2 Mechanik

2.1 Kinematik

2.1.1 Grundbegriffe

Die Mechanik ist der “klassischste” Teil der Physik,
sie umfasst diejenigen Aspekte die schon am lidng-
sten untersucht wurden.

Abbildung 2.1: Galileo Galilei (1564-1642)

Zu den wichtigsten Begriindern gehort Galileo Ga-
lilei (— Abb. 2.1), der wichtige Beitrdge zur expe-
rimentellen Untersuchung von Naturgesetzen (Me-
chanik, Astronomie) lieferte und vor allem sehr ge-
schickt war, deren Bedeutung und seine Beitrige
dazu offentlichkeitswirksam zu verbreiten. Zu den
wichtigsten Beispielen gehoren seine Fallversuche,
mit denen er zeigte, dass die Fallgeschwindigkeit fiir
alle Korper gleich ist.

Fiir die Verbreitung seiner Ideen verwendete er vor
allem seine “Dialoge” (— Abb. 2.2), in denen fiktive
Personen seine theoretischen Konzepte mit &lteren
Vorstellungen vergleichen.

Die eigentliche Formalisierung der Mechanik ist vor
allem Isaac Newton (— Abb. 2.3) zu verdanken,
welcher mit Hilfe weniger Grundprinzipien (“New-
tons Gesetzen”) den grof3ten Teil des damaligen phy-
sikalischen und astronomischen Wissens herleiten
konnte. Sein Hauptwerk sind die ‘“Philosophiae na-
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Abbildung 2.2: Titelseiten von Galileos Dialog iiber
die Weltsysteme.

turalis principia mathematica”, also die mathemati-
schen Grundlagen der Naturwissenschaft.

Die Mechanik kann aufgeteilt werden in die Gebiete

Statik: Zusammensetzung und Gleichgewicht von
Kriften.

Kinematik: Die Kinematik beschreibt Bewegungs-
prozesse quantitativ. Dabei wird die Ursache
der Bewegung nicht untersucht.

Dynamik: Effekt von Kriften auf die Bewegungs-
prozesse.

AuBerdem unterscheidet man Teilgebiete danach,
welche Objekte beschrieben werden. Im Folgenden
werden die meisten Konzepte mit Hilfe eines stark
idealisierten Modells diskutiert, dem Massenpunkt.
Weitere Klassen von Objekten sind starre und defor-
mierbare Korper.

2.1.2 Eindimensionale Kinematik

Wir beginnen mit eindimensionaler Kinematik, d.h.
mit einer Bewegung, welche mit einer einzigen Orts-
koordinate beschrieben werden kann, welche die Po-
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2 Mechanik

Abbildung 2.3: Isaac Newton (1642-1727).

sition des Korpers auf einer vorgegebenen Bahn be-
schreibt. Ein typisches Beispiel ist eine Eisenbahn
auf einem einzelnen Gleis: dieses kann gebogen
sein, aber die Position der Eisenbahn ist exakt be-
stimmt wenn man die Position beziiglich einem Ko-
ordinatennullpunkt angibt.

Ein Massenpunkt ist ein Modell fiir einen Korper,
dessen Ausdehnung fiir die behandelte Fragestellung
keine Rolle spielt. Die Bewegung des Massenpunk-
tes ist vollstdndig beschrieben, wenn man die Positi-
on s als Funktion der Zeit ¢ angibt. Dies erfolgt ma-
thematisch durch eine Funktion s(7) oder graphisch
durch ein Weg-Zeit Diagramm.
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Abbildung 2.4: Weg-Zeit Diagramm.

Die Geschwindigkeit v des Massenpunktes kann aus

dem Weg-Zeit Diagramm (— 2.4) durch Ableitung

bestimmt werden:

. As
y= lim —
Ar—0 At

_ds
Cdt

[v]

=
Graphisch ist die Geschwindigkeit durch die Stei-
gung der Kurve im Weg-Zeit Diagramm bestimmt.

Anstelle der instantanen Geschwindigkeit v(¢) inter-
essiert manchmal auch die mittlere Geschwindigkeit

_ As
V=
Im Weg-Zeit Diagramm ist dies die Steigung der di-
rekten Verbindung zwischen zwei Punkten.

Anstelle des Weges kann man auch die Ge-
schwindigkeit als Funktion der Zeit auftragen. Im
Geschwindigkeit-Zeit Diagramm ist die zuriickge-
legte Wegstrecke als Integral (=Flidche unter der Kur-
ve) gegeben:

gn:swy+43@0mk

Analog zur Definition der Geschwindigkeit als An-
derung des Ortes pro Zeiteinheit wird die Beschleu-
nigung als Anderung der Geschwindigkeit pro Zeit-
einheit definiert:

dv
a=—
dt

@ =5
Im Geschwindigkeit-Zeit Diagramm erscheint die
Beschleunigung als Steigung der Kurve, im Ort-
Zeit Diagramm als Kriimmung: Positive Kriilmmung
(nach oben) bedeutet positive Beschleunigung, ne-
gative Kriimmung Verzogerung (d.h. Abbremsung).
Die Geschwindigkeit ist durch das Integral der Be-

schleunigung gegeben:

t
wg:wm+/awww

0
Der Weg ist dementsprechend

a
r4 =1

s(t) = s(0) +v(0) 5
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2 Mechanik

2.1.3 Konstante Beschleunigung

Ein wichtiger Spezialfall ist die konstante Beschleu-
nigung, a(t) = a. Dazu gehort u. a. der freie Fall. Fiir
einen Korper, der sich zunéchst in Ruhe (vg = 0) am
Punkt s(0) = 0 befindet nimmt die Geschwindigkeit
bei konstanter Beschleunigung proportional zur Zeit
zu, v(t) = at. Der zuriickgelegte Weg ist deshalb

2.1)

Auf der Erdoberflache wirkt auf alle K&per eine kon-
stanten Beschleunigung nach unten mita = —g = -
9,81 ms 2 fiir ein Koordinatensystem, das senkrecht
nach oben zeigt.

Wir erwarten somit, dass der zuriickgelegte Weg
quadratisch mit der Zeit ansteigt. Im Ausdruck (2.1)
ist die Masse nicht enthalten, es fallen also alle Ob-
jekte mit der gleichen Beschleunigung und mit der
gleichen (zeitabhingigen) Geschwindigkeit.

I
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Abbildung 2.5: Experiment zum freien Fall: Es sind
jeweils Gewichte in unterschiedli-
cher Hohe montiert. Sie werden
gleichzeitig fallen gelassen.

Wir verifizieren die Vorhersage (2.1) anhand eines
Experimentes. Jeweils vier Gewichte werden in un-
terschiedlicher Hohe liber dem Boden aufgehidngt
und gleichzeitig losgelassen (— Abb. 2.5). An der
ersten Schnur sind die Gewichte im Abstand 0:1:2:3
(d.h. linear) angebracht : #;=(0; 1,6; 3,2; 4,8) m. Wer-
den diese gleichzeitig fallen gelassen, so erreichen

sie den Boden nach einer Zeit

2h;
ti= \/?: (0;0,57,0,81;0,99),

also mit abnehmenden Abstinden.

An der zweiten Schnur sind die Gewichte im Ab-
stand 1:4:9:16 (also quadratisch. Konkret betragen
die Hohen h;=(0,3; 1,2; 2,7; 4,8) m. Die Zeit bis sie
auf dem Boden auftreffen, sollte deshalb zu den Zei-
ten

2hy
f— \/> =(0,25,0,49,0,74,0,99)
8

auf dem Boden auftreffen. Der Abstand zwischen
2 aufeinanderfolgenden Ereignissen ist somit #; | —
t; = 0,25 s, fiir alle 3 Abstinde. Dies ldsst sich aku-
stisch tiberpriifen: im zweiten Fall treffen die Ge-
wichte etwa mit gleichen Abstidnden auf dem Boden
(d.h. der Metallplatte) auf.

Im Normalfall unterscheidet sich die Fallgeschwin-
digkeit unterschiedlicher Objekte: eine Feder und
ein Stein fallen nicht gleich schnell. Das liegt daran,
dass in der Beschreibung der Luftwiderstand nicht
beriicksichtigt wurde. Im Vakuum fallen die Objekte
aber wirklich mit gleicher Geschwindigkeit.

2.1.4 Senkrechter Wurf nach oben

Beschleunigung

[s(t) = 5(0) + v(0)t + 3;2]
/ 1 2

Anfangsort
Anfangsgeschwindigkeit

Abbildung 2.6: Das  Superpositionsprinzip:  An-
fangsort, Anfangsgeschwindigkeit
und Beschleunigung liefern unab-
hingige Beitrige.

Befindet sich der Korper zu Beginn nicht in Ru-
he, so wird die Bewegung aufgrund der Anfangsge-
schwindigkeit der Bewegung aufgrund der (gleich-
formigen) Beschleunigung iiberlagert. Man bezeich-
net dies als Superpositionsprinzip (— Abb. 2.6): der
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2 Mechanik

Anfangsort, die gleichformige Bewegung und die
gleichformige Beschleunigung konnen unabhingig
berechnet und die Resultate addiert werden.

Als Beispiel betrachten wir einen Korper, der von
einem Turm (Hohe Ay = 10 m) mit einer Anfangs-
geschwindigkeit v(0) = 5 m/s senkrecht nach oben
geworfen wird. Die Schwerkraft erzeugt eine zeit-
lich konstante Beschleunigung von a = —g = -9.81
m/s? nach unten.

Die Geschwindigkeit wird somit

v(t)=vo+at=(5-9.81t)m/s [t]=s

Der erste Term beschreibt die Anfangsgeschwindig-
keit und ist unabhéngig von der Zeit; dazu wird das
Produkt aus Beschleunigung und Zeit addiert.

Fiir den Ort (d.h. die Hohe h) erhalten wir

h(t) ho+vot +a /21> =

(1045 —4.9t))m. [f] =s.

Hier stellt der erste Term den Ausgangspunkt dar - er
ist zeitunabhédngig. Der zweite Term beschreibt den
Effekt der Anfangsgeschwindigkeit, und der dritte
Term ist auf die konstante Beschleunigung zuriick-
zufiihren.

Die maximale Hohe wird erreicht fiir v(¢) = 0:
5-9,81t, =0 — 1, =0,51s,
zum Zeitpunkt 7,,,. Sie betridgt dann

h(0,51s) = (1042.55—1.27)m = 11,28m.

Die Kugel trifft auf den Boden (4 = 0) auf wenn

h(t)) = 0=hg+vot+ gtz =
= 10451 —4.94,
d.h. bei
o vt /Vi+2¢ho 54251196
o = g - 9,81 -
54 14,87

9,81

t t2

& Héhg X[mMN\=

Zeit t[s]

Abbildung 2.7: Hohe als Funktion der Zeit.

Wie in Abb. 2.7 gezeigt, hat diese Gleichung zwei
Losungen:

t1 =2,03 und 1 =-1,01.

Wir miissen jetzt tiberpriifen weshalb wir zwei Lo-
sungen erhalten. Die erste (¢; > 0) ist diejenige die
wir suchen. Die zweite (, < 0) entspricht ebenfalls
einer Durchquerung des Bodens durch den Koérper
- allerdings bevor er vom Turm nach oben gewor-
fen wurde. Der Korper wiirde bei dieser Losung bei
t = 0 an der Spitze des Turmes eintreffen und an-
schlieBend die gleiche Kurve verfolgen wie der Kor-
per, der bei ¢t = 0 geworfen wurde. Man erhélt hiufig
mathematisch mehr Resultate als physikalisch sinn-
voll sind, wenn man die Randbedingungen nicht be-
riicksichtigt: in diesem Fall betrachten wir nur Zeiten
t>0.

2.1.5 Kinematik in zwei und drei
Dimensionen

In vielen Fillen findet Bewegung in mehr als einer
Dimension statt. Physikalische Groflen, die durch
Betrag und Richtung beschrieben werden, nennt man
Vektoren. In diesen Fillen wird die Position durch
zwei oder mehr Koordinaten beschrieben, also z.B.
x(t), y(t), z(¢). Dafiir muss ein Bezugssystem festge-
legt werden. Dieses besteht aus einem Bezugspunkts
O und gerichteten Orientierungslinien im Raum. Be-
ziiglich dieses Koordinatensystems ist eine Position
dann definiert durch einen Vektor 7 vom Ursprung
zum entsprechenden Punkt (— Abb. 2.8).

Grundsitzlich ist man frei in der Wahl der Koordi-
naten, doch sind hiufig kartesische Koordinatensy-
steme einfach zu handhaben. Dabei handelt es sich
um rechtwinklige Koordinatensysteme mit gleichem
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2 Mechanik

1l

Abbildung 2.8: Vektor und Koordinatensystem.

