energie des schwin-
genden Systems dar. Die extern geleistete Arbeit
fließt somit zum einen in die Änderung der mecha-
nischen (kinetischen plus potenziellen) Energie, der
Rest kompensiert die Reibungsverluste, die dem Sy-
stem Energie entziehen.

Ort
Geschwindigkeit

K(t)

Zeit

Kraft in Phase mit Geschwindigkeit
Leistung P 

 Zeit

Abbildung 5.43: Oben: relative Phase von Ort und
Geschwindigkeit. Unten: Ist die
Kraft in Phase mit der Geschwin-
digkeit, so ist die zugeführte Lei-
stung immer positiv.

Die zugeführte Leistung ist positiv wenn K(t) und ẋ
das gleiche Vorzeichen haben, d.h. wenn Kraft und
Geschwindigkeit in Phase sind. Dieser Fall ist in
Abb. 5.43 dargestellt.

Ist die Kraft hingegen mit dem Ort in Phase, also ge-
genüber der Geschwindigkeit 90 Grad außer Phase,
so wird dem System abwechselnd Energie zugeführt
und wieder entzogen. Über eine Schwingung gemit-
telt verschwindet die zugeführte Energie.

5.5.3 Lösungsweg

Die Bewegungsgleichung ist eine lineare, inhomoge-
ne Differentialgleichung zweiter Ordnung. Die all-
gemeine Lösung eines solchen Systems wird durch
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zwei linear unabhängige Funktionen aufgespannt,
welche zusammen zwei freie Parameter enthalten,
die durch die Anfangsbedingungen bestimmt wer-
den. Der einfachste Weg zur allgemeinen Lösung
folgt dem Rezept:

allgemeine Lösung der inhomogenen DGl
= allgemeine Lösung der homogenen DGl
+ beliebige Lösung der inhomogenen DGl.

Die homogene Differentialgleichung entspricht dem
freien harmonischen Oszillator, der in Kapitel 5.4
behandelt wurde. Die entsprechende Lösung bleibt

x(t) = e�b t(A1eiwst +A2e�iwst)

= e�b tAcos(wst +f)

ws =
q

w

2
0 �b

2.

Jetzt benötigen wir zusätzlich eine (beliebige) Lö-
sung der inhomogenen Gleichung.

(allgem.) Lösung der homogenen Gl. (bel.) Lösung der inhomogenen Gl.

 + 
= allgemeine Lösung der inhomogenen DGl.

Zeit

Abbildung 5.44: Die allgemeine Lösung der inho-
mogenen Gleichung erhält man aus
der allgemeinen Lösung der homo-
genen Gleichung und einer beliebi-
gen Lösung der inhomogenen Glei-
chung.

Eine relativ einfache Lösung, die auch häufig von
speziellem Interesse ist, ist die stationäre Lösung,
d.h. der Zustand, der sich einstellt wenn die An-
fangsbedingungen nicht mehr relevant sind (! Abb.
5.44). Wir betrachten dafür nur eine spezielle Form
der äußeren Kraft, nämlich eine harmonische Anre-

gung. In komplexer Schreibweise lautet sie

K(t) = K0eiwt ,

wobei die physikalische Kraft dem Realteil ent-
spricht,

Kp(t) = K0 cos(wt).

Die Lösung erhält man aus dem Ansatz, dass das Sy-
stem der äußeren Kraft mit dessen Frequenz folgt,
d.h.

x(t) = a(w)eiwt = A(w)e(iwt+f),

mit a(w) = A(w)eif(w) als Amplitude in komplexer
Schreibweise, und A(w), f(w) reelle Amplitude und
Phase. Diese Parameter sind Funktionen der Anre-
gungsfrequenz w .

5.5.4 Stationäre Lösung

Für diesen Ansatz sind die Ableitungen

ẋ(t) = iwa(w)eiwt = iwx(t), ẍ(t) = �w

2x(t).

Einsetzen in die Bewegungsgleichung ergibt

(�w

2 +2ibw +w

2
0 )a(w) =

K0

m
.

Auflösen nach a ergibt

a(w) = A(w)eif(w) =
K0

m
1

�w

2 +2iwb +w

2
0
.

