
2 Mechanik
2.1 Kinematik

2.1.1 Grundbegriffe

Die Mechanik ist der “klassischste” Teil der Physik,
sie umfasst diejenigen Aspekte die schon am läng-
sten untersucht wurden.

Abbildung 2.1: Galileo Galilei (1564-1642)

Zu den wichtigsten Begründern gehört Galileo Ga-
lilei (! Abb. 2.1), der wichtige Beiträge zur expe-
rimentellen Untersuchung von Naturgesetzen (Me-
chanik, Astronomie) lieferte und vor allem sehr ge-
schickt war, deren Bedeutung und seine Beiträge
dazu öffentlichkeitswirksam zu verbreiten. Zu den
wichtigsten Beispielen gehören seine Fallversuche,
mit denen er zeigte, dass die Fallgeschwindigkeit für
alle Körper gleich ist.

Für die Verbreitung seiner Ideen verwendete er vor
allem seine “Dialoge” (! Abb. 2.2), in denen fiktive
Personen seine theoretischen Konzepte mit älteren
Vorstellungen vergleichen.

Die eigentliche Formalisierung der Mechanik ist vor
allem Isaac Newton (! Abb. 2.3) zu verdanken,
welcher mit Hilfe weniger Grundprinzipien (“New-
tons Gesetzen”) den größten Teil des damaligen phy-
sikalischen und astronomischen Wissens herleiten
konnte. Sein Hauptwerk sind die “Philosophiae na-

Abbildung 2.2: Titelseiten von Galileos Dialog über
die Weltsysteme.

turalis principia mathematica”, also die mathemati-
schen Grundlagen der Naturwissenschaft.

Die Mechanik kann aufgeteilt werden in die Gebiete

Statik: Zusammensetzung und Gleichgewicht von
Kräften.

Kinematik: Die Kinematik beschreibt Bewegungs-
prozesse quantitativ. Dabei wird die Ursache
der Bewegung nicht untersucht.

Dynamik: Effekt von Kräften auf die Bewegungs-
prozesse.

Außerdem unterscheidet man Teilgebiete danach,
welche Objekte beschrieben werden. Im Folgenden
werden die meisten Konzepte mit Hilfe eines stark
idealisierten Modells diskutiert, dem Massenpunkt.
Weitere Klassen von Objekten sind starre und defor-
mierbare Körper.

2.1.2 Eindimensionale Kinematik

Wir beginnen mit eindimensionaler Kinematik, d.h.
mit einer Bewegung, welche mit einer einzigen Orts-
koordinate beschrieben werden kann, welche die Po-
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2 Mechanik

Abbildung 2.3: Isaac Newton (1642-1727).

sition des Körpers auf einer vorgegebenen Bahn be-
schreibt. Ein typisches Beispiel ist eine Eisenbahn
auf einem einzelnen Gleis: dieses kann gebogen
sein, aber die Position der Eisenbahn ist exakt be-
stimmt wenn man die Position bezüglich einem Ko-
ordinatennullpunkt angibt.

Ein Massenpunkt ist ein Modell für einen Körper,
dessen Ausdehnung für die behandelte Fragestellung
keine Rolle spielt. Die Bewegung des Massenpunk-
tes ist vollständig beschrieben, wenn man die Positi-
on s als Funktion der Zeit t angibt. Dies erfolgt ma-
thematisch durch eine Funktion s(t) oder graphisch
durch ein Weg-Zeit Diagramm.
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Abbildung 2.4: Weg-Zeit Diagramm.

Die Geschwindigkeit v des Massenpunktes kann aus

dem Weg-Zeit Diagramm (! 2.4) durch Ableitung
bestimmt werden:

v = lim
Dt!0

Ds
Dt

=
ds
dt

[v] =
m
s

.

Graphisch ist die Geschwindigkeit durch die Stei-
gung der Kurve im Weg-Zeit Diagramm bestimmt.

Anstelle der instantanen Geschwindigkeit v(t) inter-
essiert manchmal auch die mittlere Geschwindigkeit

v̄ =
Ds
Dt

.

Im Weg-Zeit Diagramm ist dies die Steigung der di-
rekten Verbindung zwischen zwei Punkten.

Anstelle des Weges kann man auch die Ge-
schwindigkeit als Funktion der Zeit auftragen. Im
Geschwindigkeit-Zeit Diagramm ist die zurückge-
legte Wegstrecke als Integral (=Fläche unter der Kur-
ve) gegeben:

s(t) = s(0)+
Z t

0
v(t 0)dt 0 .

Analog zur Definition der Geschwindigkeit als Än-
derung des Ortes pro Zeiteinheit wird die Beschleu-
nigung als Änderung der Geschwindigkeit pro Zeit-
einheit definiert:

a =
dv
dt

[a] =
m
s2 .

Im Geschwindigkeit-Zeit Diagramm erscheint die
Beschleunigung als Steigung der Kurve, im Ort-
Zeit Diagramm als Krümmung: Positive Krümmung
(nach oben) bedeutet positive Beschleunigung, ne-
gative Krümmung Verzögerung (d.h. Abbremsung).
Die Geschwindigkeit ist durch das Integral der Be-
schleunigung gegeben:

v(t) = v(0)+
Z t

0
a(t 0)dt 0 .

Der Weg ist dementsprechend

s(t) = s(0)+ v(0)t +
a
2

t2.
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2 Mechanik

2.1.3 Konstante Beschleunigung

Ein wichtiger Spezialfall ist die konstante Beschleu-
nigung, a(t) = a. Dazu gehört u. a. der freie Fall. Für
einen Körper, der sich zunächst in Ruhe (v0 = 0) am
Punkt s(0) = 0 befindet nimmt die Geschwindigkeit
bei konstanter Beschleunigung proportional zur Zeit
zu, v(t) = at. Der zurückgelegte Weg ist deshalb

s(t) =
a
2

t2. (2.1)

Auf der Erdoberfläche wirkt auf alle Köper eine kon-
stanten Beschleunigung nach unten mit a = �g = -
9,81 ms�2 für ein Koordinatensystem, das senkrecht
nach oben zeigt.

Wir erwarten somit, dass der zurückgelegte Weg
quadratisch mit der Zeit ansteigt. Im Ausdruck (2.1)
ist die Masse nicht enthalten, es fallen also alle Ob-
jekte mit der gleichen Beschleunigung und mit der
gleichen (zeitabhängigen) Geschwindigkeit.
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Abbildung 2.5: Experiment zum freien Fall: Es sind
jeweils Gewichte in unterschiedli-
cher Höhe montiert. Sie werden
gleichzeitig fallen gelassen.

Wir verifizieren die Vorhersage (2.1) anhand eines
Experimentes. Jeweils vier Gewichte werden in un-
terschiedlicher Höhe über dem Boden aufgehängt
und gleichzeitig losgelassen (! Abb. 2.5). An der
ersten Schnur sind die Gewichte im Abstand 0:1:2:3
(d.h. linear) angebracht : hi=(0; 1,6; 3,2; 4,8) m. Wer-
den diese gleichzeitig fallen gelassen, so erreichen

sie den Boden nach einer Zeit

ti =

s
2hi

g
= (0; 0,57; 0,81; 0,99),

also mit abnehmenden Abständen.

An der zweiten Schnur sind die Gewichte im Ab-
stand 1:4:9:16 (also quadratisch. Konkret betragen
die Höhen hi=(0,3; 1,2; 2,7; 4,8) m. Die Zeit bis sie
auf dem Boden auftreffen, sollte deshalb zu den Zei-
ten

ti =

s
2hi

g
= (0,25, 0,49, 0,74, 0,99)

auf dem Boden auftreffen. Der Abstand zwischen
2 aufeinanderfolgenden Ereignissen ist somit ti+1�
ti = 0,25 s, für alle 3 Abstände. Dies lässt sich aku-
stisch überprüfen: im zweiten Fall treffen die Ge-
wichte etwa mit gleichen Abständen auf dem Boden
(d.h. der Metallplatte) auf.

Im Normalfall unterscheidet sich die Fallgeschwin-
digkeit unterschiedlicher Objekte: eine Feder und
ein Stein fallen nicht gleich schnell. Das liegt daran,
dass in der Beschreibung der Luftwiderstand nicht
berücksichtigt wurde. Im Vakuum fallen die Objekte
aber wirklich mit gleicher Geschwindigkeit.

2.1.4 Senkrechter Wurf nach oben

 1

s(t) = s(0) + v(0)t + a
2 t2

Anfangsort

Anfangsgeschwindigkeit

Beschleunigung

Abbildung 2.6: Das Superpositionsprinzip: An-
fangsort, Anfangsgeschwindigkeit
und Beschleunigung liefern unab-
hängige Beiträge.

Befindet sich der Körper zu Beginn nicht in Ru-
he, so wird die Bewegung aufgrund der Anfangsge-
schwindigkeit der Bewegung aufgrund der (gleich-
förmigen) Beschleunigung überlagert. Man bezeich-
net dies als Superpositionsprinzip (! Abb. 2.6): der
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2 Mechanik

Anfangsort, die gleichförmige Bewegung und die
gleichförmige Beschleunigung können unabhängig
berechnet und die Resultate addiert werden.

Als Beispiel betrachten wir einen Körper, der von
einem Turm (Höhe h0 = 10 m) mit einer Anfangs-
geschwindigkeit v(0) = 5 m/s senkrecht nach oben
geworfen wird. Die Schwerkraft erzeugt eine zeit-
lich konstante Beschleunigung von a = �g = -9.81
m/s2 nach unten.

Die Geschwindigkeit wird somit

v(t) = v0 +at = (5�9.81t)m/s [t] = s

Der erste Term beschreibt die Anfangsgeschwindig-
keit und ist unabhängig von der Zeit; dazu wird das
Produkt aus Beschleunigung und Zeit addiert.

Für den Ort (d.h. die Höhe h) erhalten wir

h(t) = h0 + v0t +a/2 t2 =

= (10+5 t�4.9 t2)m. [t] = s.

Hier stellt der erste Term den Ausgangspunkt dar - er
ist zeitunabhängig. Der zweite Term beschreibt den
Effekt der Anfangsgeschwindigkeit, und der dritte
Term ist auf die konstante Beschleunigung zurück-
zuführen.

Die maximale Höhe wird erreicht für v(t) = 0:

5�9,81 tm = 0 ! tm = 0,51s,

zum Zeitpunkt tm. Sie beträgt dann

h(0,51s) = (10+2.55�1.27)m = 11,28m .

Die Kugel trifft auf den Boden (h = 0) auf wenn

h(t0) = 0 = h0 + v0t +
a
2

t2 =

= 10+5t0�4.9t2
0 ,

d.h. bei

t0 =
v0 ±

q
v2

0 +2gh0

g
=

5±
p

25+196
9,81

=

=
5±14,87

9,81
.
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Abbildung 2.7: Höhe als Funktion der Zeit.

Wie in Abb. 2.7 gezeigt, hat diese Gleichung zwei
Lösungen:

t1 = 2,03 und t2 =�1,01 .

Wir müssen jetzt überprüfen weshalb wir zwei Lö-
sungen erhalten. Die erste (t1 > 0) ist diejenige die
wir suchen. Die zweite (t2 < 0) entspricht ebenfalls
einer Durchquerung des Bodens durch den Körper
- allerdings bevor er vom Turm nach oben gewor-
fen wurde. Der Körper würde bei dieser Lösung bei
t = 0 an der Spitze des Turmes eintreffen und an-
schließend die gleiche Kurve verfolgen wie der Kör-
per, der bei t = 0 geworfen wurde. Man erhält häufig
mathematisch mehr Resultate als physikalisch sinn-
voll sind, wenn man die Randbedingungen nicht be-
rücksichtigt: in diesem Fall betrachten wir nur Zeiten
t > 0.

2.1.5 Kinematik in zwei und drei
Dimensionen

In vielen Fällen findet Bewegung in mehr als einer
Dimension statt. Physikalische Größen, die durch
Betrag und Richtung beschrieben werden, nennt man
Vektoren. In diesen Fällen wird die Position durch
zwei oder mehr Koordinaten beschrieben, also z.B.
x(t), y(t), z(t). Dafür muss ein Bezugssystem festge-
legt werden. Dieses besteht aus einem Bezugspunkts
O und gerichteten Orientierungslinien im Raum. Be-
züglich dieses Koordinatensystems ist eine Position
dann definiert durch einen Vektor ~r vom Ursprung
zum entsprechenden Punkt (! Abb. 2.8).

Grundsätzlich ist man frei in der Wahl der Koordi-
naten, doch sind häufig kartesische Koordinatensy-
steme einfach zu handhaben. Dabei handelt es sich
um rechtwinklige Koordinatensysteme mit gleichem
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Abbildung 2.8: Vektor und Koordinatensystem.

Maßstab in allen Richtungen. Die Bewegung eines
Massenpunktes in drei Dimensionen wird dann be-
schrieben durch einen Vektor

~r(t) =

0@ x(t)
y(t)
z(t)

1A .

Dementsprechend sind auch Geschwindigkeit

~v(t) =
d
dt

~r(t) =

0@ ẋ(t)
ẏ(t)
ż(t)

1A =

0@ vx(t)
vy(t)
vz(t)

1A
und die Beschleunigung

~a(t) =
d
dt

~v(t) =

0@ v̇x(t)
v̇y(t)
v̇z(t)

1A =

0@ ax(t)
ay(t)
az(t)

1A
Vektoren in (zwei oder) drei Dimensionen.
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Abbildung 2.9: Bahnkurve in 3D.

Trägt man den Weg als Kurve auf, so ist die Ge-
schwindigkeit ~v(t) an einem beliebigen Punkt ~r(t)
entlang der Tangente gerichtet, wie in Abb. 2.9 ge-
zeigt.

Ist die Beschleunigung eines Massenpunktes gege-
ben, so können Geschwindigkeit und Ort als Funk-
tion der Zeit für die Komponenten einzeln bestimmt
werden:

~v(t) = ~v(0)+
Z t

0
~a(t 0)dt 0 =

= {vx(0),vy(0),vz(0)}+

+

⇢Z t

0
ax(t 0)dt 0,

Z t

0
ay(t 0)dt 0,

Z t

0
az(t 0)dt 0

�
.

Somit sind die drei Komponenten unabhängig von-
einander.

Für den Fall konstanter Beschleunigung erhalten wir
wiederum

~v(t) =~v(0)+~at

und

~r(t) =~r(0)+~v(0)t +
~a
2

t2.

2.1.6 Wurfparabel

Abbildung 2.10: Schiefer Wurf.

Wir illustrieren dieses Verhalten anhand einer zwei-
dimensionalen Bewegung im Schwerefeld der Er-
de, d.h. mit konstanter Beschleunigung nach unten.
Abb. 2.10 zeigt ein Beispiel eines solchen Wurfs.
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2 Mechanik

Wir wählen ein Koordinatensystem mit x in horizon-
taler und z in vertikaler Richtung (nach oben). Der
Körper sei zum Zeitpunkt t = 0 bei

~r(0) =

✓
x(0)
y(0)

◆
=

✓
0
0

◆
.

Die Anfangsgeschwindigkeit beträgt

~v(0) = v0

✓
cosa

sina

◆
.

und die Beschleunigung

~a =

✓
0
�g

◆
ist zeitlich konstant. Somit ist die Bewegung

~r(t) = v0t
✓

cosa

sina

◆
+

t2

2

✓
0
�g

◆
=

✓
v0t cosa,

v0t sina� g
2 t2

◆
.

Wir können diese Kurve auch als Gleichung schrei-
ben. Die beiden Koordinaten ergeben 2 Gleichun-
gen:

x = v0t cosa, z = v0t sina�g
t2

2
.

Wir lösen die erste Gleichung nach der Zeit t auf:

t =
x

v0 cosa

und setzen diesen Ausdruck in die zweite Gleichung
ein:

z = x tana� x2 g
2v2

0 cos2
a

.

Kurven der Form z = ax + bx2 stellen Parabeln dar.
In diesem speziellen Fall spricht man von der “Wurf-
parabel”. Abb. 2.11 zeigt ein Beispiel.

Abbildung 2.11: Bahnkurve des schiefen Wurfs.
An einigen Punkten sind auch
die Geschwindigkeitskomponenten
dargestellt.

Man kann sie z.B. durch einen Wasserstrahl sichtbar
machen, wie in Abb. 2.12 gezeigt. Wir betrachten zu-
nächst den einfachsten Fall dass das Wasser horizon-
tal austritt, d.h. a = 0. Die Gleichung reduziert sich
dann zu

z =�x2 g
2v2

0
,

d.h. eine nach unten offene Parabel. Im Experiment
tritt der Wasserstrahl horizontal aus der Düse aus und
fällt unter dem Einfluss der Gravitationsbeschleuni-
gung. Die roten Kreise markieren eine Parabel durch
die Werte (x/y) = (1/1) , (2/4), (3/9), (4/16), (5/25) ...

Wird der Wasserstrahl gekippt, so wird a 6= 0 und
das Wasser erhält eine Anfangsgeschwindigkeit in
vertikaler Richtung. Der Scheitelpunkt der Parabel
verschiebt sich dadurch nach rechts oben.

2.1.7 Unabhängigkeitsprinzip

Nicht nur die Anfangswerte von Beschleunigung,
Geschwindigkeit und Position gehen linear in die
Gleichung ein; wir haben auch gesehen, dass die ein-
zelnen Koordinaten voneinander unabhängig sind.
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Abbildung 2.12: Wasserstrahlparabel.

 1

wird fallengelassen

wird horizontal 
geworfen

Abbildung 2.13: Unabhängigkeitsprinzip.

Die bedeutet z.B., dass eine Kugel, welche aus 1
m Höhe fallengelassen wird, den Boden nach t =p

2s/a = 0.45s erreicht, unabhängig davon ob sie
sich zu Beginn in Ruhe befindet oder eine horizonta-
le Anfangsgeschwindigkeit aufweist. Abb. 2.13 zeigt
dies durch Vergleich der Trajektorien von 2 Kugeln.

Wir überprüfen dies, indem wir zwei Kugeln am
gleichen Hebel befestigen (! Abb. 2.14). Wird mit
dem Hammer darauf geschlagen, so fällt die eine
senkrecht hinunter, die andere in einer Parabel. Dass
beide gleichzeitig auf dem Boden auftreffen lässt
sich leicht akustisch verifizieren. Dies wird auch aus

Abbildung 2.14: Unabhängigkeitsprinzip: Eine Ku-
gel wird fallen gelassen, die ande-
re gleichzeitig horizontal geworfen.
Beide treffen gleichzeitig am Bo-
den auf.

der Vektorschreibweise der Bewegungsgleichung er-
kennbar:✓

x(t)
z(t)

◆
=

✓
x0 + vx0t + ax

2 t2

z0 + vz0t + az
2 t2

◆
:

es handelt sich um zwei unabhängige Gleichungen,
ohne Kopplungsterm. Das Unabhängigkeitsprinzip
besagt, dass sich die beiden Koordinaten unabhängig
voneinander entwickeln. Dies gilt immer für gleich-
förmig beschleunigte Bewegungen.

 1

Zeit t

x, z

z(t)

x(t)

✓
x(t)
z(t)

◆
=

✓
vx0t
� g

2 t2

◆

Abbildung 2.15: Unabhängige Zeitentwicklung für
2 Koordinaten im Schwerefeld.

Die x-Komponente der Geschwindigkeit ist kon-
stant, die x Koordinate wächst deshalb linear (in bei-
den Fällen; für die rote Kugel ist vx = 0).

Ein weiteres Experiment dazu ist der “Affenschuss”:
Wie in Abb. 2.16 gezeigt, schießt ein Jäger auf einen
Affen. Dieser lässt sich fallen, wenn er den Mün-
dungsblitz des Gewehrs sieht. Wohin muss der Jäger
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Abbildung 2.16: Der ”Affenschuss”.

zielen um den Affen (Höhe h, Distanz x0) zu treffen?
Was ist der Einfluss der Anfangsgeschwindigkeit v0?
Vernachläßigt man zunächst die Erdbeschleunigung,
so muss der Jäger offenbar auf den Affen zielen um
ihn zu treffen, d.h. tana = h/x0. Die Flugzeit der
Kugel ist

t0 =
x0

v0 cosa

.

Der zusätzliche Einfluss der Erdbeschleunigung ist
identisch für den Affen und die Kugel: Beide fal-
len um eine Strecke z =�gt2

0/2. Die Kugel trifft so-
mit unabhängig von der Mündungsgeschwindigkeit
wenn der Jäger richtig zielt und der Affe sich sofort
fallen lässt.

 1

∫ dt’

Ort 

r(t)

Geschwindigkeit 

v(t)

Beschleunigung 

a(t)

d/dt

Abbildung 2.17: Zusammenfassung der Kinematik.

Im Sinne einer kurzen Zusammenfassung soll Abb.
2.17 nochmals daran erinnern, was das Thema der
Kinematik ist: Es geht um die Beziehung zwischen
Ort, Geschwindigkeit und Beschleunigung, welche
aus einander durch Differenzieren, resp. Integrieren
hergeleitet werden können. In vielen Fällen gilt dies

für die verschiedenen Raumdimensionen unabhän-
gig voneinander.

2.2 Dynamik von Massenpunkten

Die Dynamik befasst sich mit der Bewegung, welche
von Kräften erzeugt und geändert wird.

2.2.1 Definitionen

Die wichtigsten Grundbegriffe der Dynamik sind die
Masse, der Impuls und die Kraft.

Masse ein Maß für den Widerstand eines Körpers
gegen Bewegungsänderungen. Sie ist unabhän-
gig vom Ort und vom Bewegungszustand. Da-
mit ist sie auch ein geeignetes Maß für die
Stoffmenge. Das übliche Symbol ist m und die
SI-Einheit ist 1 kg. Man unterscheidet manch-
mal zwischen der trägen Masse (siehe oben)
und der schweren Masse, welche ein Maß für
die Schwerkraft ist. Experimentell findet man
keinen Unterschied zwischen schwerer und trä-
ger Masse und die Relativitätstheorie zeigt,
dass sie sich nicht unterscheiden.

Impuls ~p ist ein Maß für die Bewegung. In der klas-
sischen Mechanik ist er gegeben durch das Pro-
dukt aus Geschwindigkeit und Masse, ~p = m~v.
Er ist somit eine vektorielle Größe parallel zur
Geschwindigkeit. Seine Einheit ist m kg s�1.

Kraft

~F ist ein Maß für die Fähigkeit, eine Bewe-
gungsänderung zu erzeugen. SI-Einheit: N = m
kg s�2.

Zwei Experimente sollen das Konzept der Masse
veranschaulichen. Im ersten Experiment ist an ei-
ner Masse oben und unten jeweils eine gleich starke
Schnur befestigt. Zieht man an der unteren Schnur
langsam, so reisst die obere Schnur, da hier die Ge-
wichtskraft des Masse zusätzlich zur Zugkraft wirkt.
Zieht man schnell, so reisst die untere Schnur, da die
Trägheit der Masse verhindert, dass die Zugkraft auf
die obere Schnur übertragen wird.

Die Trägheit der Masse kann auch dazu führen, dass
ein Gegenstand in Ruhe bleibt, wenn die Kraft dar-
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auf nur für eine kurze Zeit wirk. In diesem Expe-
riment wird ein Besenstiel auf 2 Trinkgläsern gela-
gert. Schlägt man langsam auf den Stiel, so wird der
Stoß auf die Gläser übertragen und sie zerspringen.
Schlägt man jedoch schnell genug darauf, so zer-
bricht der Besenstiel, da er nicht genug Zeit hat, den
Stoß auf die Gläser an den Enden zu übertragen.

2.2.2 Newton’sche Axiome

Die Grundlage für die hier behandelte Mechanik
wurde im Wesentlichen von Newton1 gelegt. Sei-
ne Publikation der mathematischen Grundlagen der
Physik markierte den Übergang von der peripateti-
schen Dynamik, welche auf die griechischen Phi-
losophen zurückgeht, zur Newton’schen Dynamik,
welche heute als klassische Mechanik bezeichnet
wird. Ihr Grundlage sind die drei Newton’schen
Axiome:

Trägheitsgesetz: Ein Körper, auf den keine äuße-
ren Kräfte wirken, behält seine Geschwindig-
keit nach Richtung und Betrag bei. Mathema-
tisch: ~F = 0! d~v

dt = 0.

Abbildung 2.18: Experimentelle Verifikation von
Newton’s Axiomen: Bewegung auf
einer Luftkissenschiene.

Die Bedingung, die in diesem Axiom enthalten ist,
ist in der Praxis natürlich nur sehr schwer zu rea-
lisieren. Man kann sie in einem Demonstrationsex-
periment näherungsweise verwirklichen, indem man

1Isaac Newton, 1642 – 1727

einen Körper auf einem Luftkissen laufen lässt und
so Reibungskräfte sehr gering hält. An zwei Stel-
len dieser Schiene wird jeweils gemessen wie lan-
ge der Körper die Fotozelle verdunkelt, wie lange er
also braucht um eine Strecke zurückzulegen, die sei-
ner eigenen Länge entspricht. Wir erwarten eine Zeit
t = `/v, wobei ` die Länge des Körpers darstellt. Die
gemessene Zeit ist somit indirekt proportional zur
Geschwindigkeit, eine Änderung der Geschwindig-
keit erscheint als eine Änderung der Zeit. Das Ex-
periment zeigt, dass die gemessenen Zeiten in etwa
konstant sind.

Das zweite Newton’sche Axiom ist das

Aktionsgesetz = Grundgesetz der Mechanik: Die
zeitliche Änderung des Impulses p = mv ist
gleich der resultierenden Kraft F :

d~p
dt

= ~F .

Dieses Axiom kann auch als Definition einer
Kraft betrachtet werden.

Im Experiment von Abb. 2.18 wirkt die Kraft die
Körper am Umkehrpunkt; dies geschieht durch zwei
Federn, welche am Wagen, resp. an der Schiene be-
festigt sind.

Das dritte Newton’sche Axiom ist das

Wechselwirkungsgesetz (actio = reactio): Wirkt
ein Körper 1 auf einen Körper 2 mit der Kraft
F12 so wirkt der Körper 2 auf den Körper 1 mit
der Kraft

~F21 =�~F12 ,

d.h. mit gleichen Betrag und umgekehrter Richtung.
Kräfte treten somit immer paarweise auf.

Dieses Prinzip kann in einem einfachen Experiment
verifiziert werden. Dabei werden nicht direkt die
Kräfte gemessen, sondern das Integral der Kräfte.
Aus

F =
d p
dt

folgtZ t2

t1
F dt = Dp = p(t2)� p(t1) ,
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d.h. die gesamte Wirkung der zeitabhängigen Kraft
F ist eine Impulsänderung Dp. Sind die beiden Kräf-
te zu jedem Zeitpunkt entgegengesetzt so sind auch
die Impulsänderungen entgegengesetzt.

Dies kann sehr schön an Wagen auf einer Luftkissen-
schiene gezeigt werden, z. B. indem man die beiden
Wagen zunächst in Ruhe starten, wobei eine Feder
zwischen ihnen komprimiert ist, die eine abstoßen-
de Kraft erzeugt. Dadurch werden sie in entgegen-
gesetzte Richtungen beschleunigt. Sind beide gleich
schwer so erhalten sie auch die gleiche (entgegen-
gerichtete) Geschwindigkeit, wie die Messung durch
die beiden Lichtschranken ergibt. Wird die Masse
des einen Wagens verdoppelt, so bewegt sich die-
ser langsamer; seine Geschwindigkeit ist nur halb so
groß wie diejenige des leichteren Wagens, und damit
haben beide den gleichen Impuls,

m2v2 = 2m1
v1

2
= m1v1 .

2.2.3 Kraft und Beschleunigung

Abbildung 2.19: Newton’s 3. Axiom: der Apfel er-
fährt die gleiche Kraft wie die Erde.

Gemäß dem 3. Newton’schen Axiom ist die Kraft,
welche ein Apfel auf die Erde ausübt, gleich groß
wie die Kraft, welche die Erde auf den Apfel ausübt
(! Abb. 2.19). Wenn der Apfel zur Erde fällt muss
demnach auch die Erde in Richtung auf den Apfel
fallen. Weil gemäß dem zweiten Axiom die Kraft ei-
ne Impulsänderung erzeugt,

~F =
d~p
dt

= m
d~v
dt

,

ist jedoch bei gegebener Kraft die Geschwindigkeits-
änderung indirekt proportional zur Masse,

d~v
dt

=
~F
m

.

Wegen der Größe der Erdmasse ist deshalb die Be-
schleunigung sehr gering.

Ein analoges Beispiel ist das eines Läufers, der zu ei-
nem Spurt startet. Dafür beschleunigt er mit a = 0,5
m/s2. Seine Masse sei m=100 kg. Er benötigt somit
eine Kraft von F = am =50 mkgs�2= 50N. Die glei-
che Kraft wirkt in entgegengesetzter Richtung auf
die Erde. Diese wird deshalb ebenfalls beschleunigt,
in entgegengesetzter Richtung, mit

aErde =
50N
mErde

=
50N

6 ·1024kg
= 8,3 ·10�24 m

s2 .

Auf Grund der hohen Masse ist somit die Beschleu-
nigung der Erde sehr gering.

2.2.4 Zusammenfassung und Gültigkeit

 1

Trägheitsgesetz : v = const.
ohne äußere Kraft

Aktionsgesetz : dp/dt = F

Actio = Reactio : F12 = -F21

Voraussetzungen:

Inertialsystem (d.h. nicht beschleunigt) 

Kleine Geschwindigkeiten, v ≪ c

Isaac Newton, 
1642 – 1727

Abbildung 2.20: Newton und seine Axiome.

Diese drei Grundgesetze, zusammengefasst in Abb.
2.20, sind die wichtigsten Grundlagen für die Dyna-
mik. Ihre Einführung führte zu einer radikalen Ver-
einfachung der Physik und Astronomie.

Die Gültigkeit der Newton’schen Axiome definiert
den Bereich der klassischen Mechanik:
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• Die Zeit ist absolut und unveränderlich und
hängt nicht von der Bewegung und dem Ort
ab.

• Es gibt einen “absoluten Raum”, d.h. ein ab-
solut ruhendes System, in dem alle Bewe-
gungsabläufe stattfinden.

• Die Eigenschaft “Masse” eines Körpers geht
nie verloren oder entsteht aus dem Nichts.
“Masse” ist unabhängig vom Bewegungszu-
stand und bleibt erhalten.

Der experimentelle Befund ist, dass diese drei Axio-
me gelten, sofern folgende Bedingungen erfüllt sind:

• Das Bezugssystem ist nicht beschleunigt; Be-
zugssysteme, in denen die drei Axiome gelten,
werden als Inertialsysteme bezeichnet.

• Die (relativen) Geschwindigkeiten der Körper
sind klein im Vergleich zur Lichtgeschwindig-
keit (Relativitätstheorie).

2.2.5 Masse

Das 2. Newton’sche Axiom kann auch als Definiti-
on der Masse betrachtet werden: Die träge Masse mt
stellt den Widerstand eines Körpers gegen eine Be-
wegungsänderung dar:

~F = mt
d2~r
dt2 .

Die heute noch gültige Einheit der Masse ist gege-
ben durch das Ur-Kilogramm, einen Platin-Iridium
Zylinder, welcher in Paris aufbewahrt wird. Kopien
davon existieren in verschiedenen Ländern, unter an-
derem bei der PTB in Braunschweig.