Mafstab in allen Richtungen. Die Bewegung eines
Massenpunktes in drei Dimensionen wird dann be-
schrieben durch einen Vektor
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Abbildung 2.9: Bahnkurve in 3D.

Tragt man den Weg als Kurve auf, so ist die Ge-
schwindigkeit ¥(z) an einem beliebigen Punkt 7(¢)
entlang der Tangente gerichtet, wie in Abb. 2.9 ge-
zeigt.

Ist die Beschleunigung eines Massenpunktes gege-
ben, so konnen Geschwindigkeit und Ort als Funk-
tion der Zeit fiir die Komponenten einzeln bestimmt
werden:

vV

) = #0)+ /O "Vt =

{vx(0),vy4(0),v,(0)} +
{[[atrar. [[atrar. [ awrar}.

Somit sind die drei Komponenten unabhéngig von-
einander.

_|_

Fiir den Fall konstanter Beschleunigung erhalten wir
wiederum

und

Abbildung 2.10: Schiefer Wurf.

Wir illustrieren dieses Verhalten anhand einer zwei-
dimensionalen Bewegung im Schwerefeld der Er-
de, d.h. mit konstanter Beschleunigung nach unten.
Abb. 2.10 zeigt ein Beispiel eines solchen Wurfs.
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2 Mechanik

Wir wihlen ein Koordinatensystem mit x in horizon-
taler und z in vertikaler Richtung (nach oben). Der
Korper sei zum Zeitpunkt ¢ = 0 bei

Die Anfangsgeschwindigkeit betrigt

ey cos
V(O)_V()( sino )

und die Beschleunigung

a‘:<_0g>

ist zeitlich konstant. Somit ist die Bewegung

F(t) = ot COSE ) 4 ﬁ 0
- O\ sina 2\ —¢
B Vot COS X,
o Vot sinot — %tz '

Wir konnen diese Kurve auch als Gleichung schrei-
ben. Die beiden Koordinaten ergeben 2 Gleichun-
gen:

2

X = Vot Cos &, z:votsinoc—ga.

Wir 16sen die erste Gleichung nach der Zeit ¢ auf:

X
=

Vo COS O

und setzen diesen Ausdruck in die zweite Gleichung
ein:

2 8

z=xtano — x> —2>——.
2v3cos? o

Kurven der Form z = ax + bx” stellen Parabeln dar.
In diesem speziellen Fall spricht man von der “Wurf-
parabel”. Abb. 2.11 zeigt ein Beispiel.

Vz (O) o

Abbildung 2.11: Bahnkurve des schiefen Wurfs.
An einigen Punkten sind auch
die Geschwindigkeitskomponenten
dargestellt.

Man kann sie z.B. durch einen Wasserstrahl sichtbar
machen, wie in Abb. 2.12 gezeigt. Wir betrachten zu-
nichst den einfachsten Fall dass das Wasser horizon-
tal austritt, d.h. o = 0. Die Gleichung reduziert sich
dann zu

S
= 55
2v;

d.h. eine nach unten offene Parabel. Im Experiment
tritt der Wasserstrahl horizontal aus der Diise aus und
fallt unter dem Einfluss der Gravitationsbeschleuni-

gung. Die roten Kreise markieren eine Parabel durch
die Werte (x/y) = (1/1), (2/4), (3/9), (4/16), (5/25) ...

Wird der Wasserstrahl gekippt, so wird & # 0 und
das Wasser erhilt eine Anfangsgeschwindigkeit in
vertikaler Richtung. Der Scheitelpunkt der Parabel
verschiebt sich dadurch nach rechts oben.

2.1.7 Unabhingigkeitsprinzip

Nicht nur die Anfangswerte von Beschleunigung,
Geschwindigkeit und Position gehen linear in die
Gleichung ein; wir haben auch gesehen, dass die ein-
zelnen Koordinaten voneinander unabhingig sind.
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Q

wird fallengelassen

wird horizontal
geworfen

Abbildung 2.13: Unabhingigkeitsprinzip.

Die bedeutet z.B., dass eine Kugel, welche aus 1
m Hohe fallengelassen wird, den Boden nach ¢ =
\/2s/a = 0.45s erreicht, unabhingig davon ob sie
sich zu Beginn in Ruhe befindet oder eine horizonta-
le Anfangsgeschwindigkeit aufweist. Abb. 2.13 zeigt
dies durch Vergleich der Trajektorien von 2 Kugeln.

Wir iiberpriifen dies, indem wir zwei Kugeln am
gleichen Hebel befestigen (— Abb. 2.14). Wird mit
dem Hammer darauf geschlagen, so fillt die eine
senkrecht hinunter, die andere in einer Parabel. Dass
beide gleichzeitig auf dem Boden auftreffen lasst
sich leicht akustisch verifizieren. Dies wird auch aus

Abbildung 2.14: Unabhingigkeitsprinzip: Eine Ku-
gel wird fallen gelassen, die ande-
re gleichzeitig horizontal geworfen.
Beide treffen gleichzeitig am Bo-
den auf.

der Vektorschreibweise der Bewegungsgleichung er-

(” )= )

2(1)

es handelt sich um zwei unabhéngige Gleichungen,
ohne Kopplungsterm. Das Unabhingigkeitsprinzip
besagt, dass sich die beiden Koordinaten unabhéngig
voneinander entwickeln. Dies gilt immer fiir gleich-
formig beschleunigte Bewegungen.

X0+ veot + S1°
20+ vaot + G1*

X, Z

Xx(t)

Zeit t

z(t)

Abbildung 2.15: Unabhéngige Zeitentwicklung fiir
2 Koordinaten im Schwerefeld.

Die x-Komponente der Geschwindigkeit ist kon-
stant, die x Koordinate wichst deshalb linear (in bei-
den Fillen; fiir die rote Kugel ist v, = 0).

Ein weiteres Experiment dazu ist der “Affenschuss”:
Wie in Abb. 2.16 gezeigt, schie3t ein Jager auf einen
Affen. Dieser lisst sich fallen, wenn er den Miin-
dungsblitz des Gewehrs sieht. Wohin muss der Jager
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y =vgyt —%gtz =h _%,2
Abbildung 2.16: Der ”Affenschuss”.

zielen um den Affen (Hohe A, Distanz xg) zu treffen?
Was ist der Einfluss der Anfangsgeschwindigkeit vo?
VernachlaBigt man zunéchst die Erdbeschleunigung,
so muss der Jager offenbar auf den Affen zielen um
ihn zu treffen, d.h. tana = h/xy. Die Flugzeit der
Kugel ist

X0

th = .
Vo cos O

Der zusitzliche Einfluss der Erdbeschleunigung ist
identisch fiir den Affen und die Kugel: Beide fal-
len um eine Strecke z = —gf3 /2. Die Kugel trifft so-
mit unabhiingig von der Miindungsgeschwindigkeit
wenn der Jiger richtig zielt und der Affe sich sofort
fallen ldsst.

g

Ort Geschwindigkeit Beschleunigung
nt) v(t) at)

W N
[ at’

Abbildung 2.17: Zusammenfassung der Kinematik.

Im Sinne einer kurzen Zusammenfassung soll Abb.
2.17 nochmals daran erinnern, was das Thema der
Kinematik ist: Es geht um die Beziehung zwischen
Ort, Geschwindigkeit und Beschleunigung, welche
aus einander durch Differenzieren, resp. Integrieren
hergeleitet werden konnen. In vielen Fillen gilt dies

fiir die verschiedenen Raumdimensionen unabhin-
gig voneinander.

2.2 Dynamik von Massenpunkten

Die Dynamik befasst sich mit der Bewegung, welche
von Kriften erzeugt und geéndert wird.

2.2.1 Definitionen

Die wichtigsten Grundbegriffe der Dynamik sind die
Masse, der Impuls und die Kraft.

Masse ein Mal fiir den Widerstand eines Korpers
gegen Bewegungsidnderungen. Sie ist unabhén-
gig vom Ort und vom Bewegungszustand. Da-
mit ist sie auch ein geeignetes Mal} fiir die
Stoffmenge. Das iibliche Symbol ist iz und die
SI-Einheit ist 1 kg. Man unterscheidet manch-
mal zwischen der trigen Masse (siche oben)
und der schweren Masse, welche ein Mal} fiir
die Schwerkraft ist. Experimentell findet man
keinen Unterschied zwischen schwerer und tri-
ger Masse und die Relativititstheorie zeigt,
dass sie sich nicht unterscheiden.

Impuls pist ein MaB fiir die Bewegung. In der klas-
sischen Mechanik ist er gegeben durch das Pro-
dukt aus Geschwindigkeit und Masse, p = mv.
Er ist somit eine vektorielle Gro3e parallel zur

Geschwindigkeit. Seine Einheit ist m kg s~

Kraft F ist ein MaB fiir die Fihigkeit, eine Bewe-
gungsinderung zu erzeugen. SI-Einheit: N =m
kg s 2.

Zwei Experimente sollen das Konzept der Masse
veranschaulichen. Im ersten Experiment ist an ei-
ner Masse oben und unten jeweils eine gleich starke
Schnur befestigt. Zieht man an der unteren Schnur
langsam, so reisst die obere Schnur, da hier die Ge-
wichtskraft des Masse zusétzlich zur Zugkraft wirkt.
Zieht man schnell, so reisst die untere Schnur, da die
Tragheit der Masse verhindert, dass die Zugkraft auf
die obere Schnur iibertragen wird.

Die Trégheit der Masse kann auch dazu fiihren, dass
ein Gegenstand in Ruhe bleibt, wenn die Kraft dar-
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auf nur fiir eine kurze Zeit wirk. In diesem Expe-
riment wird ein Besenstiel auf 2 Trinkgldsern gela-
gert. Schldgt man langsam auf den Stiel, so wird der
Stof auf die Glédser iibertragen und sie zerspringen.
Schldgt man jedoch schnell genug darauf, so zer-
bricht der Besenstiel, da er nicht genug Zeit hat, den
Stof auf die Glaser an den Enden zu iibertragen.

2.2.2 Newton’sche Axiome

Die Grundlage fiir die hier behandelte Mechanik
wurde im Wesentlichen von Newton' gelegt. Sei-
ne Publikation der mathematischen Grundlagen der
Physik markierte den Ubergang von der peripateti-
schen Dynamik, welche auf die griechischen Phi-
losophen zuriickgeht, zur Newton’schen Dynamik,
welche heute als klassische Mechanik bezeichnet
wird. Thr Grundlage sind die drei Newton’schen
Axiome:

Tragheitsgesetz: Ein Korper, auf den keine dufe-
ren Krifte wirken, behilt seine Geschwindig-
keit nach Richtung und Betrag bei. Mathema-
tisch:ﬁzO%%sz.

Abbildung 2.18: Experimentelle Verifikation von
Newton’s Axiomen: Bewegung auf
einer Luftkissenschiene.

Die Bedingung, die in diesem Axiom enthalten ist,
ist in der Praxis natiirlich nur sehr schwer zu rea-
lisieren. Man kann sie in einem Demonstrationsex-
periment ndherungsweise verwirklichen, indem man

saac Newton, 1642 — 1727

einen Korper auf einem Luftkissen laufen ldsst und
so Reibungskrifte sehr gering hilt. An zwei Stel-
len dieser Schiene wird jeweils gemessen wie lan-
ge der Korper die Fotozelle verdunkelt, wie lange er
also braucht um eine Strecke zuriickzulegen, die sei-
ner eigenen Linge entspricht. Wir erwarten eine Zeit
t ={/v, wobei / die Linge des Korpers darstellt. Die
gemessene Zeit ist somit indirekt proportional zur
Geschwindigkeit, eine Anderung der Geschwindig-
keit erscheint als eine Anderung der Zeit. Das Ex-
periment zeigt, dass die gemessenen Zeiten in etwa
konstant sind.

Das zweite Newton’sche Axiom ist das

Aktionsgesetz = Grundgesetz der Mechanik: Die
zeitliche Anderung des Impulses p = myv ist
gleich der resultierenden Kraft F':

dp -

—=F.

dt
Dieses Axiom kann auch als Definition einer
Kraft betrachtet werden.

Im Experiment von Abb. 2.18 wirkt die Kraft die
Korper am Umkehrpunkt; dies geschieht durch zwei
Federn, welche am Wagen, resp. an der Schiene be-
festigt sind.

Das dritte Newton’sche Axiom ist das

Wechselwirkungsgesetz (actio = reactio): Wirkt
ein Korper 1 auf einen Korper 2 mit der Kraft
Fi5 so wirkt der Korper 2 auf den Korper 1 mit

der Kraft
ﬁzl = _F12>

d.h. mit gleichen Betrag und umgekehrter Richtung.
Krifte treten somit immer paarweise auf.