Dies ist bereits die Lösung in komplexer Schreib-
weise. Offenbar ist die Antwort des Systems propor-
tional zur äußeren Anregung. Diese Proportionalität
wird geschrieben als

a(w) =
K0

m
Y (iw),

wobei

Y (s) =
1

s2 +2b s+w

2
0

die komplexe Transferfunktion des Systems dar-
stellt. Sie stellt das Verhältnis zwischen einer harmo-
nischen äußeren Kraft und der Antwort des Systems
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dar. Diese einfache Beziehung gilt nur weil das Sy-
stem linear ist.

Die physikalische Auslenkung entspricht dem Real-
teil der komplexen Funktion

xp(t) = ¬{a(w)eiwt}
= ¬{a(w)}cos(wt)�¡{a(w)}sin(wt).

Somit beschreibt der Realteil von a(w) die In-Phase
Komponente der Auslenkung, der Imaginärteil den
Außer-Phase Teil.

Wir können Real und Imaginärteil erhalten, indem
wir mit dem konjugiert-komplexen des Nenners er-
weitern:

a(w) =
K0

m
1

�w

2 +2iwb +w

2
0

·�w

2 �2iwb +w

2
0

�w

2 �2iwb +w

2
0

=
K0

m
w

2
0 �w

2 �2iwb

(w2
0 �w

2)2 +4w

2
b

2

Somit sind

¬{a(w)} =
K0

m
w

2
0 �w

2

(w2
0 �w

2)2 +4w

2
b

2

�¡{a(w)} =
K0

m
2wb

(w2
0 �w

2)2 +4w

2
b

2 .

Offenbar ist dies im Wesentlichen eine Funktion der
Frequenz w , d.h. der Frequenz mit der die äußere
Kraft oszilliert.

Mit

w

2
0 �w

2 = (w0 +w)(w0 �w)

findet man zwei Maxima bei w = ±w0, wie in Abb.
5.45 gezeigt.

Ein interessanter Grenzfall ist derjenige für kleine
Frequenzen: Wenn die Frequenz der äußeren Anre-
gung gegen Null geht, w ! 0, verschwindet offenbar
der Imaginärteil gegen 0, ¡{a(0)} = 0 und der Re-
alteil zu

¬{a(0)} =
K0

m
w

2
0

(w2
0 )2 =

K0

mw

2
0

=
K0

c
.

-2 1 2

 -5 

-10

5

Resonanzen

-1
0 ω

Abbildung 5.45: Realteil (blau) und Imaginärteil
(rot) der Amplitude a(w) als Funk-
tion der Frequenz.

Die stationäre Auslenkung ist somit gerade durch die
Federkonstante c gegeben, in Übereinstimmung mit
dem Hooke’schen Gesetz und unserer Erwartung für
den Fall einer zeitunabhängigen äußeren Kraft.

5.5.5 Resonante Anregung

In vielen Fällen interessiert man sich in erster Li-
nie für das Verhalten in der Nähe der Resonanzen.
Sind diese gut isoliert, d.h. ist die Dämpfung nicht zu
groß, so kann man sie getrennt diskutieren. Mathe-
matisch erreicht man das, indem man w ⇡ w0 setzt.
Dadurch vereinfacht sich der Ausdruck im Nenner
zu:

(w2
0 �w

2)2 = (w0 +w)2(w0 �w)2

⇡ 4w

2
0 (w0 �w)2.

10

2-2 -1 1

-5

5

a(ω)

0

�{a(�)}
��{a(�)}

ω

Abbildung 5.46: Resonanz bei positiven Frequen-
zen.

Wie Abb. 5.46 zeigt, betrachtet man dann nur noch
den Beitrag der Resonanz bei positiven Frequenzen.
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Positive und negative Frequenzen können z.B. Rota-
tionen in unterschiedliche Richtungen beschreiben.
In der Figur sind Realteil und Imaginärteil der kom-
plexen Amplitude als Funktion der Frequenz w dar-
gestellt für K0 = m, w0 = 1, b = 0.05. Wesentlich
ist, dass es sich um ein resonantes Verhalten han-
delt: Der Realteil, also der in-Phase Teil wächst zu-
nächst mit zunehmender Frequenz, bis er bei w0 �b

ein Maximum erreicht. Mit weiter zunehmender Fre-
quenz nimmt er wieder ab und geht auf der Reso-
nanzfrequenz w0 durch 0. Hier erreicht jedoch der
Imaginärteil sein Maximum. Die Breite der Reso-
nanzlinie ist gegeben durch die Dämpfungskonstante
b .

