
4 Elektrizität und Magnetismus

Elektrizität und Magnetismus wurden zunächst als
unabhängige Phänomene verstanden. Rund 150 Jah-
re nachdem Newton seine grundlegenden Arbei-
ten zur Mechanik publiziert hatte, gelang es Max-
well1 die Grundlagen von Elektrizität und Magne-
tismus zusammenzubringen und in 4 Gleichungen,
den Maxwell’schen Gleichungen, ihre wichtigsten
Eigenschaften zusammenzustellen.

4.1 Ladung und Feld

4.1.1 Übersicht

Die Phänomene, die in diesem Kapitel behandelt
werden, basieren auf einer Größe, die bisher noch
nicht diskutiert wurde: auf der elektrischen Ladung
Q. “Gewöhnliche” Materie enthält gleich viele po-
sitive wie negative Ladungen. Man kann dieses
Gleichgewicht verändern, indem man einzelne La-
dungen von einem Material auf ein anderes über-
trägt. Dies geht z.B. indem man einen Glasstab mit
Leder oder Seide reibt. So erhält man positive La-
dungen; reibt man einen Kunststoffstab mit einem
Katzenfell oder mit Seide so erhält man negative La-
dungen. Diese können auf ein Elektrometer übertra-
gen werden; dabei handelt es sich um ein Gerät, wel-
ches elektrische Ladungen durch einen Ausschlag
des Zeigers anzeigt. Durch mehrmalige Übertragung
kann man die Ladungsmenge vergrößern und damit
den Ausschlag erhöhen. Überträgt man zunächst ei-
ne Art von Ladung und danach, ohne das Elektrome-
ter zu entladen, die andere, so nimmt der Ausschlag
ab: die beiden Arten von Ladungen heben sich ge-
genseitig auf.

Einige Eigenschaften der elektrischen Ladung sind:

• Ladung ist an Materie gebunden.

1James Clerk Maxwell (1831 - 1879)

• Ladung ist quantisiert, d.h. man findet nur Viel-
fache der Elementarladung e =1,6·10�19 C.

• Es gibt positive und negative Ladungen; deren
Absolutbetrag ist gleich. Die Ladung eines Teil-
chens kann somit betragen ... -2e, -e, 0, +e, +2e,
... .

Abbildung 4.1: Charles Augustin de Coulomb
(1736-1806).

Ladung wird gemessen in der Einheit

[Q] = C = Coulomb,

nach Charles Augustin de Coulomb, 1736-1806 (!
Abb. 4.1). Die Ladung ist eine der Grundeinheiten
der Elektrizitätslehre.

Ladungen können Bewegungen durchführen. Man
unterscheidet drei Bewegungszustände:

• ruhende Ladungen. Diese Systeme werden im
Rahmen der Elektrostatik beschrieben.

• Ladungsbewegungen mit konstanter Geschwin-
digkeit, d.h. es fließen stationäre Ströme, wel-
che statische Magnetfelder erzeugen. Dies wird
im Rahmen der Magnetostatik behandelt.

• Ladungen werden beschleunigt und erzeugen
deshalb elektromagnetische Wellen. Dies ist
das Thema der Elektrodynamik.
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4 Elektrizität und Magnetismus

4.1.2 Ladungsquantisierung

Abbildung 4.2: Messung der Ladungsquantisierung
durch Millikan.

Die Quantisierung der elektrischen Ladung wurde
in einem berühmten Versuch von Millikan erstmals
nachgewiesen. Abb. 4.2 zeigt schematisch das ver-
wendete Experiment. Er brachte kleine Öltröpfchen
in einen Raum zwischen zwei geladenen Kondensa-
torplatten.
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Abbildung 4.3: Öltröpfchen im Feld.

Wie in Abb. 4.3 gezeigt, wurden diese Öltröpfchen
mit Licht ionisiert, d.h. geladen. Dadurch wurden
sie im elektrischen Feld beschleunigt. Millikan be-
obachtete die Bewegung der Öltröpfchen durch ein
Mikroskop. Auf diese Ladung wirkt dann die Kraft
Fe = qE und zieht den Tropfen nach oben. Gleichzei-
tig wird der Öltropfen von der Gewichtskraft Fg =
�mg nach unten gezogen. Bei der Messung stellt
man nun den Zustand durch Verändern der Spannung
U = E ·d ein, bei dem der Tropfen schwebt, also:

Fe = q ·E = Fg = m ·g ) q =
m ·g ·d

U
.

Um den Effekt des Feldes vom Einfluss der Schwer-
kraft zu unterscheiden, invertierte er die Polarität der
Spannung. Aus diesen Messungen konnte er die La-
dung der Öltröpfchen bestimmen und zeigen, dass es
sich immer um ganzzahlige Vielfache der Elemen-
tarladung

e = 1,602189 ·10�19 C

handelte.
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Abbildung 4.4: Erzeugung eines Elektronen-
Positronen Paars aus einem Photon.

Für ein abgeschlossenes System gilt, dass die Sum-
me der elektrischen Ladungen konstant ist. Es kann
zwar Ladung erzeugt werden, aber immer nur in Paa-
ren, also gleich viel negative wie positive Ladung.
Ein Beispiel dafür ist die Paarerzeugung, bei der ein
hochenergetisches Photon in ein Elektron und ein
Positron umgewandelt wird (siehe Abb. 4.4). Ein an-
deres Beispiel ist der Zerfall des Neutrons, bei dem
ein Proton (positiv geladen) und eine Elektron (ne-
gativ geladen) entstehen.

4.1.3 Elektrostatische Wechselwirkung

Ladungen üben aufeinander Kräfte aus. Abb. 4.5
zeigt einen experimentellen Aufbau für die Messung
der Coulomb-Anziehung und Abstoßung. Wechsel-
wirkung zwischen zwei Tischtennisbällen, die mit
einer Graphitschicht überzogen sind und an einem
Metallband aufgehängt sind. Werden die beiden Bäl-
le an eine Hochspannungsquelle angeschlossen, so
bringt man eine Ladung auf die beiden Körper.
Bringt man die gleiche Ladung auf beide Körper (in-
dem man sie mit dem gleichen Pol der Hochspan-
nungsquelle verbindet), so stoßen sie sich ab; bringt
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Entgegengesetzte 
Ladungen: Anziehung

+ -
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Gleiche Ladungen: Abstoßung
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Abbildung 4.5: Anziehung und Abstoßung zwischen
geladenen Kugeln.

man entgegengesetzte Ladungen auf die Kugeln so
ziehen sie sich an.

Da Ladungen mit entgegengesetztem Vorzeichen
existieren, können elektrostatische Kräfte abge-
schirmt werden. Dies ist ein wesentlicher Unter-
schied zur Anziehung zwischen Massen, welche im-
mer anziehend ist und damit nicht abgeschirmt wer-
den kann.

Abbildung 4.6: Watteflocken werden auf einer Me-
tallplatte aufgeladen.

Das funktioniert nicht nur mit leitenden Gegenstän-
den, Ladungen können auch auf nichtleitende Ge-
genstände wie z.B. Watteflocken aufgebracht wer-
den wenn sie auf einer aufgeladenen Platte liegen,
wie in Abb. 4.6 gezeigt. Sie werden dann von dieser
abgestoßen und fliegen weg. Dies dauert allerdings
deutlich länger als bei elektrisch leitenden Gegen-
ständen.

4.1.4 Abstandsabhängigkeit

Abbildung 4.7: Coulomb-Drehwaage.

Abb. 4.7 zeigt ein Experiment, mit dem diese Wech-
selwirkung etwas quantitativer untersucht werden
kann. Dazu wird auf eine kleine Metallkugel Ladung
gebracht, indem sie über eine Hochspannungsquelle
auf 10 kV aufgeladen wird. Eine zweite Metallku-
gel wird mit der gleichen Spannungsquelle aufgela-
den. Die Wechselwirkung zwischen den beiden wird
gemessen, indem die Kraft auf die kleine Kugel als
Torsionskraft auf einen Draht übertragen wird, an
dem ein Spiegel befestigt ist (siehe Abb. 4.7). Die
Orientierung des Spiegels wird gemessen, indem ein
Laserstrahl daran reflektiert und an die Wand pro-
jiziert wird. Wir führen Messungen zu unterschied-
lichen Ladungen (d.h. Spannungen) und Abständen
durch.

Abbildung 4.8: Ladungen, Kräfte.

Eine Auswertung solcher und ähnlicher Messungen
ergibt, dass zwischen zwei Ladungen Q1 und Q2 in
einem Abstand r12 (siehe Abb. 4.8) die Kräfte

~F12 = �~F21 =
1

4pe0

Q1Q2

r3
12

~r12

wirken. Hier stellt

e0 = 8,8542 ·10�12 C2

Nm2 = 8,8542 ·10�12 As
Vm
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4 Elektrizität und Magnetismus

die Dielektrizitätskonstante des Vakuums2 dar. Die-
ses Kraftgesetz wird als Coulomb-Gesetz bezeich-
net. Es hat offenbar die gleiche Struktur wie das Gra-
vitationsgesetz. In beiden Fällen ist

• die Kraft proportional zum Produkt der beiden
Massen / Ladungen,

• wirkt entlang der Verbindungsachse und

• nimmt mit dem Quadrat des Abstandes ab.

Die elektrostatische (Coulomb-) Wechselwirkung ist
verantwortlich für den Zusammenhalt von Elektro-
nen und Atomkernen in Atomen und Molekülen und
damit für sämtliche chemischen und biologischen
Prozesse. Die Massenanziehung ist die entscheiden-
de Kraft für die Struktur des Kosmos. Allerdings ist
die Coulomb-Wechselwirkung sehr viel stärker: ver-
gleicht man die Coulomb-Wechselwirkung mit der
Gravitationswechselwirkung für ein Elektron und
ein Proton, so ist die Coulomb-Kraft rund 1040 mal
stärker.

4.1.5 Elektrisches Feld

Elektrische Ladungen üben aufeinander Kräfte aus,
welche dem Newton’schen Axiom “actio = reactio”
gehorchen. Häufig hat man die Situation, dass ein
Instrument und ein freies Testteilchen geladen sind;
dann ist die Kraft, welche das Testteilchen auf die
Apparatur ausübt kaum von Interesse, sondern pri-
mär die Kraft, welche die Apparatur auf das Testteil-
chen ausübt.

Diese Kraft ist nicht von der Masse des Teilchens
abhängig, es geht lediglich seine Ladung ein. Es
ist deshalb nützlich, vom konkreten Fall eines spe-
zifischen Teilchens zu abstrahieren. Man kann die
Behandlung sogar unabhängig von der Ladung des
Teilchens machen, indem man die Kraft ~F durch die
Ladung q dividiert. Die resultierende Größe ist das
elektrische Feld ~E. Dieses stellt die Kraft dar, die auf
eine Einheits-Probeladung wirken würde (! Abb.
4.9),

~E =
~F
q

[E] =
N
C

=
V
m

.

2auch: elektrische Feldkonstante, Permittivität des Vakuums

F

++

--

+    Probeladung

Apparat mit Ladungen

F

Abbildung 4.9: Kraft auf Ladung im Feld eines Plat-
tenkondensators (links), resp. einer
geladenen Kugel (rechts).

Diese Gleichung kann auch als Definitionsgleichung
für die Einheit Volt verstanden werden. Die elektro-
statische Kraft ist dementsprechend gegeben durch
das Produkt aus Feldstärke und Ladung des Testteil-
chens; die Einheit ist

[F ] = N =
J
m

= C
V
m

.

Da die Kraft eine Richtung hat, muss auch das Feld
eine Richtung enthalten (die gleiche wie die Kraft);
man bezeichnet diese Art von Feldern als Vektorfel-
der. Analog zum Gravitationsfeld (! Kap. 2.3.1),
welches von einer Masse erzeugt wird, wird das
elektrische Feld von einer Ladung erzeugt.

Feldvektoren Feldlinien

Abbildung 4.10: Feldvektoren und Feldlinien für ei-
ne Punktladung.

Man kann die Feldstärke an jedem Ort durch einen
Pfeil darstellen, der Betrag und Richtung der Kraft
angibt (! Abb. 4.10 links). Der einfachste Fall eines
elektrischen Feldes ist durch das elektrische Feld ei-
ner Punktladung Q im Ursprung gegeben; das Feld
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hat dann die Form

~E(~r) =
~F21

q
=

1
4pe0

Q
r3~r. (4.1)

Wie in Abb. 4.10 gezeigt, sind die Feldvektoren an
allen Punkten radial nach außen gerichtet, wobei die
Länge mit dem Quadrat des Abstandes abnimmt.
Das Feld zeigt die Richtung der Kraft auf eine posi-
tive Elementarladung. Somit zeigt die Richtung im-
mer weg von positiven Ladungen, hin zu negativen
Ladungen.

Befindet sich die Ladung nicht im Ursprung, sondern
an einer allgemeinen Stelle~r0, so wird~r auf der rech-
ten Seite von Gleichung (4.1) durch ~r �~r0 ersetzt.
Die Felder unterschiedlicher Ladungen sind additiv:
Das gesamte Feld einer Gruppe von Ladungen Qi an
den Positionen~ri kann als Summe über die einzelnen
Beiträge berechnet werden,

~E(~r) =
1

4pe0
Â

i

Qi

|~r �~ri|3
(~r �~ri) .

Bei allen Berechnungen dieser Art darf das zusätzli-
che Feld der Probeladung nicht berücksichtigt wer-
den: das Feld ist definiert über die Kräfte, welche die
anderen Ladungen auf die Probeladung ausüben; die
Probeladung selber wird als infinitesimal angesehen.

Kugelladung 
erzeugt FeldMessgerät 

misst Feld

Anzeige 
~Feld

Angelegte Spannung 
~ Ladung

Abbildung 4.11: Messung des Coulomb-Feldes.

Mit einem geeigneten Messgerät kann man direkt
das elektrische Feld messen. Abb. 4.11 zeigt einen
entsprechenden Messaufbau mit einer geladene Ku-
gel, welche ein zentrales Feld erzeugt. Das Experi-
ment zeigt, dass das Feld proportional zur Ladung
der Kugel und indirekt proportional zum Quadrat des

Abstandes ist, also in guter Übereinstimmung mit

|~E(~r)| = 1
4pe0

Q
r2 ,

Typische Feldstärken sind

Stromleitungen in Wohnhäusern 10�2 V/m
Radiowellen 10�1 V/m
Sonnenlicht 103 V/m
Blitz 104 V/m
Röntgenröhre 106 V/m
Wasserstoff-Atom (in 0,5 A) 6·1011 V/m
Hochleistungs-Laser 1016 V/m
Uran-Atomkern 2·1021 V/m

4.1.6 Feldlinien

Neben den oben dargestellten Feldvektoren stellt
man elektrische Felder auch gerne durch Feldlinien
dar; diese beginnen und enden immer in Ladungen;
im ladungsfreien Raum können Feldlinien somit we-
der anfangen noch enden. An jeder Stelle geben sie
die Richtung der Kraft / des Feldes an. Die Dichte
der Feldlinien ist proportional zur Stärke des Feldes.
Im Falle einer Kugel nimmt die Dichte nach außen
quadratisch mit dem Abstand ab, wie die Coulomb-
Wechselwirkung quadratisch mit dem Abstand ab-
nimmt.

Abbildung 4.12: Links: Feldlinien eines elektri-
schen Dipols. Rechts: Feldlinien
von zwei positiven Ladungen.

Sind positive und negative Ladungen vorhanden, so
laufen die Feldlinien von den positiven zu den ne-
gativen Ladungen - wie sich eine positiv geladene
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4 Elektrizität und Magnetismus

Testladung bewegen würde. Die Richtung der Kraft
an jeder Stelle ist durch die Tangente an die Feldli-
nie gegeben. Da die Kraft an jeder Stelle des Raumes
wohl definiert ist können sich Feldlinien nicht über-
schneiden; am Schnittpunkt wäre die Richtung der
Kraft nicht eindeutig. Sind mehrere Ladungen mit
gleichem Vorzeichen vorhanden, so stoßen sich die
Feldlinien gegenseitig ab. Abb. 4.12 zeigt links die
Feldlinien eines elektrischen Dipols, rechts für ein
System aus zwei gleichen Ladungen.

+ - + +

gleiches Vorzeichenentgegengesetztes Vorzeichen

Abbildung 4.13: Elektrische Feldlinien eines Paars
von Ladungen, gemessen mit
Grießkörnern in Öl.

Wie in Abb. 4.13 gezeigt, kann man die Feldlinien
sichtbar machen, indem man Grießkörner in Öl in
den Raum der Feldlinien bringt.

4.1.7 Elektrostatisches Potenzial

Wird eine elektrische Ladung q in einem elektri-
schen Feld bewegt, muss Arbeit aufgewendet wer-
den. Wie aus dem Kapitel Mechanik bekannt, ist Ar-
beit definiert über das Integral

WAB =
Z B

A
~F(~r) ·d~s = �q

Z B

A
~E(~r) ·d~s ,

wobei verwendet wurde, dass die äußere Kraft ~F ge-
rade die elektrostatische Kraft q~E überwinden muss.
Bei der elektrostatischen Kraft handelt es sich um ei-
ne konservative Kraft, d.h. es spielt keine Rolle, auf
welchem Weg man sich von A nach B bewegt und
das Schleifenintegral über einen geschlossenen Weg
verschwindet,I

~E ·d~s = 0 .

Somit existiert eine potenzielle Energie Epot , welche
die Arbeit beschreibt, die für den Transport nötig ist.

Meist verwendet man nicht die potenzielle Energie,
sondern man dividiert wieder durch die Probeladung
q und definiert das elektrische Potenzial U als

UAB =
Epot

q
=

WAB

q
= �

Z B

A
~E ·d~s .

Die Einheit des elektrostatischen Potenzials ergibt
sich damit als Volt:

[U ] = Volt = V.

Umgekehrt erhält man das elektrische Feld aus dem
Gradienten des Potenzials:

~E(~r) = �~—U.

+ + + +

- - - -

+100V

+75V

+50V

+25V

0V

⃗E

Abbildung 4.14: Feldlinien und Äquipotenzialflä-
chen für verschiedene Elektroden.

In einer gegebenen Anordnung kann jedem Punkt
im Raum ein Potenzial zugeordnet werden, welches
dem Integral des elektrischen Feldes vom Referenz-
wert 0 V bis zu diesem Punkt entspricht. So besitzen
die Pole einer Batterie ein wohl definiertes Potenzi-
al. In einem homogenen elektrischen Feld nimmt das
Potenzial entlang der Feldlinien linear zu. Abb. 4.14
zeigt dies für unterschiedliche Randbedingungen.

Das elektrostatische Potenzial lässt sich für eine
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Punktladung Q1 relativ leicht rechnen:

Uab = � 1
4pe0

Z b

a

Q1

r3 ~r ·d~s

= � Q1

4pe0

Z b

a

dr
r2 =

Q1

4pe0

✓
1
rb

� 1
ra

◆
.

In vielen Fällen ist es nützlich, eine feste Referenz
zu haben. Man wählt üblicherweise das System als
Referenz, bei dem die Testladung unendlich weit
entfernt ist, so dass die elektrostatische Wechselwir-
kung verschwindet. Bringt man die Referenzladung
aus dem Unendlichen zur Position r, d.h. ~ra ! •,
~rb ! r, so wird

U•r =
Q1

4pe0

1
r

.

Abbildung 4.15 zeigt die entsprechende Abhängig-
keit.

P
ot

en
zi

al
 U

Distanz r

U�r = Q1
4��0

1
r

Abbildung 4.15: Potenzial einer Punktladung als
Funktion des Abstandes r.

Dies ist die Energie (dividiert durch die Ladung),
welche benötigt wird, um die Probeladung aus
großer Entfernung bis zum Abstand r zu bringen.
Diese Größe wird einfach als das skalare Potenzial
f = U•r bezeichnet.

Ist das Potenzial für eine Ladungsverteilung be-
kannt, so kann umgekehrt daraus das elektrische
Feld berechnet werden. Es gilt allgemein, dass die
Kraft als Gradient der potenziellen Energie berech-
net werden kann,

~F = �~—Epot .

Dividiert man auf beiden Seiten durch die Testla-
dung, so erhält man

~E = �~—f , (4.2)

d.h. das elektrische Feld ist der negative Gradient
des elektrischen Potenzials. Dies ist auch eine sehr
bequeme Möglichkeit, das Feld einer Ladungsver-
teilung zu berechnen: da das Potenzial ein skalares
Feld ist, kann es leichter berechnet werden als das
vektorielle elektrische Feld. Man erhält das Potenzi-
al einer beliebigen Zahl von Ladungen Qi and den
Positionen~ri als die Summe

f(~r) =
1

4pe0
Â

i

Qi

|~r �~ri|
.

4.1.8 Äquipotenzialflächen

E(r)

 Äquipotenzialflächen 

Feldlinien

U(r)=U1 U2 U3 U4

Abbildung 4.16: Feldlinien und Äquipotenzialflä-
chen stehen senkrecht aufeinander.

Das Potenzial kann man ebenfalls grafisch darstel-
len. Dafür verwendet man meist Äquipotenzialflä-
chen, d.h. Flächen gleichen Potenzials. Man kann
diese als eine Art “Höhenlinien” des Potenzials be-
trachten (! Abb. 4.16).

Da auf einer Äquipotenzialfläche das Potenzial kon-
stant ist, und die Feldlinien durch den Gradienten des
Potenzials gegeben sind, stehen die Feldlinien auf je-
der Äquipotenzialfläche senkrecht.

Dies ist bei einer Punktladung leicht einzusehen:
die Äquipotenzialflächen sind kugelförmige Flächen
und stehen damit offensichtlich senkrecht zu den
Feldlinien, welche radial nach außen laufen, wie in
Abb. 4.17 links gezeigt. Sind mehrere Ladungen vor-
handen, so addieren sich wiederum die Potenziale
der einzelnen Ladungen. Für ein Paar von entge-
gengesetzten Punktladungen findet man in der Mitte
eine Ebene, welche dem Potenzial Null entspricht,
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Abbildung 4.17: Feldlinien und Äquipotenzialflä-
chen für einen Monopol und einen
Dipol.

während sich die Äquipotenzialflächen in der Nähe
der Ladungen Kugeln annähern.

Abbildung 4.18: Feldlinien verlaufen an Metall-
oberflächen senkrecht; an Spitzen
(rechts) ist die Feldliniendichte be-
sonders hoch.

Äquipotenzialflächen findet man u. a. als Oberflä-
chen metallischer Körper. Wie in Abb. 4.18 gezeigt,
stehen somit die Feldlinien senkrecht auf der Ober-
fläche. Sie sind proportional zur Flächenladungs-
dichte (siehe später). An der Spitze von metallischen
Gegenständen liegen die Äquipotenzialflächen be-
sonders nahe beisammen; hier ist somit die Feld-
stärke besonders groß. Generell wächst das elektri-
sche Feld mit der zweiten Potenz des inversen Krüm-
mungsradius r

E µ 1
r2 .

Je kleiner der Krümmungsradius desto höher die
Feldstärke.

Abbildung 4.19: Der Durchschlag erfolgt bei der
kleineren Kugel, da diese die höhe-
re Spannung an der Oberfläche auf-
weist.

Abb. 4.19 zeigt ein entsprechendes Experiment: Bei-
de Kugeln werden auf das gleiche Potenzial geladen
und haben den gleichen Abstand von der Metallplat-
te. Die kleinere Kugel ist stärker gekrümmt; deshalb
ist hier die Feldstärke höher und der Durchschlag
zur Platte erfolgt immer von der kleinen Kugel aus.
Man kann diesen Effekt u.a. dazu ausnutzen, Elek-
tronen aus einem Metall herauszulösen; der Effekt
wird dann als Feldemission bezeichnet.

4.1.9 Verschiebungsdichte

A

d ⃗A ⃗E ( �r )

Abbildung 4.20: Fluss des Feldes ~E durch eine Flä-
che A und das Flächenelement d~A.

Der Fluss des elektrischen Feldes durch ein Flächen-
element dA ist, wie in Abb. 4.20 gezeigt,

dF = ~E(~r) ·d~A.

Hier stellt d~A einen Vektor senkrecht zur Oberfläche
dar. Sein Betrag ist gleich der Größe des Flächenele-
ments dA.
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Abbildung 4.21: Fluss der Feldlinien durch eine Ku-
gelfläche.

Dies wird nun auf eine geschlossene Kugelfläche
mit Radius r angewendet, in deren Zentrum sich ei-
ne Punktladung Q befindet, wie in Abb. 4.21 ge-
zeigt. Aus Symmetriegründen muss die Feldstärke
konstant und die Richtung senkrecht zur Oberfläche
sein. Die Integration ergibt somit das Produkt aus
Feldstärke E(r) und Oberfläche A = 4pr2,

F = ~|E|(r)4pr2.

Nach Gleichung 4.1 ist die Stärke des Feldes auf der
Kugeloberfläche

|E|(r) =
Q

4pe0r2

und die Oberfläche ist. Das Flächenintegral ist dem-
nachZZ

A
~E ·d~A =

Q
e0

.

Das Flächenintegral des elektrischen Feldes wird
oft als elektrischer Fluss bezeichnet. Es ist offen-
bar gleich der eingeschlossenen Ladung Q dividiert
durch die elektrische Feldkonstante e0, und unab-
hängig vom Abstand von der Ladung.

Wir verwenden diese Beziehung, um eine neue Grö-
ße einzuführen, die elektrische Verschiebungsdich-
te ~D, welche definiert ist als das Verhältnis aus Feld
erzeugender Ladung und Oberfläche,

~D =
Q
A
~n , [D] =

C
m2 , (4.3)

wobei der Einheitsvektor ~n senkrecht auf der Ober-
fläche steht und nach außen zeigt.

4.1.10 Feldgleichung

Wertet man die Definition (4.3) der Verschiebungs-
dichte an der Oberfläche einer Kugel aus, in deren
Zentrum die Ladung Q sitzt, erhält man

~D =
Q

4pr2~n = e0~E .

Die Beziehung ~D = e0~E zwischen elektrischem Feld
und elektrischer Verschiebungsdichte, welche hier
für eine Kugel hergeleitet wurde, gilt allgemein im
Vakuum.

Das Integral der Verschiebungsdichte über die Ku-
geloberfläche ergibt somitZZ

Kugel
~D ·d~A = Q ,

d.h. das Integral der elektrischen Verschiebungsdich-
te über die Kugeloberfläche ist gleich der einge-
schlossenen Ladung. Diese Beziehung gilt nicht nur
wie in diesem Fall für eine Punktladung in einer
Kugel, sondern für beliebige Ladungsverteilungen
rel(~r) in beliebigen Oberflächen:ZZ

A
~D ·d~A = Q =

ZZZ
reldV .

Dies ist die Integralform der Feldgleichung.

Die linke Seite dieser Gleichung kann mit Hilfe des
Satzes von Gauß in ein Volumenintegral umgewan-
delt werden:ZZ

A
~D ·d~A =

ZZZ
V
~—~D ·dV =

ZZZ
V

reldV .

Da diese Gleichung für jedes Volumen gilt, müssen
die Integranden identisch sein,

~—~D(~r) = rel(~r) .

Diese Gleichung wird als die Differenzialform der
Feldgleichung bezeichnet. Sie kann als Definition
der elektrischen Verschiebung betrachtet werden.
Man drückt diese Beziehung auch dadurch aus, dass
man sagt, dass die elektrischen Ladungen die Quel-
len des elektrischen Feldes darstellen.

Eine direkte Konsequenz ist, dass der gesamte elek-
trische Fluss durch eine geschlossene Oberfläche
verschwindet, sofern sie keine Ladung einschließt.
Abb. 4.22 zeigt die beiden Fälle für eine Ladung au-
ßerhalb (links) und innerhalb (rechts) der Oberflä-
che.
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q

geschlossene
Oberflächegeschlossene

Oberfläche

q außerhalb q innerhalb

Fluss verschwindet Fluss = q/ε0

E
E

Abbildung 4.22: Der Fluss durch die Oberfläche ver-
schwindet, wenn die Quelle außer-
halb des Volumen liegt; sonst ist
der Fluss gleich der eingeschlosse-
nen Ladung.

4.1.11 Feld eines geladenen Drahtes

Die Feldgleichung sagt, dass die Ladungen die Quel-
len des elektrischen Feldes darstellen. Dies ermög-
licht es in vielen Fällen, die Felder zu berechnen, die
von einer Ladungsverteilung erzeugt werden. Das
Beispiel der Punktladung wurde für die Herleitung
verwendet.

+
+

+
+

+
+

E

Abbildung 4.23: Lineare Ladungsverteilung und
Feldlinien.

Abb. 4.23 zeigt als zweites Beispiel das Feld, das
von einer linienförmigen Ladung erzeugt wird. Die
Ladung sei gleichmässig auf einem unendlich langen
dünnen Draht verteilt, mit der linearen Ladungsdich-
te l = DQ/Dx. Die elektrischen Felder (~D,~E) müs-
sen aus Symmetriegründen radial vom Draht weg
gerichtet sein und ihre Amplituden können nur ei-
ne Funktion des Abstandes sein. Der Fluss durch die
Oberfläche A eines Zylinders mit Radius r und Län-

ge ` ist dannZZ
A
~D ·d~n = 2pr`|D(r)| =

ZZZ
V

reldV = l` ,

d.h. gleich der eingeschlossenen Ladung. Somit ist
die elektrische Verschiebungsdichte D(r) als Funkti-
on des Abstands r

D =
l

2pr
.

Die lineare Ladungsdichte wird somit durch den
Umfang eines Kreises dividiert, oder die gesamte im
Zylinder enthaltene Ladung (= l`) durch die Ober-
fläche des Zylinders (= 2pr`) .

Abbildung 4.24: Koronaentladung eines Drahtes.

Diese Feldlinien werden sichtbar, wenn die Span-
nung hoch genug ist und das umgebende Medium
ionisierbar. In Luft z.B. werden durch die hohen
Spannungen Moleküle ionisiert. Bei der Rekombi-
nation leuchtet das Medium, es kommt zu einer sog.
Korona-Entladung. Abbildung 4.24 zeigt als Bei-
spiel die Koronaentladung eines Drahtes. Die Spuren
folgen grob den Feldlinien.

4.1.12 Homogene Kugelladung

Als nächstes berechnen wir den Feldverlauf für ei-
ne homogene, kugelförmige Ladungsverteilung mit
Radius R. Außerhalb der Kugel ist der Feldverlauf
unabhängig von der Verteilung der Ladung, da ja nur
die Summe der eingeschlossenen Ladung eine Rolle
spielt,

D(r > R) =
Q

4pr2 .
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Für den Feldverlauf im Innern trägt jeweils nur der
Anteil der Ladung bei, der sich im Inneren einer ent-
sprechenden Kugelschale befindet. Dieser beträgt

Qinnen = Q
r3

R3 .

Das Feld beträgt dementsprechend

D(r < R) =
Q
4p

r
R3 .

Innerhalb der Kugel nimmt die Feldstärke somit li-
near zu, während sie außerhalb quadratisch mit der
Entfernung abfällt.

Da das Coulomb’sche Gesetz die gleiche mathema-
tische Form aufweist wie das Newton’sche Gravita-
tionsgesetz findet man die gleiche Abhängigkeit für
die Schwerebeschleunigung im Inneren eines Plane-
ten: lineare Zunahme unterhalb der Oberfläche, qua-
dratische Abnahme oberhalb.

ZylA
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Abbildung 4.25: Ladungsverteilung auf einer Flä-
che.

Völlig analog kann das Feld für eine ebene Ladungs-
verteilung der Dichte s = Q/A berechnet werden.
Wie in Abb. 4.25 gezeigt betrachtet man einen fla-
chen Zylinder, welcher die Ebene umschließt. Des-
sen Oberfläche beträgt zweimal die Fläche der Ebe-
ne, so dass die Feldstärke D = s/2 beträgt.

4.1.13 Elektrische Dipole

Ein elektrischer Dipol besteht aus zwei entgegen-
gesetzten Ladungen in einem festen Abstand a (!

+Q

-Q
p

r1

r2
r

E(r)

p
-Q

+Q
E(r)

Abbildung 4.26: Feld eines elektrischen Dipols.

Abb. 4.26). Das System ist somit nach außen elek-
trisch neutral. Die beiden Ladungen erzeugen jedoch
ein Feld, das man durch Superposition von zwei
Zentralfeldern leicht bestimmen kann.

Das Potenzial und das Feld des elektrischen Dipols
erhält man als Summe über die Beiträge der einzel-
nen Ladungen. Mit Ladung �Q bei ~r1 und +Q bei
~r2 ergibt das Potenzial

f(~r) =
1

4pe0

✓
�Q

|~r �~r1|
+

Q
|~r �~r2|

◆
.

Ist der Abstand zu den Ladungen groß im Vergleich
zu ihrem Abstand, so kann man das Potenzial nähe-
rungsweise ausdrücken als

f(~r) =
1

4pe0

~p ·~r
r3 .

Hier stellt

~p = Q~a [p] = Cm

das Dipolmoment dar, welches durch das Produkt
aus Ladung und Abstand gegeben ist. Die Richtung
des Dipols geht von der negativen zur positiven La-
dung. In der älteren Literatur wird häufig auch die
Einheit Debye3 verwendet. Dieses ist gut auf atoma-
re / molekulare Größen angepasst: 1 Debye = 0.2 eÅ
⇡ 3,3 · 10−30 Cm. Diese Einheit wird v.a. auch für
Dipolmomente in Molekülen verwendet.