Eines der Probleme mit dieser Definition des Kilo-
gramms liegt darin, dass es nicht perfekt stabil ist.
Abb. 2.21 zeigt, wie sich die Masse von unterschied-
lichen Kopien des Urkilogramms als Funktion der
Zeit ändert. Es ist davon auszugehen, dass das Urki-
logramm selber ähnlichen Änderungen unterliegt.

Um solche Probleme zu vermeiden, hat man inzwi-
schen die meisten Grundeinheiten so definiert, dass
sie Funktionen von Naturkonstanten sind, welche
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Abbildung 2.21: Variation der gemessenen Masse
von unterschiedlichen Kopien des
Ur-Kilogramms.

überall gemessen werden können. In nächster Zeit
soll dies auch bei der Masseneinheit (dem kg) ge-
schehen. Die vorgeschlagene Neudefinition der SI-
Einheit lautet
Ein Kilogramm ist die Planck’sche Konstante, di-
vidiert durch 6,626070040 ·10�34 m/s2.

Mit dieser Definition kann überall ein Vergleich
durchgeführt werden. Das dafür notwendige Instru-
ment wird als Watt-Waage bezeichnet.

Die Masse spielt nicht nur beim 2. Newton’schen
Axiom eine wichtige Rolle, sie ist auch die relevante
Größe bei der Schwerkraft. Die Anziehung zwischen
zwei Massen M und ms beträgt

~F =�G
M ms

r3 ~r, (2.2)

mit der Gravitationskonstante

G = 6.67 ·10�11 Nm2

kg2 = 6.67 ·10�11 m3

kgs2 .

Wegen der geringen Stärke der Gravitationswechsel-
wirkung ist eine entsprechende Messung sehr auf-
wändig und bedarf guter Planung um Fehler zu ver-
meiden. Die Masse ms in Gleichung (2.2) wird als
schwere Masse bezeichnet.

2.2.6 Schwere und träge Masse

In der klassischen Physik sind die schwere und
die träge Masse zunächst voneinander unabhängige
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Abbildung 2.22: Gemessene Werte der Gravitations-
konstanten G.

Größen. Fällt ein Körper im Schwerefeld der Erde,
so lautet die Bewegungsgleichung

FG = msg =
d p
dt

= mt
dv
dt

.

Somit taucht die schwere Masse ms wie auch die trä-
ge Masse mt in der Gleichung auf. Berechnet man
die Beschleunigung

a =
dv
dt

= g
ms

mt
, (2.3)

so ist diese proportional zum Verhältnis von schwe-
rer zu träger Masse. In den meisten Fällen gibt es
keinen Grund, zwischen schwerer und träger Masse
zu unterscheiden, man setzt deshalb ms = mt = m.

M
mx, v, a

F

Abbildung 2.23: Atwood’sche Fallmaschine.

Es gibt aber auch Prozesse, bei denen die schwe-
re und die träge Masse unabhängig verändert wer-
den können. Ein Beispiel dafür ist die Atwood’sche
Fallmaschine, welche 1784 von George Atwood ent-
wickelt wurde, um die Gesetze der gleichmäßig
beschleunigten Bewegung zu untersuchen. Mit ihr
kann man mit einfachen Mitteln statt der Fallbe-
schleunigung eine beliebig verringerte Beschleuni-

gung erhalten. In der Version von Abb. 2.23 be-
steht sie aus einer Masse M, welche horizontal be-
wegt wird. Eine weitere Masse m wird vertikal be-
wegt. Diese hängt im Schwerefeld der Erde und un-
terliegt somit der Gravitation. Beschleunigt man das
System, so muss die Gesamtmasse M +m beschleu-
nigt werden; zur Gewichtskraft trägt jedoch nur die
Masse m bei. Die Bewegungsgleichung ist deshalb

F = (M +m)a = (M +m)
d2x
dt2 = mg.

d2x
dt2 =

m
M +m

g.

Die Beschleunigung ist somit um das Verhältnis aus
schwerer zu träger Masse skaliert.

Integration liefert für x(0) = 0, dx/dt(0) = 0

dx
dt

=
m

M +m
gt

x(t) =
1
2

m
M +m

gt2.

Im Experiment wird die Zeit gemessen, welche der
Schlitten benötigt, um eine Distanz von x = 2 m zu-
rückzulegen. Theoretisch sollte dies

t =

r
2x
a

=

s
2x
g

M +m
m

50

Tabelle 2.1: Resultate eines Experiments mit der At-
wood’schen Fallmaschine.

Tabelle 2.1 zeigt die Resultate eines entsprechenden
Experiments.

In diesem Experiment tragen zwei Körper zur trägen
Masse mt bei, aber nur einer zur schweren Masse
ms. Betrachtet man jedoch einzelne Körper, so fin-
det man experimentell, dass seine schwere und träge
Masse immer proportional zueinander sind, ms µ mt .
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Es ist deshalb praktisch, die beiden Massen gleich
zu setzen, ms = mt = m. In Gleichung (2.3) kann die
Masse deshalb eliminiert werden. Dieses sogenannte
Äquivalenzprinzip wird im Rahmen der allgemeinen
Relativitätstheorie zu einem Axiom.

2.3 Kräfte in der Dynamik

2.3.1 Kräfte und Felder

Kräfte sind aus der Statik bekannt, welche im We-
sentlichen auf dem Gleichgewicht der Kräfte be-
ruht. In der Dynamik sind die Kräfte die Ursache für
Bewegungsänderungen. Gemäß dem Newton’schen
Axiom können Kräfte über die von ihnen erzeugte
Impulsänderung beschrieben werden:

F =
d p
dt

.

Damit ist die entsprechende Einheit

[F ] =
mkg

s2 = N = Newton.

Die Schwerkraft, die z.B. im Schwerefeld der Erde
auf einen Körper wirkt, ist gemäß (2.2) proportional
zur Masse des Körpers. Die resultierende Beschleu-
nigung ist

~a =
d~v
dt

=
1
m

d~p
dt

=
1
m

~F =
1
m

mg = g .

Hier ist g die Erdbeschleunigung

g =
GmErde

r2
Erde

.

Damit ist die induzierte Impulsänderung proportio-
nal zur Masse, während die Beschleunigung unab-
hängig von der Masse ist. Dieser Effekt wird im
Allgemeinen davon überdeckt, dass unterschiedliche
Luftreibung vorliegt, kann aber im Vakuum gezeigt
werden. In Abb. 2.24 werden ein Apfel und eine Fe-
der im Vakuum fallen gelassen. Die einzelnen Auf-
nahmen zu unterschiedlichen Zeiten zeigen, dass sie
gleich schnell fallen.

Abbildung 2.24: Freier Fall eines Apfels und einer
Feder im Vakuum.

In der Gravitation wirkt offenbar eine Kraft zwi-
schen zwei räumlich getrennten Objekten. Dies wur-
de lange als unplausibel betrachtet, so z.B. Newton
in einem Brief an Bentley 1692. Man versuchte dies
durch das Konzept des Feldes zu überbrücken. Die-
ses Feld wird von einer Quelle erzeugt und wirkt auf
alle Körper, welche eine bestimmte Eigenschaft be-
sitzen und sich in dem Feld aufhalten. Beispiele sind
elektrische Felder, welche von elektrischen Ladun-
gen erzeugt werden und auf elektrische Ladungen
wirken, oder Gravitationsfelder, welche von Masse-
behafteten Körpern erzeugt werden und auf massive
Körper wirken. Beispiel: Die Gleichung (2.2) kann
man so interpretieren, dass die Masse M ein Gravi-
tationsfeld

~EG =�G
M
r3~r

erzeugt. Das Feld ist somit unabhängig von der Mas-
se, auf die es wirkt und stellt eine Verallgemeinerung
der Kraft dar. Bringt man die Masse m in dieses Feld,
so wirkt darauf eine Kraft

~FG = ~EGm =�G
M m
r3 ~r.
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2.3.2 Elementare und phänomenologische
Kräfte

Man unterscheidet zwischen elementaren Kräften,
welche durch eine kleine Zahl von physikalischen
Grundgesetzen beschrieben werden, und phänome-
nologischen Kräften, welche zu Vereinfachung von
komplizierten Zusammenhängen eingeführt werden.

Abbildung 2.25: Die vier fundamentalen Wechsel-
wirkungen.

In der Natur kommen 4 elementare Wechselwirkun-
gen vor: die elektromagnetische (wobei im Rahmen
dieser Vorlesung hier elektrische und magnetische
Kräfte meist getrennt behandelt werden), die star-
ke, die schwache Kernkraft und die Gravitations-
Wechselwirkung (! Abb. 2.25). Für den Alltag sind
nur die elektrischen und magnetischen Kräfte, sowie
die Schwerkraft relevant. Elektrizität und Magnetis-
mus werden im Kapitel 4 behandelt.

Abbildung 2.26: Vereinheitlichte Beschreibungen
der fundamentalen Wechselwir-
kungen.

Zu den größten Erfolgen der physikalischen For-
schung des letzten Jahrhunderts gehört die erfolg-
reiche Vereinheitlichung der Beschreibung dieser
Wechselwirkungen. Abb. 2.26 fasst die entsprechen-
den Stufen zusammen.

Dehnung eines Drahtes

Draht

Gewicht

F

Δx

Gemessene Abhängigkeit

Kraft F

D
eh

nu
ng

 Δ
x

�x =
F

D

Abbildung 2.27: Phänomenologische Kraft einer Fe-
der.

Darüber hinaus verwendet man jedoch auch soge-
nannte phänomenologische Wechselwirkungen, wie
z.B. die Kraft einer Feder, welche grundsätzlich
auf die fundamentalen Wechselwirkungen zurückge-
führt werden kann. Häufig ist diese Rückführung je-
doch sehr kompliziert und aufwändig, so dass man
sich mit einer phänomenologischen Beschreibung
begnügt. Dazu gehören z.B. elastische Kräfte, wie
bei einer Feder. Wie in Abb. 2.27 gezeigt, findet man
über einen gewissen Bereich oft eine lineare Bezie-
hung,

Dx =
F
D

,

mit der Federkonstanten D.

2.3.3 Reibungskräfte

Eine weitere Gruppe von phänomenologischen Kräf-
ten sind Reibungskräfte. Diese findet man immer
dann, wenn Körper sich berühren und sich relativ
zueinander parallel zur Kontaktfläche bewegen. Die
Kräfte wirken entgegen der Bewegungsrichtung, d-
h. sie hemmen die Bewegung. Reibung kann auf un-
terschiedliche Weise reduziert werden, z.B. durch
die Verwendung einer Luftkissenschiene.

Man unterscheidet zwischen Gleitreibung und Haft-
reibung. Haftreibung führt dazu, dass ein Körper
sich nicht bewegt, wenn die daran angreifende Kraft
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geringer ist als die Haftreibung. Gleitreibung ent-
steht, wenn ein Körper sich gegenüber einer Unter-
lage oder einem Medium bewegt. Sie ist der Bewe-
gungsrichtung entgegengesetzt und hängt von der re-
lativen Geschwindigkeit zwischen Körper und Um-
gebung ab. Man unterscheidet

Äußere Reibung/Festkörperreibung. Bei Fest-
körpern, dies sich auf einer festen Unterlage
bewegen. Hier ist die Reibungskraft FR (in ge-
wisser Näherung) proportional zur Normalkraft
FN , mit der der Körper auf die Unterlage drückt:

FR = µFN .

Die Proportionalitätskonstante µ wird als Reibungs-
zahl bezeichnet; sie ist unabhängig von der (makro-
skopischen) Kontaktfläche und von der Geometrie.
Man unterscheidet zwischen Gleitreibung und Haft-
reibung, wobei die erstere sich auf bewegte Körper
bezieht, die zweite auf ruhende. Typische Reibungs-
koeffizienten liegen im Bereich von 0.1 bis 0.5, wo-
bei Extremwerte deutlich kleiner, aber auch größer
als 1 werden können.

Abbildung 2.28: Messung des Reibungswider-
standes mit Hilfe eines Federkraft-
messers.

Abb. 2.28 zeigt ein Experiment, bei dem man die
Stärke der Reibung über eine Federwaage misst.
Man findet, dass die Haftreibung größer ist als die
Gleitreibung und dass die Gleitreibung mit dem Ge-
wicht des Körpers zunimmt.

Die Haftreibung kann man messen, indem man einen
Körper auf eine geeignete Unterlage stellt, deren
Neigung variiert werden kann (! Abb. 2.29). Bei
der Neigung q , bei der der Körper zu rutschen be-
ginnt, halten sich die Reibungskraft FR = µSN mit
dem Reibungskoeffizienten µS und der Normalkraft

Θ= cosgmN
Θ= sinR gmF

Θ

Θ
gm

Körper
Winkel- 
messer

Hubvorrichtung

Abbildung 2.29: Haftreibung auf einer schiefen Ebe-
ne.

N = mgcosq die Waage. Somit ist

µS =
FR

N
=

mgsinq

mgcosq

= tanq .

Somit kann der Reibungskoeffizient als Tangens des
Neigungswinkels bestimmt werden.

Flächen µG µS
Glas auf Glas 0.4 0.9 – 1
Glas auf Metall 0.2-0.3 0.5 – 0.7
Metall auf Metall 0.3 – 1
Stahl auf Stahl 0.6 0.7
Stahl auf Stahl
Mit Öl dazwischen 0.03-0.11 0.05-0.13

Teflon auf Metall 0.04 0.04
Gelenk mit Gelenk-
flüssigkeit

0.003
sehr klein !

Gummi auf Beton
(naß)

0.25 0.3

Gummi auf Beton
(trocken)

0.8 1 – 4
z.B. Reifen

Gleitreibung Haftreibung

Tabelle 2.2: Heft- und Gleitreibungskoeffizienten
für unterschiedliche Materialien.

Tabelle 2.2 zeigt Haft- und Gleitreibungskoeffizien-
ten für unterschiedliche Paare von Materialien.

2.3.4 Dynamik mit Reibung

Gleitet ein Körper auf einer schiefen Ebene mit Nei-
gung a (! Abb. 2.31), so hat die Schwerkraft eine
Komponente

F = mgsina

entlang der Bewegungsrichtung, welche den Körper
beschleunigt. Ohne Berücksichtigung der Reibung
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bewegt sich ein zunächst ruhender Körper mit der
Geschwindigkeit

v = at = g sina t. (2.4)

Den zurückgelegten Weg erhält man durch Integrati-
on:

s =
1
2

gsinat2.

Berücksichtigt man auch die Reibung, so wirkt zu-
sätzlich eine bremsende Kraft Fr, welche in be-
stimmten Fällen näherungsweise proportional zur
Geschwindigkeit ist,

Fr =�bv.

Setzt man dies in die Bewegungsgleichung ein,

a = g sina� b
m

v

und integriert, dann erhält man für die Geschwindig-
keit

v(t) =
mgsina

b

⇣
1� e�bt/m

⌘
.

Für kurze Zeiten, t ⌧ m/b, entspricht das dem rei-
bungsfreien Fall (2.4). Für lange Zeiten nähert sich
die Geschwindigkeit dem Grenzwert

lim
t!•

v• =
mgsina

b
.

Dieser Grenzwert hängt offenbar von der Masse des
Körpers ab.

Neben dieser äußeren Reibung ist auch die “innere
Reibung” in Flüssigkeiten und Gasen wichtig. Diese
wird in Kap. 2.11.6 diskutiert.

2.3.5 Kräfte als Vektoren

Kräfte sind Vektoren und können vektoriell addiert
werden:

~Fges = ~F1 +~F2

oder allgemein

~Fges = Â
i

~Fi.

F1

F2

Fges

x

y

F1 F2

F3

Abbildung 2.30: Vektorielle Addition von Kräften.

Im Gleichgewicht verschwindet die resultierende
Kraft, ~Fges = 0.

Im Beispiel von Abb. 2.30 rechts sind die Kräfte,
welche am Knoten in der Mitte angreifen, in Kom-
ponentenschreibweise

~F1 = F1

✓
�cosa

sina

◆
~F2 = F2

✓
cosb

sinb

◆
.

~F3 = F3

✓
0
�1

◆
.

Im Fall von Abb. 2.30 rechts können aus der Gleich-
gewichtsbedingung die beiden Winkel a und b be-
rechnet werden. Für die horizontale und die vertika-
le Komponente muss jeweils die Summe der Kräfte
verschwinden:

F1 cosa = F2 cosb

F3 = F1 sina +F2 sinb .

Aus diesen 2 Gleichungen können a und b bestimmt
werden.

αsingm

gm α

α s

Abbildung 2.31: Gleiten eines Körpers auf einer
schiefen Ebene.

Umgekehrt können Kräfte in Komponenten zerlegt
werden. Für den Fall eines Wagens auf einer schie-
fen Ebene (!Abb. 2.31) kann die Gewichtskraft
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~Fg = m~g zerlegt werden in die Normalkraft ~F1, wel-
che den Wagen auf die Fahrbahn drückt, und die
Hang-Abtriebskraft ~F2, welche die Dynamik be-
wirkt. Ihre Beträge sind

|~F1| = mgcosa

|~F2| = mgsina.

2.3.6 Raketen

Abbildung 2.32: Rakete beim Start.

Raketen (! Abb. 2.32) bewegen sich im Weltraum
und können beschleunigen, ohne dass äußere Kräf-
te auf sie wirken. Wie ist dies mit dem Impulssatz
vereinbar?

 1

v + dv

Systemgrenze

-dm vT
m + dm

Abbildung 2.33: Modell einer Rakete.

Raketen erzeugen Schub indem sie einen Treibstoff
mit möglichst hoher Geschwindigkeit nach hinten
ausstoßen. Die Impulserhaltung gilt für das Gesamt-
system Rakete plus Treibstoff (Vorrat in der Rakete
plus ausgestoßener Teil). Der Treibstoff wird nach
hinten beschleunigt, mit einer Kraft, welche gemäß
dem dritten Newton’schen Axiom gleich stark die
Rakete nach vorn beschleunigt. Dadurch ändert sich
sowohl die Masse wie auch die Geschwindigkeit der

Rakete: im Zeitinterval dt ändert sich die Masse m
der Rakete um dm (mit dm<0) und die Geschwin-
digkeit v um dv (>0).

Man betrachtet ein Gesamtsystems, bestehend aus
Rakete plus ausgestoßener Treibstoff (! Abb. 2.33)
und vernachläßigt zunächst die Gravitation. Dann
gilt für dieses System Impulserhaltung:

d~p = ~p(t +dt)�~p(t) =

= [(m+dm)(~v+d~v)�dm~vT ]�m~v
= md~v�dm(~vT � (~v+d~v)) = 0.

Hier stellt ~vT die Geschwindigkeit des Treibstof-
fes dar. Man definiert die Geschwindigkeit ~vrel des
Treibstoffs relativ zur Rakete als

~vrel =~vT � (~v+d~v)

und erhalten damit die Raketengleichung

d~p = md~v�dm~vrel = 0.

Die Lösung dieser Differentialgleichung lautet für
Anfangsgeschwindigkeit ~v0, konstante Austrittsge-
schwindigkeit des Treibstoffes und konstante Rate
des Treibstoffausstoßes

~vend =~v0 +~vrel ln
m0

mend
,

wobei m0 die Anfangsmasse bezeichnet und mend die
verbleibende Masse bei Brennschluss.

0
0 0.2 0.4 0.6 0.8 1.0

Nutzlast / Gesamtmasse

1/e

~vend = ~v0 + ~vrel ln
m0

mendv e
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/v
re
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Abbildung 2.34: Endgeschwindigkeit der Rakete als
Funktion der Nutzlast.
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Man kann somit beliebig hohe Geschwindigkeiten
erreichen: Allerdings nimmt das verbleibende Ge-
wicht (d.h. die Nutzlast) exponentiell mit der Ge-
schwindigkeit ab, wie in Abb. 2.34 gezeigt.

In der theoretischen Analyse wurde die Schwerkraft
nicht berücksichtigt. Startet die Rakete von der Erde,
so muss noch die Schwerebeschleunigung abgezo-
gen werden. Damit wird die resultierende Beschleu-
nigung und Geschwindigkeit deutlich niedriger.

2.3.7 Beispiele

Als Beispiel betrachten wir die erste Stufe der Sa-
turn V Rakete des Apollo Programms. Ihre Ausstoß-
geschwindigkeit vrel betrug 2220 m/s, die Startmasse
m0 = 2,95·106 kg, die Nutzlast 27% davon, und die
Brenndauer 130 s. Bei konstantem Massestrom be-
trug dieser

dm
dt

= 2,95 ·106kg
0,73
130s

= 16565
kg
s

.

Dies entspricht einem Schub

dm
dt

vrel = 16565 ·2220N = 36,8MN .

Damit war die Anfangsbeschleunigung am Boden

dv
dt

=�g+ |dm
dt

| vrel

m0
= 2,66

m
s2 .

Am Ende der Brenndauer ist die Beschleunigung

dv
dt

=�g+ |dm
dt

| vrel

mend
= 36,4

m
s2 .

Die Endgeschwindigkeit beträgt

vend = �gtB + vrel ln
m0

mend
=�1275+2906

m
s

= 1,63
km
s

.

Ein einfaches Modell einer Rakete, wie in Abb. 2.35,
zeigt bereits die wichtigsten Merkmale. Diese Mo-
dellrakete kann mit Luft oder Wasser als Treibstoff
verwendet werden, wobei die Relativgeschwindig-
keit in beiden Fällen durch Aufpumpen mit Druck-
luft erzeugt wird. Nach Öffnen des Ventils wird der

Abbildung 2.35: Modellrakete.

Treibstoff mit der Geschwindigkeit v0 aus der Rake-
te gepresst, was den gewünschten Rückstoß erzeugt.
Während die Endgeschwindigkeit bei Luft als Treib-
stoff relativ bescheiden ist, findet man bei Wasser als
Treibstoff eine wesentlich höhere Endgeschwindig-
keit. Die relative Austrittsgeschwindigkeit ist im Fal-
le von Luft höher, das Massenverhältnis m0/mend ist
jedoch bei Wasser als Treibstoff erheblich günstiger.

2.4 Arbeit, Leistung und Energie

2.4.1 Motivation und Definition

Prinzipiell kann man mit den Newton’schen Axio-
men die Bewegung von Massenpunkten wie auch
Systemen von Massenpunkten beschreiben. In vie-
len Fällen ist es aber sehr aufwendig, die Bewe-
gungsgleichungen exakt zu lösen. Es ist dann nütz-
lich, andere Methoden zur Verfügung zu haben, um
relevante Aussagen machen zu können. Ein wich-
tiges und sehr leistungsfähiges Hilfsmittel ist das
Konzept der Energie.

Als Beispiel betrachten wir eine Eisenbahn, die mit
einer Geschwindigkeit von 250 km/h auf ebener
Strecke fährt (! Abb. 2.36). Die Zugkraft der Loko-
motive reicht genau um die Reibungskraft zu über-
winden. Sie fährt auf einen Hügelkamm zu, der 200
m über der Ebene liegt. Gelingt es der Eisenbahn,
diesen Hügel mit konstanter Zugkraft zu überque-
ren? Die Frage kann mit Hilfe der Newton’schen
Axiome diskutiert werden, aber nur wenn der ge-
samte Streckenverlauf (genauer: die Steigung als
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Abbildung 2.36: Ein fahrender Zug besitzt kineti-
sche Energie.

Funktion des Ortes) bekannt ist. Am Ende des Ka-
pitels werden wir zeigen, dass dies nicht nötig ist.

Abbildung 2.37: Das Hemmpendel.

Ein zweites Beispiel kann etwas einfacher im Expe-
riment gezeigt werden: Wir betrachten ein schwin-
gendes Pendel, bei dem wir jeweils einmal pro halbe
Periode eine Umlenkung einführten, so dass die Pen-
dellänge verkürzt wird (siehe Abb. 2.37). Frage: wie
sieht die Bahn des Pendels jetzt aus?

2.4.2 Arbeit

Wir beginnen mit der Definition der Arbeit. Die Ar-
beit, die an einem System geleistet wird, ist definiert
als das Integral der Kraft F , welche von außen auf
das System ausgeübt wird (!Abb. 2.38), über den

Abbildung 2.38: Definition der Arbeit.

Weg,

dW = ~F ·d~s ! W12 =
Z s2

s1

~F ·d~s .

Die Einheit der Arbeit beträgt demnach 2

[W ] = Nm = J = Joule =
m2kg

s2 .

Wie aus der Definition hervorgeht, trägt nur diejeni-
ge Komponente der Kraft zur Arbeit bei, welche par-
allel zum zurückgelegten Weg wirkt, resp. nur dieje-
nige Komponente des Weges, die parallel zur ange-
legten Kraft zurückgelegt wird.

Die Kraft, welche hier eingesetzt werden muss, ist
die von außen angelegte Kraft. Somit ist die Ar-
beit positiv definiert wenn gegen den Widerstand
des Systems Arbeit verrichtet wird, z.B. wenn ein
Körper angehoben wird. Im Falle eines Motors, wo
der explodierende Treibstoff eine Kraft erzeugt, wird
dem Motor Arbeit entzogen, d.h. die am Motor ge-
leistete Arbeit ist negativ. Dies kann man natürlich
auch so betrachten, dass der Motor an seiner Umwelt
Arbeit leistet.

Ist die Kraft unabhängig vom Ort, so muss ledig-
lich die Projektion des Weges auf die Kraft integriert
werden. Beispiele dafür sind die Schwerkraft (in der
Nähe der Erdoberfläche), die Beschleunigungskraft
für eine konstante Masse, oder die Arbeit gegen eine
Reibungskraft.

Ein typischer Fall ist die Hebung eines Körpers ge-
gen die Gewichtskraft, wie in Abb. 2.39 gezeigt.
Hier ist die erforderliche Kraft ~F = �~FG = mg, un-
abhängig vom Ort. Da Kraft und Wegelement paral-

2James Prescott Joule (1818 - 1889).
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 1
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Abbildung 2.39: Hebung eines Körpers gegen die
Schwerkraft FG.

lel sind, reduziert sich das Integral auf

W =
Z h2

h1

~F ·d~s = mg
Z h2

h1

ds = mg(h2�h1) .

Mit der Notation h = h2�h1 für die Höhendifferenz
erhält man somit für die zu leistende Arbeit

W = mgh. (2.5)

Abbildung 2.40: Unterschiedliche Flaschenzüge.

Die insgesamt geleistete Arbeit hängt somit nur von
der Höhendifferenz h ab. Es ist jedoch möglich, die
notwendige Kraft oder den zurückgelegten Weg zu
reduzieren, jeweils auf Kosten des anderen Faktors.
Abb. 2.40 zeigt unterschiedliche Flaschenzüge, wel-
che jeweils ein Gewicht um 10 cm anheben. Je nach
Flaschenzug sind die nötigen Zugkräfte 100, 50 oder
25 N, die zurückgelegten Wege 10, 20 oder 40 cm.
Die Arbeit beträgt somit in allen Fällen 10 J.

2.4.3 Beispiele mit konstanter Kraft

Ein einfaches Beispiel ist ein Körper, der auf einer
schiefen Ebene mit Steigung a reibungsfrei nach

α
FH

F

h

Abbildung 2.41: Schiefe Ebene.

oben geschoben wird (siehe Abb. 2.41). Die Hang-
abtriebskraft beträgt FH = �mg sina . Somit ist ei-
ne gleich starke Kraft in Bewegungsrichtung not-
wendig, um den Körper zu transportieren. Für eine
gesamte Höhendifferenz h beträgt die zurückgelegte
Wegstrecke h/sina . Somit ist insgesamt eine Arbeit
W = mgh notwendig. Offenbar ist dies unabhängig
von der Neigung der Ebene.

FR

FN

F
s

Abbildung 2.42: Verschiebung in der Ebene.

Als nächsten Fall betrachten wir die Arbeit, die be-
nötigt wird, um einen Körper auf einer horizonta-
len Fläche gegen die Reibungskraft zu bewegen (!
Abb. 2.42). Die Reibungskraft beträgt

FR = µFN = µgm.

Um den Körper über eine Distanz s zu transportie-
ren beträgt die Arbeit somit W = µgms, sofern der
Reibungskoeffizient µ konstant ist.

Ft F

s

Abbildung 2.43: Reibungsfreie Bewegung.

Das nächste Beispiel, dargestellt in Abb. 2.43, ist ein
Körper, der sich reibungsfrei auf ebener Strecke be-
wegt. Eine äußere Kraft (die gegen die Trägheits-
kraft wirkt) bewirkt in diesem Fall eine Beschleuni-
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gung. Die Kraft ist F = ma. Beträgt die Geschwin-
digkeit des Körpers zu Beginn v0 und wird er gleich-
mäßig beschleunigt, so legt er während einer Zeit Dt
eine Distanz

s = v0Dt +
a
2

Dt2 (2.6)

zurück, wobei die Geschwindigkeit auf

v = v0 +aDt

erhöht wird. Diese Gleichung kann aufgelöst werden
nach der Zeit

Dt =
v� v0

a
.

Einsetzen in (2.6) ergibt für den Weg

s = v0Dt +
a
2

Dt2 =
v0(v� v0)

a
+

(v� v0)2

2a
=

=
2vv0�2v2

0 + v2 + v2
0�2vv0

2a
= +

v2� v2
0

2a
.

Die Arbeit, welche dafür geleistet werden muss, be-
trägt somit

W = Fs = mas =
m
2

(v2� v2
0). (2.7)

Die entspricht gerade der Änderung der kinetischen
Energie des Körpers: Zu Beginn beträgt diese

Ekin,0 =
m
2

v2
0

und am Ende

Ekin =
m
2

v2.

2.4.4 Variable Kraft

x

F = c x

Abbildung 2.44: Federkraft.

Die Kraft kann auch mit dem Weg variieren; in die-
sem Fall muss die Integration explizit durchgeführt
werden. Der einfachste Fall ist wohl das Federgesetz
(! Abb. 2.44), wo die Kraft proportional zur Aus-
lenkung x ist, Ff = �cx. Dies wird als Hooke’sches
Gesetz bezeichnet. Die Kraft, welche von außen an-
gelegt werden muss, ist deshalb F = cx und die Ar-
beit beträgt

Wab =
Z b

a
Fdx = c

Z b

a
xdx =

c
2
(b2�a2).

In diesem Fall wird die an der Feder geleistete Ar-
beit in potenzielle Energie der Feder überführt. Die
potenzielle Energie einer Feder ist deshalb

Epot,F =
c
2

x2. (2.8)

In dieser Form wird z.B. in einer mechanischen Uhr
Energie gespeichert.

Abbildung 2.45: Arbeit als Wegintegral.

In mehreren Dimensionen sind die Kraft wie auch
der Weg vektorielle Größen, wie z.B. in Abb. 2.45.
In diesem Fall muss über das Skalarprodukt inte-
griert werden:

Wab =
Z b

a
~F ·d~r.

Dies bedeutet, dass nur diejenige Komponente der
Kraft ~F , welche in Bewegungsrichtung d~r wirkt, zur
Arbeit beiträgt. Typische Beispiele sind in Abb. 2.42
und 2.43 gezeigt: nur die Zugkraft trägt bei zur Ar-
beit, nicht die Gewichtskraft, welche senkrecht dazu
wirkt.