Bei resonanter Anregung, also für w = w0 werden
die Amplituden

¬{a(0)} = 0.

�¡{a(w)} =
K0

m
2w0b

4w

2
0 b

2 =
K0

m
1

2w0b

=
K0

c
w0

2b

.

Der Realteil verschwindet also bei der Resonanz-
frequenz, während der Imaginärteil sein Maximum
erreicht. Das Maximum ist proportional zum Ver-
hältnis der äußeren Kraft zur Kraftkonstante des Sy-
stems, und zum Verhältnis der Resonanzfrequenz zur
Dämpfung. Dieses Verhältnis wird auch als Güte-
faktor des Systems bezeichnet und ergibt die Ver-
stärkung der äußeren Anregung gegenüber dem sta-
tischen Fall (w = 0). Bei mechanischen Systemen ist
es typischerweise in der Größenordnung von einigen
10 bis einigen 100. In atomaren Systemen kann die-
se Kreisgüte jedoch bis auf mehr als 1015 anwach-
sen. Entsprechend ist die Resonanzüberhöhung dort
extrem groß.

Die Amplitude einer Schwingung kann sehr groß
werden und zur Zerstörung des Objektes führen. Ein
berühmter Fall ist die Zerstörung der Tacoma Nar-
rows Brücke bei Seattle, im Sommer 1940, wie in
Abb. 5.47 gezeigt.

moderne Brücke

Einsturz am 1.7.1940

Abbildung 5.47: Zerstörung der Tacoma Narrows
Bridge durch resonante Anregung.

5.5.6 Absolutbetrag und Phase

Man kann die Auslenkung auch in Absolutbetrag
und Phase aufteilen:

A(w) =
q

¬{a(w)}2 +¡{a(w)}2

=
K0

m
1q

(w2
0 �w

2)2 +4w

2
b

2

und

tanf = � ¡{a(w)}
¬{a(w)} = � 2bw

(w2 �w

2
0 )

.

Offenbar erreicht der Absolutbetrag sein Maximum
für w =

q
w

2
0 �2b

2.
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Abbildung 5.48: Absolutbetrag und Phase der Re-
sonanz für unterschiedlich starke
Dämpfung.

Abb. 5.48 zeigt Amplitude und Phase für die glei-
chen Parameter wie oben. Die Amplitude erhält of-
fenbar eine starke Überhöhung in der Nähe der Re-
sonanzfrequenz w = w0. Für kleinere Frequenzen ist
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die Phase 0, d.h. das System schwingt in Phase mit
der äußeren Anregung. Auf der Resonanz beträgt die
Phase p/2, und für größere Frequenzen hinkt das Sy-
stem um 180 Grad hinter der Anregung her.

Das Verhalten kann im Experiment schön gezeigt
werden, z.B. wenn ein Pendel mit einem Motor
mit variabler Frequenz angetrieben wird. Bei klei-
nen Geschwindigkeiten schwingt das Pendel in Pha-
se mit der äußeren Kraft; die Amplitude bleibt klein.
Wenn wir die Geschwindigkeit des Motors, d.h. die
Drehzahl, resp. Frequenz, erhöhen, gelangen wir in
die Nähe der Resonanzfrequenz, wo die Auslenkung
des Pendels sehr groß wird.

Bei geringer Dämpfung fällt das Maximum der Am-
plitude mit der Phasenverschiebung um p/2 zusam-
men und die Resonanzlinie sehr schmal. Dies folgt
direkt aus der Energiebillanz von Kapitel 5.5.2: hier
sind Geschwindigkeit und Kraft in Phase, so daß am
meisten Leistung in das System hinein fließt. Mit zu-
nehmender Dämpfung wird das Maximum niedriger
und breiter, ebenso der Phasenwechsel. Die Reso-
nanzfrequenz, also die Frequenz, bei der die Ampli-
tude maximal wird, sinkt mit zunehmender Dämp-
fung.