Das elektrische Feld erhält man aus der Ableitung
des Potenzials als

~E(~r) = �~—f(~r) =
1

4pe0

3(~p ·~r)~r � (~r ·~r)~p
r5 ,

3nach Peter Joseph William Debye, 1884-1966
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wiederum in der Näherung eines großen Abstandes
vom Dipol. Hier wurde der Dipol in den Koordina-
tenursprung gelegt (~r1 ⇡~r2 ⇡ 0). In diesem Bereich
(r � p) fällt somit das Dipolfeld mit der dritten Po-
tenz des Abstandes ab, im Gegensatz zum Monopol,
wo das Feld mit der zweiten Potenz abfällt. Wäh-
rend das Feld des Monopols radialsymmetrisch ist,
ist dasjenige des Dipols axial symmetrisch.

Diese Entwicklung in so genannten Multipolen kann
weitergeführt werden. Die entsprechenden Feldver-
teilungen können durch diskrete Ladungsverteilun-
gen dargestellt werden, wobei die Multipole mathe-
matische Näherungen für große Abstände von der
Ladungsverteilung darstellen. Es ist möglich, jede
Ladungsverteilung als Multipol-Entwicklung darzu-
stellen, wobei die höheren Multipole mit zunehmen-
dem Abstand an Bedeutung verlieren. Bei einer dis-
kreten Ladungsverteilung ist das Dipolmoment

~p = Â
i

qi~ri.

Für eine kontinuierliche Ladungsverteilung ist es

~p =
ZZZ

re(~r)~r dV.

Abbildung 4.27: Molekulare Dipole.

Dipolmomente treten z.B. in fast allen Molekülen
mit unterschiedlichen Kernen auf. Abb. 4.27 zeigt
einige Beispiele. Tabelle 4.1 stellt numerische Werte
für einige Beispiele in unterschiedlichen Einheiten
zusammen. Das Dipolmoment verschwindet in sym-
metrischen Molekülen wie H2, N2, CO2, C6H6.

p p p
Molekül 10�30Cm eÅ Debye

HF 6,37 0,398 1,99
HCl 3,6 0,225 1,13
HBr 2,67 0,167 0,83
H2O 6,17 0,385 1,93

Tabelle 4.1: Dipolmomente unterschiedlicher Mole-
küle in unterschiedlichen Einheiten.

4.2 Materie im elektrischen Feld

4.2.1 Leiter und Isolatoren

Na+

Na+

Na+

Na+

Na+

Na+

Metall (Na) 
 Ladungen sind 
  frei beweglich

 Isolator (NaCl) 
Ladungen sind nur 
  lokal beweglich

Na+

Na+

Na+ Cl-Cl-

Cl-

Cl-

Cl-

--

-
-

-

Abbildung 4.28: Geladene Bestandteile elektrisch
neutraler Materie.

Auch elektrisch neutrale Materie besteht auf mikro-
skopischer Ebene aus geladenen Teilchen (Atomker-
ne, Elektronen), welche auf unterschiedliche Weise
aneinander gebunden sind. Abb. 4.28 zeigt dies für 2
Beispiele. Im Fall von Natrium sind positiv geladene
Atomrümpfe von frei beweglichen Elektronen um-
geben. Im Fall von Kochsalz sind die Bestandteile
positiv geladene Natrium-Ionen und negativ gelade-
ne Chlorid-Ionen, welche sich nicht weit von ihren
Gitterplätzen entfernen können.

Auf diese geladenen Bestandteile wirken in einem
elektrischen Feld Kräfte, welche sie je nach ihrer Be-
weglichkeit verschieben. Sind die Teilchen über ma-
kroskopische Distanzen beweglich, so spricht man
von einem elektrischen Leiter; sind sie nur über
mikroskopische Distanzen (< 1nm) beweglich, so
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spricht man von einem Isolator. Wie leicht sie be-
weglich sind wird durch den elektrischen Wider-
stand quantifiziert, der im Kapitel “stationäre Strö-
me” diskutiert wird. Im Rahmen der Elektrostatik
unterscheidet man lediglich zwischen Leitern und
Nichtleitern. Letztere werden auch als Isolatoren
oder Dielektrika bezeichnet.

4.2.2 Felder und elektrische Leiter

Wir betrachten zunächst elektrische Leiter. Für die
Diskussion statischer elektrischer Felder kann der
Widerstand eines elektrischen Leiters zu Null ange-
nommen werden. Die direkteste Konsequenz davon
ist, dass im Inneren eines elektrischen Leiters alle
elektrischen Felder verschwinden.

Im Innern von elektrischen Leitern existieren kei-
ne statischen elektrischen Felder.

Dies sieht man aus folgender Überlegung: Existiert
in einem Leiter ein Feld, so werden die frei bewegli-
chen Ladungsträger (=Elektronen) verschoben. Da-
durch werden positive und negative Ladungen er-
zeugt, welche ihrerseits ein Feld generieren. Dieses
wird dem äußeren Feld überlagert und die Bewegung
der Ladungsträger endet, wenn die Summe der bei-
den Felder verschwindet. Mit Gleichung (4.2)

~E = �~—F = 0

folgt auch, dass das Potenzial im gesamten Körper
konstant ist. Insbesondere bildet auch die Oberfläche
eine Äquipotenzialfläche.

Das gleiche gilt an der Oberfläche für Feldkompo-
nenten unmittelbar außerhalb des Leiters parallel zur
Oberfläche: würden solche existieren, so würden die
Ladungsträger sich entlang der Oberfläche verschie-
ben bis die Felder ausgeglichen wären. Deshalb tref-
fen die Feldlinien senkrecht auf die Oberfläche des
Leiters, wie in Abb. 4.29 gezeigt.

4.2.3 Oberflächenladungen und
Spiegelladungen

Da elektrische Feldlinien nur an elektrischen Ladun-
gen enden können, müssen sich auf der Oberfläche

Abbildung 4.29: Feldverlauf und Oberflächenladun-
gen bei einem metallischen Körper.

von elektrischen Leitern in einem äußeren elektri-
schen Feld Oberflächenladungen bilden. Diese kön-
nen quantitativ aus dem Gauß’schen Satz berechnet
werden, da sie die Quelle (Senke) der elektrischen
Feldlinien darstellen. Die Flächenladungsdichte ent-
spricht der elektrischen Verschiebungsdichte,

D = s =
DQ
DA

= e0E .

Äquipotenzial-
fläche

Vakuum

Feldlinie

Abbildung 4.30: Äquipotenzialflächen bei metalli-
schen Körpern.

Der Beweis, dass die Feldlinien senkrecht auf der
Leiteroberfläche stehen, kann auch anders geführt
werden: Wie in Abb. 4.30 gezeigt und in Abschnitt
4.2.2 diskutiert, bildet die Oberfläche eines metal-
lischen Körpers eine Äquipotenzialfläche. Da Feld-
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linien senkrecht auf Äquipotenzialflächen stehen,
müssen sie senkrecht auf der Oberfläche stehen.

Leiter

Spiegelladung

Abbildung 4.31: Links: Ladung oberhalb einer Me-
talloberfläche. Rechts: Ladungs-
paar ergibt identische Feldlinien.

Bringt man eine Ladung vor einen elektrischen Lei-
ter, wie in Abb. 4.31 links, so verlaufen die Feldli-
nien genau so wie wenn sich hinter der Metallober-
fläche eine entgegengesetzte Ladung befinden würde
(Abb. 4.31 rechts). Man nennt diese eine Spiegella-
dung. In Wirklichkeit wird sie durch eine Oberflä-
chenladungsdichte “simuliert”, welche die gleichen
Feldlinien erzeugt. Da die Spiegelladung entgegen-
gesetzt zur Kugelladung ist, wirkt zwischen diesen
beiden auch eine entsprechende Anziehungskraft.

Kugel und Spiegelladung Kugel und Kugel

Abbildung 4.32: Links: Geladene Kugel neben einer
Metalloberfläche. Rechts: 2 Entge-
gengesetzt geladene Kugeln.

Abb. 4.32 zeigt ein Experiment, bei dem man die
Kraft auf eine geladene Kugel vergleicht für die bei-
den Fälle, dass (i) sie einer entgegengesetzt gelade-
nen Kugel ausgesetzt ist, oder (ii) eine geerdete Plat-

te in halber Distanz steht. Innerhalb der Fehlergren-
zen misst man die gleiche Auslenkung.

4.2.4 Feldfreie Räume

Genau so wie das Feld im Inneren eines Leiters ver-
schwindet, verschwindet es auch in einem Hohlraum
im Inneren eines Leiters, sofern dieser keine Ladun-
gen enthält.

Abbildung 4.33: Messung des Feldes in einem
Faraday-Käfig.

Diese Voraussage kann in einem Experiment über-
prüft werden, welches in Abb. 4.33 dargestellt ist:
Der Hohlraum wird hier durch einen Drahtkäfig an-
genähert. Eine Sonde misst das Potenzial im Inneren
des Käfigs: Solange man den Rändern nicht zu na-
he kommt, bleibt es konstant. Hohlräume dieser Art
werden als Faraday-Käfige bezeichnet.

Abbildung 4.34: Auto als Faraday-Käfig.

Faraday-Käfige ermöglichen es, äußere Felder von
empfindlichen Apparaten fernzuhalten. Der gleiche
Effekt schützt Insassen von Automobilen oder Seil-
bahnen vor dem Effekt eines Blitzes, wie in Abb.
4.34 gezeigt.

146



4 Elektrizität und Magnetismus

Ladung auf der 
Außenseite

Keine Ladung auf 
der Innenseite

metallische Hohlkugel

Elektrometer

Elektrometer

Abbildung 4.35: Transport von elektrischen Ladun-
gen von und zu einem Leiter.

Wird eine Ladung auf einen elektrischen Leiter ge-
bracht so wandert sie nach außen; das Feld im Innern
bleibt Null (!Abb. 4.35).

4.2.5 Influenzladung

Befindet sich ein elektrisch leitender Körper im elek-
trischen Feld, so werden Ladungen auf die Ober-
fläche so verschoben, dass das Feld im Inneren des
Körpers verschwindet. Man erhält eine Oberflächen-
ladungsdichte

s =
DQ
DA

[s ] =
C

m2 .

Die so erzeugten Oberflächenladungen werden auch
als Influenzladungen bezeichnet.
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Kunststoffstab Kunststoffstab Glasstab

Abbildung 4.36: Erzeugung und Nachweis von In-
fluenzladungen.

Man kann diese Influenzladungen z.B. nachweisen,
indem man sie mit einem Elektrometer misst. Abb.
4.36 zeigt ein solches Elektrometer, welches mit der
äußeren Seite des Bechers verbunden. Bringt man

einen geladenen Kunststoffstab in das Innere des
Bechers, so wird eine Oberflächenladung erzeugt,
wobei die Innenseite des Bechers entgegengesetzt
zur Ladung des Stabes geladen wird, die Außenseite
gleich wie der Stab. Wird die Außenseite geerdet, so
wird die dort erzeugt Ladung entfernt und das Elek-
trometer zeigt keine Ladung mehr an. Entfernt man
zuerst das Erdungskabel und anschließend den Stab,
so stellt man fest, dass die Dose jetzt geladen ist. Das
letzte Bild zeigt, wie man mit einem entgegengesetzt
geladenen Stab zusätzliche Influenzladung auf den
Becher bringen kann.

Abbildung 4.37: Elektrostatischer Mikromotor.

Auf der Basis von Influenzladung kann man elektri-
sche Maschinen herstellen. Solche elektrostatischen
Motoren haben zwar bisher kaum eine Bedeutung.
Sie werden jedoch in Mikromaschinen (! Abb.
4.37) verwendet, da sie einfacher zu konstruieren
sind als konventionelle elektromagnetische Maschi-
nen.

4.2.6 Bandgenerator

Ähnliche Ladungsübertragung verwendet man teil-
weise für die Erzeugung hoher Spannungen, z.B.
beim Van-de-Graaff4-Generator, Wie in Abb. 4.38
gezeigt, wird dafür ein umlaufendes elektrisch iso-
lierendes Band verwendet, beispielsweise ein Gum-
miband, welches als Förderband wirkt, Es wird
durch Reibung oder durch Aufsprühen der Ladung
(siehe Koronaentladung) aus einer externen Span-
nungsquelle elektrisch aufgeladen. Die Ladung wird
durch die Bewegung des Bandes in das Innere einer

4Robert Jemison Van de Graaff (1901 - 1967)
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Motor

Gummiband

isolierte Kugel

Abbildung 4.38: Van-de-Graaff Generator; links:
Prinzip; rechts: Foto.

metallischen Hohlkugel transportiert und dort durch
eine mit der Kugel leitend verbundene Bürste vom
Band “abgestreift”. Sie wandert dann auf die Au-
ßenseite der Kugel; da das Innere der Kugel feld-
frei bleibt, können immer noch zusätzliche Ladun-
gen eingebracht werden und die Kugel kann dadurch
auf immer höhere Spannung gegenüber der Umge-
bung aufgeladen werden. Die Spannung wird nur be-
grenzt durch Funkendurchschläge bei zu hoch ge-
wordener Feldstärke. Mit einem einfachen Demon-
strationsgerät können damit Spannungen bis zu 240
kV erzeugt werden. Mit weiter entwickelten Geräten
erhält man Spannungen bis zu einigen MV. Solche
Geräte werden z.B. für die Beschleunigung von Ele-
mentarteilchen verwendet.

4.2.7 Bewegung geladener Teilchen im
elektrischen Feld

Ein elektrisch geladenes Teilchen mit Ladung q er-
fährt im elektrischen Feld eine Kraft ~F = q~E und
wird dadurch beschleunigt:

~a = ~E
q
m

.

Damit wird (elektrostatische) potenzielle Energie
in kinetische Energie umgewandelt. Durchläuft das
Teilchen eine Spannung V = f2 � f1, so ändert sich
seine kinetische Energie um

DEkin =
m
2

v2 = �DEpot = �q(f2 �f1) .

Die resultierende Energie ist deshalb gegeben durch
das Produkt aus Ladung und Spannungsdifferenz.
Man verwendet deshalb für die kinetische Energie
von geladenen Teilchen gerne die Einheit

Elektronenvolt = eV = 1,6022 ·10�19C ·1V
= 1,6022 ·10�19J ,

oder die üblichen Vielfachen meV, keV, MeV, GeV
u.s.w. Ein Elektronenvolt ist die Energie, welche ein
Teilchen mit einer Elementarladung beim Durchlau-
fen der Spannung 1 V erhält.

Um eine Idee von den relevanten Größenordnungen
zu erhalten, berechnen wir die Geschwindigkeit ei-
nes Elektrons nach Beschleunigung in einem Feld
von 1000 V, also bei einer Energie von 1 keV:

v =

r
2E
m

=

s
2 ·1,6 ·10�16

9,1 ·10�31
J

kg

= 1,88 ·107 m
s

= 0,06c ,

d.h. etwa 6% der Lichtgeschwindigkeit. Dement-
sprechend treten bei Geschwindigkeiten in dieser
Größenordnung bereits relativistische Effekte auf.

Fliegt ein geladenes Teilchen senkrecht zum Feld in
eine Region mit elektrischem Feld, so gilt das Un-
abhängigkeitsprinzip: es behält seine bisherige Ge-
schwindigkeitskomponente bei und wird in Feldrich-
tung beschleunigt, d.h. es wird abgelenkt.

Kathode

Heizung

Anode

Ablenkplatten

Strahl

Abbildung 4.39: Funktionsprinzip eines Oszillo-
skops.
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Dies wird u.a. in Oszillographen verwendet, wo eine
Ablenkspannung die Bewegung von Elektronen be-
einflussen, welche auf den Schirm geschossen wer-
den. Abb. 4.39 zeigt das zu Gunde liegende Funkti-
onsprinzip.

Erzeugung 
von 
Tröpfchen

Signal

Ladung

Papier

Abbildung 4.40: Funktionsprinzip eines Tinten-
strahldruckers.

Tintenstrahldrucker verwenden ein ähnliches Prin-
zip. Wie in Abb. 4.40 dargestellt, werden zunächst
die Farbtröpfchen erzeugt. Diese erhalten in einer
zweiten Stufe eine Ladung, welche von außen kon-
trolliert werden kann. Je nach Stärke der Ladung
werden sie im folgenden Feld stärker oder weniger
stark abgelenkt.

Abbildung 4.41: Kerzenflamme in einem elektri-
schen Feld.

Eine Kerze, die in einem elektrischen Feld brennt,
erzeugt geladene Teilchen, welche in einem elektri-
schen Feld abgelenkt werden, wie in Abb. 4.41 ge-
zeigt.

4.2.8 Dipole in einem äußeren Feld

In einem homogenen elektrischen Feld erfährt ein
Dipol keine Translationsbeschleunigung, da die bei-
den Kräfte auf die beiden Ladungen entgegengesetzt
sind, wie in Abb. 4.42 gezeigt.

E

+Q

θ

F

-F
-Q

a/2

a/2

Abbildung 4.42: Paar von Punktladungen in einem
homogenen elektrischen Feld.

Ist der Dipol nicht parallel zur Feldrichtung, sind die
beiden Kräfte seitlich gegeneinander versetzt. Sie
bilden ein Kräftepaar, welches ein Drehmoment er-
zeugt,

~M =~a⇥~F =~a⇥ (Q~E) = Q~a⇥~E = ~p⇥~E .

Das Drehmoment ~M ist somit proportional zu Feld-
stärke ~E und Dipolmoment ~p. Es ist maximal wenn
der Dipol senkrecht zum Feld orientiert ist und ver-
schwindet bei paralleler Orientierung, also wenn
der Winkel q zwischen Dipol und Feldrichtung ein
ganzzahliges Vielfaches von p ist. Sein Betrag hängt
sinusförmig vom Winkel q ab:

|M| = |p||E|sinq .

Der Dipol enthält somit potenzielle Energie als
Funktion des Winkels zur Feldrichtung:

Epot =
Z

M(q)dq = �|p| · |E|cosq = �~p ·~E .

Abbildung 4.43: Drehung eines Dipols in einem ho-
mogenen elektrischen Feld.

Dieser Effekt kann experimentell verifiziert werden,
indem man zwei Kugeln, die an einem Glasstab be-
festigt sind, mit entgegengesetzten Ladungen auf-
lädt. Wie in Abb. 4.43 gezeigt, wird das elektrische
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Feld erzeugt, indem zwei parallele metallische Plat-
ten auf beiden Seiten des Dipols aufgestellt und mit
einer Hochspannungsquelle verbunden werden. Die
positiv geladene Kugel wird von der negativ gela-
denen Platte angezogen, die negativ geladene Ku-
gel von der positiv geladenen Platte. Wechselt man
die Polarität der Spannung an den beiden Platten, so
dreht sich der Dipol um 180 Grad.

4.2.9 Dipol im inhomogenen Feld

a

⃗E

⃗E 0 ⃗E 0 � � ⃗E⃗F 1 = � Q ⃗E 0

⃗F 2 = Q( ⃗E 0 � � ⃗E )

Abbildung 4.44: Kräfte auf einen elektrischen Dipol
in einem inhomogenen Feld.

In einem inhomogenen Feld wirkt zusätzlich auch
eine Translationskraft auf einen elektrischen Dipol.
Diese kommt dadurch zustande, dass die Kräfte auf
die beiden Ladungen ungleich groß sind. Abb. 4.44
zeigt einen einfachen Fall, wo der Dipol parallel zum
Feld orientiert ist, wo also das Drehmoment ver-
schwindet. Dann beträgt die gesamte Kraft

FS = F1 +F2 = �QE0 +Q(E0 �DE) = �QDE ,

d.h. sie ist gegeben durch das Produkt von Ladung
und Änderung der Feldstärke. Wir können dies auch
schreiben als

FS = �Qa
DE
a

= p
dE
dr

.

Die Kraft ist somit proportional zur Stärke des Di-
pols und zum Gradienten des elektrischen Feldes.

Man erhält das gleiche Ergebnis, wenn man die Kraft
aus dem Gradienten der potenziellen Energie be-
rechnet:

~F = �~—Epot = ~—(~p ·~E) = |~p|~—|~E| ,

wobei wir angenommen haben, dass der Dipol in
Feldrichtung orientiert bleibt. Die Kraft ist somit
proportional zur Änderung der Feldstärke.

Abbildung 4.45: Ablenkung eines Wasserstrahls
durch das Feld eines geladenen
Kunststoffstabes..

Dieser Effekt, dass der Dipol in die Richtung des
stärkeren Feldes gezogen wird, lässt sich anhand ei-
nes einfachen Experiments nachvollziehen (! Abb.
4.45). Die Dipole sind in diesem Fall die Wasser-
moleküle und das inhomogene elektrische Feld wird
durch einen elektrostatisch aufgeladenen Kunst-
stoffstab erzeugt.

4.3 Kondensatoren

4.3.1 Der Plattenkondensator

Kondensatoren sind einfache Speicher für elektri-
sche Ladungen. Offenbar sind alle Anordnungen
elektrischer Leiter Ladungsspeicher, da sich auf der
Oberfläche Ladungen ansammeln können. Es wer-
den im allgemeinen gleiche große negative wie posi-
tive Ladungen gespeichert, an unterschiedlichen Or-
ten. Zwischen den beiden Ladungsschwerpunkten
entsteht dadurch eine Spannung oder Potenzialdif-
ferenz.

Ein besonders einfaches Beispiel ist der Plattenkon-
densator. Wie in Abb. 4.46 gezeigt, werden in ei-
nem Plattenkondensator elektrische Ladungen auf
zwei Metallplatten gespeichert, die durch einen Iso-
lator (z. B. Luft) getrennt sind. Aus Symmetriegrün-
den steht das Feld senkrecht zur Oberfläche. Ist der
Abstand d und die Potenzialdifferenz U = U2 �U1,
dann ist die Feldstärke E = U/d.

150



4 Elektrizität und Magnetismus

dU

A
_

+ + + + +

_ _ _ _

E z

-Q

+Q

U1

U2

Abbildung 4.46: Plattenkondensator.

Die Ladung, welche auf einem solchen Kondensa-
tor gespeichert werden kann, hängt ab von der an-
gelegten Spannung. Messungen zeigen, dass die auf
einem Kondensator gespeicherte Ladung ist in guter
Näherung proportional zur angelegten Spannung ist,
Q µ U . Die Steigung dieser Geraden, also das Ver-
hältnis

C =
Q
U

[C] =
C
V

= F = Farad

misst die Speicherfähigkeit des Kondensators und
wird als Kapazität bezeichnet.

4.3.2 Felder im Plattenkondensator

Aus der Definition der elektrischen Verschiebung
(! Kap. 4.1.9) folgt

D =
Q
A

! Q = DA.

Die Spannung über dem Kondensator ist gleich der
Potenzialdifferenz und damit gleich dem Integral des
elektrischen Feldes,

U = Ed .

Im Vakuum gilt gleichzeitig D = e0E, so dass die
Kapazität des Plattenkondensators als

C =
Q
U

=
DA
Ed

= e0
A
d

(4.4)

gegeben ist.

Die Beziehung (4.4) wurde direkt aus der Definition
der beiden Größen E und D hergeleitet: Die gesam-
te Ladung ist durch das Produkt aus Verschiebungs-
dichte D und Fläche A gegeben, während die Span-
nung proportional zum Feld und zum Abstand der

Abbildung 4.47: Auf dem Plattenkondensator ge-
speicherte Ladung.

Platten ist. Bei konstanter Feldstärke nimmt somit
die Spannung mit dem Abstand der Platten zu. Die
experimentellen Daten von Fig. 4.47 verifizieren die
Proportionalität C µ d�1.

z

~E ⇡ 0 ~E ⇡ 0~E = Ez~ez

+
+
+
+
+

-
-
-
-
-

Abbildung 4.48: Feld im Plattenkondensator.

Wie in Abb. 4.48 gezeigt, verlaufen die Feldlinien
zwischen den beiden Platten in guter Näherung par-
allel zueinander und senkrecht zu den Platten. Ein
wichtiger Aspekt des Plattenkondensators ist, dass
das Feld zwischen den Platten sehr homogen ist. Au-
ßerhalb ist der Verlauf komplizierter und kann nicht
durch eine analytische Funktion dargestellt werden.

4.3.3 Beispiele

Als typisches Beispiel betrachten wir einen Platten-
kondensator mit einer Fläche von A = 1 cm2 = 10�4

m2 und einem Plattenabstand von d = 1 mm. Damit
beträgt die Kapazität

C = e0
A
d

= 8,85·10�12 10�4

10�3 F = 8,85·10�13 F ⇡ 1pF.
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Auf einem solchen Kondensator kann somit bei ei-
ner Spannung von U = 1 kV eine Ladung Q = 1 nC
gespeichert werden.

Als weiteres Beispiel kann man ausrechnen, wie
groß ein Plattenkondensator mit einer Kapazität von
1F sein muss, wenn der Abstand 1 mm beträgt:

A =
Cd
e0

=
1F ·10�3m

8,85 ·10�12 As/Vm
= 1,13 ·108 m2 ⇡ 100km2.

Vergrößert man den Abstand zwischen den Plat-
ten, so nimmt die Kapazität ab. Man kann dabei
die Spannung konstant halten (indem man den Kon-
densator an eine Spannungsquelle anschließt); dann
nimmt die Ladung auf den Platten ab. Oder man
kann die Ladung konstant halten, indem man den
Kondensator von der Spannungsversorgung trennt.
Dann steigt die Spannung, während das E-Feld kon-
stant bleibt.

Abbildung 4.49: Parallelschaltung von 2 Kondensa-
toren.

Kondensatoren können auch untereinander verbun-
den werden. Abb. 4.49 zeigt als Beispiel eine Par-
allelschaltung von 2 Kondensatoren. Bei gleichem
Abstand zwischen den beiden Plattenpaaren ist die
Spannung für beide gleich und die Ladungen addie-
ren sich. Somit ist die Gesamtkapazität

Cp =
Q1 +Q2

V
= C1 +C2,

d.h. bei Parallelschaltung addieren sich die Kapazi-
täten. Bei Reihenschaltung gilt hingegen

Cs =

✓
1

C1
+

1
C2

◆�1

.

Abbildung 4.50: Kugelkondensator.

4.3.4 Kugelkondensator

Ein weiterer wichtiger Spezialfall ist der Kugelkon-
densator (! Abb. 4.50). Man kann sich die beiden
Platten zu konzentrischen Kugeln gebogen vorstel-
len, welche entgegengesetzte Gesamtladungen tra-
gen. Für die Berechnung der Kapazität C = Q/U be-
nötigen man die Spannungsdifferenz zwischen den
beiden Platten, die man aus dem Potenzial bestim-
men kann. Wie in Kapitel 4.1.5 gezeigt, erzeugt die
Ladung Q auf der inneren Kugel ein Potenzial

f =
Q

4pe0r
.

Die Potenzialdifferenz beträgt somit

U =
Q

4pe0

✓
1
r1

� 1
r2

◆
und die Kapazität

C =
Q
U

= 4pe0
r1r2

r2 � r1
.

Ist die äußere Kugelschale nicht vorhanden (d.h. im
Unendlichen), so beträgt die Kapazität

C = 4pe0r1 .

Dies ist insbesondere für die Abschätzung der Kapa-
zität von beliebigen Leiterelementen nützlich. Man
erhält z.B. folgende typische Kapazitäten

• mikroelektronisches Schaltelement r ⇡0.2 µm
C ~ 2·10�17 F .

• Kugel im Vorlesungsexperiment r ⇡ 2 cm C ~
2·10�12 F = 2 pF.
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• Erde r ⇡ 6,4·106 m C ⇡ 7·10�4 F = 700 µF.

Die Kapazität eines Schaltelements ist ein wichti-
ger Beitrag zur Schaltgeschwindigkeit von elektroni-
schen Bauteilen. Man versucht deshalb, bei schnel-
len Schaltungen die Kapazitäten gering zu halten.

Abbildung 4.51: Messung der Bewegung einzelner
Elektronen.

Bei genügend kleinen Kapazitäten stellt man fest,
dass die Ladung quantisiert ist. Wie in Abb. 4.51 ge-
zeigt, kann man beobachten, wie Elektronen einzeln
auf die Kondensatoren gelangen [3].

4.3.5 Ladungstrennung im Kondensator

Man kann die Berechnung der Kapazität überprü-
fen indem man Ladung und Spannung unabhängig
misst. Dies ist ein Hinweis darauf, dass Feld und
Verschiebungsdichte unabhängige Größen sind.

Die Influenz kann man über die Kapazitätsänderung
nachweisen: es werden Ladungen in den Metallplat-
ten im Kondensator induziert, welche das Feld ab-
schirmen.

Abb. 4.52 zeigt, wie man Ladungen “erzeugen”
kann, indem man sie trennt. Dazu bringt man zwei
isolierte, elektrisch leitende Platten in das Feld ei-
nes Plattenkondensators. Wie in Kapitel 4.2.2 disku-
tiert, ist das Feld im Innern des Leiters =0 und auf
der Oberfläche findet man Ladungen - links negati-
ve, rechts positive. Trennt man die beiden Platten,
besitzt die linke deshalb eine negative Ladung, die
rechte eine positive. Man kann die Ladungsspeicher
aus dem Feld herausnehmen und ihre Ladungen z.B.
auf einem Elektrometer messen.

Dieses Experiment zeigt auch den Unterschied zwi-
schen elektrischem Feld und elektrischer Verschie-
bungsdichte. Bei der Trennung der Platten bleibt die

Abbildung 4.52: Elektrische Verschiebung in einem
Plattenkondensator.

Ladungsdichte auf ihrer Oberfläche wie auch auf
der Oberfläche der Kondensatorplatten konstant, d.h.
die Verschiebungsdichte ist konstant. Ein Teil des
Raums im Kondensator wird jedoch feldfrei und die
gesamte Spannung über dem Kondensator nimmt da-
durch ab.

4.3.6 Energie des elektrischen Feldes

+ ++ +
+

+
+
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+ ++

+
+

++ +++ +++ ++
++ +

-
-- -- -
- -- -- --
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-- -- -
- --

d

Ladung Q

Ladung -Q

U

E = U/d + dQ

Abbildung 4.53: Transport zusätzlicher Ladung dQ
zwischen Kondensatorplatten mit
Ladung Q.

Das elektrische Feld enthält Energie; diese kann man
messen, z.B. indem man einen Kondensator entlädt,
oder indem man ihn lädt. Dies eignet sich auch für
die Berechnung der Energie. Am einfachsten ist die-
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se Berechnung anhand des in Abb. 4.53 gezeigten
Schemas in einem Plattenkondensator. Wird Ladung
dQ von der negativen zur positiven Platte transpor-
tiert, so muss dafür eine Arbeit dW = U dQ aufge-
wendet werden. Um den Kondensator von 0 auf die
Ladung Q zu laden, beträgt die gesamte Arbeit

Wel =
Z Q

0
U dQ0 =

1
C

Z Q

0
Q0 dQ0 =

1
2

Q2

C
.

Hier wurde die Beziehung U = Q/C zwischen Span-
nung, Ladung und Kapazität eines Kondensators ver-
wendet. Diese Arbeit wird in der Energie des elektri-
schen Feldes gespeichert. Dies wird besser sichtbar
durch die Umformung

Wel =
1
2

Q2

C
=

1
2

CU2 =
1
2

C(Ed)2

=
1
2

e0AdE2 =
1
2

e0V E2 ,

wobei V = Ad das Volumen zwischen den Platten
darstellt. Somit ist die Energiedichte des elektrischen
Feldes, d.h. die Energie pro Volumen

wel =
Wel

V
=

1
2

e0E2 =
1
2
~D ·~E (4.5)

beträgt. Dieser Ausdruck gilt allgemein, nicht nur für
Plattenkondensatoren. Der Wert e0E2/2 gilt nur im
Vakuum, der Ausdruck ~D ·~E/2 gilt auch für Dielek-
trika (siehe Kap. 4.4).

4.3.7 Kräfte auf Kondensatorplatten

Abbildung 4.54: Kräfte auf die Kondensatorplatten.

Wenn das Feld zwischen zwei Kondensatorplatten
Energie enthält, muss eine Kraft auf die Kondensa-
torplatten wirken (! Abb. 4.54); umgekehrt muss
am System Arbeit geleistet werden, wenn man die

Platten auseinander zieht. Bei einer solchen Operati-
on bleibt die Feldstärke (und damit die Energiedich-
te) konstant, während das Volumen und damit die
Gesamtenergie zunimmt. Um den Abstand um den
Betrag Dd zu vergrößern, benötigt man die Arbeit

W = ADd wel = ADd
1
2

e0E2 = F Dd .

Somit muss die Kraft auf jede der beiden Platten

F =
1
2

e0AE2 =
1
2

CdE2 =
1
2

CUE =
1
2

QE

betragen.