Dieses Prinzip kann in einem einfachen Experiment
verifiziert werden. Dabei werden nicht direkt die
Krifte gemessen, sondern das Integral der Krifte.
Aus

d
F=2
dt
folgt
15}
/ Fdt =Ap=p(t) —pt1),

4]
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d.h. die gesamte Wirkung der zeitabhingigen Kraft
F ist eine Impulsidnderung Ap. Sind die beiden Kréf-
te zu jedem Zeitpunkt entgegengesetzt so sind auch
die Impulsidnderungen entgegengesetzt.

Dies kann sehr schén an Wagen auf einer Luftkissen-
schiene gezeigt werden, z. B. indem man die beiden
Wagen zunichst in Ruhe starten, wobei eine Feder
zwischen ihnen komprimiert ist, die eine abstoBen-
de Kraft erzeugt. Dadurch werden sie in entgegen-
gesetzte Richtungen beschleunigt. Sind beide gleich
schwer so erhalten sie auch die gleiche (entgegen-
gerichtete) Geschwindigkeit, wie die Messung durch
die beiden Lichtschranken ergibt. Wird die Masse
des einen Wagens verdoppelt, so bewegt sich die-
ser langsamer; seine Geschwindigkeit ist nur halb so
grof} wie diejenige des leichteren Wagens, und damit
haben beide den gleichen Impuls,

Vi
mypvy = 2m15 =mvy.

2.2.3 Kraft und Beschleunigung

Abbildung 2.19: Newton’s 3. Axiom: der Apfel er-
fihrt die gleiche Kraft wie die Erde.

Gemal dem 3. Newton’schen Axiom ist die Kraft,
welche ein Apfel auf die Erde ausiibt, gleich grof3
wie die Kraft, welche die Erde auf den Apfel ausiibt
(— Abb. 2.19). Wenn der Apfel zur Erde fillt muss
demnach auch die Erde in Richtung auf den Apfel
fallen. Weil gemall dem zweiten Axiom die Kraft ei-
ne Impulsidnderung erzeugt,

dp  dv

F="=m—
dt mdt’

ist jedoch bei gegebener Kraft die Geschwindigkeits-
dnderung indirekt proportional zur Masse,

-

@ _F
dt  m’

Wegen der Grofle der Erdmasse ist deshalb die Be-
schleunigung sehr gering.

Ein analoges Beispiel ist das eines Liufers, der zu ei-
nem Spurt startet. Dafiir beschleunigt er mit a = 0,5
m/s?. Seine Masse sei m=100 kg. Er bendtigt somit
eine Kraft von F = am =50 mkgs 2= 50N. Die glei-
che Kraft wirkt in entgegengesetzter Richtung auf
die Erde. Diese wird deshalb ebenfalls beschleunigt,
in entgegengesetzter Richtung, mit

50N 50N

m
= =8.3-1074=.
MErde 6- 1024kg ’ 2

S

AErde =

Auf Grund der hohen Masse ist somit die Beschleu-
nigung der Erde sehr gering.

2.2.4 Zusammenfassung und Giiltigkeit

O Tragheitsgesetz : v = const.
ohne auRere Kraft

O Aktionsgesetz : dp/dt = F

@ Actio = Reactio : Fi. = -F

Voraussetzungen:

Isaac Newton,
1642 — 1727

@ Inertialsystem (d.h. nicht beschleunigt)

@ Kleine Geschwindigkeiten, v « ¢

Abbildung 2.20: Newton und seine Axiome.

Diese drei Grundgesetze, zusammengefasst in Abb.
2.20, sind die wichtigsten Grundlagen fiir die Dyna-
mik. Thre Einfithrung fiihrte zu einer radikalen Ver-
einfachung der Physik und Astronomie.

Die Giiltigkeit der Newton’schen Axiome definiert
den Bereich der klassischen Mechanik:
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e Die Zeit ist absolut und unverinderlich und
hingt nicht von der Bewegung und dem Ort
ab.

* Es gibt einen “absoluten Raum”, d.h. ein ab-
solut ruhendes System, in dem alle Bewe-
gungsabliufe stattfinden.

* Die Eigenschaft “Masse” eines Korpers geht
nie verloren oder entsteht aus dem Nichts.
“Masse” ist unabhingig vom Bewegungszu-
stand und bleibt erhalten.

Der experimentelle Befund ist, dass diese drei Axio-
me gelten, sofern folgende Bedingungen erfiillt sind:

* Das Bezugssystem ist nicht beschleunigt; Be-
zugssysteme, in denen die drei Axiome gelten,
werden als Inertialsysteme bezeichnet.

* Die (relativen) Geschwindigkeiten der Korper
sind klein im Vergleich zur Lichtgeschwindig-
keit (Relativititstheorie).

2.2.5 Masse

Das 2. Newton’sche Axiom kann auch als Definiti-
on der Masse betrachtet werden: Die trige Masse my,
stellt den Widerstand eines Korpers gegen eine Be-
wegungsinderung dar:

o d7T

F = m,ﬁ.

Die heute noch giiltige Einheit der Masse ist gege-
ben durch das Ur-Kilogramm, einen Platin-Iridium
Zylinder, welcher in Paris aufbewahrt wird. Kopien
davon existieren in verschiedenen Lindern, unter an-
derem bei der PTB in Braunschweig.

Eines der Probleme mit dieser Definition des Kilo-
gramms liegt darin, dass es nicht perfekt stabil ist.
Abb. 2.21 zeigt, wie sich die Masse von unterschied-
lichen Kopien des Urkilogramms als Funktion der
Zeit dndert. Es ist davon auszugehen, dass das Urki-
logramm selber #hnlichen Anderungen unterliegt.

Um solche Probleme zu vermeiden, hat man inzwi-
schen die meisten Grundeinheiten so definiert, dass
sie Funktionen von Naturkonstanten sind, welche

(oo
Official copies

60 =K1 —137)

-7

40 == 8(41) 47 i

Mass change (micrograms)

—40 v [reee e e P e frees ISR REPIPS [ e e [ REPPR ¢
1880 1900 1920 1940 1960 1980 2000 2020

Abbildung 2.21: Variation der gemessenen Masse
von unterschiedlichen Kopien des
Ur-Kilogramm:s.

iberall gemessen werden konnen. In nichster Zeit
soll dies auch bei der Masseneinheit (dem kg) ge-
schehen. Die vorgeschlagene Neudefinition der SI-
Einheit lautet

Ein Kilogramm ist die Planck’sche Konstante, di-
vidiert durch 6,626070040 - 10~3* m/s2.

Mit dieser Definition kann iiberall ein Vergleich
durchgefiihrt werden. Das dafiir notwendige Instru-
ment wird als Watt-Waage bezeichnet.

Die Masse spielt nicht nur beim 2. Newton’schen
Axiom eine wichtige Rolle, sie ist auch die relevante
GroBe bei der Schwerkraft. Die Anziehung zwischen
zwei Massen M und m; betragt

- M
F=-G r’;“*, (2.2)
mit der Gravitationskonstante
N 2 3
G=667-107" - —6.67-107" .
kg kgs

Wegen der geringen Stérke der Gravitationswechsel-
wirkung ist eine entsprechende Messung sehr auf-
windig und bedarf guter Planung um Fehler zu ver-
meiden. Die Masse m; in Gleichung (2.2) wird als
schwere Masse bezeichnet.

2.2.6 Schwere und trige Masse

In der klassischen Physik sind die schwere und
die trige Masse zunichst voneinander unabhingige
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Experimentator Jahr Methode
(10" N - m¥/kg?)

Cavendish 1798 Torsionswaage, Ablenkung 6,754
Poynting 1891 Gewdohnliche Waage 6,698
Boys 1895 Torsionswaage, Ablenkung 6,658
von Edtvds 1896  Torsionswaage, Ablenkung 6,65
Heyl 1930 Torsionswaage, Periode

Gold 6,678

Platin 6,664

Glas 6,674
Zahradnilek 1933 Torsionswaage, Resonanz 6,659
Hey! und Chrzanowski 1942 Torsionswaage, Periode 6,673
Luther und Towler 1982 Torsionswaage, Periode 6.6726

Abbildung 2.22: Gemessene Werte der Gravitations-
konstanten G.

GroBen. Fillt ein Korper im Schwerefeld der Erde,
so lautet die Bewegungsgleichung

o
Ydt”

dp

Fe =msg = dr

Somit taucht die schwere Masse m; wie auch die tra-
ge Masse m; in der Gleichung auf. Berechnet man
die Beschleunigung

dv my

a=—= —,
dt gm[

(2.3)
so ist diese proportional zum Verhiltnis von schwe-
rer zu trager Masse. In den meisten Fillen gibt es
keinen Grund, zwischen schwerer und triger Masse
zu unterscheiden, man setzt deshalb m; = m; = m.

Abbildung 2.23: Atwood’sche Fallmaschine.

Es gibt aber auch Prozesse, bei denen die schwe-
re und die trige Masse unabhiingig veridndert wer-
den konnen. Ein Beispiel dafiir ist die Atwood’sche
Fallmaschine, welche 1784 von George Atwood ent-
wickelt wurde, um die Gesetze der gleichmaBig
beschleunigten Bewegung zu untersuchen. Mit ihr
kann man mit einfachen Mitteln statt der Fallbe-
schleunigung eine beliebig verringerte Beschleuni-

gung erhalten. In der Version von Abb. 2.23 be-
steht sie aus einer Masse M, welche horizontal be-
wegt wird. Eine weitere Masse m wird vertikal be-
wegt. Diese hidngt im Schwerefeld der Erde und un-
terliegt somit der Gravitation. Beschleunigt man das
System, so muss die Gesamtmasse M + m beschleu-
nigt werden; zur Gewichtskraft trigt jedoch nur die
Masse m bei. Die Bewegungsgleichung ist deshalb

F = (M+m)a:(M+m)d—2x:mg.
dt?
d*x _ m
arr M—i—mg'

Die Beschleunigung ist somit um das Verhiltnis aus
schwerer zu triger Masse skaliert.

Integration liefert fiir x(0) = 0, dx/dt(0) =0

dr M+mg

1 m 2
t = ——U091".
X(t) 2M+m

Im Experiment wird die Zeit gemessen, welche der
Schlitten benétigt, um eine Distanz von x = 2 m zu-
riickzulegen. Theoretisch sollte dies

. /2x_ 2xM+m
Voa g m

M/g | m/g | (M+m) | a/ms? t/s t/s
g berechnet | berechnet | gemessen

218 | 20 238 0,824 2,203 2,24
40 258 1,521 1,622 1,63

436 | 40 476 0,824 2,203 2,21
50 516 1,521 1,622 1,62

Tabelle 2.1: Resultate eines Experiments mit der At-
wood’schen Fallmaschine.

Tabelle 2.1 zeigt die Resultate eines entsprechenden
Experiments.

In diesem Experiment tragen zwei Korper zur trigen
Masse m, bei, aber nur einer zur schweren Masse
my. Betrachtet man jedoch einzelne Korper, so fin-
det man experimentell, dass seine schwere und trige
Masse immer proportional zueinander sind, m; o< m;.

41



2 Mechanik

Es ist deshalb praktisch, die beiden Massen gleich
zu setzen, m; = m; = m. In Gleichung (2.3) kann die
Masse deshalb eliminiert werden. Dieses sogenannte
Agquivalenzprinzip wird im Rahmen der allgemeinen
Relativitétstheorie zu einem Axiom.

2.3 Kriifte in der Dynamik

2.3.1 Krifte und Felder

Krifte sind aus der Statik bekannt, welche im We-
sentlichen auf dem Gleichgewicht der Krifte be-
ruht. In der Dynamik sind die Kréfte die Ursache fiir
Bewegungsinderungen. Geméfi dem Newton’schen
Axiom konnen Krifte iiber die von ihnen erzeugte
Impulsénderung beschrieben werden:

dp
F=—.
dt
Damit ist die entsprechende Einheit

mkg
= —— = N = Newton.

F=55

Die Schwerkraft, die z.B. im Schwerefeld der Erde
auf einen Korper wirkt, ist geméal (2.2) proportional
zur Masse des Korpers. Die resultierende Beschleu-
nigung ist

1

dv 1dp
= —_—— —mgo = .

= F =
dt  mdt

R 1
a= —
m

Hier ist g die Erdbeschleunigung

o Gmegde

2
TErde

Damit ist die induzierte Impulsédnderung proportio-
nal zur Masse, wéhrend die Beschleunigung unab-
hingig von der Masse ist. Dieser Effekt wird im
Allgemeinen davon iiberdeckt, dass unterschiedliche
Luftreibung vorliegt, kann aber im Vakuum gezeigt
werden. In Abb. 2.24 werden ein Apfel und eine Fe-
der im Vakuum fallen gelassen. Die einzelnen Auf-
nahmen zu unterschiedlichen Zeiten zeigen, dass sie
gleich schnell fallen.

Abbildung 2.24: Freier Fall eines Apfels und einer
Feder im Vakuum.

