5 Schwingungen

Viele natiirlichen Phédnomene zeigen eine periodi-
sche Zeitabhingigkeit: der Zustand dndert sich, kehrt
aber nach einer festen Zeit in den Anfangszustand
zurlick. Dieser Vorgang kann sich beliebig haufig
wiederholen. Dieses Phidnomen wird als Schwin-
gung bezeichnet.

5.1 Allgemeines

5.1.1 Beispiele und Definition

Das klassische Beispiel eines schwingenden Sy-
stems ist das Pendel.

Auslenkung y(t+T) = y(t)
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Abbildung 5.1: Periodische Signale.

Allgemein ist eine Schwingung definiert als eine
periodische Zustandsdnderung, d.h. als eine Zeitab-
hingigkeit, welche nach einer Periode T in den ur-
spriinglichen Zustand zuriickkehrt:

¥t +T) = y(0).

Abb. 5.1 zeigt einige Beispiele fiir periodische Be-
wegungen. Die GroBe y, welche diese Zeitabhin-
gigkeit zeigt, kann eine mechanische Grofle sein,
aber auch eine elektrische, chemische, thermische

. . Meist zeigen verschiedene GrofBen (z.B. Ort,
Geschwindigkeit) die gleiche periodische Zeitab-
hingigkeit. Schwingungen entstehen immer dann,

wenn einzelne Komponenten (mechanische, elektri-
sche etc.) nicht starr aneinander gekoppelt sind. Wie
sich das System wéhrend der Periode verhilt spielt
hierbei zuniéchst keine Rolle.

5.1.2 Phinomenologie

Abbildung 5.2: Uhren in der Kunst.

Schwingungen spielen in vielen Systemen eine
wichtige Rolle; insbesondere bilden sie die Basis
von Zeitmessungen (— Abb. 5.2). Jede Armbanduhr
besitzt ein schwingendes Element; in mechanischen
Uhren #@hnelt es einem Schwingpendel, in elektroni-
schen Uhren wurde dieses durch einen Quarzstab er-
setzt. In den Atomuhren, welche den internationalen
Zeitstandard definieren sind es Schwingungen der
Elektronenhiille von Atomen. Die Sekunde, als Ba-
sis der Zeitmessung, wird definiert als 9192631770
Perioden eines Resonanziibergangs in einem '33Cs
Atom.

Elektronische Oszillatoren sind die Basis aller mo-
dernen Elektronik, insbesondere aber der digitalen.
Abb. 5.3 zeigt typische Signalverldufe, welche durch
einen Taktgeber gesteuert werden.

Praktisch alle Systeme zeigen Schwingungen in der
einen oder anderen Art. Machmal, wie z.B. in einem
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Abbildung 5.3: Periodische Signale in einem elek-
tronischen Gerit.

Schwingungen stéren den
Betrieb empfindlicher Geriite,
z.B. eines Lasers

y Luftlager

-

S
Man versucht deshalb, deren B
Einfluss zu reduzieren, z.b.
mit Luftlagern

storenden

von
Schwingungen in einem Laserlabor.

Abbildung 5.4: Unterdriickung

Laserlabor (— Abb. 5.4), konnen sie storen und man
muss man mit groBem Aufwand versuchen, sie zu
reduzieren.

5.1.3 Atomare und molekulare
Schwingungen

In allen mikroskopischen Systemen spielen Schwin-
gungen eine grofle Rolle. So sind die Atome in Mo-
lekiilen durch Krifte zusammengehalten, die qua-
litativ wie eine Feder wirken. Unter dem Einfluss
dieser Bindungskrifte fithren sie Schwingungen um
ihre Gleichgewichtslage durch, wie in Abb. 5.5 ge-
zeigt.

Die Schwingungen der Atome kénnen im Experi-
ment gemessen werden. Abb. 5.6 zeigt als Beispiel
das Infrarot-Spektrum von Crotonaldehyd. Aus den
gemessenen Spektren kann man z.B. die Molekiile

Streckschwingungx

Can

Biegeschwingung

1

Abbildung 5.5: Beispiele fiir Normalschwingungen
in einem Molekiil.
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Abbildung 5.6: Infrarotspektrum von Crotonalde-
hyd.

identifizieren oder die Krifte zischen den einzelnen
Atomen messen.

Abbildung 5.7: Struktur (links) und Federmodell der
Atome in einem Festkorper.

Auch in einem Festkorper sind die Atome nicht starr
miteinander verbunden, sondern durch Bindungs-
krafte, welche Schwingungen erlauben, welche mit
der Temperatur zunehmen. Eine Reihe von elektri-
schen, resp. elektromagnetischen Systemen zeigen
Schwingungsphédnomene. Elektromagnetische Wel-
len, also auch Licht, stellen schwingende Systeme
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dar. Abb. 5.7 zeigt schematisch ein entsprechendes

Modell: im linken Bild werden die mittleren Positio-

nen der Atome dargestellt, im rechten Bild sind sie
Atom

iiber Federn aneinander gekoppelt.
Kern 0 o

o

o 7

Abbildung 5.8: Erzeugung von Licht iiber atomare
Anregungen.

Bei der Erzeugung von Licht gehen die Schwingun-
gen von atomaren Dipolen auf das elektromagneti-
sche Feld iiber und beim Nachweis, also auch im
Auge, iibertrigt das elektromagnetische Feld diese
Schwingungen wieder auf ein materielles System,
in diesem Fall die Sinneszellen der Netzhaut. Abb.
5.8 zeigt schematisch, wie atomare Anregungen zur
Emission von Licht fiihren kénnen.

5.1.4 Klassifikation und Ubersicht

Freie Schwingung

NN

Feder

1T
e A s

Erzwungene Schwingung

Masse

Erreger

Auslenkung

Abbildung 5.9: Freie Schwingung (oben) vs. durch
externe Kraft erzwungene Schwin-
gung (unten).

Man unterscheidet zwischen freien und erzwunge-
nen Schwingungen. Im ersten Fall wird dem System
Energie zugefiihrt, um es in Bewegung zu setzen,
dann entwickelt es sich ohne duBeren Einfluss (Abb.

5.9 oben). Eine erzwungene Schwingung (Abb. 5.9
unten) wird durch eine periodische duflere Kraft an-
geregt.

‘ Auslenkung

Zeit

Abbildung 5.10: Geddmpfte Schwingung.

In vielen Fillen sind Schwingungen nicht vollstédn-
dig periodisch, sondern gedampft, wie in Abb. 5.10
gezeigt. Die Dampfung kommt dadurch zustande,
dass das System Energie an seine Umgebung ab-
gibt. Man spricht in diesem Fall von einer geddmpf-
ten Schwingung, im Gegensatz zu den ungeddmpf-
ten Systemen, welche nur als Idealfille existieren.

Schwingungen treten somit in sehr unterschiedli-
chen Situationen auf. Man kann sie trotzdem in sehr
analoger und kompakter Weise diskutieren, die ma-
thematische Behandlung dieser groen Zahl unter-
schiedlicher Phinomene ist weitgehend identisch;
sie werden deshalb hier gemeinsam diskutiert. Wie
in anderen Gebieten der Physik kénnen wir hier sehr
viele Gemeinsamkeiten feststellen. So konnen wir
die Resultate, die uns die Diskussion des schwingen-
den Pendels liefert, direkt auf viele andere Systeme
tibertragen. Es ist deshalb niitzlich, zunéchst einige
Eigenschaften zu diskutieren, die allen schwingen-
den Systemen gemeinsam sind.

5.2 Der Harmonische Oszillator

5.2.1 Harmonische Schwingungen

Die Zeitabhingigkeit einer allgemeinen Schwingung
ist beliebig, abgesehen von der Periodizitét. Die ma-
thematische Behandlung solcher Systeme kann et-
was schwierig werden. Wir beschriinken deshalb hier
die detaillierte Diskussion auf Systeme, bei denen
die Zeitabhingigkeit durch eine Winkelfunktion (si-
nus oder cosinus) beschrieben werden kann. Eine
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Abbildung 5.11: Harmonische Schwingung im Ge-
gensatz zu einer anharmonischen
Schwingung.

solche Zeitabhidngigkeit (Abb. 5.11 oben) wird als
harmonisch bezeichnet, im Gegensatz zu einer an-
harmonischen (Abb. 5.11 unten).

Periode T

TRVAYR

Abbildung 5.12: Relevante Parameter einer harmo-
nischen Schwingung.

Amplitude yo - -

f§"'

Auslenkung y

Die zeitabhingige Auslenkung y() einer harmoni-
schen Schwingung (— Abb. 5.12) kann somit allge-
mein als

y(t)

geschrieben werden. Hier sind w = 2zrv die Kreis-
frequenz, v = 1/T die Frequenz, T die Periode der
Schwingung und ¢y die Anfangsphase.

= ypcos(@t + @)

Anharmonische Schwingungen kénnen immer als
Fourier-Reihe dargestellt werden, z.B.
=y(1)

Yt +T) — L4 Y Acos(kor + ¢y).
k=1

2

Hier stellen Ay die Amplituden und ¢, die Phasen
der einzelnen Fourier-Komponenten dar.

zu Grunde liegende

beobachtete Schwingung Kreisbewegung

VY
Yo /

N\ [ D
v ) \/ X
Abbildung 5.13: Eine harmonischen Schwingung

(links) entspricht einer Komponen-
te einer Kreisbewegung.

4

Eine harmonische Oszillation erhélt man z.B. wenn
man eine Komponente einer Kreisbewegung be-
trachtet, wie in Abb. 5.13 gezeigt. Die horizonta-
le Position eines rotierenden Zeigers kann z.B. als
x(t) = xpcos(wt) geschrieben werden, die vertikale
Position y(7) = xo sin(@t) = xocos(wt — 1 /2).

Kreisbewegung:
Gezeiten“berg”
lauft um die Erde

VICTORIA, B.C.
1995

Beobachtung
periodische
Auslenkung

Gezeiten als Resultat der Erdrotati-
on.