Es mag zunächst erstaunen, dass hier nicht die ge-
samte Ladung mal die Feldstärke eingesetzt werden
muss. Dies ist ein klassisches Beispiel dafür, dass in
das Kraftgesetz F = qE nicht das gesamte Feld ein-
gesetzt werden muss, sondern das ungestörte Feld,
welches ohne die Probeladung vorhanden ist. Das
Feld ohne Probeladung wird durch das Feld einer
ebenen Ladungsverteilung gegeben, welches gleich-
mässig auf beide Oberflächen einer dünnen Platte
verteilt ist. Wie in Kapitel 4.1.9 hergeleitet beträgt
es D = 1

2
Q
A resp.

Eungest. =
1
2

Q
Ae0

,

während das “gestörte” Feld zwischen den Konden-
satorplatten

Egest. =
D
e0

=
Q

e0A
beträgt, also einen Faktor 2 stärker ist.

Diese Herleitung zeigt eine der Möglichkeiten auf,
elektrische Einheiten wie Spannung oder Feldstär-
ke auf eine mechanische Kraftmessung zurückzu-
führen.

Die Tatsache, dass die Energiedichte proportional
zum Quadrat des Feldes ist, führt dazu, dass es ener-
getisch sinnvoller ist, das Feld über einen größeren
Bereich zu verteilen; anders ausgedrückt: Feldlinien
“stoßen sich ab”.

Die gleichen Gesetze für den Energieinhalt des elek-
trischen Feldes gelten auch für zeitabhängig Felder
oder elektromagnetische Wellen. Dies erlaubt z.B.
die Übertragung von Energie im Sonnenlicht, in Mi-
krowellen oder Lasern (! Kap. 6.5).
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4.4 Dielektrika

Ein Dielektrikum ist ein Material, welches elektri-
schen Strom nur sehr schwach leitet. Deshalb kön-
nen im Innern von Dielektrika elektrische Felder exi-
stieren.

4.4.1 Polarisation in Dielektrika

In Kapitel 4.3.5 wurde gezeigt, dass auf der Oberflä-
che eines elektrischen Leiters in einem elektrischen
Feld Ladungen induziert werden. Einen ähnlichen
Effekt findet man, wenn man in einen Plattenkon-
densator ein polarisierbares, nichtleitendes Materi-
al einbringt. Ein solches Material wird als Dielektri-
kum bezeichnet.

D
ie
le
kt
rik
um

Abbildung 4.55: Änderung der Spannung durch Ein-
schieben eines Dielektrikums.

Wenn der Kondensator von der Spannungsquelle ge-
trennt wurde, sinkt beim Einbringen des dielektri-
schen Materials die Spannung (und damit das elek-
trische Feld) von einem Anfangswert U0 auf einen
Endwert U = U0/er, wie in Abb. 4.55 gezeigt. Da
die Ladung auf den Platten sich dabei nicht ändert
(sie sind ja vom Netzteil abgetrennt), folgt, dass
die Kapazität des Kondensators gestiegen ist, von
CVakuum auf CDielek. Die dimensionslose Proportiona-
litätskonstante

er =
CDielek

CVakuum

zwischen diesen beiden Werten wird als dielektri-
sche Konstante oder relative Permittivität bezeich-
net. Sie ist eine Materialkonstante des polarisierba-
ren Materials. Da die Kapazität des Kondensators

gegeben ist durch

C =
Q
U

= D
A

E d

steigt sie durch das Einfügen des Dielektrikums auf

C = ere0
A
d

,

also um den Faktor er. Die Ladungsdichte auf den
Kondensatorplatten ist gemäß 4.3 C/A = D, mit D
als elektrische Verschiebungsdichte. Gleichzeitig ist
die Feldstärke

E =
U
d

=
Q

Cd
= D

A
Cd

= D
A
d

d
e0erA

.

Somit lautet die Beziehung zwischen ~D und ~E

~D = ere0~E.

Das Produkt e = ere0 wird als Permittivität bezeich-
net.

Abbildung 4.56: Dielektrische Konstanten unter-
schiedlicher Materialien.

Abb. 4.56 listet dielektrische Konstanten von ty-
pischen Materialien. Sie bewegen sich zwischen 1
und 10. Leicht polarisierbare Flüssigkeiten wie z.B.
Wasser können bis etwa 100 gehen, während einige
spezielle Materialien darüber hinaus gehen. Dabei
handelt es sich um sog. ferroelektrische Materiali-
en. Diese Substanzen werden in Kondensatoren ver-
wendet um hohe Kapazitäten zu erreichen. Die Grö-
ßenordnungen dieser Materialkonstanten sind auch
interessant für moderne Hochleistungskondensato-
ren, welche Kapazitäten bis zu 1 F aufweisen. Man
erhält solche Kapazitäten durch eine Kombination
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Abbildung 4.57: Kondensatortypen.

von großer Oberfläche (viele m2), kleinem Abstand
(~µm ) und großer Dielektrizitätskonstante (bis zu
1000).

Technisch können sehr unterschiedliche Systeme als
Kondensatoren genutzt werden. Abb. 4.57 zeigt ei-
ne Übersicht. Neben der Kapazität ist auch die (ma-
ximale) Betriebsspannung eines Kondensators eine
wesentliche Größe, sowie (nur für kleine Kapazitä-
ten) das Verhalten bei hohen Frequenzen. Kommer-
zielle Kondensatoren sind jeweils auf einen Bereich
(Kapazität / Spannung / Frequenz) optimiert.

4.4.2 Mikroskopisches Modell

Abbildung 4.58: Modell für die molekularen Dipole
eines Dielektrikums im Feld eines
Plattenkondensators.

Den Unterschied zwischen elektrischem Feld und
elektrischer Verschiebung kann man mit Hilfe eines
einfachen Modells auf die molekulare oder atoma-
re Struktur des Materials zurückführen. Wie in Abb.
4.58 gezeigt, setzen sich die relevanten Materialien
häufig aus Dipolen zusammen. In Abwesenheit ei-
nes Feldes (obere Grafik) ist das Material auf Skalen
oberhalb der molekularen Skala elektrisch neutral.

In Anwesenheit eines Feldes (unterer Teil von Abb.
4.58) orientieren sich die Dipole entlang des Feldes.
Im Innern des Materials heben sich Paare von positi-
ven und negativen Ladungen gegenseitig auf. Somit
bleiben nur die Ladungen an der Oberfläche des Ma-
terials übrig. Diese sind den Ladungen auf der Kon-
densatorplatte entgegen gerichtet. Die Summe aus
den Ladungen auf der Kondensatorplatte und den-
jenigen auf der Oberfläche des Dielektrikums sind
demnach um den Faktor 1/er geringer als ohne das
Dielektrikum.

Abbildung 4.59: Beiträge zur Polarisation.

Wie in Abb. 4.59 gezeigt, können diese molekularen
Dipole auf verschiedene Arten zustande kommen:
zum einen kann das äußere elektrische Feld die Elek-
tronenhülle gegenüber dem positiv geladenen Kern
verschieben. Dieser Effekt tritt bei allen Materialien
auf.

Der zweite Effekt tritt nur in Materialien auf, wel-
che mikroskopische (meist molekulare) statische Di-
pole enthalten. Wie in Abschnitt 4.1.13 diskutiert,
besitzen asymmetrische Moleküle wie z.B. Wasser
ein permanentes elektrisches Dipolmoment. Sind die
Moleküle zufällig orientiert (z.B. in einer Flüssig-
keit), so besitzt das Material normalerweise trotzdem
kein makroskopisches Dipolmoment. Wird ein elek-
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trisches Feld angelegt so wird die Orientierung der
Dipole in Feldrichtung jedoch energetisch gegen-
über den anderen Orientierungen bevorzugt. Damit
entsteht im Mittel eine Polarisation, welche invers
proportional zur Temperatur ist. Solche Materialien
werden als paraelektrisch bezeichnet. Sie zeigen eine
bevorzugte Orientierung der Dipole in Feldrichtung,
so dass die positiven Ladungen näher bei der negativ
geladenen Platte liegen und umgekehrt.

4.4.3 Depolarisationsfeld

Da die Ladungen der Dipole im Inneren des Medi-
ums sich gegenseitig kompensieren, bleibt das Ma-
terial elektrisch neutral. Aufgrund der Oberflächen-
ladungen enthält es jedoch ein Dipolmoment ~P. Für
viele Materialien ist dieses proportional zum elektri-
schen Feld ~E,

~P = e0ce~E = a

~E ,

wobei die Proportionalitätskonstante ce als Suszep-
tibilität bezeichnet wird und a als Polarisierbarkeit.

Abbildung 4.60: Depolarisationsfeld.

Wie in Abb. 4.60 gezeigt, erzeugt dieses Dipolfeld
ein Depolarisationsfeld

~Edep = �~P/e0 = �ce~E ,

welches dem äußeren Feld entgegen-gerichtet ist.
Wenn wir das elektrische Feld (weit) außerhalb des
Mediums mit E0 bezeichnen, erhalten wir im Mate-
rial ein reduziertes Feld

~Em = ~E0 +~Edep = ~E0 � ce~Em .

Aufgelöst nach ~Em erhält man ~Em = ~E0/(c +1). Da-
mit wird auch die Spannung zwischen den Platten
auf den Wert

U =
U0

ce +1
=

U0

er

reduziert. Man identifiziert somit

er = 1+ ce .

Da die Oberflächenladung konstant geblieben ist,
bleibt die elektrische Verschiebungsdichte D kon-
stant. Somit gilt für ein Dielektrikum mit Suszepti-
bilität ce, resp. Dielektrizitätskonstante er

~D = ere0~E = e0~E +~P .

Diese Ausdrücke stellen einen Spezialfall dar; ge-
rechnet für den einfachsten Fall eines Plattenkonden-
sators. Allgemein hängt das Feld im Dielektrikum
auch von dessen Form ab.

Diesen Effekt kann man auch beobachten, wenn man
die Platten an eine Spannungsquelle angeschlossen
hat. In diesem Fall bleibt die elektrische Feldstär-
ke E die gleiche wie ohne Dielektrikum; hingegen
steigt die Ladung auf den Kondensatorplatten und
damit die Verschiebungsdichte D = s = Q/A. Die
zusätzlichen Ladungen auf den Kondensatorplatten
werden durch die Oberflächenladungen des Dielek-
trikums kompensiert.

Diese Ladung ist die sog. Polarisationsladung, die
durch das elektrische Feld im Dielektrikum erzeugt
wird. Das Feld der Polarisationsladungen kompen-
siert zum Teil das Feld der Ladungen auf den Kon-
densatorplatten.

4.4.4 Kräfte auf Dielektrika in Feldrichtung

Die beiden Ladungsschwerpunkte in einem Dielek-
trikum werden vom Feld in entgegengesetzte Rich-
tungen gezogen, wie in Abb. 4.61 gezeigt. Es besteht
somit eine Zugspannung.

Die Oberflächenladungsdichte des Dielektrikums
beträgt

s =
er �1

er
D .
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Q-Q

Abbildung 4.61: Kraft auf Dielektrikum.

Die Zugspannung (d.h. Kraft pro Fläche) erhalten
wir, wenn wir die Kraft auf diese ebene Ladungsver-
teilung im äußeren Feld E0 berechnen. Wie wir beim
Plattenkondensator gefunden hatten, beträgt sie:

F
A

=
1
2

sE0 =
1
2

er �1
er

DE0 =
1
2

er �1
er

e0erE2
0 .

Diese Zugspannungen können zu einer messbaren
Formänderung führen, wenn die Dielektrizitätskon-
stante genügend groß ist. Dies ist vor allem in ferro-
elektrischen Materialien der Fall.

Eine Längenänderung aufgrund einer angelegten
Spannung wird als piezoelektrischer Effekt bezeich-
net. Man kann Piezokeramiken z.B. als Lautspre-
cher verwenden, aber auch als Stellelemente, welche
sehr schnell und präzise Längenänderungen erzeu-
gen können (z.B. im Rastertunnelmikroskop).

Umgekehrt erzeugt ein Druck auf ein solches Ma-
terial eine Umorientierung der Dipole und dadurch
eine Spannung. Man verwendet dies u. A. für Mi-
krophone.

4.4.5 Kräfte auf Dielektrika senkrecht zur
Feldrichtung

Durch das Einschieben eines Dielektrikums in einen
Plattenkondensator sinkt die Feldstärke und damit
die elektrische Feldenergie. Somit muss eine Kraft

~F = �~—Epot

existieren, welche das Dielektrikum in den Spalt des
Kondensators hineinzieht.

Abbildung 4.62: Flüssiges Dielektrikum im E-Feld.

Besteht das Dielektrikum aus einer Flüssigkeit, so
wird sie in das Feld hineingezogen, wie in Abb.
4.62 gezeigt. Das System erreicht ein Gleichgewicht,
wenn der Druck der Flüssigkeitssäule gerade die
elektrische Kraft kompensiert. Steigt das dielektri-
sche Medium mit Dielektrizitätskonstante er um die
Höhe dz weiter in den Kondensator hinein, so ändert
die Kapazität um

dC = d(e0er
A
`
) =

e0

`
derA = e0(er �1)L

dz
`

.

Damit ändert sich die elektrische Feldenergie um

dWel =
1
2

U2dC =
1
2

U2
e0(er �1)L

dz
`

.

Die Kraft dWel/dz kann man durch die Fläche L`
dividieren um die (mechanische) Spannung

sel =
1
L`

dWel

dz
=

1
2

✓
U
`

◆2

e0(er �1)

=
1
2

E2
e0(er �1)

zu erhalten, welche die Flüssigkeit nach oben (in den
Kondensator hinein) zieht.

Die Schwerkraft, die auf die Flüssigkeitssäule wirkt,
erzeugt ebenfalls eine Spannung

FG

L`
= rgh .
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Die beiden Spannungen halten sich die Waage wenn

1
2

E2
e0(er �1) = rgh .

Man kann diesen Ausdruck z.B. dazu verwenden,
um die Steighöhe h zu berechnen, oder um die Di-
elektrizitätskonstante zu bestimmen:

er = 1+
2rgh
(e0E)2 .

Im Experiment findet man für Rizinusöl (er ⇡ 4,6)
bei 30 kV eine Steighöhe von ca. 1 cm.

4.5 Stationäre Ströme

4.5.1 Ladungstransport

Bisher haben wir nur stationäre Ladungen diskutiert.
In einem elektrischen Feld wirkt immer eine Kraft
auf elektrische Ladungen. Sind diese beweglich wird
deshalb Ladung transportiert. Man spricht in diesem
Fall von einem elektrischen Strom.

Strommessgerät

Abbildung 4.63: Diskreter Ladungstransport.

Wie Ladungen in einem Feld transportiert werden
kann man mit mechanischen Hilfsmitteln demon-
strieren. Im Experiment von Abb. 4.63 wird die La-
dung von einer Kondensatorplatte auf einen Ping-
Pong Ball übertragen. Nachdem dieser geladen ist
wird er im Feld zwischen den Platten beschleunigt
bis er auf die andere Kondensatorplatte trifft, wo er
die Ladung an die Platte abgibt. Er nimmt dort die
entgegengesetzte Ladung auf und wird in die um-
gekehrte Richtung beschleunigt. Je höher die Span-
nung eingestellt wird, desto schneller wird der La-
dungstransport. Man misst mit Hilfe eines Strom-
messgerätes, dass ein Strom durch den Kondensator
fließt.

Wie in diesem Experiment führt eine Spannung all-
gemein dazu, dass elektrische Ladungen, sofern sie
frei beweglich sind, in einem Feld transportiert wer-
den. Die transportierte Ladung pro Zeiteinheit wird
als Strom bezeichnet,

I =
dQ
dt

[I] =
C
s

= A = Ampere .
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Abbildung 4.64: André Marie Ampère (1775-1836).

Die Einheit erinnert an André Marie Ampère (1775-
1836) (! Abb. 4.64). Die Stromstärke ist eine der
SI-Basisgrößen; vom Standpunkt der Physik ist je-
doch eher die Ladung die Grundgröße, während die
Stromstärke davon abgeleitet ist. Die Stromrichtung
ist definiert als die Richtung, welche dem Transport
positiver Ladung entspricht.

 positive 
Ladungen

E

 negative 
Ladungen

E

positive und negative 
 Ladungen

E

Abbildung 4.65: Stromtransport und Arten von La-
dungsträgern.

Die wirklichen transportierten Ladungen sind natür-
lich sehr viel kleiner als der Tischtennisball im De-
monstrationsexperiment. Wie beim Demonstrations-
experiment können aber sowohl positive wie auch
negative Ladungen transportiert werden (! Abb.
4.65). Positive Ladungen bewegen sich in Feldrich-
tung, negative Ladungen in entgegengesetzter Rich-
tung. Der Stromfluss ist jedoch in beiden Fällen in
Feldrichtung.

Ladungen können praktisch durch jedes Medium
transportiert werden, wobei je nach Material unter-
schiedliche Träger für die Ladung zur Verfügung ste-
hen. Auch im Vakuum kann Strom fließen. Dies wur-
de früher in Verstärkern, Röntgenröhren oder Fern-

sehern verwendet. Im Vakuum stehen zunächst kei-
ne Ladungsträger zur Verfügung. Es können aber
Elektronen ins Vakuum emittiert werden und als La-
dungsträger dienen wenn z.B. eine Glühkathode ver-
wendet wird oder mit Hilfe von Photoemission. Bei
genügend hohen Feldstärken findet auch Feldemissi-
on statt; dazu verwendet man feine Spitzen: je klei-
ner der Radius desto größer die Feldstärke.

4.5.2 Phänomenologie

Strom ist, wie Ladung, immer mit Materie verbun-
den. Er macht sich auf unterschiedliche Arten be-
merkbar:

• er erzeugt Wärme; dieser Effekt kann als Rei-
bungseffekt verstanden werden. Er verschwin-
det nur in Supraleitern, welche den Strom ver-
lustfrei leiten können.

• er erzeugt ein Magnetfeld; dadurch entstehen
Kraftwirkungen auf andere magnetische Mate-
rialien und bewegte Ladungen.

• in speziellen Fällen können Ströme chemische
Reaktionen bewirken. Man spricht dann von
Elektrolyse.

Als Stromquellen werden meist Generatoren ver-
wendet. Weitere Möglichkeiten sind Batterien, ther-
mische Spannungsquellen (Peltier-Elemente), oder
optische Stromquellen (Photodioden, Solarzellen).

Abbildung 4.66: In der Leiterschleife wird ein Strom
erzeugt, der ein starkes Magnetfeld
erzeugt.

Strom kann auch aus Wärme erzeugt werden. Die
so genannten Thermoelemente verwenden Kontak-
te zwischen unterschiedlichen Metallen. Wenn man
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an diese Kontakte eine Temperaturdifferenz anlegt
fließt ein Strom. Abb. 4.66 zeigt ein Experiment,
bei dem ein Kontakt zwischen Kupfer und Konstan-
tan verwendet; der eine Kontakt wird mit Eiswas-
ser gekühlt, der andere mit einem Bunsenbrenner be-
heizt. Wird die Temperaturdifferenz genügend hoch
so, fließt ein hoher Strom durch die Kupferschlei-
fe. Dabei kann man auch gleich den zweiten oben
genannten Punkt verifizieren: Der Strom erzeugt ein
Magnetfeld; dieses wird hier so stark, dass man da-
mit ein 5 kg schweres Gewicht heben kann.

Abbildung 4.67: Prinzip der photoelektrischen
Stromerzeugung.

Weitere Möglichkeiten zur Erzeugung von Strom
umfassen Solarzellen (=Photodioden), bei denen
Licht absorbiert wird und dabei Elektronen-Loch
Paare (=fehlende Elektronen, "positive" Elektronen).
Diese werden von metallischen Kontakten gesam-
melt und über den Verbraucher zurückgeführt. Abb.
4.67 zeigt die Funktionsweise eines solchen Ele-
ments.

4.5.3 Definitionen

Neben dem Strom benötigen wir die elektrische
Spannung. Sie ist definiert über die Arbeit, die für
die Trennung von Ladungen verrichtet werden muss:

U =
W
Q

[U ] = V = Volt =
J
C

.

Die Einheit Volt erinnert an Alessandro Volta (1745-
1827) (!Abb. 4.68). Somit wird beim Transport von
1 Coulomb über eine Spannungsdifferenz von 1 V
eine Energie von 1 Joule benötigt, resp. frei.

Abbildung 4.68: Alessandro Volta (1745-1827) und
Georg Simon Ohm (1789-1854)

Ein Strom, der durch einen Widerstand fließt, lei-
stet Arbeit: der Widerstand wird aufgeheizt. Die Lei-
stung ist gegeben durch das Produkt aus Spannung
und Strom,

P = UI = U2/R = I2R.

[P] = Watt = W

Die zeitlich integrierte Leistung ergibt die Arbeit,
welche auch als Produkt aus Ladung und Potenzi-
aldifferent U geschrieben werden kann:

W =
Z

Pdt = QU.

Sind mehrere Widerstände hintereinander angeord-
net, so hängt die Leistung, welche an einem Wider-
stand anfällt, von beiden Widerständen ab. Daraus
kann man Messinstrumente bauen.

4.5.4 Widerstand

Der elektrische Widerstand R ist ein Maß für die
Hinderung des Ladungstransportes

R =
V
I

[R] =
V
A

= W = Ohm , (4.6)

d.h. der Widerstand eines Leiters beträgt ein Ohm
wenn bei einem Stromfluss von 1 Ampère eine Span-
nung von 1 V anliegt. Die Einheit Ohm erinnert an
Georg Simon Ohm (1789-1854) (!Abb. 4.68).
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Abbildung 4.69: Messanordnung zur Verifizierung
des Ohm’schen Gesetzes: links be-
trägt der Widerstand 2R, rechts R.

Der Kehrwert des Widerstandes ist der

Leitwert G =
1
R

[G] = S = Siemens =
1
W

.

Die Proportionalität (4.6) zwischen Strom und Span-
nung wird als Ohm’sches Gesetz bezeichnet. Sie
kann experimentell z.B. mit Hilfe des in Abb. 4.69
gezeigten Aufbaus realisiert werden. Schaltet man
zwei Wiederstände in Reihe, so dass durch beide der
gleiche Strom fließt, so misst man auch über beiden
die gleiche Spannung. Überbrückt man den zweiten
Widerstand, wie in Abb. 4.69 rechts gezeigt, so stellt
man fest, dass jetzt die ganze Spannung über dem
ersten Widerstand abfällt; sie ist um den Faktor 2
gestiegen. Der Strom, welcher vom Messgerät an-
gezeigt wird, hat sich ebenfalls verdoppelt. Man ve-
rifiziert weiterhin, dass der Strom proportional zur
Spannung steigt, wenn wir diese erhöhen.

Abbildung 4.70: Lineare Abhängigkeit zwischen
Strom und Spannung.

Abb. 4.70 zeigt die lineare Beziehung zwischen
Spannung und Widerstand, welche als Ohm’sches
Gesetz bezeichnet wird. Es handelt sich aber nicht
um ein Naturgesetz, sondern um die Beschreibung
eines Verhaltens das man häufig aber nicht immer
findet. Der Widerstand entspricht der Steigung der
Geraden, R = dV/dI .

4.5.5 Spezifischer Widerstand in Ohm’schen
Leitern

ℓ

A

U

Abbildung 4.71: Dimensionen eines Leiterstücks.

Der Widerstand R eines Materialelementes hängt ab
von den Dimensionen des Leiters, und vom Material,
aus dem er besteht. In vielen Fällen ist er proportio-
nal zur Länge des Elementes und indirekt proportio-
nal zu seinem Querschnitt

R =
r `

A
.

Man definiert deshalb den spezifischen Widerstand
r eines Materials. Die Einheit des spezifischen Wi-
derstandes ist

[r] = Wm .

Dieser kann in weiten Bereichen variieren; man un-
terscheidet Materialklassen nach ihrem spezifischen
Widerstand:

Klasse Material r / Wm
Isolatoren Bernstein 1018

Quarzglas 5·1016

Glimmer 5·1016

Glas 5·1011

Holz 108..1014

Halbleiter Germanium 0,46
Tellur 4,36·10�3

Silizium (rein) 640
Leiter Kupfer 5·1016

Silber 1,59·10�8

Quecksilber 96·10�8

Aluminium 2,65·10�8

Eisen 9,77·10�8

Nickel 6,84·10�8
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Ganz allgemein besitzen gute Isolatoren spezifische
Widerstände > 1010 W m, Halbleiter können in wei-
ten Bereichen um 1Wm variieren, während gute Lei-
ter bei ~ 10�8 W m liegen. Die Ursachen für diese
enorme Variationsbreite liegen in der quantenmecha-
nischen Struktur der Materie.

Der Kehrwert des spezifischen Widerstandes ist die
spezifische Leitfähigkeit s . Mit ihrer Hilfe kann
man z.B. die Stromdichte berechnen, als

~j = s

~E.

Temperatur T

~T

ρrest

S
pe
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fis
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er
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id
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Abbildung 4.72: Temperaturabhängigkeit des spe-
zifischen Widerstandes eines Me-
talls.

Der Widerstand variiert mit der Temperatur. Für Me-
talle findet man meist ein lineares Ansteigen mit
der Temperatur, während er bei niedrigen Tempe-
raturen näherungsweise konstant bleibt. Abb. 4.72
zeigt qualitativ diese Abhängigkeit. Man kann die-
se Abhängigkeit z.B. untersuchen, indem man den
Widerstand bei Raumtemperatur und bei der Tem-
peratur von flüssigem Stickstoff misst. Bei Kupfer
nimmt der Widerstand um fast eine Größenordnung
ab, bei NTC-Widerständen um mehrere Größenord-
nungen zu, während Konstantan und Kohleschicht
Widerstände eine relativ geringe Abhängigkeit zei-
gen.

4.5.6 Modelle für die Leitfähigkeit

Dieser Befund kann in der Festkörperphysik inter-
pretiert werden. Ganz grob kann man ihn so erklä-
ren, dass ideale metallische Festkörper bei tiefen

Temperaturen keinen Widerstand für die elektrische
Leitung bieten. Bei endlichen Temperaturen finden
Schwingungen der Ionen um ihre Gleichgewichts-
position statt, und diese Schwingungen behindern
den Ladungstransport. Je höher die Temperatur, de-
sto stärker die Schwingungen und desto schlechter
die elektrische Leitung. Der endliche Widerstand bei
tiefen Temperaturen kann auf Kristallfehler zurück-
geführt werden.

Abbildung 4.73: Modell für die spezifische Leitfä-
higkeit.

In einem mechanischen Modell kann man sich das
so vorstellen, dass die Ladungsträger als Kugeln ei-
ne schiefe Ebene hinunterrollen (! Abb. 4.73). Nor-
malerweise würden sie durch die Schwerkraft be-
schleunigt. Sind jedoch auf dieser schiefen Ebene
Hindernisse vorhanden, so stoßen die Kugeln damit
und werden so langsamer hinunterrollen. Die Ener-
gie, welche die Kugeln bei den Stössen an die Hin-
dernisse abgeben, wird durch das Anheben in das
System hineingegeben. Im elektrischen Leiter wird
diese Energie durch die Spannung zugeführt und an
die Ionen übergeben. Dies führt zu einer Aufheizung
des Materials.

Während bei den meisten Festkörpern Elektronen
für den Ladungstransport verantwortlich sind, kön-
nen auch Ionen Ladung transportieren. Materialien,
bei denen dies auftritt, werden als feste Elektroly-
te bezeichnet. Ihre technologische Bedeutung steigt
momentan da sie eine Grundlage für Brennstoffzel-
len und Batterien bilden. Die Leitfähigkeit für Ionen
steigt mit der Temperatur stark an.

Eine ähnliche Situation findet man auch bei der
Signalübertragung in Nerven: die Signale werden
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Abbildung 4.74: Modell für die Nervenleitung.

elektrisch übertragen, wie in Abb. 4.74 gezeigt. Al-
lerdings findet der Ladungstransport senkrecht zur
Reizleitungsrichtung statt, welche mit der Richtung
der Nervenfaser zusammenfällt. Das Signal wird
durch die Spannung definiert, welche zwischen dem
Inneren der Zelle und ihrer Umgebung anliegt. La-
dungsträger sind hier nicht Elektronen, sondern Na-
trium (Na+) und Kalium (K+) Ionen.

Abbildung 4.75: Einfluss der Myelinscheide auf die
Nervenleitung.

Die Nervenfasern sind von einer Hülle umgeben,
welche eine abschirmende Wirkung hat (!Abb.
4.75). Die Signalübertragung findet so statt, dass
das Aktionspotenzial von einem Ring (="Ranvier-
scher Schnürring") zwischen zwei Myelinscheiden
zum nächsten springt.

4.5.7 Driftgeschwindigkeit

Elektrische Signale werden praktisch mit
Lichtgeschwindigkeit übertragen: die Signal-
Übertragungsgeschwindigkeit ist durch die Aus-

breitungsgeschwindigkeit der Spannung, also
des elektrischen Feldes bestimmt. Die einzelnen
Ladungsträger bewegen sich hingegen mit ei-
ner wesentlich geringeren Geschwindigkeit, der
sogenannten Driftgeschwindigkeit.

dx

v
!

A
!

dxAdQ
!

ρ=

Wie schnell ist der elektrische Strom?

Abbildung 4.76: Modell zur Bestimmung der Drift-
geschwindigkeit.

Um den Strom als lokale Größe zu definieren ver-
wendet man die Stromdichte

j =
dI
dA

,

also den Strom pro Fläche (! Abb. 4.76). Sie kann
mikroskopisch als Produkt aus Ladungsdichte nq
und Geschwindigkeit v der Ladungsträger geschrie-
ben werden:

j = nqv .

Wir verwenden diese Beziehung, um die Driftge-
schwindigkeit v der Ladungsträger zu berechnen,
wobei wir annehmen, dass die Dichte der Ladungs-
träger von der Größenordnung der Dichte der Atome
in einem Metall ist. Die Anzahl Atome berechnen
wir z.B. für Kupfer. Die Atommasse ist 63.5 u, die
Dichte = 8950 kg m�3. Somit enthält 1 m3 Kupfer
8,95·103 / 63,5 = 141 kMol Atome. Mit der Avoga-
drozahl NA = 6·1023 erhalten wir die Anzahl Atome
pro m3:

n = 6 ·1023 ·141 ·103m�3 = 0,85 ·1029m�3

⇡ 1029Atome/m3

Für die Stromdichte j setzen wir 1 A/mm2 = 106

A/m2 als typischen Wert. Damit erhält man für die
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Driftgeschwindigkeit

v = j/(nq) =
106

1029 ·1,6 ·10�19
A

m2m�3C

= 6 ·10�5 m
s

= 60
µm

s
.

Elektronen in einem Draht bewegen sich somit sehr
langsam!

Interessant ist auch, dass die Geschwindigkeit di-
rekt proportional zum Feld, also zur äußeren Kraft
ist. Dies kontrastiert mit dem Bild eines freien La-
dungsträgers, bei dem die Beschleunigung propor-
tional zur Kraft ist. Ein solches Verhalten erhält man
bei einer reibungsbehafteten Bewegung, d.h. für eine
Bewegungsgleichung

m
dv
dt

= qE � gv.

Ein stationärer Zustand wird dann erreicht wenn die
resultierende Kraft auf der rechten Seite verschwin-
det, qE = gv. Die berechnete Driftgeschwindigkeit
ist somit gegeben durch das Verhältnis

vD =
qE
g

,

d.h. sie wird bestimmt durch das Verhältnis von elek-
trischer Kraft zur inneren Reibung für die Ladungs-
träger.

4.5.8 Supraleiter
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Abbildung 4.77: Temperaturabhängigkeit der elek-
trischen Leitfähigkeit bei Supralei-
tern.

Bei Supraleitern findet bei tiefen Temperaturen ein
Übergang statt zu einem Zustand, wo der elektri-
sche Widerstand verschwindet. Dieser Effekt wur-
de 1911 von Kamerlingh Onnes entdeckt, nachdem
es ihm gelungen war, Helium zu verflüssigen. Abb.
4.77 zeigt die Original-Messkurve für Quecksilber
aufgetragen: bei 4.2 K sinkt der Widerstand auf Null.
Der plötzliche Übergang entspricht einem Phasen-
übergang, ähnlich wie der Siedepunkt; er tritt bei
einer kritischen Temperatur Tc auf. Viele Elemen-
te und Verbindungen werden bei unterschiedlichen
Temperaturen supraleitend. Einige kritische Tempe-
raturen sind

Stoff Tc/K
Al 1,19
Be 0,026
Hg 4,15
Zn 0,9
Wo 0,012
Pb 7,2

V3Si 17,1
Nb3Si 18,0

Nb3Al8Ge0,2 20,7
YBa2Cu3O6+x 90
HgBa2CuO4+x 133

CsRb2C60 31

Abbildung 4.78: Supraleitende Magneten.

Die verlustlose Leitung von elektrischem Strom ist
für verschiedene Anwendungen interessant, so für
die Erzeugung von starken Magnetfeldern, wie sie
z.B. in Kernspintomographen benötigt werden. Abb.
4.78 zeigt 2 Beispiele für solche Magneten.
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4.5.9 Halbleiter
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Abbildung 4.79: Temperaturabhängigkeit des spe-
zifischen Widerstandes in einem
Halbleiter (Si).