In der Gravitation wirkt offenbar eine Kraft zwi-
schen zwei rdumlich getrennten Objekten. Dies wur-
de lange als unplausibel betrachtet, so z.B. Newton
in einem Brief an Bentley 1692. Man versuchte dies
durch das Konzept des Feldes zu iiberbriicken. Die-
ses Feld wird von einer Quelle erzeugt und wirkt auf
alle Korper, welche eine bestimmte Eigenschaft be-
sitzen und sich in dem Feld aufhalten. Beispiele sind
elektrische Felder, welche von elektrischen Ladun-
gen erzeugt werden und auf elektrische Ladungen
wirken, oder Gravitationsfelder, welche von Masse-
behafteten Korpern erzeugt werden und auf massive
Korper wirken. Beispiel: Die Gleichung (2.2) kann
man so interpretieren, dass die Masse M ein Gravi-
tationsfeld

M
—T

Ec=-G
G 3

erzeugt. Das Feld ist somit unabhéngig von der Mas-
se, auf die es wirkt und stellt eine Verallgemeinerung
der Kraft dar. Bringt man die Masse m in dieses Feld,
so wirkt darauf eine Kraft

o . Mm
FG = EGm = —GTT;
I
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2.3.2 Elementare und phinomenologische
Kriifte

Man unterscheidet zwischen elementaren Kriften,
welche durch eine kleine Zahl von physikalischen
Grundgesetzen beschrieben werden, und phédnome-
nologischen Kriften, welche zu Vereinfachung von
komplizierten Zusammenhingen eingefiihrt werden.

Wechselwirkung Tragerteilchen  Beispiel
%>
elektromagnetische Photon Ui g
b
4
starke Gluon @
schwache W, Z
Gravitation Graviton

Abbildung 2.25: Die vier fundamentalen Wechsel-
wirkungen.

In der Natur kommen 4 elementare Wechselwirkun-
gen vor: die elektromagnetische (wobei im Rahmen
dieser Vorlesung hier elektrische und magnetische
Krifte meist getrennt behandelt werden), die star-
ke, die schwache Kernkraft und die Gravitations-
Wechselwirkung (— Abb. 2.25). Fiir den Alltag sind
nur die elektrischen und magnetischen Krifte, sowie
die Schwerkraft relevant. Elektrizitit und Magnetis-
mus werden im Kapitel 4 behandelt.

Bild 15: Schema der Vereinigung aller Kréfte in

UCHTOPTIK "
der Natur aus heutiger Sicht

(ECevFea]

stmu:m'n | l mmm I

o«mnmm& e I
mnrrumnu

|
|
|
)

FELOTHEORIE DER.
SCHWACHEN KRAFT
w'w

(QUANTEN -

Li.(l‘mvuwll ]
o
VEREINHE I TLICHTE
SCHWACHE ELEKTROMAGNETISCHE KRAFT
hﬂlm;ﬂ‘i‘,ﬁ!' B

— ENAEITLICHE
ﬂUANTEHEIEHluDIMkﬂHIL
[ EINHEITLICHE URKRAFT 2

Abbildung 2.26: Vereinheitlichte  Beschreibungen
der fundamentalen Wechselwir-
kungen.

Zu den groBten Erfolgen der physikalischen For-
schung des letzten Jahrhunderts gehort die erfolg-
reiche Vereinheitlichung der Beschreibung dieser
Wechselwirkungen. Abb. 2.26 fasst die entsprechen-
den Stufen zusammen.

Dehnung eines Drahtes Gemessene Abhangigkeit

Draht

Y
°

AXE
F

Abbildung 2.27: Phinomenologische Kraft einer Fe-
der.

=

Dehnung Ax

| -Gewicht

Kraft F

Dariiber hinaus verwendet man jedoch auch soge-
nannte phdnomenologische Wechselwirkungen, wie
z.B. die Kraft einer Feder, welche grundsitzlich
auf die fundamentalen Wechselwirkungen zuriickge-
fiihrt werden kann. Héufig ist diese Riickfiithrung je-
doch sehr kompliziert und aufwindig, so dass man
sich mit einer phdnomenologischen Beschreibung
begniigt. Dazu gehoren z.B. elastische Krifte, wie
bei einer Feder. Wie in Abb. 2.27 gezeigt, findet man
iber einen gewissen Bereich oft eine lineare Bezie-
hung,
et
D

mit der Federkonstanten D.

2.3.3 Reibungskriifte

Eine weitere Gruppe von phinomenologischen Krif-
ten sind Reibungskrifte. Diese findet man immer
dann, wenn Korper sich beriithren und sich relativ
zueinander parallel zur Kontaktfliche bewegen. Die
Krifte wirken entgegen der Bewegungsrichtung, d-
h. sie hemmen die Bewegung. Reibung kann auf un-
terschiedliche Weise reduziert werden, z.B. durch
die Verwendung einer Luftkissenschiene.

Man unterscheidet zwischen Gleitreibung und Haft-
reibung. Haftreibung fithrt dazu, dass ein Korper
sich nicht bewegt, wenn die daran angreifende Kraft
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geringer ist als die Haftreibung. Gleitreibung ent-
steht, wenn ein Korper sich gegeniiber einer Unter-
lage oder einem Medium bewegt. Sie ist der Bewe-
gungsrichtung entgegengesetzt und hiingt von der re-
lativen Geschwindigkeit zwischen Korper und Um-
gebung ab. Man unterscheidet

AuRere Reibung/Festkorperreibung. Bei Fest-
korpern, dies sich auf einer festen Unterlage
bewegen. Hier ist die Reibungskraft Fg (in ge-
wisser Ndherung) proportional zur Normalkraft
Fy, mit der der Korper auf die Unterlage driickt:

Fr = ‘UFN.

Die Proportionalititskonstante y wird als Reibungs-
zahl bezeichnet; sie ist unabhingig von der (makro-
skopischen) Kontaktfliche und von der Geometrie.
Man unterscheidet zwischen Gleitreibung und Haft-
reibung, wobei die erstere sich auf bewegte Korper
bezieht, die zweite auf ruhende. Typische Reibungs-
koeffizienten liegen im Bereich von 0.1 bis 0.5, wo-
bei Extremwerte deutlich kleiner, aber auch grofer
als 1 werden konnen.

des
standes mit Hilfe eines Federkraft-
messers.

Abbildung 2.28: Messung Reibungswider-

Abb. 2.28 zeigt ein Experiment, bei dem man die
Stirke der Reibung iiber eine Federwaage misst.
Man findet, dass die Haftreibung groBer ist als die
Gleitreibung und dass die Gleitreibung mit dem Ge-
wicht des Korpers zunimmt.

Die Haftreibung kann man messen, indem man einen
Korper auf eine geeignete Unterlage stellt, deren
Neigung variiert werden kann (— Abb. 2.29). Bei
der Neigung 6, bei der der Korper zu rutschen be-
ginnt, halten sich die Reibungskraft Fg = tsN mit
dem Reibungskoeffizienten pg und der Normalkraft

Korper

Fy=mgsin® /
) /N =mgcos®

Hubvorrichtung

Abbildung 2.29: Haftreibung auf einer schiefen Ebe-
ne.

N = mgcos 0 die Waage. Somit ist

_ Fg  mgsin6

Us =tan6.

N  mgcos@

Somit kann der Reibungskoeffizient als Tangens des
Neigungswinkels bestimmt werden.

Gleitreibung  Haftreibung

Flichen 178 Us
Glas auf Glas 0.4 09-1
Glas auf Metall 0.2-0.3 0.5-0.7
Metall auf Metall 03-1
Stahl auf Stahl 0.6 0.7
Stahl auf Stahl
Mit Ol dazwischen 0.03-0.11  0.05-0.13
Teflon auf Metall 0.04 0.04
Gelenk mit Gelenk- 0.003
fliissigkeit sehr klein !
Gummi auf Beton 0.25 03
|(naB3)
Gummi auf Beton 0.8 1- 4
(trocken) z.B. Reifen

Tabelle 2.2: Heft- und Gleitreibungskoeffizienten
fiir unterschiedliche Materialien.

Tabelle 2.2 zeigt Haft- und Gleitreibungskoeffizien-
ten fiir unterschiedliche Paare von Materialien.

2.3.4 Dynamik mit Reibung

Gleitet ein Korper auf einer schiefen Ebene mit Nei-
gung o (— Abb. 2.31), so hat die Schwerkraft eine
Komponente

F =mgsina

entlang der Bewegungsrichtung, welche den Koérper
beschleunigt. Ohne Beriicksichtigung der Reibung
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bewegt sich ein zundchst ruhender Korper mit der

Geschwindigkeit
v=at =gsinozt. 2.4)

Den zuriickgelegten Weg erhilt man durch Integrati-
on:

! sin ott?
§= = .
28

Beriicksichtigt man auch die Reibung, so wirkt zu-
siatzlich eine bremsende Kraft F,, welche in be-
stimmten Féllen ndherungsweise proportional zur
Geschwindigkeit ist,

F.=—bv.
Setzt man dies in die Bewegungsgleichung ein,
) b
a=gsino——vy
m

und integriert, dann erhilt man fiir die Geschwindig-

keit
(1 _ e*bt/m) .

Fiir kurze Zeiten, t < m/b, entspricht das dem rei-
bungsfreien Fall (2.4). Fiir lange Zeiten nihert sich
die Geschwindigkeit dem Grenzwert

__ mgsino
b

v(t)

mgsin o
b

lim ve,
t—>o0

Dieser Grenzwert hingt offenbar von der Masse des
Korpers ab.

Neben dieser duBleren Reibung ist auch die “innere
Reibung” in Fliissigkeiten und Gasen wichtig. Diese
wird in Kap. 2.11.6 diskutiert.

2.3.5 Krifte als Vektoren

Krifte sind Vektoren und konnen vektoriell addiert
werden:

=

F, ges — ﬁ 1+ ﬁ 2
oder allgemein

ﬁges - Zﬁl
i

Abbildung 2.30: Vektorielle Addition von Kriften.

Im Gleichgewicht verschwindet die resultierende
Kraft, Fg.s = 0.

Im Beispiel von Abb. 2.30 rechts sind die Krifte,
welche am Knoten in der Mitte angreifen, in Kom-

ponentenschreibweise
Fi=F ) B=F :
1 1 ( sina ) 2=1I < )
0

E:g(l)

Im Fall von Abb. 2.30 rechts konnen aus der Gleich-
gewichtsbedingung die beiden Winkel o und 3 be-
rechnet werden. Fiir die horizontale und die vertika-
le Komponente muss jeweils die Summe der Krifte
verschwinden:

cosf

sin 3

—Ccos

Ficoso
F3

F>cos 3
Fisino+ Fasin .

Aus diesen 2 Gleichungen konnen « und 3 bestimmt
werden.

mgsino

Abbildung 2.31: Gleiten eines Korpers auf einer
schiefen Ebene.

Umgekehrt konnen Krifte in Komponenten zerlegt
werden. Fiir den Fall eines Wagens auf einer schie-
fen Ebene (—Abb. 2.31) kann die Gewichtskraft

45



2 Mechanik

ﬁg = mg zerlegt werden in die Normalkraft F“], wel-
che den Wagen auf die Fahrbahn driickt, und die
Hang-Abtriebskraft F}, welche die Dynamik be-
wirkt. Thre Betrédge sind

-

mgcos

mgsin .

Abbildung 2.32: Rakete beim Start.

Raketen (— Abb. 2.32) bewegen sich im Weltraum
und konnen beschleunigen, ohne dass dufiere Krif-
te auf sie wirken. Wie ist dies mit dem Impulssatz
vereinbar?

Systemgrenze

Abbildung 2.33: Modell einer Rakete.

Raketen erzeugen Schub indem sie einen Treibstoff
mit moglichst hoher Geschwindigkeit nach hinten
ausstoflen. Die Impulserhaltung gilt fiir das Gesamt-
system Rakete plus Treibstoff (Vorrat in der Rakete
plus ausgestoBener Teil). Der Treibstoff wird nach
hinten beschleunigt, mit einer Kraft, welche gemif
dem dritten Newton’schen Axiom gleich stark die
Rakete nach vorn beschleunigt. Dadurch @ndert sich
sowohl die Masse wie auch die Geschwindigkeit der

Rakete: im Zeitinterval dr dndert sich die Masse m
der Rakete um dm (mit dm<0) und die Geschwin-
digkeit v um dv (>0).

Man betrachtet ein Gesamtsystems, bestehend aus
Rakete plus ausgestoflener Treibstoff (— Abb. 2.33)
und vernachlidBigt zunidchst die Gravitation. Dann
gilt fiir dieses System Impulserhaltung:

-

dp =

pt+dt) = p(1)

Hier stellt vy die Geschwindigkeit des Treibstof-
fes dar. Man definiert die Geschwindigkeit v,.; des
Treibstoffs relativ zur Rakete als

Vyer = V1 — (V+dV)
und erhalten damit die Raketengleichung

dp =mdV—dmv,,; =0.