5.5.7 Einschwingvorgang

Nachdem wir die allgemeine Lösung der homogenen
Gleichung (der freie gedämpfte harmonische Oszil-
lator) und eine spezielle Lösung der inhomogenen
Gleichung (die stationäre Lösung) diskutiert haben,
können wir die allgemeine Lösung der inhomoge-
nen Gleichung als Summe der beiden diskutieren.
Der freie gedämpfte Oszillator führt eine Schwin-
gung mit der Resonanzfrequenz durch, welche ex-
ponentiell gedämpft ist. Die spezielle Lösung der in-
homogenen Gleichung ist die stationäre Lösung, d.h.
eine Schwingung mit konstanter Amplitude und der
Frequenz der äußeren Störung.

Die allgemeine Lösung der inhomogenen Gleichung
entspricht somit einer Superposition dieser beiden
Lösungen. Für lange Zeiten sollte das System sich
dem stationären Zustand nähern. Für kurze Zeiten
wird sich das System ähnlich wie der freie Oszil-
lator bewegen, wie in Abb. 5.49 gezeigt. In diesem

~ stationäre Lösung 
ωext

Frequenz ν

Zeit t

A
us

le
nk

un
g

~freier harmonischer Oszillator 
ωs

Frequenzspektrum

Anregungs-
frequenz

Eigen-
frequenz

Abbildung 5.49: Einschwingverhalten eines ge-
dämpften harmonischen Oszilla-
tors.

Bereich erwartet man eine Überlagerung der frei-
en Schwingung mit der getriebenen, und damit eine
Schwebung.

Dieses Verhalten kann gut beobachtet werden, wenn
wir bei der getriebenen Schwingung die Dämpfung
gering halten. Der Einschwingvorgang, der bei der
Frequenz des freien Oszillators liegt, überlagert sich
der Schwingung, mit der das System der externen
Anregung folgt. Berechnet man die Fouriertransfor-
mierte des in Abb. 5.49 gezeigten Signals, so fin-
det man zwei Frequenzen: die Eigenfrequenz des
Systems, mit der es während des Einschwingvor-
gangs schwingt, sowie die Frequenz der äußeren An-
regung, der es im stationären Zustand folgt.

5.6 Schwingungen mit mehreren
Freiheitsgraden

5.6.1 Das Doppelpendel

Wir betrachten nun nicht mehr einzelne, unabhängi-
ge harmonische Oszillatoren, sondern mehrere, die
aneinander gekoppelt sind.

Abb. 5.50 zeigt zwei über eine Feder aneinander ge-
koppelte Pendel. Stößt man eines davon an, so be-
ginnt zunächst nur dieses zu schwingen, doch auf ei-
ner etwas längeren Zeitskala wird seine Energie auf

236



5 Schwingungen

Abbildung 5.50: Zwei gekoppelte Pendel.

das andere übertragen. Die Schwingung des ersten
Pendels wird dabei gedämpft bis es ganz still steht,
diejenige des zweiten Pendels baut sich auf, bis der
Vorgang sich umkehrt. Offenbar wird hier Energie
von einem Pendel auf das andere übertragen.

1 2

x1 x1

Abbildung 5.51: 2 gekoppelte Massenpunkt.

Ein ähnliches System besteht aus zwei über Federn
gekoppelten Massen, wie in Abb. 5.51 gezeigt. Um
eine Bewegungsgleichung für dieses System zu er-
halten gehen wir aus vom freien, ungedämpften har-
monischen Oszillator. Im Vergleich dazu erhalten
wir in diesem Fall eine zusätzliche rückstellende
Kraft für jeden der beiden einzelnen Pendel, welche
proportional zur Differenz der beiden Auslenkungen
ist:

f̈1 = �w

2
0 f1 +k(f2 �f1)

f̈2 = �w

2
0 f2 +k(f1 �f2).

Offenbar ergibt sich ein System von zwei gekoppel-
ten Differentialgleichungen.