Abbildung 5.14:

Ein Beispiel fiir eine Kreisbewegung, die wir als
Schwingung beobachten, sind Ebbe und Flut. Wie in
Abb. 5.14 gezeigt, entstehen sie dadurch, dass sich
die Erde dreht wihrend ein doppelter “Berg” von
Wasser relativ zum Mond stehen bleibt. Der Tiden-
hub hat deshalb eine Periodizitéit von etwa 12 Stun-
den.
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arabolisches Potenzial
= lineare Kraft

Potenzial

Kraft

Auslenkung

Abbildung 5.15: Potenzial und Kraft als Funktion
der Auslenkung.

5.2.2 Bewegungsgleichung

Die Bewegungsgleichung des harmonischen Oszilla-
tors ist dadurch charakterisiert, dass auf den Korper
eine Kraft wirkt, deren Richtung auf den Gleichge-
wichtspunkt gerichtet ist, und deren Betrag propor-
tional zur Auslenkung aus dem Gleichgewicht ist,
wie in Abb. 5.15 gezeigt. Die Kraft als Funktion der
Auslenkung x kann somit geschrieben werden als
F = kx , wobei x die Auslenkung aus der Gleich-
gewichtslage darstellt und die Federkonstante & die
Starke der Feder parametrisiert.

-nb—-o

Abbildung 5.16: Federpendel.

Um zu verstehen wie eine Schwingung zustande
kommt betrachten wir zunichst ein einfaches Pen-
del wie das Federpendel in Abb. 5.16. Es bestehend
aus einer Masse und einer Feder, welche als masse-

los angenommen wird und fiir die das Hooke’sche
Gesetz gelten soll: F = —cx , wobei ¢ die Federkon-
stante darstellt. Daraus folgt fiir die Masse eine Be-
wegungsgleichung
d’x
ma—F——cx—deZ.
Dies ist eine eindimensionale (eine Variable), lineare
(d.h. die Variablen und deren Ableitung kommen nur
in der ersten Potenz vor) Differentialgleichung zwei-
ter Ordnung (d.h. maximal zweite Ableitung) mit
konstanten Koeffizienten (d.h. kein Koeffizient ist
explizit zeitabhingig). Die Kraft ist immer der Aus-
lenkung entgegen gerichtet und proportional zu ihr.
Bei maximaler Auslenkung ist auch die Kraft maxi-
mal, bei verschwindender Auslenkung verschwindet
die Kraft und damit die Beschleunigung.

6D

5.2.3 Freie Schwingung

Wir betrachten zunichst den Fall einer freien
Schwingung: das System wird zunéchst ausgelenkt
(x(0) # 0) und entwickelt sich dann ohne #ufere
Krifte unter dem Einfluss von Gleichung (5.1). Sol-
che Gleichungen konnen allgemein durch den An-
satz

x(t) = xocos(@pt + @) (5.2)

gelost werden. Hier stellt @y die Kreisfrequenz, xg
die Amplitude, und ¢ die Phase der Schwingung dar.
Um den Ansatz zu verifizieren und diese Parameter
zu bestimmen setzen wir den Ansatz in die Differen-
tialgleichung ein. Wir erhalten

cx = cxpcos(wpt+ @)

2

d
= —my-, cos(wot + @)

d .
= mxoa)oa sin(@pt + @)

= mxo0;cos(myt + ).

Da die Zeitabhéngigkeit auf beiden Seiten die glei-
che ist, muss nur noch die Amplitude iibereinstim-
men. Dies ist der Fall fiir

¢ =mayg.
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Auflosen nach der Kreisfrequenz @y, resp. Periode
T ergibt

a)o:,/£ T:Znﬂ@.
m C

Allgemein ist die Bewegungsgleichung fiir einen
harmonischen Oszillator von der Form

d*x

2

mit @y als Kreisfrequenz.

X0

v(t)

Vo=0

X(®)

Auslenkung x, Geschwindigkeit v

Abbildung 5.17: Losung der Bewegungsgleichung.

Abb. 5.17 zeigt die Losung dieser Bewegungsglei-
chung fiir den Fall v(0) = 0. Fiir den allgemeinen
Fall (5.2) erhilt man die Amplitude x¢ und die Phase
¢ aus den Anfangsbedingungen, welche meist durch
Ort und Geschwindigkeit gegeben sind:

XpCOS @
—Xo@Wp Sin @.

Dieses Gleichungssystem kann aufgeldst werden
nach den Parametern xg, ¢:

x(0)
cos ¢

X0 =

Eine Schwingung, die bei t = 0 die maximale Aus-
lenkung besitzt, hat Phase ¢ = 0. Ist die Auslenkung
minimal (x(0) = 0), und bewegt sich das System in
Richtung positive Auslenkung, d.h. ist es nach einer
viertel Periode bei der maximalen Auslenkung, so
ist die Phase ¢ = —90° = —x/2. Bewegt sich das
System in Richtung negative Auslenkung, so ist die
Phase (mit dieser Definition) positiv.

Es ist auch interessant, die Phase von Ort, Geschwin-
digkeit und Beschleunigung zu vergleichen: Bewegt
sich die Masse mit

x(t) = xgcos(wpt + @),
so ist die Geschwindigkeit
v(t) = x(t) = —@pxo sin(wpt + ).

Diese hat also die gleiche Frequenz, ist aber 90 Grad
aufler Phase. Die Beschleunigung

a(t) = (t) = —odxo cos(awyt + ¢)

besitzt ebenfalls die gleiche Periode, ist aber weitere
90 Grad, also gegeniiber dem Ort 180 Grad aufBer
Phase.

5.2.4 Energie

Das Federpendel (wie alle harmonischen Oszillato-
ren) enthélt Energie in zwei unterschiedlichen For-
men: kinetische und potenzielle Energie. Die poten-
zielle Energie ist in der Feder gespeichert:

c

2
& pot = Ex

c
= Ex%cosz((uot—i- ).

Wie bereits erwihnt stellt sie eine quadratische
Funktion der Auslenkung dar. Dies gilt nicht nur
beim Federpendel, sondern bei den meisten Syste-
men mindestens fiir einen gewissen Bereich. Die ki-
netische Energie ist

m m :
Ein = Exz = Ex(z)a)g sin®(wpt + ).

Periode T
Gesamt R -mpre===sgas = =rmaar o
o 1)
< e
o 2\/2
o VsV 2
gl A )¢
L = <
Zeit t

Abbildung 5.18: Kinetische und potenzielle Energie
als Funktion der Zeit.
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Damit ist die Gesamtenergie

ot = éapot + Skin = %X%,
unabhéngig von der Zeit, d.h. konstant. Dies ist ei-
ne Manifestation der Energieerhaltung. Wie in Abb.
5.18 gezeigt, oszilliert die Energie jedoch zwischen
den beiden Beitrigen potenzielle und kinetische
Energie.

In der Ruhelage ist die Feder entspannt, die poten-
zielle Energie verschwindet somit, wihrend die Ge-
schwindigkeit und damit die kinetische Energie ma-
ximal ist. Bei der maximalen Auslenkung ist hinge-
gen die Geschwindigkeit Null, die kinetische Ener-
gie verschwindet, wihrend die potenzielle Energie
maximal wird. Die einzelnen Beitrige zur Energie
sind zeitabhingig, wihrend die Gesamtenergie kon-
stant bleibt: die Energie wird somit zwischen ein-
zelnen Reservoirs periodisch ausgetauscht, wobei
die Periode des Energieaustausches halb so grof} ist
wie die Periode der Auslenkung. Dieser Energieaus-
tausch tritt bei allen schwingenden Systemen auf.

5.2.5 Der h.O. als Modellsystem

Potenzial

Potenzial

allgemeines
Potenzial

U(x-xo0)

harmonische
Oszillation

\ U/

lokales Minimum

Auslenkung

Abbildung 5.19: Reales Potenzial in der Umgebung
eines Minimums und parabolische
Néherung.

Das mathematische Pendel, auch als harmonischer
Oszillator bekannt, ist einerseits ein attraktives Mo-
dellsystem, weil er analytisch leicht losbar ist. Er
spielt aber auch in der Natur eine sehr wichtige Rol-
le. Der Grund dafiir liegt darin, dass sich die poten-
zielle Energie sehr vieler Systeme in der Nihe ihres

Gleichgewichts in guter Niherung durch eine Para-
bel anndhern ldsst, wie in Abb. 5.19 gezeigt.

Das sieht man rasch, wenn man die Energie in der
Néhe eines lokalen Minimums als Taylor-Reihe ent-
wickelt:

dU
Ulx) = U(xo)—i-axo-(x—xo)
1 d*U 5
2 aw | )
0
1 d*U 3
+§ﬁx0-(x—xo) +...

Der erste Term hat keinen Einfluss auf die Dynamik
des Systems und kann auch =0 gesetzt werden. Am
Gleichgewichtspunkt x¢ verschwindet auBerdem die
erste Ableitung, dU /dx| = 0. Der erste nicht ver-
schwindende Term ist damit der quadratische Term.
Mit zunehmender Entfernung spielen Terme hohe-
rer Ordnung eine zunehmende Rolle, wihrend in der
Nihe nur die Terme niedriger Ordnung beriicksich-
tigt werden miissen. Wenn der quadratische Term
nicht verschwindet, so ist in der Nidhe des Minimums
immer ein Bereich vorhanden, in dem er den grof3ten
Beitrag zur Dynamik des Systems liefert. Die Forde-
rung, dass das System sich in einem stabilen Gleich-
gewicht befindet, bedeutet dann, dass die Energie ein
Minimum besitzt, dass also die zweite Ableitung po-
sitiv ist.

Wenn wir die erste Ableitung bilden,

v
dx?

dU (x)

~E =P =

Em (x—x0)+ O ((x—x0)?)

X0

so finden wir durch Vergleich mit dem Hooke’schen
Gesetz

d*U

F(x) = —c(x—x0) = I

(X—)Co)

und identifizieren die Kraftkonstante
d*U

C:mwgzﬁ

X0

Die Resonanzfrequenz @y ist damit durch die Masse
des Oszillators und die zweite Ableitung des Poten-
zials am Gleichgewichtspunkt bestimmt.
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Wechselwirkung
zwischen Atomen

T T
1.12 1.13

Abbildung 5.20: Lennard-Jones Potenzial mit har-
monischer Ndherung.