Die Losung dieser Differentialgleichung lautet fiir
Anfangsgeschwindigkeit vy, konstante Austrittsge-
schwindigkeit des Treibstoffes und konstante Rate
des Treibstoffausstofles

— — — my
Vend = V0 + Vrel In )
end

wobei mg die Anfangsmasse bezeichnet und m,,; die
verbleibende Masse bei Brennschluss.

61

Vend/Vrel

. Lo mo
Uend = Vo + Uper In
end

———t—r—r— ;
0.6 0.8 1.0
Nutzlast / Gesamtmasse

i
0 0.2

Abbildung 2.34: Endgeschwindigkeit der Rakete als
Funktion der Nutzlast.

46



2 Mechanik

Man kann somit beliebig hohe Geschwindigkeiten
erreichen: Allerdings nimmt das verbleibende Ge-
wicht (d.h. die Nutzlast) exponentiell mit der Ge-
schwindigkeit ab, wie in Abb. 2.34 gezeigt.

In der theoretischen Analyse wurde die Schwerkraft
nicht beriicksichtigt. Startet die Rakete von der Erde,
so muss noch die Schwerebeschleunigung abgezo-
gen werden. Damit wird die resultierende Beschleu-
nigung und Geschwindigkeit deutlich niedriger.

2.3.7 Beispiele

Als Beispiel betrachten wir die erste Stufe der Sa-
turn V Rakete des Apollo Programms. Ihre AusstoB3-
geschwindigkeit v,,; betrug 2220 m/s, die Startmasse
mo = 2,95-10° kg, die Nutzlast 27% davon, und die
Brenndauer 130 s. Bei konstantem Massestrom be-
trug dieser

0,73
130s

dm kg

= 16565 —=
dt

Dies entspricht einem Schub

d
d—’?vml = 16565-2220N = 36,8 MN.

Damit war die Anfangsbeschleunigung am Boden

dv
dr

yd’" el 2,66 .
mo N

Am Ende der Brenndauer ist die Beschleunigung

dv dm Vrel m
= =36,4—.
dt | Mend s?
Die Endgeschwindigkeit betrigt
Vend = —8lp+Vyerln—2 = —1275 42906
end S

K
1,632
S

Ein einfaches Modell einer Rakete, wie in Abb. 2.35,
zeigt bereits die wichtigsten Merkmale. Diese Mo-
dellrakete kann mit Luft oder Wasser als Treibstoff
verwendet werden, wobei die Relativgeschwindig-
keit in beiden Fillen durch Aufpumpen mit Druck-
luft erzeugt wird. Nach Offnen des Ventils wird der

Abbildung 2.35: Modellrakete.

Treibstoff mit der Geschwindigkeit vy aus der Rake-
te gepresst, was den gewiinschten Riickstof3 erzeugt.
Wihrend die Endgeschwindigkeit bei Luft als Treib-
stoff relativ bescheiden ist, findet man bei Wasser als
Treibstoff eine wesentlich hthere Endgeschwindig-
keit. Die relative Austrittsgeschwindigkeit ist im Fal-
le von Luft hoher, das Massenverhiltnis mig/m,,q ist
jedoch bei Wasser als Treibstoff erheblich giinstiger.

2.4 Arbeit, Leistung und Energie

2.4.1 Motivation und Definition

Prinzipiell kann man mit den Newton’schen Axio-
men die Bewegung von Massenpunkten wie auch
Systemen von Massenpunkten beschreiben. In vie-
len Fillen ist es aber sehr aufwendig, die Bewe-
gungsgleichungen exakt zu 16sen. Es ist dann niitz-
lich, andere Methoden zur Verfiigung zu haben, um
relevante Aussagen machen zu konnen. Ein wich-
tiges und sehr leistungsfihiges Hilfsmittel ist das
Konzept der Energie.

Als Beispiel betrachten wir eine Eisenbahn, die mit
einer Geschwindigkeit von 250 km/h auf ebener
Strecke fahrt (— Abb. 2.36). Die Zugkraft der Loko-
motive reicht genau um die Reibungskraft zu iiber-
winden. Sie fihrt auf einen Hiigelkamm zu, der 200
m liber der Ebene liegt. Gelingt es der Eisenbahn,
diesen Hiigel mit konstanter Zugkraft zu iiberque-
ren? Die Frage kann mit Hilfe der Newton’schen
Axiome diskutiert werden, aber nur wenn der ge-
samte Streckenverlauf (genauer: die Steigung als
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Abbildung 2.36: Ein fahrender Zug besitzt kineti-
sche Energie.

Funktion des Ortes) bekannt ist. Am Ende des Ka-
pitels werden wir zeigen, dass dies nicht notig ist.

O C/“q"
/— ‘.
<§ |
==\\(575 [ i
e h
o

Abbildung 2.37: Das Hemmpendel.

Ein zweites Beispiel kann etwas einfacher im Expe-
riment gezeigt werden: Wir betrachten ein schwin-
gendes Pendel, bei dem wir jeweils einmal pro halbe
Periode eine Umlenkung einfiihrten, so dass die Pen-
delldnge verkiirzt wird (siche Abb. 2.37). Frage: wie
sieht die Bahn des Pendels jetzt aus?

2.4.2 Arbeit

Wir beginnen mit der Definition der Arbeit. Die Ar-
beit, die an einem System geleistet wird, ist definiert
als das Integral der Kraft F, welche von auBlen auf
das System ausgeiibt wird (— Abb. 2.38), iiber den

Abbildung 2.38: Definition der Arbeit.

Weg,
= Sz—»
dW =F -ds — lez/ F.ds.
1

Die Einheit der Arbeit betrigt demnach 2

2

:Nm:J:Joulezmkg.

W) .

Wie aus der Definition hervorgeht, trigt nur diejeni-
ge Komponente der Kraft zur Arbeit bei, welche par-
allel zum zuriickgelegten Weg wirkt, resp. nur dieje-
nige Komponente des Weges, die parallel zur ange-
legten Kraft zuriickgelegt wird.

Die Kraft, welche hier eingesetzt werden muss, ist
die von auflen angelegte Kraft. Somit ist die Ar-
beit positiv definiert wenn gegen den Widerstand
des Systems Arbeit verrichtet wird, z.B. wenn ein
Korper angehoben wird. Im Falle eines Motors, wo
der explodierende Treibstoff eine Kraft erzeugt, wird
dem Motor Arbeit entzogen, d.h. die am Motor ge-
leistete Arbeit ist negativ. Dies kann man natiirlich
auch so betrachten, dass der Motor an seiner Umwelt
Arbeit leistet.

Ist die Kraft unabhingig vom Ort, so muss ledig-
lich die Projektion des Weges auf die Kraft integriert
werden. Beispiele dafiir sind die Schwerkraft (in der
Niéhe der Erdoberfliche), die Beschleunigungskraft
fiir eine konstante Masse, oder die Arbeit gegen eine
Reibungskraft.

Ein typischer Fall ist die Hebung eines Korpers ge-
gen die Gewichtskraft, wie in Abb. 2.39 gezeigt.
Hier ist die erforderliche Kraft F = —FG =mg, un-
abhingig vom Ort. Da Kraft und Wegelement paral-

2James Prescott Joule (1818 - 1889).
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F h2
Fe hy
0

Abbildung 2.39: Hebung eines Korpers gegen die
Schwerkraft Fg.

lel sind, reduziert sich das Integral auf

h
W =
hy

2, hy
F-ds=mg | ds=mg(hy—h).

hy

Mit der Notation & = hy — h; fiir die Hohendifferenz
erhilt man somit fiir die zu leistende Arbeit

W = mgh. (2.5)

1

I H)ﬂ\/
’

10 em ¢

I Hl(;\l

A

Abbildung 2.40: Unterschiedliche Flaschenziige.
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'
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Die insgesamt geleistete Arbeit hingt somit nur von
der Hohendifferenz & ab. Es ist jedoch moglich, die
notwendige Kraft oder den zuriickgelegten Weg zu
reduzieren, jeweils auf Kosten des anderen Faktors.
Abb. 2.40 zeigt unterschiedliche Flaschenziige, wel-
che jeweils ein Gewicht um 10 cm anheben. Je nach
Flaschenzug sind die nétigen Zugkréfte 100, 50 oder
25 N, die zuriickgelegten Wege 10, 20 oder 40 cm.
Die Arbeit betrdgt somit in allen Féllen 10 J.

2.4.3 Beispiele mit konstanter Kraft

Ein einfaches Beispiel ist ein Korper, der auf einer
schiefen Ebene mit Steigung o reibungsfrei nach

Frx

Abbildung 2.41: Schiefe Ebene.

oben geschoben wird (siche Abb. 2.41). Die Hang-
abtriebskraft betrigt Fy = —mg sin . Somit ist ei-
ne gleich starke Kraft in Bewegungsrichtung not-
wendig, um den Korper zu transportieren. Fiir eine
gesamte Hohendifferenz h betrigt die zuriickgelegte
Wegstrecke i/ sin . Somit ist insgesamt eine Arbeit
W = mgh notwendig. Offenbar ist dies unabhingig
von der Neigung der Ebene.

Fr

A7)

Fn

A\
Abbildung 2.42: Verschiebung in der Ebene.

Als nichsten Fall betrachten wir die Arbeit, die be-
notigt wird, um einen Korper auf einer horizonta-
len Fldche gegen die Reibungskraft zu bewegen (—
Abb. 2.42). Die Reibungskraft betrégt

Fr = pWFy = ugm.

Um den Korper iiber eine Distanz s zu transportie-
ren betrigt die Arbeit somit W = ugms, sofern der
Reibungskoeffizient u konstant ist.

Ft F

Abbildung 2.43: Reibungsfreie Bewegung.

Das néchste Beispiel, dargestellt in Abb. 2.43, ist ein
Korper, der sich reibungsfrei auf ebener Strecke be-
wegt. Eine dulere Kraft (die gegen die Tréigheits-
kraft wirkt) bewirkt in diesem Fall eine Beschleuni-
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gung. Die Kraft ist F = ma. Betragt die Geschwin-
digkeit des Korpers zu Beginn vy und wird er gleich-
maiBig beschleunigt, so legt er wihrend einer Zeit At
eine Distanz

5 = VAL + gAzZ (2.6)

zuriick, wobei die Geschwindigkeit auf
v =vo+ alt

erhoht wird. Diese Gleichung kann aufgeldst werden
nach der Zeit

V=Y

At

a

Einsetzen in (2.6) ergibt fiir den Weg

_ _ 2
s = VvoAr+ I = vo(v=vo) | (v=vo) =
2 a 2a
2w — ZV% +v2+ v% — 2wy V2 — v%
N 2a N 2a

Die Arbeit, welche dafiir geleistet werden muss, be-
tragt somit

V=3

W:Fs:mas:%( ). (2.7)

Die entspricht gerade der Anderung der kinetischen
Energie des Korpers: Zu Beginn betrigt diese

m
7\,(2)

Skin0 = >

und am Ende

m ,
gkinzzv .

2.4.4 Variable Kraft

Abbildung 2.44: Federkraft.

Die Kraft kann auch mit dem Weg variieren; in die-
sem Fall muss die Integration explizit durchgefiihrt
werden. Der einfachste Fall ist wohl das Federgesetz
(— Abb. 2.44), wo die Kraft proportional zur Aus-
lenkung x ist, Fy = —cx. Dies wird als Hooke’sches
Gesetz bezeichnet. Die Kraft, welche von auflen an-
gelegt werden muss, ist deshalb F = cx und die Ar-
beit betrigt

b b c
Wab:/ Fdx:c/ xdxzi(bZ—az).

In diesem Fall wird die an der Feder geleistete Ar-
beit in potenzielle Energie der Feder iiberfiihrt. Die
potenzielle Energie einer Feder ist deshalb
2.

5 (2.8)

gpot,F =

In dieser Form wird z.B. in einer mechanischen Uhr
Energie gespeichert.

Abbildung 2.45: Arbeit als Wegintegral.

In mehreren Dimensionen sind die Kraft wie auch
der Weg vektorielle Groflen, wie z.B. in Abb. 2.45.
In diesem Fall muss iiber das Skalarprodukt inte-
griert werden:

b
Wab:/ F.dr
a

Dies bedeutet, dass nur diejenige Komponente der
Kraft F', welche in Bewegungsrichtung d7 wirkt, zur
Arbeit beitrigt. Typische Beispiele sind in Abb. 2.42
und 2.43 gezeigt: nur die Zugkraft trigt bei zur Ar-
beit, nicht die Gewichtskraft, welche senkrecht dazu
wirkt.