Im Gegensatz zu Metallen sinkt bei Halbleitern der
Widerstand mit zunehmender Temperatur, d.h. die
Leitfähigkeit nimmt zu, wie in Abb. 4.79 gezeigt.
Man unterscheidet hier zwei Bereiche: im Hochtem-
peraturbereich I dominieren die intrinsischen La-
dungsträger; ihre Zahl nimmt mit der Temperatur ex-
ponentiell zu. Bei niedrigeren Temperaturen (II) do-
minieren Ladungsträger, welche durch Fremdatome
eingebracht wurden, wie z.B. Phosphor. Durch das
Einbringen von Fremdatomen kann man die elektri-
schen Eigenschaften von Halbleitern in weiten Gren-
zen variieren; dies ist der wichtigste Grund für die
enorme Rolle, welche Halbleiter heute spielen.

Ob ein Material als Halbleiter oder Isolator betrach-
tet wird, ist zu einem guten Teil temperaturabhängig.

So ist Glas bei tiefen Temperaturen ein sehr guter
Isolator; bei hohen Temperaturen werden jedoch ein-
zelne Ionen beweglich und man erhält eine erhebli-
che Leitfähigkeit.

4.5.10 Ladungstransport in Gasen und
Flüssigkeiten

Auch in Gasen können Ladungen transportiert wer-
den. Die Elektronen werden dabei beschleunigt bis
sie wieder auf Gasteilchen treffen und schlagen wei-
tere Elektronen aus diesen heraus.

Man kann den Effekt z.B. in Luft nachweisen. Da-
durch findet man häufig ein nichtlineares Verhal-
ten, da die Ladungen in einem elektrischen Feld
beschleunigt werden, dadurch genügend kinetische
Energie erhalten um weitere Ladungen durch Stoß-
ionisation zu erzeugen, welche selber ebenfalls kine-
tische Energie erhalten.

In Flüssigkeiten und Gasen können Ladungen durch
Ionen transportiert werden. Sind keine geladenen
Teilchen vorhanden können diese z. T. auch durch
Dissoziation (Elektrolyse) erzeugt werden.

Spannung U [V]
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tro

m
 I 
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]
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Abbildung 4.80: Stromleitung in Elektrolyten.

So findet man in verdünnter Schwefelsäure H+,
HSO�

4 und SO2�
4 Ionen, welche im elektrischen Feld

diffundieren. Hier wird der Strom somit von positi-
ven und negativen Ladungsträgern transportiert (!
Abb. 4.80).

Bei niedrigen Spannungen fließt in Elektrolyten kein
Strom; die Polarisationsspannung UP wird durch
das unterschiedliche chemische Potenzial der beiden
Elektroden hervorgerufen. Oberhalb dieser Span-
nung verhält sich das System in guter Näherung wie
ein Ohm’scher Leiter.

Wenn die Ionen die Elektroden erreichen geben sie
ein Elektron an die Elektrode ab, resp. nehmen es
von dort auf. Diese Art von Reaktion wird als Elek-
trolyse bezeichnet. Sie wird für verschiedene tech-
nische Anwendungen verwendet, wie z.B. die Spal-
tung von Wasser in Sauerstoff und Wasserstoff.

Die umgekehrte Reaktion verwendet man in Batte-
rien; sind die Prozesse reversibel, so kann man ent-
sprechende Elemente zur Speicherung von elektri-
schem Strom verwenden.

166



4 Elektrizität und Magnetismus

Abbildung 4.81: Aufbau einer Batterie.

Bei gewöhnlichen Batterien besteht die Kathode aus
einem Kohlestab und Manganoxid als Reaktionsmit-
tel, während die Anode aus einem Zinkblech besteht.
Abb. 4.81 zeigt schematisch den Aufbau einer sol-
chen Batterie.

Abbildung 4.82: Blei-Akku.

Das am weitesten verbreitete System ist wohl die
Bleibatterie (!Abb. 4.82), wo die Umwandlung
von Blei in Bleisulfat in verdünnter Schwefelsäu-
re verwendet wird. Bei anderen Elektrolyten (z.B.
AgNO3) wird an einer der Elektroden Metall (Ag)
abgeschieden. Solche Systeme werden verwendet
für das Veredeln von Werkstücken durch Beschich-
ten mit einer Metallschicht.

4.6 Schaltungen

4.6.1 Kirchhoff’sche Gesetze

Die Kirchhoff’schen “Gesetze” sind nützliche Re-
geln für die Analyse elektrischer Stromkreise. Das
1. Kirchhoff’sche Gesetz wird auch als Knotenregel
bezeichnet (!Abb. 4.83); es ist eine direkte Kon-
sequenz des Erhaltungsgesetzes für elektrische La-
dung.

IN

I3

I2I1

Abbildung 4.83: 1. Kirchhoff’sches Gesetz = Kno-
tenregel.

Es lautet: die Summe aller Ströme die in einen Kno-
ten hinein fließen ist gleich der Summe aller Ströme
die aus dem Knoten heraus fließen

Â
i

Ii = 0 .

Dies bedeutet im Wesentlichen, dass im Knoten kei-
ne Ladungen gespeichert, erzeugt oder vernichtet
werden.

UN

U1

U2

U3

Abbildung 4.84: 2. Kirchhoff’sches Gesetz = Ma-
schenregel.

Das zweite Kirchhoff’sche Gesetz wird auch als
Maschenregel bezeichnet: In einem geschlossenen
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Stromkreis (=Masche; Abb. 4.84) ist die Summe al-
ler Spannungen gleich Null. Die Spannung als vor-
zeichenbehaftete Größe muss dabei immer in der
gleichen Richtung gemessen werden.

4.6.2 Einfache Schaltungen

Als einfaches Anwendungsbeispiel betrachten wir
den Spannungsabfall über zwei in Reihe geschalte-
ten Widerständen, wie in Abb. 4.85 gezeigt.

Abbildung 4.85: Reihenschaltung von 2 Widerstän-
den.

Der Strom muss gemäss Maschenregel überall
gleich sein,

I = I1 = I2 = I3 = ....

Für die Spannung finden wir

U = U1 +U2 +U3 + ... = R1I +R2I +R3I + ....

Wir berechnen nun den Widerstand, welcher die
gleiche Wirkung hat wie zwei in Serie geschaltete
Widerstände. Nach Definition ist das

R =
U
I

= Â
i

Ri,

d.h. der Gesamtwiderstand ist gleich der Summe der
einzelnen Widerstände.

Im Experiment verbinden wir zwei Widerstände von
R1 = R2 = R = 80W. Wenn wir eine konstante Span-
nung von 20 V über einen Widerstand legen beträgt
der Strom 250 mA; liegt die gleiche Spannung an der
Serienschaltung so sinkt der Strom auf 125 mA, ent-
sprechend einem Widerstand von 160 W. Dies kann
auch direkt durch eine Widerstandsmessung verifi-
ziert werden.

Als zweites Anwendungsbeispiel betrachten wir den
Spannungsabfall über zwei parallel geschalteten Wi-
derständen (! Abb. 4.86). Gemäss dem zweitem
Kirchhoff’schen Gesetz muss die Summe der bei-
den Spannungen (im Kreis gemessen) verschwin-
den, d.h. sie müssen entgegengesetzt gleich sein.

Abbildung 4.86: Parallelschaltung von Widerstän-
den.

Messen wir beide Spannungen von links nach rechts
müssen die Spannungen gleich sein, U1 = U2 = U .
Somit fließen über die beiden Widerstände die Strö-
me

I1 =
U
R1

I2 =
U
R2

,

oder

I1/I2 = R2/R1.

Gemäss dem ersten Kirchhoff’schen Gesetz muss
die Summe der Ströme über die beiden Widerstände
gleich dem zugeführten Strom sein, I1 + I2 = I. Dar-
aus können wir den Widerstand der Parallelschal-
tung bestimmen:

R =
U
I

=
U

I1 + I2
=

U
U/R1 +U/R2

=
1

1
R1

+ 1
R2

oder

1
R

=
1

R1
+

1
R2

.

Auch dieses Resultat wird im Experiment verifiziert.

Abbildung 4.87: Spannungsteiler.

Als nächstes Beispiel betrachten wir einen Span-
nungsteiler (!Abb. 4.87). Er besteht aus zwei in
Serie geschalteten Widerständen. Gemäß Knotenre-
gel fließt durch beide Widerstände der gleiche Strom
I = I1 = I2. Der Spannungsabfall über dem ersten
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Widerstand U1 = IR1 und über dem zweiten Wider-
stand U2 = IR2. Da der gesamte Spannungsabfall ge-
mäss der Maschenregel der treibenden Spannung U0
entsprechen muss, erhalten wir

U1 = U0
R1

R1 +R2
, U2 = U0

R2

R1 +R2
,

d.h. die Spannung wird im Verhältnis der Widerstän-
de geteilt.

Wir verifizieren dies für einen Schiebewiderstand.

4.6.3 Wheatstone’sche Brückenschaltung

Abbildung 4.88: Wheatstone’sche Brückenschal-
tung.

Ein solcher Spannungsteiler wird auch verwendet in
der Wheatstone’schen 5 Brücke, welche als Grund-
lage für die Messung von Widerständen verwendet
wird (! Abb. 4.88). Der zu messende Widerstand Rx
wird dabei mit bekannten Widerständen R0, R1 und
R2 verglichen, wobei das Verhältnis von R1 zu R2 so
eingestellt wird, dass durch das Strommessgerät kein
Strom fließt und somit auch keine Spannung abfällt.
Solche Messungen sind besonders empfindlich und
wenig störanfällig.

Der Strom durch das Messinstrument verschwindet
wenn für die Masche ACD U1 = Ux = R1I1 = RxIx
und für die Masche CBD R2I2 = R0I0. Außerdem
muss gelten I1 = I2 und Ix = I0. Division der beiden
ersten Gleichungen ergibt

R1I1

R2I2
=

RxIx

R0I0
=

R1

R2
=

Rx

R0

5Charles Wheatstone 1802-1875

oder

Rx = R0
R1

R2
.

Im Experiment verwenden wir R0 = 25 W. Die Mes-
sung ergibt ein Verhältnis R1/R2 = 30,2/69,8 =
0,433. Somit erhalten wir

Rx = R0
R1

R2
= 10,82W

Die direkte Messung ergibt Rx = 11.2W.

4.6.4 Elektrische Schaltelemente

Elektrische Schaltungen werden aus unterschiedli-
chen Elementen aufgebaut. Die Menge an mögli-
chen Elementen ist natürlich unbegrenzt. Es ist aber
sinnvoll, einige besonders wichtige Elemente aufzu-
listen, wobei sie immer idealisiert werden.

• Ohm’sche Widerstände; sie zeichnen sich durch
eine lineare Beziehung zwischen Strom und
Spannung aus:

V = RI.

• Kondensatoren; wie bereits diskutiert findet
man hier (im Idealfall) eine lineare Beziehung
zwischen der gespeicherten Ladung und der
Spannung:

V =
Q
C

.

• Induktivitäten (Spulen). Hier besteht eine linea-
re Beziehung zwischen der zeitlichen Änderung
des Stroms und der Spannung

V = L
dI
dt

.

• Dioden zeigen für negative Spannungen einen
geringen Strom; für positive Spannungen ist der
Strom deutlich größer und nichtlinear. Bei Röh-
rendioden erreicht er einen Sättigungswert, der
von der Heizleistung abhängt. Bei Halbleiterdi-
oden steigt der Strom an, bis die Schädigungs-
grenze erreicht wird.
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• Man kann Dioden u.a. dazu verwenden, um den
Strom gleichzurichten oder um eine Begren-
zung einzubauen.

• In einer Gasentladung nimmt der Widerstand
mit zunehmendem Strom so stark ab, dass die
nötige Spannung sogar absinkt. Man spricht
hier von einem negativen differenziellen Wider-
stand.

4.7 Magnetfelder

4.7.1 Grundlagen

Während die Wechselwirkungen zwischen stati-
schen elektrischen Ladungen sich durch das Cou-
lomb’sche Gesetz, resp. ein elektrisches Feld be-
schreiben lassen, treten bei bewegten Ladungen zu-
sätzlich magnetische Wechselwirkungen auf. Die-
se können ebenso durch ein magnetisches Feld be-
schrieben werden. Das Magnetfeld wird mit dem
Buchstaben B, resp. H bezeichnet. Die Unterschei-
dung zwischen diesen beiden Magnetfeldern wird et-
was später diskutiert. Die Einheiten sind

[B] = T = Tesla =
Vs
m2 [H] =

A
m

.

Abbildung 4.89: Magnetischer Dipol mit Feldlinien.

Im Falle des elektrischen Feldes wirken die elek-
trischen Ladungen als Quellen des Feldes; es exi-
stieren jedoch keine magnetischen “Ladungen” (d.h.
Monopole), und somit keine Quellen für das magne-
tische Feld. Magnetische Feldlinien haben deshalb
nie einen Anfang oder ein Ende, wie in Abb. 4.89
gezeigt. Als magnetische Grundeinheiten kann man
die magnetischen Dipole betrachten.

Das Wegintegral
H

~B · d~s eines Magnetfeldes ist ab-
hängig vom Weg, im Gegensatz zum elektrischen
Feld: Magnetfelder können somit nicht als Gradi-
enten eines Potenzials geschrieben werden. Dies ist
eine direkte Konsequenz davon, dass die Feldlinien
geschlossene Kurven darstellen. Man kann das Ma-
gnetfeld statt dessen als Rotation eines Vektorpoten-
zials schreiben,

~B = rot~A .
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Darauf soll hier aber nicht weiter eingegangen wer-
den.

4.7.2 Dipole im Magnetfeld

Es gibt zwar keine magnetischen Ladungen, aber in
Analogie zu den elektrischen Dipole gibt es magne-
tische Dipole.

θ

B

µ

M

Abbildung 4.90: Magnetischer Dipol im Magnet-
feld.

Genau wie auf elektrische Dipole in einem elektri-
schen Feld ein Drehmoment wirkt, erfahren magne-
tische Dipole ~

µ ([µ] =Am2) im Magnetfeld ~B ein
Drehmoment

~M =~
µ ⇥~B,

wie in Abb. 4.90 dargestellt. Das Drehmoment ist
somit maximal wenn der Dipol senkrecht zur Feld-
richtung orientiert ist und verschwindet für parallele
Orientierung.

B µ
B  µ

E
ne

rg
ie

 E

0 π/2 πWinkel θ

Abbildung 4.91: Energie des Dipols als Funktion der
Orientierung.

Die potenzielle Energie ist analog zum elektrischen
Dipol

Epot = �~
µ ·~B = �µ ·B cosq ,

wobei q den Winkel zwischen Dipol- und Feld-
richtung darstellt. Abb. 4.91 zeigt die Abhängigkeit
der potenziellen Energie von der Orientierung. Die
Gleichgewichtsstellung entspricht somit der Orien-
tierung parallel zu den Feldlinien, q = 0.

Abbildung 4.92: Kraft auf einen Dipol in einem in-
homogenen Feld.

Genau wie bei elektrischen Dipolen wirkt auch auf
magnetische Dipole in einem inhomogenen Feld ei-
ne Kraft, die von der Orientierung der Dipole bezüg-
lich dem Magnetfeld abhängt (! Abb. 4.92). Sind
sie im Gleichgewicht, d.h. parallel zum Feld orien-
tiert, so werden sie in Richtung des stärkeren Fel-
des gezogen. Ist die Orientierung entgegengesetzt,
so werden sie abgestoßen.

4.7.3 Feldlinien und Magnetpole

Genau wie beim elektrischen Feld beschreibt man
auch das magnetische Feld mit Hilfe von Feldlinien.
diese können z.B. über die Orientierung von magne-
tischen Dipolen gemessen werden. Da keine Quellen
für magnetische Felder existieren, sind magnetische
Feldlinien immer geschlossene Schleifen.

Feldlinien können auf unterschiedliche Arten sicht-
bar gemacht werden. Meist verwendet man dafür
Eisen-Feilspäne oder kleine, drehbar gelagerte Ma-
gnetchen.

Magnetfelder werden entweder durch elektrische
Ströme oder magnetische Körper erzeugt. Ein typi-
sches Beispiel ist ein Stabmagnet. Abb. 4.93 zeigt
schematisch einen Stabmagneten. Er besitzt zwei
magnetische Pole, d.h. er bildet einen magnetischen
Dipol. Die Feldlinien beginnen am einen Pol, wel-
cher magnetischer Nordpol genannt wird, laufen
durch die Umgebung zum andern Ende, dem magne-
tischen Südpol, und im Material zurück. Bringt man
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Abbildung 4.93: Stabmagnet, Pole, Feldlinien.

mehrere Stabmagnete zusammen so richtet sich der
eine nach den Magnetfeldlinien des anderen aus.

Anziehung Abstoßung

F2

F1

F2

F1

Abbildung 4.94: Anziehung und Abstoßung von
Magneten.

Die niedrigste Energie hat die Kombination offen-
bar dann wenn ungleiche Pole benachbart sind: ent-
gegengesetzt Pole ziehen sich an, gleiche Pole sto-
ßen sich ab (siehe Abb. 4.94), in Analogie zu elek-
trischen Ladungen.

Abbildung 4.95: Teilung eines Stabmagneten ergibt
2 Stabmagneten.

Im Gegensatz zu elektrischen Ladungen oder elek-
trischen Dipole lassen sich Magnetpole nicht tren-
nen. Zerbricht man einen Stabmagneten, dann erge-
ben sich zwei kürzere Magnete, welche beide jeweils
zwei Polen besitzen, wie in Abb. 4.95 dargestellt.

Arktischer 
Magnetpol

Geographischer 
Nordpol

M
R

MR

78,5oN, 103,4oW

Abbildung 4.96: Magnetfeld der Erde. Der arkti-
sche Magnetpol befindet sich in der
Nähe des geographischen Nordpols
und ist ein magnetischer Südpol.

4.7.4 Erdmagnetfeld und Kompass

Auf Grund des Drehmomentes können magnetische
Dipole dazu verwendet werden, die Orientierung
und Stärke eines Magnetfeldes zu messen. Ein gutes
Beispiel für einen magnetischen Dipol ist eine Kom-
passnadel. Diese richtet sich im Magnetfeld der Erde
so aus, dass eines seiner Enden nach Norden weist.
Man bezeichnet dieses Ende als magnetischen Nord-
pol. Da der magnetische Nordpol einer Nadel von ei-
nem magnetischen Südpol angezogen wird und nach
Norden zeigt ist offenbar der magnetische Südpol
der Erde in der Nähe des geographischen Nordpols
(genauer: 78.5�N, 103.4�W), der magnetische Nord-
pol in der Nähe des geographischen Südpols (65�S,
139�E). Wie in Abb. 4.96 gezeigt, liegen die ma-
gnetischen Pole sich in der Nähe aber nicht exakt
beim geographischen Pol befinden zeigt ein Kom-
pass nicht exakt nach Norden (in Deutschland: Ab-
weichung (Deklination) 2�). Die Feldlinien sind au-
ßerdem nicht horizontal (in Deutschland: Inklination
55�).

Die Nutzung des magnetischen Kompass wurde in
China um das Jahr 1000 entwickelt; Kolumbus nutz-
te ihn für die Fahrt nach Amerika. In beiden Fällen
wussten die Seefahrer wie sie ihn benutzen konnten,
ohne aber die Funktionsweise zu kennen. Erst im
Jahre 1600 konnte William Gilbert zeigen, dass man
den Kompass verstehen kann wenn man annimmt,
dass die Erde ein Magnetfeld besitzt.
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4.7.5 Magnetfeld elektrischer Ströme

Magnetfelder können nicht nur von Dipolen erzeugt
werden, sondern auch von bewegten elektrischen La-
dungen. Dies weiss man erst seit dem 19. Jahrhun-
dert.

Abbildung 4.97: Links: Experiment von Oersted
zum Nachweis dass ein elektri-
scher Strom ein Magnetfeld er-
zeugt. Rechts: das erzeugte Feld
um den Leiter im Querschnitt.

Ørsted6 stellte 1821 fest, dass stromdurchflossene
Leiter eine Kompassnadel in der Nähe beeinflussen.
Abb. 4.97 zeigt schematisch das entsprechende Ex-
periment.

Abbildung 4.98: Nachweis des Magnetfeldes durch
einen Kompass.

Abb. 4.98 zeigt eine aktuelle Version des Oersted-
Experiments. Hier stellt man einen Wettbewerb zwi-
schen dem Erdmagnetfeld und dem Magnetfeld des
Drahtes fest. In der linken Bildhälfte ist der Strom
ausgeschaltet. Der Leiter und die Kompassnadel sind
parallel zum Erdmagnetfeld ausgerichtet. Rechts ist
der Strom eingeschaltet und erzeugt ein Magnetfeld
senkrecht zur Richtung des Leiters, wie schematisch
in Abb. 4.97 rechts dargestellt. Die Kompassnadel
richtet sich entlang der Vektorsumme aus dem Erd-
magnetfeld und dem Magnetfeld des Stroms aus.

6Hans Christian Ørsted (1777 - 1851)

4.7.6 Das Durchflutungsgesetz

Mit Hilfe einer Reihe von solchen Experimenten
stellt man fest, dass ein Strom, der durch einen gera-
den Leiter fließt, kreisförmige Feldlinien erzeugt, in
deren Zentrum sich der Leiter befindet, wie in Abb.
4.99 gezeigt. Die Stärke des Magnetfeldes ist dabei
proportional ist zum Strom. Man verwendet diesen
Befund für die Definition der Magnetfeldstärke.

j

B

Rechte Hand Regel

Abbildung 4.99: Rechte-Hand-Regel für das Ma-
gnetfeld.

Die Richtung des Magnetfeldes kann durch die
”Rechte-Hand-Regel” bestimmt werden (! Abb.
4.99): zeigt der Daumen der rechten Hand in Strom-
richtung, so geben die anderen Finger die Richtung
des B-Feldes an.

Aus der Definition der Stromdichte ~j = d~I/dA, wel-
che durch ein Flächenelement dA fließt (! Kap.
4.5.5) folgt umgekehrt dass der Gesamtstrom durch
eine Fläche A gegeben als das Integral der Strom-
dichte über diese Fläche,ZZ

A
~j ·d~A = I.

Das Magnetfeld in der Nähe einer stromdurchflos-
senenen Fläche ist allgemein gegeben durch das
Ampère’sche oder Durchflutungsgesetz. Es lautet,
dass das Schleifenintegral des Magnetfeldes über ei-
ne beliebige geschlossene Kurve gleich dem Flä-
chenintegral der Stromdichte über die eingeschlos-
sene Fläche ist,I

~H ·d~s =
ZZ

A
~j ·d~A = Â

i
Ii , (4.7)

wobei das Flächenintegral über die Fläche läuft, die
vom Pfad des Schleifenintegrals umschlossen wird.
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Das Weg-Integral des magnetischen Feldes entlang
der geschlossenen Kurve ist somit gleich dem ge-
samten Strom durch die Fläche. Daraus folgt auch
die Einheit für das Magnetfeld: [H] = A/m. Mit Hil-
fe des Satzes von Stokes erhält man daraus die diffe-
rentielle Form:

~—⇥ ~H = ~j.

Das Wegintegral eines Magnetfeldes ergibt offenbar
einen Strom; wir vergleichen dies mit dem Weginte-
gral des elektrischen Feldes, welches eine Spannung,
resp. eine Potenzialdifferenz ergibt. Die Dimensio-
nen der beiden Felder sind [E] = V/m und [H] = A/m.

Für einen geraden, unendlichen, stromdurchflosse-
nen Leiter ist das Feld aus Symmetriegründen kreis-
förmig. Da der eingeschlossene Strom für alle Kreise
der gleiche ist, folgt aus (4.7)I

~H ·d~s = 2prH

oder

H =
I

2pr
,

d.h. das Feld fällt proportional zum Abstand ab.

4.7.7 Spulen

Aus dem Durchflutungsgesetz kann man auch für
weitere Leiteranordnungen die Magnetfelder be-
rechnen. Eine wichtige Art sind Spulen.

Für eine zylinderförmige (Solenoid-) Spule befinden
sich die Feldlinien vor allem innerhalb des Zylin-
ders, wie in Abb. 4.100 gezeigt. Außerhalb ist das
Feld wesentlich schwächer. Wir vernachlässigen hier
diejenigen Feldlinien, welche zwischen den einzel-
nen Windungen aus der Spule hinauslaufen. Alle üb-
rigen Feldlinien umschließen in guter Näherung N
mal den Leiter. Somit ist der Strom, der durch die
von dieser Feldlinie aufgespannte Fläche fließt NI.
Wendet man darauf das Durchflutungsgesetz an, so
erhält man

NI =
I

~H ·d~s =
Z

innen
~Hi ·d~s +

Z
aussen

~Ha ·d~s

Abbildung 4.100: Verlauf der Feldlinien in einer
stromdurchflossenen Spule; oben:
schematisch; unten; sichtbar ge-
machte Feldlinien mit Hilfe von
Eisenspänen.

⇡
Z

innen
~Hi ·d~s .

Hi beschreibt das Feld im Inneren der Spule, Ha au-
ßerhalb. Da das äußere Feld deutlich schwächer ist
als das innere kann es in guter Näherung vernachläs-
sigt werden. Das Feld im Inneren ist in guter Nähe-
rung konstant, so dass das Integral zu H` wird, wobei
` die Länge der Spule darstellt. Damit erhalten wir
für das Feld im Innern einer langen, dünnen Spule

H =
IN
`

.

Sowohl die Proportionalität zum Strom wie auch zur
Windungszahl kann im Experiment verifiziert wer-
den. Man sieht auch, dass das Feld im Innern der
Spule recht homogen ist und außerhalb rasch abfällt.

Mit Hilfe von solchen Anordnungen werden heu-
te die stärksten Magnetfelder erzeugt, die man im
Labor erreichen kann, bis zu etwas über 100 T
mit nicht-destruktiven Anordnungen, bei destrukti-
ven Experimenten auch deutlich höher. In astrophy-
sikalischen Objekten gibt es noch deutlich stärkere
Magnetfelder: Auf der Oberfläche von Neutronen-
sternen, wie z. B. Pulsaren, bis zu 108 T, bei Magne-
taren, einer speziellen Sorte von Neutronensternen,
bis zu 1011 T.
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4.7.8 Das Biot-Savart Gesetz

(Benannt nach Jean Baptiste Biot (1774-1862), und
Felix Savart (1791-1841))

Das Durchflutungsgesetz erlaubt einem nur für spe-
zielle Fälle die Berechnung des Magnetfeldes, da es
lediglich dessen Integral enthält.

d ~H(~r) =
I d~̀⇥ ~r

4�r3

I d~̀

~r

d ~H(~r)

Abbildung 4.101: Magnetfeld eines Strom-
Elementes.

Für beliebig geformte stromdurchflossene Leiter
verwendet man eine differentielle Form und be-
rechnet den Beitrag d~H eines infinitesimalen Lei-
terstücks d` zum Magnetfeld im Punkt P (! Abb.
4.101). Er beträgt

d~H(~r) =
I d~̀⇥~r
4pr3 .

~r stellt den Verbindungsvektor vom Leiterelement
zum Punkt P dar, an dem das Feld berechnet werden
soll. Offenbar steht das Feld senkrecht zum Verbin-
dungsvektor~r und zum Leiterelement d~̀ d.h. senk-
recht auf der Ebene, welche durch P und das Leiter-
element definiert wird.

Für einen beliebigen (nicht notwendigerweise ge-
schlossenen) Leiter erhält man das Magnetfeld als
Integral über den Leiter,

~H(~r) =
1

4p

Z I d~̀⇥~r
r3 .

Das Biot-Savart’sche Gesetz kann in einem gewis-
sen Sinn auch als das magnetische Äquivalent zum
Coulomb’schen Gesetz angesehen werden: Während
das Coulomb’sche Gesetz die Felderzeugung durch
elektrische Ladungselemente beschreibt, wird hier
die Felderzeugung durch Stromelemente beschrie-
ben.

4.7.9 Magnetfeld ringförmiger Spulen

Abbildung 4.102: Kreisstrom und Längenelement
d~̀.

Als Beispiel berechnen wir das Magnetfeld im Mit-
telpunkt eines kreisförmigen Leiters, wie in Abb.
4.102 gezeigt. d~̀ steht hier immer senkrecht auf ~r,
so dass man d~̀⇥~r durch dsR ersetzen kann, wobei
R den Radius des Rings darstellt. Damit wird

H =
I

4pR2

I
ds =

I
4pR2 2pR =

I
2R

.

ds ds

R
dφ

R α

I

r

P

α

d ⃗B �
d ⃗B

d ⃗B ||

x

Abbildung 4.103: Magnetfeld auf der Spulenachse.

Analog kann man das Magnetfeld außerhalb der Lei-
terebene entlang der Symmetrieachse berechnen (!
Abb. 4.103). Aus Symmetriegründen bleibt nach In-
tegration über die Spule lediglich die Komponente
in Achsenrichtung übrig. Es genügt deshalb, wenn
wir die Projektion auf die Achse berechnen, welche
proportional ist zu cosa . Diese beträgt

H =
I

4pr2 2pR cosa .

Da cosa = R/r wird somit

H = I
R2

2r3 =
I R2

2(R2 + `2)3/2 ,
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wobei ` den Abstand von der Leiterebene darstellt.

Ist der Abstand ` groß im Vergleich zum Radius R,
so kann dies vereinfacht werden zu

H =
I R2

2`3 ,

d.h. das Feld fällt mit der dritten Potenz des Abstan-
des ab. Der Kreisstrom IR2 im Zähler entspricht ei-
nem magnetischen Dipol; dessen Stärke is propor-
tional zum Strom I und zur umflossenen Fläche.
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Abbildung 4.104: Ortsabhängigkeit der Magnetfeld-
stärke in einem Spulenpaar als
Funktion des Abstandes zwischen
den Spulen.

Benötigt man ein homogenes Magnetfeld, das besser
zugänglich ist als für eine lange Spule, so kann man
zwei (oder mehr) solche Spulen kombinieren wie in
Abb. 4.104 gezeigt. In der Mitte zwischen den bei-
den Spulen ist die Ableitung der Stärke des Magnet-
feldes aus Symmetriegründen immer Null, d.h. das
Magnetfeld ist extremal und damit relativ homogen.
Ist der Abstand gering, so erhält man ein Maximum,
ist der Abstand groß, so handelt es sich um ein Mini-
mum. Abb. 4.104 zeigt das Magnetfeld als Funktion
des Spulenabstands und als Funktion des Ortes auf
der Achse.

Helmholtz7 hat gezeigt, dass man für zwei Spulen
die beste Homogenität erhält wenn die Spulen mit
Radius R im Abstand R voneinander angebracht wer-
den: dann wechselt die Krümmung von positiv auf
negativ, d.h. sie verschwindet ebenfalls. Dazu muss
in beiden Spulen der gleiche Strom in die gleiche
Richtung fließen.

7Hermann von Helmholtz (1821-1894)

4.7.10 Flussdichte und magnetische
Feldenergie

Im Rahmen der Elektrostatik hatten wir zwei Arten
von Feldern diskutiert, das elektrische Feld E und
die Verschiebungsdichte D, welche Polarisationsef-
fekte des Mediums enthält. Genauso gibt es in der
Magnetostatik zwei Felder, das Magnetfeld H und
die Flussdichte B. Im Vakuum sind die beiden Fel-
der wieder direkt proportional:

B = µ0H [B] = T = Tesla =
Vs
m2 . (4.8)

Die Proportionalitätskonstante

µ0 = 4p ·10�7 Vs
Am

⇡ 1,257 ·10�6 Vs
Am

wird als magnetische Feldkonstante oder Permeabi-
lität des Vakuums bezeichnet. Eine präzisere Defini-
tion wird im Zusammenhang mit dem Induktionsge-
setz gegeben.

Befinden sich die Felder nicht im Vakuum, sondern
in einem Material, so muss die Proportionalität von
Gleichung (4.8) um eine materialabhängige Kon-
stante µr korrigiert werden. Diese liegt für die mei-
sten Materialien nahe bei eins, außer bei den fer-
romagnetische Materialien, welche in Kapitel 4.9.5
diskutiert werden.

Wie im elektrischen Feld ist auch im magnetischen
Feld Energie gespeichert. Die magnetische Energie-
dichte ist

wmagn =
1
2

µ0H2 =
1
2

HB ,

in offensichtlicher Analogie zur Elektrostatik (4.5).
Die entsprechenden Einheiten sind

[HB] =
A
m

Vs
m2 =

J
m3 .

Da die Energie proportional zum Quadrat der Feld-
stärke ist, erhält man wiederum eine effektive Absto-
ßung der Feldlinien. Ein Magnetfeld speichert somit
je nach Stärke eine große Energiemenge.
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4.8 Bewegte Ladungen im
Magnetfeld

4.8.1 Lorentzkraft

Bewegte Ladungen erzeugen Magnetfelder. Umge-
kehrt erzeugen Magnetfelder Kräfte auf bewegte La-
dungen. Während statische Ladungen nur von elek-
trischen Feldern beeinflusst werden, wirken auf be-
wegte Ladungen auch in einem magnetischen Feld
Kräfte.

q

B

v

FL

Abbildung 4.105: Kraft auf eine Ladung, die sich in
einem Magnetfeld bewegt.