Ein Beispiel eines solchen Potenzials ist das
Lennard-Jones Potenzial, welches in Abb. 5.20 dar-
gestellt ist. Es ist als

i =se](2)"-(2)]

definiert ist. Die Konstanten € und ¢ bestimmen Po-
sition und Tiefe des Minimums. Dieses Potenzial be-
schreibt die Wechselwirkung zwischen Atomen oder
Molekiilen, die durch die Van der Waals Wechselwir-
kung aneinander gebunden sind. Fiir kurze Abstin-
de iiberwiegt die AbstoBung, wihrend fiir grole Ab-
stinde die Wechselwirkung mit 1/x® abfillt. Dazwi-
schen gibt es ein Minimum der potenziellen Ener-
gie; die Position dieses Minimums bestimmt z.B.
den Abstand zwischen Molekiilen in einem Kristall
und damit dessen Dichte. Obwohl das Potenzial si-
cher nicht die Form einer Parabel besitzt, kann man
es doch in der Nidhe des Minimums durch eine Pa-
rabel anndhern. Je ndher man sich beim Minimum
befindet, desto besser ist die Approximation.

5.2.6 Anharmonizitit

Dies zeigt, dass die meisten Systeme in der Nihe
des Gleichgewichts wie ein harmonischer Oszillator
verhalten. Fiir grolere Auslenkungen werden natiir-
lich die Terme hoherer Ordnung wichtiger und die
Krifte werden nichtlinear, resp. der Oszillator an-

harmonisch. Zu den wichtigsten damit im Zusam-
menhang stehenden Abweichungen gehort, dass fiir
groBle Auslenkungen die Frequenz von der Auslen-
kung abhéngt.

Diese Abweichung kann man z.B. an diesem Kreis-
pendel zeigen. Fiir kleine Auslenkungen ist die (hal-
be) Schwingungsperiode konstant, fiir gréBere Aus-
lenkungen wird sie grofer. Theoretisch sollte die
Schwingungsperiode mit der Anfangs-Auslenkung
Po wie folgt zunehmen:

() = 7(0) K]

T
wobei

/2 d
ko= [ 2
O \/1—Ksin®¢
ein vollstdndiges elliptisches Integral darstellt.

3

N
)

T2 5]
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Auslenkung [Grad]

Abbildung 5.21: Periodendauer des anharmonischen
Oszillators als Funktion der Aus-
lenkung.

Abb. 5.21 zeigt die Periodendauer eines Kreispen-
dels als Funktion der anfinglichen Auslenkung. Sie
steigt mit zunehmender Auslenkung stark an. Als
Extremfall kann man sich vorstellen, dass das Pendel
senkrecht nach oben gerichtet ist, so dass es in dieser
Position bleibt seine Schwingungsperiode wird dann
unendlich.

5.2.7 Komplexe Amplitude

Auf den engen Zusammenhang zwischen harmoni-
schen Oszillatoren und Kreisbewegung wurde be-
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[ Bo [Grad] [ T/21s] |

10 0,972
30 0,985
60 1,040
90 1,15
100 1,23
120 1,34
130 1,52

Tabelle 5.1: Gemessene Periodendauer eines Kreis-
pendels als Funktion der Auslenkung.

reits in der Einleitung hingewiesen.

y

A imaginar y(t) = o sinwt

= \/ Zeitt

X cos wt
z(t) = xg cos wt/
\\/ Zeit t

Abbildung 5.22: Kreisbewegung und Zeitabhéngig-
keit der beiden Quadraturkompo-
nenten.

T sin wt

real WX

Abb. 5.22 zeigt die Kreisbewegung eines Zeigers in
der xy-Ebene und die Zeitabhingigkeit der beiden
Komponenten. Die reelle Variable x wird dabei mit
dem Realteil der komplexen Variablen identifiziert:

X( COS f

X Sin @f.

Dabei ist es nicht notwendig, die beiden Koordina-
ten getrennt zu behandeln; man kann sie iiber die
Euler’sche Beziehung zu einer komplexen Variablen
kombinieren:

7= xpe'®".

Dafiir wird die 2-dimensionale Ebene der Kreisbe-
wegung wird mit der komplexen Ebene identifiziert.
Gemail der Euler’schen Formel ist

x0e" (@ F0) — x [cos(@r + @) +i sin(wr + @p)] .

Damit lédsst sich mathematisch einfacher umgehen.
So ist die Ableitung

4 i(1+60) _ gyl @1+00)

dt

wieder die Funktion selber, lediglich mit einem kom-
plexen skalaren Faktor multipliziert. Diese Schreib-
weise kann nicht nur fiir Kreisbewegungen ver-
wendet werden, sondern mit beliebigen harmoni-
schen Oszillationen. Fiir eindimensionale Bewegun-
gen identifiziert man die physikalische Auslenkung
x mit dem Realteil der komplexen Funktion,

x(t) = Rfxge! @+,

5.3 Schwingende Systeme

Schwingungen erhédlt man immer dann, wenn die
Kraft der Auslenkung entgegen gerichtet ist. Ist sie
auBerdem proportional zur Kraft, so erhélt man eine
harmonische Schwingung.

Abbildung 5.23: Orbit unseres Sonnensystems in
der MilchstraB8e, Oszillation durch
die Ebene.

Schwingungen treten auf sehr unterschiedlichen
Zeit- und GroBenskalen auf, wie z.B. die Bewegung
unseres Sonnensystems in der Galaxis, welche in
Abb. 5.23 dargestellt ist. Sie fithrt mit den tibrigen
Sternen eine Rotationsbewegung um das Zentrum
durch und oszilliert durch die Ebene.

Im Folgenden werden einige einfache Beispiele auf-
gefiihrt, welche auch analytisch 16sbar sind.

5.3.1 Das mathematische Pendel

Das in Abb. 5.24 gezeigte System besteht aus einer
punktférmigen Masse, die an einer masselosen, un-
elastischen Schnur der Linge ¢ aufgehéngt ist. Die
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Abbildung 5.24: Mathematisches Pendel.

Masse sei um einen Winkel B aus der Vertikalen
ausgelenkt. Dieser Winkel ist die relevante Variable
fiir die Beschreibung der Schwingung. Da die Masse
an einer gespannten Schnur héngt, kann sie sich nur
senkrecht dazu bewegen, in einer Dimension entlang
dem Kreissegment. Wir erhalten eine Bewegungs-
gleichung, indem wir das Newton’sche Gesetz mit
der Schwerkraft kombinieren:

F| = —mgsinB =ma, =mlp.

Das Symbol 1 deutet darauf hin, dass hier nur die
Komponente senkrecht zur Schnur relevant ist.

Fiir kleine Auslenkungen kann man den Sinus durch
den Winkel annihern und erhilt eine Bewegungs-
gleichung fiir einen harmonischen Oszillator

_ 8
B=-p%.

Durch Vergleich mit der allgemeinen Bewegungs-
gleichung des harmonischen Oszillators,

d*x

dr?
findet man, dass dieser Oszillator mit der Kreisfre-
quenz

_ /8
=%

schwingt, welche nicht von der Masse des Pendels
abhingt. Die Periode ist demnach

T=2n é
8

= —wjx

5.3)

Ein Fadenpendel mit einer Linge von /=1 m miisste
demnach eine Schwingungsdauer von

T=2m

9,818%2’05

haben — in guter Ubereinstimmung mit dem Expe-
riment. Wird die Linge des Fadens auf 0.25 m ver-
kiirzt, so halbiert sich die Periode auf 1 s.

Dieser einfache Zusammenhang, und die Tatsache,
dass nur die Linge des Pendels fiir seine Schwin-
gungsdauer verantwortlich ist, gehorten zu den groB3-
ten Erfolgen der frithen physikalischen Forschung.

Der Legende nach hat Galilei 1581 die Schwin-
gungsperiode von hidngenden Leuchtern gemessen
und festgestellt, dass sie unabhéngig war von der
Amplitude. Dies wird durch den Ausdruck (5.3) be-
statigt, gilt aber nur fiir kleine Auslenkungen. Ver-
wendet man die Niherung sinf8 ~ B nicht, findet
man eine Periode, die man als Reihenentwicklung in
B schreiben kann. Bei einer Auslenkung von 30° ist
der Fehler etwa 2%; bei 10° betrdgt der Fehler etwa
1%.

5.3.2 Torsionsschwinger

ANNNN

Abbildung 5.25: Torsionsschwinger: Pohl’sches Rad
mit Spiralfeder und Trommel an
Draht aufgehingt.

Ein Torsionsschwinger oder Drehpendel kann sich
um eine Achse drehen, wobei eine Riickstellkraft
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wirkt, die proportional zur Auslenkung f ist. Diese
erzeugt ein Drehmoment

M=1Ip=—cB.

I ist das Tragheitsmoment fiir diese Achse und ¢
die Winkelrichtgroe (Federkonstante). Somit erhélt
man eine Schwingung mit der Kreisfrequenz

_ /<
=4/

Diese Beziehung kann man u. a. verwenden, um
Tragheitsmomente zu messen:

=5
@y

Die Winkelrichtgrofle ¢ wird zunichst mit Hilfe ei-
nes Korpers mit bekanntem Massentrdgheitsmoment
bestimmt, danach wird der unbekannte Korper ein-
gesetzt und dessen Trigheitsmoment bestimmt.

5.3.3 Das physikalische Pendel

Aufhéngepunkt @

Y. (p Schwerpunkt

IS
mg

Abbildung 5.26: Physikalisches Pendel.

Ein physikalisches Pendel ist ein starrer Korper, der
um einen Punkt A drehbar gelagert ist. Abb. 5.26
zeigt ein Beispiel. Wie beim Drehpendel ist das Pro-
dukt aus Winkelbeschleunigung ¢ und Trigheitsmo-
ment / gegeben durch die Riickstellkraft. Diese ist
hier gegeben durch das Drehmoment als Produkt aus
Schwerkraft Fi; = mg und Auslenkung des Schwer-
punktes, d sin ¢:

M =1¢ = —mgdsin@.

Wir konnen wiederum die Niherung sin @ ~ ¢ fiir
kleine Auslenkungen machen. Damit wird die Kreis-
frequenz

_ [mgd
600—\/71 .