2.4.5 Energie

In den meisten hier diskutierten Féllen ist die Ar-
beit, die am Korper geleistet wurde, unabhingig vom
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Weg, den man vom Anfangs- zum Endpunkt genom-
men hat, also z.B. von der Geschwindigkeit 0 zur
Geschwindigkeit v. Durch die Arbeit, die am Kor-
per geleistet wurde, ist er in eine hohere Lage oder
zu einer hoheren Geschwindigkeit gebracht worden.
Dadurch ist er selbst in die Lage gebracht worden, an
anderen Korpern Arbeit zu leisten. Die Grofie, wel-
che diese Fahigkeit quantifiziert, ist die mechanische
Energie (potenzielle oder kinetische):

Die Energie des Korpers (oder Systems) bezeich-
net sein Potenzial, Arbeit zu leisten.

Sie ist eine Grofle, die rein durch den Zustand be-
stimmt ist, unabhidngig vom Weg, auf dem der Zu-
stand erreicht wurde.

In der Mechanik unterscheidet man zwei Arten von
Energie, die kinetische und die potenzielle Energie:

gmech = é?cin + gpot-

Die kinetische Energie ist eine Funktion von Ge-
schwindigkeit oder Impuls und Masse des Korpers,
die potenzielle Energie ist abhidngig vom Ort und
von den Kriften, die auf das System wirken. Es kon-
nen sowohl duflere Krifte wie auch innere Krifte
beitragen.

Die kinetische Energie entspricht der Arbeit, wel-
che geleistet werden muss, um einen Koérper von der
Geschwindigkeit 0 auf die Geschwindigkeit v zu be-
schleunigen. Diese betrédgt nach Gl. (2.7)

gkin =

V.

2

Die potenzielle Energie ist z.B. durch die Lage im
Gravitationsfeld gegeben. Nach Gl. (2.5) betrégt die-
se

Epor,g = mgh. 2.9)

Fiir andere Kraftfelder, wie z.B. das elektrische Feld,
existieren entsprechende potenzielle Energien, wie
z.B. das elektrische Potenzial.

Die Anderung der mechanischen Energie eines Sy-
stems ist gleich der am System geleisteten Arbeit,

AE =& — & =Wy,

Wenn wir noch einen Nullpunkt fiir die Energie defi-
nieren, konnen wir somit direkt die Ausdriicke iiber-
nehmen, die wir fiir die Arbeit hergeleitet haben.
Die Wahl dieses Nullpunkts ist grundsitzlich will-
kiirlich, aber in vielen Fillen existiert eine “natiirli-
che” Wahl, wie z.B. bei der kinetischen Energie.

Nicht jede Art von Arbeit fiihrt zu einer Anderung
der mechanischen Energie des Systems. Das Bei-
spiel aus Abb. 2.42 der Arbeit gegen eine Reibungs-
kraft ist ein typisches Beispiel wo die mechanische
Energie nicht geindert wird: der Korper ist immer
auf der gleichen Hohe, bei der gleichen Geschwin-
digkeit. Die aufgewendete Arbeit wird stattdessen in
Reibungswirme umgewandelt. Ob eine Kraft, gegen
die Arbeit geleistet wird, zu einer entsprechenden
Anderung der Energie des Systems fiihrt, wird in Ka-
pitel 2.4.8 diskutiert.

2.4.6 Leistung

Eng verwandt mit der Energie ist die Leistung, wel-
che sich durch Differenzierung nach der Zeit ergibt,

J

_de Pl = 1 =W =Wat

P=—.
dt

Die Einheit ist benannt nach James Watt (1736-
1819). Handelt es sich um eine mechanische Lei-
stung (Arbeit pro Zeit) und ist die Kraft konstant,
so kann die Leistung auch als Kraft mal Geschwin-
digkeit definiert werden:

(F-a5)

Umgekehrt erhilt man die geleistete Arbeit aus der
Leistung durch Integration iiber die Zeit:

ds

aw d
P — —_ .
dt

v _d B _py
dt dt

W= /IIZP(t)dt.

1

Typische Leistungen von Menschen liegen bei lin-
ger andauernden Belastungen im Bereich von 100
W, bei trainierten Sportlern bei etwa 300 W. Uber
kiirzere Zeiten konnen auch Leistungen bis etwa 1
kW abgerufen werden (— Abb. 8.6). Die Einheit
“Pferdestirke” (PS) ist als die Dauerleistung eines
Pferdes definiert; sie liegt bei 735 W.
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Abbildung 2.46: Leistung als Funktion der Dauer
der Beanspruchung.

2.4.7 Potenzielle Energie

Potenzielle Energie ist immer mit einer konserva-
tiven Kraft verbunden. Nach Gl. (2.8) ist die Ar-
beit, welche geleistet werden musste, um eine Fe-
der zu spannen, proportional zum Quadrat der Aus-
lenkung. Eine andere Form von potenzieller Energie
ist die Lageenergie im Schwerefeld. Nach GI. (2.9)
ist die entsprechende potenzielle Energie proportio-
nal zur Hohe, &4, = mgh. Bei potenzieller Energie,
die mit einer distanzabhéngigen Kraft verbunden ist,
wie z.B. der Gravitationsenergie oder der Coulomb-
Energie, wihlt man den Nullpunkt meist fiir unend-
lich getrennte Korper. Die Kraft ist in beiden Fillen
proportional zu r% und die potenzielle Energie, wel-
che durch das Integral iiber die Kraft gegeben ist,
proportional zu —% .

Ein Molekiil als eine deformierbare Ansammlung
von Atomen besitzt es eine potenzielle Energie als
Funktion der Geometrie. In allen Fillen hingt die
Energie von rdumlichen Koordinaten ab. Trigt man
die potenzielle Energie als Funktion des Ortes auf so
erhilt man eine Kurve, aus der man leicht qualita-
tive (und auch quantitative) Aussagen machen kann
iiber die Bewegung, welche das System durchfiih-
ren wird. Abb. 2.47 zeigt als Beispiel die potenziel-
le Energie von zweiatomigen Molekiilen als Funkti-
on des Abstandes zwischen den Atomen. In einem
eindimensionalen System bewegt sich das System
(falls es zu Beginn in Ruhe ist) auf der Potenzial-
kurve nach unten, wobei potenzielle Energie in ki-

He>

= riA
<] 1 2 3 4
s 0 : :
2T ;
= He>
H i He
-5001~

.. Ha

Abbildung 2.47: Potenzielle Energie einfacher 2-
atomiger Molekiile als Funktion
des atomaren Abstandes.

netische Energie umgewandelt wird, d.h. das System
beschleunigt. Indem die dadurch erzeugte kinetische
Energie wieder in potenzielle Energie umgewandelt
wird kann das System sich auch auf der Potenzial-
kurve aufwirts bewegen. Das Minimum der Kurve
entspricht dem Gleichgewichtsabstand: Hier wirken
keine Krifte auf die Atome.

Wichtig ist bei solchen Betrachtungen, dass man die
gesamte Energie des Systems beriicksichtigt. Dies
soll anhand eines scheinbar paradoxen Experiments
gezeigt werden.

.
E—

Abbildung 2.48: Bahn fiir Hohlzylinder und Dop-
pelkegel.

Legt man einen Hohlzylinder auf die in Abb. 2.48
gezeigten Schienen, so rollt er von der héheren zur
niedrigeren Seite (1 — 2). Legt man dagegen einen
Doppelkegel auf die Schienen, so rollt er in entge-
gengesetzter Richtung, scheinbar also aufwirts. Dies
liegt an der Anordnung der beiden Schienen: Sie
laufen auseinander. Dadurch sinkt der Doppelkegel,
sein Schwerpunkt sinkt und das System kann Ener-
gie gewinnen.
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2.4.8 Konservative Krifte

Die potenzielle Energie wird dem System zugefiihrt,
indem daran Arbeit verrichtet wird. Daraus ldsst
sich umgekehrt ableiten wie grof} die Kraft ist, wel-
che iiberwunden werden muss, um dem System die
entsprechende potenzielle Energie zuzufithren. Die
Kraft, welche von aulen aufgebracht werden muss
betrigt in einer Dimension

F=W_ 4
ds ds
Diese ist im Gleichgewicht entgegengesetzt gleich
der Kraft, welche das System auf seine Umgebung
ausiibt. Wird keine duflere Kraft auf das System an-
gewendet, so bewegt es sich nur unter dem Einfluss
der potenziellen Energie. Es wird dann beschleunigt
durch eine entgegen-gerichtete Kraft

_dSpar
ds

Die Kraft, welche auf einen Korper wirkt, kann so-
mit aus der Ortsabhingigkeit der potenziellen Ener-
gie bestimmt werden. In drei Dimensionen gilt ent-
sprechend

Fp

d
L. a5
Fp= _Vgpot = - dy gpoh
4
dz

d.h. die resultierende Kraft zeigt in Richtung des
steilsten Abfalls.

Abb. 2.49 zeigt als Beispiel eine Karte mit Hohen-
kurven und darauf fiir einige Orte die Richtung des
steilsten Gefilles, also die Richtung der resultieren-
den Kraft. Ein typisches Beispiel fiir eine konserva-
tive Kraft ist die Gravitationskraft

fiir eine Masse m im Potenzial eines punktformigen
Korpers der Masse M. 7 ist der Ortsvektor von m re-
lativ zu M. Die entsprechende potenzielle Energie ist

M
Uy(r) = —G—2.

r

Krifte, die von einem Potenzial abgeleitet werden
konnen, werden als konservative Krifte bezeichnet.

Abbildung 2.49: Richtung des steilsten Abfalls auf
einer Landkarte.

Abbildung 2.50: Zwei unterschiedliche Wege in ei-
nem Kraftfeld.

Sie haben die Eigenschaft, dass die Arbeit, welche
geleistet werden muss, um von einem Ausgangs-
punkt 7, zu einem Ziel 7, zu gelangen, nicht davon
abhingt, welcher Weg dabei benutzt wird (— Abb.
2.50). Es gilt somit

o
m:/ F(
71,4
Somit gilt auch, dass die Arbeit fiir geschlossene
Wege verschwindet,

72_'
aﬁ:m:/ F(r)dr.

71,B

W:fﬂﬁﬁzo

Diese Beziehung bietet auch die Moglichkeit aus der
Struktur eines Kraftfelds F(7) zu erkennen, ob die-
ses konservativ ist: Man bestimmt die Rotation des
Kraftfeldes, V x F(7). Verschwindet diese iiberall,
so ist das Kraftfeld konservativ.
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Abbildung 2.51: Kraftfeld mit Wirbel.

Ein typisches Beispiel ist eine Bergtour: kommt man
am Ende des Tages an den Ausgangspunkt zuriick,
so ist die potenzielle Energie die gleiche wie zu Be-
ginn. Die geleistete Arbeit ist demnach nicht in po-
tenzielle Energie umgewandelt worden, sondern in
Wirme. Abb. 2.51 zeigt ein Kraftfeld mit einem Wir-
bel. Eine Fahrradtour (roter Kreis) kann hier in einer
Richtung meist Riickenwind nutzen, in der entge-
gengesetzte Richtung muss man deutlich mehr Kraft
einsetzen, um den Luftwiderstand zu tiberwinden.

2.4.9 Gleichgewicht

° stabil instabil indifferent
= /Q\ )
[J]
5 ~Q
Ort Ort Ort
Abbildung 2.52: Unterschiedliche =~ Arten  von

Gleichgewicht.

Offenbar gibt es auch Situationen, in denen keine
Kraft auf den Korper wirkt. Abb. 2.52 zeigt drei un-
terschiedliche Fille, bei denen der Gleichgewichts-
ort einem Minimum, einem Maximum oder einem
ebenen Teil der Potenzialkurve entspricht. Man be-
zeichnet diese Punkte als stabiles, instabiles oder
neutrales (indifferentes) Gleichgewicht. Bei einem
instabilen Gleichgewicht fiihrt eine geringe Auslen-
kung dazu, dass eine Kraft wirkt und das System im-
mer stirker beschleunigt. Ein Beispiel dafiir ist ein
Bleistift, der auf seiner Spitze steht. Im Fall des sta-

bilen Gleichgewichts fiihrt eine Auslenkung zu ei-
ner Kraft, welche das System zuriick zum Gleichge-
wicht treibt (z.B. Pendel), wihrend in einem neutra-
len Gleichgewicht verschiedene Positionen mit iden-
tischer Energie vorhanden sind und eine Auslenkung
keine Kraft erzeugt. Typische Beispiele dafiir sind
Gegenstinde auf einem Tisch.

2.4.10 Austausch von Energie

Unterschiedliche Energieformen konnen ineinander
umgewandelt werden. Dies geschieht z.B. wenn man
einen Korper fallen ldsst: dabei wird potenzielle
Energie in kinetische Energie umgewandelt.

L1

[—
Auslenkung ¢(f)

©)

Ruheposition

Abbildung 2.53: Fadenpendel.