Im Allgemeinen kann man Systeme von gekoppelten
linearen Differentialgleichungen lösen, indem man
die Eigenwerte und Eigenvektoren bestimmt. In die-
sem Fall handelt es sich um ein speziell einfaches

System: Die Eigenfunktionen ergeben sich aus der
Summe und der Differenz dieser beiden Gleichun-
gen :

f̈1 + f̈2 = ẍ1 = �w

2
0 (f1 +f2) = �w

2
0 x1.

f̈1 � f̈2 = ẍ2 = �w

2
0 (f1 �f2)+2k(f2 �f1)

= �(w2
0 +2k)x2.

Somit haben wir zwei voneinander unabhängige Dif-
ferentialgleichungen für die Variablen (f1 +f2) und
(f1 � f2) gefunden, welche jeweils einem harmoni-
schen Oszillator entsprechen. Somit sind die Lösun-
gen für diese beiden Variablen

f1 +f2 = x1 = Aei(w0t+f),

wobei Amplitude A und Phase f durch die Anfangs-
bedingungen bestimmt sind.

Die zweite Mode ist die antisymmetrische, bei der
die beiden Pendel in entgegengesetzte Richtung
schwingen. Für sie findet man

f1 �f2 = x2 = Bei(w2t+d )

mit

w2 =
q

w

2
0 +2k = w0

s
1+

2k

w

2
0

⇡ w0

✓
1+

k

w

2
0

◆
.

Die Näherung gilt für schwache Kopplung, k ⌧ w

2
0 .

Die zweite Frequenz liegt somit immer höher als die
Frequenz für die symmetrische Mode. Die Erhöhung
wird durch das Verhältnis aus Kopplungsstärke und
Modenfrequenz bestimmt.

5.6.2 Eigenschwingungen

Die beiden Lösungen entsprechen offenbar Zustän-
den des Systems, in denen es mit einer einzelnen
Frequenz schwingt. Man bezeichnet diese speziel-
len Schwingungstypen als Normalmoden oder Nor-
malschwingungen des Systems. Es ist möglich, Nor-
malmoden gezielt anzuregen, indem man die An-
fangsbedingungen geeignet wählt. Eine daran an-
schließende freie Oszillation des Systems kann dann
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durch diese Normalschwingung allein beschrieben
werden.

Wir betrachten zunächst den Fall

f1(0) = f2(0) = f0

ḟ1(0) = ḟ2(0) = 0,

d.h. den Fall, dass beide Pendel zur gleichen Sei-
te ausgelenkt werden und aus der Ruhe losgelassen
werden. Eingesetzt in die obigen Lösungen für x1
und x2 finden wir

f1 +f2 = x1 = 2f0eiw0t , f1 �f2 = x2 = 0

oder

f1 = f2 = f0eiw0t ,

φ1 φ2

ω1 =ω0

ξ1=φ1+φ2

Abbildung 5.52: Eine der Eigenmoden des Systems.

d.h. beide Pendel schwingen mit der gleichen Fre-
quenz, gleicher Amplitude und gleicher Phase, wie
in Abb. 5.52 gezeigt. Die Kopplungsfeder ist in die-
sem Fall entspannt und hat deshalb keinen Einfluss
auf das System.

Als nächstes betrachten wir den Fall, dass die beiden
Pendel in entgegengesetzte Richtung ausgelenkt und
aus der Ruhe losgelassen werden,

f1(0) = �f2(0) = f0; ḟ1(0) = ḟ2(0) = 0.

Aus dieser Anfangsbedingung erhalten wir

f1 �f2 = x2 = 2f0eiw2t , f1 +f2 = 0

oder

f1 = �f2 = f0eiwt .

φ1 φ2

ξ2=φ1-φ2

�2 = �20 + 2�

Abbildung 5.53: Antisymmetrische Eigenmoden
des Systems.