2.4.5 Energie

In den meisten hier diskutierten Fällen ist die Ar-
beit, die am Körper geleistet wurde, unabhängig vom
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Weg, den man vom Anfangs- zum Endpunkt genom-
men hat, also z.B. von der Geschwindigkeit 0 zur
Geschwindigkeit v. Durch die Arbeit, die am Kör-
per geleistet wurde, ist er in eine höhere Lage oder
zu einer höheren Geschwindigkeit gebracht worden.
Dadurch ist er selbst in die Lage gebracht worden, an
anderen Körpern Arbeit zu leisten. Die Größe, wel-
che diese Fähigkeit quantifiziert, ist die mechanische
Energie (potenzielle oder kinetische):

Die Energie des Körpers (oder Systems) bezeich-
net sein Potenzial, Arbeit zu leisten.

Sie ist eine Größe, die rein durch den Zustand be-
stimmt ist, unabhängig vom Weg, auf dem der Zu-
stand erreicht wurde.

In der Mechanik unterscheidet man zwei Arten von
Energie, die kinetische und die potenzielle Energie:

Emech = Ekin +Epot .

Die kinetische Energie ist eine Funktion von Ge-
schwindigkeit oder Impuls und Masse des Körpers,
die potenzielle Energie ist abhängig vom Ort und
von den Kräften, die auf das System wirken. Es kön-
nen sowohl äußere Kräfte wie auch innere Kräfte
beitragen.

Die kinetische Energie entspricht der Arbeit, wel-
che geleistet werden muss, um einen Körper von der
Geschwindigkeit 0 auf die Geschwindigkeit v zu be-
schleunigen. Diese beträgt nach Gl. (2.7)

Ekin =
m
2

v2.

Die potenzielle Energie ist z.B. durch die Lage im
Gravitationsfeld gegeben. Nach Gl. (2.5) beträgt die-
se

Epot,g = mgh. (2.9)

Für andere Kraftfelder, wie z.B. das elektrische Feld,
existieren entsprechende potenzielle Energien, wie
z.B. das elektrische Potenzial.

Die Änderung der mechanischen Energie eines Sy-
stems ist gleich der am System geleisteten Arbeit,

DE = E2�E1 = W12.

Wenn wir noch einen Nullpunkt für die Energie defi-
nieren, können wir somit direkt die Ausdrücke über-
nehmen, die wir für die Arbeit hergeleitet haben.
Die Wahl dieses Nullpunkts ist grundsätzlich will-
kürlich, aber in vielen Fällen existiert eine “natürli-
che” Wahl, wie z.B. bei der kinetischen Energie.

Nicht jede Art von Arbeit führt zu einer Änderung
der mechanischen Energie des Systems. Das Bei-
spiel aus Abb. 2.42 der Arbeit gegen eine Reibungs-
kraft ist ein typisches Beispiel wo die mechanische
Energie nicht geändert wird: der Körper ist immer
auf der gleichen Höhe, bei der gleichen Geschwin-
digkeit. Die aufgewendete Arbeit wird stattdessen in
Reibungswärme umgewandelt. Ob eine Kraft, gegen
die Arbeit geleistet wird, zu einer entsprechenden
Änderung der Energie des Systems führt, wird in Ka-
pitel 2.4.8 diskutiert.

2.4.6 Leistung

Eng verwandt mit der Energie ist die Leistung, wel-
che sich durch Differenzierung nach der Zeit ergibt,

P =
dE

dt
. [P] =

J
s

= W = Watt.

Die Einheit ist benannt nach James Watt (1736-
1819). Handelt es sich um eine mechanische Lei-
stung (Arbeit pro Zeit) und ist die Kraft konstant,
so kann die Leistung auch als Kraft mal Geschwin-
digkeit definiert werden:

P =
dW
dt

=
d
dt

⇣
~F ·d~s

⌘
= ~F · d~s

dt
= ~F ·~v.

Umgekehrt erhält man die geleistete Arbeit aus der
Leistung durch Integration über die Zeit:

W =
Z t2

t1
P(t)dt.

Typische Leistungen von Menschen liegen bei län-
ger andauernden Belastungen im Bereich von 100
W, bei trainierten Sportlern bei etwa 300 W. Über
kürzere Zeiten können auch Leistungen bis etwa 1
kW abgerufen werden (! Abb. 8.6). Die Einheit
“Pferdestärke” (PS) ist als die Dauerleistung eines
Pferdes definiert; sie liegt bei 735 W.
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1 h1 min 10 h
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Abbildung 2.46: Leistung als Funktion der Dauer
der Beanspruchung.

2.4.7 Potenzielle Energie

Potenzielle Energie ist immer mit einer konserva-
tiven Kraft verbunden. Nach Gl. (2.8) ist die Ar-
beit, welche geleistet werden musste, um eine Fe-
der zu spannen, proportional zum Quadrat der Aus-
lenkung. Eine andere Form von potenzieller Energie
ist die Lageenergie im Schwerefeld. Nach Gl. (2.9)
ist die entsprechende potenzielle Energie proportio-
nal zur Höhe, Elage = mgh. Bei potenzieller Energie,
die mit einer distanzabhängigen Kraft verbunden ist,
wie z.B. der Gravitationsenergie oder der Coulomb-
Energie, wählt man den Nullpunkt meist für unend-
lich getrennte Körper. Die Kraft ist in beiden Fällen
proportional zu 1

r2 und die potenzielle Energie, wel-
che durch das Integral über die Kraft gegeben ist,
proportional zu �1

r .

Ein Molekül als eine deformierbare Ansammlung
von Atomen besitzt es eine potenzielle Energie als
Funktion der Geometrie. In allen Fällen hängt die
Energie von räumlichen Koordinaten ab. Trägt man
die potenzielle Energie als Funktion des Ortes auf so
erhält man eine Kurve, aus der man leicht qualita-
tive (und auch quantitative) Aussagen machen kann
über die Bewegung, welche das System durchfüh-
ren wird. Abb. 2.47 zeigt als Beispiel die potenziel-
le Energie von zweiatomigen Molekülen als Funkti-
on des Abstandes zwischen den Atomen. In einem
eindimensionalen System bewegt sich das System
(falls es zu Beginn in Ruhe ist) auf der Potenzial-
kurve nach unten, wobei potenzielle Energie in ki-
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Abbildung 2.47: Potenzielle Energie einfacher 2-
atomiger Moleküle als Funktion
des atomaren Abstandes.

netische Energie umgewandelt wird, d.h. das System
beschleunigt. Indem die dadurch erzeugte kinetische
Energie wieder in potenzielle Energie umgewandelt
wird kann das System sich auch auf der Potenzial-
kurve aufwärts bewegen. Das Minimum der Kurve
entspricht dem Gleichgewichtsabstand: Hier wirken
keine Kräfte auf die Atome.

Wichtig ist bei solchen Betrachtungen, dass man die
gesamte Energie des Systems berücksichtigt. Dies
soll anhand eines scheinbar paradoxen Experiments
gezeigt werden.

1
2

2

1

S

mg�

Abbildung 2.48: Bahn für Hohlzylinder und Dop-
pelkegel.

Legt man einen Hohlzylinder auf die in Abb. 2.48
gezeigten Schienen, so rollt er von der höheren zur
niedrigeren Seite (1! 2). Legt man dagegen einen
Doppelkegel auf die Schienen, so rollt er in entge-
gengesetzter Richtung, scheinbar also aufwärts. Dies
liegt an der Anordnung der beiden Schienen: Sie
laufen auseinander. Dadurch sinkt der Doppelkegel,
sein Schwerpunkt sinkt und das System kann Ener-
gie gewinnen.
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2.4.8 Konservative Kräfte

Die potenzielle Energie wird dem System zugeführt,
indem daran Arbeit verrichtet wird. Daraus lässt
sich umgekehrt ableiten wie groß die Kraft ist, wel-
che überwunden werden muss, um dem System die
entsprechende potenzielle Energie zuzuführen. Die
Kraft, welche von außen aufgebracht werden muss
beträgt in einer Dimension

F =
dW
ds

=
dEpot

ds
.

Diese ist im Gleichgewicht entgegengesetzt gleich
der Kraft, welche das System auf seine Umgebung
ausübt. Wird keine äußere Kraft auf das System an-
gewendet, so bewegt es sich nur unter dem Einfluss
der potenziellen Energie. Es wird dann beschleunigt
durch eine entgegen-gerichtete Kraft

FP =�
dEpot

ds
.

Die Kraft, welche auf einen Körper wirkt, kann so-
mit aus der Ortsabhängigkeit der potenziellen Ener-
gie bestimmt werden. In drei Dimensionen gilt ent-
sprechend

~FP =�~—Epot =�

0@ d
dx
d
dy
d
dz

1AEpot ,

d.h. die resultierende Kraft zeigt in Richtung des
steilsten Abfalls.

Abb. 2.49 zeigt als Beispiel eine Karte mit Höhen-
kurven und darauf für einige Orte die Richtung des
steilsten Gefälles, also die Richtung der resultieren-
den Kraft. Ein typisches Beispiel für eine konserva-
tive Kraft ist die Gravitationskraft

~F =�G
M m
r3 ~r

für eine Masse m im Potenzial eines punktförmigen
Körpers der Masse M.~r ist der Ortsvektor von m re-
lativ zu M. Die entsprechende potenzielle Energie ist

Ug(r) =�G
M m

r
.

Kräfte, die von einem Potenzial abgeleitet werden
können, werden als konservative Kräfte bezeichnet.

Abbildung 2.49: Richtung des steilsten Abfalls auf
einer Landkarte.

1r

2r
A

B

Abbildung 2.50: Zwei unterschiedliche Wege in ei-
nem Kraftfeld.

Sie haben die Eigenschaft, dass die Arbeit, welche
geleistet werden muss, um von einem Ausgangs-
punkt~r1 zu einem Ziel~r2 zu gelangen, nicht davon
abhängt, welcher Weg dabei benutzt wird (! Abb.
2.50). Es gilt somit

Wa =
Z ~r2

~r1,A
~F(~r)d~r = Wb =

Z ~r2

~r1,B
~F(~r)d~r.

Somit gilt auch, dass die Arbeit für geschlossene
Wege verschwindet,

W =
I

~F(~r)d~r = 0.

Diese Beziehung bietet auch die Möglichkeit aus der
Struktur eines Kraftfelds ~F(~r) zu erkennen, ob die-
ses konservativ ist: Man bestimmt die Rotation des
Kraftfeldes, ~—⇥ ~F(~r). Verschwindet diese überall,
so ist das Kraftfeld konservativ.
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x

y

Abbildung 2.51: Kraftfeld mit Wirbel.

Ein typisches Beispiel ist eine Bergtour: kommt man
am Ende des Tages an den Ausgangspunkt zurück,
so ist die potenzielle Energie die gleiche wie zu Be-
ginn. Die geleistete Arbeit ist demnach nicht in po-
tenzielle Energie umgewandelt worden, sondern in
Wärme. Abb. 2.51 zeigt ein Kraftfeld mit einem Wir-
bel. Eine Fahrradtour (roter Kreis) kann hier in einer
Richtung meist Rückenwind nutzen, in der entge-
gengesetzte Richtung muss man deutlich mehr Kraft
einsetzen, um den Luftwiderstand zu überwinden.

2.4.9 Gleichgewicht

Ort

E
ne
rg
ie

stabil

Ort

instabil

Ort

indifferent

Abbildung 2.52: Unterschiedliche Arten von
Gleichgewicht.

Offenbar gibt es auch Situationen, in denen keine
Kraft auf den Körper wirkt. Abb. 2.52 zeigt drei un-
terschiedliche Fälle, bei denen der Gleichgewichts-
ort einem Minimum, einem Maximum oder einem
ebenen Teil der Potenzialkurve entspricht. Man be-
zeichnet diese Punkte als stabiles, instabiles oder
neutrales (indifferentes) Gleichgewicht. Bei einem
instabilen Gleichgewicht führt eine geringe Auslen-
kung dazu, dass eine Kraft wirkt und das System im-
mer stärker beschleunigt. Ein Beispiel dafür ist ein
Bleistift, der auf seiner Spitze steht. Im Fall des sta-

bilen Gleichgewichts führt eine Auslenkung zu ei-
ner Kraft, welche das System zurück zum Gleichge-
wicht treibt (z.B. Pendel), während in einem neutra-
len Gleichgewicht verschiedene Positionen mit iden-
tischer Energie vorhanden sind und eine Auslenkung
keine Kraft erzeugt. Typische Beispiele dafür sind
Gegenstände auf einem Tisch.

2.4.10 Austausch von Energie

Unterschiedliche Energieformen können ineinander
umgewandelt werden. Dies geschieht z.B. wenn man
einen Körper fallen lässt: dabei wird potenzielle
Energie in kinetische Energie umgewandelt.

 1

Auslenkung φ(t)

Abbildung 2.53: Fadenpendel.

In einem Pendel wird ebenfalls Energie von poten-
zieller in kinetische umgewandelt (und umgekehrt).
Abb. 2.53 zeigt als Beispiel ein Fadenpendel, wel-
ches für kleine Auslenkungen einem mathemati-
schen Pendel entspricht. Wie in Kapitel 5.2 gezeigt
wird, verhält sich die Auslenkung eines mathemati-
schen Pendels als Funktion der Zeit ist wie

j(t) = A sinwt w =

r
g
`

,

wobei j den Winkel der Auslenkung darstellt, ` die
Länge des Pendels und A die Amplitude der Schwin-
gung. Die potenzielle Energie ist gegeben durch die
Höhe,

Epot = mgh = mg`
j

2

2
=

mg`

2
(Asinwt)2,

wobei - wie immer beim mathematischen Pendel -
die Näherung sinj ⇡j , cosj ⇡ 1�j

2/2 verwendet
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wurde. Die kinetische Energie ist

Ekin =
m
2

v2 =
m
2

`2
j̇

2 =
m
2

`2
w

2(A coswt)2

=
mg`

2
(Acoswt)2.

Die Summe aus potenzieller und kinetischer Energie
ist somit

E = mg
`

2
A2(cos2

wt + sin2
wt) = mg

`

2
A2 ,

also zeitunabhängig. Es findet lediglich ein Aus-
tausch zwischen den beiden Energieformen statt.

h

Kugel

Kugel

Abbildung 2.54: Kugel springt auf einem Amboss.

Die Umwandlung von potenzieller in kinetische
Energie kann man auch beim Fallenlassen eines Kör-
pers beobachten, wie im Beispiel von Abb. 2.54.
Beim Auftreffen auf dem Boden wird die kinetische
Energie kurzfristig in elastische Energie umgewan-
delt, dann wieder in kinetische und schließlich wie-
der in potenzielle. Die Umwandlungsprozesse sind
nie 100% effizient, sondern ein Teil der Energie wird
jeweils in Wärme umgewandelt. Deshalb erreicht die
Kugel nicht mehr ganz die Ausgangshöhe.

Für kräftefreie Systeme ist die kinetische Energie
auch eine Erhaltungsgröße; dies ergibt sich aus den
Newton’schen Axiomen: Für m =const. kann das
erste Newton’sche Axiom mit der Geschwindigkeit
multipliziert werden:

mẍ = 0

mẋẍ =
1
2

m
d
dt

(ẋ)2 = 0.

2.4.11 Energieerhaltung

Die obigen Beispiele illustrieren ein allgemeines
Prinzip: Energie ist eine Erhaltungsgröße; sie kann
weder erzeugt noch vernichtet werden.

In einem abgeschlossenen System bleibt die Ge-
samtenergie E erhalten, d.h. die Summe aller be-
teiligten Energieformen ist eine Konstante.

Wird die Energie eines Systems erhöht, indem daran
Arbeit geleistet wird, so muss dazu die Energie eines
anderen Systems erniedrigt werden. Sie kann aus ei-
ner Form in eine andere überführt werden oder von
einem Ort zu einem anderen Ort transportiert wer-
den, die gesamte Energie eines abgeschlossenen Sy-
stems bleibt jedoch konstant. Im Rahmen der Me-
chanik ist die Energie auf potenzielle und kinetische
Energie beschränkt, so dass gilt

Emech = Ekin +Epot = konst.

Nicht in allen Fällen wird die Arbeit, die am System
geleistet wurde, auch in mechanische Energie um-
gewandelt. Erfolgt die Arbeit gegen eine Reibungs-
kraft, wie z.B. beim Transport eines Körpers auf ei-
ner horizontalen Ebene mit konstanter Geschwindig-
keit, so bleibt die mechanische Energie des Körpers
konstant. In diesem Fall wird die geleistete Arbeit in
Wärme umgewandelt.

Es ist nicht möglich, zu “beweisen”, dass die Energie
eines beliebigen Systems konstant ist. Der Energie-
Erhaltungssatz ist jedoch mit allen bisher gemach-
ten Erfahrungen vereinbar. Er kann außerdem be-
wiesen werden für den Fall, dass die Naturgesetze
zeitlich invariant sind. Dies ist wiederum ein nicht
beweisbarer Glaubenssatz, welcher mit allen bisher
gemachten Erfahrungen übereinstimmt. Im Falle der
oben erwähnten nichtkonservativen Kräfte (z.B. Rei-
bung), bei denen die gesamte Arbeit über einen ge-
schlossenen Pfad nicht verschwindet, wird die ge-
leistete Arbeit in Wärmeenergie umgewandelt. Au-
ßerdem sind Energie und Materie äquivalent, d.h. sie
können ineinander umgewandelt werden.

Wenn in den Medien von einem “Energieproblem”
die Rede ist (siehe z.B. Abb. 2.55), oder sogar von
einem “Energiemangel” so kann sich dies offenbar
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Abbildung 2.55: Gibt es ein ’“Energieproblem”?

nicht auf die gesamte zur Verfügung stehende Ener-
gie beziehen, sondern offenbar nur auf bestimmte
Formen von Energie. Da es nicht möglich ist, Ener-
gie zu erzeugen, kann das “Energieproblem” auch
nicht “gelöst” werden, indem man mehr Energie er-
zeugt.

Es gibt jedoch unter den unterschiedlichen Formen
der Energie solche die nützlicher sind als andere.
So können die mechanischen Formen der Energie
theoretisch zu 100% in andere Energieformen um-
gewandelt werden. Bewegt man sich von A (z. B.
Uni Dortmund) nach B (z. B. nach Hause) und wie-
der nach A, so ist offenbar die mechanische Energie
des Körpers, welcher dabei bewegt wurde, konstant
geblieben. Die Energie, welche dabei “verbraucht”
wurde, wurde somit nicht in mechanische Energie
des transportierten Körpers umgesetzt, sondern typi-
scherweise in Wärme umgewandelt. Die minimal für
einen solchen Transport notwendige Energie ist da-
mit Null. Ein Verkehrssystem kann als umso intelli-
genter bezeichnet werden, je näher es diesem Grenz-
wert kommt.

2.4.12 Anwendungen

Die Verwendung des Prinzips der Energieerhaltung
kann Rechnungen häufig stark vereinfachen. Als
Beispiel berechnen wir die Geschwindigkeit eines
Pendels am tiefsten Punkt. Man verwendet dazu die
Tatsache, dass die kinetische Energie am niedrig-
sten Punkt gerade gleich der potenziellen Energie am

höchsten Punkt ist,

Ekin(j = 0) = Epot(jmax) =
m
2

v2 = mgh.

Somit ist die Geschwindigkeit am niedrigsten Punkt

v =
p

2gh ,

d.h. gleich groß wie wenn ein Körper fallengelassen
wird, außer, dass in diesem Fall die Geschwindigkeit
horizontal ist. Der Faden übt zwar eine Kraft aus auf
die Pendelmasse, da die Länge konstant ist, ist diese
Kraft senkrecht zur Bewegung und er leistet keine
Arbeit.

Abbildung 2.56: Bahn des Hemmpendels.

Damit können wir auch die Frage beantworten was
für eine Bahn das Hemmpendels (! Abb. 2.56) be-
schreibt: auf der gestreckten Seite wird die gesamte
potenzielle Energie in kinetische Energie umgewan-
delt. Auf der gehemmten Seite wird die kinetische
Energie wieder in potenzielle Energie umgewandelt,
d.h. der Pendelkörper erreicht die gleiche Höhe wie
auf der gestreckten Seite.

Hier die Lösung der Eisenbahnfrage aus Abschnitt
2.4.1: Da die Lokomotive die Reibungskraft kom-
pensiert, ist das System äquivalent zu einem rei-
bungsfreien Zug ohne Lokomotive. Er kann den Hü-
gel überqueren, wenn die kinetische Energie in der
Ebene höher ist als die potenzielle Energie auf dem
Hügel. Die beiden Energien betragen, jeweils durch
die Masse dividiert

Ekin

m
=

1
2

v2 = 2411
m2

s2 = 2411
J

kg
.

Epot

m
= gh = 1962

m2

s2 = 1962
J

kg
.
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Die Energie reicht somit aus. Es bleiben sogar 449
m2/s2 übrig, d.h. die Eisenbahn hat noch eine Ge-
schwindigkeit von 21 m/s = 76 km/h.

Eine sportliche Anwendung der Energieerhaltung ist
der Stabhochsprung. Hierbei wird im Wesentlichen
kinetische Energie (Sprint vor dem Absprung) in po-
tenzielle Energie (Höhe der Messlatte) umgewan-
delt. Die maximale Sprintgeschwindigkeit beträgt
etwa 40 km/h = 11 m/s. Daraus ergibt sich eine Höhe

mgh =
m
2

v2 ) h =
v2

2g
=

121
20

m⇡ 6,05m,

was in der Nähe des aktuellen Weltrekords von 6,16
m liegt (Renaud Lavillenie 2014).

2.5 Stoßprozesse

2.5.1 Definition und Motivation

 1

vorher

Stoß
 v2 

  v1 

keine Wechselwirkung

nachher

v1’

v2’unbekannte 
Wechselwirkung 
zeitlich und räumlich 
begrenzt

Abbildung 2.57: Stoßprozess.

Unter einem Stoß (!Abb. 2.57) versteht man eine
zeitlich begrenzte Wechselwirkung zwischen zwei
oder mehr Systemen, wobei man sich für die Einzel-
heiten der Wechselwirkung entweder nicht interes-
siert oder keine Möglichkeit hat, sie zu untersuchen
oder zu beeinflussen. Man betrachtet einerseits die
Körper bevor die Wechselwirkung stattfindet und an-
dererseits dann, wenn die Wechselwirkung praktisch
nicht mehr vorhanden ist. Dazwischen liegt die ei-
gentliche Wechselwirkungszone. Interessant ist eine
solche Betrachtung vor allem dann, wenn die Wech-
selwirkung mit dem Abstand zwischen den beiden
Körpern rasch abnimmt, so dass die beteiligten Kör-
per sich meist frei und unabhängig bewegen.

Für den gesamten Prozess geht man davon aus, dass
keine äußeren Kräfte auf das System wirken, ~Fext =

0. Aus dem 2. Newton’schen Axiom folgt somit,
dass der Gesamtimpuls ~pges des Systems, also die
Summe der Einzelimpulse ~pi konstant bleibt:

~pges = Â
i

~pi = konst.

Es existieren jedoch Kräfte zwischen den Partnern.
Gemäß dem dritten Axiom treten diese jedoch im-
mer paarweise auf, ~Fik = �~Fki und somit sind auch
die dadurch erzeugten Impulsänderungen gegen-
gleich,

d~pi

dt
= ~Fki =�~Fik =�d~pk

dt
,

so dass diese sich in der Summe aufheben,

d
dt Â

i
~pi = 0.

Abbildung 2.58: Stoßprozess eines a-Teilchens mit
einem Stickstoffatom.

Ein typischer Fall sind Kollisionen in der Kern-
und Elementarteilchenphysik (! Abb. 2.58), wo
die Wechselwirkungen häufig gar nicht analytisch
beschrieben werden können. In der Molekülphysik
oder bei chemischen Reaktionen zwischen Molekü-
len ist die Situation sehr ähnlich: man kennt die De-
tails der Wechselwirkung nicht, man kann höchstens
die Ausgangszustände bestimmen und die Produkte
analysieren.

In vielen Fällen kann man einen Teil oder sogar
die gesamte Kinematik nach dem Stoß (d.h. ab dem
Zeitpunkt, wo die Wechselwirkungen vernachlässig-
bar klein geworden sind) vorhersagen ohne die De-
tails der Wechselwirkung zu kennen. Wir werden
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für geeignete Beispiele die Geschwindigkeiten nach
dem Stoß berechnen ohne die Art der Wechselwir-
kung überhaupt zu diskutieren. Dies bedeutet, dass
die folgenden Überlegungen für die Gravitations-
wechselwirkung zwischen Galaxien genau so zutrifft
wie für Billardkugeln oder sub-atomare Teilchen in
einem Beschleuniger.

Stoßprozesse zwischen Atomen und Molekülen in
Gasen spielen eine wichtige Rolle. Kollisionen zwi-
schen Atomen und Molekülen sind die Grundlage
für die kinetische Gastheorie.

2.5.2 Klassifikation von Stoßprozessen

Man unterscheidet verschiedene Arten von Stoßpro-
zessen. Zum einen können wir sie anhand der Zahl
der Stoßpartner klassifizieren. Im Rahmen dieser
Vorlesung beschränken wir uns auf zwei Stoßpart-
ner.

 1

 Die Summe der kinetischen 
 Energien vor und nach dem Stoß 
 ist gleich 

 Die Summe der kinetischen 
 Energien vor und nach dem Stoß 
 ist verschieden 

 Die Körper bewegen sich 
 nachher mit der gleichen, 
 gemeinsamen 
 Endgeschwindigkeit weiter

elastisch 

inelastisch 

unelastisch

Bezeichnung Eigenschaften

Abbildung 2.59: Klassifizierung von Stoßprozessen
zwischen 2 Körpern.

Ein weiteres wichtiges Kriterium ist, ob beim Stoß
kinetische Energie der Körper in Deformations-
Energie umgewandelt wird. Je nachdem wird der
Stoß als elastisch, inelastisch, oder unelastisch be-
zeichnet, wie in Abb. 2.59 zusammengefasst.

Da keine äußeren Kräfte auf das System wirken
ist die gesamte Energie des Systems immer kon-
stant. Bei elastischen Stößen ist auch die mechani-
sche Energie konstant, bei inelastischen und unela-
stischen Stößen wird ein Teil in Wärme umgewan-
delt.

Abbildung 2.60: Beispiel für einen unelastischen
Stoß: Meteorkrater in Arizona.

Ein typisches Beispiel eines unelastischen Stoßes ist
der Aufprall eines Meteoriten auf die Erde (! Abb.
2.60): hier wurde die gesamte kinetische Energie des
Meteoriten in Wärme umgewandelt.

Abbildung 2.61: Unelastischer Stoß eines Automo-
bils.

Ein weiteres typisches Beispiel für inelastische oder
unelastische Stöße sind Zusammenstöße zwischen
Automobilen oder Autos mit stationären Objekten
(! Abb. 2.61). Die Deformations-Energie wird hier
sehr leicht sichtbar.
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2.5.3 Kraftstoß

In vielen Fällen ist es auch nützlich, die Änderung
des Impulses eines Teilchens während einer begrenz-
ten Zeit zu betrachten.

Zeit t

K
ra

ft 
F

Δt

F

Zeit t

K
ra

ft 
F

Abbildung 2.62: Zeitlich begrenzte Kraft.

Wie in Abb. 2.62 gezeigt, kann das eine zeitliche be-
grenzte konstante Kraft sein (links) oder eine kon-
tinuierlich als Funktion der Zeit variable Kraft. Die
relevante Größe ist die gesamte Impulsänderung des
Körpers, auf den diese Kraft wirkt. Gemäß dem
zweiten Newton’schen Axiom ist die Impulsände-
rung

D~p =
Z t2

t1
~F(t)dt.

Diese wird als Kraftstoß bezeichnet. Die Einheit des
Kraftstoßes ist [D~p]=mkg/s = Ns. Im einfachen Fall
(Abb. 2.61 links) ist er gegeben durch das Produkt
aus Kraft und Dauer, D~p = ~FDt. Damit lassen sich
also z.B. die Kräfte abschätzen, die bei einem Me-
teoriteneinschlag wirken.

2.5.4 Elastischer 2-Körperstoß

m1

m2

m1

m2

m1 m2

Zeit t

K
ra

ft 
F harte Kugeln 

z.B. Stahl

weiche Kugeln 
z.B. Gummi

t<0

t=0

t>0

Zeitlicher Verlauf

Abbildung 2.63: Zentraler elastischer Stoß.

Wir betrachten zwei Körper mit Massen m1 und m2.
Wir diskutieren hier nur den Fall wo die Schwer-
punkte der beiden Körper sich zu jeder Zeit auf
der gleichen Linie bewegen - man spricht dann von
einem zentralen Stoß (! Abb. 2.63). In diesem
Fall spielt der Vektor-Charakter der Geschwindig-
keit keine Rolle, die Geschwindigkeiten können als
Skalare beschrieben werden. Die Geschwindigkeiten
vor dem Stoß seien v1,2. Man würde erwarten, dass je
nach der Art der Wechselwirkung während des Sto-
ßes die beiden Körper sich nach dem Stoß sehr un-
terschiedlich verhalten.

Um die Geschwindigkeiten v01,2 nach dem Stoß zu
berechnen benötigen wir lediglich die Erhaltungssät-
ze für Energie und Impuls. Der Impuls bleibt nach
den allgemeinen Voraussetzungen für Stoßprozesse
immer erhalten, die mechanische Energie für den
Fall elastischer Stöße. Die Erhaltungssätze lauten

p1 + p2 = m1v1 +m2v2 = p01 + p02 = m1v01 +m2v02

2Ekin = m1v2
1 +m2v2

2 = m1v021 +m2v022 .

Die beiden Erhaltungssätze können als Bestim-
mungsgleichungen für die beiden Ausgangsge-
schwindigkeiten verwendet werden. Auflösung nach
v01,2 ergibt:

v01 =
2m2v2 + v1(m1�m2)

m1 +m2

v02 =
2m1v1 + v2(m2�m1)

m1 +m2
. (2.10)

Hier sind offenbar die absoluten Massen nicht re-
levant, sondern allein das Massenverhältnis a =
m2/m1. Als Funktion dieser Größe erhält man

v01 =
2av2 + v1(1�a)

1+a

v02 =
2v1 + v2(a�1)

1+a

. (2.11)

Wir betrachten zunächst als einfachen Spezialfall
die Situation wo beide Massen identisch sind, m1 =
m2 = m, a = 1. Dann vereinfachen sich die Aus-
drücke zu

v01 = v2; v02 = v1,
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Abbildung 2.64: Elastischer Stoß auf Schiene.

d.h. die beiden Körper tauschen Geschwindigkeit
(und damit Impuls). Damit verbunden ist auch ein
Übertrag von Energie vom einen auf den anderen
Körper.

Als nächstes Beispiel betrachten wir den Fall von be-
liebigen Massen, aber v2 = 0. Wie viel Energie wird
von m1 auf m2 übertragen? Lösung:

E
0

2 = E1
4(m1/m2)

(1+m1/m2)2 = E1
4a

(1+a)2 .

Der Energieübertrag wird somit maximal (100 %)
für m1 = m2 oder a = 1 und verschwindet für a! 0
und a ! •.

Als dritten Spezialfall betrachten wir a = 1/2, d.h.
m2 = m1/2,v2 = 0. Hier bewegen sich beide Schlit-
ten nach dem Stoß in die gleiche Richtung, mit dem
Geschwindigkeitsverhältnis 4:1:

v01 =
v1

3
, v02 =

4v1

3
.