Bewegt sich eine Ladung q mit der Geschwindigkeit
~v in einem Magnetfeld ~B (! Abb. 4.105), so spürt
sie eine Kraft

~FL = q(~v⇥~B),

welche als Lorentzkraft8 bezeichnet wird. Die drei
Vektoren Geschwindigkeit, Magnetfeldrichtung und
Kraft bilden ein rechtshändiges Koordinatensystem.
Die Kraft wird maximal wenn die Bewegung senk-
recht zum Magnetfeld erfolgt und verschwindet
wenn sie parallel zu den Feldlinien läuft. Da die
Kraft, und damit die Beschleunigung senkrecht zum
Geschwindigkeitsvektor stehen, ändert sich der Be-
trag der Geschwindigkeit nicht, sondern lediglich die
Richtung. In einem homogenen Magnetfeld bewe-
gen sich geladene Teilchen daher auf Kreisbahnen
oder Spiralbahnen.

Die Ablenkung der Elektronen in einem Elektronen-
strahl durch ein Magnetfeld wurde früher in Fernseh-
geräten und Computermonitoren verwendet. Abb.
4.106 zeigt eine experimentelle Verifizierung des Ef-
fekts mit Hilfe des sogenannten Fadenstrahlrohrs.

Um ein homogenes Magnetfeld zu erhalten verwen-
det man ein Spulenpaar in Helmholtz Anordnung.

8nach Hendrik Antoon Lorentz (1853 - 1928)

Abbildung 4.106: Fadenstrahlrohr.

Abbildung 4.107: Spur der Elektronen in Magnetfel-
dern unterschiedlicher Stärke.

Die Elektronen werden über eine Beschleunigungs-
spannung in die Röhre “geschossen”. Um den Elek-
tronenstrahl sichtbar zu machen, wird verdünntes
Wasserstoffgas verwendet, welches durch Elektro-
nenstösse zum Leuchten gebracht wird. Ohne ein
äußeres Feld bewegen sich die Elektronen geradli-
nig. Legt man ein Magnetfeld an, so wird der Strahl
gebogen. Je stärker das Magnetfeld, desto enger die
Kurve, wie in Abb. 4.107 gezeigt. Wird der Radius
genügend klein, so kann er vollständig in der Röhre
beobachtet werden.

4.8.2 Geladene Teilchen im Magnetfeld

Bewegt sich ein geladenes Teilchen senkrecht zum
Magnetfeld, so wirkt eine Kraft, die senkrecht zum
Magnetfeld und zum Geschwindigkeitsvektor steht.
Das Teilchen wird dadurch beschleunigt, der Betrag
der Geschwindigkeit ändert sich jedoch nicht. Ge-
schwindigkeit und Beschleunigung bleiben in einer
Ebene senkrecht zum Magnetfeld, das Teilchen be-
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wegt sich auf einer Kreisbahn. Der Radius r dieser
Kreisbahn ist gegeben durch das Gleichgewicht zwi-
schen Zentrifugalkraft FZF und Lorentzkraft FL :

FZF = m
v2

r
= FL = qvB.

Somit ist

mv = qrB.

Wird die Geschwindigkeit v durch Beschleunigung
mit einer elektrischen Potenzialdifferenz U erzeugt,
so beträgt die kinetische Energie

Ekin =
mv2

2
= qU.

Somit

m2v2 = q2r2B2 = 2mqU.

Der Radius beträgt somit

r =
1
B

s
2mU

q
.

Umgekehrt kann aus der Messung des Radius das
Verhältnis von Ladung zu Masse bestimmt werden

q
m

=
2U

r2B2 , (4.9)

sofern das Magnetfeld bekannt ist.

Diese Messung kann auch am Fadenstrahlrohr
durchgeführt werden. Im Experiment wurde eine Be-
schleunigungsspannung von 200 V verwendet. Der
gemessene Strom kann in ein Magnetfeld umgerech-
net werden:

B = 0,78 I
mT
A

.

Es wurden folgende Werte für Strom und Bahnradius
gemessen:

I [A] B [mT] r [cm] q/m [1011 C/kg]
1,25 0,998 4,55 1,94
1,5 1,17 3,73 2,1
2,0 1,56 2,91 1,94

Der Literaturwert beträgt, mit der Elementarladung
e und der Elektronenmasse me

e
me

=
1,602 ·10�19C
9,109 ·10�31kg

= 1,760 ·1011 C
kg

.

4.8.3 Anwendungen

Abbildung 4.108: Teilchenspuren in der BEBC
(=Big European Bubble Cham-
ber) am CERN.

Die Möglichkeit, aus der Bahn eines Teilchens seine
spezifische Ladung, also das Verhältnis von Ladung
zu Masse zu bestimmen, wird z.B. in der Teilchen-
physik intensiv genutzt, z.B. in so genannten Blasen-
kammern, wo die Messung des Bahnradius wichtige
Rückschlüsse auf die Art des erzeugten Teilchens er-
möglicht. Abb. 4.108 zeigt als Beispiel einige Spu-
ren, welche am CERN beobachtet wurden. Die Rich-
tung der Bahnkrümmung erlaubt die Bestimmung
des Vorzeichens der Ladung.

=Ub

−

2R

R

+

Teilchenquelle

Schirm

q, m

v0

Spektrallinie

Beschleunigungs- 
strecke

B

Abbildung 4.109: Massenspektrometer.

Man verwendet diesen Effekt auch, um Teilchen
nach ihrer Masse (genauer: dem Verhältnis aus La-
dung zu Masse) zu sortieren. Wie in Abb. 4.109 ge-
zeigt, werden die geladenen Teilchen zunächst in ei-
nem elektrischen Feld beschleunigt. Danach werden
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sie in einem Magnetfeld B abgelenkt, auf eine Kreis-
bahn mit Radius R. durch Auflösen von Gleichung
(4.9) erhält man die Masse als Funktion des Bahnra-
dius:

m = q
B2R2

2U
.

Solche Geräte werden z.B. in der Chemie verwen-
det, um Moleküle zu identifizieren. Sie werden als
Massenspektrometer bezeichnet.

4.8.4 Bahnen im Magnetfeld

Bewegt sich das Teilchen parallel zu den Magnet-
feldlinien, so verschwindet das Vektorprodukt~v⇥~B.
Somit wirkt in diesem Fall keine Kraft auf das Teil-
chen, es kann sich entlang der Magnetfeldlinien frei
bewegen.

 Unabhängigkeitsprinzip: 

 Komponente || B
allgemeine Bahn:

B

B

vp

 Komponente  B

Abbildung 4.110: Allgemeine Bahn im Magnetfeld.

Im allgemeinen Fall hat das Teilchen Geschwindig-
keitskomponenten parallel und senkrecht zum Ma-
gnetfeld. Während die parallele Komponente nicht
beeinflusst wird und deshalb konstant bleibt, wird
die senkrechte Komponente auf eine Kreisbahn ge-
zwungen. Insgesamt resultiert somit eine Spiralbe-
wegung um die Magnetfeldlinien, wie in Abb. 4.110
gezeigt. Dies kann wiederum im Fadenstrahlrohr be-
obachtet werden, indem man den Strahl verkippt, so
dass er auch eine Komponente parallel zur Achse der
Helmholtz-Spulen aufweist.

Bewegt sich ein geladenes Teilchen in einem inho-
mogenen Magnetfeld mit einer Geschwindigkeits-
komponente entlang der Magnetfeldrichtung, so
wirkt eine Kraft gegen diese Richtung, wie in Abb.

Abbildung 4.111: Magnetische Flasche.

4.111 gezeigt. Die Geschwindigkeit in Feldrichtung
wird dadurch reduziert. Offenbar wirken somit Re-
gionen starken Feldes wie ein Spiegel. "Magnetische
Flaschen" können deshalb für den Einschluss von
elektrisch geladenen Teilchen verwendet werden.

4.8.5 Geladene Teilchen im Erdmagnetfeld

Abbildung 4.112: Geladene Teilchen im Magnetfeld
der Erde.

Das Magnetfeld der Erde fängt auf ähnliche Weise
elektrisch geladene Teilchen ein. Abb. 4.112 zeigt
schematisch die Regionen, in denen Teilchen einge-
fangen werden.

Diese Bewegung von geladenen Teilchen ist u.a. für
die Strahlungsgürtel (van Allen Gürtel) um die Er-
de verantwortlich. Allerdings können geladene Teil-
chen ebensowenig in diesen Bereich eindringen wie
sie ihn verlassen können. Die hier gefangenen Teil-
chen wurden stattdessen zu einem wesentlichen Teil
in der Magnetosphäre erzeugt. Wie in Abb. 4.113
gezeigt, schlagen kosmische Strahlen aus der Erdat-
mosphäre Neutronen heraus, welche als ungeladene
Teilchen vom Magnetfeld der Erde nicht beeinflusst
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Abbildung 4.113: Einfangen der Teilchen.

werden. Sie haben jedoch eine endliche Lebensdauer
und zerfallen z.T. im Magnetfeld in Protonen. Diese
werden vom Magnetfeld eingefangen.

Abbildung 4.114: Verformung des Erdmagnetfeldes
im Sonnenwind.

Das Magnetfeld der Erde wird verzerrt durch den
Sonnenwind. Abb. 4.114 zeigt den Effekt. Dieser
kommt dadurch zustande, dass die geladenen Teil-
chen im Magnetfeld durch die Lorentzkraft in unter-
schiedliche Richtungen abgelenkt werden. Dadurch
fließt netto ein Strom senkrecht zum äußeren Ma-
gnetfeld. Dieser Strom erzeugt ein zusätzliches Ma-
gnetfeld, welches sich dem vorhandenen überlagert.
Das Resultat entspricht einer Kraft auf die Feldlini-
en: sie werden in der Richtung der bewegten Ladun-
gen gedrückt. Das Magnetfeld der Erde ist deshalb
stark asymmetrisch: Auf der Seite der Sonne fällt es
nach ca. 10 Erdradien auf die Stärke des Magnetfel-
des der Sonne ab; auf der sonnenabgewandten Seite
reicht es bis auf ca. 1000 Erdradien hinaus.

Abbildung 4.115: Das Polarlicht (Aurora Borealis)
entsteht in den obersten Schichten
der Erdatmosphäre.

Die geladenen Teilchen des Sonnenwindes werden
vom Magnetfeld der Erde abgelenkt, aber nicht ein-
gefangen. Wenn sie in die Erdatmosphäre eindrin-
gen, ionisieren sie die Luftmoleküle und regen sie
zum Leuchten an, wie in Abb. 4.115 gezeigt. Das
kann als Nordlicht beobachtet werden. Die Leuchter-
scheinungen finden in der Ionosphäre, in Höhen von
mehreren hundert Kilometern statt, da die Teilchen
nicht bis in niedrigere Bereiche der Atmosphäre ge-
langen.

Abbildung 4.116: Polarlicht aus dem Weltraum.

Die Satellitenaufnahme in Abb. 4.116 zeigt, dass
Nordlichter vor allem in der Nähe der magnetischen
Pole stattfinden, wo die Magnetfeldlinien des Erd-
magnetfeldes in die Erdatmosphäre eindringen.

Wie das Licht zustande kommt lässt sich u. A. an
seinem Spektrum ablesen: im Gegensatz zum Son-
nenlicht, welches ein kontinuierliches Spektrum auf-
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Abbildung 4.117: Spektren aus dem Nordlicht.

weist (d.h. sämtliche Wellenlängen sind vorhanden),
besitzt das Nordlicht ein diskretes Linienspektrum,
wie in Abb. 4.117 gezeigt. Die beobachteten Lini-
en kommen dadurch zustande, dass die hochenerge-
tischen Teilchen beim Eintreten in die Erdatmosphä-
re durch Stösse Luftmoleküle ionisieren. Wenn diese
aus ihren hoch angeregten Zuständen in niedriger an-
geregte zurückfallen senden sie Licht von wohl defi-
nierter Wellenlänge aus.

4.8.6 Gekreuzte E- und B-Felder

Die Lorentzkraft ist genau so wie die Coulomb-
Wechselwirkung proportional zur Ladung. Die Lor-
entzkraft ist zusätzlich aber auch proportional zur
Geschwindigkeit, d.h. sie verschwindet, wenn die
Ladung ruht. Man kann diesen Unterschied dazu
verwenden, ein Geschwindigkeitsfilter für geladene
Teilchen zu konstruieren.

Abbildung 4.118: Gekreuzte Felder als Geschwin-
digkeitsfilter.

Abb. 4.118 zeigt das Prinzip: Man verwendet dazu
ein elektrisches und ein magnetisches Feld im rech-
ten Winkel zueinander. Eine Ladung q, welche sich

durch diese beiden Felder bewegt, erfährt die Kraft

~F = q(~E +~v⇥~B).

Diese verschwindet wenn die beiden Vektoren ~E und
~v⇥~B in entgegengesetzte Richtungen zeigen und die
Geschwindigkeit des Teilchens gerade

v0 =
|E|
|B|

beträgt. Teilchen, für die diese Bedingung erfüllt
ist, treffen durch die Blende am Ende des Appa-
rates, während langsamere oder schnellere Teilchen
nach unten oder oben abgelenkt werden, wie in Abb.
4.118 gezeigt.

Die elektrische und die magnetische Kraft sind bei-
de proportional zur Ladung q, aber die Lorentz-
kraft ist außerdem proportional zur Geschwindigkeit
v. Bei geringen Geschwindigkeiten ist deshalb die
Coulomb-Kraft meistens wichtiger. Bei hohen Ge-
schwindigkeiten, d.h. v ⇡ c ändert sich dies jedoch.
Ein Magnetfeld von 1 T erzeugt dann die gleiche
Kraft wie ein elektrisches Feld

E = cB = 3 ·108 V
m

.

Dieser Wert ist deutlich höher als die Werte, welche
üblicherweise in einem Labor erreicht werden kön-
nen. Für schnelle Teilchen sind somit Magnetfelder
eine deutlich effizientere Methode, ihre Flugbahn zu
lenken.

4.8.7 Zyklotron

Mit Hilfe einer Kombination von elektrischen und
magnetischen Feldern können elektrische Teilchen
auf räumlich begrenztem Raum auf hohe Geschwin-
digkeiten beschleunigt werden. Ein relativ weit ver-
breitetes Gerät ist das Zyklotron.

Im Zyklotron (! Abb. 4.119) werden Protonen
durch ein homogenes Magnetfeld auf Kreisbahnen
gezwungen. Zur Beschleunigung wird zwischen den
beiden halbkreisförmigen (D-förmigen) Elektroden
ein elektrisches Wechselfeld angelegt. Dieses wird
synchron mit den umlaufenden Ionen umgepolt, ty-
pischerweise mit 10-30 MHz. Dadurch erfahren die
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Abbildung 4.119: Zyklotron.

positiven Ionen im Spalt zwischen den beiden Elek-
troden immer ein Feld in Vorwärtsrichtung und wer-
den so beschleunigt. Im Bereich der Elektroden ist
das Gebiet frei von elektrischen Feldern, sie werden
lediglich durch das senkrecht zu den Platten ange-
legte magnetische Feld auf Kreisbahnen geführt.

Wechsel-
spannung

Vakuumpumpe
Deflektor

Vakuum-
kammer

Fenster

“Dees”

Abbildung 4.120: Bewegung der Ionen im Zyklo-
tron.

Abb. 4.120 zeigt die Bahnen von geladene Teil-
chen im Magnetfeld. Bei konstanter Energie sind die
entsprechenden Bahnen Kreisbahnen, wie in Kapi-
tel 4.8.4 gezeigt. Deren Radius ist bestimmt durch
das Gleichgewicht aus Lorentzkraft und Zentrifugal-
kraft:

evB = m
v2

r
.

Daraus ergibt sich der Radius der Kreisbahn

r =
mv
eB

und die Geschwindigkeit der Teilchen

v =
eBr
m

.

Der Radius ist somit proportional zur Geschwindig-
keit und indirekt proportional zur Stärke des Ma-
gnetfeldes. Beim Beschleunigungsprozess wird den
Elektronen durch Hochfrequenzfelder Energie zuge-
führt, sie werden also beschleunigt. Aufgrund der
zunehmenden Geschwindigkeit wird der Bahnradius
größer. Da der Radius proportional ist zur Geschwin-
digkeit, bleibt die Umlaufzeit konstant,

T =
2pr

v
= 2p

m
eB

.

Somit ist die benötigte Hochfrequenz für alle Teil-
chen die gleiche, unabhängig von ihrer Geschwin-
digkeit und dem Bahnradius. Sie hängt jedoch von
der spezifischen Ladung e/m ab.

Die Energie der Ionen ist

Ekin =
mv2

2
=

(eBr)2

2m
.

Die maximale Energie wird erreicht, wenn die Teil-
chen den maximalen Radius erreichen. Dieser ist
durch die Grenzen des Vakuumgefäßes oder des Ma-
gnetfeldes gegeben. Mit solchen Geräten können
Energien von bis zu 25 MeV erreicht werden.

4.8.8 Hall Effekt

Während wir bisher nur die Bewegung geladener
Teilchen im Vakuum diskutiert haben findet man
die gleichen Prozesse auch in Materie. So kann die
Kompensation von gekreuzten elektrischen und ma-
gnetischen Feldern in Halbleitern beobachtet wer-
den. Er wird dort als Hall-Effekt bezeichnet.

Abbildung 4.121: Hall Effekt: Strom im Magnet-
feld.
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Fließt ein Strom in einem dünnen Plättchen der
Dicke `, und ist ein Magnetfeld senkrecht dazu an-
gelegt, so erfahren die Ladungsträger eine Lorentz-
kraft, welche sie in der Geometrie von Abb. 4.121
nach oben oder unten ablenkt. Abb. 4.121 zeigt die
entsprechende Mess-Anordnung. Die Lorentzkraft
wird dann kompensiert, wenn sich durch die abge-
lenkten Ladungsträger ein elektrisches Feld senk-
recht zur Flussrichtung aufgebaut hat.

Abbildung 4.122: Kräfte beim Hall Effekt.

Abb. 4.122 zeigt den Fall, dass sich die Kräfte gerade
kompensieren - einmal für positive Ladungen, ein-
mal für negative. Handelt es sich bei den Ladungs-
trägern um Elektronen, so ist die Bewegungsrich-
tung der Ladungsträger entgegen der Stromrichtung.
Dann kompensiert das Feld die Lorentzkraft wenn

eEx =
eUx

`
= �evyBz .

Diese resultierende Spannung

Ux = �`vyBz = UH

wird als Hall-Spannung UH bezeichnet.

Wie in Kapitel 4.5.7 diskutiert, wird die Geschwin-
digkeit vy der Ladungsträger als Driftgeschwindig-
keit bezeichnet. Sie kann über die Stromdichte j und
Ladungsträgerdichte n bestimmt werden:

j =
I

`d
= nqvy .

Damit wird die Driftgeschwindigkeit

vy =
j

nq
=

I
`d nq

und wir erhalten für die Hall Spannung

UH = Ux = �` jBz

nq
= � IBz

nqd
.

Die Messung der Hall Spannung kann deshalb zur
Messung der magnetischen Flussdichte Bz (bei be-
kannter Ladungsträgerdichte) oder zur Messung der
Ladungsträgerdichte n (bei bekannter Flussdichte)
verwendet werden.

4.8.9 Messung der Ladungsträgerdichte

Die Hall Spannung ist indirekt proportional zur
Dichte der Ladungsträger. Der Grund ist, dass bei
geringerer Ladungsträgerdichte die Geschwindigkeit
der Ladungsträger bei gegebenem Strom größer ist
und somit die Lorentzkraft stärker wirkt. Deshalb
macht sich der Halleffekt bei Halbleitern, wo die La-
dungsträgerdichte gering ist, stärker bemerkbar als
bei Metallen mit hoher Ladungsträgerdichte.

Abbildung 4.123: Messung des Hall Effektes.

Abb. 4.123 zeigt ein entsprechendes Experiment.
Hier wird ein Wismut Plättchen mit einer Breite von
d = 2 mm verwendet. Die Ladungsträgerdichte ne
von Wismut beträgt 2·106 C m�3. Bei einem Strom
von 4 A und einem Feld von B = 35 mT erhält man
eine Hall Spannung von

UH =
4A35 ·10�3T

2 ·106Cm�32 ·10�3m
= 35µV .

Wismut ist für Hall-Experimente wegen der gerin-
gen Ladungsträgerdichte besonders geeignet. Für
Kupfer findet man im Experiment eine Hall-
Konstante (Materialkonstante)

KH =
1

nq
= �0.55 ·10�3 m3

C
.

Das Vorzeichen besagt dass die Ladungsträger nega-
tiv (d.h. Elektronen) sind. Mit q = �e = -1.6·10�19
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C findet man für die Dichte der Ladungsträger

n =
1

KHe
=

1
1,6 ·10�19C0,55 ·1010m3/C

= 11,3 ·1028m�3 .

Diesen Wert kann man vergleichen mit der Dichte
der Atome in Kupfer:

nCu =
NAr

M
=

6,02 ·10238,91 ·106

63,55
m�3

= 8,46 ·1028m�3 .

Offenbar tragen pro Cu-Atom 1,3 Elektronen zur
elektrischen Leitung bei. Man kann dies verallge-
meinern: In metallischen Leitern ist das Verhältnis
der Leitungselektronen zu Atomen von der Größen-
ordnung eins.

Aus dem Vorzeichen der Hall Konstanten kann man
auch die Art der Ladungsträger bestimmen. In den
meisten Metallen sind die Ladungsträger negativ ge-
laden, d.h. es handelt sich um Elektronen.

4.8.10 Stromdurchflossene Leiter im
Magnetfeld

Abbildung 4.124: Leiterschaukel im Magnetfeld.

Befinden sich die bewegten Ladungen in einem Lei-
ter, so wirkt eine entsprechende Kraft auf den Leiter.
Abb. 4.124 zeigt eine entsprechende experimentelle
Anordnung. Die Summe der Lorentz-Kräfte auf alle
N = nV beweglichen Ladungen im Volumen V be-
trägt

~FL = V nq(~v⇥~B) = V (~j ⇥~B).

Hier wurde die Stromdichte

j =
I
A

= nqv

verwendet, wobei angenommen wurde, dass sie über
das betrachtete Volumen konstant sei. Dies ist für in-
finitesimale Volumenelemente erfüllt; es ist deshalb
sinnvoll, die Kraft auf das entsprechende Volumen-
element zu beziehen:

~FL

DV
= ~j ⇥~B.

Offenbar ergibt das Vektorprodukt von Stromdich-
te und Flussdichte die Kraftdichte. Diese Gleichung
enthält keine Proportionalitätskonstante; dies ist kein
Zufall: Die Flussdichte B wurde so definiert, dass in
dieser Gleichung die Proportionalitätskonstante = 1
wird.

Genau wie die Ladungen wird der stromdurchflosse-
ne Leiter senkrecht aus dem Magnetfeld hinaus ge-
drückt. Die Kraft beträgt für ein infinitesimales Lei-
terstück d`

d~F = I(d~̀⇥~B).

Man verifiziert im qualitativen Vorlesungsexperi-
ment dass sowohl eine Umkehrung der Stromrich-
tung wie auch eine Umkehrung der Richtung des
Magnetfeldes eine Umkehr der Kraftwirkung erge-
ben.

Den gleichen Effekt kann man auch über das Ma-
gnetfeld erklären: Der stromdurchflossene Leiter er-
zeugt ein kreisförmiges Magnetfeld, welches dem
äußeren Magnetfeld überlagert wird. Das gesamte
Magnetfeld ist auf einer Seite des Leiters schwächer
als auf der anderen Seite. Da Magnetfeldlinien sich
gegenseitig abstoßen, resultiert dies in einer Kraft
auf den Leiter, welche so wirkt, dass die Feldstärke
ausgeglichen wird.

4.8.11 Parallele stromdurchflossene Leiter

Analog wirkt eine Kraft zwischen zwei stromdurch-
flossenen Leitern, wie im Beispiel von Abb. 4.125.
Man kann dies verstehen, indem man die Kraft, die
auf den Leiter 2 wirkt, beschreibt als Resultat des
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Abbildung 4.125: Parallele stromdurchflossene Lei-
ter.

Stromflusses im Magnetfeld des Leiters 1 (und um-
gekehrt): Der eine Leiter erzeugt ein Magnetfeld

H1 =
I1

2pr
! B1 =

µ0

2p

I1

r
.

Der stromdurchflossene zweite Leiter der Länge ` er-
fährt damit eine Kraft

~F2 = I2~̀⇥~B .

Die Richtung der Kraft ist offenbar senkrecht zum
Leiter und senkrecht zum Feld. Das Feld ist wieder-
um senkrecht zur Ebene, in der sich die beiden Lei-
ter befinden. Damit wirkt die Kraft in der Ebene der
Leiter. Der Betrag ist

|F | =
µ0`

2pr
I1I2 .

Da die Kraft auf beide Leiter gleich wirkt, wurde
hier der Index 2 weggelassen. Der numerische Wert
wird mit µ0 = 4p ·10�7 Vs/Am und I1 = I2 = 1A,` =
r = 1m, |F | = 2 · 10�7 N. Dieser Wert ist exakt, oh-
ne Rundung, weil die Stromstärke im SI-System so
definiert ist:

1 Ampere ist die Stärke eines zeitlich unverän-
derlichen Stroms, der, durch zwei im Vakuum
parallel im Abstand von 1 Meter voneinander
angeordnete, geradlinige, unendlich lange Lei-
ter von vernachläßigbar kleinem kreisförmigem
Querschnitt fließend, zwischen diesen Leitern je
1 Meter Leiterlänge die Kraft 2·10�7 Newton
hervorruft.

Für praktische Realisierungen werden allerdings et-
was andere Geometrien verwendet. Die Richtung der
Kraft ist anziehend, sofern die beiden Ströme paral-
lel fließen, abstoßend wenn sie in entgegengesetzte
Richtungen fließen.

Abbildung 4.126: Feldlinien von 2 parallelen Strö-
men.

Man kann den Effekt auch auf eine etwas symme-
trischere Weise herleiten, indem man die Überlage-
rung der Feldlinien betrachtet, wie in Abb. 4.126 ge-
zeigt. Fließen die beiden Ströme parallel, so kommt
es zwischen den beiden Leitern zu einer Redukti-
on der Feldstärke und damit zu einer anziehenden
Kraft. Fließen die beiden Ströme in entgegengesetz-
ter Richtung, so verstärken sich die Felder zwischen
den Leitern und die Abstoßung der Feldlinien führt
zu einer Abstoßung der Leiter.

ohne Strom nach Einschalten des Stroms

Abbildung 4.127: Pinch Effekt an einem System aus
Aluminiumleitern.

Die gegenseitige Anziehung von parallel fließenden
Strömen erzeugt eine Art gegenseitige Anziehungs-
kraft. Je größer die Stromdichte desto größer die ge-
genseitige Anziehung. Abb. 4.127 zeigt dies an ei-
nem einfachen Beispiel, in dem ein Strom durch ein
Bündel von Aluminiumstreifen fließt. Diese ziehen
sich immer stärker zusammen, bis sie an der dünn-
sten Stelle verglühen.
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4.8.12 Drehmoment auf Leiterschleife

Abbildung 4.128: Kräfte auf Leiterschleife im Ma-
gneten.

Wir verwenden diese Resultate, um das Drehmo-
ment zu berechnen, welches auf eine stromdurch-
flossene Leiterschleife in einem Magnetfeld wirkt.
Abb. 4.128 zeigt die entsprechende Anordnung. Die
Leiterschleife sei um eine Achse (in der Figur ge-
strichelt gezeichnet) drehbar gelagert. Wir brauchen
hier nur die beiden parallelen Teilstücke der Länge `
zu betrachten. Sie liegen senkrecht zu den Magnet-
feldlinien, so dass der Betrag der Kraft durch

F = I `B

gegeben ist. Zusammen bilden sie ein Kräftepaar
und erzeugen ein Drehmoment

M = F `0 sinq

0 = I ``0 B sinq

0 = I AB sinq

0,

also proportional zum Produkt aus Strom, stromum-
flossener Fläche A und Flussdichte B. Das Drehmo-
ment wird maximal, wenn die Flächennormale zur
Schleife senkrecht zu den Feldlinien liegt, also bei
q

0
= ±p/2.

Man kann dieses Resultat auch sehr kompakt schrei-
ben als

~M = I~A⇥~B,

wobei ~A wie üblich senkrecht auf der Fläche A steht
und sein Betrag gleich der Fläche ist. Dieses Resul-
tat gilt allgemein, nicht nur für rechteckige Strom-
schleifen. In Analogie zum entsprechenden Resultat
der Elektrostatik kann man ein magnetisches Dipol-
moment ~µ definieren

~
µ = I~A

Abbildung 4.129: Demonstration des Drehmoments.

und erhält ~M =~
µ ⇥~B - genau wie zu Beginn des Ka-

pitels für elementare magnetische Dipole diskutiert.

Man kann diesen Effekt leicht verifizieren, indem
man eine stromdurchflossene Spule in das Magnet-
feld eines Permanentmagneten bringt. Abb. 4.129
zeigt das entsprechende Experiment.

Abbildung 4.130: Schematischer Aufbau eines
Drehspulinstruments.

Dieses Prinzip kann z.B. für die Messung eines
Stroms verwendet werden. Wie in Abb. 4.130 ge-
zeigt, lässt man ihn durch eine Leiterschleife flie-
ßen, welche sich in einem Magnetfeld befindet. Die
beiden Teilstücke, welche senkrecht zu den Feldlini-
en laufen, erzeugen ein Drehmoment, welches über
einen Zeiger nachgewiesen wird.

4.8.13 Elektromotoren

Das Drehmoment, welches eine stromdurchflosse-
ne Spule in einem Magnetfeld erfährt, bildet auch
die Basis für Elektromotoren. Wie in Abb. 4.131
gezeigt, verwendet man einen statischen Magneten
(Stator) und stromdurchflossene Leiter, welche einen
magnetischen Dipol erzeugen, der sich im Magnet-
feld des Stators ausrichtet.
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Abbildung 4.131: Aufbau eines Elektromotors.

Da man in diesem Fall im Allgemeinen eine kontinu-
ierliche Rotation erhalten möchte, muss der Strom-
fluss entsprechend angepasst werden. Indem man
diesen Dipol in eine andere Richtung dreht erreicht
man eine Drehung des Rotors. Dazu müssen die
Ströme im richtigen Moment auf andere Leitersät-
ze übertragen werden. Dies leisten die sogenannten
Bürsten oder Schleifkontakte. Diese Art von Moto-
ren wird mit Gleichstrom betrieben und wird deshalb
als Gleichstrommotor bezeichnet.

Eine andere Möglichkeit ist der Betrieb mit Wech-
selstrom. Entsprechende Motoren werden als Wech-
selstrommotoren bezeichnet.

4.8.14 Elektromagnetische Bezugsysteme

Die elektrischen und magnetischen Felder sind eng
miteinander verknüpft; bei einem Wechsel des Be-
zugsystems gehen die einen (teilweise) in die andern
über.

Abbildung 4.132: Kraft auf bewegte Ladung.

Abb. 4.132 zeigt eine Box, in der eine Ladung

an einem Kraftmesser aufgehängt ist. Wird diese
Box durch ein horizontales (||y) Magnetfeld bewegt,
wirkt auf die Ladung eine Lorentzkraft

~F1 = q(~v⇥~B)

nach unten. Für einen Beobachter, der sich mit der
Box mitbewegt, wird v = 0, und die Lorentzkraft ver-
schwindet. Er sieht aber trotzdem die Auslenkung.
Offenbar existiert in seinem Bezugsystem ein elek-
trisches Feld, welches eine Kraft

~F2 = q~E

bewirkt. Offenbar entsteht durch den Übergang ins
bewegte Bezugsystem ein zusätzliches Feld

~E 0 =~v⇥~B .

Abbildung 4.133: Felder in einem bewegten Bezug-
system.

Ein analoges Gedankenexperiment kann man für
magnetische Wechselwirkungen durchführen. In
Abb. 4.133 bewegt sich eine Magnetnadel zwischen
zwei geladenen Platten. Ein Beobachter, der sich mit
der Nadel mitbewegt, sieht auf beiden Seiten eine
Flächenstromdichte, welche ein Magnetfeld erzeugt.
Die Stärke dieses Magnetfeldes beträgt (ohne Her-
leitung)

B0 = �e0µ0(~v⇥~E) ,

wobei ~E das Feld ist, welches im Ruhesystem durch
die Ladungsverteilung erzeugt wird.

Beide Felder - das elektrische wie das magnetische -
sind jeweils senkrecht zur Bewegungsrichtung und
senkrecht zum ursprünglichen Feld orientiert. Die
Feldkomponenten entlang der Bewegungsrichtung
werden jeweils nicht betroffen.
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4.8.15 Lorentz-Transformation

Die hier diskutierten Beziehungen müssen modi-
fiziert werden wenn die Geschwindigkeit sich der
Lichtgeschwindigkeit c nähert. Sie lauten dann für
eine Bewegung in x-Richtung mit Geschwindigkeit
vx = bc :

E 0
x = Ex H 0

x = Hx
E 0

y = g(Ey � vxBz) H 0
y = g(Hy + vxDz)

E 0
z = g(Ez + vxBy) H 0

z = g(Hz � vxDy)

Der Lorentz-Faktor

g =
1q

1� v2

c2

wurde bereits in Kapitel 2.8.11 eingeführt. Er ist ~
1 so lange die Geschwindigkeit klein ist im Ver-
gleich zur Lichtgeschwindigkeit. Wie in der Relati-
vitätstheorie gezeigt wird kann die Geschwindigkeit
nicht größer als c werden. Wenn v ! c geht, wird g

sehr groß. Diese Transformation der Feldgleichun-
gen kann auch verwendet werden, um z.B. das Biot-
Savart’sche Gesetz aus dem Coulomb-Gesetz herzu-
leiten.