Somit bewegen sich in diesem Fall beide Pendel mit
gleicher Frequenz und Amplitude, diesmal aber in
Gegenphase, wie in Abb. 5.53 gezeigt. Dadurch ist
die Feder in diesem Fall maximal gespannt, so dass
die rücktreibende Kraft auf beide Pendel um den
entsprechenden Wert größer wird. Die Resonanzfre-
quenz

w2 =
q

w

2
0 +2k ⇡ w0 +

k

w0
.

für diese zweite Normalmode ist deshalb um k/w0
größer als die Grundfrequenz w0. Wir bestätigen die-
se Voraussage im Experiment indem wir die Periode
der beiden Schwingungen messen. Sie betragen

T1 = 1,9s T2 = 1,65s.

Wird die Feder in die Mitte der Pendel verschoben,
wird die Kopplungsstärke reduziert. Wir messen in
diesem Fall eine Periode von T3 = 1,8s, also näher
bei T1.

5.6.3 Schwebungen

Als dritten Fall betrachten wir die Situation, dass ei-
ner der beiden Pendel ausgelenkt wird, während der
andere in der Gleichgewichtslage ist, und beide zu-
nächst in Ruhe, d.h.

f1(0) = f0, f2(0) = 0, ḟ1(0) = ḟ2(0) = 0.

In den Variablen x1 und x2 muss die zeitliche Ent-
wicklung somit

f1 +f2 = x1 = f0eiw0t

f1 �f2 = x2 = f0eiw2t
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sein. Die Auslenkung der beiden Pendel wird damit

f1 =
x1 +x2

2
=

f0

2
�
eiw0t + eiw2t�

f2 =
x1 �x2

2
=

f0

2
�
eiw0t � eiw2t� .

In reeller Schreibweise entspricht dies für

f1 =
f0

2
(cos(w0t)+ cos(w2t)) .

Mit Hilfe des Additionstheorems

cosa + cosb = 2cos
a +b

2
cos

a �b

2
und

w2 ⇡ w0

✓
1+

k

w

2
0

◆
können wir dies umformen zu

f1 = f0 cos
✓

w1 +w2

2
t
◆

cos
✓

w1 �w2

2
t
◆

= f0 cos
✓

w0(1+
k

2w

2
0
)t

◆
cos

✓
k

2w0
t
◆

.

Zeit

Zeit

�1 = �0 cos ( �1 + �2
2 t) cos ( �1 � �2

2 t)
�1

�2

�2 = �0 sin ( �1 + �2
2 t) sin ( �1 � �2

2 t)

Abbildung 5.54: Amplituden der beiden Pendel als
Funktion der Zeit.

Für das zweite Pendel erhalten wir entsprechend

f2 =
f0

2
[cos(w1t)� cos(w2t)]

= f0 sin
✓

w1 +w2

2
t
◆

sin
✓

w1 �w2

2
t
◆

= f0 sin
✓

w0(1+
k

2w

2
0
)t

◆
sin

✓
k

2w

2
0

t
◆

.

Abb. 5.54 zeigt die beiden Amplituden als Funkti-
on der Zeit. Offenbar schwingen beide Pendel jetzt
mit der mittleren Frequenz (w0 + w2)/2, wobei die
Amplitude noch mit der halben Differenzfrequenz
k/2w

2
0 moduliert ist. Man bezeichnet diese Erschei-

nung als Schwebung.

5.6.4 Gekoppelte elektronische
Schwingkreise

C 

 R

 C 

RCk

L

Abbildung 5.55: Gekoppelte elektrische Schwing-
kreise.

Wie mechanische Schwingkreise können auch elek-
tronische Schwingkreise gekoppelt werden. Wir be-
trachten als Beispiel das in Abb. 5.55 gezeigte
System von zwei kapazitiv (d.h. über einen Kon-
densator) gekoppelten Schwingkreisen. Die beiden
Schwingkreise sind unabhängig voneinander sofern
der Kopplungskondensator Ck sehr groß wird: in die-
sem Fall wirkt er als Kurzschluss und der Punkt zwi-
schen den beiden Spulen ist auf dem Potenzial der
Masse. Jeder der beiden Schwingkreise entspricht
dann einem unabhängigen harmonischen Oszillator.
Ist der Widerstand klein, so beträgt die Eigenfre-
quenz

w0 =
1p
LC

.