Dies entspricht der Schwingungsdauer eines mathe-
matischen Pendels mit der Pendelldnge

1
lrod = —.
ed md

Abbildung 5.27: Reifenpendel.

Wir betrachten das Beispiel von Abb. 5.27, ein Rad
mit Radius R, welches sich um einen Aufhidngepunkt
am Rand dreht. Der Abstand vom Drehpunkt betrigt
somit d = R. Gemall dem Steiner’schen Satz betriagt
das Triagheitsmoment

Iy = Ip+ mR?> = 2mR?.

Somit ist die Kreisfrequenz

8 -1
=455 =434
o 2R 048

wenn R = 26 cm. Dies entspricht einer Periode

T=2£:27t 2—Rz1,47s,
o 8

in verniinftiger Ubereinstimmung mit dem experi-
mentellen Wert (7" = 1.38 s), den man fiir einen Ra-
dius von 26 cm erhiilt.

Lost man die Arretierung, so dass das Rad sich nicht
um den Aufhingepunkt drehen muss, so erhilt man
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niherungsweise ein mathematische Pendel, bei dem
die Schwingungsperiode

R
T=2m,/—=1,02s
8

betrigt.

5.3.4 Fliissigkeitspendel im U-Rohr

Abbildung 5.28: Fliissigkeitspendel im U-Rohr.

Wir betrachten eine Fliissigkeitssdule in einem U-
Rohr. Sind beide Enden auf gleicher Hohe so ist das
System im Gleichgewicht. Ist die Sdule um die Di-
stanz y verschoben (— Abb. 5.28), so entsteht eine
riicktreibende Gewichtskraft, welche durch die rote
Flidche bestimmt wird.

Die Bewegungsgleichung enthilt die Gesamtmasse
m der Fliissigkeit

m={lAp,

wobei £ die Linge der Fliissigkeitssdule darstellt, A
die Querschnittsfliche und p die Dichte. Die resul-
tierende Gewichtskraft ist proportional zur Massen-
differenz zwischen den beiden Armen,

Fg=—Amg= —2yApg.

Damit ist die Bewegungsgleichung
F =ma="/{Apy=—2yApg

oder

2g

y: éy‘

Somit betrigt hier die Kreisfrequenz

/28
(J)()— 77

unabhingig vom Querschnitt der Fliissigkeit oder
ihrer Dichte. Sie entspricht einem mathematischen
Pendel mit der Linge £, = £/2.

New Brunswick

Abbildung 5.29: Gezeitenhohen in der Bay of Fundy
(Kanada).

Ein interessantes Beispiel eines solchen Fliissig-
keitspendels befindet sich an der kanadischen Ost-
kiiste: der nordliche Teil der Bay of Fundy zwischen
New Brunswick (Neu Braunschweig) und Nova Sco-
tia (Neu Schottland) bildet ein Fliissigkeitspendel.
Wie in Abb. 5.29 gezeigt, wird es von Mond zu
Schwingungen angeregt und man findet Gezeitenun-
terschiede bis zu 16 m. Allerdings ist das System viel
zu klein fiir eine Periode von 12 Stunden, die Anre-
gung ist somit nicht resonant.

5.3.5 Elektromagnetische Schwingkreise

Das einfachste elektronische System, das Schwin-
gungen ausfithren kann, besteht aus einem Konden-
sator C und einer Spule L, wie in Abb. 5.30 gezeigt.
Eine Bewegungsgleichung fiir die Schwingung er-
hilt man aus der Maschenregel: Die Spannung tiber
der Spule muss entgegengesetzt gleich der Spannung
iiber dem Kondensator sein:

dl Q
—0=L%+%.
UL+Uc 7 + C
Mit I = dQ/dt erhidlt man
£9_ 2
dr? LC
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Abbildung 5.30: LC-Schwingkreis.

Die Kreisfrequenz betrigt somit

w= Ve

t=0 t=T/4__ ., jT/Z
% c .ﬁi% . §
t// \\ t

Abbildung 5.31: LC-Schwingkreis zu unterschiedli-
chen Zeiten wihrend einer Schwin-

gung.

Wir konnen die Oszillation verfolgen indem wir z.B.
bei einem geladenen Kondensator anfangen, wobei
der Strom verschwinden soll. Das System entwickelt
sich somit wie

Q(t) = Qpcos wt.

Die Spannung iiber dem Kondensator fiihrt zu einem
Stromfluss durch die Spule, wobei deren Induktivi-
tat den Anstieg des Stromes beschrinkt. Nach ei-
ner Viertelperiode ist der Kondensator entladen und
der Strom durch die Spule auf ein Maximum ange-
stiegen, wie in Abb. 5.31 gezeigt. Der Strom l4dt
jetzt den Kondensator umgekehrt auf. Dadurch ent-
steht eine Spannung, welche dem Stromfluss entge-
genwirkt. Nach einer weiteren Viertelperiode ist der
Stromfluss auf Null abgesunken, wihrend der Kon-
densator umgekehrt geladen ist.

In diesem System erhilt man einen Austausch von
Energie zwischen der elektrostatischen Energie im
Kondensator und der magnetischen Energie in der
Spule. Beir =0,7/2,T, ... ist die Energie im Kon-

densator gespeichert, bei r = T /4,3T /4,... in der
magnetischen Energie der Spule.
5.3.6 Zusammenfassung
Kraftansatz
Schwingungssystem Differential- w,
gleichung
Federpendel
F=ma
: & m —cy =my [e
v+ £ yv=0 m
> ~ - m
mathematisches Pendel
‘ F=ma
— = 3 g
EE ' mgB =mi3 7
i g+%=0
Torsionspendel M=J,a
_C“BzJ B -
E ® A Ji
i O A
B+ _';: B=0
Kraftansatz
Schwingungssystem Differential- w,
gleichung
physikalisches Pendel M=J.a
Té\o —mgrB=Juf [mar
s ... mgr Ja
! B+ A 8=0
Fliissigkeitspendel F=ma =
—2Agy =m g, ¥ L9
PR 2Apg A
v+ =0
v v M, v =
v+ %g y=0 /
elektron.
Schwingkreis J_ s
C L dQ_Q C _]_;—
T e L LC
Abbildung 5.32: Ubersicht  iiber  verschiedene

schwingende Systeme.

Abb. 5.32 fasst die behandelten schwingenden Sy-
steme zusammen. Die Bewegungsgleichung hat im-
mer die Form

X= —a)gx.

Die Unterscheidung ist jeweils die Variable x und die
Form von a)g.
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5.4 Gedampfte Schwingung

5.4.1 Dimpfung und Reibung

Wie bei jeder Bewegung gibt es bei Schwingun-
gen auch dissipative Effekte, d.h. es wird Schwin-
gungsenergie in Wirmeenergie umgewandelt, so
dass die Schwingungsamplitude abnimmt. Dies ge-
schieht z.B. iiber Reibung oder Luftwiderstand.

Abbildung 5.33: Geddmpftes Federpendel: Kupfer-
blech als Wirbelstrombremse.

Bei einem Federpendel kann, wie in Abb. 5.33 ge-
zeigt, eine Ddmpfung eingestellt werden, wenn man
eine Pendelmasse aus einem Kupferblech verwen-
det, welches sich zwischen zwei Elektromagneten
bewegt. Wird ein Magnetfeld angelegt, so werden im
Kupferblech Wirbelstrome induziert, welche wie bei
einer Wirbelstrombremse die Bewegung abbremsen.
Die Auslenkung wird auf dem Oszilloskop sicht-
bar gemacht indem man das Licht misst, welche am
Kupferblech vorbei auf eine Photozelle gelangt.

Bei einem Drehpendel (=Torsionsschwinger) wie
dem Pohl’schen Rad kann ebenfalls iiber eine Wir-
belstrombremse eine geschwindigkeitsproportionale
Dampfung eingestellt werden.

Die Reibungskraft (oder der Luftwiderstand) ist im-
mer der Geschwindigkeit entgegen gerichtet, wie in
Abb. 5.34 gezeigt. Der Betrag kann unabhéngig von
der Geschwindigkeit sein (bei Roll- oder Gleitrei-
bung), proportional zur Geschwindigkeit (viskose
Reibung, Wirbelstrome) oder ndherungsweise pro-
portional zum Quadrat der Geschwindigkeit (Luft-
widerstand in turbulenter Strémung).

Feder, ¢

Masse m

F/(X)
0-{x(®

Kolben
Dampfung b

Abbildung 5.34: Federpendel: links ohne, rechts mit
Reibung.

5.4.2 Geschwindigkeitsproportionale
Reibung

Hier soll nur der wichtige und mathematisch ein-
fache Fall der geschwindigkeitsproportionalen Rei-
bung behandelt werden. In diesem Fall muss die
Bewegungsgleichung des harmonischen Oszillators
durch einen Reibungsterm erginzt werden, der pro-
portional zur Geschwindigkeit ist

mX = —cx — bx.

Die standardisierte Form dieser Bewegungsglei-
chung lautet

b

i4+2Bi+ofx=0 B= .

LR = % (5.4)

Die Grofie B wird als Abklingkoeffizient bezeichnet.

Eine solche lineare Differenzialgleichung mit kon-
stanten Koeffizienten ist immer 16sbar mit dem An-
satz

x(t) =AM

in komplexer Schreibweise. Damit werden die Ab-
leitungen

X(t) = AAM  5(r) = A2AM.
Einsetzen in die Bewegungsgleichung (5.4) ergibt

A*+2BA + a5 =0.
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Damit reduziert sich die Losung der Differenzial-
gleichung (5.4) auf das Auffinden von Nullstellen
der algebraischen Gleichung

Map=—B+\/B>—0f=—BLiw,
o, =/ of — B2

Die allgemeine Losung ist

mit

(5.5)

x(t) = A1 + Ay = e P (A1 4+ Are ).

Physikalisch sinnvolle Losungen miissen reell sein;
dies ist dann der Fall, wenn die beiden Konstanten
konjugiert komplex sind, A; = A3. In diesem Fall
kann der Ausdruck in der Klammer auf die Form
Acos(mst + ¢) gebracht werden, sofern @, reell ist.
In diesem Fall bleiben zwei reelle Parameter fiir die
Amplituden, welche durch die beiden Anfangsbe-
dingungen (z.B. Ort und Geschwindigkeit) bestimmt
sind.