Die leichtere Masse bewegt sich somit nach dem
Stoß schneller als die schwere vor dem Stoß!

Für zwei weitere Spezialfälle verwenden wir Schlit-
ten mit einem Massenverhältnis von 2:1, von denen
der eine jeweils auf den ruhenden zweiten auftrifft.
Ist der massivere Schlitten in Ruhe, d.h. m2 = 2 m1,
a = 2, v2= 0. Einsetzen in die allgemeine Formel
(2.10) ergibt

v01 =�v1

3
, v02 =

2v1

3
,

d.h. die leichtere Masse bewegt sich nach dem Stoß
rückwärts, die schwerere mit reduzierter Geschwin-
digkeit vorwärts. Im Extremfall von einem großen
Massenverhältnis (m2�m1) wird die leichtere Mas-
se exakt reflektiert.

2.5.5 Fallende Gummibälle

Abbildung 2.65: Zwei Gummibälle werden fallen
gelassen.

Man lässt zwei Bälle (! Abb. 2.65) aus einer Höhe
h0 auf den Erdboden fallen. Beide Bälle erreichen
den Boden mit der Geschwindigkeit v. Der leichtere
Ball steigt auf eine Höhe h, die bis zu 9h0 betragen
kann.

Abbildung 2.66: Bezeichnung der relevanten Ge-
schwindigkeiten.

Abb. 2.66 definiert die Geschwindigkeiten der bei-
den Bälle, welche bei der Berechnung berücksichtigt
werden müssen. Beim Auftreffen auf dem Boden ha-
ben beide Bälle eine Geschwindigkeit von

v =
p

2gh0.

Die Geschwindigkeit des unteren, schwereren Balls
wird zuerst invertiert. Dadurch treffen die beiden
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Bälle mit betragsmäßig gleichen Geschwindigkeiten
aufeinander. Für v1 = v und v2 = �v folgt aus Gl.
2.11 für die Geschwindigkeiten nach dem Stoß

v
0
1 = v

1�3a

1+a

v
0
2 = v

3�a

1+a

.

Für a ! 0 wird v
0
1 = v und v2 = 3v. Damit ist die

kinetische Energie des kleineren Balls 32 = 9 mal so
hoch wie die ursprüngliche potenzielle Energie und
der Ball steigt bis zu 9 mal so hoch auf. Für m2 =
m1/3 wird v

0
2 = 2v und er steigt noch vier mal so

hoch.

2.5.6 Stoß an Kugelreihe

1 2 43
5

1
2 3 4 5

Abbildung 2.67: Stoß an einer Kugelreihe.

Die Übertragung von Impuls von einem Körper auf
einen anderen kann auch sehr schön mit Hilfe von
aufgehängten Kugeln gezeigt werden (!Abb. 2.67).
Lässt man eine Kugel in auf eine zweite Kugel fal-
le, welche in Ruhe ist, so realisiert man den oben
diskutierten Fall. Zwar ist die Bewegung der Kugel
nicht auf einer Geraden, aber unmittelbar beim Stoß
ist die Bewegung horizontal; unmittelbar danach be-
ginnt ein Austausch von kinetischer und potenziel-
ler Energie, der aber während des Stoßes vernach-
läßigt werden kann. Durch Zufügen weiterer Ku-
geln erhält man verschiedene Fälle die auch analog
berechnet werden können. Dabei beobachtet man,
dass immer gleich viele Kugeln wegfliegen, wie auf
die Reihe auftreffen. Mit der Impulserhaltung wäre
auch vereinbar, dass beim Auftreffen einer Kugel mit
Geschwindigkeit v auf der anderen Seite zwei Ku-
geln mit halber Geschwindigkeit wegfliegen. Übung:
Warum geschieht das nicht?

Wenn alle Kugeln die gleiche Masse haben sind nach
dem Stoß immer gleich viele Kugeln in Bewegung
wie vor dem Stoß. Dies ändert sich, wenn Kugeln
mit unterschiedlicher Masse stoßen - in exakter Ana-
logie zum Stoß auf der Schiene. So schiebt eine
schwere Kugel eine leichtere vor sich her und gibt
nur einen Teil seines Impulses ab. Trifft jedoch eine
leichte Kugel auf eine schwere, so wird sie reflek-
tiert. während die schwere nur entsprechend langsa-
mer zurückweicht.

2.5.7 Unelastischer 2-Körperstoß

Von einem unelastischen Stoß zweier Körper spricht
man dann, wenn sich die beiden Körper nach dem
Stoß gemeinsam weiterbewegen, also “verschmel-
zen”. In diesem Fall ist die mechanische Ener-
gie des Systems nicht erhalten, da ein Teil davon
in Deformations- und Wärmeenergie umgewandelt
wird. Es gilt jedoch weiterhin die Impulserhaltung:

p1 + p2 = m1v1 +m2v2 = (m1 +m2)v0,

wobei v0 die Geschwindigkeit des kombinierten Kör-
pers nach dem Stoß darstellt. Sie beträgt somit

v0 =
m1v1 +m2v2

m1 +m2
, (2.12)

entspricht also massengewichtete Mittel der An-
fangsgeschwindigkeiten.

Abbildung 2.68: Unelastischer Stoß.
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Abb. 2.68 zeigt ein entsprechendes Experiment. Hier
wird ein Körper mit einer Anfangsgeschwindigkeit
v1 auf einen ruhenden Körper der gleichen Masse
auftrifft, m1 = m2 = m. Die beiden kleben aneinan-
der und bewegen sich gemeinsam weiter. Für die ak-
tuellen Parameter wird aus Gl. (2.12)

v0 =
mv1

m+m
=

v1

2
.

Somit ist die resultierende Geschwindigkeit gleich
der halben Geschwindigkeit des bewegten Körpers.
Die Geschwindigkeit wird im Experiment gemessen,
indem für den ersten Körper zweimal die Verdunke-
lungszeit gemessen wird, für den kombinierten, dop-
pelt so langen, nur einmal; die zweite Zeit ist in guter
Näherung doppelt so lang wie die erste.

2.5.8 Elastischer Stoß in zwei Dimensionen

Im Allgemeinen finden Stöße nicht in einer Dimensi-
on statt. Wir diskutieren hier den zweidimensionalen
Fall, der in Abb. 2.69 dargestellt ist. Der Erhaltungs-
satz für die Energie bleibt unverändert, während der
Erhaltungssatz für den Impuls jetzt für beide Dimen-
sionen unabhängig gilt. Wir betrachten einen elasti-
schen Stoß zwischen zwei Körpern

~p1 +~p2 = ~p01 +~p02

E1 +E2 = E 01 +E 02.

Damit hat man drei Gleichungen und (im Allgemei-
nen) vier Geschwindigkeitskomponenten nach dem
Stoß. Es ist somit nicht möglich, die Bewegung der
Körper nach dem Stoß vorauszusagen.

 1

m2

m1v2

v1’

θ2

θ1

v2’

Abbildung 2.69: Elastischer Stoß in 2 Dimensionen.

Dass man trotzdem zu nützlichen Aussagen kommen
kann, zeigt z.B. der Spezialfall, dass die beiden Kör-
per gleiche Masse haben und der eine Körper zu Be-
ginn in Ruhe ist. Dann vereinfachen sich die Erhal-
tungsgleichungen zu

~v2 =~v01 +~v02.

Ohne Beschränkung der Allgemeinheit können wir
die Behandlung vereinfachen, indem wir die x-
Achse des Koordinatensystems in Richtung der An-
fangsbewegung~v2 legen. Dann folgt aus der Impuls-
erhaltung für die y-Komponente, dass die beiden y-
Komponenten nach dem Stoß entgegengesetzt sind,

v01y =�v02y = vy.

Wie bereits erwähnt, kann man die Bahnen der bei-
den Körper nicht bestimmen; sie hängen u.a. da-
von ab, wie stark die beiden Körper gegeneinander
versetzt sind. Aus der obigen Beziehung zwischen
einlaufenden und auslaufenden Geschwindigkeiten
erhält man aber eine Bedingung für die auslaufen-
den Geschwindigkeitsvektoren, welche für alle Stö-
ße dieser Art erfüllt sein muss, unabhängig von der
Art der Wechselwirkung: Der Winkel q1 + q2 zwi-
schen den beiden auslaufenden Bahnen ist immer
90�.

2.6 Drehbewegungen

2.6.1 Kreisbewegung

Genau so wie ein Körper sich ohne die Einwirkung
äußerer Kräfte geradlinig mit konstanter Geschwin-
digkeit bewegt, so behält er seine Orientierung ge-
genüber einem Inertialsystem bei, sofern er sich zu
Beginn in Ruhe befindet, resp. behält eine vorhande-
ne Drehbewegung bei.

Dies kann man anhand eines Kreisels im Hörsaal
zeigen. Es gibt außerdem eine lange Liste von physi-
kalisch relevanten Phänomenen, bei denen dies eine
Rolle spielt.

Dies beginnt auf sehr kleinen Skalen mit dem Spin,
d.h. dem Eigendrehimpuls von Elementarteilchen,
und es setzt sich über viele Größenordnungen fort,
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Abbildung 2.70: Eigendrehimpuls findet man bei
Elementarteilchen wie auch bei
Galaxien.

z.B. zur Rotation von Planeten, ihrer Bahnbewegung
um die Sonne, oder der Rotationsbewegung von Ga-
laxien.

x

y

r(t)
v(t)

φ(t)

Abbildung 2.71: Kreisbewegung.

Die Basis für die folgende Diskussion ist die Be-
wegung eines Massenpunktes auf einer Kreisbahn
(!Abb. 2.71). Benutzt man Polarkoordinaten, so
bleibt dabei der Radius r fest, es ändert sich nur der
Winkel j . Im Fall der gleichförmigen Kreisbewe-
gung ist j = w0t. Ist die Winkelgeschwindigkeit

w(t) =
dj

dt

zeitabhängig, so kann man die Winkelbeschleuni-
gung a bestimmen:

a(t) =
dw(t)

dt
=

d2
j(t)
dt2 .

Die Bahngeschwindigkeit, also die Geschwindigkeit

auf der Bahn, beträgt

~v =
d~r
dt

|~v| = wr.

Abbildung 2.72: Funken zeigen den Geschwindig-
keitsvektor.

Der Geschwindigkeitsvektor bildet überall eine Tan-
gente an den Kreis, wie man z.B. aus der Flugbahn
von Funken erkennen kann, die an einem Rad er-
zeugt werden (! Abb. 2.72).

Die Beschleunigung

~a =
d~v
dt

=
d2~r
dt2 .

wird sinnvollerweise in eine Komponente a|| parallel
zum Geschwindigkeitsvektor~v und eine Komponen-
te a? senkrecht dazu aufteilt. Die parallele Kompo-
nente entspricht der Änderung des Betrags der Ge-
schwindigkeit |v̇(t)|, während die Komponente senk-
recht dazu die Richtungsänderung beschreibt:

~a(t) =
dv(t)

dt
~e||(t)+

v2(t)
r

~e?(t).

Hier stellt

~e||(t) =
~v(t)
v(t)

den Einheitsvektor entlang der instantanen Bewe-
gungsrichtung dar und ~e?(t) denjenigen senkrecht
dazu.

Für den Fall einer Kreisbewegung mit verschwin-
dender Winkelbeschleunigung, a = 0, ist der Be-
trag der Geschwindigkeit |~v| konstant und die Kom-
ponenten der Beschleunigung parallel und senkrecht
dazu sind

a|| = 0

a? = w

2r =
v2

r
.
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2.6.2 Drehimpuls eines Massenpunkts

ω
v

r

L

p

Abbildung 2.73: Definition des Drehimpulses ~L =
~r⇥~p.

Offenbar existiert hier ebenfalls ein Erhaltungssatz.
Die entsprechende Größe ist der Drehimpuls. Für
einen Massenpunkt ist der Drehimpuls definiert als

~L =~r⇥~p , [L] = m2kgs�1 = Nms = Js ,

also als Vektorprodukt aus Ort und Impuls. Der
Drehimpuls ist somit immer in Bezug auf ein Koor-
dinatensystem definiert. Im Beispiel von Abb. 2.73
zeigt er nicht in Richtung der Drehachse.

 1

ω

r
v

Abbildung 2.74: Kreisbewegung. Der Ursprung des
Koordinatensystems liegt im Zen-
trum des Kreises.

Abb. 2.74 zeigt die relevanten Größen für den Fall
einer Kreisbewegung. In drei Dimensionen kann die
Geschwindigkeit eines Massenpunktes als Vektor-
produkt aus Winkelgeschwindigkeit ~

w und Abstand
~r von der Rotationsachse geschrieben werden:

~v = ~
w⇥~r .

Der Winkelgeschwindigkeitsvektor steht parallel zur
Rotationsachse und sein Betrag ist die Rotationsfre-

quenz w . Der Drehimpuls wird somit

~L =~r⇥~p = m~r⇥ (~w⇥~r) . (2.13)

Im Fall der Kreisbewegung ist es sinnvoll, ein sym-
metrieangepasstes Koordinatensystem zu wählen,
dessen Ursprung im Zentrum des Kreises liegt. Dann
sind die Vektoren~r,~v und ~

w jeweils senkrecht zuein-
ander und der Ausdruck (2.13) für den Drehimpuls
vereinfacht sich zu

~L = mr2~
w .

Offenbar ist hier der Drehimpuls proportional zur
Winkelgeschwindigkeit.

2.6.3 Trägheitsmoment

Wie am Beispiel eines Massenpunktes explizit ge-
zeigt, ist der Drehimpuls proportional zur Winkelge-
schwindigkeit. Die Proportionalitätskonstante wird
allgemein als Trägheitsmoment I bezeichnet:

~L = I~w .

Für die Kreisbewegung eines Massenpunktes gilt of-
fenbar I = mr2.

dx

dy
dz

x

y

z

ω

,ir ⊥

Abbildung 2.75: Berechnung von Trägheitsmomen-
ten beliebiger Körper durch Inte-
gration.

Für einen allgemeinen Körper wird das Trägheits-
moment I berechnet als Integral über die Beiträge
einzelner infinitesimaler Massenelemente dm. Wie
in Abb. 2.75 gezeigt, kann es berechnet werden als

I =
ZZZ

r2
?dm =

ZZZ
r2
?r(~r)dV ,
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wobei das Integral über den gesamten Körper läuft,
r? den Abstand von der Rotationsachse darstellt und
r die Dichte des Volumenelements dV . Das Träg-
heitsmoment ist deshalb im Allgemeinen abhän-
gig von der Orientierung der Rotationsachse. Man
spricht deshalb von einem Trägheitstensor. Für einen
asymmetrischen Trägheitstensor ist der Drehimpuls
~L nicht mehr parallel zur Winkelgeschwindigkeit ~

w .

dünnwandiger Reif / Hohlzylinder mit 
Radius R, bezüglich der Symmetrieachse

I =

Z
R2dm = R2

Z
dm = mR2

Rotationsachse in der Ebene

I =
1

2
mR2

dickwandiger Hohlzylinder, 
bezüglich der Symmetrieachse

I =
1

2
m(R2

1 + R2
2)

R

R

Abbildung 2.76: Trägheitsmomente von Hohlzylin-
dern.

Vollzylinder, bezüglich der Symmetrieachse

I =
1

2
mR2

R
L

Vollzylinder,  
⊥ Symmetrieachse

I =
m

12
(3R2 + L2)

Stab,  
⊥ Symmetrieachse

I =
mL2

12

Kugel

I =
2

5
mR2

Quader

I =
m

12
(a2 + b2)

Achse

L
R

a
b

Abbildung 2.77: Weitere Trägheitsmomente.

Abb. 2.76 und 2.77 zeigen die Trägheitsmomente für
einige einfach geformte Körper, bezüglich symme-
trieangepasster Achsen.

Auch ein Körper, der sich auf einer Geraden bewegt,
besitzt einen Drehimpuls; dieser wird als Bahndreh-
impuls bezeichnet. Im Gegensatz dazu unterscheidet
man den Eigendrehimpuls, bei dem man sich auf ei-
ne Achse durch den Schwerpunkt bezieht.

Translation Rotation
Impuls ~p ~L Dreh-

impuls
Masse m I Trägheits-

moment
Geschwin-
digkeit

~v ~
w Winkelge-

schwindig-
keit

Tabelle 2.3: Analogien zwischen Translations- und
Rotationsbewegung.

Offenbar bestehen eine Reihe von Analogien zwi-
schen Drehimpuls und linearem Impuls. Einige da-
von sind in Tabelle 2.3 zusammengestellt.

In Analogie zum Erhaltungsgesetz für den linearen
Impuls gilt ein Erhaltungssatz für den Drehimpuls:

So lange keine äußeren Kräfte wirken, bleibt der
Drehimpuls eines Systems erhalten.

Die Erhaltung des Drehimpulses spielt eine große
Rolle in vielen Teilen der Physik, vom Mikrokos-
mos (z.B. Wechselwirkungen zwischen Elementar-
teilchen, Absorption von Licht) bis zum Makrokos-
mos (Planetenbewegung, Stabilität von Galaxien).

2.6.4 Kinetische Energie

z 

x 

y 

mi 

 
ir

iv

ω

Abbildung 2.78: Beitrag eines Volumenelements zur
kinetischen Energie.

Mit Hilfe des Trägheitsmoments lässt sich auch die
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kinetische Energie berechnen. Aus dem Ausdruck
für die kinetische Energie von Massenpunkten folgt

E rot
kin =

1
2 Â

i
mi~v2

i =
1
2 Â

i
~vi ·~pi.

Ist die Rotation durch den Winkelgeschwindigkeits-
vektor ~

w bestimmt, so gilt

~vi = ~
w⇥~ri

und

E rot
kin =

1
2 Â

i
mir2

i w

2 =
w

2

2

ZZZ
r2dm,

mit w als Betrag der Winkelgeschwindigkeit und ri
resp. r dem Abstand von der Drehachse. Mit Hilfe
des Trägheitstensors

 !
I lässt sich die Summe, re-

spektive das Integral schreiben als

E rot
kin =

1
2
~
w · !I ~

w =
1
2
~
w ·~L,

Fällt die Rotationsachse mit einer Symmetrieach-
se zusammen, so kann der Trägheitstensor durch
das Trägheitsmoment bezüglich dieser Achse ersetzt
werden:

E rot
kin =

1
2

Iw

2.

2.6.5 Energieerhaltung

Vor dem Start

Hohlzylinder Vollzylinder

Kugel

Nach dem Start

Abbildung 2.79: Rotationssymmetrische Körper auf
einer schiefen Ebene.

Die unterschiedlichen Trägheitsmomente haben z.B.
einen Einfluss darauf, wie schnell entsprechende
Körper eine schiefe Ebene hinunterrollen (!Abb.
2.79). Bei diesem Experiment wird potenzielle Ener-
gie Epot = mgh in kinetische Energie umgewandelt.

Diese besteht aus zwei Beiträgen, der translatori-
schen und der rotatorischen:

Ekin =
1
2

Iw

2 +
1
2

mv2.

Die beiden Terme sind jedoch über v = wR anein-
ander gekoppelt, wobei R den Radius bezüglich der
Rotationsachse darstellt und dieser für alle Körper
gleich ist. Daraus folgt auch

dw

2

dt
= 2w

dw

dt
=

2w

R
dv
dt

=
2v
R2 a.

z
h

Rmx

θ

θ

Abbildung 2.80: Rotation über schiefe Ebene.

Die Erhaltung der Gesamtenergie kann geschrieben
werden als

d
dt

Etot = mva+
I

R2 va+mg
dz
dt

= 0. (2.14)

z stellt hier die Höhe dar, v = dx/dt die Geschwin-
digkeit und x die zurückgelegte Distanz. Mit h als
Starthöhe ist

z = h� xsinq ,
dz
dt

=�vsinq .

Einsetzen in (2.14) ergibt

mva+
I

R2 va�mgvsinq = 0.

Diese Gleichung kann aufgelöst werden nach der
Beschleunigung

a = gsinq

mR2

mR2 + I
= gsinq

✓
1� I

mR2 + I

◆
.

Der Vorfaktor gsinq beschreibt die Beschleunigung
für einen reibungsfreien Massenpunkt, während der
Ausdruck in Klammern die Modifikation durch die
Rotation berücksichtigt und immer kleiner als 1 ist.
Die Beschleunigung ist somit am größten für den
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Abbildung 2.81: Maxwell-Rad.

Körper mit dem kleinsten Trägheitsmoment I. Dies
erklärt, weshalb beim Experiment der Körper mit
dem geringsten Trägheitsmoment zuerst das untere
Ende erreicht.

Einen sehr ähnlichen Effekt beobachtet man beim in
Abb. 2.81 gezeigten Maxwell-Rad: auch dieses de-
monstriert den Austausch von Energie zwischen un-
terschiedlichen Formen mechanischer Energie. Das
Rad hängt an zwei Fäden, die um die Achse ge-
wickelt sind. Nach dem Loslassen wickeln sich die
Fäden ab und bringen das Rad in Rotation. Es findet
ein ständiger Austausch zwischen potenzieller Ener-
gie, der kinetischen Energie des Schwerpunktes und
der Rotationsenergie des Rades statt. Die Gesamt-
energie ist

E = Ekin +Erot +Epot =
m
2

v2
S +

I
2

w

2 +mgzS.

Hier stellt zS die Höhe des Schwerpunkts dar, wel-
cher auf der Achse liegt, und vS = dzS/dt seine
Geschwindigkeit. Die lineare und die Rotationsge-
schwindigkeit sind aneinander gekoppelt, über v =
wr, mit r dem Radius der Achse. Da die Achse rela-
tiv dünn ist und die Masse des Rades sich relativ weit
von der Achse befindet, wird die potentielle Ener-
gie zum größten Teil in rotatorische kinetische Ener-
gie umgewandelt und die Translationsgeschwindig-
keit des Rades bleibt relativ gering - es fällt deutlich
langsamer als ein frei fallendes Rad.

2.6.6 Drehmoment

Der Drehimpuls ist eine Erhaltungsgröße wenn kei-
ne äußere Kraft angreift. Wie beim linearen Impuls
kann aber eine äußere Kraft den Drehimpuls verän-
dern. Allerdings spielt nicht nur der Betrag der Kraft
eine Rolle, sondern auch die Richtung und der An-
griffspunkt.

v

m

M

r

R

Abbildung 2.82: Experimentelle Bestimmung des
Drehmoments.

Abb. 2.82 zeigt ein Experiment, bei dem eine Kraft
in Form der Gewichtskraft eines Massenpunkts tan-
gential an einem Rad angreift, das um seine Achse
rotiert. Eine Änderung des Drehimpulses kann für
einen Massenpunkt geschrieben werden als

d~L
dt

=
d
dt

(~r⇥~p) =
d~r
dt
⇥~p+~r⇥ d~p

dt
.

Die beiden Vektoren des ersten Terms (~v und ~p)
sind parallel, so dass das Vektorprodukt verschwin-
det. Bei einer Drehbewegung ohne äußere Kräfte (~w
konstant) ist außerdem d~p

dt ||~r, so dass auch der zweite
Term verschwindet: der Drehimpuls ist konstant.

Wenn jedoch eine geeignete Kraft angreift, welche
eine Komponente parallel zu ~p aufweist, so ändert
sich die Geschwindigkeit der Drehbewegung ent-
sprechend d~p

dt = ~F|| und damit auch der Drehimpuls:

d~L
dt

=~r⇥~F .

Dies ist offenbar das Äquivalent zum zweiten New-
ton’schen Axiom. Man bezeichnet die Größe auf der
rechten Seite als Drehmoment

~M =~r⇥~F [M] = Nm .
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Damit kann man das Grundgesetz der Rotation
schreiben als

d~L
dt

= ~M = I
d~

w

dt
.

Das Drehmoment liegt im rechten Winkel zur Kraft
und erzeugt damit einen Drehimpuls senkrecht zur
Kraft. Da das Drehmoment aus dem Vektorprodukt
~r⇥ ~F besteht, verschwindet es, wenn die Kraft par-
allel zum Ortsvektor (d.h. radial) angreift; in diesem
Fall würde eine Änderung des linearen Impulses er-
zeugt, falls keine Gegenkraft wirkt (z.B. durch die
Lager eines Rades).

2.6.7 Rotationsachse

Wie beim Drehimpuls ist auch beim Drehmoment
die Definition immer auf ein bestimmtes Koordina-
tensystem bezogen; Drehimpuls und Drehmoment
ändern sich wenn man den Ursprung des Koordina-
tensystems verschiebt.

Im Experiment von Abb. 2.82 wird die Kraft durch
ein Gewicht der Masse m erzeugt, welches an ei-
nem Seil im Schwerefeld der Erde zieht. Indem das
Gewicht über eine Höhe h fällt, wird eine Energie
DEpot = mgh auf das Rad übertragen und in kineti-
sche Energie der Rotation Erot umgewandelt. Diese
beträgt

Erot =
1
2

Iw

2 = mgh.

Somit lässt sich aus diesem Experiment das Träg-
heitsmoment bestimmen:

I =
2mgh

w

2 ,

indem man die resultierende Rotationsgeschwindig-
keit w des Rades misst.

Die Tatsache, dass sich das Drehmoment auf ein be-
stimmtes Koordinatensystem, respektive eine Dreh-
achse bezieht, lässt sich anhand des in Abb. 2.83 ge-
zeigten Experimentes demonstrieren. Wenn man mit
Hilfe eines Bandes an einer Rolle eine Kraft aus-
übt, so erzeugt dies ein Drehmoment, welches be-
züglich der Symmetrieachse immer in die gleiche

15
0

18
5 30

0

105 100 105

40

390

Abbildung 2.83: Folgsame Rolle.

Richtung zeigt. Allerdings steht die Rolle in Kon-
takt mit dem Boden und dadurch erfolgt die Rotati-
on um den Auflagepunkt, nicht um die Achse. Be-
züglich dieses Punkts kann das Drehmoment positiv
oder negativ sein. Dementsprechend ist es möglich,
die Rolle in Richtung auf den Experimentator oder
von ihm weg zu bewegen.

2.6.8 Kräftegleichgewicht

Drehmomente spielen vor allem bei ausgedehnten
Körpern eine Rolle. Dies werden meist als starre
Körper behandelt, man vernachlässigt also Deforma-
tionen.

m1

  m2 
1F
&

2F
&1r

&

2r
&

Ar

A = S 

Abbildung 2.84: Gleichgewicht eines starren Kör-
pers.

Abb. 2.84 zeigt einen einfachen starren Körper, be-
stehend aus 2 Massenpunkten, welche starr mitein-
ander verbunden sind. Damit dieser im Gleichge-
wicht ist, also seinen Bewegungszustand nicht än-
dert, müssen zwei Bedingungen erfüllt sein. Zum er-
sten muss die Summe der von außen auf den Körper

68



2 Mechanik

wirkenden Kräfte verschwinden,

~Ftot = Â
i

~Fi = 0.

Im vorliegenden Fall muss die Summe der Schwer-
kräfte auf die beiden Massen durch eine Stützkraft
~Fs ausgeglichen werden,

~Ftot = (m1 +m2)~g+~Fs = 0.

Für die Translationsbewegung spielt es keine Rolle,
wo die Kräfte angreifen.

Dies wird jedoch relevant, wenn es um eine Rota-
tionsbewegung geht. Damit der Körper auch bezüg-
lich einer Drehung im Gleichgewicht ist, muss zu-
sätzlich die Summe der Drehmomente verschwin-
den. Dafür verwenden wir ein Koordinatensystem,
bei dem die Stützkraft ~Fs am Punkt~rs angreift. Da-
mit verschwindet ihr Beitrag zum Drehmoment. Der
Beitrag der Gewichtskräfte is

~M1 + ~M2 = m1(~r1�~rS)⇥~g+m2(~r2�~rS)⇥~g = 0.

(2.15)

Daraus folgt die Bedingung für die Lage~rS des Mas-
senschwerpunkts:

m1(~r1�~rS)+m2(~r2�~rS) = 0.

Auflösen nach~rS ergibt

~rS =
m1~r1 +m2~r2

m1 +m2
,

also den mit den Massen gewichteten Mittelwert
der beiden Ortsvektoren. Dieser Punkt wird des-
halb auch als Schwerpunkt bezeichnet. Die Rech-
nung lässt sich leicht auf eine beliebige Zahl von
Massenpunkten oder Massenelementen erweitern:

~rS =
Âi mi~ri

Âi mi
.

Die Gleichgewichtsbedingung (2.15) ist auch be-
kannt als Hebelgesetz, welches besagt, dass die
Summe der Produkte aus Kraft und Distanz vom
Schwerpunkt verschwinden muss,

Â
i

Fixi = 0.

Abbildung 2.85: Stabiles, indifferentes und labiles
Gleichgewicht, abhängig vom Auf-
hängepunkt.

Hierbei geht man üblicherweise davon aus, dass die
Kräfte senkrecht zum Hebel angreifen.

Mit Hilfe des Schwerpunkts kann man untersuchen,
ob ein Körper stabil aufgestellt oder aufgehängt ist:
Wenn sich der Schwerpunkt eines Körpers über oder
unter seiner Auflagefläche befindet, dann fällt er
nicht um. Ob das Gleichgewicht stabil, instabil oder
indifferent ist, hängt wiederum davon ab, ob die
mögliche Drehachse des Körpers ober-, unter- oder
auf der Höhe des Schwerpunkts ist. Abb. 2.85 il-
lustriert dies für einen Holzstab. Daraus ergibt sich
auch eine Möglichkeit, den Schwerpunkt eines Kör-
pers zu bestimmen: Man hängt ihn an verschiede-
nen Punkten auf und markiert die Richtung nach Un-
ten. Die entsprechenden Geraden schneiden sich im
Schwerpunkt.

2.6.9 Pirouette

Abbildung 2.86: Pirouette.

Eine bekannte Anwendung der Drehimpulserhaltung
ist die Pirouette von Eiskunstläufern (! Abb. 2.86).
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Hier reduziert der Artist das Trägheitsmoment indem
er die Arme anzieht und erhöht dadurch die Winkel-
geschwindigkeit: Da der Drehimpuls konstant bleibt,
muss gelten

L1 = L2 = I1w1 = I2w2.

Daraus folgt

w2 = w1
I1

I2
.

Als Beispiel nehmen wir an, dass er sich zunächst
mit einer Drehfrequenz von n0 = 1 s�1 bewegt und,
dass sein Trägheitsmoment zunächst I0 = 6 kg m2

beträgt. Durch Anziehen der Arme reduziert er die-
ses auf I1 = 1,5 kg m2. Sind Reibungsverluste ver-
nachlässigbar, muss der Drehimpuls dabei erhalten
bleiben und damit die Drehfrequenz zunehmen auf

n1 = n0
I0

I1
= 4s�1 .

Die kinetische Energie bleibt dabei nicht erhalten;
diese wird dem System über eine Arbeitsleistung zu-
geführt, indem die Arme gegen die Zentrifugalkraft
angezogen werden müssen. Die entsprechende Ar-
beit beträgt

W =
1
2
(I1w

2
1 � I0w

2
0 )

=
1
2
(1,5 ·631�6 ·39,5)J = 592J .

Abbildung 2.87: Erhöhung der Winkelgeschwindig-
keit durch Reduktion des Träg-
heitsmoments.