Unter Berücksichtigung des Kopplungskondensators
können wir die eine Eigenmode des Systems finden,
wenn wir den Fall betrachten wo das System symme-
trisch schwingt, d.h. über den entsprechenden Kom-
ponenten auf beiden Seiten liegt jeweils die gleiche
Spannung an. Aus Symmetriegründen hat der Kopp-
lungskondensator dann keine Wirkung. Das gesamte
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System besitzt dann die Eigenfrequenz

w1 =
1q

2L 1
2C

=
1p
LC

= w0.

Sind die beiden Kreise im Gegentakt, fließt der
Strom also durch den Kondensator Ck, so wird die
gesamte Kapazität des Schwingkreises

Ctot =
1

1
2C + 1

Ck

=
2CCk

2C +Ck
.

Damit wird die Resonanzfrequenz

w2 =
1q

1
2 LCtot

=
1q

L CCk
2C+Ck

.

Wird der Kopplungskondensator sehr groß, erhalten
wir daraus wieder die Frequenz w0. Für sehr kleine
Kopplungskondensatoren dominiert er und die zwei-
te Resonanzfrequenz wächst auf

w2 ! 1p
LCk/2

.

Offenbar kann diese Frequenz sehr hoch werden.

Abbildung 5.56: Gemessene Anregungsamplitude
als Funktion der Frequenz.

Man kann die beiden Resonanzfrequenzen im Expe-
riment beobachten indem man eine variable Wech-
selspannung anlegt und die Spannung über einer der
beiden Spulen abgreift. Abb. 5.56 zeigt das Resul-
tat als Oszilloskop-Bild. Für große Werte des Kopp-
lungskondensators werden die beiden Resonanzfre-
quenzen praktisch identisch. Für kleine Werte nimmt
die zweite Resonanzfrequenz stark zu.

Abbildung 5.57: Unterschiedliche Moden einer
Transversalschwingung.

5.6.5 Transversalschwingungen

In Systemen mit mehreren Freiheitsgraden kann die
Auslenkung nicht nur entlang der Achse erfolgen,
wie in Abb. 5.51, sondern auch senkrecht dazu, wie
in Abb. 5.57 gezeigt. Man spricht im bisher disku-
tierten Fall von Longitudinalschwingungen, im Fall
von Abb. 5.51 von Transversalschwingungen. Ge-
naueres dazu wird im Kapitel 7 (Wellen) diskutiert.
In den meisten Fällen existieren zwei voneinander
unabhängige transversale Schwingungsmoden.

Eine zweidimensionale Schwingung kann man z.B.
auf dem Luftkissentisch realisieren. In vielen Fäl-
len ist es jedoch möglich, die beiden Dimensionen
zu trennen und die Bewegungsgleichungen getrennt
zu diskutieren. Wenn wir bei solchen Schwingungen
zum kontinuierlichen Grenzfall übergeht, erhält man
die Schwingungen einer Saite. Diese werden eben-
falls im Kapitel 7 “Wellen” genauer diskutiert wer-
den. Qualitativ soll jedoch das Ergebnis hier vorweg-
genommen werden: Es gibt unendliche viele Eigen-
schwingungen, welche die Form

yn = sin
⇣nxp

L

⌘
cos(wnt)

besitzen. Hier stellt n eine laufende Zahl dar, wel-
che die Eigenschwingungen ordnet, x die Koordinate
entlang der Saite, L ihre Länge, und wn die Eigenfre-
quenz der Schwingung. Jede Eigenmode entspricht
einer harmonischen Auslenkung der Saite, und die
Auslenkung zeigt eine harmonische Zeitabhängig-
keit.

Da die Saite am Rand eingespannt ist verschwindet
dort die Auslenkung immer, ebenso an den dazwi-
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Abbildung 5.58: Unterschiedliche Eigenmoden ei-
ner eingespannten Saite.

schen liegenden Knoten, also den Nulldurchgängen
der Auslenkung. Abb. 5.58 zeigt zwei dieser Eigen-
moden. Die n-te Eigenmode besitzt n Knoten. Die
Frequenzen sind Vielfache der Grundfrequenz, d.h.

wn = nw1,

und die Grundfrequenz wn ist indirekt proportional
zur Länge der Saite. Je länger eine Saite desto nied-
riger somit die Frequenz. Dies ist ein Grund dafür,
dass tiefe Töne von großen Musikinstrumenten er-
zeugt werden.