Die Art der Losung wird durch die Wurzel @, be-
stimmt; man kann drei Bereiche unterscheiden, in
denen @ reell, null oder imagindr ist, d.h.

w > B, ap =P, v <pP.

Die drei Bereiche werden als schwache, kritische
und iiberkritische Dampfung bezeichnet und werden
im folgenden einzeln behandelt.

5.4.3 Schwache Dimpfung, @) >

Im Bereich der schwachen Dampfung ist die Eigen-
frequenz groBer als die Dampfungskonstante; das
System verhilt sich dann in erster Ndherung wie ein
ungedidmpfter Oszillator mit abfallender Amplitude.

Die Losung kann in diesem Bereich geschrieben
werden als

x(t) = x0e P! cos(wgt + ¢),

wobei die Amplitude xp und die Phase ¢ wiederum
aus den Anfangsbedingungen zu bestimmen sind.

Auslenkung x(t)

Zeit

Abbildung 5.35: Geddmpfte Schwingung.

Wie in Abb. 5.35 gezeigt, fillt die Amplitude so-
mit exponentiell ab, und die Schwingungsfrequenz
ist niedriger als im ungeddmpften Fall, @, < @y.

Die Energie ist proportional zum Quadrat der Am-
plitude xge P, sie fillt somit mit der doppelten Rate
ab:

ot = o (O)e_zﬁt .

In x(t)

Auslenkung x(t)

=
Zeit

Abbildung 5.36: Abnahme der Amplitude einer ge-
dimpften Schwingung (links) und
semilogarithmische Darstellung als
Funktion der Zeit (rechts).

Aus gemessenen Daten konnen die Parameter
und B bestimmt werden. @, erhilt man aus der Pe-
riode T'; der Abklingkoeffizient 8 kann durch Ver-
gleich der Amplitude zu verschiedenen Zeiten ermit-
telt werden, wie in Abb. 5.36 gezeigt. Vergleicht man
die Auslenkungen bei zwei Zeiten, welche sich um
eine Periode unterscheiden, fillt der oszillatorische
Teil heraus und man erhélt

x(t+T) _ _pr

d.h.
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In der Praxis trigt man z.B. die Amplitude als Funk-
tion der Zeit logarithmisch auf und bestimmt die Zer-
fallszeit aus einem linearen Fit, wie in Abb. 5.36 ge-
zeigt.

5.4.4 Gediampfte elektromagnetische

Schwingungen
C L
“]
1)

Abbildung 5.37: RLC-Schwingkreis.

Als ein Beispiel fiir geddmpfte Schwingungen be-
trachten wir den LRC Schwingkreis (— Abb. 5.37).
Er kann abgeleitet werden aus dem LC Kreis. Durch
Zufiigen eines Ohm’schen Widerstandes (der in je-
dem Schwingkreis existiert) erhidlt man eine modifi-
zierte Maschenregel:

dl  Q
C X Rl
i c’

dg Q
R—+=.
dt + C

0=L

d*Q
Li
i +

U +Uc+Ur =

Durch Vergleich mit der allgemeinen Bewegungs-
gleichung (5.4) erhidlt man die Resonanzfrequenz
des ungeddmpften Systems:

1
Wy = —=.
VLC

Fiir den Abklingkoeffizienten erhilt man

R

B=5

Der LRC Schwingkreis verhilt sich dhnlich wie der
LC Schwingkreis, ist aber geddmpft.

Man kann die unterschiedlichen Bereiche starker
und schwacher Dampfung im RLC System leicht
durch Verindern eines Widerstandes einstellen. In

Anregungs-
impuls

- schwache“
Diampfung

mittlere
Dimpfung

Im @ m

Abbildung 5.38: Unterschiedlich starke Dampfung
in einem RLC-Schwingkreis.

Abb. 5.38 ist links ist ein schwach geddmpftes Si-
gnal gezeigt, welches durch einen elektrischen Puls
angestofen wird und danach etwa 50 Schwingungen
durchfiihrt. Die Situation im rechten Bild entspricht
dem Fall ay < .

Es ist niitzlich, den Dampfungsgrad

B

D=—,
o
resp. den Giitefaktor
I
0= 2D 28

einzufiihren, das Verhiltnis von Ddmpfungskonstan-
te und Resonanzfrequenz, respektive seinen halb-
en Kehrwert. Im Bereich der schwachen Dampfung
kann der Dampfungsgrad den Wertebereich von 0 <
D < 1 annehmen, der Giitefaktor ist > 0.5.

In natiirlichen Systemen kommen sehr unterschied-
liche Werte vor. Atomare Systeme z.B. konnen ei-
ne extrem geringe Dimpfung aufweisen. Uberginge,
die fiir Atomuhren benutzt werden, haben Glitefak-
toren von mehr als 10'°. Heute ist es auch moglich,
makroskopische Systeme herzustellen, deren Giite-
faktor von einer dhnlichen Grofenordnung ist.

5.4.5 Uberkritische Dampfung (Kriechfall)

Wir betrachten jetzt den Fall, dass die Dampfung
grofler ist als die Resonanzfrequenz,

B>wy, D>1, 0<0,5.
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Damit wird der Radikand @3 — 82 < 0 in (5.5) und
die Wurzel imaginér. Die allgemeine Losung lautet
in diesem Bereich

x(1) = e Pl(c1e® 4 cre ), 0 = /B2 — w3},

wobei c¢j, Integrationskonstanten darstellen, die
durch die Anfangsbedingungen bestimmt sind. Das
System néhert sich biexponentiell seinem Gleichge-
wicht.

0,6/
0,40

0,2

Auslenkung x

-0,21

04

Abbildung 5.39: Zeitabhiingigkeit im Bereich der
iiberkritischen Déampfung fiir 2
unterschiedliche =~ Anfangsbedin-
gungen.

In diesem Fall tritt keine Schwingung mehr auf, wie
in Abb. 5.39 gezeigt. Es kann maximal einen Null-
durchgang aufweisen wenn die beiden Amplituden
entgegengesetztes Vorzeichen aufweisen.

Das in Abb. 5.38 gezeigte Experiment erméglicht es,
durch Anderung eines Widerstandes zwischen den
unterschiedlichen Bereichen zu wechseln.

5.4.6 Der aperiodische Grenzfall: oy = f3

Dies wird auch als der Fall der kritischen Dampfung
bezeichnet. Die Wurzel verschwindet und die beiden
Eigenwerte sind entartet. In diesem Fall kann die L6-
sung der Differentialgleichung als

x(t) = (¢ +cat)e P

geschrieben werden. Diese Situation fithrt dazu, dass
der Gleichgewichtswert am schnellsten (ndherungs-
weise) erreicht wird. Dies ist niitzlich (und wird
deshalb angestrebt) in Messgeriten, wo man den

X
schwache Dampfung : wo>p

F

\ A

\_//-\VA
\/ \-/ Zeit t
X . M
kritische Dampfung : wo=p
aperiodischer Grenzfall
Zeit t

Kriechfall : wo<B

Zeit ¢

Abbildung 5.40: Zusammenfassung der drei Berei-
che der Dampfung.

(Gleichgewichts) Messwert moglichst rasch errei-
chen mochte.

Abb. 5.40 fasst die drei relevanten Fille zusammen:
» Schwache Dampfung (8 < @)
* Der aperiodische Grenzfall oder kritische
Dimpfung (B = a)
* Stirke Dampfung oder Kriechfall (8 > @y)

5.5 Erzwungene Schwingung

Bis hierher wurden Systeme betrachtet, auf die keine
dulere Kraft wirkt. Bei erzwungenen Schwingungen
wird von au3en eine periodische Kraft angelegt, wel-
che dem System Energie zufiihrt.

5.5.1 Bewegungsgleichung

Abb. 5.41 zeigt typische Beispiele, wie eine Uhr
oder eine Klingel. Im Uhrwerk stammt die Energie
von einem Gewicht oder eine Feder. In einer Klingel
wird eine elektromagnetische Kraft verwendet, wel-
che durch die mechanische Bewegung ein und aus-
geschaltet wird.

Abb. 5.42 zeigt als Beispiel ein Drehpendel, das tiber
einen Exzenter angeregt wird.
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Erreger

Resonator

Abbildung 5.41: Schwingendes System mit du3erem
Antrieb.

Abbildung 5.42: Pohl’sches Rad: Torsionsschwinger
mit dulerem Antrieb.

Ein getriebener Oszillator, resp. eine erzwungene
Schwingung wird durch folgende Bewegungsglei-
chung beschrieben:

K(t
X+ 2%+ wgx = L),
m

(5.6)
wobei K (t) eine dufere Kraft beschreibt, welche hier
als periodisch angenommen wird.

5.5.2 Energiebillanz

Die duflere Kraft leistet am System Arbeit, so dass
die Energie des Systems zu-, aber auch abnehmen
kann. Dies hingt davon ab, ob die Kraft in Rich-
tung der Geschwindigkeit oder in entgegengesetz-
ter Richtung wirkt. Die ins System hinein flieBende
Leistung P ist das Produkt aus Kraft F = K(¢) und
Geschwindigkeit v = %, P = Fv. Man erhiilt sie aus

Gleichung (5.6) durch Multiplikation mit mx:
P = K(t)x = mix + 2Bmx* 4 of mxx.

Mit der Substitution a)gm = ¢ und umschreiben des
ersten und dritten Terms erhélt man
= % (%xz + %xz) +2Bmi2.

Die beiden Terme in der Klammer stellen gerade
die kinetische und potenzielle Energie des schwin-
genden Systems dar. Die extern geleistete Arbeit
flieBt somit zum einen in die Anderung der mecha-
nischen (kinetischen plus potenziellen) Energie, der
Rest kompensiert die Reibungsverluste, die dem Sy-
stem Energie entziehen.

Kraft in Phase mit Geschwindigkeit
/__\Leistung P

Zeit

Abbildung 5.43: Oben: relative Phase von Ort und
Geschwindigkeit. Unten: Ist die
Kraft in Phase mit der Geschwin-
digkeit, so ist die zugefiihrte Lei-
stung immer positiv.