Das Experiment kann auch im Hörsaal durchgeführt
werden, wobei der Effekt durch Gewichte in den

Händen verstärkt wird (! Abb. 2.87). Beim Anzie-
hen der Arme wird das Trägheitsmoment reduziert
und die Erhaltung des Drehimpulses führt zu einer
Erhöhung der Winkelgeschwindigkeit.

Lx ≠ 0

Lz = 0
0Stuhl,Rad, =+ zz LL

Abbildung 2.88: Erhaltung des Gesamt-
Drehimpuls-Vektors.

Der Drehimpuls ist eine vektorielle Größe, die sich
aus mehreren Komponenten zusammensetzen kann.
Im Beispiel von Abb. 2.88 bleibt jedoch nur die ver-
tikale Komponente erhalten, da der Drehstuhl um
diese Achse frei beweglich ist. Die Achse des Ra-
des wird zunächst in horizontaler Richtung gehal-
ten. Dreht man das Rad, so dass der Drehimpuls
nach oben zeigt, muss sich der Drehstuhl in ent-
gegengesetzter Richtung bewegen, um den Gesamt-
Drehimpuls bezüglich der vertikalen Achse zu erhal-
ten. Dreht man die Achse des Rades nach unten, ro-
tiert der Drehstuhl in die entgegengesetzte Richtung.

I1 
ω1 I2 

ω2

Abbildung 2.89: Turner an einem Reck.

Auf ähnliche Weise kann ein Turner an einem Reck
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seine Winkelgeschwindigkeit vergrößern. Wie in
Abb. 2.89 gezeigt, ändert er durch seine Körper-
haltung sein Trägheitsmoment und damit auch sei-
ne Winkelgeschwindigkeit. Indem er dies synchroni-
siert mit dem Drehwinkel durchführt, leistet er auch
Arbeit gegen die Schwerkraft und erhöht damit seine
kinetische Energie und seinen Drehimpuls.

Abbildung 2.90: Feuertornado.

Drehimpulserhaltung spielt auch bei der Dynamik
von Gasen eine Rolle. Abb. 2.90 zeigt einen so-
genannten Feuertornado, welcher durch Drehen ei-
nes Tellers mit einer brennenden Flüssigkeit erzeugt
wird. Die Flamme wird von einem Drahtkäfig um-
schlossen, der sich ebenfalls dreht. Durch die Flam-
me steigen im Drahtkäfig heiße Luft und Verbren-
nungsgase auf und saugen dadurch von außen fri-
sche Luft in den Zylinder hinein. Beim Einströmen
sinkt der Abstand von der Drehachse. Wie bei der
Pirouette wird dadurch die Rotationsgeschwindig-
keit größer. Entsprechend dreht sich die Feuersäule
viel schneller als der Käfig. Gleichzeitig wird durch
die Drehbewegung die radiale Strömungsgeschwin-
digkeit reduziert. Dementsprechend dauert es länger,
bis genügend Sauerstoff die Flamme erreicht und die
Gase können weiter aufsteigen - die Flamme steigt
höher. Auf ähnliche Weise kommt die Rotation von
Winden um Hoch- und Tiefdruckgebiete zustanden,

wie auch bei Hurrikanen, Taifunen oder Tornados.

2.6.10 Kreisel

Ein Kreisel ist ein starrer Körper, der um eine Achse
rotiert. In diesem Fall gelten Erhaltungsgesetze für
alle drei Komponenten des Drehimpulses. Für prak-
tische Anwendungen sollte die Rotationsachse mit
einer Symmetrieachse des Körpers zusammenfallen,
in diesem Fall kann die Rotation sehr stabil sein.

Lω

Abbildung 2.91: Kardanisch aufgehängter Kreisel.

Lagert man den Kreisel so, dass keine Drehmomente
M auf ihn wirken (! Abb. 2.91), so bleibt wegen

d~L
dt

= ~M = 0

der Drehimpuls L und auch die Drehachse konstant.
Je größer der Drehimpuls, desto schwieriger wird es,
seine Richtung zu ändern. Deshalb sind Kreisel bei
hohen Drehzahlen sehr stabil.

Kurskreisel

Ein solcher kräftefreier Kreisel behält seine einmal
vorgegebene Orientierung auch dann bei, wenn man
ihn mit dem Aufbau als Ganzes beliebig durch den
Raum trägt. Ein Kreisel kann so im Prinzip als Kurs-
kreisel zur Richtungsbestimmung in der Navigation
eingesetzt werden. Allerdings ergeben Reibungsef-
fekte und Drehmomente Abweichungen.
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Backstein

Eine freie Rotation ist stabil bei Rotation um die
Achse mit dem kleinsten oder dem größten Träg-
heitsmoment.

Nutation

Rotiert der kräftefreie Kreisel nicht um eine Symme-
trieachse, so bleibt zwar die Richtung des Drehim-
pulses konstant, nicht aber die Richtung der Rotati-
onsachse. Der allgemeine Zusammenhang zwischen
Drehimpuls und Winkelgeschwindigkeit ist

~L = Î ·~w.

Hier stellt Î den Trägheitstensor dar, welcher den
Vektor ~

w rotiert und multipliziert. Drehachse und
Symmetrieachse des Kreisels ändern mit der Zeit ih-
re Richtung und bewegen sich auf Kegelmänteln um
die Drehimpuls-Achse~L.

Präzession

Wirkt eine Kraft auf einen Kreisel, z.B. die Schwer-
kraft, so erzeugt diese i.A. auch ein Drehmoment
und damit eine Änderung des Drehimpulses:

d~L
dt

= ~M =~r⇥~FG.

Da die Änderung des Drehimpulses senkrecht zur
Richtung der Gewichtskraft liegt, fällt der Kreisel
nicht um, sondern er präzediert um die Richtung der
Gewichtskraft, also um die Vertikale.

Das Experiment zeigt ein einfaches Beispiel, in dem
die Drehimpulserhaltung ein selbständig navigieren-
des System ergibt. Man benutzt dazu einen Kreisel,
der in ein Kunststoffrohr eingebaut ist. Der Kreisel
rollt auf einem gebogenen Draht eine schiefe Ebene
hinunter und folgt den Kurven eines dünnen Metall-
rohrs (! Abb. 2.92). Dies wird durch die Drehim-
pulserhaltung möglich. Man kann den Effekt quali-
tativ so erklären:

• Der Kreisel läuft rechts oder links von der
Bahn. Sein Schwerpunkt S liegt jetzt nicht mehr
direkt über der Schiene.

Abbildung 2.92: Ein Zylinder wird durch einen
Kreisel stabilisiert und kann so ei-
nem dünnen Metallrohr folgen.

• Es wirkt ein Drehmoment ~M =~rS⇥m~g.

• Das Drehmoment erzeugt eine eine Präzession
des Kreisels um die Achse senkrecht zu~L.

• Dadurch ändert sich die Richtung der Rotati-
onsachse des Zylinders und damit die Richtung
der Schwerpunktsbewegung.

• Bei korrektem Drehsinn des Kreisels bewegt
sich der Zylinder so, dass der Schwerpunkt wie-
der über dem Draht liegt.

2.7 Astronomische Anwendungen

2.7.1 Drehimpuls und Planetenbahnen

Die Erhaltung des Drehimpulses ist auch verantwort-
lich für die Rotation von Planeten im Sonnensy-
stem, von Satelliten (Monden, Ringen) um Planeten,
und der Sonnensysteme in der Galaxis: diese bilde-
ten sich aus Wolken von Gas und Staub durch Kon-
traktion unter dem Einfluss der Schwerkraft. Die Er-
haltung des Drehimpulses bei der Kontraktion führ-
te zu einer Erhöhung der anfangs geringen Rotati-
onsgeschwindigkeit und verhindert eine vollständige
Kontraktion: ohne Drehimpulserhaltung würden die
Planten unter dem Einfluss der Schwerkraft in die
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Abbildung 2.93: Ringe des Saturns.

Sonne fallen. Ähnliche Effekte führen zur Form der
Galaxien.

Abbildung 2.94: Das Ptolemäische Weltbild.

Die Planetenbahnen haben die Menschen seit Lan-
gem fasziniert. Ptolemäus fasste im 2. Jh. nach Chri-
stus den damaligen Wissenstand zusammen und er-
stellte ein Weltbild (! Abb. 2.94), welches mehr
als tausend Jahre Bestand hatte. In seinem System
war die Erde im Zentrum des Universums und der
Mond, Merkur, Sonne, Mars, Jupiter und Saturn be-
wegten sich in Kreisen um die Erde. Dies war al-
lerdings nicht mit allen Beobachtungen kompatibel;
so bewegen sich die Planeten von der Erde aus be-
trachtet nicht immer in die gleiche Richtung, son-
dern folgen manchmal einer Art von Schleife. Man
versuchte das Ptolemäische Modell deshalb durch
sogenannte Epizyklen zu korrigieren: Die Planeten
liefen nicht direkt auf Kreisen, sondern auf Kreisen,
deren Mittelpunkte wiederum auf Kreisen um die Er-
de liefen. Noch genauere Messungen zeigten, dass

mehrere Generationen von Epizyklen notwendig wa-
ren, um die Beobachtungen erklären zu können.

Die wichtigste Neuerung wurde von Kopernikus
(1473-1543) initiiert, welcher anstelle der Erde die
Sonne ins Zentrum stellte. Dies konnte einige der
Beobachtungen qualitativ erklären, aber eine quan-
titative Übereinstimmung wurde nicht erreicht, weil
die Planten in seinem Modell sich immer noch
auf Kreisbahnen bewegten. Der dänische Hofastro-
nom Tycho Brahe (1546-1601) stellte umfangrei-
che Beobachtungen an, welche insgesamt weder mit
dem kopernikanischen noch mit dem ptolemäischen
Weltbild wirklich vereinbar waren.

2.7.2 Die Kepler’schen Gesetze

Abbildung 2.95: Johannes Kepler (1571-1630).

Die erste Theorie, welche die Beobachtungen an-
hand einiger weniger Gesetze erklären konnte
stammt von Johannes Kepler (1571-1630; ! Abb.
2.95). Er formulierte die ersten zwei seiner Geset-
ze 1609, das dritte 1619. Sie wurden für Planeten
formuliert, gelten aber analog z.B. für die Umlauf-
bahnen von Monden. Zu Kepler’s Zeit waren dies
neue Grundgesetze, welche nur der Beschreibung
der astronmoischen Daten dienten. Erst gegen En-
de des 17. Jahrhunderts lieferte Newton die theo-
retischen Grundlagen, mit denen diese Gesetze aus
grundlegenderen Gesetzen hergeleitet werden konn-
ten.

1. Kepler’sches Gesetz: Die Planeten bewegen
sich auf Ellipsen. Die Sonne steht jeweils in ei-
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Abbildung 2.96: 1. Kepler’sches Gesetz: Die Plane-
tenbahnen sind Ellipsen; die Sonne
steht in einem der Brennpunkte.

nem der Brennpunkte. Ellipsen sind geschlos-
sene Kurven, welche z.B. durch die Gleichung

x2

a2 +
y2

b2 = 1

beschrieben werden können. a und b stellen die
Halbachsen der Ellipse dar (! Abb. 2.96). Für a = b
geht die Ellipse in einen Kreis über. Ellipsen können
u.a. konstruiert werden, indem man zwischen den
beiden Brennpunkten einen Faden spannt und mit ei-
nem Bleistift bei gespanntem Faden die Kurve zieht.
Dabei nutzt man aus, dass die Strecke u+v konstant
ist.

Das Gesetz beinhaltet verschiedene Näherungen,
z.B. dass die Sonne unendlich schwer ist. Dies ist
eine gute Näherung: Die Masse der Sonne beträgt
etwa 2 · 1030 kg, diejenige der Erde etwa 6 · 1024

kg. Berücksichtigt man die endliche Masse, so be-
wegen sich Sonne und Planet um den gemeinsamen
Schwerpunkt, dieser liegt in einem Brennpunkt der
Ellipse. Außerdem stören andere Planeten die Bahn.

2.7.3 2. Kepler’sches Gesetz

Das 2. Kepler’sche Gesetz beschreibt die Geschwin-
digkeit auf der Bahn.

Der von der Sonne zum Planeten gezogene Radius-
vektor~r überstreicht in gleichen Zeiten Dt konstante
Flächen DA: DA/Dt = konstant (! Abb. 2.97). Die-
ses Gesetz lässt sich beweisen, wenn man die Fläche
dA berechnet, welche in der (infinitesimalen) Zeit dt
überstrichen wird:

A1 A2

Sonne

A1 = A2

Δt

Δt

Abbildung 2.97: 2. Kepler’sches Gesetz: Die Flä-
chen A1 und A2 sind gleich.

dA =
1
2

|~r⇥d~r| = 1
2m

|~r⇥md~r|

=
1

2m

����~r⇥m
d~r
dt

����dt =
1

2m
|~r⇥m~v|dt.

Da~r⇥m~v =~L den Drehimpuls darstellt, ist

dA
dt

=
1

2m
|~L| = const.

konstant, wenn der Drehimpuls sich nicht ändert.
Dies gilt für endliche Zeiten genau so,

A(Dt) =
Z t+Dt

t

dA
dt

dt =
1

2m
|~L|Dt.

Das zweite Kepler’sche Gesetz ist also eine direkte
Manifestation der Erhaltung des Drehimpulses.

2.7.4 3. Kepler’sches Gesetz

Das dritte Kepler’sche Gesetz betrifft das Verhält-
nis zwischen Abstand und Umlaufzeit der Planeten.
Kepler fand es erst etwa 10 Jahre nach den ersten
beiden Gesetzen; es wurde 1619 publiziert, im Werk
Harmonices mundi.

Die Quadrate der Umlaufzeiten T1, T2 zweier Plane-
ten verhalten sich wie die Kuben der großen Halb-
achsen a1, a2 (! Abb. 2.98):

✓
T1

T2

◆2

=

✓
a1

a2

◆3

.
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Abbildung 2.98: 3. Kepler’sches Gesetz.

Diese Beobachtung kann für eine Kreisbewegung
leicht erklärt werden: In diesem Fall wirkt die Gra-
vitation

FG = G
Mm
R2

als Zentripetalkraft. Diese muss der Zentrifugalkraft

FZ = mw

2R

entsprechen. Die Kreisfrequenz w ist invers propor-
tional zur Periode, w = 2p/T . Somit ist

G
Mm
R2 = m

✓
2p

T

◆2

R.

Umstellen ergibt das 3. Kepler’sche Gesetz:

T 2

R3 =
4p

2

GM
= const.

Solche Potenzgesetze kann man am besten überprü-
fen indem man die vorhandenen Daten logarithmiert:
Bildet man auf beiden Seiten den Logarithmus dann
findet man

log
✓

T1

T2

◆2

= 2(logT1� logT2)

= log
✓

a1

a2

◆3

= 3(loga1� loga2)

oder
loga1� loga2

logT1� logT2
=

2
3

.

Trägt man loga gegen logT auf, so erhält man somit
eine Gerade mit Steigung 2/3. Wie in Abb. 2.99 ge-
zeigt, passen die experimentellen Daten sehr gut zu
dieser Voraussage.
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Abbildung 2.99: Vergleich des 3. Kepler’schen Ge-
setzes mit Daten der Planetenbah-
nen.

2.7.5 Theorie der Gravitation

Die Kepler’schen Gesetze lieferten hervorragende
Vorhersagen welche innerhalb der Messgenauigkeit
die Beobachtungen erklären konnten. Sie liefern
aber keine Erklärung für die beobachteten Phäno-
mene. Kepler versuchte auch, eine Erklärung zu lie-
fern, aber es gelang ihm nicht. Diese lieferte jedoch
Newton mit seinen Gesetzen der Mechanik (! Ab-
schnitt 2.2.2) und mit seiner Theorie der Gravitation
(! 2.2.5). Diese besagt, dass die unterschiedliche
Massen sich anziehen, mit einer Kraft

|FG| = G
m1m2

r2
12

.

Die Gravitationskonstante G war zu Newton’s Zeit
noch nicht bekannt. Der heute anerkannte Wert be-
trägt

G = 6,673 ·10�11 Nm2

kg2 = 6,673 ·10�11 m3

kg2s2
.

Nachdem die Gravitationskonstante bestimmt ist,
kann man eine Messung der Fallbeschleunigung an
der Erdoberfläche dazu verwenden, die Erdmasse
zu bestimmen. Mit dem mittleren Erdradius r =
6,37·106m erhält man mE = 5,97·1024 kg. Analog
kann man aus dem Radius einer Planetenbahn und
seiner Umlaufzeit die Masse der Sonne bestimmen:
Aus dem Gleichgewicht zwischen Zentrifugalkraft
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und Gravitationskraft der Sonne

FZP = mPrPw

2
P = FG = G

mPmS

r2
P

.

Die Sonnenmasse erhält man daraus als

mS = r3
Pw

2
P/G⇡ 2 ·1030kg .

Dies beinhaltet gleichzeitig das dritte Kepler’sche
Gesetz (für den Grenzfall eines Kreises, d.h. ver-
schwindender Elliptizität).

Zu Beginn des 20. Jahrhunderts erkannte Einstein,
dass die Newton’sche Theorie als eine Näherungs-
form betrachtet werden muss. In dieser Theorie er-
folgt die Wechselwirkung zwischen unterschiedli-
chen schweren Körpern nicht mehr über Kräfte, son-
dern indem jeder Massenpunkt den Raum in sei-
ner Umgebung verzerrt. Die Theorie behandelt somit
nicht Kräfte, sondern die Geometrie des vierdimen-
sionalen Raum-Zeit Kontinuums.

Abbildung 2.100: Krümmung des Raum-Zeit Konti-
nuums durch eine Masse.

Abb. 2.100 zeigt diese Krümmung schematisch, an-
hand einer Projektion in den zweidimensionalen
Raum, respektive die dreidimensionale Raum-Zeit.
Jede Masse erzeugt eine Krümmung in ihrer Umge-
bung.

Sie gibt in vielen Fällen die gleichen Voraussagen zu
experimentell beobachtbaren Größen wie die New-
ton’sche Theorie. In einigen wenigen Spezialfäl-
len findet man Unterschiede. So kann sie z.B. die
Präzessionsbewegung bei der Merkurbahn erklären,
oder die Ablenkung von Sternenlicht beim Passie-
ren der Sonne. Eine wichtige Bestätigung der allge-
meinen Relativitätstheorie erfolgte 2016, als zum er-
sten Mal Gravitationswellen gemessen wurden. Gra-
vitationswellen sind Verzerrungen des Raums, wel-
che sich mit Lichtgeschwindigkeit ausbreiten. Alle
bewegten Körper erzeugen Gravitationswellen, aber
die entsprechenden Verzerrungen sind meistens zu
klein, um sie messen zu können. Lediglich wenn sich

sehr große Massen sehr schnell bewegen, sind die
Amplituden der Wellen groß genug um messbar zu
sein. Die bisher gemessenen Signale wurden Paaren
von schwarzen Löchern und Neutronensternen zuge-
schrieben, die sich verschmolzen haben. Einige der
beteiligten Forscher erhielten 2017 den Nobelpreis
für Physik.
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2.8 Mechanik in bewegten
Bezugssystemen

2.8.1 Galilei’sche Relativität

Die Beschreibung einer Bewegung hängt ab vom
verwendeten Bezugssystem: Wenn jemand in einem
Eisenbahnwagen einen Ball aufwirft, so hängt die
Form der Bahnkurve davon ab, ob der Betrachter
ebenfalls in der Eisenbahn sitzt oder auf dem Bahn-
steig steht.

Man ist grundsätzlich frei in der Wahl des Bezugs-
systems, d.h. man kann auswählen welches Bezugs-
system man verwendet, um die beobachteten Phä-
nomene zu beschreiben. Im oben genannten Bei-
spiel unterscheiden sich die beiden Bezugssyste-
me lediglich um die Anfangsgeschwindigkeit in der
Bewegungsrichtung der Eisenbahn. Es gibt meist
ein Bezugssystem, welches eine besonders einfache
Beschreibung ermöglicht. Vor allem aber ist nicht
garantiert, dass in jedem Bezugssystem die New-
ton’schen Axiome erfüllt sind. Ist dies der Fall, so
bezeichnet man das System als Inertialsystem. Es
gibt beliebig viele unterschiedliche Inertialsysteme.

Jedes ortsfeste Inertialsystem kann man in ein an-
deres transformieren, wenn man eine Translation
oder Rotation vornimmt. Außerdem kann man das
Bezugssystem immer mit konstanter Geschwindig-
keit gegenüber einem Inertialsystem verschieben
und erhält ein weiteres Inertialsystem. Die Tatsache,
dass alle diese Systeme gleichwertige Möglichkei-
ten für die Beschreibung der beobachteten Phänome-
ne darstellen, bedeutet, dass absolute Geschwindig-
keit keine Bedeutung hat. Ähnlich bedeutet die Tat-
sache, dass der Ursprung des Koordinatensystems
frei wählbar ist, dass absolute Position keine Bedeu-
tung hat. Aus der (experimentell verifizierten) Tatsa-
che, dass die physikalischen Gesetze gültig bleiben
bei einer beliebigen (konstanten) Bewegung des Be-
zugssystems kann man u. a. die Erhaltung des linea-
ren Impulses herleiten.

Wir betrachten zunächst die beiden Bezugssysteme
von Abb. 2.101, welche gegeneinander in Ruhe sind,
aber einen unterschiedlichen Ursprung besitzen. Ist
der Ursprung des Systems B im System A am Ort

yb

xb

ya

xa

P

~rAP

~rAB

~rBP

Abbildung 2.101: Ortsvektor ~r eine Punktes P in
2 unterschiedlichen Bezugssyste-
men A, B.

~rAB, und der Ortsvektor des Punktes P im System B
~rBP, so ist offenbar der Ortsvektor~rAP im System A

~rAP =~rAB +~rBP.

2.8.2 Relativgeschwindigkeit

~vAP
yb

xb

ya

xa

P

~rAP

~rBP

~rAB

~vAB

~vAB

~vBP

Abbildung 2.102: Bewegte Bezugssysteme.

Man verwendet nicht immer ruhende Bezugssyste-
me. Abb. 2.102 zeigt einen Fall, bei dem sich das
System B gegenüber dem System A mit der konstan-
ten Geschwindigkeit~vAB bewegt. Ist die Position des
Bezugssystems B relativ zu A zum Zeitpunkt t = 0
~rAB(0), so gilt offenbar zur Zeit t

~rAB(t) =~rAB(0)+~vABt.

Für einen Punkt P, der sich gegenüber dem System
B mit der konstanten Geschwindigkeit~vAB bewegt,

~rBP(t) =~rBP(0)+~vBPt
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gilt somit

~rAP(t) = ~rAB(t)+~rBP(t) =

= ~rAB(0)+~rBP(0)+~vABt +~vBPt
= ~rAP(0)+~vAPt ,

wobei die Geschwindigkeit ~vAP des Punktes P ge-
genüber dem System A durch die Vektorsumme

~vAP =~vAB +~vBP

gegeben ist. Die Geschwindigkeit im Bezugssystem
A ist somit gegeben durch die Summe aus der Ge-
schwindigkeit im Bezugssystem B und der Relativ-
geschwindigkeit der beiden Bezugssysteme.

2.8.3 Gleichförmig beschleunigte
Bezugssysteme

Die Relativgeschwindigkeit zwischen zwei Bezugs-
systemen ist nicht immer konstant. Typische Bei-
spiele sind Aufzüge oder Eisenbahnen beim Anfah-
ren oder Abbremsen oder Flugzeuge beim Start. Hier
sollen nur gleichförmige Beschleunigungen disku-
tiert werden, d.h. a =konstant. Deren Behandlung
ist zunächst analog zur Behandlung von Bezugssy-
stemen, die sich mit gleichförmiger Geschwindig-
keit bewegen. Wir betrachten hier nur den einfachen
Fall, dass die beiden Systeme zum Zeitpunkt t = 0
identisch sind, das System B gegenüber dem System
A jedoch gleichförmig beschleunigt wird mit ~aAB.
In beiden Systemen gilt die übliche Kinematik. Für
den Punkt P, der gegenüber System B mit ~aBP be-
schleunigt wird, findet man im System A in Analogie
zur obigen Herleitung für die Geschwindigkeiten die
Beschleunigung

~aAP =~aAB +~aBP .

Für Geschwindigkeit und Ort gilt für ~rAB(0) = 0,
~vAB(0) = 0

~vAP = ~vAB +~vBP =~aABt +~vBP ,

~rAP = ~rAB +~rBP =~aAB
t2

2
+~rBP.

Anders sieht es aus bei der Dynamik. Da die Be-
schleunigung in den beiden Bezugssystemen unter-
schiedlich ist, können Newton’s Axiome nicht in bei-
den Systemen gelten. Gelten sie z.B. im System A
und ist die resultierende Kraft auf den Körper

~F = m
d~vAP

dt
= m~aAP = m(~aAB +~aBP),

so können wir im Bezugssystem B schreiben

m~aBP = m(~aAP�~aAB) = ~F�m~aAB.

Der zusätzliche Term �m~aAB in der Bewegungs-
gleichung kann als scheinbare Kraft, als Trägheits-
kraft interpretiert werden. Wir spüren sie z.B. beim
Anfahren eines Aufzugs: beschleunigt der Aufzug
nach oben, so drückt uns eine Kraft nach unten, wel-
che proportional zur Beschleunigung und zu unserer
Masse ist. In einem Bezugssystem, welches mit der
Erdbeschleunigung g nach unten beschleunigt wird,
verschwindet scheinbar die Schwerkraft.

2.8.4 Schwerelosigkeit

Abbildung 2.103: Links: Fallturm in Bremen.
Rechts: Kapsel im Fallturm.

Dies wird z.B. im Fallturm Bremen ausgenutzt. Wie
in Abb. 2.103 gezeigt, werden dort Experimente in
der Schwerelosigkeit durchgeführt, die sonst nur im
Weltraum möglich sind. So können für Kurzzeitex-
perimente die hohen Kosten einer Weltraumexpediti-
on eingespart werden. In dem 110 m hohen Rohr des
Turms wird eine Fallkapsel hochgezogen und losge-
lassen.
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Während des freien Falls von knapp fünf Sekun-
den herrscht in der Kapsel Schwerelosigkeit. Das
Fallrohr wird luftleer gepumpt, um Störungen durch
Luftreibung zu vermeiden.

Zeit [s]
0 20 45 65

8

45o aufwärts 45o abwärts

1.8 g 0g 1.8 g

10

9

H
öh

e 
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m
]

Abbildung 2.104: Prinzip des Parabelflugs.

Längere Zeiten von Schwerelosigkeit kann man in
Spezialflugzeugen von NASA und ESA erleben,
oder bei der Firma ”Go Zero g”. Wie in Abb. 2.104
gezeigt, fliegen diese Flugzeuge steil nach oben und
folgen dann für ca. 25 s einer Parabel. Dieser Teil
der Flugbahn entspricht einer Wurfparabel, d.h. das
Flugzeug fliegt mit konstanter Horizontalgeschwin-
digkeit und einer vertikalen Beschleunigung nach
unten von 9,81 ms�2. Während dieser Zeit sind Pas-
sagiere und Ausrüstung praktisch schwerelos, wie in
Abb. 2.105 gezeigt.

Abbildung 2.105: Schwerelosigkeit beim Parabel-
flug.

Während Ort, Geschwindigkeit, Beschleunigung
und Kraft von der Wahl des Bezugssystems abhän-

gen, gilt dies nicht für Abstände oder Geschwindig-
keitsdifferenzen: diese sind im Rahmen der klassi-
schen Mechanik nicht von der Wahl des Bezugssy-
stems abhängig.

2.8.5 Kreisbewegung

Ein Spezialfall der Bewegung in zwei (oder drei) Di-
mensionen ist die Kreisbewegung (! Kap. 2.6.1).

Abbildung 2.106: Ort, Geschwindigkeit und Be-
schleunigung für einen Massen-
punkt bei einer Kreisbewegung.

Häufig genügt es, wenn man die Kreisbewegung mit
einer einzigen Koordinate beschreibt, dem Winkel f

bezüglich der x-Achse, gemessen vom Zentrum des
Kreises (!Abb. 2.106). Die entsprechende Winkel-
geschwindigkeit w = df/dt entspricht dann eben-
falls einer skalaren Größe. In drei Dimensionen wird
sie als Vektor dargestellt, der senkrecht auf dem
Kreis steht und mit der Drehbewegung zusammen
eine Rechtsschraube bildet.

In 2 Dimensionen kann der Ortsvektor eines Punk-
tes, welcher im drehenden Koordinatensystem in
Ruhe ist, geschrieben werden als

~r = r0

✓
cos(wt +f0)
sin(wt +f0)

◆
.

Somit beträgt die Geschwindigkeit

~v =
d~r
dt

= wr0

✓
�sin(wt +f0)
cos(wt +f0)

◆
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und die Beschleunigung

~a =
d~v
dt

= w

2r0

✓
�cos(wt +f0)
�sin(wt +f0)

◆
,

d.h. sie wirkt in radialer Richtung nach innen.

Offenbar ist eine Kreisbewegung eine beschleunigte
Bewegung. Beschreibt man die Bewegung von Ob-
jekten in einem rotierenden Koordinatensystem, so
haben deshalb die Newton’schen Axiome keine Gül-
tigkeit, sondern es treten zusätzliche Kräfte auf, so-
genannte Scheinkräfte.

2.8.6 Bewegungsgleichung im rotierenden
Bezugssystem

Wir versuchen jetzt, die Bewegungsgleichungen für
eine allgemeine Bewegung im rotierenden System
herzuleiten. Wir beschränken uns auf eine Ebene,
die senkrecht zur Rotationsachse steht. Dies ist keine
wesentliche Einschränkung, da die Bewegung par-
allel zur Achse durch die Rotation nicht beeinflusst
wird.

r(t)
y(0)

rotierendes 
Koordinatensystem

Bahn

x(t) 

y(t)

α
β

x(0)

Abbildung 2.107: Bewegung in einem rotierenden
Koordinatensystem.

Abb. 2.107 zeigt ein Koordinatensystem ~x(t),~y(t),
welches sich um die z-Achse dreht und einen Mas-
senpunkt, der sich entlang einer Bahn ~r(t) bewegt.
Im rotierenden Koordinatensystem lautet der Orts-
vektor des Massenpunktes

~r = a(t)~x(t)+b (t)~y(t).

Sowohl die Koordinaten a(t), b (t) wie auch die
Achsen ~x(t), ~y(t) sind hier im Allgemeinen zeitab-
hängig. Die Geschwindigkeit erhält man wie üblich
durch Ableiten:

~v(t) =
d
dt

~r(t) =
d
dt

[a(t)~x(t)+b (t)~y(t)].

Die Rotation der Koordinatenachsen kann beschrie-
ben werden als

~x(t) = ~x(0)coswt +~y(0)sinwt
~y(t) = ~y(0)coswt �~x(0)sinwt .

Die Geschwindigkeit des Massenpunkts ist demnach

~v(t) = ȧ(t)~x(t)+ ḃ (t)~y(t)+a(t)~̇x(t)+b (t)~̇y(t).

Die zeitlichen Ableitungen der Koordinatenachsen
sind

~̇x(t) = �~x(0)w sin(wt)+~y(0)w cos(wt)
= w~y(t).

~̇y(t) = �~y(0)w sin(wt)�~x(0)w cos(wt)
= �w~x(t).

Demnach ist

~v(t) = ȧ(t)~x(t)+ ḃ (t)~y(t)+w [a(t)~y(t)�b (t)~x(t)].