Ladung 
in Ruhe

v
Schnelle 
Ladung

Beschleunigte 
 Ladung

v, a

Abbildung 4.134: Feldlinien von relativistisch be-
wegten Ladungen.

Die Feldlinien sehen dementsprechend anders aus:
für sehr schnelle Teilchen sind die Feldlinien in ei-
ner Ebene senkrecht zur Bewegungsrichtung kon-
zentriert, wie in Abb. 4.134 gezeigt. Bei beschleu-
nigten Ladungen werden sie außerdem gekrümmt.

Dies ist auch der Grund dafür dass die Strahlung
bei relativistischen Teilchen grösstenteils in Vor-
wärtsrichtung abgestrahlt wird. Abb. 4.135 zeigt den
Strahlungskegel für eine Ladung, welche sich mit

relativistiches 
Teilchen

v

Relativistische Verengung des 
Strahlungskegels in Vorwärtsrichtung

v = 0,9 c

Abbildung 4.135: Relativistische Verengung des
Strahlungskegels in Vorwärtsrich-
tung.

90 % der Lichtgeschwindigkeit bewegt. Ein Beispiel
dafür solche relativistischen Teilchen sind Elektro-
nen in einem Speicherring (wie z.B. DELTA).

4.9 Materie im Magnetfeld

Diese Kapitel behandelt die magnetischen Eigen-
schaften von Materie. Hier geht es nicht um mikro-
skopische elementare Teilchen wie einzelne magne-
tische Dipole, sondern um makroskopische Körper.
Deren Eigenschaften können jedoch auf die Wech-
selwirkungen zwischen den darin enthaltenen ele-
mentaren magnetischen Dipolen zurückgeführt wer-
den.

188



4 Elektrizität und Magnetismus

4.9.1 Elementare magnetische Dipole

Ein Stahldraht kann magnetisiert werden indem man
ihn in ein Magnetfeld bringt. Der Draht enthält an-
schließend einen Nord- und einen Südpol, wie man
anhand der Wechselwirkung mit einer Kompassna-
del nachweisen kann.

Abbildung 4.136: Dipole in einem magnetisierten
Draht.

Dass es sich hier um mikroskopische Dipol handelt,
und nicht um jeweils einen magnetischen Monopol
am Ende des Drahtes, sieht man daran, dass man
beim Teilen des Drahtes in zwei Teile die Teile nicht
eine “Ladung” enthalten, sondern selber wieder als
Dipole wirken, wie in Abb. 4.136 gezeigt.

Abbildung 4.137: Elementarer Dipol = Kreisstrom.

Die Aufteilung in immer kleinere Dipole geht weiter
bis auf die atomare Ebene. Wie bei der Diskussion
der stromdurchflossenen Leiterschleife gezeigt, er-
zeugen elektrische Kreisströme magnetische Dipol-
momente

~
µ = IA~n [µ]= Am2 ,

wobei I den Strom, A die Fläche und ~n den Nor-
malenvektor auf die Fläche darstellt. Solche Dipole
existieren auch in mikroskopischer Form in unter-
schiedlichen Materialien. Als ein einfaches Modell
berechnen wir das magnetische Moment eines Elek-
trons, welches wie in Abb. 4.137 gezeigt um einen
Atomkern kreist. In einem klassischen Modell be-
schreiben wir den Kreisstrom durch ein einzelnes

Elektron. Dieses erzeugt einen Strom

|I| = e
w

2p

.

Damit wird das magnetische Moment

µ = Ipr2 =
r2ew

2
.

In der Quantenmechanik wird gezeigt, dass der Dre-
himpuls von Elektronen in Atomen nur Werte anneh-
men kann, die einem Vielfachen der Planck’schen
Konstanten

h̄ =
h

2p

= 1,05459 ·10�34Js

besitzen; im klassischen Modell entspricht dies für
den kleinsten nicht verschwindenden Wert des Dre-
himpulses

h̄ = mer2
w.

Damit wird das magnetische Moment dieses atoma-
ren Kreisstroms

µB =
eh̄

2me
=

1,6 ·10�19C1,05 ·10�34Js
2,9 ·10�31kg

= 9,27 ·10�24Am2 .

Dieses elementare magnetische Moment wird als
Bohr’sches Magneton bezeichnet. Es stellt die Ein-
heit für mikroskopische magnetische Momente dar.
In realen Systemen ergeben sich Korrekturen, die
aber von der Größenordnung von eins sind.

4.9.2 Magnetisierung

Abbildung 4.138: Induzierte Kreisströme.
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Abbildung 4.139: Links: Spule erzeugt Magnetfeld.
Rechts: magnetisches Material er-
höht die Flussdichte.

Analog zum elektrischen Feld wird auch bei magne-
tischen Feldern im Material eine magnetische Pola-
risation induziert, wie in Abb. 4.138 gezeigt.

Wir betrachten zunächst die Anordnung von Abb.
4.139 links: eine Solenoidspule erzeugt im Innern
ein Magnetfeld H. Bringt man ein magnetisches Ma-
terial in diese Spule so stellt man fest, dass die
magnetische Flussdichte B bei gleichem Strom zu-
nimmt, wie in Abb. 4.139 rechts gezeigt. Die Zunah-
me der Flussdichte B kann man mit einer Hall-Sonde
messen, wenn der Eisenkern hineingeschoben wird.
Man kann sich dies so vorstellen, dass im magneti-
schen Stab Ringströme fließen, welche ein zusätzli-
ches Feld erzeugen, das parallel zum externen Feld
µH liegt.

Wie in Abb. 4.138 und 4.139 gezeigt, kann man sich
diese zusätzlichen Ringströme entweder als an der
Oberfläche liegend (wie die Oberflächenladungen
bei Dielektrika) vorstellen, oder als kleine Ringströ-
me im gesamten Volumen des Stabes. Die Ringströ-
me im Innern kompensieren sich gegenseitig, ledig-
lich der Oberflächenstrom bleibt unkompensiert. Im
Gegensatz zu einer normalen Stromdichte ist die-
ser magnetische Oberflächenstrom jedoch verlust-
frei, d.h. er führt nicht zu einer Erwärmung und
bleibt zeitlich unverändert.

Die gesamte magnetische Flussdichte im Material ist

Bm = µrB0 = µrµ0H0 = B0 + µ0J,

wobei sich H0 und B0 auf die Situation ohne Materi-
al, d.h. auf die leere Spule beziehen. µr ist die relati-
ve Permeabilität (=Durchlässigkeit) des Mediums.

In der letzten Gleichung stellt der Term µ0J den Bei-
trag des Materials zum gesamten Feld dar. J wird als

magnetische Polarisation oder Magnetisierung be-
zeichnet, und ist durch die Stärke, Dichte und Aus-
richtung der mikroskopischen Dipole gegeben. Sie
ist häufig proportional zum äußeren Feld,

~J = (µr �1)~H0 = cm~H0.

Die Proportionalitätskonstante cm wird als magneti-
sche Suszeptibilität bezeichnet. Sie kann wahlweise
anstelle der Permeabilität µr verwendet werden.

Permeabilität und magnetische Suszeptibilität kön-
nen gemessen werden, indem man die Änderung der
Induktivität einer Spule beim Einführen des entspre-
chenden Materials misst - in enger Analogie zum Di-
elektrikum im Plattenkondensator.

4.9.3 Klassifikation magnetischen
Verhaltens

Man unterscheidet drei Klassen von magnetischen
Materialien, welche sich durch die Werte von cm un-
terscheiden:

• in diamagnetischen Materialien ist die magne-
tische Polarisation klein und entgegen dem äu-
ßeren Feld ausgerichtet, cm < 0 .

• in paramagnetischen Materialien ist die magne-
tische Polarisation klein und parallel zum äuße-
ren Feld ausgerichtet, cm > 0 .

• in ferromagnetischen Materialien ist die ma-
gnetische Polarisation groß und parallel zum
äußeren Feld ausgerichtet, cm � 0. Häufig ist
sie aber nicht mehr proportional zum äußeren
Feld.

Ist die Suszeptibilität negativ, so ist die induzierte
Magnetisierung dem äußeren Magnetfeld entgegen-
gerichtet. Die Energie des so induzierten magneti-
schen Dipols ist damit positiv und proportional zur
Stärke des Magnetfeldes. Auf ein diamagnetisches
Material wirkt deshalb eine Kraft in Richtung des
schwächeren Feldes.

Diesen Fall erhält man z.B. wenn man eine Glas-
kugel in ein inhomogenes magnetisches Feld bringt,
wie in Abb. 4.140 gezeigt. Dabei spielt es keine Rol-
le welches der Nord- und welches der Südpol ist, die
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Abbildung 4.140: Kraft in einem inhomogenen Ma-
gnetfeld.

Glaskugel wird immer in Richtung des schwächeren
Feldes bewegt. Im Gegensatz dazu ist die Magneti-
sierung in einem paramagnetischen Material parallel
zum äußeren Feld orientiert. Es kann seine Energie
somit erniedrigen indem es sich in Richtung des stär-
keren Feldes bewegt. Diesen Fall kann man mit einer
Aluminiumkugel nachvollziehen.

Die Unterscheidung zwischen Dia- und Paramagne-
tismus kann auch mit Hilfe von Stäbchen vorgenom-
men werden, welche sich im Magnetfeld parallel re-
spektive senkrecht zu den Feldlinien ausrichten.

B = 0

Magnetfeld aus

B > 0

Magnetfeld ein

Abbildung 4.141: Eine rote paramagnetische Flüs-
sigkeit wird in ein Magnetfeld
hinein gezogen.

Magnetische Eigenschaften findet man nicht nur
in Festkörpern; auch Flüssigkeiten sind paramagne-
tisch wenn sie entsprechende Ionen enthalten. Abb.
4.141 zeigt als Beispiel eine Lösung von FeCl3, wel-
che paramagnetische Eisenionen enthält. Auch in
diesem Fall kann das Material Energie gewinnen in-
dem es sich in das Gebiet mir höherer Energie be-
wegt, also im Rohr hochsteigt.

Abb. 4.142 fasst die wichtigsten magnetischen Stof-
feigenschaften zusammen.

Abbildung 4.142: Übersicht über magnetische Ma-
terialeigenschaften.

4.9.4 Mikroskopisches Modell

Das magnetische Verhalten unterschiedlicher Mate-
rialien kann auf mikroskopische Eigenschaften zu-
rückgeführt werden. Die wichtigsten Beiträge stam-
men von den magnetischen Momenten der Elek-
tronen, wobei unterschieden werden kann zwischen
deren Bahnmoment ~mBahn und Spin-Moment ~mSpin,
welcher der Eigenrotation der Elektronen entspricht.

Der Diamagnetismus existiert in allen Körpern; er
kann jedoch durch andere Effekte überdeckt wer-
den. In diamagnetischen Materialien sind die Elek-
tronen jeweils in Paaren vorhanden, deren magne-
tische Momente entgegengesetzt ausgerichtet sind.
Dadurch tragen diese nicht zum Magnetismus bei.
Hingegen erzeugt das äußere Magnetfeld eine Prä-
zession der Elektronenhülle. Der daraus resultieren-
de Kreisstrom erzeugt eine magnetische Polarisation
in entgegengesetzter Richtung zum externen Feld, so
dass die Flussdichte reduziert wird.

Generell ist der Diamagnetismus umso stärker je
größer die Elektronendichte ist und je weiter die
Elektronen vom Atomkern entfernt sind. Abb. 4.143
zeigt die Suszeptibilitäten für eine Auswahl von
Materialien - links für diamagnetische Materialien,
rechts für paramagnetische.

In paramagnetischen Materialien existieren magneti-
sche Spin-Momente, welche ohne Magnetfeld zufäl-
lig orientiert sind und sich deshalb gegenseitig kom-
pensieren. Liegt ein äußeres Magnetfeld an, so wer-
den die magnetischen Momente teilweise ausgerich-
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Abbildung 4.143: Suszeptibilität in diamagneti-
schen (links) und paramagne-
tischen Materialien (rechts).

B=0

Dipole 
ungeordnet

B>0

Dipole leicht 
geordnet

B≫0

Dipole 
geordnet

Abbildung 4.144: Mikroskopisches Modell des Pa-
ramagnetismus.

tet und erzeugen eine Polarisation parallel zum äu-
ßeren Feld, wie in Abb. 4.144 skizziert. Die Stärke
dieser Polarisation ist durch das Gleichgewicht zwi-
schen dem Energiegewinn durch parallele Orientie-
rung und der thermischen Bewegung gegeben.

Quantenmechanik
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Abbildung 4.145: Temperaturabhängigkeit der Ma-
gnetisierung.

Die Ausrichtung der magnetischen Dipole im Ma-
gnetfeld ist teilweise statistischer Natur, wobei ein
starkes Magnetfeld eine stärkere Ausrichtung be-
vorzugt, während hohe Temperaturen zu einer rein
zufälligen und damit gleich verteilten Orientierung
führen. Insgesamt wird die Suszeptibilität in einem

gewissen Bereich durch das Curie-Gesetz9

cm =
C
T

beschrieben. Die Curie-Konstante C ist eine materi-
alabhängige Konstante, welche die Stärke der inter-
nen magnetischen Momente enthält. In Abb. 4.145
ist die Magnetisierung

~M = cm~H

dargestellt. Die rote Gerade zeigt die Voraussage des
Curie-Modells.

Bei tiefen Temperaturen und hohen Feldern findet
man Abweichungen von diesem linearen Verhalten,
wie in Abb. 4.145 gezeigt. Sie können dadurch er-
klärt werden, dass dann alle Dipole vollständig aus-
gerichtet sind. Eine quantitative Behandlung ist je-
doch nur mit Hilfe der Quantenmechanik möglich.

4.9.5 Ferromagnetismus

In Materialien mit nur teilweise gefüllten Elektro-
nenschalen kann die starke Wechselwirkung zwi-
schen den Elektronen zu einem qualitativ anderen
Verhalten führen. In diesen ferromagnetischen Sub-
stanzen wie Eisen, Kobalt oder Nickel sind die Kon-
stanten cm und µr � 1 (etwa 5000 bei Eisen). Außer-
dem ist der Zusammenhang B(H) nicht mehr line-
ar und damit auch µr(H) eine Funktion des äußeren
Feldes. Die mikroskopische Ursache davon ist, dass
die Wechselwirkung zwischen den atomaren Dipo-
len wesentlich stärker ist als die Wechselwirkung
mit dem äußeren Magnetfeld. Je nach Vorzeichen
der Wechselwirkung ist es dann für die Dipole ener-
getisch günstiger, sich parallel zu ihren Nachbarn
zu orientieren (bei ferromagnetischer Wechselwir-
kung), oder anti-parallel (bei antiferromagnetischer
Wechselwirkung).

Die starke Wechselwirkung zwischen den magneti-
schen Momenten führt zu einer bevorzugten paral-
lelen Ausrichtung ihrer magnetischen Momente so
dass auch ohne externes Magnetfeld eine endliche
Magnetisierung existieren kann. Die Richtung die-
ser Magnetisierung hängt von der Vorgeschichte des

91896 von Pierre Curie (1859 - 1906) vorgeschlagen
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Materials ab. Dieses Verhalten wird als Ferroma-
gnetismus (oder Antiferromagnetismus) bezeichnet.
Man nutzt den Effekt z.B. in Permanentmagneten.
Abb. 4.146 zeigt den Effekt anhand eines einfachen
Modells.

Abbildung 4.146: Modell für ferromagnetische Ma-
terialien.

Gegen die parallele Ausrichtung wirkt wiederum die
thermische Bewegung. Es gibt deshalb eine Tempe-
ratur TC, oberhalb der sich solche Materialien wie
ein Paramagnet verhalten, während sie sich unter-
halb ferromagnetisch verhalten. Die genaue Tempe-
raturabhängigkeit der Suszeptibilität ist jedoch etwas
anders als bei reinen Paramagneten:

cm(Ferromagnet) =
C

T �TC
fuer T > TC .

Dies wird als Curie-Weiss-Gesetz10 bezeichnet. Hier
nimmt die Suszeptibilität mit abnehmender Tempe-
ratur zu und divergiert bei der kritischen Tempera-
tur TC, der Curie-Temperatur. Bei dieser Temperatur
genügt somit (idealisiert) schon ein beliebig kleines
Feld, um eine makroskopische magnetische Polari-
sation zu erzeugen, es entsteht eine spontane Polari-
sation. Diese kritischen Temperaturen sind stark ma-
terialabhängig. Sie können weniger als 1 K oder >
1000 K betragen.

Indem man ein ferromagnetisches Material über die
Curie-Temperatur erwärmt, macht man es zu einem
Paramagneten; kühlt man es wieder ab so wird es
wieder zu einem Ferromagneten. Abb. 4.147 zeigt
ein Experiment, welches die Erwärmung des Nickel-
rades ausnutzt, um das Material paramagnetisch zu
10Pierre Curie und Pierre-Ernest Weiss (1865 - 1940)

Abbildung 4.147: Änderung der magnetischen
Eigenschaften bei der Curie-
Temperatur.

machen (also im Vergleich zum ferromagnetischen
Material nichtmagnetisch. Es wird deshalb weniger
stark vom Magneten angezogen als der ferromagne-
tische Teil des Rings, es entsteht netto ein Drehmo-
ment, welches auf den Ring wirkt und er beginnt sich
zu drehen. Dadurch wird ein anderer Teil erwärmt
und das Drehmoment dadurch aufrecht erhalten.

4.9.6 Magnetische Domänen

Die spontane Polarisierung des ferromagnetischen
Materials entsteht zunächst nur lokal, d.h. die Mo-
mente orientieren sich auf einer Skala von Mikro-
metern parallel zueinander. Es entstehen Bereiche,
in denen die Momente alle in die gleiche Richtung
orientiert sind.

Diese kleinen magnetischen Domänen werden als
Weiss’sche Bezirke11 bezeichnet und sind die grös-
sten magnetisch homogenen Bereiche. Abb. 4.148
zeigt ein Beispiel. Ohne äußeres Magnetfeld treten
auf einer größeren Skala alle Orientierungen gleich-
wertig auf. Weiss’sche Bezirke kann man u.a. im
Polarisationsmikroskop beobachten. Je nach Art des
Kristallgitters gibt es verschiedene mögliche Vor-
zugsorientierungen für die Domänen. Im Beispiel
von Abb. 4.148 gibt es vier äquivalente Orientierun-
gen, in einem ebenen hexagonalen Modell sechs.

Wird ein äußeres Feld angelegt, so wachsen die
Bezirke, in denen die Magnetisierung parallel zum

11nach Pierre Weiss (1865-1940)
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4 unterschiedliche
Magnetisierungsrichtungen

Abbildung 4.148: Weiß’sche Bezirke in einem fer-
romagnetischen Material. Links:
schematische Darstellung der Ori-
entierung. Rechts: Im Polarisati-
onsmikroskop.

Abbildung 4.149: Barkhausen Effekt: Nichtstetige
Verschiebung von Domänenwän-
den.

äußeren Feld liegt auf Kosten der anderen Bezir-
ke. Bei noch stärkeren Feldern können auch gan-
ze Domänen umklappen. Diesen Effekt kann man
auch akustisch hörbar machen. In diesem Experi-
ment werden drei dünne Drähte aus Nickel, geglüh-
tem Eisen und Stahldraht verglichen. Wie in Abb.
4.149 gezeigt, verschieben sich die Domänenwän-
de nicht kontinuierlich, sondern sprungartig. Bei je-
dem Sprung nimmt die Flussdichte plötzlich zu. Da-
durch wird in der Spule ein Spannungspuls induziert,
der als Knacken hörbar wird. Dieser Effekt wird als
Barkhausen-Effekt bezeichnet.

Wenn das Feld genügend groß wird, stellen sich al-
le atomaren Dipole parallel zum äußeren Feld, das
Material ist vollständig polarisiert. Wird das äußere

Feld entfernt, dann bleibt ein Teil dieser Magneti-
sierung erhalten. Diese Materialien können deshalb
auch ohne äußeres Magnetfeld eine Magnetisierung
zeigen.

Allgemein ist die Beziehung zwischen B und H
in ferromagnetischen Materialien nicht mehr linear.
Man kann eine Permeabilität nur noch differentiell
definieren:

µr =
1
µ0

dB
dH

.

Material µr

Ferrite 1000
Fe (rein) 10000

Co 1400
Ni-Fe (µ-Metall) <100000

Tabelle 4.2: Permeabilität µr von ferromagnetischen
Materialien.

Diese Permeabilitäten / Suszeptibilitäten können
sehr groß sein, im Bereich von 1000 bis 100’000. Ta-
belle 4.2 zeigt einige Beispiele. Das Material mit der
grössten Suszeptibilität, µ-Metall, wird insbesonde-
re verwendet, um magnetische Felder abzuschirmen.

Abbildung 4.150: Magnetische Datenspeicherung;
links: Festplatte; rechts: Spur aus
magnetischen Zellen (bits).

Es existiert eine ganze Reihe von weiteren Anwen-
dungen für ferromagnetische Materialien. Eine da-
von ist die Verwendung für die Speicherung von
Daten. In einer Festplatte sind, wie in Abbildung
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4.150 gezeigt, einzelne Bezirke mit einer bestimm-
ten Richtung polarisiert.

4.9.7 Magnetische Hysterese

In ferromagnetischen Materialien ist die Flussdich-
te B nicht mehr proportional zur Stärke des äußeren
Feldes H, sondern sie hängt sowohl von H ab wie
auch von der Vorgeschichte.

Externes Feld H

Fl
us

sd
ic

ht
e 
B

Remanenz Br

Koerzitivfeld Hc

Abbildung 4.151: Magnetische Hysterese.

Trägt man für ein ferromagnetisches Material die
magnetische Flussdichte gegen das äußere Magnet-
feld auf, so erhält man eine Kurve, die von der zeit-
lichen Änderung der Felder abhängt. Abb. 4.151
zeigt das generelle Verhalten. Beginnt man mit ei-
nem nicht magnetisierten Material, so findet man
ein näherungsweise lineares Verhalten. Bei größe-
ren Feldern treten Sättigungseffekte auf. Diese kön-
nen auf die vollständige Ausrichtung der Weiß’schen
Bezirke zurückgeführt werden. Wird das Feld wie-
der verringert so bleibt die Orientierung zunächst
erhalten. Auch ohne äußeres Feld findet man eine
Magnetisierung, die sogenannte Remanenz Br. Dies
ist die charakteristische Eigenschaft eines Perma-
nentmagneten. Erst wenn ein Gegenfeld (das Koer-
zitivfeld Hc) angelegt wird kann diese Magnetisie-
rung auf Null reduziert werden. Für stärker negatives
Feld tritt eine negative Magnetisierung auf, welche
schließlich ebenfalls sättigt.

Im Experiment wird das äußere Magnetfeld H und
die magnetische Flussdichte B gemessen, welches in
einem Eisenkern einer Solenoidspule erzeugt wird.
Das äußere Magnetfeld wird periodisch variiert,

während die Flussdichte über eine zweite Spule ge-
messen wird.

Abbildung 4.152: Remanenz und Koerzitivfeld eini-
ger Materialien.

Gute Permanentmagnete haben hohe Koerzitivfeld-
stärken und hohe Remanenzen (! Abb. 4.152). Die
Remanenzfelder liegen in der Größenordnung von 1
T, während die Koerzitivfelder von einigen 1000 bis
zu einigen 100000 A/m gehen können. Die höchsten
Werte erzielt man mit seltenen Erden, da diese eine
große Zahl ungepaarter Elektronen enthalten.
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Abbildung 4.153: Sättigungsfeld und Koerzitivfeld
unterschiedlicher magnetischer
Werkstoffe.

Während die Sättigungsfeldstärken alle im Bereich
von 1 T liegen, können die Koerzitivfelder über vie-
le Größenordnungen variieren. Man beachte die lo-
garithmische Skala in Abb. 4.153.

Die Fläche der Hysterese im B-H Diagramm hat
die Einheit einer Energiedichte; sie entspricht der
Energie, welche in einem Zyklus des äußeren H-
Feldes im Material deponiert wird. Bei Transforma-
toren (siehe Kapitel 3.6) finden viele solche Zyklen
statt. Man versucht deshalb die Hysteresen für sol-
che Anwendungen möglichst gering zu machen. Ma-
terialien, welche diese Bedingung erfüllen, werden
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als magnetisch weich bezeichnet; sie zeichnen sich
dadurch aus, dass die Magnetisierung nach Entfer-
nung des äußeren Feldes wieder verschwindet. Für
solche Anwendungen sind z.B. Ferrite gut geeignet,
da sie schon bei geringen Koerzitivfeldern umpola-
risiert werden.

4.9.8 Weitere magnetische Ordnungseffekte

Ferromagnetismus

Antiferromagnetismus

Ferrimagnetismus

Abbildung 4.154: Unterschiedliche Arten magneti-
scher Ordnung.

Neben ferromagnetischem Verhalten gibt es auch an-
tiferromagnetisches Verhalten. Abb. 4.154 vergleicht
die verschiedenen Arten magnetischer Ordnung. Bei
antiferromagnetischer Wechselwirkung ist die anti-
parallele Orientierung energetisch günstiger. Die kri-
tische Temperatur wird hier als Neel-Temperatur TN
bezeichnet. Oberhalb der Neel-Temperatur gilt ein
abgewandeltes Curie-Weiss Gesetz

cm =
C

T +TN
.

Unterhalb TN ist cm stark materialabhängig und zeigt
eine komplizierte Temperaturabhängigkeit.

Eine weitere Klasse von magnetischen Materialien
sind die Ferrimagnete oder Ferrite. Hier sind magne-
tische Momente unterschiedlicher Größe antiparallel
ausgerichtet sind und kompensieren sich teilweise.

Die Ausrichtung der magnetischen Momente kann
auch Auswirkungen auf die Form des Materials ha-
ben. Bei piezoelektrischen Materialien konnte die
Form mit Hilfe eines angelegten elektrischen Fel-
des verändert werden. Ähnlich kann mit Hilfe von
magnetischen Feldern die Form von magnetischen
Materialien geändert werden. Dieser Effekt wird als

mit Feld

ohne Feld

negative Magnetostriktion

Eisen

ohne Feld

positive Magnetostriktion

mit Feld

Nickel

Abbildung 4.155: Magnetostriktion.

Magnetostriktion bezeichnet. Bei positiver Magne-
tostriktion (z.B. Fe; Abb. 4.155 oben) verlängert sich
das Material beim Anlegen eines Feldes; bei negati-
ver Magnetostriktion (z.B. Nickel) verkürzt und ver-
breitert sich das Material.

4.9.9 Ferrofluide

Abbildung 4.156: Oberfläche eines Ferrofluids im
Feld eines Stabmagneten.

Auch Flüssigkeiten können ferromagnetische Ei-
genschaften haben - man bezeichnet sie dann als
Ferrofluide. Sie bestehen aus wenigen Nanometer
großen magnetischen Partikeln, die in einer Träger-
flüssigkeit kolloidal suspendiert sind. Die Partikel
werden in der Regel mit einer polymeren Oberflä-
chenbeschichtung stabilisiert. Echte Ferrofluide sind
stabile Dispersionen, was bedeutet, dass sich die fe-
sten Teilchen nicht mit der Zeit absetzen und selbst
in extrem starken Magnetfeldern nicht aneinander
anlagern oder sich von der Flüssigkeit als andere
Phase abscheiden. Ferrofluide sind superparamagne-
tisch und besitzen eine sehr geringe Hysterese. Abb.
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4.156 zeigt die Oberfläche eines Ferrofluids im Feld
eines Stabmagneten.

4.9.10 Magnetische Eigenschaften von
Supraleitern

Neben der verlustlosen Leitung von Elektrizität ha-
ben Supraleiter auch außergewöhnliche magnetische
Eigenschaften.

BaBc

Bm

BaBc

�

0

1

Abbildung 4.157: Temperaturabhängigkeit der
Flussdichte im Innern eines
Supraleiters (links) und der ma-
gnetischen Permeabilität (rechts).

Insbesondere sind sie perfekte Diamagneten. Dies
bedeutet, dass magnetische Felder nicht ins innere
eines Supraleiters eindringen können. Wie in Abb.
4.157 gezeigt gilt dies allerdings nur bis ein kriti-
sches Feld erreicht ist; oberhalb dieser Feldstärke
dringt das Magnetfeld wieder ein. Dadurch bricht
auch die Supraleitung zusammen.

Abbildung 4.158: Kreisströme an der Oberfläche ei-
nes Supraleiters.

Das Ausstoßen des Magnetfeldes geschieht dadurch,
dass an der Oberfläche des Supraleiters Kreisströme
entstehen, die ein Magnetfeld erzeugen, welches das
äußere Feld gerade kompensiert. Abb. 4.157 zeigt
schematisch den Oberflächenstrom.

Man kann dies durch die Permeabilität µr aus-
drücken: sie beträgt im supraleitenden Bereich 0,

wie in Abb. 4.157 rechts gezeigt. Wenn ein kriti-
sches Feld erreicht wird, dringt das Feld wieder in
das Material ein, die Permeabilität wird 1. Diese
Eigenschaft, das Magnetfeld auszustoßen, wird als
Meißner-Ochsenfeld Effekt12 bezeichnet.

µr

Bc1 Bc2Ba

-µ0J

Bc1 Bc2Ba

Abbildung 4.159: Permeabilität und Magnetisierung
in einem Typ-II Supraleiter.

In sogenannten Typ II Supraleitern wird dieses
Verhalten etwas modifiziert: hier dringt das Feld
nicht mehr schlagartig ein, sondern die Permeabilität
steigt über einen Bereich von Feldstärken an bis sie
den Wert 1 erreicht. Abb. 4.159 zeigt die Permeabi-
lität als Funktion der Temperatur.

4.9.11 Anwendungen

Abbildung 4.160: Meissner-Effekt.

Dieses Verhalten kann mit einem Experiment de-
monstriert werden, bei dem ein Magnet auf einen
Supraleiter gelegt wird. Handelt es sich um einen
Hoch-Tc Supraleiter, so genügt flüssiger Stickstoff,
um ihn unter die kritische Temperatur abzukühlen.
Wie in Abb. 4.160 gezeigt, wird dadurch das Feld
aus dem Supraleiter ausgestoßen und der Magnet
schwebt über dem Supraleiter. Man kann dies auch
so verstehen, dass der induzierte Oberflächenstrom
ein Feld erzeugt, welches dem äußeren entgegenge-
setzt ist. Es stehen sich somit zwei gleiche Pole ge-
genüber, was zu einer Abstoßung führt.

12nach Fritz Walther Meißner (1882-1974) und Robert Ochsen-
feld (1901-1993)
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Abbildung 4.161: Ein Kobalt-Magnet schwebt über
einem Supraleiter.

Abb. 4.161 zeigt eine Fotographie eines entspre-
chenden Vorlesungsexperiments.

Abbildung 4.162: Zug schwebt mit Hilfe von supra-
leitenden Magneten.

Dieser Effekt wird z.B. bei einem japanischen Kon-
kurrenzprodukt zum Transrapid verwendet, um ihn
über der Schiene schweben zu lassen. Abb. 4.162
zeigt einen Prototypen.

4.10 Zeitabhängige Felder und
Ströme

Bisher hatten wir diskutiert, wie elektrische Ströme
magnetische Felder erzeugen. Jetzt wird der umge-
kehrte Prozess diskutiert: wie ein zeitlich veränder-
liches Magnetfeld eine Spannung und damit einen
Strom induziert.

Abbildung 4.163: Flussänderung induziert Span-
nung.

Abbildung 4.164: Ein Magnet wird in eine Leiter-
schleife geschoben und induziert
dadurch eine Spannung.

4.10.1 Induktion: Phänomenologie

Das Phänomen der Induktion kann anhand eines ein-
fachen Experimentes gezeigt werden, wie in Abb.
4.164 gezeigt. Hier wird ein Stabmagnet in eine
Leiterschlaufe geschoben, während die Spannung
über der Leiterschlaufe gemessen wird. Man stellt
fest, dass beim Hineinschieben eine positive Span-
nung gemessen wird, welche wieder auf Null fällt,
wenn der Magnet nicht mehr verschoben wird. Beim
Herausziehen findet man wieder eine Spannung,
aber mit entgegengesetztem Vorzeichen. Dreht man
den Stabmagneten, schiebt also den entgegengesetz-
ten Pol in die Leiterschleife, so misst man einen
negativen Spannungspuls, beim Herausziehen einen
positiven.

Wird die Bewegung schneller durchgeführt, so wird
der Spannungsstoß kürzer, aber intensiver; die Flä-
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Abbildung 4.165: Fluss als Funktion der Zeit und in-
duzierte Spannung.

che
R

U(t)dt bleibt konstant. Abb. 4.165 zeigt zwei
Beispiele in roter respektive blauer Farbe. In beiden
Fällen steigt der magnetische Fluss durch die Spu-
le von F1 auf F2, aber über unterschiedliche Zeiten.
Im roten Fall entsteht ein kurzer aber starker Span-
nungspuls, im blauen Fall ein schwacher aber langer
Puls.