Die zugefiihrte Leistung ist positiv wenn K (¢) und x
das gleiche Vorzeichen haben, d.h. wenn Kraft und
Geschwindigkeit in Phase sind. Dieser Fall ist in
Abb. 5.43 dargestellt.

Ist die Kraft hingegen mit dem Ort in Phase, also ge-
geniiber der Geschwindigkeit 90 Grad aufler Phase,
so wird dem System abwechselnd Energie zugefiihrt
und wieder entzogen. Uber eine Schwingung gemit-
telt verschwindet die zugefiihrte Energie.

5.5.3 Losungsweg

Die Bewegungsgleichung ist eine lineare, inhomoge-
ne Differentialgleichung zweiter Ordnung. Die all-
gemeine Losung eines solchen Systems wird durch
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zwei linear unabhéngige Funktionen aufgespannt,
welche zusammen zwei freie Parameter enthalten,
die durch die Anfangsbedingungen bestimmt wer-
den. Der einfachste Weg zur allgemeinen Losung
folgt dem Rezept:

allgemeine Losung der inhomogenen DGI
= allgemeine Losung der homogenen DGI
+ beliebige Losung der inhomogenen DGI.

Die homogene Differentialgleichung entspricht dem
freien harmonischen Oszillator, der in Kapitel 5.4
behandelt wurde. Die entsprechende Losung bleibt

efﬁz(Aleiwst —}-Agefith)
= e PAcos(og+9)

Joi-p

Jetzt benotigen wir zusitzlich eine (beliebige) Lo-
sung der inhomogenen Gleichung.

x(1)

O, =

(aligem) LOsung der homogenen Gl. (bet) Losung der inhomogenen Gl.

o VY

= allgemeine Losung der inhomogenen DGI.

H

(|

Abbildung 5.44: Die allgemeine Losung der inho-
mogenen Gleichung erhélt man aus
der allgemeinen Losung der homo-
genen Gleichung und einer beliebi-
gen Losung der inhomogenen Glei-
chung.

Eine relativ einfache Losung, die auch hiufig von
speziellem Interesse ist, ist die stationdre Losung,
d.h. der Zustand, der sich einstellt wenn die An-
fangsbedingungen nicht mehr relevant sind (— Abb.
5.44). Wir betrachten dafiir nur eine spezielle Form
der duferen Kraft, nimlich eine harmonische Anre-

gung. In komplexer Schreibweise lautet sie
K(t) = K()eiwt,

wobei die physikalische Kraft dem Realteil ent-
spricht,

K,(t) = Kocos(wr).

Die Losung erhélt man aus dem Ansatz, dass das Sy-
stem der duBleren Kraft mit dessen Frequenz folgt,
d.h.

x(t) = a(®)e'® = A(w)el 9

mit a(®) = A(w)e?®) als Amplitude in komplexer
Schreibweise, und A(®), ¢ (@) reelle Amplitude und
Phase. Diese Parameter sind Funktionen der Anre-
gungsfrequenz ®.

5.5.4 Stationire Losung

Fiir diesen Ansatz sind die Ableitungen

x(1) = ioa()e'® = iox(t), i(t) = —w*x(1).

Einsetzen in die Bewegungsgleichung ergibt

K
(—0” +2ifo+ od)a(w) = ZO

Auflosen nach a ergibt

Ko 1
m —?+2iop + of

a(o) = A(w)e?®) =

Dies ist bereits die Losung in komplexer Schreib-
weise. Offenbar ist die Antwort des Systems propor-
tional zur dufleren Anregung. Diese Proportionalitit
wird geschrieben als

a(@) = Oy (iw),

1
2 +2Bs+ o}

Y(s)

die komplexe Transferfunktion des Systems dar-
stellt. Sie stellt das Verhiltnis zwischen einer harmo-
nischen duBleren Kraft und der Antwort des Systems
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dar. Diese einfache Beziehung gilt nur weil das Sy-
stem linear ist.

Die physikalische Auslenkung entspricht dem Real-
teil der komplexen Funktion

x(t) = R{a(w)e}
= R{a(w)}cos(wr) —3{a(w)}sin(wr).

Somit beschreibt der Realteil von a(®) die In-Phase
Komponente der Auslenkung, der Imaginirteil den
AuBer-Phase Teil.

Wir konnen Real und Imaginérteil erhalten, indem
wir mit dem konjugiert-komplexen des Nenners er-
weitern:

Ko 1
Cl((l)) = — 2 . 2
m —*+2iof + oy
—0? —2iof + v
—0?—2iof + o
Ko o —0®—2iof
o om (0 - 0?)?+402B2
Somit sind
Ko w? — w*?
R{a(w = — 9
{a(@)} m (0f — 0?)? +40?p2
Ky Zwﬁ

—S{a(0)} =

m (07 — 022 + 4022
Offenbar ist dies im Wesentlichen eine Funktion der

Frequenz w, d.h. der Frequenz mit der die duf3ere
Kraft oszilliert.

Mit
0} — 0* = (wy + )y — o)

findet man zwei Maxima bei @ = £ @y, wie in Abb.
5.45 gezeigt.

Ein interessanter Grenzfall ist derjenige fiir kleine
Frequenzen: Wenn die Frequenz der dufleren Anre-
gung gegen Null geht, @ — 0, verschwindet offenbar
der Imaginirteil gegen 0, S{a(0)} = 0 und der Re-
alteil zu

Koy (1)3
m ()2 me} ¢

R{a(0)} - R K

M

-1

2 0 / 1 2 W
Resonhanzen \ﬁ

-10

Abbildung 5.45: Realteil (blau) und Imaginirteil
(rot) der Amplitude a(w) als Funk-
tion der Frequenz.

Die stationédre Auslenkung ist somit gerade durch die
Federkonstante ¢ gegeben, in Ubereinstimmung mit
dem Hooke’schen Gesetz und unserer Erwartung fiir
den Fall einer zeitunabhéngigen dufleren Kraft.

5.5.5 Resonante Anregung

In vielen Fillen interessiert man sich in erster Li-
nie fiir das Verhalten in der Ndhe der Resonanzen.
Sind diese gut isoliert, d.h. ist die Ddmpfung nicht zu
grof3, so kann man sie getrennt diskutieren. Mathe-
matisch erreicht man das, indem man @ ~ @y setzt.
Dadurch vereinfacht sich der Ausdruck im Nenner
zu:

(05— %) = (+0)*(@— o)
40 (ay — )%
10r8(w)
5

—S{a(w)}
Ri{a(w)}
2 -1 0 1\/—‘2 w

5

Abbildung 5.46: Resonanz bei positiven Frequen-
zen.

Wie Abb. 5.46 zeigt, betrachtet man dann nur noch
den Beitrag der Resonanz bei positiven Frequenzen.
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Positive und negative Frequenzen kénnen z.B. Rota-
tionen in unterschiedliche Richtungen beschreiben.
In der Figur sind Realteil und Imaginérteil der kom-
plexen Amplitude als Funktion der Frequenz @ dar-
gestellt fiir Ko = m, @y = 1, B = 0.05. Wesentlich
ist, dass es sich um ein resonantes Verhalten han-
delt: Der Realteil, also der in-Phase Teil wichst zu-
nichst mit zunehmender Frequenz, bis er bei wy — 8
ein Maximum erreicht. Mit weiter zunehmender Fre-
quenz nimmt er wieder ab und geht auf der Reso-
nanzfrequenz @y durch 0. Hier erreicht jedoch der
Imaginérteil sein Maximum. Die Breite der Reso-
nanzlinie ist gegeben durch die Dampfungskonstante

B.

Bei resonanter Anregung, also fiir @ = @y werden
die Amplituden

®{a(0)} = O.
Ko @
c 2B

Der Realteil verschwindet also bei der Resonanz-
frequenz, wihrend der Imaginérteil sein Maximum
erreicht. Das Maximum ist proportional zum Ver-
hiltnis der duBeren Kraft zur Kraftkonstante des Sy-
stems, und zum Verhiltnis der Resonanzfrequenz zur
Dampfung. Dieses Verhiltnis wird auch als Giite-
faktor des Systems bezeichnet und ergibt die Ver-
starkung der dufleren Anregung gegeniiber dem sta-
tischen Fall (@ = 0). Bei mechanischen Systemen ist
es typischerweise in der Gréenordnung von einigen
10 bis einigen 100. In atomaren Systemen kann die-
se Kreisgiite jedoch bis auf mehr als 10'> anwach-
sen. Entsprechend ist die Resonanziiberhohung dort
extrem groB.

Die Amplitude einer Schwingung kann sehr grof3
werden und zur Zerstdrung des Objektes fiihren. Ein
berithmter Fall ist die Zerstérung der Tacoma Nar-
rows Briicke bei Seattle, im Sommer 1940, wie in
Abb. 5.47 gezeigt.

Abbildung 5.47: Zerstorung der Tacoma Narrows
Bridge durch resonante Anregung.

5.5.6 Absolutbetrag und Phase

Man kann die Auslenkung auch in Absolutbetrag
und Phase aufteilen:

A0) = \/R{a(0)) +S{a(e))?
_ Kk !
n \/(wg—w2)2+4w2[32
und
ang __ Sa@)} 2w
Ra(@)] (02— )

Offenbar erreicht der Absolutbetrag sein Maximum

fir o = \/ w3 — 282

Amplitude

0.5 15 2

7 1
Frequenz w/wo Frequenz w/wo

Abbildung 5.48: Absolutbetrag und Phase der Re-
sonanz fiir unterschiedlich starke
Déampfung.

Abb. 5.48 zeigt Amplitude und Phase fiir die glei-
chen Parameter wie oben. Die Amplitude erhilt of-
fenbar eine starke Uberhdhung in der Nihe der Re-
sonanzfrequenz @ = y. Fiir kleinere Frequenzen ist
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die Phase 0, d.h. das System schwingt in Phase mit
der duBleren Anregung. Auf der Resonanz betrégt die
Phase /2, und fiir groBere Frequenzen hinkt das Sy-
stem um 180 Grad hinter der Anregung her.