Der erste Term besitzt die gleiche Form wie in einem
Inertialsystem. Der zusätzliche zweite Term berück-
sichtigt die Zeitabhängigkeit der Basisvektoren. Er
tritt auch dann auf, wenn a(t) = a(0) und b (t) =
b (0), d.h. wenn sich der Punkt gegenüber dem rotie-
renden Koordinatensystem nicht bewegt.

2.8.7 Scheinkräfte im rotierenden
Koordinatensystem

Nach dem gleichen Verfahren können wir die Be-
schleunigung berechnen:

~a(t) =
d
dt

~v(t) =

d
dt

n
ȧ(t)~x(t)+ ḃ (t)~y(t)+w [a(t)~y(t)�b (t)~x(t)]

o
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= ä(t)~x(t)+wȧ(t)~y(t)+ b̈ (t)~y(t)�wḃ (t)~x(t)
+w[ȧ(t)~y(t)� ḃ (t)~x(t)]
+w

2[�a(t)~x(t)�b (t)~y(t)]
= ä(t)~x(t)+ b̈ (t)~y(t)+2w [ȧ(t)~y(t)� ḃ (t)~x(t)]

+w

2[�a(t)~x(t)�b (t)~y(t)].

Der gleiche Sachverhalt kann auch etwas kompakter
geschrieben werden wenn wir die Vektoren

~rr = (a,b ,0) ,

~vr = (ȧ, ḃ ,0) ,

~ar = (ä, b̈ ,0) ,

einführen, d.h. Position, Geschwindigkeit und Be-
schleunigung im rotierenden Koordinatensystem,
sowie den Winkelgeschwindigkeitsvektor

~
w = (0,0,w) .

Damit wird

~a = ~ar +2~
w⇥~vr�w

2~rr .

Wir können diese Gleichung natürlich auch nach der
Beschleunigung im rotierenden Koordinatensystem
auflösen:

~ar =~a�2~
w⇥~vr +w

2~rr . (2.16)

Der erste Term entspricht der Beschleunigung im In-
ertialsystem. Für ein kräftefreies System verschwin-
det er nach dem Grundgesetz der Mechanik. Be-
schreibt man die Bewegung eines kräftefreien Kör-
pers im Inertialsystem, so verschwindet die Be-
schleunigung und der entsprechende Punkt bewegt
sich mit konstanter Geschwindigkeit tangential vom
Kreis weg.

Die beiden anderen Terme in (2.16) beschreiben eine
Beschleunigung im rotierenden Koordinatensystem,
welche nicht von äußeren Kräften bestimmt wird;
sie werden deshalb als Scheinkräfte bezeichnet. Der
mittlere Term ist proportional zur Geschwindigkeit
~vr des Massenpunktes im rotierenden Koordinaten-
system und zur Rotationsgeschwindigkeit des Sy-
stems. Der dritte Term ist proportional zum Qua-
drat der Winkelgeschwindigkeit, und zum Abstand
~rr von der Drehachse.

2.8.8 Zentrifugalkraft

Der letzte Term entspricht der Zentrifugalbeschleu-
nigung (resp. Zentrifugalkraft). Sie muss durch ei-
ne gleich große Zentripetalkraft kompensiert werden
wenn der Massenpunkt im rotierenden Koordinaten-
system am Ort bleiben soll. Der Betrag ist

|F | = m|a| = mw

2r =
mv2

r
.

Angelschnur
m = 150 g

Kraftmesser

Abbildung 2.108: Messung der Zentrifugalkraft auf
eine rotierende Masse.

Die Zentrifugalkraft kann auch experimentell ge-
messen werden, wie in Abb. 2.108 gezeigt. Man lässt
dazu ein Gewicht um einen Punkt rotieren und misst,
über eine Umlenkung, die Kraft, mit der das Gewicht
an der Schnur nach außen zieht.

Im Experiment wurden folgende Werte gefunden:

Radius
cm

Kraft
N

Periode
s

w

s�1
mw

2r
ms�2

31,5 0,15 3,6 1,75 0,14
33 0,3 2,7 2,33 0,27

38,8 0,75 1,7 3,7 0,8

Offenbar stimmen die gerechneten Werte in der letz-
ten Spalte im Rahmen der Messgenauigkeit mit den
gemessenen Werten in der zweiten Spalte überein.

Die Beschleunigungskräfte können auch in Flüssig-
keiten gemessen werden. Abb. 2.109 zeigt als Bei-
spiel eine rotierende Küvette, in der die eingeschlos-
sene Flüssigkeit eine Parabelform annimmt, wenn
die Küvette um die vertikale Achse rotiert wird.

Abb. 2.110 erläutert den Effekt. Die Oberfläche
der Flüssigkeit wird durch die Gleichgewichtsbedin-
gung definiert, dass die Kraft auf die Moleküle an
der Oberfläche senkrecht zur Oberfläche sein muss
(! Kapitel 2.9.3). Sie setzt sich zusammen aus der
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Abbildung 2.109: Zentrifugalküvette.

Gewichtskraft (unabhängig vom Abstand von der
Rotationsachse) und der Zentrifugalkraft (~r2 ). So-
mit ist die Steigung der Oberfläche proportional zur
Zentrifugalkraft. Damit erhält man folgende Form
für die Oberfläche:

z =
w

2r2

2g
.

Offenbar bildet die Oberfläche eine Parabel. Dies
kann im Experiment gut bestätigt werden. Außerdem
können wir die Abhängigkeit von der Rotationsge-
schwindigkeit semi-quantitativ verifizieren.

2.8.9 Beispiele

Die Zentrifugalkraft wirkt auf alle Körper proportio-
nal zu ihrer Masse. Sie wird u.a. dazu verwendet,
um Suspensionen zu trennen, indem man diese in ei-
ne Zentrifuge lädt. Ultrazentrifugen erzeugen Kräfte
bis zu 106 g.

In der Kernspinresonanz (NMR) verwendet man
ebenfalls sehr schnelle Drehungen: Man rotiert Pro-
ben mit bis zu 120 kHz um ihre eigene Achse, um
ausgemittelte Spektren zu erhalten. Bei typischen

Fres

FZF

FGFlü
ss
igk
eit
so
be
rflä
ch
e

Abbildung 2.110: Kräftegleichgewicht an der Flüs-
sigkeitsoberfläche.

Zahlen von nr = 12 kHz, d = 5 mm erhält man

aZF = (2p ·1,2 ·104)2s�22mm = 1,1. ·107m/s2

= 1,2 ·106g ,

also mehr als 1 Million mal die Erdbeschleunigung.

Abbildung 2.111: Loopingbahn.

Die Zentrifugalkraft wird auch in vielen spieleri-
schen Anwendungen genutzt, wie z.B. bei einer
Achterbahn wie in Abb. 2.111 und 2.112. In Ex-
periment von Abb. 2.112 kann man messen, wie
schnell ein Fahrzeug durch den Looping fahren muss
um nicht herunterzufallen. Dafür muss am höchsten
Punkt die Zentrifugalkraft gerade die Erdanziehung
kompensieren. Die explizite Rechnung wird in den
Übungen durchgeführt.

Abb. 2.113 zeigt eine Sportart, bei der die Zentrifu-
galkraft die Geschwindigkeit beschränkt. Die Zentri-
fugalbeschleunigung kann hier direkt gemessen wer-
den an der Neigung der Sportler: Die Summe aus

82



2 Mechanik

 1

h

Startposition

Fz

Fg

Abbildung 2.112: Experiment zur Loopingbahn:
fällt der Wagen herunter?

Abbildung 2.113: Eisschnellläufer in einer Kurve.

Gewichtskraft und Zentrifugalkraft muss entlang der
Körperachse wirken, damit die Läufer stabil um die
Kurve fahren.

Wir betrachten als Beispiel eine sich drehende
Scheibe, auf der ein Körper liegt. So lange sich die-
ser mit der Scheibe dreht, führt er offenbar eine be-
schleunigte Bewegung durch. In einem Koordinaten-
system, welches an die Scheibe gekoppelt ist, ist er
jedoch in Ruhe, d.h. nach Newton’s Axiom dürfte
keine Kraft auf ihn wirken. Lässt man ihn los, so
dreht sich das Bild: im Ruhesystem ist er jetzt kräf-
tefrei und führt deshalb eine gradlinige Bewegung
durch (tangential zur Scheibe). Im rotierenden Koor-
dinatensystem beginnt er zunächst, sich radial nach
außen zu bewegen und führt dann eine gekrümmte
Bewegung aus; gemäß Newtons Axiom müssen so-
mit Kräfte auf den Körper wirken. Die Bewegung im
rotierenden Koordinatensystem wird aufgezeichnet,
indem man die Kugel über ein Kohlepapier rollen
lässt.

2.8.10 Corioliskraft

Wenn ein Körper sich auf einer rotierenden Scheibe
bewegt, so wird er durch die Zentrifugalkraft nach
außen beschleunigt. Er folgt jedoch keiner geradlini-
gen Bahn, sondern diese ist gekrümmt. Verantwort-
lich dafür ist die zweite Scheinkraft, die als Coriolis-
kraft bezeichnet wird, nach dem französischen Phy-
siker Gaspard Gustave de Coriolis (1792-1843). Die
Corioliskraft kann geschrieben werden als

~FC = 2~p⇥~
w ,

wobei der Impuls sich auf das rotierende Koordi-
natensystem bezieht. Er führt dazu, dass die Bewe-
gung von reibungsfreien Körpern in einem rotieren-
den Koordinatensystem gekrümmt ist, falls die Be-
wegung eine Komponente senkrecht zur Rotations-
achse aufweist.

1

Bahn der Kugel

ω

�2 ~rr

�2~� ⇥ ~vr

Abbildung 2.114: Zentrifugal- und Corioliskraft im
Drehstuhl.

Abb. 2.114 zeigt die Richtung der beiden Schein-
kräfte für eine Kugel, die zu Beginn radial nach
außen rollt. Die Corioliskraft ist proportional zur
Geschwindigkeit des bewegten Körpers und zur
Winkelgeschwindigkeit des Systems, wobei nur die
senkrechte Komponente beiträgt. Wenn der Körper
aufgrund der Zentrifugalkraft nach außen beschleu-
nigt wird, setzt auch die Corioliskraft ein, welche
proportional zur Geschwindigkeit ist und senkrecht
zur Geschwindigkeit wirkt, d.h. die Bahn biegt. Der
Effekt der beiden Kräfte ist eine spiralförmige Be-
wegung nach außen.
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Die gleichen Kräfte treten z.B. auch bei Bewegun-
gen auf der Erdoberfläche auf. Hier ist die Coriolis-
kraft z.B. für die Ablenkung der Windsysteme ver-
antwortlich. Gäbe es keine Erdrotation so würden
die Winde direkt in Richtung des Zentrums eines
Tiefdruckgebietes blasen. Aufgrund der Erdrotation
wird bewegte Luft jedoch abgelenkt. Die Richtung
wird durch das Vektorprodukt ~v⇥ ~

w bestimmt. Der
Winkelgeschwindigkeitsvektor ~

w zeigt auf der Er-
de nach Norden. Auf der Nordhalbkugel werden die
Winde nach rechts abgelenkt. Dies ist der Grund für
die dominanten Westwinde in unseren Breitengra-
den: es handelt sich um Luft, die aus den Hochdruck-
gebieten im Bereich der Sahara nach Norden fließt
und dabei durch die Corioliskraft nach Osten abge-
lenkt wird.

1

v
FC

TW

N

S

E    W E

N

S

nördliche Halbkugel südliche Halbkugel

T

Abbildung 2.115: Windrichtung von Tiefdruckge-
bieten auf der nördlichen, resp.
südlichen Halbkugel.

Gleichzeitig führt die Corioliskraft dazu, dass Luft
nicht gerade in ein Tiefdruckgebiet hinein fließt,
sondern sich im Gegenuhrzeigersinn darum dreht.
Auf der Südhalbkugel wechselt das Vorzeichen von
~v⇥ ~

w , die Winde werden nach links abgelenkt und
drehen sich im Uhrzeigersinn um die Tiefdruckge-
biete. Abb. 2.115 zeigt die Situation für beide Fälle.

Die resultierende Drehung der Tiefdruckgebiete ist
praktisch in jeder Wetterkarte sichtbar. Abb. 2.116
zeigt als Beispiel einen Hurrikan über dem südöstli-
chen Teil der USA.

Ebenso kann die Drehung der Pendelebene beim
Foucault’schen Pendel als Effekt der Coriolis-Kraft
verstanden werden. Die Geschwindigkeit der Pen-
delmasse ist näherungsweise parallel zur Erdober-

Abbildung 2.116: Hurrikan.

Abbildung 2.117: Das Foucault’sche Pendel.

fläche, während der Rotationsvektor ~
w parallel zur

Süd-Nord Achse der Erde steht. Die Projektion des
Vektorprodukts~v⇥~

w in die Horizontale hat den Be-
trag

FC =�2mwv(t)sinj,

wobei j die geographische Breite darstellt. Somit
variiert die Präzessionsgeschwindigkeit mit sinj .
An den Polen dreht sich dadurch die Schwingungs-
ebene in 24 Stunden einmal um 360�. In Dortmund
dauert eine Rotation gegenüber dem terrestrischen
Bezugssystem rund 30,67 Stunden.

2.8.11 Die Einstein’sche Relativitätstheorie

Nach der Galilei’schen Relativitätstheorie erhält
man unterschiedliche Messresultate für die Ge-
schwindigkeit eines Körpers, wenn man sie in unter-
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schiedlichen Bezugssystemen misst, welche sich ge-
geneinander bewegen. Galilei versuchte als einer der
ersten, die Ausbreitungsgeschwindigkeit von Licht
zu messen. Er verwendete dafür Laternen und eine
Messstrecke von 15 km. Um diese Distanz zweimal
zurück zu legen, benötigt Licht rund 10�4 Sekunden.
Seine Messung konnte deshalb nur eine untere Gren-
ze liefern. Die erste erfolgreiche Messung wurde von
Ole Römer 1676 durchgeführt, indem er die Ver-
dunkelungsperioden der Jupitermonde maß. Er fand
einen Wert von 240000 km/s. Die erste rein terrestri-
sche Messung wurde 1849 von Fizeau durchgeführt;
er verwendete ähnlich wie Galilei eine Messstrecke,
die von Licht zweimal durchlaufen wurde, aber an-
stelle von Menschen ein schnell drehendes Zahnrad.

Gegen Ende des 19. Jahrhunderts versuchte man, die
Lichtgeschwindigkeit in unterschiedlichen Bezugs-
systemen zu messen. Damals ging man davon aus,
dass Licht sich in einem Medium namens Äther aus-
breitet, welches sowohl im Vakuum wie auch in op-
tisch transparenten Materialien vorhanden sei. Mes-
sungen der Lichtgeschwindigkeit sollten deshalb In-
formationen darüber liefern, wie sich z.B. die Er-
de gegenüber dem Äther bewegt. Es wurden ent-
sprechend sorgfältige Messungen durchgeführt, z.B.
von Michelson und Morley ab 1881. Die Resultate
zeigten jedoch keine messbare Richtungsabhängig-
keit der Lichtgeschwindigkeit. Zum Beispiel ist die
Geschwindigkeit des Lichts von einem Stern unab-
hängig davon, ob sich die Erde auf den Stern zu-
oder wegbewegt. In einer 1905 veröffentlichten Ar-
beit beschrieb Albert Einstein die Konsequenzen der
Konstanz der Lichtgeschwindigkeit. Sie sind Gegen-
stand der “speziellen Relativitätstheorie” und weicht
in einigen Punkten ab von der Galilei’schen Theorie.
Insbesondere die folgenden Grundvoraussetzungen
der Galilei’schen Theorie gelten nur noch im Grenz-
fall niedriger Geschwindigkeiten:

• Die Zeit ist absolut und unveränderlich und
hängt nicht von der Bewegung und dem Ort ab.

• Es gibt einen “absoluten Raum”, d.h. ein abso-
lut ruhendes System, in dem alle Bewegungs-
abläufe stattfinden.

• Die Eigenschaft “Masse” eines Körpers geht
nie verloren oder entsteht aus dem Nichts. Mas-

se ist unabhängig vom Bewegungszustand und
bleibt erhalten.

Die Grundannahme der speziellen Relativitätstheo-
rie ist, dass die Lichtgeschwindigkeit

c = 299792458
m
s

in allen möglichen Bezugssystemen konstant ist.
Im Rahmen der Galilei’schen Relativitätstheorie ist
dies nicht möglich. Die Transformationsgleichungen
zwischen den Koordinatensystemen müssen deshalb
modifiziert werden. Die entsprechenden Gleichun-
gen werden als Lorentz-Transformation bezeichnet.
Für eine Relativgeschwindigkeit v in x-Richtung lau-
ten die entsprechenden Gleichungen

x0 = g(x� vt)
y0 = y
z0 = z
t 0 = g

⇣
t� vx

c2

⌘
.

Hier stellt

g =
1p

1� (v/c)2
=

1p
1�b

2

den Lorentz-Faktor dar und

b =
v
c

ist das Verhältnis zwischen der Relativgeschwin-
digkeit v und der Lichtgeschwindigkeit c. Für v⌧
c, d.h. b ⌧ 1 und g ! 1 geht die Lorentz-
Transformation in die Galilei-Transformation über.

Die spezielle Relativitätstheorie kann im Wesentli-
chen folgende Effekte erklären:

Lorentzkontraktion: In zwei gegeneinander beweg-
ten Bezugssystemen erscheinen3 die im jeweils an-
deren System ruhenden Maßstäbe verkürzt.

Zeitdilatation: In zwei gegeneinander bewegten Be-
zugssystemen erscheint die Zeit des jeweils anderen
Systems verlangsamt.

3"erscheint" ist hier nicht im Sinn einer Täuschung gemeint,
sondern es handelt sich um messbare Tatsachen.
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Relativistischer Dopplereffekt: Das Licht von Ster-
nen, die sich von uns entfernen, erscheint rotver-
schoben.

Relativistische Massenzunahme: Die Lichtge-
schwindigkeit kann von Körpern mit Masse nicht
erreicht werden. Bei gleicher Kraft ist die Beschleu-
nigung um so kleiner, je größer die Geschwindigkeit
ist. Dies kann als Zunahme der Masse gedeutet
werden: m = m0g .

Zwillingsparadoxon: Ein Zwilling begibt sich auf
einen Raumflug, der andere bleibt auf der Erde. Man
kann nachrechnen, dass der Raumfahrer bei seiner
Rückkehr weniger gealtert ist als der andere Zwil-
ling. Dies wurde 1971 mit Atomuhren bestätigt, die
auf Linienflugzeugen mitgenommen wurden.

Die 1916 von Einstein vorgestellte “allgemeine Re-
lativitätstheorie” ist eine Beschreibung der Gravita-
tion als Raumkrümmung in der Umgebung von Mas-
sen und beruht auf der Äquivalenz von schwerer und
träger Masse.

2.9 Hydrostatik

2.9.1 Aggregatzustände

 1

Fest Flüssig Gasförmig

kondensierte 
 Materie

  Fluide 
 2.8 Hydrostatik 
2.10 Hydrodynamik, Aerodynamik

Abbildung 2.118: Die drei wichtigsten Aggregatzu-
stände.

Die drei wichtigsten Aggregatzustände sind Festkör-
per, Flüssigkeiten und Gase (! Abb. 2.118). Die
wesentlichsten Unterscheidungsmerkmale sind, dass
Festkörper eine Gestalt haben; diese kann unter dem
Einfluss einer äußeren Kraft ändern, so lange diese
Kraft nicht zu groß wird kehrt der Körper jedoch
nach Nachlassen der äußeren Kraft in die ursprüng-
liche Form zurück; man nennt dies Formgedächt-
nis. Eine Flüssigkeit besitzt keine bestimmte Form,
sie nimmt jedoch ein definiertes Volumen ein. Unter
dem Einfluss einer äußeren Kraft kann dieses Volu-
men kleiner werden; nach Entfernen der Kraft dehnt
sich die Flüssigkeit wieder aus bis sie das ursprüngli-
che Volumen wieder einnimmt. Man bezeichnet dies
als Volumengedächtnis. Ein Gas füllt im Gegensatz
dazu immer das gesamte verfügbare Volumen.

Man fasst Festkörper und Flüssigkeiten unter dem
Begriff “kondensierte Materie” zusammen; Flüssig-
keiten und Gase werden unter dem Begriff “Fluide”
zusammengefasst.

Diese Eigenschaften sind jedoch nicht absolut
scharf: Auch Eis, oder sogar Steine, die üblicherwei-
se als Festkörper bezeichnet werden, haben die Ten-
denz, unter hohem Druck und über lange Zeiten zu
fließen. Außerdem gibt es eine Reihe von Substan-
zen, die sich nur schlecht in dieses Schema einord-
nen lassen: Granulare Medien (z.B. Zucker, Sand)
bestehen aus vielen festen Körpern, aber als gesam-
te Medien zeigen sie typisches Fließverhalten. Glä-
ser sind unterkühlte Flüssigkeiten, die sich für viele
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Belange wie Festkörper verhalten.

2.9.2 Spannung

1

dFndF

dAdFt

Abbildung 2.119: Spannung als Quotient aus Kraft
und Fläche; Zerlegung in Normal-
und Schubspannung.

Spannung ist definiert als Kraft pro Fläche,

S =
dF
dA

[S] =
N
m2 = Pa = Pascal.

Wie in Abb. 2.119 gezeigt, kann eine allgemeine
Spannung zerlegt werden in eine Normalspannung
s und eine Tangential- (Schub-) Spannung t:

~S = S?+S|| = s + t =
dFn

dA
+

dFt

dA
.

Die Normalspannung wirkt senkrecht zur Fläche, die
Schubspannung parallel dazu. Liegt z.B. ein Körper
mit einer Fläche A auf einer horizontalen Unterlage,
so wirkt die Normalspannung

S? =
F?
A

=
mg
A

.

Mit Hilfe dieser Klassifizierung kann man den Un-
terschied zwischen Fluiden und Festkörpern so for-
mulieren: Bei Fluiden verschwindet der Schermo-
dul, es treten also (im statischen Grenzfall) keine
Scherspannungen auf.

2.9.3 Flüssigkeitsoberfläche

Die Oberfläche einer ruhenden Flüssigkeit ist im-
mer senkrecht zu der Richtung der auf sie wirken-
den Kraft, wie in Abb. 2.120 gezeigt. Würde sich

 1

Flüssigkeit Flüssigkeit

⃗F Fl
⃗F Fl

Abbildung 2.120: Die Oberfläche einer ruhenden
Flüssigkeit ist immer senkrecht zu
der Richtung der auf sie wirken-
den Kraft.

ein Flüssigkeitshügel bilden, dann hätte er eine hö-
here potentielle Energie als seine Umgebung. Um sie
zu minimieren, versuchen alle Flüssigkeitsvolumina
die tiefst-möglichen Positionen einzunehmen. Dies
ist erfüllt, wenn die Oberfläche eine horizontale Ebe-
ne bildet. Bei Festkörpern wird dieses „Zerfließen“
durch Reibung oder innere Kräfte verhindert.

 1
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Abbildung 2.121: Flüssigkeitsoberfläche in einer ro-
tierenden Küvette.

Dies kann auch zur Messung der Kraft verwendet
werden. Abb. 2.121 zeigt als Beispiel die Flüssig-
keitsoberfläche in einer rotierenden Küvette. Für die
Berechnung der Oberfläche verwendet man die Be-
dingung, dass die resultierende Kraft auf ein Flüssig-
keitselement immer senkrecht zur Oberfläche steht.
Die Kraft auf ein Volumenelement ist gegeben durch
die Vektorsumme aus Schwerkraft

FG = mg

und Zentrifugalkraft

FZ = mxw

2.
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Die Zentrifugalkraft wirkt in radialer Richtung (x im
Koordinatensystem) und die Schwerkraft in vertika-
ler Richtung. Damit bildet die die resultierende Kraft
mit der Vertikalen einen Winkel a , gegeben durch

tana =
Fz

FG
=

w

2

g
x.

Die Steigung nimmt somit mit dem Abstand x von
der Drehachse zu und die Oberfläche selber folgt der
Funktion

h(x) =
Z x

0
tanadx =

Z x

0

w

2

g
xdx =

w

2

2g
x2,

also einer Parabel.

2.9.4 Hydrostatischer Druck

 1

Fz

Fy
FyFx

Fz

Fx

Abbildung 2.122: Hydrostatischer Druck.

Man spricht von hydrostatischem Druck, wenn die
Normalspannung aus allen Raumrichtungen gleich
ist und die Scherspannung verschwindet. Wie in
Abb. 2.122 gezeigt sind dann die Kräfte auf die Sei-
ten eines infinitesimalen Würfels alle gleich groß,
Fx = F< = Fz. Man verwendet dann anstelle von
Spannungen die skalare Größe Druck und verwen-
det das Symbol p. Spannungen allgemein und da-
mit auch der Druck werden im SI System in der
Einheit Pascal = N/m2 gemessen. Normaldruck, d.h.
der mittlere Luftdruck auf Meereshöhe, (1 atm) ent-
spricht ca. 105 N/m2. Nach DIN ist der Normaldruck
101325 Pa (=760 mm Hg), ebenso in der Medizin,
nach IUPAC 100000 Pa.

Ist die vertikale Ausdehnung eines Systems von
Rohren klein, so herrscht innerhalb im Gleichge-
wicht überall derselbe Druck. Dies kann man u.A.
für die Übertragung und Umwandlung von Kräften
verwenden.

1

F1 F2 

A1 A2 

p p 

 kleiner Kolben  großer Kolben

Abbildung 2.123: Hydraulische Presse.

Damit gilt für die beiden Kolben in Abb. 2.123

F1

A1
= p =

F2

A2
) F2 = F1

A2

A1
.

Somit lassen sich auch kleine Kräfte F1 in sehr große
Kräfte F2 umwandeln, sofern das Flächenverhältnis
A2/A1 entsprechend gewählt wird. Die Wege, die da-
bei zurückgelegt werden, verhalten sich genau ent-
gegengesetzt.

Abbildung 2.124: Hydraulischer Lift.

Auf diese Weise werden z.B. mit hydraulischen
Pressen große Kräfte erzeugt (! Abb. 2.124).

2.9.5 Schweredruck

Bei tiefen Flüssigkeiten und Gasen tritt ein Schwe-
redruck auf: zusätzlich zum Außendruck wirkt an
jeder Stelle die Gewichtskraft der darüber liegen-
den Flüssigkeit. Die Gewichtskraft einer Flüssig-
keitssäule mit Querschnittsfläche A, Dichte r und
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FS = mg

h1

h2A

Abbildung 2.125: Berechnung des Schweredrucks.

Höhe h = h1�h2 (! Abb. 2.125) beträgt

FS = mg = V r g = Ahr g.

Wenn sich das in Abb. 2.125 markierte Volumen-
element im Gleichgewicht befindet, muss diese Ge-
wichtskraft FS durch eine entsprechende Kraft kom-
pensiert werden, welche auf die Unterseite des Volu-
menelements wirkt, zusätzlich zur Kraft, welche die-
jenige auf die Oberseite kompensiert. Der Druckun-
terschied zwischen oben und unten muss somit

pS =
FS

A
= hr g

sein. Dieser Druckbeitrag wird als Schweredruck be-
zeichnet.

Der gesamte hydrostatische Druck p(z) ist demnach

p(z) = pa + zr g, (2.17)

wobei pa den Außendruck an der Oberfläche dar-
stellt und z die Distanz zur Oberfläche. Der Druck
ist somit nur abhängig von der Dichte der Flüssig-
keit und von der Höhe der Flüssigkeitssäule. Für den
Fall von Wasser gilt

rW g = 103 kg
m3 ·9,81

m
s2 ⇡ 104 kg

m2s2

= 0.1 ·105 N/m2

m
⇡ 0.1

atm
m

,

d.h. der Druck nimmt pro 10 m Tiefe um 1 atm (⇡
105 N/m2) zu. Innerhalb des Systems ist der Druck

Abbildung 2.126: Kommunizierende Röhren.

nur von der Höhe abhängig, nicht vom (horizon-
talen) Ort. Dieses Prinzip gilt für alle unbewegten
Fluide.

Eine Konsequenz davon ist, dass die Flüssigkeit in
einem System von verbundenen (=“kommunizieren-
den”) Röhren überall bis zur gleichen Höhe auf-
steigt, unabhängig vom Querschnitt und Form der
Rohre. Abb. 2.126 zeigt dies für ein System von ver-
bundenen Glasgefäßen.

Abbildung 2.127: Druckverteilung im Wasserrohr-
Netz.

Die gleichmäßige Verteilung des Drucks in einem
System von Röhren wird verwendet, um den Wasser-
druck in der städtischen Wasserversorgung sicher-
zustellen: Wie in Abb. 2.127 gezeigt, muss das Re-
servoir mindestens so hoch liegen wie das höchste
Haus. Eine Erweiterung dieses Prinzip ist, dass man
- in einer gewissen Näherung - die Rohre auch weg-
lassen darf: Eine Fontäne erreicht die Höhe des Was-
serspiegels im Reservoir.

Es ist jedoch auch möglich, einen Springbrunnen zu
bauen, dessen Fontäne höher steigt als die Wassero-
berfläche des Reservoirs. Wie in Abb. 2.128 gezeigt,
wird dafür auf einem Teil der Strecke der Druck
nicht durch Wasser übertragen, sondern durch Luft.
Der Schweredruck der Luft ist fast tausendmal ge-
ringer als derjenige des Wassers und kann deshalb
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Abbildung 2.128: Hero’s Springbrunnen.

praktisch vernachlässigt werden. Dadurch steigt die
Fontäne entsprechend höher. Das Prinzip wurde von
Heron von Alexandria (wahrscheinlich 1. Jhd nach
Chr.).

2.9.6 Hydrostatischer Druck in Gasen

Im Falle von Gasen ist die Dichte abhängig vom
Druck. Die Druckzunahme ist deshalb nicht mehr
proportional zur Höhe der Gas-Säule. Für die Be-
rechnung der Höhenabhängigkeit des Druckes in der
Atmosphäre betrachtet man zunächst eine Schicht,
welche so dünn ist, dass die Dichte noch als konstant
betrachtet werden kann. Die Druckänderung durch
diese Schicht ist dann wie bei einer Flüssigkeit

d p =�r gdh,

wobei h nach oben zunimmt und somit der Druck ab-
nimmt. Für ein ideales Gas gilt bei konstanter Tem-
peratur:

r = r0
p
p0

(Boyle�MariotteGesetz),

mit p0 als Referenzdruck und r0 als Referenzdichte.
Damit wird

d p =�r0
p
p0

gdh.

Trennung der Variablen und Integration ergibtZ p

p0

d p
p

=�r0

p0
g

Z h

0
dh = ln

p
p0

=�r0

p0
gh

oder

p = p0 exp(�r0

p0
gh),

d.h. der Druck nimmt mit zunehmender Höhe expo-
nentiell ab.
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Abbildung 2.129: Atmosphärischer Druck als Funk-
tion der Höhe.

Numerische Werte für diese Parameter sind für Nor-
malatmosphäre (T = 0�C, p0 = 1,013·105 Pa) r0 =
1,293 kg/m3. Damit hat das Produkt r0g/p0 den nu-
merischen Wert 1,254·10�4 m�1 oder

p = p0 e�h/8km.