4.10.2 Magnetischer Fluss

Aus einer Reihe von Experimenten dieser Art fin-
det man, dass dieses Integral gegeben ist durch die
Änderung des magnetischen Flusses durch die Spu-
le. Der magnetische Fluss f durch eine Fläche A ist
definiert als das Integral

f =
Z

~B ·~A =
Z

BdA cosq ,

d.h. nur die Komponente der Flussdichte senkrecht
zur Fläche trägt bei. Bildlich kann man sich den
Fluss als die Summe aller Feldlinien vorstellen, wel-
che die Fläche A durchstoßen. Die Einheit des ma-
gnetischen Flusses,

[f ] = Vs = Wb = Weber ,

bezieht sich auf Wilhelm Weber (1804-1891). Die
magnetische Flussdichte B ist dementsprechend de-
finiert als Fluss pro Fläche,

B =
df

dA
[B] =

Vs
m2 = T = Tesla .

Die Einheit Tesla erinnert an Nikola Tesla (1856-
1943).

Die magnetische Flussdichte ~B und das Magnetfeld
~H sind im Vakuum und in vielen Materialien direkt
proportional zueinander:

~B = µrµ0~H .

µ0 = 4p ·10�7 Vs
Am

⇡ 1,257 ·10�6 Vs
Am

.

Die Proportionalitätskonstante µ0 wird als magneti-
sche Feldkonstante oder Permeabilität des Vakuums
bezeichnet. In einem Material wird die Permeabili-
tät des Vakuums mit der relativen Permeabilität µr
multipliziert.

Steigt der Fluss durch die Leiterschleife linear mit
der Zeit, so misst man eine Spannung, die während
dieser Zeit konstant ist, wie in Abb. 4.165 gezeigt.
Je schneller das Magnetfeld steigt, desto höher ist
die Spannung. Das Integral

R
U(t)dt, in diesem Fall

U Dt, ist jedoch unabhängig von der Rate und nur
durch die Flussdifferenz Df zwischen Anfangs- und
Endwert gegeben,Z

U(t)dt = f1 �f2 = �Df .

4.10.3 Induktionsgesetz

Eine nützlichere Schreibweise für die Beziehung
zwischen Flussänderung und induzierter Spannung
ist die differenzielle Form

Uind(t) = �N
df

dt
,

wobei N die Anzahl der Windungen darstellt. Die
Änderung df/dt, resp. f2 � f1 des magnetischen
Flusses kann auf unterschiedliche Weise erreicht
werden. Wir beschränken uns hier auf den einfachen
Fall, dass das Magnetfeld homogen ist. Dann ist

df

dt
=

d
dt

(BA cosq).

Hier stellt A die Fläche der Leiterschleife und q den
Winkel zwischen Feldrichtung und Flächennorma-
ler dar. Somit existieren drei Möglichkeiten, um eine
Spannung zu induzieren:

Man kann
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• die Flussdichte B ändern. Dies wird typischer-
weise mit einem Elektromagneten erreicht. Das
Prinzip wird vor allem im Transformator ver-
wendet, der in Kapitel 4.10.12 im Detail be-
handelt wird. Eine etwas andere Möglichkeit,
die Flussdichte zu ändern, basiert darauf, dass
man einen Magneten mehr oder weniger weit
in die Leiterschleife hinein schiebt. Dies wur-
de im obigen Experiment gezeigt und wird bei
einigen Typen von Mikrofonen verwendet.

• die Fläche A der Schleife ändern.

Abbildung 4.166: Änderung der Schleifengröße
durch rollenden Stab.

Dies wird z.B. beim in Abb. 4.166 gezeigten Expe-
riment gemacht, indem man eine Leiterschleife ver-
wendet, welche aus zwei festen und einem rollen-
den Kupferstab gebildet wird. Ein Permanentmagnet
sorgt für den Fluss durch diese Spule.

Abbildung 4.167: Orientierung der Spule.

• Als dritte Möglichkeit kann man die Orientie-
rung der Schleife bezüglich dem Magnetfeld
ändern. Das Experiment von Abb. 4.167 ver-

wendet dafür eine Spule, die eine große An-
zahl Windungen aufweist. Damit ist es möglich,
sogar im Erdmagnetfeld eine leicht messbare
Induktionsspannung zu erzeugen. Den zweiten
und dritten Fall kann man zusammenfassen als
eine Änderung von d~A/dt.

B(t)

E

E

Abbildung 4.168: Magnetische Flussdichte und in-
duziertes Feld.

Betrachtet man die induzierte Spannung über einem
geschlossenen Ring wie in Abb. 4.168, so entspricht
sie einem Integral des Feldes über die Schleife,

U(t) =
I

Schleife
E(t,r)dr µ ∂

∂ t
B(t).

Dies ist nicht mit der üblichen Definition eines
Potenzials vereinbar, welches auf dem Ring einen
eindeutigen Wert besitzen sollte und somit für ein
Schleifenintegral verschwinden sollte. Es wird des-
halb als Wirbelfeld bezeichnet. Wie dieses zu inter-
pretieren ist, hängt von den physikalischen Randbe-
dingungen ab. So kann der Ring nicht ganz geschlos-
sen sein und die Spannungsdifferenz über einem Wi-
derstand abfallen.

4.10.4 Wechselstromgenerator

Wir betrachten den dritten Fall etwas genauer; er
stellt die Grundlage für die Erzeugung von Strom
in Kraftwerken dar. Abb. 4.169 zeigt das Prinzip.
Wir betrachten hier eine rechteckige Schleife, wel-
che sich um eine Achse senkrecht zum Magnetfeld
dreht. Die induzierte Spannung beträgt

Uind = �df

dt
= �N

d
dt

(~B0 ·~A).
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Abbildung 4.169: Drehbare Spule im Magnetfeld.

Wir gehen davon aus, dass sowohl das Magnetfeld
~B0 wie auch der Betrag A der Fläche konstant sind.

Hingegen soll die Orientierung von ~A sich mit einer
konstanten Winkelgeschwindigkeit w ändern. Damit
wird

Uind = �N
d
dt

(B0A coswt) = N B0Aw sinwt.

Man erhält also eine Spannung, die sinusförmig va-
riiert. Dieser Effekt ist die Grundlage für elektri-
sche Generatoren. Die elektrische Leistung, die da-
bei gewonnen wird, muss durch mechanische Arbeit
kompensiert werden, welche nötig ist, um den indu-
zierten Dipol im statischen Magnetfeld zu drehen.
Dies gilt allgemein, für alle hier vorgestellten Vari-
anten der Induktion: die induzierten Ströme erzeu-
gen ein Magnetfeld, welches der Ursache entgegen-
wirkt (Lenz’sche Regel). Entsprechend kann man al-
le gezeigten Anordnungen nicht nur als Generator,
sondern auch umgekehrt als Motor betreiben.

4.10.5 Induzierte Ströme und Lenz’sche
Regel

Das Experiment zeigt zunächst, dass in der Leiter-
schleife eine Spannung induziert wird. Natürlich ent-
spricht dieser Spannung auch ein Strom. Ein Strom
durch eine Leiterschleife erzeugt darin einen magne-
tischen Dipol. Damit stellt sich die Frage, wie dieser
Dipol orientiert ist - gleich wie der Magnet, der ihn
erzeugt, oder umgekehrt.

Für die Klärung dieser Frage verwenden wir den
Thomson-Ring: Wie in Abb. 4.170 gezeigt, wird ei-
ne Leiterspule aus Aluminium um einen Eisenkern

Abbildung 4.170: Versuchsaufbau zum Thomson-
Ring Versuch.

gelegt, in dem mit Hilfe einer Induktionsspule ein
wechselndes Magnetfeld erzeugt wird. Man beob-
achtet, dass die Spule schwebt. Somit wird sie vom
Magneten, der den Strom induziert, abgestoßen.

Abbildung 4.171: Die Lenz’sche Regel.

Daraus folgt, dass der induzierte Magnet dem er-
zeugenden Magneten entgegen-gerichtet ist. Dieses
Resultat ist allgemein als “Lenz’sche Regel”13 be-
kannt: Wie in Abb. 4.171 gezeigt, wirkt die indu-
zierte Spannung ihrer Ursache entgegen. Im Fal-
le einer Leiterschleife erzeugt die Spannung einen
Strom, welcher eine Änderung des Feldes verrin-
gert: Wird der Magnet in die Spule hineingescho-
ben so schwächt der induzierte Strom dieses Feld ab;
wird er herausgezogen, so verstärkt der induzierte
Strom das Feld, d.h. er versucht eine Abschwächung
zu verringern. Der induzierte Dipol erzeugt in bei-
den Fällen eine Kraft, welche überwunden werden
muss wenn der Magnet in die Leiterschleife hinein
geschoben wird.

13Heinrich Friedrich Emil Lenz (1804 - 1865)
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4.10.6 Wirbelströme

Zeitlich variable Magnetfelder, die in elektrische
Leiter eindringen, erzeugen dort ebenfalls Ströme,
welche die Quellen von Magnetfeldern sind. Die-
se Ströme werden als Wirbelströme bezeichnet. Sie
können schädlich sein, wie z.B. in Transformato-
ren, wo sie für einen Teil der Verluste verantwortlich
sind, oder nützlich, wie z.B. in Wirbelstrombremsen,
wo sie als verschleissfreie Bremsen dienen.

Abbildung 4.172: Wirbelströme: Eine Kupferschei-
be fällt durch ein Magnetfeld
und wird durch Wirbelströme ge-
bremst.

Den Effekt kann man z.B. beobachten wenn man ei-
ne Münze durch ein Magnetfeld fallen lässt. Dabei
findet man, dass sie nur langsam in das Magnetfeld
eindringt (siehe Abb. 4.172). Im homogenen Ma-
gnetfeld fällt sie mit normaler Geschwindigkeit, da
hier der Fluss konstant bleibt. Am unteren Ende des
Magnetfeldes wird sie wieder stark verlangsamt. Der
Effekt zeigt eine gewisse Analogie zum Meissner-
Effekt: Auch hier verzögern die Wirbelströme das
Eindringen des Magnetfeldes in das Leitermaterial.
Allerdings kann dies für normal leitende Materialien
nur eine Verzögerung bewirken, da die Verluste im
Leiter ein Abklingen der Oberflächenströme bewir-
ken.

Den Effekt der Wirbelstrombremse man auch an-
hand des Waltenhofen’schen Pendels zeigen (!
Abb. 4.173). Dabei schwingt ein Pendel mit einer
Kupferplatte als Gewicht zwischen den Polschuhen
eines Magneten. Je stärker das Magnetfeld ist, wel-
ches hier eingeschaltet wird, desto stärker ist die
Bremswirkung. Dieser Effekt verschwindet prak-
tisch völlig, wenn statt einer durchgehenden Kup-
ferplatte eine Kupferplatte mit Schlitzen eingesetzt
wird. Die Schlitze eliminieren einen Teil der Wirbel-
ströme und damit die Bremswirkung. Dies wird. u.a.

Abbildung 4.173: Waltenhofen’sches Pendel.

in Transformatoren genutzt: die Eisenkerne in Trans-
formatoren enthalten Schlitze, um Wirbelströme und
damit verbundene Verluste zu verringern.

Abbildung 4.174: Wirbelstrombremse als Kupp-
lung.

Man kann Wirbelströme auch dazu verwenden, ei-
ne verschleissfreie Kupplung zu bauen. Bei dem in
Abb. 4.174 gezeigten System dreht sich der Hufei-
senmagnet so, dass die Feldlinien sich in der frei ro-
tierenden Kupferscheibe K bewegen. Dabei werden
Wirbelströme induziert, welche die Kupferscheibe
in eine Drehbewegung versetzen. Wirbelstrombrem-
sen werden nach dem Prinzip des Waltenhofen’schen
Pendels konstruiert.

4.10.7 Selbstinduktion

Wird ein elektrischer Leiter von einem variablen
Strom durchflossen, so erzeugt er ein zeitlich verän-
derliches Magnetfeld, welches auch im Leiter selbst
eine Spannung erzeugt, die der zeitlichen Änderung
entgegenwirkt. Dieser Effekt wird als Selbstindukti-
on bezeichnet. Die Stärke hängt von der Geometrie
der Leiter ab. Der Effekt muss vor allem bei der Ent-
wicklung von schnellen Schaltungen berücksichtigt
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werden, wo er wesentlich zur Beschränkung der Ge-
schwindigkeit beiträgt.

A

ℓ

B(t)

U(t)
I(t)

Abbildung 4.175: Der Strom I(t) erzeugt in der Spu-
le das Feld ~B(t).

Wir betrachten als Beispiel eine lange zylinderför-
mige Spule der Länge ` mit N Wicklungen, wie in
Abb. 4.175 gezeigt. Bei einem Strom I beträgt das
Magnetfeld im Innern

H =
IN
`

.

Ändert man den Strom durch die Spule, so induziert
die damit verbundene Flussänderung eine Spannung

Uind = �N
df

dt
= �NAµ0µr

dH
dt

= �NAµ0µr
N
`

dI
dt

.

Der Proportionalitätsfaktor zwischen Stromände-
rung und induzierter Spannung wird als Induktivität
bezeichnet,

Uind = �L
dI
dt

. [L] = Henry =
Vs
A

= Ws

Die Einheit Henry bezieht sich auf Joseph Henry
(1797-1878). Im hier betrachteten Fall einer Spule
ist somit

LSpule = µ0µr
N2A

`
.

Die Definition der Induktivität erfolgt analog zum
Kondensator, wo die Kapazität als Verhältnis aus ge-
speicherter Ladung (d.h. Integral des Stroms) und
Spannung definiert ist. Bei der Induktivität erzeugt
nicht das Integral, sondern die zeitliche Änderung

des Stroms eine Spannung. Induktivitäten sind, ne-
ben Widerständen und Kapazitäten die dritte Form
von passiven, linearen elektronischen Bauelemen-
ten. Wie bei Widerständen addieren sich Induktivi-
täten bei Serienschaltung, während bei Parallelschal-
tungen die Kehrwerte addiert werden.

Die Induktivität kann auch gemessen werden als In-
tegral der induzierten Spannung für eine gegebene
Stromänderung:

L =

R I2
I1

Uinddt
I2 � I1

.

Das Integral umfasst den Zeitbereich während dem
der Strom von I1 auf I2 = I1 +DI geändert wird.

I = 5A

L 1 
6V / 5A

L 2 
60W / 220 V

Abbildung 4.176: Einschaltverzögerung durch In-
duktionsspulen.

Das Einschaltverhalten einer Induktivität kann im
Experiment sichtbar gemacht werden, indem man
die entsprechenden Ströme über Glühlampen sicht-
bar macht. Abb. 4.176 zeigt einen entsprechenden
Aufbau. Hier fließt nach Schließen des Schalters ein
konstanter Strom von 5 A durch die Lampe L1. Un-
mittelbar nach Einschalten wächst der Strom durch
die Spule, während der Strom durch die Lampe L2
abnimmt. Beim Öffnen des Schalters löscht L1 aus,
während die Lampe L2 noch brennt: die im Magnet-
feld der Spule enthaltene Energie wird durch diese
Lampe entladen.

4.10.8 Magnetische Feldenergie

Mit Hilfe der Selbstinduktion kann für eine lange
dünne Zylinderspule der Energieinhalt des magne-
tischen Feldes hergeleitet werden (! Abb. 4.177):
Damit der Strom I durch die Spule fließen kann,
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Abbildung 4.177: Magnetfeld einer Spule.

muss die Arbeit

W =
Z

UIdt = L
Z dI

dt
Idt

geleistet werden. Hier wurde berücksichtigt, dass die
von außen angelegte Spannung gerade die induzierte
Spannung kompensieren muss,

U = �Uind = L
dI
dt

.

Die Integration ergibt

W = L
Z

IdI =
1
2

LI2.

Schreibt man den Strom als Funktion der magneti-
schen Feldstärke H = IN/`, I = H`/N, so erhält man

W =
1
2

L
H2`2

N2 =
1
2

H2`2

N2 µ0µr
N2A

`

=
1
2

H2
µ0µr`A =

µ0µr

2
H2V.

Division durch das Volumen V = `A ergibt die Ener-
giedichte

wmagn =
1
2

H2
µ0µr =

1
2

HB. (4.10)

Dies gilt für eine lineare Beziehung zwischen H und
B; für nichtlineare Abhängigkeiten muss die Energie
durch Integration bestimmt werden.

Mit Hilfe der Selbstinduktion können auch sehr hohe
Spannungen erzeugt werden indem man den Strom
sehr schnell ändert, z.B. indem man ihn plötzlich un-
terbricht.

Dies wird z.B. beim Funkeninduktor (! Abb. 4.178)
verwendet. Dieser ist aus einer zylindrischen Primär-
spule mit wenigen und einer darüber gewickelten Se-
kundärspule mit vielen Windungen aufgebaut. Man
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Abbildung 4.178: Funkeninduktor.

lässt dabei zunächst einen Strom durch die Primär-
spule fließen. Wenn das Feld in der Spule stark ge-
nug ist, öffnet es einen Schalter, welcher den Strom
unterbricht. Im Magnetfeld in der Spule ist jedoch
gemäß Gl. (4.10) eine erhebliche Energie gespei-
chert, die nach außen abgeführt werden muss. Durch
die rasche Änderung des Stroms ändert sich der ma-
gnetische Fluss durch die darüber gewickelte Sekun-
därspule mit vielen Windungen. Dadurch wird eine
hohe Spannung aufgebaut, welche über eine Funken-
strecke kurzgeschlossen wird. Dieses Prinzip wird
auch in Benzinmotoren zur Erzeugung des Zündfun-
kens im Zylinder verwendet.

4.10.9 Periodische Ströme und Felder

Periodische Spannungen, Ströme und Felder spielen
eine besonders wichtige Rolle. Sie werden beschrie-
ben durch harmonische Funktionen

U(t) = U0 cos(wt +fu).

Hier stellt U0 die Amplitude, w die Kreisfrequenz
und fu die Phase dar. In einem linearen System fließt
dann ein Strom I(t) mit der gleichen Frequenz:

I(t) = I0 cos(wt +fi). (4.11)

Die beiden Phasen unterscheiden sich wenn die
Schaltung Induktivitäten und / oder Kapazitäten ent-
hält (was in realen Schaltungen immer der Fall ist!).

Wenn Spannungen und Ströme zeitabhängig sind, ist
es nützlich, ihre Stärke über einen zeitunabhängigen
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Parameter zu quantifizieren. Eine Möglichkeit sind
Effektivwerte, z.B.

Ie f f =

s
1
T

Z T

0
I2dt.

Für eine sinus-förmige Zeitabhängigkeit wie in
(4.11) ist

Ie f f = I0

s
1
T

Z T

0
cos2

wt dt =
I0p

2
.

Zeit

Spannung Strom

Leistung

Abbildung 4.179: Strom, Spannung und Leistung als
Funktion der Zeit.

Die Leistung, welche bei einem Wechselstrom über
einer Impedanz abfällt, ändert sich als Funktion
der Zeit. Die mittlere Leistung eines Wechselstroms
hängt deshalb nicht nur von der Amplitude oder vom
Effektivwert von Strom und Spannung ab, sondern
auch von der relativen Phase. Sie kann berechnet
werden als

P̄ =
1
T

Z T

0
I(t)U(t)dt =

1
2

I0U0 cos(fu �fi) .

Die Leistung hängt somit vom Produkt der Ampli-
tuden von Strom und Spannung ab und oszilliert
mit der relativen Phase fu � fi zwischen Strom und
Spannung. Abb. 4.179 zeigt die Zeitabhängigkeit für
einen spezifischen Fall.

Beim 3-Phasen Wechselstrom verwendet man drei
Leiter (zusätzlich zum Nulleiter), in denen die Phase
der Spannung jeweils um 120 Grad verschoben ist:

UR = U0 sin(wt)

US = U0 sin(wt � 2p

3
)

UT = U0 sin(wt � 4p

3
)

U    R  S   T

t

US

UT

UR

Abbildung 4.180: 3-Phasen Wechselstrom.

Diese drei Phasen können als komplexe Amplituden
dargestellt werden. In Europa ist die Frequenz n =
w/2p = 50 Hz, die Amplitude U0 = 325 V. Die Span-
nung zwischen zwei der drei Phasen beträgt

U2 = 2U0 sin
2p

3
= 563V,

was einem Effektivwert von 398 V (~ 400 V) ent-
spricht. Man sieht leicht, dass die Summe der drei
Amplituden verschwindet.

4.10.10 Komplexe Schreibweise, Impedanz

U0

Zeit t

U(t)

Abbildung 4.181: Darstellung einer harmonischen
Zeitabhängigkeit als komplexe
Amplitude.

Wechselströme und Wechselspannungen können
auch gut als komplexe Größen dargestellt werden,
d.h. als Absolutbetrag und Phase. Die physikalischen
Größen entsprechen dem reellen Anteil. Eine Wech-
selspannung der Kreisfrequenz wird dann als

U(t) = U
w

ei(wt+fu) = U
w

eifueiwt

dargestellt, wie in Abb. 4.181 gezeigt. Meist rech-
net man nur mit der komplexen Amplitude U

w

eifu .
Die Realteile werden auch als Wirkanteile, die Ima-
ginärteile als Blindanteile bezeichnet. Gemäss der
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Euler’schen Formel eia = cosa + isina kann man
die beiden Schreibweisen ineinander überführen:

U(t) = U0 cos(wt +fn) = ¬[U0ei(wt+fu)] .

Diese Notation hat den großen Vorteil, dass Kapa-
zitäten (Kondensatoren) und Induktivitäten (Spulen)
einfach als komplexe Widerstände behandelt werden
können. Für alle passiven, linearen Elemente gilt

U = Z I .

Hier stellt Z die Impedanz der Schaltung dar, in
offensichtlicher Verallgemeinerung des Ohm’schen
Gesetzes.

ϕ

Z
Im(Z)

Re(Z)

in
du
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„Wirkwiderstand“
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Abbildung 4.182: Impedanz in der komplexen Ebe-
ne.

Wie in Abb. 4.182 gezeigt, ist der Realteil der Im-
pedanz gegeben durch den Ohm’schen Widerstand,
während die imaginäre Achse die Beiträge von In-
duktivitäten und Kondensatoren enthält.

Die Berechnung von zeitabhängigen Problemen in
elektrischen Schaltungen reduziert sich von der Lö-
sung von Differentialgleichungen auf die Lösung
von einfachen lineare algebraischen Gleichungen.
Der Preis, den man dafür bezahlt, ist, dass das Ver-
hältnis zwischen Spannungen und Strömen von der
Frequenz des Wechselstroms abhängt.

Ein idealer Ohm’scher Widerstand ist für Gleich-
und Wechselströme identisch, d.h. das Verhältnis
von Spannung und Strom ist konstant. Ein Konden-
sator ist für Gleichströme undurchlässig, stellt aber
für hohe Frequenzen einen Kurzschluss dar; die ent-
sprechende Impedanz ist indirekt proportional zur
Frequenz.

UI

ωt

Abbildung 4.183: Phasenverschiebung zwischen
Strom und Spannung über einem
Kondensator.

Strom und Spannung sind jedoch nicht in Phase.
Wie in Abb. 4.183 gezeigt, erreicht die Spannung
dann ihr Maximum, wenn das Integral des Stroms
maximal ist, d.h. beim Nulldurchgang des Stroms.
Die Phasenverzögerung um 90 Grad entspricht in
der komplexen Darstellung einer Multiplikation mit
eip/2 = i. Die Impedanz einer Kapazität C ist deshalb

Z(C) =
1

iwC
.

Eine Spule ist für hohe Frequenzen undurchlässig,
stellt aber für Gleichströme einen Kurzschluss dar.
Hier ist die Spannung proportional zur Ableitung des
Stroms, sie eilt dem Strom um eine Viertelperiode
voraus. Die Impedanz ist deshalb

Z(L) = iwL .

Zusammengefasst sind die Impedanzen Z
w

= U
w

/I
w

für

• Ohm’schen Widerstand Z(R) = R

• Induktionsspule Z(L) = iwL

• Kondensator Z(C) = 1
iwC .

Die Frequenz der Wechselspannung geht in den 3
Fällen in unterschiedlicher Weise ein. Daraus folgt
auch eine unterschiedliche Abhängigkeit von der
Frequenz. Abb. 4.184 fasst die Frequenzabhängig-
keit schematisch zusammen: Bei einem Widerstand
besteht keine Abhängigkeit. Bei einer Spule nimmt
der Betrag der Impedanz linear mit der Frequenz zu,
beim Kondensator nimmt er mit der indirekt propor-
tional zur Frequenz ab.
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1| |CZ Cω
=

| |LZ Lω=

|| Z

| |RZ R=

Frequenz ω

Abbildung 4.184: Frequenzabhängigkeit der Impe-
danz für Widerstand (blau), Spule
(rot) und Kapazität (grün).

4.10.11 Rechnen mit Impedanzen

Die Rechenregeln für komplexe Impedanzen sind
die gleichen wie für Widerstände. So kann die Kno-
tenregel ersetzt werden durch die Regel, dass die
Summe aller Ladungen, welche durch einen Knoten
fließt, verschwindet.

Für die Parallel-, resp. Serienschaltung von Impe-
danzen gelten die gleichen Rechenregeln wie für
Widerstände. Daraus folgt z.B., dass für eine Seri-
enschaltung von Kapazitäten die Kehrwerte addiert
werden,

1
C

=
1

C1
+

1
C2

.

Die komplexe Schreibweise eignet sich auch, um die
Leistung zu berechnen. Man erhält den Effektivwert
der Leistung, oder die Wirkleistung, für einen Wech-
selstrom als

P =
1
2

¬{UI?} =
1
2

¬{U?I} .

Der Faktor
1
2

=
1
T

Z T

0
cos2

wt dt

enthält die Mittelung über eine Periode der Oszilla-
tion.

Für einen Ohm’schen Widerstand sind Strom und
Spannung immer in Phase, d.h.

U = U0ei(wt+f) , I = I0ei(wt+f) ,

Abbildung 4.185: Strom und Spannung beim
Ohm’schen Widerstand.

mit gleicher Phase f , wie in Abb. 4.185 gezeigt. Im
Zeigerdiagramm sind die beiden komplexen Ampli-
tuden parallel. Somit ist

P =
1
2

¬
n

U0ei(wt+f)I0e�i(wt+f)
o

=
1
2

U0I0 .

y

x

U~

I~

� = �/2

�

U, I U(t)
I(t)

t

P(t)

P
t

Abbildung 4.186: Strom und Spannung bei einer
Spule.

Für eine rein imaginäre Impedanz (Spule oder Kon-
densator) sind Spannung und Strom 90� außer Phase,
Abb. 4.186 zeigt den Fall einer Spule.

U = U0ei(wt+f) ,

I = I0ei(wt+f�p/2) .

Die Effektivleistung ist dann

P =
1
2

¬
n

U0ei(wt+f)I0e�i(wt+f�p/2)
o

=
1
2

U0I0¬
n

eip/2
o

= 0,

d.h. es wird keine mittlere Arbeit geleistet. Die mo-
mentane Leistung P(t) ist während einer Periode
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gleich lang positiv wie negativ. Ein idealer Trans-
formator z.B., der im Leerlauf betrieben wird, zieht
keine Leistung. Allerdings sind in den Zuleitungen
Strom und (Verlust-)Spannung nicht notwendiger-
weise außer Phase, so, dass trotzdem Verluste auf-
treten.

In einer allgemeinen elektrischen Schaltung findet
man sowohl reelle wie auch imaginäre Impedan-
zen. Die Gesamtimpedanz erhält man bei Serien-
schaltung durch Addition, bei Parallelschaltungen
durch Addition der Kehrwerte. Mit den resultieren-
den komplexen Impedanzen kann anschließend wie
gewohnt gerechnet werden.

4.10.12 Transformatoren

Transformatoren sind eine Möglichkeit, Spannungen
auf einen anderen benötigten Wert zu bringen.

U2
N2

R

I2

Sekundärspule

U1 N1

I1

Primärspule

B(t)

A=const.

Abbildung 4.187: Transformatorschaltung.

Ein Transformator besteht aus zwei Spulen mit den
Windungszahlen N1 und N2, die auf ein Eisenjoch
gewickelt sind. Abb. 4.187 zeigt die Schaltung für
den idealen, d.h. verlustfreien Transformator. Reale
Transformatoren weisen Verluste auf, aufgrund

• Streufeld Verluste: fs < fp

• Ohm’sche Verluste in den Spulenwiderständen

• Wirbelstromverluste im Transformator-Blech

• Ummagnetisierungsverluste (=Fläche der Hy-
sterese)

Für den idealen Transformator kann der induzier-
te magnetische Fluss über das Induktionsgesetz be-
rechnet werden. Auf der Eingangsseite wird ein
Wechselstrom der Spannung U1 angelegt, welcher in

der Spule einen magnetischen Fluss f erzeugt. Die-
ser magnetische Fluss wird gerade so stark, dass die
gemäß Induktionsgesetz erzeugte Spannung der Ein-
gangsspannung entspricht,

U1 = �N1
df

dt
,

wobei N1 die Zahl der Windungen auf der Eingangs-
seite (= der Primärseite) angibt.

Im idealen Transformator wird der gesamte erzeug-
te magnetische Fluss mit Hilfe eines Eisenkerns zur
zweiten, sekundärseitigen Spule mit N2 Windungen
gebracht. Dort wird, ebenfalls nach Induktionsge-
setz, eine Wechselspannung

U2 = �N2
df

dt

induziert. Das Verhältnis der beiden Spannungen ist
somit

U2 = U1
N2

N1
,

d.h. die beiden Spannungen an einem Transformator
verhalten sich (im Leerlauf) wie das Verhältnis der
beiden Windungszahlen.

4.10.13 Anwendungen

Wird ein Verbraucher angeschlossen, d.h. fließt auf
der Sekundärseite ein Strom, so muss die dadurch
induzierte Spannung ebenfalls berücksichtigt wer-
den. Das Übertragungsverhältnis hängt außerdem
von den Verlusten im Transformator ab, also z.B. da-
von, ob die gesamte Flussdichte auf die Sekundärsei-
te übertragen wird. Die übliche Konstruktion eines
Transformators nutzt direkt die Tatsache, dass die in-
duzierte Spannung durch die Änderung der magne-
tischen Flussdichte B und nicht durch die Änderung
des magnetischen Feldes H bestimmt ist: der Eisen-
kern erhöht die Flussdichte und damit die induzierte
Spannung um µr.

Transformatoren werden vor allem verwendet, um
die Spannung von einer Netzspannung (z.B. 230 V)
auf die aktuell benötigte Spannung zu transformie-
ren (z.B. 12 V). Sie können aber auch dazu verwen-
det werden, sehr hohe Ströme zu erzeugen, z.B. zum
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Abbildung 4.188: Links: Erzeugung einer Hoch-
spannung. Rechts: Erzeugung ei-
nes hohen Stroms.

Schweißen. Abb. 4.188 zeigt 2 entsprechende An-
wendungen. Links wird eine Hochspannung erzeugt.
Dafür wurde ein Transformator mit 23000 Wicklun-
gen auf der Sekundärspule und 500 auf der Primär-
spule verwendet um eine Spannung von 230 V auf
10 kV zu transformieren. Im zweiten Fall wurden
auf der Primärseite wiederum 500 Wicklungen ver-
wendet, auf der Sekundärseite 5 Wicklungen. Damit
wurde aus einem primärseitigen Strom von 2,5 A ein
sekundärseitiger Strom von 250 A erzeugt. Dieser
reicht um den Nagel durchzuschmelzen.

Transformatoren werden u.a. verwendet, um die
Spannung bei der Übertragung über große Distan-
zen zu erhöhen und sie anschließend wieder zu er-
niedrigen. Dies ist deshalb nützlich weil dadurch die
Verluste gering gehalten werden. Dies kann man an-
hand eines einfachen Rechenbeispiels zeigen: Wir
nehmen an, dass eine Leistung von 2 kW vom Er-
zeuger zum Verbraucher übertragen werden soll und,
dass die Übertragungsleitung einen Widerstand von
R = 10 W aufweise. Bei einer Spannung von 200 V
wird ein Strom von 10 A benötigt. Die Spannung
sinkt dann bis zum Verbraucher auf 100 V, so, dass
nur noch 1 kW (=50%) zur Verfügung stehen. Wird
die gleiche Leistung bei 20 kV übertragen so wird
ein Strom von 0.1 A benötigt; die Spannung sinkt um
1 V auf 19999 V, d.h. die Verluste sind auf 1/20000
reduziert worden.

4.10.14 Aperiodische Ströme

Je größer der Kondensator, desto mehr Zeit benötigt
man bei gegebenem Strom, um ihn zu laden. Man
kann die komplexe Schreibweise auch für aperiodi-
sche Ströme verwenden.

R

C
I

U0

Abbildung 4.189: Stromkreis mit Schalter.