Das Verhalten kann im Experiment schén gezeigt
werden, z.B. wenn ein Pendel mit einem Motor
mit variabler Frequenz angetrieben wird. Bei klei-
nen Geschwindigkeiten schwingt das Pendel in Pha-
se mit der duBleren Kraft; die Amplitude bleibt klein.
Wenn wir die Geschwindigkeit des Motors, d.h. die
Drehzahl, resp. Frequenz, erhohen, gelangen wir in
die Nidhe der Resonanzfrequenz, wo die Auslenkung
des Pendels sehr grofl wird.

Bei geringer Dampfung fillt das Maximum der Am-
plitude mit der Phasenverschiebung um 7 /2 zusam-
men und die Resonanzlinie sehr schmal. Dies folgt
direkt aus der Energiebillanz von Kapitel 5.5.2: hier
sind Geschwindigkeit und Kraft in Phase, so dafl am
meisten Leistung in das System hinein flie3t. Mit zu-
nehmender Dampfung wird das Maximum niedriger
und breiter, ebenso der Phasenwechsel. Die Reso-
nanzfrequenz, also die Frequenz, bei der die Ampli-
tude maximal wird, sinkt mit zunehmender Damp-
fung.

5.5.7 Einschwingvorgang

Nachdem wir die allgemeine Losung der homogenen
Gleichung (der freie gedimpfte harmonische Oszil-
lator) und eine spezielle Losung der inhomogenen
Gleichung (die stationdre Losung) diskutiert haben,
konnen wir die allgemeine Losung der inhomoge-
nen Gleichung als Summe der beiden diskutieren.
Der freie gedampfte Oszillator fiihrt eine Schwin-
gung mit der Resonanzfrequenz durch, welche ex-
ponentiell geddmpft ist. Die spezielle Losung der in-
homogenen Gleichung ist die stationire Losung, d.h.
eine Schwingung mit konstanter Amplitude und der
Frequenz der dufleren Stérung.

Die allgemeine Losung der inhomogenen Gleichung
entspricht somit einer Superposition dieser beiden
Losungen. Fiir lange Zeiten sollte das System sich
dem stationdren Zustand ndhern. Fiir kurze Zeiten
wird sich das System @hnlich wie der freie Oszil-
lator bewegen, wie in Abb. 5.49 gezeigt. In diesem

~freier harmonischer Oszillator
Ws

~ stationare Lésung
Wext

Auslenkung

Frequenzspektrum

Eigen-

Anregungs-
gung frequenz

frequenz Frequenz v
_

eines
dimpften harmonischen Oszilla-
tors.

Abbildung 5.49: Einschwingverhalten ge-

Bereich erwartet man eine Uberlagerung der frei-
en Schwingung mit der getriebenen, und damit eine
Schwebung.

Dieses Verhalten kann gut beobachtet werden, wenn
wir bei der getriebenen Schwingung die Dampfung
gering halten. Der Einschwingvorgang, der bei der
Frequenz des freien Oszillators liegt, iiberlagert sich
der Schwingung, mit der das System der externen
Anregung folgt. Berechnet man die Fouriertransfor-
mierte des in Abb. 5.49 gezeigten Signals, so fin-
det man zwei Frequenzen: die Eigenfrequenz des
Systems, mit der es wihrend des Einschwingvor-
gangs schwingt, sowie die Frequenz der dufleren An-
regung, der es im stationidren Zustand folgt.

5.6 Schwingungen mit mehreren
Freiheitsgraden

5.6.1 Das Doppelpendel

Wir betrachten nun nicht mehr einzelne, unabhéngi-
ge harmonische Oszillatoren, sondern mehrere, die
aneinander gekoppelt sind.

Abb. 5.50 zeigt zwei liber eine Feder aneinander ge-
koppelte Pendel. Sto3t man eines davon an, so be-
ginnt zunéchst nur dieses zu schwingen, doch auf ei-
ner etwas ldngeren Zeitskala wird seine Energie auf

236



5 Schwingungen

Abbildung 5.50: Zwei gekoppelte Pendel.

das andere tibertragen. Die Schwingung des ersten
Pendels wird dabei geddmpft bis es ganz still steht,
diejenige des zweiten Pendels baut sich auf, bis der
Vorgang sich umkehrt. Offenbar wird hier Energie
von einem Pendel auf das andere iibertragen.

Abbildung 5.51: 2 gekoppelte Massenpunkt.

Ein dhnliches System besteht aus zwei iiber Federn
gekoppelten Massen, wie in Abb. 5.51 gezeigt. Um
eine Bewegungsgleichung fiir dieses System zu er-
halten gehen wir aus vom freien, ungeddmpften har-
monischen Oszillator. Im Vergleich dazu erhalten
wir in diesem Fall eine zusétzliche riickstellende
Kraft fiir jeden der beiden einzelnen Pendel, welche
proportional zur Differenz der beiden Auslenkungen
ist:

— 0} + k(¢ — ¢1)
— @) 92 + K (1 — 2).

o =
¢

Offenbar ergibt sich ein System von zwei gekoppel-
ten Differentialgleichungen.

Im Allgemeinen kann man Systeme von gekoppelten
linearen Differentialgleichungen 16sen, indem man
die Eigenwerte und Eigenvektoren bestimmt. In die-
sem Fall handelt es sich um ein speziell einfaches

System: Die Eigenfunktionen ergeben sich aus der
Summe und der Differenz dieser beiden Gleichun-
gen :

hi+d = & =—0j(d+¢)=—0jé.
é1 — ¢ & = —ad (91 — o) +2x(¢2 — ¢1)
= —(of+2K)&.

Somit haben wir zwei voneinander unabhéngige Dif-
ferentialgleichungen fiir die Variablen (¢; + ¢») und
(¢1 — ¢n) gefunden, welche jeweils einem harmoni-
schen Oszillator entsprechen. Somit sind die Lésun-
gen fiir diese beiden Variablen

+p=§ =

wobei Amplitude A und Phase ¢ durch die Anfangs-
bedingungen bestimmt sind.

Aé' COOH-(P)

Die zweite Mode ist die antisymmetrische, bei der
die beiden Pendel in entgegengesetzte Richtung
schwingen. Fiir sie findet man

62 Bé' i(ant+0)

mit

1+—

\/ OF +2Kk = o
K

w(1+5).
20

Die Niherung gilt fiir schwache Kopplung, k¥ < a)g.
Die zweite Frequenz liegt somit immer hoher als die
Frequenz fiir die symmetrische Mode. Die Erhohung

wird durch das Verhiltnis aus Kopplungsstirke und
Modenfrequenz bestimmt.

Q

5.6.2 Eigenschwingungen

Die beiden Losungen entsprechen offenbar Zustin-
den des Systems, in denen es mit einer einzelnen
Frequenz schwingt. Man bezeichnet diese speziel-
len Schwingungstypen als Normalmoden oder Nor-
malschwingungen des Systems. Es ist moglich, Nor-
malmoden gezielt anzuregen, indem man die An-
fangsbedingungen geeignet wihlt. Eine daran an-
schlieBende freie Oszillation des Systems kann dann

237



5 Schwingungen

durch diese Normalschwingung allein beschrieben
werden.

Wir betrachten zunichst den Fall

¢1(0) =
$1(0) =

d.h. den Fall, dass beide Pendel zur gleichen Sei-
te ausgelenkt werden und aus der Ruhe losgelassen
werden. Eingesetzt in die obigen Losungen fiir &;
und &, finden wir

01+ 02 =& =20, 91— =6=0
oder
o1 = 92 = goe'™,
E=gr+g2
®1 @2 wrme

Abbildung 5.52: Eine der Eigenmoden des Systems.

d.h. beide Pendel schwingen mit der gleichen Fre-
quenz, gleicher Amplitude und gleicher Phase, wie
in Abb. 5.52 gezeigt. Die Kopplungsfeder ist in die-
sem Fall entspannt und hat deshalb keinen Einfluss
auf das System.

Als nichstes betrachten wir den Fall, dass die beiden
Pendel in entgegengesetzte Richtung ausgelenkt und
aus der Ruhe losgelassen werden,

$1(0) = —92(0) = ¢o;  61(0) = $2(0) = 0.
Aus dieser Anfangsbedingung erhalten wir
01— 92 =& =20, P14+¢2=0

oder

¢1 = —¢r = g’

W, =1/ wd + 2

Abbildung 5.53: Antisymmetrische
des Systems.

Eigenmoden

Somit bewegen sich in diesem Fall beide Pendel mit
gleicher Frequenz und Amplitude, diesmal aber in
Gegenphase, wie in Abb. 5.53 gezeigt. Dadurch ist
die Feder in diesem Fall maximal gespannt, so dass
die riicktreibende Kraft auf beide Pendel um den
entsprechenden Wert grofler wird. Die Resonanzfre-
quenz

K
W =\/OF+2Kk ~ @p+ —.
(0]

fiir diese zweite Normalmode ist deshalb um x /@y
grofler als die Grundfrequenz @y. Wir bestitigen die-
se Voraussage im Experiment indem wir die Periode
der beiden Schwingungen messen. Sie betragen

T'=1,9s T,=1,65s.

Wird die Feder in die Mitte der Pendel verschoben,
wird die Kopplungsstirke reduziert. Wir messen in
diesem Fall eine Periode von 73 = 1,8s, also nédher
bei T1 .

5.6.3 Schwebungen

Als dritten Fall betrachten wir die Situation, dass ei-
ner der beiden Pendel ausgelenkt wird, wihrend der
andere in der Gleichgewichtslage ist, und beide zu-
nichst in Ruhe, d.h.

$1(0) =0, 92(0)=0, :1(0) =¢2(0) =0.
In den Variablen &; und & muss die zeitliche Ent-
wicklung somit

01+ ¢
o —¢ =

&1 = goe'™
& = goe'™

238



5 Schwingungen

sein. Die Auslenkung der beiden Pendel wird damit

¢ =

51 ‘;52 _ % (eiwot —i—eiwﬂ)
él _52 _ @ (eiwot _eicozt) ]

9 = T :

In reeller Schreibweise entspricht dies fiir

o1 = % (cos(pt) 4 cos(ant)).