Interessant dabei ist, dass die Druckabnahme mit der
Höhe rein aus Messungen an der Erdoberfläche be-
rechnet werden kann. Abb. 2.129 zeigt den Druck
als Funktion der Höhe. Er fällt pro 8 km Höhe auf
1/e oder pro 5,5 km auf die Hälfte ab. In Wirklich-
keit variieren sowohl die Temperatur wie auch die
Zusammensetzung der Erdatmosphäre mit der Hö-
he. Die obige Formel gibt aber eine gute Näherung
für das tatsächliche Verhalten.

2.9.7 Das Prinzip von Archimedes

Ein Effekt des Schweredrucks ist, dass das schein-
bare Gewicht eines Körpers in einer Flüssigkeit ge-
ringer ist als im Vakuum. Dies wird als Auftrieb be-
zeichnet. Typische Anwendungen davon sind Schif-
fe oder andere Körper, welche auf dem Wasser
schwimmen.
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FS = mg

h1

h2A

Abbildung 2.130: Auftrieb: der Druck auf die untere
Fläche ist größer als auf die obere
Fläche.

Dieser Effekt lässt sich relativ leicht am Beispiel ei-
nes Kubus in einer Flüssigkeit berechnen (! Abb.
2.130). Der Druck auf die beiden Seitenflächen ist
der gleiche; in horizontaler Richtung heben sich die
Druckkräfte somit auf. Der Druck auf den Boden ist
aber aufgrund des Schweredrucks größer als auf die
obere Fläche. Damit erhält man eine resultierende
Druckkraft auf den Körper, die nach oben wirkt. Die
resultierende Kraft kann direkt aus der Druckdiffe-
renz berechnet werden, welche durch den Schwere-
druck (2.17) erzeugt wird:

FA = F2�F1 = A(p2� p1)

= Ar f lg(h2�h1) = r f lgV
= mverdrängtg = FG,verdrängt . (2.18)

Abbildung 2.131: Archimedes von Syrakus (287 -
212 v. Chr.).

Gleichung (2.18) beschreibt das Prinzip von Archi-

medes:

Die Auftriebskraft entspricht der Gewichtskraft
der verdrängten Flüssigkeit.

Dieses Resultat wurde hier für einen Kubus hergelei-
tet. Das Resultat ist aber allgemein gültig, unabhän-
gig von der Form des Körpers. Dieses Gesetz wur-
de zuerst von Archimedes (! Abb. 2.131) formu-
liert und wird deshalb als Prinzip von Archimedes
bezeichnet. Es ist eines der ältesten immer noch gül-
tigen physikalischen Gesetze.

2.9.8 Auftriebsmessungen

Abbildung 2.132: Der Holzblock klebt am Boden
des Wassertanks.

Man kann die Kraft auf die Unterseite eliminieren,
indem man den Körper so auf dem Boden drückt,
dass keine Flüssigkeit darunter bleibt. Abb. 2.132
zeigt einen Holzblock, der am Boden des mit Was-
ser gefüllten Glasgefäßes klebt. Weil unter dem Kör-
per kein Wasser ist, wirkt dort ein hydrostatischer
Druck, der Körper erfährt keinen Auftrieb. Erst nach
einer gewissen Zeit gelangt Wasser wieder darunter
und erzeugt Auftrieb.

Der Auftrieb reduziert das Gewicht des schwimmen-
den Körpers. Dabei steigt jedoch der Flüssigkeitspe-
gel und damit der Schweredruck, der auf den Boden
des Gefäßes wirkt. Die Gewichtskraft des schwim-
menden Körpers wird somit auf den Boden des Ge-
fäßes übertragen. Dies kann man z.B. mit der Was-
serglaswippe nachweisen: Hier werden 2 teilweise
mit Wasser gefüllte Bechergläser auf einer Waage im
Gleichgewicht gehalten. Taucht man einen Finger in
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eines der Bechergläser, so steigt dessen Wasserober-
fläche und es wird schwerer als das auf der Gegen-
seite.

Abbildung 2.133: Messung des Auftriebs.

Der Auftrieb kann experimentell gemessen werden,
indem man die Reduktion der Gewichtskraft misst,
wenn der Körper in eine Flüssigkeit eingetaucht wird
(! Abb. 2.133). Die verdrängte Flüssigkeitsmenge
wird dadurch gemessen, dass sie in einem Becher-
glas aufgefangen wird. Wird sie anschließend in den
oberen Behälter gegossen, welcher am gleichen Fe-
derkraftmesser hängt wie der Aluminiumblock, so
misst man wieder die gleiche Kraft wie ohne die
Wirkung des Auftriebs.

Eine Messung des Auftriebs kann auch dazu verwen-
det werden, um die Dichte eines Körpers zu bestim-
men. Misst man sein Gewicht ohne Auftrieb, so ist
es gegeben durch

FG = mg = grV.

Misst man das Gewicht mit Auftrieb in einer Flüs-
sigkeit der Dichte rFl , so erhält man

FG,A = g(r�rFl)V.

Das Verhältnis ist

FG,A

FG
=

r�rFl

r

.

Somit ist die Dichte des Körpers

r =
rFl

1�FG,A/FG
.

Der Legende nach nutzte Archimedes dies, um die
Dichte des Metalls in der Krone von König Hieron
II von Syrakus zu bestimmen. Beispiel: Das Gewicht
betrage in Luft 13,5 N und in Wasser 12,214 N. Dies
ergibt

r =
1000

1�12,214/13,5
kg
m3 = 10498

kg
m3 .

Dies passt gut zur Dichte von Silber (r = 10,49
g/cm3).

Ein wichtiges Beispiel ist Eis in Wasser. Die Dich-
te von Eis liegt bei etwa 0,92 g/cm3. Deshalb
schwimmt es auf dem Wasser, wobei rund 92% des
Volumens eines Eisblocks unter Wasser sind.

Im Fall der cartesischen Taucher kann man die Dich-
te der Körper über den Druck steuern: Sie enthalten
Luftkammern, welche bei entsprechendem Druck
komprimiert werden. Durch die Verkleinerung des
Volumens steigt die Dichte und die Taucher sinken
ab.

2.9.9 Auftrieb in Luft

Abbildung 2.134: Ballonflug.

Nicht nur in Flüssigkeiten, sondern auch in Luft und
anderen Gasen existiert dieser Auftrieb. Dies ist z.B.
die Grundlage für den Ballonflug (! Abb. 2.134),
kann aber auch anhand eines einfachen Laborexpe-
rimentes nachgewiesen werden.
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Abbildung 2.135: Auftriebswaage.

Man kann den Effekt u.a. nachweisen, indem man
die Luft entfernt (siehe Abb. 2.135). Im Experiment
wird der Auftrieb für 2 Körper gemessen, welche in
der Atmosphäre gleich schwer sind. Der eine davon
besteht aus Blei, der andere aus Styropor.

FG

Styropor

in Luft mit Auftrieb

Blei

FA

Fres FG

FA

Fres

Abbildung 2.136: Gleichgewicht in Luft.

In Luft sind die beiden Körper im Gleichgewicht.
Wie in Abb. 2.136 gezeigt, ist die Summe Fres aus
Schwerkraft FG und Auftrieb FA ist für beide gleich.
Wird die Luft abgepumpt, so verschwindet der Auf-
trieb. Da dieser für den größeren Körper erheblich
größer ist, als für den kleinen Körper sinkt er ab.

Der Auftrieb für den eingetauchten Körper bedeu-
tet umgekehrt, dass das Gefäß, welches die Flüssig-
keit enthält, entsprechend schwerer wird. Man kann
dies dadurch verstehen, dass die Flüssigkeitssäule,
welche auf den Boden des Gefässes drückt, entspre-
chend dem verdrängten Volumen höher geworden
ist.

2.9.10 Kompressibilität

Unter dem Einfluss des Druckes ändert jedes reale
Medium sein Volumen um DV . In linearer Näherung
ist die Volumenänderung proportional zum Volumen
V und zur Druckänderung Dp:

DV
V

=�kDp =
Dp
K

, [k] = m2N�1 ,

wobei die Proportionalitätskonstante k als Kompres-
sibilität bezeichnet wird. Sie ist das Inverse des
Kompressionsmoduls K.

Die Dichte eines Mediums ist definiert als Masse pro
Volumen; da das Volumen mit zunehmendem Druck
abnimmt, steigt somit die Dichte an. Für infinitesi-
male Änderungen gilt

Dr

r

=�DV
V

= k Dp .

Diese Gleichungen gelten sowohl für Flüssigkeiten
wie auch für Gase; bei Flüssigkeiten ist die Kom-
pressibilität jedoch sehr viel geringer als bei Gasen.
Typische Werte für die Kompressibilität von Flüs-
sigkeiten sind rund zwei Größenordnungen höher als
bei Festkörpern. Einige Beispiele sind (bei 20 �C, 1
atm):

Flüssigkeit k

Quecksilber 0,4·10�10m2/N
Wasser 5·10�10m2/N
Benzol 10·10�10m2/N
Äthanol 10·10�10m2/N

Für ein ideales Gas ist die Kompressibilität kig =
1/p, bei Normaldruck also 10�5 m2/N und damit um
rund 4 Größenordnungen über dem entsprechenden
Wert für eine typische Flüssigkeit. Die Größenord-
nung der Kompressibilität ist somit, neben der Dich-
te, das wesentliche Kriterium, welches Flüssigkeiten
von Gasen unterscheidet.

Man kann damit z.B. die Kompression von Wasser
in einer Tiefe von 4000 m (=mittlere Meerestiefe)
ausrechnen. Hier beträgt der Druck 4·107 N/m2 und
die entsprechende Volumenänderung etwa

DV
V

=�k p =�5 ·10�10 ·4 ·107 =�0.02 =�2%.
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Eine Volumenänderung wird auch durch eine Tem-
peraturänderung erzeugt:

DV
V

= gDT [g] =
1
K

.

Die Proportionalitätskonstante wird als Volumen-
ausdehnungskoeffizient bezeichnet. Wie bei der
Kompressibilität ist der Volumenausdehnungskoeffi-
zient für Flüssigkeiten sehr viel kleiner als für Gase.
Für ideale Gase ist g = 1/T (~1/300K bei Raumtem-
peratur).

2.10 Grenzflächeneffekte

2.10.1 Oberflächenspannung

An Grenzflächen treten besondere Effekte auf, wel-
che im Volumen nicht beobachtbar sind. Die mole-
kulare Grundlage dafür sind Kohäsionskräfte, d.h.
Kräfte zwischen gleichartigen Atomen / Molekülen.
In den meisten Flüssigkeiten dominieren dabei van
der Waals Kräfte. Sie erniedrigen die Energie des
Moleküls gegenüber einem Molekül im Vakuum und
sind damit die Ursache dafür, dass sich Flüssigkeiten
überhaupt bilden. Eng verwandt damit sind Adhä-
sionskräfte: diese wirken zwischen Molekülen ver-
schiedener Stoffe, also z.B. zwischen einem Molekül
in der Flüssigkeit und einer festen Oberfläche.

Abbildung 2.137: Berechnung der Oberflächenspan-
nung.

Befindet sich ein Molekül an der Oberfläche einer
Flüssigkeit so ist es weniger Kohäsionskräften aus-
gesetzt und seine Energie ist höher als im Innern der
Flüssigkeit. Auf solche Moleküle wirkt deshalb ei-
ne Kraft ~Fresultierend nach innen. Mit einer Oberfläche
ist deshalb eine potenzielle Energie verbunden, die
“Oberflächenenergie”. Diese ist in guter Näherung
proportional zur Oberfläche. Somit erhält man eine
universelle Beschreibung, wenn man die spezifische
Oberflächenenergie, also den Quotienten aus Ener-
gie und Oberfläche betrachtet:

sA =
dW
dA

[sA] =
N
m

.

Diese Größe wird auch als Oberflächenspannung be-
zeichnet. Die Energie dW muss dem System als Ar-
beit zugeführt werden, um die Oberfläche um dA zu
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vergrößern (! Abb. 2.137). Im Gegensatz zu Span-
nungen im Volumen handelt es sich hier aber um ei-
ne Kraft pro Längeneinheit. Dies ist mit einem Blick
auf Abb. 2.137 auch nachvollziehbar: je länger der
Bügel, desto mehr Kraft muss aufgewendet werden.

Abbildung 2.138: Messung der Oberflächenspan-
nung.

Die Grenzflächenspannung kann gemessen werden,
indem man an einem Bügel zieht, an den eine La-
melle anschließt. Wie in Abb. 2.138 gezeigt, wird
dabei di Oberfläche der Lamelle vergrößert, wobei
der Oberflächenzuwachs auf beiden Seiten der La-
melle erfolgt. Bei einem Radius r des Kreises wird
die Oberfläche der Lamelle um den Betrag

DA = 2Dh` = 2Dh2pr

vergrößert, wobei ` = 2pr den Umfang des Bü-
gels darstellt und Dh die Höhenänderung. Der Faktor
2 berücksichtigt, dass die Flüssigkeitslamelle zwei
Oberflächen besitzt. Die Kraft, welche für die Ver-
größerung der Oberfläche benötigt wird, lässt sich
berechnen aus der Änderung der Oberflächenenergie
WS pro Wegelement Dh:

F =
WS

Dh
= sA

DA
Dh

= 4pr sA.

Im Experiment hat der Ring einen Radius von 1 cm.
Man misst eine Kraft von ca. 10 mN, was einer Ober-
flächenspannung von

sA =
F

4pr
=

0,01
4p0,01

N
m

= 0,08
N
m

entspricht, in guter Übereinstimmung mit dem Lite-
raturwert von 0.072 N/m (Wasser bei 20 �C).

Abbildung 2.139: Wasserläufer.

Die Oberflächenspannung wird häufig von kleinen
Tieren wie z.B. Wasserläufern durchgeführt (!
Abb. 2.139): Sie können auf dem Wasser gehen, weil
Ihre Körpergewicht so klein ist, dass die Kraft auf
die Wasseroberfläche kleiner ist als die Kraft, wel-
che benötigt würde, um ein Loch in der Wasserober-
fläche zu drücken und damit die Oberfläche zu ver-
größern.

Oberflächenspannungen kann es sowohl zwischen
festen Körpern und Gasen wie zwischen Flüssigkei-
ten und Gasen oder zwischen zwei Flüssigkeiten ge-
ben.

Am größten sind die Oberflächenspannungen bei
Metallen. Dies ist ein Hinweis darauf, dass die Me-
tallatome eine sehr starke Wechselwirkung unterein-
ander besitzen. Wasser besitzt im Vergleich mit an-
deren Flüssigkeiten ebenfalls eine relativ hohe Ober-
flächenspannung. Dies ist ein Hinweis auf die relativ
starken intermolekularen Kräfte in Wasser, welche
auch für den relativ hohen Siedepunkt (im Vergleich
zu gleich schweren Molekülen) verantwortlich sind.

2.10.2 Minimalflächen

Im Gleichgewicht besitzt ein System die niedrigste
mögliche Energie. Dazu gehört offenbar, dass die
Oberflächen möglichst klein sind. Oberflächen sind
deshalb Minimalflächen.

In Abb. 2.140 wird dies anhand von Einzelbil-
dern beim Abfallen eines Wassertropfens gezeigt:
Zunächst findet man ein Gleichgewicht von Ober-
flächenspannung und Schwerkraft; erst wenn die
Flüssigkeitsmenge groß genug wird überwiegt die
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Abbildung 2.140: Entstehung eines Wassertropfens.

Schwerkraft und der Tropfen reist ab. Der Tropfen
nimmt darauf Kugelform (eine Minimalfläche) an,
wobei transiente Schwingungen um die Gleichge-
wichtsform beobachtet werden können.

1

Öl

wässrige Phase

Abbildung 2.141: Tenside an unterschiedlichen
Grenzflächen.

Die Oberflächenspannung kann durch Zusatzstof-
fe stark variiert werden. Die geschieht z.B. durch
sogenannte Tenside. Das sind Moleküle, die sich
an der Grenzfläche einordnen und sowohl mit der
wässrigen, wie auch mit der anderen Phase (Luft
oder Öl) eine anziehende Wechselwirkung haben,
wie in Abb. 2.141 gezeigt. Solche Moleküle werden
z.B. in Waschmitteln verwendet, und sie spielen in
vielen biologischen Systemen eine wichtige Rolle,
z.B. in der Lunge, wo sie eine wesentlich effizien-
tere Atmung ermöglichen. Im Experiment nehmen
Äthermoleküle in Wasser diese Funktion. Sie redu-
zieren die Oberflächenspannung. Dadurch werden
beim Abtropfen aus einem Glasrohr kleinere Trop-
fen erzeugt, was z.B. über die Zunahme der Tropf-
Frequenz gemessen werden kann.

Minimalflächen kann man z.B. erzeugen, indem

Abbildung 2.142: Minimalfläche in einem Würfel.

man Seifenlamellen aufspannt. Je nach Randbedin-
gung (Drähte) erzeugen die Seifenlamellen diejeni-
gen Oberflächen, welche die Größe der Lamelle mi-
nimieren. Abb. 2.142 zeigt ein Beispiel.

2.10.3 Seifenblasen

Ein Beispiel wo keine Drähte benötigt werden, ist
die Seifenblase. Hier ist das Volumen durch die ein-
geschlossene Gasmenge vorgegeben. Die Minimal-
fläche bei gegebenem Volumen ist eine Kugel. Durch
die Seife wird die Oberflächenspannung reduziert
auf 30 mN/m. Wir untersuchen folgende Fragen:

• Wie hoch ist der Druck im Innern der Seifen-
blase im Vergleich zum Außendruck?

• Was passiert, wenn eine große und eine kleine
Seifenblase zusammenkommen?

Wir berechnen zunächst die Arbeit, welche benötigt
wird, um den Radius der Kugel von r auf r + dr zu
vergrößern. Die Kraft ist gegeben durch das Produkt
aus Druckdifferenz p und Oberfläche A. Der zurück-
gelegte Weg ist gegeben durch die Änderung dr des
Radius. Damit wird die Arbeit

dW = F dr = pAdr = p4pr2 dr,

Diese Arbeit wird benötigt, um die Oberflächenener-
gie zu vergrößern,

dW = sdA = s [4p(r +dr)2�4pr2]

= s [4pr2 +8prdr�4pr2] = s8prdr,
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wobei wie üblich der Term µ dr2 (quadratisch in
einer infinitesimalen Größe) weggelassen wurde.
Gleichsetzen der beiden Terme ergibt

p4pr2 dr = s 8pr dr ! p = 2
s

r
. (2.19)

Für eine Seifenblase mit einem Radius von r = 1.8
cm erhält man z.B. einen Überdruck von p = 3.33
N/m2.

1

%

&

!

Abbildung 2.143: Druckausgleich zwischen 2
Seifenblasen.

Der Druck ist indirekt proportional zum Radius, d.h.
in größeren Seifenblasen ist der Druck kleiner. Wer-
den zwei Seifenblasen durch ein Rohr so verbunden
(!Abb. 2.143), dass Gas aus der einen in die ande-
re fließen kann, so pumpt die kleinere die größere
auf. Die resultierende gemeinsame Seifenblase be-
sitzt wiederum eine minimale Oberfläche.

Die Abhängigkeit (2.19) des Drucks vom Durch-
messer der Seifenblase hat wichtige Konsequenzen,
z.B. für unsere Lunge. Zweck der Atmung ist es,
Sauerstoff aus der Luft in die Blutbahn zu überfüh-
ren und CO2 aus dem Blut in die Luft. Damit die-
ser Austausch effektiv stattfindet, benötigt die Lun-
ge eine große Oberfläche von rund 100 m2. Da-
mit diese im Brustkorb Platz findet, wird sie auf
kleine Lungenbläschen aufgeteilt: diese besitzen ein
großes Oberflächen/Volumen Verhältnis. Der Nach-
teil ist, dass damit laut Gleichung (2.19) ein sehr
hoher Druck entsteht, den unser Atemsystem nicht
überwinden könnte. Die Natur hat dieses Problem
mit Hilfe von oberflächenaktiven Substanzen gelöst,
welche die Oberflächenspannung und damit den be-
nötigten Druck reduzieren.

2.10.4 Benetzung

Befinden sich Flüssigkeiten auf Oberflächen, so
existieren drei verschiedene Arten von Grenzflä-
chen (fest-flüssig, fest-gas und flüssig-gas). Dadurch
kommt es zu einem Wettbewerb zwischen Kohäsi-
onskräften und Adhäsionskräften. Adhäsionskräfte
erniedrigen die Energie eines Moleküls, welches in
Kontakt ist mit einer festen Oberfläche.

1

flüssig

keine BenetzungBenetzung

Adhäsionskraft > Kohäsionskraft Adhäsionskraft < Kohäsionskraft

Ausbreitung der Flüssigkeit 
auf der Oberfläche

gasförmig

fest

Flüssigkeit zieht sich 
tropfenförmig zusammen

flüssig
gasförmig

fest

Abbildung 2.144: Benetzung und Definition des
Kontaktwinkels.

Ist die Adhäsion stärker als die Kohäsion, wird die
Kontaktfläche zwischen Flüssigkeit und Oberfläche
vergrößert. Dies ist z.B. für Wasser auf Glas der
Fall. Man quantifiziert das Verhältnis von Kohäsi-
on zu Adhäsion über den Randwinkel a (! Abb.
2.144). Dieser stellt sich als Gleichgewichtswert da-
durch ein, dass die drei Grenzflächenspannungen
(fest-flüssig, fest-gasförmig und flüssig-gasförmig)
gleichzeitig minimiert werden müssen. Ist der Be-
netzungswinkel kleiner als 90� so spricht man von
Benetzung; liegt er bei 0� so handelt es sich um voll-
ständige Benetzung. Bei a > 90� liegt eine nicht be-
netzende Flüssigkeit vor.

Einige Beispiele für Benetzungswinkel:

Grenzfläche a

Wasser auf fettfreiem Glas ⇡ 0�

Wasser auf Paraffin 105-110
Quecksilber auf Glas 140
Quecksilber auf Stahl 154

Quecksilber ist ein typisches Beispiel einer nicht be-
netzenden Flüssigkeit. In diesem Fall sind die Ko-
häsionskräfte stärker als die Adhäsionskräfte. Das
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System verkleinert deshalb die Kontaktfläche. Diese
Eigenschaft ist eine Folge der hohen Oberflächen-
spannung von Quecksilber.

2.10.5 Kapillarkräfte

Grenzflächeneffekte erzeugen auch die so genann-
ten Kapillarkräfte: Die Energie, welche ein System
durch die Vergrößerung der Kontaktfläche gewinnt,
kann dazu verwendet werden, um die Flüssigkeit auf
eine größere Höhe anzuheben.

Flüssigkeit, 
z.B. Wasser

Rohr

Steighöhe

Abbildung 2.145: Kapillarkräfte.

Die Kraft, welche die Flüssigkeit in der Kapillare
nach oben zieht, kann in erster Näherung berechnet
werden, wenn man die Oberfläche in der Kapillare
als Halbkugel annähert, was etwa dem in Abb. 2.145
gezeigten Fall entspricht. Dann ist die Druckdiffe-
renz gegeben durch Gleichung (2.19) und die Kraft,
welche die Flüssigkeitssäule nach oben zieht, als das
Produkt aus Druckdifferenz und Querschnittfläche
A:

F" = A
2sA

R
,

wobei R den Krümmungsradius der Oberfläche be-
zeichnet (!Abb. 2.145). Wird die Kapillare voll-
ständig benetzt (Kontaktwinkel a ⇡ 0) so ist dieser
Krümmungsradius gerade gleich dem Radius r der
Kapillare. Diese Kraft muss gerade die Gewichts-
kraft der Flüssigkeit in der Kapillare kompensieren,
welche

FG = mg = rAhg

beträgt. Offenbar ist das Gleichgewicht erreicht
wenn die beiden Kräfte gleich sind, F" = FG. Dies
wird bei der Höhe

h =
2sA

r r g

erreicht. Die Steighöhe ist somit proportional zur
Oberflächenspannung und invers proportional zum
Radius der Kapillare. Für Wasser (sA = 0.072 N/m)
in einer Kapillare von 0.1 mm Radius erhält man so-
mit eine Steighöhe von 0.144 m ~ 14 cm.

1

Anordnung der Platten Flüssigkeitspiegel

ℓ

α d

x
x = 20 mm

h = 11 mm

Abbildung 2.146: Kapillarkräfte zwischen 2 Glas-
platten. Links blickt man von
oben auf die Anordnung, rechts
von der Seite.

Man kann dies auch mit Hilfe von Glasplatten zei-
gen. Wie in Abb. 2.146 links dargestellt, stehen
zwei Glasplatten unter einem spitzen Winkel, so dass
der keilförmige Bereich dazwischen unterschiedli-
che Kapillardurchmesser darstellt. Man findet eine
hyperbolische Abhängigkeit der Steighöhe von der
Position und damit vom Abstand der Platten.

Ist die Benetzung nicht vollständig (d.h. der Kontakt-
winkel a > 0�), so fällt der Effekt entsprechend ge-
ringer aus.

h =
2sA

r r g
cosa .

Auch hier kann der umgekehrte Fall eintreten, dass
die Kohäsionskräfte stärker sind. In diesem Fall ist a

> 90� und cosa < 0: es kommt also zu einer Kapillar-
depression, d.h. die Flüssigkeitsoberfläche im Innern
der Kapillare ist tiefer als außen, wie in Abb. 2.147
gezeigt.
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Flüssigkeit, z.B. 
Quecksilber

Rohr

Abbildung 2.147: Kapillardepression.

2.11 Hydrodynamik und
Aerodynamik

Genau wie die Hydrostatik behandelt die Hydrody-
namik, respektive die Aerodynamik, Fluide. Im Ge-
gensatz zur Hydrostatik, wo sich das Medium im
stationären Gleichgewicht befindet, wird hier jedoch
ein bewegtes Medium behandelt. Durch die Bewe-
gung kommen 2 Aspekte dazu, welche bei der Hy-
drostatik nicht diskutiert wurden:

• In bewegten Fluiden existieren Scherspannun-
gen auf Grund der endlichen Viskosität. Diese
innere Reibung ist proportional zum Geschwin-
digkeitsgradienten.

• Bewegte Fluide besitzen kinetische Energie. Es
findet deshalb eine Umwandlung von potenzi-
eller (Höhe, Druck) in kinetische Energie (und
umgekehrt) statt.

Der wichtigste Unterschied zwischen strömenden
Flüssigkeiten und strömenden Gasen ist, dass man
bei Flüssigkeiten meist davon ausgehen kann, dass
die Volumenänderungen der Flüssigkeit gering sind,
d.h., dass es sich um ein inkompressibles Medium
handelt. Im Falle der Aerodynamik (bei Gasen) muss
die Kompressibilität berücksichtigt werden.

2.11.1 Stromlinien und
Geschwindigkeitsfelder

Um ein strömendes Medium zu beschreiben, gibt
es verschiedene Methoden. Die Lagrange-Methode

entspricht einer zeitlichen Verfolgung der Masse-
elemente dm. Einfacher ist die Euler-Methode bei
der zu einem beliebigen Zeitpunkt die Geschwindig-
keitsvektoren der einzelnen Masseelemente betrach-
tet werden.

v
Flüssigkeits- 

element

Stromlinie

Abbildung 2.148: Darstellung eines Flussfeldes mit
Flusslinien.

Die Gesamtheit dieser Geschwindigkeitsvektoren
wird als Geschwindigkeitsfeld bezeichnet. Zur Dar-
stellung verwendet man meist Stromlinien (! Abb.
2.148). Dabei handelt es sich um orientierte Kur-
ven, welche den Weg der Flüssigkeitselemente ver-
folgen. Die momentane Tangente an diese Kurven
ergibt jeweils die lokale Richtung der Strömungs-
geschwindigkeit. Im Rahmen der Vorlesung werden
die Stromlinien meist als stationär angenommen.

v

Gebiet hoher 
Geschwindigkeit

Gebiet niedriger 
Geschwindigkeit

Abbildung 2.149: Stromliniendichte als Maß für die
lokale Geschwindigkeit.

Die Dichte der Stromlinien ist ein Maß für den Be-
trag der Geschwindigkeit: Je größer die Anzahl der
Stromlinien durch eine Fläche sind, desto größer ist
die Stromdichte und damit die lokale Geschwindig-
keit. Wie in Abb. 2.149 gezeigt kann man dies zei-
gen, indem man gleiche Volumina (rot eingezeich-
net) betrachtet, welche durch Stromlinien einge-
schlossen werden. Die Länge des Volumenelements
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entspricht der Verschiebung pro Zeiteinheit. Für in-
kompressible Fluide muss somit die Geschwindig-
keit in einem Bereich hoher Stromliniendichte höher
sein, als in einem Gebiet niedriger Stromliniendich-
te.

Diese Stromlinien können auch sichtbar gemacht
werden; sie sind nicht nur ein theoretisches Konzept.
Man injiziert dafür z.B. gefärbtes Wasser oder kleine
Partikel in das fließende Medium.

Abbildung 2.150: Laminare Strömung um einen Zy-
linder.

In Abb. 2.150 werden die Stromlinien beim Umflie-
ßen eines Zylinders dargestellt. Sie zeigen, dass auf
der Vorder- und Hinterseite ein Stau entsteht, also ei-
ne Region geringer Geschwindigkeit, und auf beiden
Seiten eine Region hoher Geschwindigkeit.

Abbildung 2.151: Automobil im Windkanal.

Abb. 2.151 stellt entsprechende Untersuchungen an
einem Automobil in einem Windkanal dar. Die Strö-
mungslinien werden sichtbar gemacht, indem Rauch
in den Gasstrom geblasen wird. Solche Experimen-
te spielen z.B. für den Entwurf von Fahrzeugen und
Flugzeugen eine wichtige Rolle.

Strömungen werden als stationär bezeichnet, wenn

die Stromlinien zeitlich konstant sind. Es gibt lami-
nare und turbulente Strömungen.

 1

langsam 
 laminar

schnell  
turbulent

ungefärbtes 
Wasser

gefärbtes 
Wasser

Wirbel

Abbildung 2.152: Laminare und turbulente Strö-
mungen.

In Abb. 2.152 geht die Strömung von laminar nach
turbulent über. Dies geschieht z.B. bei höherer Ge-
schwindigkeit. Die Charakterisierung von turbulen-
ten Strömungen gehört ins Gebiet der nichtlinearen
Dynamik und kann in diesem Zusammenhang nicht
diskutiert werden.

2.11.2 Kontinuitätsgleichung

Geschwindigkeiten in bewegten Flüssigkeiten be-
schreiben den Transport von Materie. Lokal kann
dieser Transport durch die Massenstromdichte

~j = r~v

quantifiziert werden.

Volumen- 
element j

dA

Abbildung 2.153: Massenbilanz für ein Volumenele-
ment.

Wir betrachten die Änderung der Masse in einem
Volumen V aufgrund der Zu- und Abflüsse (! Abb.
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2.153). Der Anteil des Massenstroms dm/dt durch
ein kleines Flächenelement d~A ist

dm
dt

= ~j ·d~A = |~j|dA cosa ,

wobei a den Winkel zwischen der Fließrichtung und
der Oberflächennormalen darstellt. Integration über
die geschlossene Oberfläche ergibt die gesamte Än-
derung der Masse im Volumen pro Zeiteinheit als

ṁ =
ZZ

A
~j ·d~A =

ZZ
A

r~v ·d~A = 0 ,

da Masse weder erzeugt noch vernichtet wird. Die
Gleichung besagt einfach, dass die Summe der Zu-
und Abflüsse verschwinden muss. Sie kann über den
Satz von GaußZZ

O
~v ·d~A =

ZZZ
V

div~v = 0.