In einem Pendel wird ebenfalls Energie von poten-
zieller in kinetische umgewandelt (und umgekehrt).
Abb. 2.53 zeigt als Beispiel ein Fadenpendel, wel-
ches fiir kleine Auslenkungen einem mathemati-
schen Pendel entspricht. Wie in Kapitel 5.2 gezeigt
wird, verhilt sich die Auslenkung eines mathemati-
schen Pendels als Funktion der Zeit ist wie

o(t) =Asinot = %,
wobei ¢ den Winkel der Auslenkung darstellt, ¢ die
Linge des Pendels und A die Amplitude der Schwin-
gung. Die potenzielle Energie ist gegeben durch die
Hohe,
¢ mgl . 2
Epor = mgh = mg€7 = T(A sint)”,
wobei - wie immer beim mathematischen Pendel -
die Niherung sin ¢ ~ @, cos ¢ =~ 1 — ¢? /2 verwendet
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wurde. Die kinetische Energie ist

m .
2=Tpe?

m
gkin 5 )

%Zza)Q(A cos r)?

¢
%(Acos wr)?.

Die Summe aus potenzieller und kinetischer Energie
ist somit

4 ¢
E = ngAz(cos2 ot 4 sin” or) = mgiAz’

also zeitunabhiingig. Es findet lediglich ein Aus-
tausch zwischen den beiden Energieformen statt.

Abbildung 2.54: Kugel springt auf einem Amboss.

Die Umwandlung von potenzieller in kinetische
Energie kann man auch beim Fallenlassen eines Kor-
pers beobachten, wie im Beispiel von Abb. 2.54.
Beim Auftreffen auf dem Boden wird die kinetische
Energie kurzfristig in elastische Energie umgewan-
delt, dann wieder in kinetische und schlief3lich wie-
der in potenzielle. Die Umwandlungsprozesse sind
nie 100% effizient, sondern ein Teil der Energie wird
jeweils in Wiarme umgewandelt. Deshalb erreicht die
Kugel nicht mehr ganz die Ausgangshohe.

Fiir kriftefreie Systeme ist die kinetische Energie
auch eine Erhaltungsgrofle; dies ergibt sich aus den
Newton’schen Axiomen: Fiir m =const. kann das
erste Newton’sche Axiom mit der Geschwindigkeit
multipliziert werden:

mi = 0
P
mxx = Ema(x) =0.

2.4.11 Energieerhaltung

Die obigen Beispiele illustrieren ein allgemeines
Prinzip: Energie ist eine Erhaltungsgrofe; sie kann
weder erzeugt noch vernichtet werden.

In einem abgeschlossenen System bleibt die Ge-
samtenergie & erhalten, d.h. die Summe aller be-
teiligten Energieformen ist eine Konstante.

Wird die Energie eines Systems erhoht, indem daran
Arbeit geleistet wird, so muss dazu die Energie eines
anderen Systems erniedrigt werden. Sie kann aus ei-
ner Form in eine andere iiberfiihrt werden oder von
einem Ort zu einem anderen Ort transportiert wer-
den, die gesamte Energie eines abgeschlossenen Sy-
stems bleibt jedoch konstant. Im Rahmen der Me-
chanik ist die Energie auf potenzielle und kinetische
Energie beschrinkt, so dass gilt

@(amech = g’kin + gpg[ = konst.

Nicht in allen Féllen wird die Arbeit, die am System
geleistet wurde, auch in mechanische Energie um-
gewandelt. Erfolgt die Arbeit gegen eine Reibungs-
kraft, wie z.B. beim Transport eines Korpers auf ei-
ner horizontalen Ebene mit konstanter Geschwindig-
keit, so bleibt die mechanische Energie des Korpers
konstant. In diesem Fall wird die geleistete Arbeit in
Wirme umgewandelt.

Es ist nicht méglich, zu “beweisen”, dass die Energie
eines beliebigen Systems konstant ist. Der Energie-
Erhaltungssatz ist jedoch mit allen bisher gemach-
ten Erfahrungen vereinbar. Er kann auflerdem be-
wiesen werden fiir den Fall, dass die Naturgesetze
zeitlich invariant sind. Dies ist wiederum ein nicht
beweisbarer Glaubenssatz, welcher mit allen bisher
gemachten Erfahrungen iibereinstimmt. Im Falle der
oben erwihnten nichtkonservativen Krifte (z.B. Rei-
bung), bei denen die gesamte Arbeit iiber einen ge-
schlossenen Pfad nicht verschwindet, wird die ge-
leistete Arbeit in Wirmeenergie umgewandelt. Au-
Berdem sind Energie und Materie dquivalent, d.h. sie
konnen ineinander umgewandelt werden.

Wenn in den Medien von einem “Energieproblem”
die Rede ist (sieche z.B. Abb. 2.55), oder sogar von
einem “Energiemangel” so kann sich dies offenbar
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- » -=
Die Losung des Energieproblems -
eine transdisziplindre Herausforderung

DIEZ4ZEIT | LEBEN

Energieproblem gelost

URS WILLMANN FUR ZEIT_ONLINE

Abbildung 2.55: Gibt es ein *“Energieproblem™?

nicht auf die gesamte zur Verfiigung stehende Ener-
gie beziehen, sondern offenbar nur auf bestimmte
Formen von Energie. Da es nicht moglich ist, Ener-
gie zu erzeugen, kann das “Energieproblem” auch
nicht “gelost” werden, indem man mehr Energie er-
zeugt.

Es gibt jedoch unter den unterschiedlichen Formen
der Energie solche die niitzlicher sind als andere.
So konnen die mechanischen Formen der Energie
theoretisch zu 100% in andere Energieformen um-
gewandelt werden. Bewegt man sich von A (z. B.
Uni Dortmund) nach B (z. B. nach Hause) und wie-
der nach A, so ist offenbar die mechanische Energie
des Korpers, welcher dabei bewegt wurde, konstant
geblieben. Die Energie, welche dabei “verbraucht”
wurde, wurde somit nicht in mechanische Energie
des transportierten Korpers umgesetzt, sondern typi-
scherweise in Wirme umgewandelt. Die minimal fiir
einen solchen Transport notwendige Energie ist da-
mit Null. Ein Verkehrssystem kann als umso intelli-
genter bezeichnet werden, je niher es diesem Grenz-
wert kommit.

2.4.12 Anwendungen

Die Verwendung des Prinzips der Energieerhaltung
kann Rechnungen héufig stark vereinfachen. Als
Beispiel berechnen wir die Geschwindigkeit eines
Pendels am tiefsten Punkt. Man verwendet dazu die
Tatsache, dass die kinetische Energie am niedrig-
sten Punkt gerade gleich der potenziellen Energie am

hochsten Punkt ist,

m

gkin((p = O) = gpot(‘Pmax) = )

=mgh.

Somit ist die Geschwindigkeit am niedrigsten Punkt

v=1+/2gh,

d.h. gleich grof3 wie wenn ein Korper fallengelassen
wird, auBer, dass in diesem Fall die Geschwindigkeit
horizontal ist. Der Faden iibt zwar eine Kraft aus auf
die Pendelmasse, da die Ldnge konstant ist, ist diese
Kraft senkrecht zur Bewegung und er leistet keine
Arbeit.

N,

O
-

h

T

Abbildung 2.56: Bahn des Hemmpendels.

Damit kénnen wir auch die Frage beantworten was
fiir eine Bahn das Hemmpendels (— Abb. 2.56) be-
schreibt: auf der gestreckten Seite wird die gesamte
potenzielle Energie in kinetische Energie umgewan-
delt. Auf der gehemmten Seite wird die kinetische
Energie wieder in potenzielle Energie umgewandelt,
d.h. der Pendelkorper erreicht die gleiche Hohe wie
auf der gestreckten Seite.

Hier die Losung der Eisenbahnfrage aus Abschnitt
2.4.1: Da die Lokomotive die Reibungskraft kom-
pensiert, ist das System dquivalent zu einem rei-
bungsfreien Zug ohne Lokomotive. Er kann den Hii-
gel iiberqueren, wenn die kinetische Energie in der
Ebene hoher ist als die potenzielle Energie auf dem
Hiigel. Die beiden Energien betragen, jeweils durch
die Masse dividiert

. 1 :
SEkin _ 7v2:2411m7:2411i-
m D) s2 kg
& ’ !
OPo . gh = 19627 = 1962-—.
m S kg
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Die Energie reicht somit aus. Es bleiben sogar 449
m?/s? iibrig, d.h. die Eisenbahn hat noch eine Ge-
schwindigkeit von 21 m/s = 76 km/h.

Eine sportliche Anwendung der Energieerhaltung ist
der Stabhochsprung. Hierbei wird im Wesentlichen
kinetische Energie (Sprint vor dem Absprung) in po-
tenzielle Energie (Hohe der Messlatte) umgewan-
delt. Die maximale Sprintgeschwindigkeit betrigt
etwa 40 km/h = 11 m/s. Daraus ergibt sich eine Hohe
vi 121

2g

mgh= " = h= =25

~ 6,05
2 m M m7

was in der Nihe des aktuellen Weltrekords von 6,16
m liegt (Renaud Lavillenie 2014).

2.5 StoBprozesse

2.5.1 Definition und Motivation

vorher nachher
Stof vi’
" V2
d v, unbekannte 1z
Wechselwirkung
keine Wechselwirkung zeitlich und rdumlich
begrenzt

Abbildung 2.57: StoBprozess.

Unter einem Sto3 (—Abb. 2.57) versteht man eine
zeitlich begrenzte Wechselwirkung zwischen zwei
oder mehr Systemen, wobei man sich fiir die Einzel-
heiten der Wechselwirkung entweder nicht interes-
siert oder keine Moglichkeit hat, sie zu untersuchen
oder zu beeinflussen. Man betrachtet einerseits die
Korper bevor die Wechselwirkung stattfindet und an-
dererseits dann, wenn die Wechselwirkung praktisch
nicht mehr vorhanden ist. Dazwischen liegt die ei-
gentliche Wechselwirkungszone. Interessant ist eine
solche Betrachtung vor allem dann, wenn die Wech-
selwirkung mit dem Abstand zwischen den beiden
Korpern rasch abnimmt, so dass die beteiligten Kor-
per sich meist frei und unabhiingig bewegen.

Fiir den gesamten Prozess geht man davon aus, dass
keine duBeren Krifte auf das System wirken, F,; =

0. Aus dem 2. Newton’schen Axiom folgt somit,
dass der Gesamtimpuls P,.; des Systems, also die
Summe der Einzelimpulse p; konstant bleibt:

Dges = Z[)’,- = konst.
i

Es existieren jedoch Krifte zwischen den Partnern.
Gemal dem dritten Axiom treten diese jedoch im-
mer paarweise auf, F;-k = —ﬁki und somit sind auch
die dadurch erzeugten Impulsinderungen gegen-
gleich,

dp; = - dpi
= Fl = —Ilj=——",
a F k dt
so dass diese sich in der Summe aufheben,
d
— )Y 5, =0.
yr Zi‘,pl

Abbildung 2.58: StoBprozess eines a-Teilchens mit
einem Stickstoffatom.

Ein typischer Fall sind Kollisionen in der Kern-
und Elementarteilchenphysik (— Abb. 2.58), wo
die Wechselwirkungen hdufig gar nicht analytisch
beschrieben werden konnen. In der Molekiilphysik
oder bei chemischen Reaktionen zwischen Molekii-
len ist die Situation sehr dhnlich: man kennt die De-
tails der Wechselwirkung nicht, man kann héchstens
die Ausgangszustidnde bestimmen und die Produkte
analysieren.

In vielen Fillen kann man einen Teil oder sogar
die gesamte Kinematik nach dem Stof} (d.h. ab dem
Zeitpunkt, wo die Wechselwirkungen vernachlissig-
bar klein geworden sind) vorhersagen ohne die De-
tails der Wechselwirkung zu kennen. Wir werden
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fiir geeignete Beispiele die Geschwindigkeiten nach
dem StoB berechnen ohne die Art der Wechselwir-
kung tiberhaupt zu diskutieren. Dies bedeutet, dass
die folgenden Uberlegungen fiir die Gravitations-
wechselwirkung zwischen Galaxien genau so zutrifft
wie fiir Billardkugeln oder sub-atomare Teilchen in
einem Beschleuniger.

StoBprozesse zwischen Atomen und Molekiilen in
Gasen spielen eine wichtige Rolle. Kollisionen zwi-
schen Atomen und Molekiilen sind die Grundlage
fiir die kinetische Gastheorie.

2.5.2 Klassifikation von Sto3prozessen

Man unterscheidet verschiedene Arten von Stof3pro-
zessen. Zum einen kénnen wir sie anhand der Zahl
der StoBpartner klassifizieren. Im Rahmen dieser
Vorlesung beschrinken wir uns auf zwei StoBpart-
ner.