5.6.6 Schwingungen von
mehrdimensionalen Systemen

Ähnliche Schwingungen treten auch in mehrdimen-
sionalen Systemen auf. Ein klassisches Beispiel
sind die Schwingungen einer Membran. Unter ei-
ner Membran versteht man ein zweidimensiona-
les schwingungsfähiges System. Dazu gehören z.B.
Trommeln, wo eine elastische Membran am Rand
eingespannt ist.

Abb. 5.59 zeigt das Resultat eines Experiments, bei
dem die “Membran” eine Platte aus Metall oder Glas
ist, welche im Zentrum eingespannt ist. Mit Hilfe
eines Bogens werden Schwingungen angeregt. Die-
se können sichtbar gemacht werden indem Sand auf
die Oberfläche gestreut wird. Die Schwingung ent-
spricht einer periodischen Auslenkung, bei der Tei-
le der Membran sich nach oben verbiegen, andere
nach unten. Nach einer halben Periode ist die Aus-
lenkung umgekehrt. Es existieren jedoch Linien auf

Abbildung 5.59: Knotenlinien von unterschied-
lichen Membranschwingungen.

der Membran, welche nie ausgelenkt werden. Die-
se werden als Knotenlinien bezeichnet. Entlang der
Knotenlinien sammelt sich der Sand und macht die-
se so sichtbar. Je größer die Anzahl der Knotenli-
nien, desto höher die Frequenz der entsprechenden
Moden.

Abbildung 5.60: Schwingung eines Weinglases.

Moden existieren in jedem schwingungsfähigen Sy-
stem. In Abb. 5.60 sind die Moden in einem Wein-
glas dargestellt, welche z.B. durch akustische Wellen
angeregt werden können.

5.6.7 Akustische Schwingungen,
Musikinstrument

Dreidimensionale Schwingungen in kontinuierli-
chen Medien sind z.B. akustische Schwingungen in
Musikinstrumenten. Ein Beispiel für ein einfaches
Musikinstrument ist eine Flasche, in der man durch
blasen die Luftsäule zu Schwingungen anregt.
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Abbildung 5.61: Hörschwelle und Schmerzgrenze
des menschlichen Ohrs als Funkti-
on der Frequenz.

Akustische Schwingungen sind hörbar wenn sie sich
in einem Frequenzbereich von ca. 20 Hz bis 15 kHz
befinden. Abb. 5.61 zeigt für diesen Bereich die
Empfindlichkeit des menschlichen Ohrs.

672 Hz 268 Hz

1010 Hz 553 Hz

Abbildung 5.62: Schwingungsmoden einer Gitarre.

Schwingungen können in Musikinstrumenten ähn-
lich wie in den gezeigten Membranen angeregt wer-
den. Jedes Musikinstrument hat entsprechend eine
Reihe von Eigenschwingungen. Zwar können z.B.
bei einer Geige alle Töne erzeugt werden, doch wer-
den nicht alle gleich gut wiedergegeben. Die Kom-
bination der Eigenmoden ist für den Klang eines In-
strumentes verantwortlich. Abb. 5.62 zeigt als Bei-
spiel einige Schwingungsmoden einer Gitarre. Wie
eine Geige oder Gitarre gebaut werden muss, um
einen gewünschten Klang zu erhalten, war lange Zeit
ein kaum nachvollziehbares Geheimnis der Instru-

mentenbauer. Nicht nur die Form des Instrumentes
ist wichtig, da sie die Lage der Moden bestimmt,
auch das Material, welches z.B. die Dämpfung und
damit die Breite der Resonanzen mitbestimmt.

Abbildung 5.63: Tonhöhe von Instrumenten unter-
schiedlicher Größe.

Allgemein gilt, dass größere Instrumente tiefere Tö-
ne ergeben, wie in Abb. 5.63 gezeigt. Dieser Zusam-
menhang wird ebenfalls im Kapitel 5 Wellen noch
diskutiert.
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