Wir betrachten einen Schaltkreis, der eine Span-
nungsquelle U0 enthält, einen Widerstand R, einen
Kondensator C, und einen Schalter S (! Abb.
4.189). Unmittelbar nach dem Schließen des Schal-
ters S findet man die Spannungen

VR = IR VC =
I

iwC
.

Mit VR +VC = U0 findet man

IR+ I
1

iwC
= U0 ,

oder

I(w) =
U0

R+ 1
iwC

=
U0

R
1

1+ 1
iwRC

.

Dieser Ausdruck beschreibt das Verhalten des
Stroms im Frequenzbereich: für kleine Frequenzen
w < 1/RC ist der Nenner groß und es fließt kein
Strom, für große Frequenzen beträgt der Strom

I0 =
U0

R
.

Dieses Resultat kann qualitativ leicht nachvollzogen
werden: Ein Gleichstrom kann nicht durch den Kon-
densator fließen, für hohe Frequenzen (wRC � 1)
wirkt der Kondensator dagegen wie ein Kurzschluss
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und die gesamte Spannung fällt über dem Wider-
stand ab.

Um das zeitliche Verhalten zu bestimmen, kann man
I(w) Fourier-transformieren. Das Resultat ist

I(t) = I0e�t/RC .

Der Strom setzt somit zunächst mit dem Maximal-
wert ein, der ohne den Kondensator fließen würde,
und nimmt exponentiell auf Null ab. Die Zeitkon-
stante ist gegeben durch das Produkt aus Widerstand
und Kapazität, tRC = RC.

Um schnelle Schaltungen zu erhalten, benötigt man
somit kleine Kapazitäten und Widerstände. Dies
wird am Besten bei integrierten Schaltkreisen er-
reicht.

R
L

+    - 
 U0

S

I

U U0

i i0

t

tte ta

Abbildung 4.190: Widerstand und Spule als Tief-
passfilter.

Legt man an eine Spule eine Spannung an, so folgt
der Strom verzögert. Wir berechnen hier das Aus-
schaltverhalten: Wenn die Batterie in Abb. 4.190
überbrückt ist, muss die Summe der Spannungen
über der Spule und dem Widerstand verschwinden:

I R = �L
dI
dt

.

Die Lösung dieser Bewegungsgleichung für die Stel-
lung des Schalter wie in Abb. 4.190 und einen endli-
chen Anfangsstrom I0 ist

I(t) = I0e�tR/L.

Der Strom fällt somit exponentiell auf Null ab, mit
der Zeitkonstanten tRL = L/R.

Der Einschaltvorgang unterscheidet sich lediglich
durch die zusätzliche Spannungsquelle. Der Strom
steigt deshalb vom Anfangswert Null exponentiell

auf den Langzeitwert I• = U/R an. Bei langen Zei-
ten hat die Spule also keinen Einfluss auf das Verhal-
ten der Schaltung; sie verzögern jedoch die Zeit, bis
der stationäre Zustand erreicht wird. Schnelle Schal-
tungen erhält man somit mit kleinen Induktivitäten
und großen Widerständen in Serie zur Induktivität.

4.11 Die Maxwell Gleichungen

Im Bereich der klassischen Mechanik bieten die
Newton’schen Gesetze eine Grundlage für die mei-
sten beobachteten Phänomene. Im Gebiet von Elek-
trizität und Magnetismus liefern die Maxwell’schen
Gleichungen eine noch umfassendere Beschreibung,
welche die Grundlage für alle beobachteten Phäno-
mene umfasst. Die vier Gleichungen, welche Max-
well 1861-1864 hergeleitet hat, basieren auf damals
bereits bekannten Beziehungen wie dem Durchflu-
tungsgesetz und dem Induktionsgesetz und bleiben
bis heute gültig. Je nach Materialsystem müssen sie
um die relevanten Daten für das Medium ergänzt
werden (Suszeptibilitäten und Permeabilitäten). An-
sonsten wird ihre Gültigkeit nur durch die Quanten-
mechanik begrenzt; die Verallgemeinerung auf Phä-
nomene, bei denen die Quantenmechanik eine Rolle
spielt, liefert die Quanten-Elektrodynamik.
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4.11.1 Felder

Die Maxwell-Gleichungen stellen Beziehungen zwi-
schen elektrischen und magnetischen Feldern her.
Deren Definitionen werden deshalb hier nochmals
zusammengefasst. Das elektrische Feld ~E ist defi-
niert über die Kraft ~F , die auf eine Probeladung q
wirkt:

~E =
~F
q

[E] =
N
C

=
V
m

.

Die elektrische Verschiebungsdichte ~D kann dage-
gen über eine Flächenladungsdichte definiert wer-
den,

~D =
Q

4pr2~n [D] =
C

m2 .

In vielen Systemen ist ~D proportional zu ~E:

~D = ere0~E e0 ⇡ 8.85 ·10�12 As
Vm

.

Im Vakuum ist er = 1.

Den magnetischen Teil des Feldes beschreibt die ma-
gnetische Feldstärke

~H [H] =
A
m

,

resp. die magnetische Flussdichte ~B, welche häufig
direkt proportional zu ~H ist:

~B = µ0µr~H µ0 =
4p

107
Vs
Am

[B] =
Vs
m2 = T.

In nichtmagnetischen Materialien ist µr = 1. Hier
wurde angenommen, dass das Medium isotrop sei,
dass also alle Richtungen gleichwertig seien. Dies
ist insbesondere in Festkörpern meist nicht der Fall.
Die Proportionalitätskonstanten er, µr werden dann
zu Tensoren.

Es gilt das Überlagerungsprinzip:

~Et = Â
i

~Ei,

wobei ~Ei das Feld darstellt, welches von der Ladung
qi erzeugt wird: die Felder einzelner Ladungen ad-
dieren sich. Daraus folgt auch, dass der Fluss durch

eine beliebige Oberfläche sich ebenfalls als Summe
der einzelnen Beiträge, respektive im kontinuierli-
chen Grenzfall als Integral ergibt:ZZ

O
~Et ·d~A = Â

i

ZZ
O

~Ei ·d~A =
1
e0

Â
i

qi =
qt

e0
,

mit qt = Âi qi als Gesamtladung.

Für das Magnetfeld giltZZ
O
~B ·d~A = 0. (4.12)

Wie beim Fluss des elektrischen Feldes ist der Fluss
des magnetischen Feldes ein Maß für die Zahl der
Feldlinien, welche durch die entsprechende Fläche
dringen. In differenzieller Form wird aus (4.12)

div~B(~r) = 0.

Dies ist ein Ausdruck dafür, dass magnetische Feld-
linien immer geschlossen sind.

4.11.2 Die Grundgleichungen von
Elektrizitätslehre und Magnetismus

Zwischen den Feldern und den Ladungen gibt es ei-
nige Beziehungen, die wir bereits diskutiert haben:

elektrischeFeldgleichung : div~D(~r) = r(~r)

magnetischeFeldgleichung : div~B(~r) = 0

Induktionsgesetz :Uind = �dF
dt

Durchflutungsgesetz :
I

~H ·d~s =
ZZ

A
~j ·d~A.

Während diese Phänomene zunächst als relativ un-
abhängig voneinander gesehen wurden, konnte Ja-
mes Clerk Maxwell 1864 eine Theorie des Elek-
tromagnetismus aufstellen, welche alle Phänomene
in einem einheitlichen Gesamtbild zusammenfasste.
Für eine einheitliche Schreibweise werden das In-
duktionsgesetz und das Durchflutungsgesetz etwas
umgeformt. Beide sind hier in ihrer Integralform ge-
schrieben, bei denen jeweils über eine Fläche A in-
tegriert wird. In der differentiellen Form beziehen
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Stabmagnet

Leiterschleife

Abbildung 4.191: Induktionsgesetz (links) und
Durchflutungsgesetz (rechts).

sie sich beide auf ein infinitesimales Flächenele-
ment. Außerdem drücken wir die abgeleiteten Grö-
ßen U =

R
E und F =

RR
B durch die Felder aus, so

dass die Gleichungen direkt die Felder E, D, H und
B miteinander verknüpfen. Damit erhält das Indukti-
onsgesetz die Form

Uind =
I

dA
~E ·d~s = � ∂

∂ t

ZZ
A
~B ·d~A.

Das erste Integral erfolgt entlang dem Rand der Flä-
che, das zweite Integral über die Fläche. Mit Hilfe
des Stokes’schen Satzes wandeln wir das Linienin-
tegral ebenfalls in ein Flächenintegral um:I

dA
~E ·d~s =

ZZ
A

rot(~E) ·d~A = � ∂

∂ t

ZZ
A
~B ·d~A.

Da diese Gleichung für beliebige Flächen A gilt,
müssen die Integranden gleich sein,

rot(~E) = ~—⇥~E = � ∂

∂ t
~B.

In analoger Weise erhalten wir aus dem Durchflu-
tungsgesetz die differentielle Form

rot(~H) = ~—⇥ ~H = ~j. (4.13)

4.11.3 Der Verschiebungsstrom

Betrachtet man nur den Strom, welcher in einem Lei-
ter fließt, so kommt es zu Unstetigkeiten, z.B. bei der
Aufladung eines Kondensators: zwischen den Plat-
ten werden keine Elektronen transportiert. Trotzdem
erscheinen auf der einen Seite Ladungen, welche auf
der anderen Seite entfernt werden. Betrachtet man

also die Spannung, welche in einer Leiterschleife er-
zeugt wird, wenn der Strom durch den Kondensa-
tor ändert, so würde man unterschiedliche Resultate
erhalten, je nachdem ob man die Integrationsfläche
durch den Draht vor dem Kondensator oder durch
den Bereich zwischen den Kondensatorplatten legt.
Dies ist unphysikalisch und entspricht nicht dem ex-
perimentellen Befund.

Maxwell erkannte, dass die Gleichung (4.13) unvoll-
ständig war: neben den “gewöhnlichen” Strömen j
kann auch der sog. “Verschiebungsstrom”, welcher
einer Änderung der dielektrischen Verschiebung ent-
spricht, einen Beitrag zum Magnetfeld liefern. Die
Ladung auf den Kondensatorplatten beträgt

Q =
ZZ

A
~D ·d~A.

Der Strom ist Ladung pro Zeit, also

dQ
dt

= Iv =
d
dt

ZZ
A
~D ·d~A.

Berücksichtigt man dies im Durchflutungsgesetz, so
wird dieses zuI

dA
~H ·d~s = I + Iv,

respektive in der differenziellen Form zu

rot(~H) = ~j +
d
dt

~D.

�

�t
~D

Abbildung 4.192: Beitrag des Verschiebungsstroms
zum Magnetfeld.

Die Änderung d~D/dt der dielektrischen Verschie-
bung ~D als Funktion der Zeit erzeugt also ein ent-
sprechendes Magnetfeld, wie in Abb. 4.192 skiz-
ziert. Dieses kann z.b. mit Hilfe des Induktionsge-
setzes über die induzierte Spannung nachgewiesen
werden.
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Toroidspule zur Vermessung der 
kreisförmigen Magnetfelder

Kondensator HF-Voltmeter

Abbildung 4.193: Messung des Verschiebungs-
stroms über das induzierte
Magnetfeld.

Abbildung 4.193 zeigt ein entsprechendes Experi-
ment. Im Luftspalt zwischen den beiden Konden-
satorplatten befindet sich eine torusförmige Spule,
welche die Flussänderung entlang ihrer Achse misst.
Hier werden offenbar keine Ladungsträger durch den
Luftspalt verschoben, aber es wird ein elektrisches
Feld und damit eine dielektrische Verschiebung auf-
gebaut. Die zeitliche Änderung dieses Feldes er-
zeugt ein kreisförmiges Magnetfeld, konzentrisch
zur Achse des System, wie ein normaler Strom. Die-
se kann über seine Induktionswirkung in der toroi-
dalen Spule experimentell nachgewiesen werden.

4.11.4 Die Maxwell-Gleichungen

Die erste Maxwell-Gleichung entspricht der Feld-
gleichung. Sie kann in integraler oder differenzieller
Form geschrieben werden:ZZ

A
~D ·d~A = qt ~— ·~D(~r) = r(~r). (4.14)

Die zweite Maxwell-Gleichung ist analog für das
Magnetfeld, respektive die nicht vorhandene magne-
tische Ladung:ZZ

A
~B ·d~A = 0 ~— ·~B(~r) = 0. (4.15)

Während die ersten beiden Gleichungen das elektri-
sche, respektive das magnetische Feld mit der La-
dungsverteilung verknüpfen, stellen die dritte und

vierte Maxwell Gleichung eine Beziehung zwischen
der zeitlichen Ableitung des einen Feldes und dem
anderen Feld her. Die dritte entspricht dem Indukti-
onsgesetz:

Z
dA

~E ·d~r = � d
dt

ZZ
A
~B ·d~A ~—⇥~E = �d~B

dt
.

(4.16)

Die vierte Gleichung entspricht dem erweiterten
Durchflutungsgesetz:

Z
~H ·d~r = I +

d
dt

ZZ
A
~D ·d~A ~—⇥ ~H =~j+

d~D
dt

.

(4.17)

Hier bezieht sich A jeweils auf eine Fläche und dA
auf den Rand dieser Fläche. Die Gleichungen weisen
eine hohe Symmetrie auf: sie bleiben fast identisch
wenn H $ E und B $ D ersetzt werden, außer

• dass das Vorzeichen bei der zeitlichen Ablei-
tung wechselt

• die magnetische Ladungsdichte rm identisch
verschwindet und damit auch die magnetische
Stromdichte.

Der von Maxwell eingeführte Beitrag des Verschie-
bungsstroms verschwindet für zeitlich konstante Fel-
der. Bei der Diskussion von Wellen erhält er jedoch
eine entscheidende Bedeutung.

Maxwell erkannte auch, dass nach diesen Gleichun-
gen Wellen existieren müssten, d.h. sich räumlich
ausbreitende zeitabhängige elektromagnetische Fel-
der. Diese werden in Kapitel 6.5 diskutiert. 20 Jahre
später gelang es Heinrich Hertz, diese Wellen expe-
rimentell nachzuweisen.

Weitere 20 Jahre später wurden elektromagnetische
Wellen erstmals für die Übertragung von Informa-
tionen über große Distanzen verwendet. Marconi te-
stete 1901 die erste transatlantische Funkverbindung
(! Abb. 4.194). Dies gilt allerdings heute nicht
mehr als gesichert - vermutlich hatte er nur eine Stö-
rung als Signal interpretiert.

Neben den oben angegebenen Gleichungen benötigt
man für die Beschreibung der Wellenausbreitung in
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Abbildung 4.194: Marconi’s Empfangsstation in
Neufundland.

Materie noch die ebenfalls bereits bekannten Mate-
rialgleichungen

B = µrµ0H und D = ere0E.

4.11.5 Grenzflächen

Die Maxwell-Gleichungen liefern viele nützliche
Resultate. Eine einfache aber sehr nützliche Bezie-
hung erhält man aus den davon abgeleiteten Konti-
nuitätsbedingungen. Falls auf der Grenzfläche kein
Strom fließt, liefert das 4. Maxwell’sche Gesetz

~—⇥ ~H = 0 ! H1
|| = H2

|| ,

d.h. die parallele Komponente des H-Feldes ist an
der Grenzfläche kontinuierlich. Aus der 2. Max-
well’schen Gleichung erhält man

~— ·~B = 0 ! B1
? = B2

?,

d.h. die senkrechte Komponente des B-Feldes ist
kontinuierlich. Analog folgt aus der ersten und drit-
ten Maxwell Gleichung

D1
? = D2

? E1
|| = E2

||.

214


	Einleitung
	Organisatorisches
	Inhaltsübersicht
	Übungen
	Klausur
	Literaturangaben

	Was ist Physik ?
	Physikalische Fragestellungen
	Erkenntnisprozess
	Experimente
	Messgeräte
	Abschätzungen
	Bedeutung für den Alltag
	Bedeutung für Ingenieure

	Physik in Dortmund
	Struktur der Fakultät
	Festkörperphysik
	Teilchenphysik
	Beschleunigerphysik / DELTA
	Medizinphysik

	Physikalische Größen, Maßeinheiten
	Grundlagen und Definitionen
	Grundgrößen im SI-System
	Zehnerpotenzen: Vorsilben und Abkürzungen
	Abgeleitete Größen
	Naturkonstanten

	Messfehler
	Systematische Fehler
	Statistische Fehler
	Verteilungsfunktion
	Fehlerfortpflanzung
	Differenzmessungen
	Fitten

	Differentialoperatoren

	Mechanik
	Kinematik
	Grundbegriffe
	Eindimensionale Kinematik
	Konstante Beschleunigung
	Senkrechter Wurf nach oben
	Kinematik in zwei und drei Dimensionen
	Wurfparabel
	Unabhängigkeitsprinzip

	Dynamik von Massenpunkten
	Definitionen
	Newton'sche Axiome
	Kraft und Beschleunigung
	Zusammenfassung und Gültigkeit
	Masse
	Schwere und träge Masse

	Kräfte in der Dynamik
	Kräfte und Felder
	Elementare und phänomenologische Kräfte
	Reibungskräfte
	Dynamik mit Reibung
	Kräfte als Vektoren
	Raketen
	Beispiele

	Arbeit, Leistung und Energie
	Motivation und Definition
	Arbeit
	Beispiele mit konstanter Kraft
	Variable Kraft
	Energie
	Leistung
	Potenzielle Energie
	Konservative Kräfte
	Gleichgewicht
	Austausch von Energie
	Energieerhaltung
	Anwendungen

	Stoßprozesse
	Definition und Motivation
	Klassifikation von Stoßprozessen
	Kraftstoß
	Elastischer 2-Körperstoß
	Fallende Gummibälle
	Stoß an Kugelreihe
	Unelastischer 2-Körperstoß
	Elastischer Stoß in zwei Dimensionen

	Drehbewegungen
	Kreisbewegung
	Drehimpuls eines Massenpunkts
	Trägheitsmoment
	Kinetische Energie
	Energieerhaltung
	Drehmoment
	Rotationsachse
	Kräftegleichgewicht
	Pirouette
	Kreisel

	Astronomische Anwendungen
	Drehimpuls und Planetenbahnen
	Die Kepler'schen Gesetze
	2. Kepler'sches Gesetz
	3. Kepler'sches Gesetz
	Theorie der Gravitation

	Mechanik in bewegten Bezugssystemen
	Galilei'sche Relativität
	Relativgeschwindigkeit
	Gleichförmig beschleunigte Bezugssysteme
	Schwerelosigkeit
	Kreisbewegung
	Bewegungsgleichung im rotierenden Bezugssystem
	Scheinkräfte im rotierenden Koordinatensystem
	Zentrifugalkraft
	Beispiele
	Corioliskraft
	Die Einstein'sche Relativitätstheorie

	Hydrostatik
	Aggregatzustände
	Spannung
	Flüssigkeitsoberfläche
	Hydrostatischer Druck
	Schweredruck
	Hydrostatischer Druck in Gasen
	Das Prinzip von Archimedes
	Auftriebsmessungen
	Auftrieb in Luft
	Kompressibilität

	Grenzflächeneffekte
	Oberflächenspannung
	Minimalflächen
	Seifenblasen
	Benetzung
	Kapillarkräfte

	Hydrodynamik und Aerodynamik
	Stromlinien und Geschwindigkeitsfelder
	Kontinuitätsgleichung
	Druck und kinetische Energie
	Druckänderung in einer Strömung
	Demonstrationen zur Bernoulli-Gleichung
	Viskosität
	Reibungswiderstand in Flüssigkeiten
	Turbulente Reibung und Luftwiderstand
	Rohrdurchfluss
	Das Gesetz von Hagen-Poiseuille
	Ähnlichkeit von Strömungen
	Strömende Gase (Aerodynamik)
	Der Magnus-Effekt


	Wärmelehre und Thermodynamik
	Temperatur und Wärme
	Historische Entwicklung
	Wärme als Energieform
	Temperatur und thermisches Gleichgewicht
	Temperaturskalen
	Temperaturmessung
	Wärmeausdehnung

	Gastheorie
	Gase
	Das ideale Gas
	Druck
	Zustandsgleichung

	Wärme
	Wärmemenge, Wärmeäquivalent
	Wärmekapazität
	Anwendungsbeispiele
	Wärmetransport
	Wärmeleitung
	Wärmeleitfähigkeit
	Wärmewiderstand
	Wärmeleitungsgleichung
	Wärmeleitung in 1D

	Thermodynamik
	Der 1. Hauptsatz
	Arbeit und Weg
	Der Stirling Motor
	Carnot'scher Kreisprozess
	Der 2. Hauptsatz
	Entropie
	Der 3. Hauptsatz der Thermodynamik


	Elektrizität und Magnetismus
	Ladung und Feld
	Übersicht
	Ladungsquantisierung
	Elektrostatische Wechselwirkung
	Abstandsabhängigkeit
	Elektrisches Feld
	Feldlinien
	Elektrostatisches Potenzial
	Äquipotenzialflächen
	Verschiebungsdichte
	Feldgleichung
	Feld eines geladenen Drahtes
	Homogene Kugelladung
	Elektrische Dipole

	Materie im elektrischen Feld
	Leiter und Isolatoren
	Felder und elektrische Leiter
	Oberflächenladungen und Spiegelladungen
	Feldfreie Räume
	Influenzladung
	Bandgenerator
	Bewegung geladener Teilchen im elektrischen Feld
	Dipole in einem äußeren Feld
	Dipol im inhomogenen Feld

	Kondensatoren
	Der Plattenkondensator
	Felder im Plattenkondensator
	Beispiele
	Kugelkondensator
	Ladungstrennung im Kondensator
	Energie des elektrischen Feldes
	Kräfte auf Kondensatorplatten

	Dielektrika
	Polarisation in Dielektrika
	Mikroskopisches Modell
	Depolarisationsfeld
	Kräfte auf Dielektrika in Feldrichtung
	Kräfte auf Dielektrika senkrecht zur Feldrichtung

	Stationäre Ströme
	Ladungstransport
	Phänomenologie
	Definitionen
	Widerstand
	Spezifischer Widerstand in Ohm'schen Leitern
	Modelle für die Leitfähigkeit
	Driftgeschwindigkeit
	Supraleiter
	Halbleiter
	Ladungstransport in Gasen und Flüssigkeiten

	Schaltungen
	Kirchhoff'sche Gesetze
	Einfache Schaltungen
	Wheatstone'sche Brückenschaltung
	Elektrische Schaltelemente

	Magnetfelder
	Grundlagen
	Dipole im Magnetfeld
	Feldlinien und Magnetpole
	Erdmagnetfeld und Kompass
	Magnetfeld elektrischer Ströme
	Das Durchflutungsgesetz
	Spulen
	Das Biot-Savart Gesetz
	Magnetfeld ringförmiger Spulen
	Flussdichte und magnetische Feldenergie

	Bewegte Ladungen im Magnetfeld
	Lorentzkraft
	Geladene Teilchen im Magnetfeld
	Anwendungen
	Bahnen im Magnetfeld
	Geladene Teilchen im Erdmagnetfeld
	Gekreuzte E- und B-Felder
	Zyklotron
	Hall Effekt
	Messung der Ladungsträgerdichte
	Stromdurchflossene Leiter im Magnetfeld
	Parallele stromdurchflossene Leiter
	Drehmoment auf Leiterschleife
	Elektromotoren
	Elektromagnetische Bezugsysteme
	Lorentz-Transformation

	Materie im Magnetfeld
	Elementare magnetische Dipole
	Magnetisierung
	Klassifikation magnetischen Verhaltens
	Mikroskopisches Modell
	Ferromagnetismus
	Magnetische Domänen
	Magnetische Hysterese
	Weitere magnetische Ordnungseffekte
	Ferrofluide
	Magnetische Eigenschaften von Supraleitern
	Anwendungen

	Zeitabhängige Felder und Ströme
	Induktion: Phänomenologie
	Magnetischer Fluss
	Induktionsgesetz
	Wechselstromgenerator
	Induzierte Ströme und Lenz'sche Regel
	Wirbelströme
	Selbstinduktion
	Magnetische Feldenergie
	Periodische Ströme und Felder
	Komplexe Schreibweise, Impedanz
	Rechnen mit Impedanzen
	Transformatoren
	Anwendungen
	Aperiodische Ströme

	Die Maxwell Gleichungen
	Felder
	Die Grundgleichungen von Elektrizitätslehre und Magnetismus
	Der Verschiebungsstrom
	Die Maxwell-Gleichungen
	Grenzflächen


	Schwingungen
	Allgemeines
	Beispiele und Definition
	Phänomenologie
	Atomare und molekulare Schwingungen
	Klassifikation und Übersicht

	Der Harmonische Oszillator
	Harmonische Schwingungen
	Das Federpendel
	Freie Schwingung
	Phase von Ort, Geschwindigkeit und Beschleunigung
	Energie
	Der h.O. als Modellsystem
	Anharmonizität
	Komplexe Amplitude

	Schwingende Systeme
	Das mathematische Pendel
	Torsionsschwinger
	Das physikalische Pendel
	Flüssigkeitspendel im U-Rohr
	Elektromagnetische Schwingkreise
	Zusammenfassung

	Gedämpfte Schwingung
	Dämpfung und Reibung
	Geschwindigkeitsproportionale Reibung
	Schwache Dämpfung, 0>
	Gedämpfte elektromagnetische Schwingungen
	Überkritische Dämpfung (Kriechfall)
	Der aperiodische Grenzfall: 0=

	Erzwungene Schwingung
	Bewegungsgleichung
	Energiebillanz
	Lösungsweg
	Stationäre Lösung
	Real- und Imaginärteil
	Resonante Anregung
	Absolutbetrag und Phase
	Einschwingvorgang

	Schwingungen mit mehreren Freiheitsgraden
	Das Doppelpendel
	Eigenschwingungen
	Schwebungen
	Gekoppelte elektronische Schwingkreise
	Transversalschwingungen
	Schwingungen von mehrdimensionalen Systemen
	Akustische Schwingungen, Musikinstrument


	Wellen
	Grundlagen
	Beispiele und Definition
	Ausbreitung von Wellen
	Harmonische Wellen
	Longitudinal vs. Transversal
	Mathematische Beschreibung harmonischer Wellen
	Lineare Kette
	Harmonische Longitudinalwelle
	Phasengeschwindigkeit
	Überlagerung von Wellen; Gruppengeschwindigkeit

	Akustische Wellen
	Druckwellen
	Schallwellen
	Schallimpedanz und Intensität
	Intensität und Lautstärke
	Physiologische Lautstärken-Skala
	Empfindlichkeitsgrenze

	Mechanische Wellen
	Druckwellen in Flüssigkeiten und Festkörpern
	Seismische Wellen
	Transversalwellen in einer Massenkette
	Energie einer Transversalwelle
	Seilwellen
	Wellen in 2D und 3D
	Übersicht Phasengeschwindigkeiten

	Ausbreitung
	Reflexion und Transmission
	Stehwellen
	Abstandsabhängigkeit
	Der Dopplereffekt
	Überschallgeschwindigkeit

	Elektromagnetische Wellen
	Das elektromagnetische Spektrum
	Elektromagnetische Wellengleichung
	Ebene Wellen
	Magnetfeld
	Transversalwellen: Polarisation
	Hertz'scher Dipol
	Eigenschaften des Hertz'schen Dipols
	Übertragung von Energie und Impuls
	Dopplereffekt


	Optik
	Grundlagen
	Historisches
	Beschreibung
	Erzeugung von Licht
	Nachweis von Licht
	Halbleiterdetektoren

	Lichtausbreitung
	Lichtgeschwindigkeit
	Messung der Lichtgeschwindigkeit nach Fizeau-Michelson
	Brechungsindex
	Absorption und Dispersion
	Geometrische Optik
	Das Prinzip von Fermat
	Gekrümmte Lichtstrahlen
	Huygens’sches Prinzip

	Reflexion und Brechung
	Reflexion: Grundlagen
	Herleitung des Reflexionsgesetzes
	Brechung des Lichts an einer ebenen Grenzfläche
	Reflexionsgesetz aus dem Huygens'schen Prinzip
	Reflexions- und Transmissionskoeffizienten
	Fresnelformeln
	Totalreflexion
	Brechung am Prisma

	Abbildende Optik
	Bildentstehung
	Parabolspiegel
	Abbildung, Maßstab
	Brechung an einer sphärischen Oberfläche
	Entstehung des Regenbogens
	Linsen
	Linsentypen
	Abbildung und Vergrösserung
	Linsenfehler
	Maximale Auflösung

	Optische Instrumente
	Das Auge
	Vergrößerung und Mikroskop
	Fernrohr
	Photometrie

	Polarisation und Doppelbrechung
	Polarisation
	Erzeugung und Umwandlung
	Doppelbrechung
	Optische Aktivität

	Interferenz
	Linearität für Felder, nicht für Intensitäten
	Der Interferenzterm
	Interferenz von 2 ebenen Wellen
	Zweistrahlinterferenz an dünnen Schichten
	Farben dünner Filme
	Entspiegelung
	Zweistrahlinterferenz
	Interferometer als Messinstrumente
	Vielstrahlinterferenz
	Kohärenz
	Anwendungen

	Beugung
	Grenzen der geometrischen Optik
	Beugung am Spalt
	Beugung am Doppelspalt
	Komplementäre Objekte
	Das optische Gitter
	Beugung an zweidimensionalen Objekten
	Fresnel'sche Zonenplatte
	Beugung an dreidimensionalen Objekten
	Holographie

	Laser
	Grundlagen
	Funktionsprinzip
	Lasertypen
	Anwendungen
	Pulslaser


	Grundlagen der Quantenmechanik
	Experimentelle Hinweise
	Schwarze Strahler
	Herleitung des Strahlungsgesetzes
	Quantisierung
	Strahlungsgesetze Mehr dazu findet man unter https://www.spektrum.de/lexikon/physik/strahlungsgesetze/14000
	Kosmische Hintergrundstrahlung
	Photonen
	Einstein's Theorie von Absorption und Emission
	Photoeffekt
	Austrittsarbeit
	Spektrallinien von Atomen
	Das Franck-Hertz Experiment
	Der Comptoneffekt

	Wellencharakter der Materie
	Wellen und Teilchen
	Ausbreitung und Dispersion
	Beispiel: Elektronenwellen
	Interferenz und Beugung
	Neutronen
	Schwerere und zusammengesetzte Teilchen

	Der quantenmechanische Formalismus
	Historische Vorbemerkungen
	Grundlagen
	Quantenmechanische Messungen; Erwartungswerte
	Die wichtigsten Operatoren
	Schrödingergleichung
	Heisenberg's Unschärfenrelation

	Eindimensionale Probleme
	Der harmonische Oszillator
	Teilchen im Potenzialtopf
	Anwendung: Halbleiter-Quantenstrukturen


	Atome, Moleküle und Festkörper
	Atome als Grundbestandteile der Materie
	Historisches
	Die moderne Atomtheorie
	Experimentelle Hinweise für die Existenz von Atomen
	Feld-Ionen Mikroskopie
	Mikroskopie
	Größe eines Atoms

	Aufbau der Atome
	Historische Grundlagen
	Rutherford´s Experiment
	Das klassische Atommodell
	Das Wasserstoff-Spektrum
	Das Bohr'sche Atommodell

	Die Quantenmechanik des Wasserstoffatoms
	Grundlagen, Hamiltonoperator
	Wasserstofforbitale
	Drehimpuls
	Das Wasserstoffspektrum
	Elektronenspin
	Schwerere Atome
	Das Periodensystem

	Bindungen und Moleküle
	Wechselwirkung und Bindungsenergie
	Bindungstypen
	Das Wasserstoffmolekül
	Zustandsenergie
	Molekülorbitale
	Kovalente Bindung
	Polare Bindungen
	Van der Waals Bindung
	Wechselwirkung
	Eigenmoden
	Das Lennard-Jones Potenzial
	Metallische und ionische Bindung
	Wasserstoffbrücken
	Bedeutung von H-Brücken

	Kristalline Festkörper
	Symmetrie
	Van der Waals
	Ionische Bindung

	Elektronen im Festkörper
	Das klassische Drude-Modell
	Das Sommerfeld-Modell
	Das Teilchen im Potenzialtopf
	Drei Raumdimensionen
	Fermi-Energie
	Die Fermi-Dirac Verteilung
	Leitfähigkeit

	Bänder
	Probleme des Modells freier Elektronen
	Das periodische Potenzial
	Eigenfunktionen im periodischen Potenzial
	Zonenrand
	Bandstruktur

	Halbleiter
	Grundlagen
	Ladungsträgerstatistik
	Dotierung
	Absorption von Licht
	Lichtemission

	Supraleitung
	Entdeckung
	Leitfähigkeit
	Diamagnetismus
	Kritische Temperatur und kritisches Feld
	Typ II Supraleiter


	Kernphysik
	Atomkerne
	Größenskalen
	Nukleonen
	Bindungsenergie und Massendefekt
	Das Tröpfchenmodell
	Das Schalenmodell des Kerns
	Das Standardmodell der Teilchenphysik

	Radioaktivität
	Historisches, Grundlagen
	Alpha-Zerfall
	Beta-Zerfall
	Gamma-Zerfall

	Kernenergie
	Kernspaltung
	Kernreaktoren
	Probleme der Kernspaltung
	Kernfusion
	Kernfusion in Sternen


	Literaturverzeichnis