(die Integralgrenzen sind O = Oberfläche und V =
Volumen) auch geschrieben werden als

div~v = 0,

da die Gleichung für beliebige Volumina V gelten
muss. Dies ist eine Bedingung für das Geschwindig-
keitsfeld einer inkompressiblen Flüssigkeit: es ent-
hält weder Quellen noch Senken.

∆V 

∆x1 

∆x2 
A1 

A2 

v1 v2 p1 p2 

∆V 

Abbildung 2.154: Transport eines Volumenelemen-
tes in einer laminaren Strömung.

Diese Aussage gilt für beliebige Körper. Wir kön-
nen z.B. einen Flussschlauch betrachten, der auf
der Außenseite von Flusslinien begrenzt wird (~v ·
~dA = 0) und an den Stirnflächen von zwei Schei-
ben mit Flächen A1 und A2 (siehe Abb. 2.154). Da
die Seitenwände durch Flusslinien gebildet werden,

fließt kein Material durch diesen Teil der Oberflä-
che. Damit sind Ein- und Ausfluss gegeben durch
die Durchflussmenge durch die beiden Flächen links
und rechts.

Die Flüssigkeitsmenge, welche pro Zeiteinheit durch
eine Stirnfläche fließt, ist proportional zum Pro-
dukt aus Querschnittsfläche und Fließgeschwindig-
keit vdm = r Av, da die Geschwindigkeit senkrecht
auf der Fläche steht. Bei konstanter Dichte kann die
Massenbilanz somit geschrieben werden als

v1A1 = v2A2 (2.20)

oder

v2 = v1
A1

A2
.

Dies entspricht der Quantifizierung der oben ge-
machten Aussage, dass nahe beieinander liegen-
de Stromlinien hohe Geschwindigkeiten markieren
und geringe Stromliniendichte einer langsamen Ge-
schwindigkeit entspricht.

Für kompressible Flüssigkeiten muss die Gleichung
um die Dichte erweitert werden:

v1r1A1 = v2r2A2 .

Für wirbelfreie Strömungen kann man das Ge-
schwindigkeitsfeld ~v(~r) als Gradient eines Ge-
schwindigkeitspotenzials f(~r) schreiben:

~v(~r) = grad f(~r) = ~—f(~r) .

Solche Strömungen werden deshalb auch als Poten-
zialströmungen bezeichnet.

2.11.3 Druck und kinetische Energie

Wir betrachten eine Strömung in einem Rohr, das
sich verengt. Die Zunahme der Geschwindigkeit auf-
grund der Verengung bedeutet laut Gleichung (2.20)
für die Flüssigkeitselemente eine Beschleunigung.
Die dafür notwendige Kraft stammt aus einer Druck-
differenz.

Wir betrachten eine dünne Scheibe der Flüssigkeit,
wie in Abb. 2.155 gezeigt. Die Masse des Zylinders
mit Querschnittfläche A und Dicke dx beträgt

dm = r Adx.
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dm

 p(x) 

A

 p(x+dx) 

dx

Abbildung 2.155: Druckkraft auf dünne
Flüssigkeitsscheibe.

Das Newton’sche Axiom für dieses Flüssigkeitsele-
ment lautet

dF =�Ad p = adm = (r Adx)
dv
dt

.

Hier bezeichnet d p = p(x + dx)� p(x) die (infini-
tesimale) Druckdifferenz, a die Beschleunigung und
r die Dichte der Flüssigkeit. Offenbar ist die Bezie-
hung unabhängig von der Querschnittfläche:

�d p = r vdv.

Integration zwischen zwei Punkten 1 und 2 ergibt

p1� p2 =
r

2
(v2

2� v2
1)

oder

p1 +
r

2
v2

1 = p2 +
r

2
v2

2.

Offenbar wird eine Zunahme der Geschwindigkeit
(Zunahme der kinetischen Energie) durch eine Ab-
nahme des Druckes (Reduzierung der potenziellen
Energie) kompensiert.

Abbildung 2.156: Herleitung der Bernoulli-
Gleichung.

Abb. 2.156 zeigt die Verhältnisse für ein Rohr mit
unterschiedlichen Querschnitten. Die Geschwindig-
keit ist am Punkt B am höchsten und deshalb der
Druck am niedrigsten.

Die Größe 1
2 rv2 hat die Dimension einer Energie-

dichte
E

V

�
=

J
m3 =

Nm
m3 =

N
m2 =


F
A

�
= [p]

und gleichzeitig der des Drucks und wird als Stau-
druck bezeichnet. Offenbar ist die Summe aus stati-
schem Druck und Staudruck für eine reibungsfreie
Flüssigkeit konstant. Man bezeichnet dies als Ge-
samtdruck und schreibt

p+
1
2

rv2 = pges

für eine reibungsfreie Flüssigkeit.

Abbildung 2.157: Daniel Bernoulli (1700-1782).

Dies wird als die Bernoulli’sche Gleichung bezeich-
net (nach Daniel Bernoulli, 1700-1782). Sie be-
schreibt im Wesentlichen die Erhaltung der mecha-
nischen (potenzielle + kinetische) Energie und gilt
nur so lange wie die Reibung vernachlässigt werden
kann.

Der Staudruck kommt durch die Impulsänderung des
Gases zustande. Er wird u.a. in Kraftwerken genutzt,
wo der Staudruck auf die Turbinenschaufeln drückt.
Der Effekt kann noch verstärkt werden, wenn das
Wasser so umgeleitet wird, dass seine Geschwindig-
keit v nicht auf 0 reduziert wird, sondern es nach
rückwärts abgelenkt wird: Dv =�v�v =�2v. Dies
wird z.B. bei der Pelton-Turbine genutzt, welche vor
allem in Hochdruck-Wasserkraftwerken verwendet
wird.
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2.11.4 Druckänderung in einer Strömung

linearer 
Druckabfall

v1 v2 v1

p1

p2
p3

Abbildung 2.158: Experimentelle Verifizierung der
Bernoulli-Gleichung.

Die Voraussagen der Bernoulli Gleichung können
experimentell leicht überprüft werden. Im Experi-
mente von Abb. 2.158 verwendet man dafür ein
Rohr, das in der Mitte verengt ist, an beiden Enden
aber den gleichen (größeren) Querschnitt zeigt. In
den beiden äußeren Rohren steigt das Wasser höher;
an dieser Stelle ist offenbar der statische Druck hö-
her als in der Mitte, wo das Wasser schneller fließt.
Da die Strömung im Experiment nicht reibungsfrei
ist findet man zusätzlich zum Staudruck auch einen
linearen Druckabfall, welcher die Reibungsverluste
enthält.

Bezeichnung Drucksonde Pitot-Rohr
Prandtl’sches 
Staurohr

pstat pstat+pStau pStau

Differenzmessung 
von Pitot-Rohr und 
Drucksonde

Aufbau

Messgröße statischer Druck statischer Druck 
+ Staudruck

Staudruck, 
Strömungs-

geschwindigkeit

v v v

Abbildung 2.159: Messgeräte für unterschiedliche
Arten von Druck.

Geeignete Druckmessgeräte können diese unter-

schiedlichen Beiträge messen, wie in Abb. 2.159 ge-
zeigt. Die Drucksonde misst den statischen Druck,
während das Pitot-Rohr den Gesamtdruck misst. Das
Prandtl’sche Staurohr besitzt zwei Öffnungen für
den statischen und den Gesamtdruck, welche auf
unterschiedlichen Seiten der Flüssigkeit angeordnet
sind. Die Höhendifferenz ist dann direkt proportio-
nal zum Staudruck.

v1 , p1 , h1

v2 , p2 , h2

Abbildung 2.160: Beitrag des Schweredrucks zur
Bernoulli-Gleichung.

Eine etwas allgemeinere Form der Bernoulli-
Gleichung erhält man, wenn man zusätzlich den
Schweredruck berücksichtigt. Dann ist der Gesamt-
druck zusätzlich von der Höhe abhängig; er beträgt
dann

p0 +r gh+
1
2

r v2 = pges.

Insgesamt sind beide Formen der Bernoulli-
Gleichung Ausdrücke der Energieerhaltung: jeder
Term stellt eine Energiedichte, d.h. Energie pro Vo-
lumen dar; der erste enthält die elastische Energie,
der zweite die potenzielle Energie der Gravitation,
der dritte die kinetische Energiedichte.

Eine weitere Konsequenz davon ist das Gesetz von
Torricelli: Tritt Flüssigkeit aus einem kleinen Loch
in einem Behälter aus, so ist seine Fließgeschwindig-
keit v =

p
2gh, mit h der Distanz unterhalb der Flüs-

sigkeitsoberfläche. Dies ist die gleiche Geschwin-
digkeit, die sie hätte, wenn sie von der Flüssigkeitso-
berfläche frei gefallen wäre und entspricht der Um-
wandlung von potenzieller in kinetische Energie.

2.11.5 Demonstrationen zur
Bernoulli-Gleichung

Einige interessante Konsequenzen können leicht de-
monstriert werden.
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1

Abbildung 2.161: Strömung zieht Platte an.

Bläst man durch ein Loch in einer Platte auf eine
zweite Platte so dass das Gas zwischen den beiden
Platten entweichen muss (! Abb. 2.161), so erzeugt
die hohe Geschwindigkeit des Gases zwischen den
beiden Platten einen Unterdruck, welcher stark ge-
nug ist, das Gewicht der Platte zu halten und die
Kraft zu überwinden, welche durch die Impulsände-
rung des strömenden Gases auf die freie Platte aus-
geübt wird.

!

Abbildung 2.162: Tanzender Ping-Pong Ball.

Bläst man auf einen Pingpong Ball schräg nach oben
(! Abb. 2.162), so fällt er nicht zu Boden, sondern
gelangt in eine Gleichgewichtsposition etwas unter-
halb der Mitte des Luftstrahls: an dieser Stelle ist
die Geschwindigkeit des Gases oberhalb etwas grö-
ßer als unterhalb, so dass eine Auftriebskraft wirkt,
welche groß genug ist, die Gewichtskraft zu kom-
pensieren.

Verwendet man einen Trichter, so kann man sogar
nach unten auf den Ball blasen, wie in Abb. 2.163
gezeigt; da die Luft sich oberhalb des Balls schneller

1

Abbildung 2.163: Ping-Pong Ball in einem Trichter.

bewegt als unten, fällt er nicht zu Boden.

2.11.6 Viskosität

Eine Flüssigkeit bewegt sich nie widerstandsfrei.

1

 reiner 
Reibungswiderstand

 reiner 
Druckwiderstand

 Reibungs- und 
Druckwiderstand

längs überströmte 
 Platte

quer überströmte 
 Platte

überströmte Kugel

Abbildung 2.164: Widerstand in einer Flüssigkeit.

Der Strömungswiderstand kommt aufgrund von Rei-
bungswiderstand und Druckwiderstand zustande.
Der zweite Effekt kann vor allem auf Verwirbelun-
gen zurückgeführt werden. Abb. 2.164 zeigt typische
Anordnungen, bei denen die beiden Effekte relevant
sind.

Der Reibungswiderstand wirkt außerdem auch im
Innern einer Flüssigkeit, wo keine Wände vorhanden
sind. Er wird dann als innere Reibungs bezeichnet.
Abb. 2.165 zeigt eine typische Messanordnung: die
zu untersuchende Flüssigkeit befindet sich zwischen
2 parallelen Platten. Eine davon wird fest gehalten,
die andere mit einer konstanten Geschwindigkeit v
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Abbildung 2.165: Geschwindigkeitsdifferenzen
zwischen Flüssigkeitsschichten.

nach oben bewegt. Direkt an der Oberfläche der bei-
den Platten ist die Flüssigkeit gegenüber der Platte in
Ruhe. Dazwischen beobachtet man eine lineare Zu-
nahme der Geschwindigkeit der Flüssigkeitsschich-
ten. Für viele Substanzen kann er beschrieben wer-
den als eine Kraft

FR = hA
dv
dx

[h ] =
Ns
m2 = Pas. (2.21)

Diese ist proportional zur Fläche A, an der die Rei-
bungskraft angreift, und zur Änderung dv/dx der
Geschwindigkeit mit der Entfernung x von der Ober-
fläche. Gilt diese Beziehung nicht, so spricht man
von nicht-Newton’schen Flüssigkeiten. Die Propor-
tionalitätskonstante h zwischen Kraft und Fläche
mal Geschwindigkeitsgradient wird als Viskosität
oder Zähigkeit bezeichnet. Neben der SI-Einheit N
s / m2 wird häufig auch noch die ältere Einheit Poise
(= 0.1 N s / m2) verwendet. Sie stellt eine Materi-
aleigenschaft dar, welche stark von der Temperatur
abhängt.

Die Reibungskraft wirkt parallel zur Fläche A und
ist somit eine Scherkraft, respektive eine Scherspan-
nung. Während Scherkräfte in statischen Flüssig-
keiten verschwinden, treten sie in der Form dyna-
mischer Kräfte bei nicht verschwindender Viskosi-
tät auf. Diese quantifiziert somit die Scherkräfte in
einem fluiden Medium. Bei sehr hoher Viskosität
(Glas) verhält sich eine Flüssigkeit praktisch wie ein
Festkörper.

Die Viskosität von Wasser und ähnlichen Flüssigkei-
ten liegt bei etwa 10�3 N s m�2. Die Werte für Gase

sind etwa hundertmal niedriger; da die Dichte von
Luft etwa 1000 mal niedriger ist als die von Was-
ser, ist aber die Viskosität pro Masse bei Luft grö-
ßer als bei Wasser. Die Viskosität wie in Gleichung
(2.21) definiert wird auch als dynamische Viskosi-
tät bezeichnet, das Verhältnis h/r aus dynamischer
Viskosität und Dicht als kinematische Viskosität.
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Abbildung 2.166: Temperaturabhängigkeit der Vis-
kosität von Flüssigkeiten und Ga-
sen.

Die Viskosität von Flüssigkeiten nimmt mit steigen-
der Temperatur ab, da dann die molekularen Bin-
dungen gegenüber der Bewegung der Moleküle an
Bedeutung verlieren. Das Extrembeispiel dafür ist
Glas, wo die Viskosität beim Abkühlen kontinu-
ierlich um viele Größenordnungen zunimmt. Abb.
2.166 zeigt den Verlauf für unterschiedliche Flüssig-
keiten (links) und Gase (rechts). Bei Gasen nimmt
offenbar die Viskosität mit steigender Temperatur
zu, da sie auf der Bewegung von Molekülen be-
ruht, deren Geschwindigkeit mit der Temperatur zu-
nimmt.

2.11.7 Reibungswiderstand in Flüssigkeiten

Die viskose Reibungskraft wirkt als Bremskraft für
die Flüssigkeit und führt gleichzeitig dazu, dass strö-
mende Flüssigkeiten eine Kraft auf den Behälter
oder den umströmten Körper ausüben. Für einen
Körper in einer Flüssigkeit oder einem Gas schreibt
die resultierende Kraft als

FR =�kv. [k] =
Ns
m

.
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In Übereinstimmung mit Gleichung (2.21) ist die
Kraft proportional zur Geschwindigkeit. Die Propor-
tionalitätskonstante k wird als Widerstandsbeiwert
bezeichnet. Sie hängt sowohl von der Form des Kör-
pers ab, wie auch von der Viskosität der Flüssigkeit.
Für eine Kugel mit Radius r beträgt sie

kK = 6p hr.

Dies wird als Stokes’sches Reibungsgesetz bezeich-
net. Die Tatsache, dass die Kraft proportional ist zur
Geschwindigkeit, führt z.B. dazu, dass ein fallender
Körper in der Erdatmosphäre nach einer kurzen Be-
schleunigungsphase eine konstante Geschwindigkeit
erreicht. Diese ist dadurch bestimmt, dass die Rei-
bungskraft gerade die Gewichtskraft aufhebt.

Abbildung 2.167: Freier Fall einer Kugel in Öl.

Diese kann gemessen werden, indem man die Sink-
geschwindigkeit von Kugeln in einer viskosen Flüs-
sigkeit misst. Abb. 2.167 zeigt ein Beispiel. Nach
einer “Anlaufstrecke” erreicht die Kugel eine kon-
stante Geschwindigkeit. Diese ist dadurch bestimmt,
dass die Schwerkraft gerade gleich groß wie und ent-
gegengesetzt gerichtet zur Reibungskraft ist:

FG = (mK�mFl)g = g(rk�r f l)
4p

3
r3

= FR = 6phrv .

Hier ist mK die Masse der Kugel und mFl die Mas-
se der verdrängten Flüssigkeit, welche Auftrieb er-
zeugt. Wir schreiben diesen Ausdruck als

(rK�rFl)
4p

3
r3g = 6phrv

und lösen auf nach der Geschwindigkeit v:

v = (rK�rFl)
2g
9h

r2 .

Größere Kugeln sollten also schneller fallen. Dies
wird im Experiment bestätigt. Hier werden 2 Kugeln
verglichen. Ihr Durchmesser beträgt 4 und 8 mm und
die Dichte 1,42 g/cm3. Die gemessenen Fallzeiten
sind 110, respektive 25 s, was nahe beim erwarteten
Verhältnis von 4 liegt.

2.11.8 Turbulente Reibung und
Luftwiderstand

Wenn Luft einen Körper umströmt, wird häufig Tur-
bulenz erzeugt. Durch die Turbulenz wird kinetische
Energie sehr effektiv dissipiert und der Widerstand
wächst mit zunehmender Geschwindigkeit. Die Rei-
bungskraft wird dadurch näherungsweise proportio-
nal zum Quadrat der Geschwindigkeit:

FR = dv2.

Der Luftreibungskoeffizient d hängt von Form und
Oberfläche des Körpers, aber auch von der Art des
strömenden Mediums ab. Eine übliche Beschreibung
verwendet den Widerstandsbeiwert cw:

d =
1
2

cwr A,

wobei r die Dichte des Mediums und A die Quer-
schnittfläche darstellt, während cw in erster Linie von
der Form des Gegenstands abhängt.

Abb. 2.168 zeigt Stromlinienfelder für unterschied-
liche Körper und die resultierenden Widerstandsbei-
werte. Der unterste Körper erzielt den geringsten
Widerstand, indem er die Bildung von Wirbeln durch
eine scharfe Kante auf der Windschattenseite ver-
meidet.

2.11.9 Rohrdurchfluss

In einem Rohr führt der Strömungswiderstand da-
zu, dass der Druck in einem System nicht gleich-
mäßig verteilt ist, sondern abfällt in Richtung der
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1

Stromlinien Wirbelfeld

cw = 1,98

cw = 0,45

cw = 0,06

Abbildung 2.168: Widerstandsbeiwerte für unter-
schiedliche Körper.

Strömung. Dieser Druckgradient wird benötigt, um
die Reibungsverluste aufgrund der inneren Rei-
bung zu kompensieren. Der Strömungswiderstand
beschränkt deshalb auch den Durchfluss durch ein
Rohr.

 1
p1

p2

Rr

Fp

ℓ

Abstand r
-R R

v

0

vmax

v

Abbildung 2.169: Durchfluss durch ein zylindri-
sches Rohr und resultierendes Ge-
schwindigkeitsprofil.

Außerdem ist die Fließgeschwindigkeit nicht homo-
gen, sondern das Geschwindigkeitsfeld bildet sich
so, dass der Fließwiderstand minimal wird. Die Flüs-
sigkeitskomponenten in der Nähe der Rohroberflä-
che werden durch die Reibung am stärksten ge-
bremst und bewegen sich deshalb am langsamsten;
die Komponenten in der Mitte werden am wenig-
sten gebremst und bewegen sich am schnellsten. Wie

in Abb. 2.169 gezeigt, ist deshalb die Strömungsge-
schwindigkeit im Zentrum am höchsten, in der Nähe
der Rohrwand nimmt sie auf Null ab.

Um den Durchfluss zu berechnen, ist es sinnvoll,
die rotationssymmetrischen Randbedingungen zu
berücksichtigen. Diese führen dazu, dass die Ge-
schwindigkeit nur vom Abstand r von der Zylinder-
achse abhängt. Man teilt deshalb das Flüssigkeits-
volumen in konzentrische Zylinder ein, wie in Abb.
2.169 gezeigt. Auf einen Flüssigkeitszylinder mit
Radius r und Länge ` wirkt die Reibungskraft an sei-
ner Außenwand

FR = h A
dv
dr

= h 2pr`
dv
dr

.

Diese muss kompensiert werden durch eine Druck-
differenz Dp = p2� p1, welche von außen erzeugt
werden muss, um die Strömung aufrecht zu erhalten.
Die Druckkraft auf diesen Zylinder beträgt

Fp =�Dppr2.

Im dynamischen Gleichgewicht sind die beiden
Kräfte entgegengesetzt und gleich groß, so dass

h 2pr`dv = Dppr2 dr

oder

dv =
Dp
2h`

r dr.

Die Randbedingung ist, dass die Geschwindigkeit an
der Oberfläche des Rohrs verschwindet, v(r = R) =
0. Damit ergibt die Integration

v(r) =
Dp
4h`

(r2�R2).

Dp beschreibt hier die Druckänderung; da der Druck
in Fließrichtung abfällt, ist die Druckänderung Dp <
0. Wie in Abb. 2.169 gezeigt, wird die Geschwin-
digkeit deshalb bei r = 0 maximal und fällt mit dem
Abstand vom Zentrum des Rohr parabolisch ab.

2.11.10 Das Gesetz von Hagen-Poiseuille

Der Maximalwert der Geschwindigkeit beträgt (in
der Mitte des Rohrs)

vmax = v(0) =� Dp
4h`

R2.
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Sie ist somit positiv wenn Dp negativ ist, d.h. wenn
der Druck in der Fließrichtung abnimmt, und sie
wächst linear mit der Querschnittfläche des Rohrs,
respektive quadratisch mit dessen Radius R.

Die mittlere Geschwindigkeit über den Querschnitt
erhält man, indem man über konzentrische Kreisrin-
ge mittelt. Integriert man die Geschwindigkeit über
den gesamten Querschnitt, so erhält man den Vo-
lumenfluss. Dividiert man diesen durch die Quer-
schnittsfläche A = pr2 so erhält man die mittlere Ge-
schwindigkeit. Jeder Kreisring hat die Fläche 2pr dr,
mit r als innerem und r+dr als äußeren Radius. Der
Mittelwert ist somit

v̄ =
1

pR2

Z R

0
v(r)2pr dr =

=
2

R2
Dp
4h`

Z R

0
(r2�R2)r dr

=
Dp

2R2
h`


r4

4
� r2R2

2

�R

0

= � Dp
2R2

h`

R4

4
=�DpR2

8h`
=

vmax

2
.

Der gesamte Durchfluss durch das Rohr beträgt dem-
nach

I = v̄A =�DppR4

8h`
.

Dies ist bekannt als das Gesetz von Hagen-
Poiseuille: Der Durchfluss durch ein gerades Rohr
ist proportional zur vierten Potenz des Rohrradius,
zum Druckabfall Dp/` und invers proportional zur
Viskosität h .

Im Experiment (! Abb. 2.170) kann der konstan-
te Wasserdruck dadurch erzeugt werden, dass bei
sinkender Flüssigkeitssäule ein abnehmender Luft-
druck über der Flüssigkeit steht: es wird nur soviel
Luft nachgezogen, dass am unteren Ende des Roh-
res gerade der Druck p0, d.h. der atmosphärische
Außendruck entsteht, unabhängig von der Höhe der
Flüssigkeitsoberfläche. Es wird die Flüssigkeitsmen-
ge gemessen, welche in 30 Sekunden durch jeweils
ein Rohr mit gegebenem Querschnitt fließt. Das Ver-
hältnis der beiden Rohr-Innendurchmesser beträgt
0.8 / 1.5 mm; wir erwarten somit ein Verhältnis der

Zweiweghahn

Luftblasen

Abbildung 2.170: Verifizierung des Gesetzes von
Hagen-Poiseuille. Die Anordnung
stellt sicher, dass der Druck beim
Ausfluss konstant is, auch wenn
die Flüssigkeitsoberfläche sinkt.

Flüssigkeitsmengen von (1.5/0.8)4 = 12.4. Experi-
mentell finden wir ein Verhältnis von ca. 12.

Die Druckdifferenz, welche benötigt wird, um eine
mittlere Geschwindigkeit durch das Rohr zu erzie-
len, beträgt

Dp =�v̄
8h`

R2 ,

d.h. sie sinkt mit der Querschnittsfläche des Rohrs,
während die Durchflussmenge ansteigt. Im stati-
schen Grenzfall (v! 0) verschwindet der Druckab-
fall, wir erhalten das hydrostatische Gleichgewicht.

Daraus können wir auch den Widerstandsbeiwert für
die Strömung durch das Rohr berechnen als

k =�FR

v̄
=�Dpp

R2

v̄
= 8h`p.

Er hängt somit nur von der Viskosität des Mediums
und der Länge der Rohres ab, aber nicht vom Radius.
Die zunehmende Oberfläche wird gerade kompen-
siert durch den kleineren Gradienten der Geschwin-
digkeit.

2.11.11 Ähnlichkeit von Strömungen

Die Viskosität spielt auch eine wichtige Rolle bei
der Charakterisierung von Strömungen. So wird der
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Übergang von laminaren zu turbulenten Strömungen
oder die Art des Strömungswiderstandes durch das
Verhältnis aus kinetischer Energie zu Reibungsener-
gie beeinflusst. Ist dieses Verhältnis gleich, so spricht
man von ähnlichen Strömungen.

Abbildung 2.171: Osborne Reynolds (1842 - 1912).

Ob zwei Strömungen ähnlich sind, kann man einfach
anhand der dimensionslosen Reynolds-Zahl (nach
Osborne Reynolds, Abb. 2.171) bestimmen:

Re =
rvd
h

. [Re] = 1

Hier stellen r und h die Dichte und Viskosität des
Mediums, v die Strömungsgeschwindigkeit und d
eine typische Dimension des Körpers dar. Niedrige
Reynolds-Zahlen findet man z.B. bei kleinen Dimen-
sionen (z.B. Einzeller in Wasser) oder großen Di-
mensionen (z.B. Meeresströmungen).

Abbildung 2.172: Einsetzen von Turbulenz.

Bei kleinen Geschwindigkeiten (und damit klei-
nen Reynolds-Zahlen) sind Strömungen laminar, bei

großen Reynolds-Zahlen werden sie turbulent. Abb.
2.172 zeigt schematisch das unterschiedliche Ver-
halten. Im Bereich der turbulenten Strömung bil-
den sich Wirbel auf unterschiedlichen Längenska-
len. Die kinetische Energie des strömenden Medi-
ums wird dabei von großen auf kleinere Skalen über-
tragen, wo die Reibung sie effizient in Wärme um-
wandelt. Da hier mehr Energie dissipiert wird, steigt
der Strömungswiderstand stark an. Biologische Sy-
steme, wie z.B. das Blut-Kreislaufsystem des Men-
schen, sind deshalb darauf optimiert, Turbulenz zu
vermeiden.

Wirbel können auch an Unstetigkeiten in den Rand-
bedingungen entstehen, wie z.B. an den Enden
von Flugzeugflügeln. Unter bestimmten Bedingun-
gen sind Wirbel recht stabil und können über län-
gere Zeiten bestehen bleiben und dabei erhebliche
Distanzen zurücklegen.

2.11.12 Strömende Gase (Aerodynamik)

Bei der Diskussion der Strömung von Gasen muss
zusätzlich die Kompressibilität berücksichtigt wer-
den. Qualitativ bleiben die bisher diskutierten Ergeb-
nisse jedoch erhalten. Quantitative Ergebnisse sollen
hier auch nicht erhalten werden.

1

Druckverlauf 
um Tragflügel

Resultierende Kraft 
= Auftrieb + 
Luftwiderstand

anströmende 
Luft A

uf
tri

eb

Widerstand

Abbildung 2.173: Auftrieb an einem Flugzeugflü-
gel.

So kann z.B. der Auftrieb eines Flugzeugflügels
mit Hilfe der Bernoulli-Gleichung diskutiert wer-
den. Abb. 2.173 stellt schematisch einen Flugzeug-
flügel dar, welcher von Luft umströmt wird. Auf der
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Oberseite ist die Geschwindigkeit höher und dar-
um der Druck geringer als auf der Unterseite. Die
gesamte am Flügel angreifende Kraft besteht aus
der Auftriebskraft und der Widerstandskraft, welche
mit Hilfe eines Motors oder Triebwerks überwunden
wird.

Abbildung 2.174: Strömungsabriss.

Voraussetzung für diesen Effekt ist eine laminare
Strömung. Macht man den Anstellwinkel zu groß,
so wird die Strömung am hinteren Ende des Flügels
turbulent, wie in Abb. 2.174 gezeigt. Damit wird die
Geschwindigkeit geringer und der Druck höher, so
dass der Auftrieb “abbricht”. Man spricht vom Strö-
mungsabriss.

Ähnliche Strömungsprofile findet man auch bei Se-
gelbooten oder Windsurfern.

2.11.13 Der Magnus-Effekt

1

ω 
R 

voben

vunten punten

poben

v

F

Abbildung 2.175: Links: der Magnus-Effekt.
Rechts: Flettner-Rotor als
Schiffsantrieb.

Eine etwas andere Anwendung des Bernoulli’schen
Prinzips verwendet der Flettner-Rotor, der z.T. für
Segelschiffe verwendet wurde. Das zu Grunde lie-
gende Prinzip wird als Magnus Effekt bezeichnet.
Das Schiff verwendet senkrecht stehende Zylinder,
welche um ihre Achse rotieren (! Abb. 2.175).

Von der Seite anströmende Luft fließt dann aufgrund
der Oberflächenreibung bevorzugt in Drehrichtung
um den Zylinder. Auf der Vorderseite ist deshalb die
Strömungsgeschwindigkeit größer und der statische
Druck geringer. Das Schiff erhält damit eine Kraft in
Vorwärtsrichtung.

Die Geschwindigkeiten betragen

voben = v+wR ; vunten = v�wR,

mit R als Radius des Zylinders und v der Geschwin-
digkeit der Luft ohne den Rotor. Aus dem Bernoulli-
Gesetz folgt, dass der Gesamtdruck, bestehend aus
statischem plus Staudruck auf beiden -Seiten gleich
sein muss:

poben +
1
2

r(v+wR)2 = punten +
1
2

r(v�wR)2.

Somit existiert eine Druckdifferenz

Dp = poben� punten =�1
2

r(4wRv) =�2rwRv.

Diese Druckdifferenz ergibt eine antreibende Kraft

F = Ae f f Dp =�2RL(2rwRv) =�4R2Lrwv,

mit Ae f f = 2RL als Querschnittfläche des Zylinders
und L dessen Höhe.

Der Effekt kann in einem einfachen Experiment ge-
zeigt werden. Dazu wird eine Kunststoffrolle wie
ein Jojo an einer Schnur fallengelassen, so dass sie
sich dabei dreht. Dadurch erhält man die Kombina-
tion von Drehung und Relativgeschwindigkeit, wel-
che für den Magnus-Effekt benötigt werden: die Rol-
le fällt in einem Bogen.
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