Mit Hilfe des Additionstheorems

(04 o —
;—BCOS 2B

cos o +cos 3 = 2cos

und

K
602%(00<1+2>
20

konnen wir dies umformen zu

¢ocos (wl ; wlt) cos <0)1 ngt>

@p cos (wo(l + Zz)g)t) cos (2:)01) .

o =

Zeit

Abbildung 5.54: Amplituden der beiden Pendel als
Funktion der Zeit.

Fiir das zweite Pendel erhalten wir entsprechend

o = % [cos(w; 1) — cos(wat)]

(0] W —
= ¢osin< 1;—wzt>sin< 12(02t>

K K
= i 1+ —=)t)sin| —t |.
¢Osm<w0( 7 §)>sm<2 g>

Abb. 5.54 zeigt die beiden Amplituden als Funkti-
on der Zeit. Offenbar schwingen beide Pendel jetzt
mit der mittleren Frequenz (@y + @;)/2, wobei die
Amplitude noch mit der halben Differenzfrequenz
K /2®3 moduliert ist. Man bezeichnet diese Erschei-
nung als Schwebung.

5.6.4 Gekoppelte elektronische
Schwingkreise

Rl [

R ——c R

Abbildung 5.55: Gekoppelte elektrische Schwing-
kreise.

Wie mechanische Schwingkreise konnen auch elek-
tronische Schwingkreise gekoppelt werden. Wir be-
trachten als Beispiel das in Abb. 5.55 gezeigte
System von zwei kapazitiv (d.h. tiber einen Kon-
densator) gekoppelten Schwingkreisen. Die beiden
Schwingkreise sind unabhingig voneinander sofern
der Kopplungskondensator Cy, sehr grof3 wird: in die-
sem Fall wirkt er als Kurzschluss und der Punkt zwi-
schen den beiden Spulen ist auf dem Potenzial der
Masse. Jeder der beiden Schwingkreise entspricht
dann einem unabhédngigen harmonischen Oszillator.
Ist der Widerstand klein, so betrdgt die Eigenfre-
quenz

1
VLC

Unter Beriicksichtigung des Kopplungskondensators
konnen wir die eine Eigenmode des Systems finden,
wenn wir den Fall betrachten wo das System symme-
trisch schwingt, d.h. iiber den entsprechenden Kom-
ponenten auf beiden Seiten liegt jeweils die gleiche
Spannung an. Aus Symmetriegriinden hat der Kopp-
lungskondensator dann keine Wirkung. Das gesamte

0)0:
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System besitzt dann die Eigenfrequenz

1 1
alc VIC

0 = .

Sind die beiden Kreise im Gegentakt, flieBt der
Strom also durch den Kondensator Cy, so wird die
gesamte Kapazitit des Schwingkreises

1 2CCy

Ciot = = .
tot 2C—|—Ck

L, 1
G
Damit wird die Resonanzfrequenz

1 1
w = =

/1 o

7LCror Lycie
Wird der Kopplungskondensator sehr grof3, erhalten
wir daraus wieder die Frequenz @y. Fiir sehr kleine

Kopplungskondensatoren dominiert er und die zwei-
te Resonanzfrequenz wichst auf

1
VLC2

Offenbar kann diese Frequenz sehr hoch werden.

w —

Abbildung 5.56: Gemessene Anregungsamplitude
als Funktion der Frequenz.

Man kann die beiden Resonanzfrequenzen im Expe-
riment beobachten indem man eine variable Wech-
selspannung anlegt und die Spannung iiber einer der
beiden Spulen abgreift. Abb. 5.56 zeigt das Resul-
tat als Oszilloskop-Bild. Fiir grole Werte des Kopp-
lungskondensators werden die beiden Resonanzfre-
quenzen praktisch identisch. Fiir kleine Werte nimmt
die zweite Resonanzfrequenz stark zu.

1 2 3
1 2 3
1 2 3

Abbildung 5.57: Unterschiedliche Moden einer

Transversalschwingung.

5.6.5 Transversalschwingungen

In Systemen mit mehreren Freiheitsgraden kann die
Auslenkung nicht nur entlang der Achse erfolgen,
wie in Abb. 5.51, sondern auch senkrecht dazu, wie
in Abb. 5.57 gezeigt. Man spricht im bisher disku-
tierten Fall von Longitudinalschwingungen, im Fall
von Abb. 5.51 von Transversalschwingungen. Ge-
naueres dazu wird im Kapitel 7 (Wellen) diskutiert.
In den meisten Fillen existieren zwei voneinander
unabhingige transversale Schwingungsmoden.

Eine zweidimensionale Schwingung kann man z.B.
auf dem Luftkissentisch realisieren. In vielen Fél-
len ist es jedoch moglich, die beiden Dimensionen
zu trennen und die Bewegungsgleichungen getrennt
zu diskutieren. Wenn wir bei solchen Schwingungen
zum kontinuierlichen Grenzfall tibergeht, erhilt man
die Schwingungen einer Saite. Diese werden eben-
falls im Kapitel 7 “Wellen” genauer diskutiert wer-
den. Qualitativ soll jedoch das Ergebnis hier vorweg-
genommen werden: Es gibt unendliche viele Eigen-
schwingungen, welche die Form

. (NXT
Y = sin <T) cos(yt)

besitzen. Hier stellt n eine laufende Zahl dar, wel-
che die Eigenschwingungen ordnet, x die Koordinate
entlang der Saite, L ihre Linge, und w, die Eigenfre-
quenz der Schwingung. Jede Eigenmode entspricht
einer harmonischen Auslenkung der Saite, und die
Auslenkung zeigt eine harmonische Zeitabhingig-
keit.

Da die Saite am Rand eingespannt ist verschwindet
dort die Auslenkung immer, ebenso an den dazwi-
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Abbildung 5.58: Unterschiedliche Eigenmoden ei-
ner eingespannten Saite.

schen liegenden Knoten, also den Nulldurchgingen
der Auslenkung. Abb. 5.58 zeigt zwei dieser Eigen-
moden. Die n-te Eigenmode besitzt n Knoten. Die
Frequenzen sind Vielfache der Grundfrequenz, d.h.

W, = nay,

und die Grundfrequenz @, ist indirekt proportional
zur Linge der Saite. Je linger eine Saite desto nied-
riger somit die Frequenz. Dies ist ein Grund dafiir,
dass tiefe Tone von groBen Musikinstrumenten er-
zeugt werden.

5.6.6 Schwingungen von
mehrdimensionalen Systemen

Ahnliche Schwingungen treten auch in mehrdimen-
sionalen Systemen auf. Ein klassisches Beispiel
sind die Schwingungen einer Membran. Unter ei-
ner Membran versteht man ein zweidimensiona-
les schwingungsfahiges System. Dazu gehoren z.B.
Trommeln, wo eine elastische Membran am Rand
eingespannt ist.

Abb. 5.59 zeigt das Resultat eines Experiments, bei
dem die “Membran” eine Platte aus Metall oder Glas
ist, welche im Zentrum eingespannt ist. Mit Hilfe
eines Bogens werden Schwingungen angeregt. Die-
se konnen sichtbar gemacht werden indem Sand auf
die Oberfliche gestreut wird. Die Schwingung ent-
spricht einer periodischen Auslenkung, bei der Tei-
le der Membran sich nach oben verbiegen, andere
nach unten. Nach einer halben Periode ist die Aus-
lenkung umgekehrt. Es existieren jedoch Linien auf

| ¥
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Abbildung 5.59: Knotenlinien unterschied-
lichen Membranschwmgungen.

der Membran, welche nie ausgelenkt werden. Die-
se werden als Knotenlinien bezeichnet. Entlang der
Knotenlinien sammelt sich der Sand und macht die-
se so sichtbar. Je grofer die Anzahl der Knotenli-
nien, desto hoher die Frequenz der entsprechenden
Moden.

Abbildung 5.60: Schwingung eines Weinglases.

Moden existieren in jedem schwingungsfihigen Sy-
stem. In Abb. 5.60 sind die Moden in einem Wein-
glas dargestellt, welche z.B. durch akustische Wellen
angeregt werden konnen.

5.6.7 Akustische Schwingungen,
Musikinstrument

Dreidimensionale Schwingungen in kontinuierli-
chen Medien sind z.B. akustische Schwingungen in
Musikinstrumenten. Ein Beispiel fiir ein einfaches
Musikinstrument ist eine Flasche, in der man durch
blasen die Luftsdule zu Schwingungen anregt.
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Abbildung 5.61: Hoérschwelle und Schmerzgrenze
des menschlichen Ohrs als Funkti-
on der Frequenz.

Akustische Schwingungen sind hérbar wenn sie sich
in einem Frequenzbereich von ca. 20 Hz bis 15 kHz
befinden. Abb. 5.61 zeigt fiir diesen Bereich die
Empfindlichkeit des menschlichen Ohrs.

Abbildung 5.62: Schwingungsmoden einer Gitarre.

Schwingungen konnen in Musikinstrumenten #hn-
lich wie in den gezeigten Membranen angeregt wer-
den. Jedes Musikinstrument hat entsprechend eine
Reihe von Eigenschwingungen. Zwar konnen z.B.
bei einer Geige alle Tone erzeugt werden, doch wer-
den nicht alle gleich gut wiedergegeben. Die Kom-
bination der Eigenmoden ist fiir den Klang eines In-
strumentes verantwortlich. Abb. 5.62 zeigt als Bei-
spiel einige Schwingungsmoden einer Gitarre. Wie
eine Geige oder Gitarre gebaut werden muss, um
einen gewiinschten Klang zu erhalten, war lange Zeit
ein kaum nachvollziehbares Geheimnis der Instru-

mentenbauer. Nicht nur die Form des Instrumentes
ist wichtig, da sie die Lage der Moden bestimmt,
auch das Material, welches z.B. die Ddmpfung und
damit die Breite der Resonanzen mitbestimmt.

™
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Abbildung 5.63: Tonhohe von Instrumenten unter-
schiedlicher Gro3e.

Allgemein gilt, dass groflere Instrumente tiefere To-
ne ergeben, wie in Abb. 5.63 gezeigt. Dieser Zusam-
menhang wird ebenfalls im Kapitel 5 Wellen noch
diskutiert.
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