Bezeichnung

elastisch 4—@ O—»

inelastisch—O O—»
unelastisch C:)—»

Abbildung 2.59: Klassifizierung von Stol3prozessen
zwischen 2 Korpern.

Eigenschaften

Die Summe der kinetischen
Energien vor und nach dem Stof3
ist gleich

Die Summe der kinetischen
Energien vor und nach dem Stof3
ist verschieden

Die Koérper bewegen sich
nachher mit der gleichen,
gemeinsamen
Endgeschwindigkeit weiter

Ein weiteres wichtiges Kriterium ist, ob beim Stof3
kinetische Energie der Korper in Deformations-
Energie umgewandelt wird. Je nachdem wird der
Stof} als elastisch, inelastisch, oder unelastisch be-
zeichnet, wie in Abb. 2.59 zusammengefasst.

Da keine duBeren Krifte auf das System wirken
ist die gesamte Energie des Systems immer kon-
stant. Bei elastischen St68en ist auch die mechani-
sche Energie konstant, bei inelastischen und unela-
stischen Stofen wird ein Teil in Wirme umgewan-
delt.

Abbildung 2.60: Beispiel fiir einen unelastischen
StoB3: Meteorkrater in Arizona.

Ein typisches Beispiel eines unelastischen Stofes ist
der Aufprall eines Meteoriten auf die Erde (— Abb.
2.60): hier wurde die gesamte kinetische Energie des
Meteoriten in Wéarme umgewandelt.

Abbildung 2.61: Unelastischer Sto} eines Automo-
bils.

Ein weiteres typisches Beispiel fiir inelastische oder
unelastische Stofle sind ZusammenstoBBe zwischen
Automobilen oder Autos mit stationdren Objekten
(— Abb. 2.61). Die Deformations-Energie wird hier
sehr leicht sichtbar.
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2.5.3 Kraftstof3

In vielen Fillen ist es auch niitzlich, die Anderung
des Impulses eines Teilchens wéhrend einer begrenz-
ten Zeit zu betrachten.

Kraft F
Kraft F

At Zeit t Zeit t

Abbildung 2.62: Zeitlich begrenzte Kraft.

Wie in Abb. 2.62 gezeigt, kann das eine zeitliche be-
grenzte konstante Kraft sein (links) oder eine kon-
tinuierlich als Funktion der Zeit variable Kraft. Die
relevante Grofie ist die gesamte Impulsidnderung des
Korpers, auf den diese Kraft wirkt. Gemédl dem
zweiten Newton’schen Axiom ist die Impulsidnde-
rung

 _,
Ap = / F(t)dr.
41

Diese wird als Kraftsto3 bezeichnet. Die Einheit des
KraftstoBes ist [Ap]=mkg/s = Ns. Im einfachen Fall
(Abb. 2.61 links) ist er gegeben durch das Produkt
aus Kraft und Dauer, Ap = FAt. Damit lassen sich
also z.B. die Krifte abschitzen, die bei einem Me-
teoriteneinschlag wirken.

2.5.4 Elastischer 2-Korperstof3

< L
t<0 Zeitlicher Verlauf
°\ 1 - -
m, ) t harte Kugeln
®©| z.B. Stahl
X
tf_O weiche Kugeln
.B. Gummi
m y
t>0

Zeit t

m

Abbildung 2.63: Zentraler elastischer Stof3.

Wir betrachten zwei Korper mit Massen m; und ms.
Wir diskutieren hier nur den Fall wo die Schwer-
punkte der beiden Korper sich zu jeder Zeit auf
der gleichen Linie bewegen - man spricht dann von
einem zentralen Sto (— Abb. 2.63). In diesem
Fall spielt der Vektor-Charakter der Geschwindig-
keit keine Rolle, die Geschwindigkeiten konnen als
Skalare beschrieben werden. Die Geschwindigkeiten
vor dem Stof seien vq ». Man wiirde erwarten, dass je
nach der Art der Wechselwirkung wihrend des Sto-
Bes die beiden Korper sich nach dem Sto8 sehr un-
terschiedlich verhalten.

Um die Geschwindigkeiten V,l,Z nach dem Stof} zu
berechnen benétigen wir lediglich die Erhaltungssét-
ze fiir Energie und Impuls. Der Impuls bleibt nach
den allgemeinen Voraussetzungen fiir StoB3prozesse
immer erhalten, die mechanische Energie fiir den
Fall elastischer StoB3e. Die Erhaltungssitze lauten

/ / / /
p1+p2=mvi +mpvy = py + py = mvi +mav,

26kin = mvi +movy = mv']+myy'3.

Die beiden Erhaltungssitze konnen als Bestim-
mungsgleichungen fiir die beiden Ausgangsge-
schwindigkeiten verwendet werden. Auflosung nach

V) , ergibt:

2movy +vi (m1 —mz)
mp +myp

v = 2mvy +vo(my —my) .

mp +my

/
V1

(2.10)

Hier sind offenbar die absoluten Massen nicht re-
levant, sondern allein das Massenverhiltnis o =
my/my. Als Funktion dieser GroBe erhilt man

20v2+vi(l1 — o)
1+o

2vi+va (o — 1)
1+ '

/
V1

Vvh (2.11)

Wir betrachten zunichst als einfachen Spezialfall
die Situation wo beide Massen identisch sind, m; =
my = m, oo = 1. Dann vereinfachen sich die Aus-
driicke zu

’ . ;o
Vi =V2, Vp=Vy,
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Abbildung 2.64: Elastischer Stof} auf Schiene.

d.h. die beiden Korper tauschen Geschwindigkeit
(und damit Impuls). Damit verbunden ist auch ein
Ubertrag von Energie vom einen auf den anderen
Korper.

Als néchstes Beispiel betrachten wir den Fall von be-
liebigen Massen, aber v, = 0. Wie viel Energie wird
von m; auf my tibertragen? Losung:

4(m1/m2) . 4o
(I+m/m)? '(1+a)?

& =&

Der Energietibertrag wird somit maximal (100 %)
fiir m; = my oder o = 1 und verschwindet fiir ¢ — 0
und @@ — oo.

Als dritten Spezialfall betrachten wir o = 1/2, d.h.
my = my /2,v, = 0. Hier bewegen sich beide Schlit-
ten nach dem Sto8 in die gleiche Richtung, mit dem
Geschwindigkeitsverhéltnis 4:1:

Pt 4vi
=3 3
Die leichtere Masse bewegt sich somit nach dem
Stof3 schneller als die schwere vor dem Stof!

v

Fiir zwei weitere Spezialfille verwenden wir Schlit-
ten mit einem Massenverhiltnis von 2:1, von denen
der eine jeweils auf den ruhenden zweiten auftrifft.
Ist der massivere Schlitten in Ruhe, d.h. my = 2 m;,
a = 2, vo= 0. Einsetzen in die allgemeine Formel
(2.10) ergibt

Vi

/
V) = —?,

d.h. die leichtere Masse bewegt sich nach dem Stof3
riickwirts, die schwerere mit reduzierter Geschwin-
digkeit vorwirts. Im Extremfall von einem groflen
Massenverhiltnis (m; > m; ) wird die leichtere Mas-
se exakt reflektiert.

2.5.5 Fallende Gummibille

Abbildung 2.65: Zwei Gummibille werden fallen
gelassen.

Man lasst zwei Bélle (— Abb. 2.65) aus einer Hohe
ho auf den Erdboden fallen. Beide Biille erreichen
den Boden mit der Geschwindigkeit v. Der leichtere
Ball steigt auf eine Hohe A, die bis zu 95 betragen
kann.

@

&
- &' d. &

R T S O R

v hy

A

Abbildung 2.66: Bezeichnung der relevanten Ge-
schwindigkeiten.

Abb. 2.66 definiert die Geschwindigkeiten der bei-
den Bille, welche bei der Berechnung beriicksichtigt
werden miissen. Beim Auftreffen auf dem Boden ha-
ben beide Bille eine Geschwindigkeit von

V= \/Zgho.

Die Geschwindigkeit des unteren, schwereren Balls
wird zuerst invertiert. Dadurch treffen die beiden
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Bille mit betragsmifig gleichen Geschwindigkeiten
aufeinander. Fiir vi = v und v, = —v folgt aus GI.
2.11 fiir die Geschwindigkeiten nach dem Stof3

1-3x
1+ o

!

Vi =V

Fiir & — 0 wird v, = v und v, = 3v. Damit ist die
kinetische Energie des kleineren Balls 3% = 9 mal so
hoch wie die urspriingliche potenzielle Energie und
der Ball steigt bis zu 9 mal so hoch auf. Fiir my =
my /3 wird 1/2 = 2v und er steigt noch vier mal so
hoch.

2.5.6 StoB an Kugelreihe

Abbildung 2.67: Stof} an einer Kugelreihe.

Die Ubertragung von Impuls von einem Korper auf
einen anderen kann auch sehr schén mit Hilfe von
aufgehidngten Kugeln gezeigt werden (— Abb. 2.67).
Lidsst man eine Kugel in auf eine zweite Kugel fal-
le, welche in Ruhe ist, so realisiert man den oben
diskutierten Fall. Zwar ist die Bewegung der Kugel
nicht auf einer Geraden, aber unmittelbar beim Stof3
ist die Bewegung horizontal; unmittelbar danach be-
ginnt ein Austausch von kinetischer und potenziel-
ler Energie, der aber wihrend des Stofles vernach-
laBigt werden kann. Durch Zufiigen weiterer Ku-
geln erhilt man verschiedene Fille die auch analog
berechnet werden konnen. Dabei beobachtet man,
dass immer gleich viele Kugeln wegfliegen, wie auf
die Reihe auftreffen. Mit der Impulserhaltung wire
auch vereinbar, dass beim Auftreffen einer Kugel mit
Geschwindigkeit v auf der anderen Seite zwei Ku-
geln mit halber Geschwindigkeit wegfliegen. Ubung:
Warum geschieht das nicht?

Wenn alle Kugeln die gleiche Masse haben sind nach
dem Stof3 immer gleich viele Kugeln in Bewegung
wie vor dem Stof3. Dies édndert sich, wenn Kugeln
mit unterschiedlicher Masse stofen - in exakter Ana-
logie zum Stof} auf der Schiene. So schiebt eine
schwere Kugel eine leichtere vor sich her und gibt
nur einen Teil seines Impulses ab. Trifft jedoch eine
leichte Kugel auf eine schwere, so wird sie reflek-
tiert. wihrend die schwere nur entsprechend langsa-
mer zuriickweicht.

2.5.7 Unelastischer 2-Korperstof3

Von einem unelastischen Sto3 zweier Korper spricht
man dann, wenn sich die beiden Korper nach dem
Sto3 gemeinsam weiterbewegen, also “verschmel-
zen”. In diesem Fall ist die mechanische Ener-
gie des Systems nicht erhalten, da ein Teil davon
in Deformations- und Wirmeenergie umgewandelt
wird. Es gilt jedoch weiterhin die Impulserhaltung:

p1+p2 =mvy +mavy = (my +mp)V,

wobei V' die Geschwindigkeit des kombinierten Kor-
pers nach dem Stof darstellt. Sie betrdgt somit

S M +movo

= 2.12
my +my ( )

entspricht also massengewichtete Mittel der An-
fangsgeschwindigkeiten.

Abbildung 2.68: Unelastischer Stof.
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Abb. 2.68 zeigt ein entsprechendes Experiment. Hier
wird ein Korper mit einer Anfangsgeschwindigkeit
vy auf einen ruhenden Korper der gleichen Masse
auftrifft, m; = mp = m. Die beiden kleben aneinan-
der und bewegen sich gemeinsam weiter. Fiir die ak-

tuellen Parameter wird aus Gl. (2.12)
’ mvi Vi
V= 2L

C m+m 2

Somit ist die resultierende Geschwindigkeit gleich
der halben Geschwindigkeit des bewegten Korpers.
Die Geschwindigkeit wird im Experiment gemessen,
indem fiir den ersten Korper zweimal die Verdunke-
lungszeit gemessen wird, fiir den kombinierten, dop-
pelt so langen, nur einmal; die zweite Zeit ist in guter
Néherung doppelt so lang wie die erste.

2.5.8 Elastischer Stof in zwei Dimensionen

Im Allgemeinen finden St68e nicht in einer Dimensi-
on statt. Wir diskutieren hier den zweidimensionalen
Fall, der in Abb. 2.69 dargestellt ist. Der Erhaltungs-
satz fiir die Energie bleibt unverdndert, wihrend der
Erhaltungssatz fiir den Impuls jetzt fiir beide Dimen-
sionen unabhingig gilt. Wir betrachten einen elasti-
schen Stof zwischen zwei Korpern

P1+DP2=P+ P
E+E=6+6E.

Damit hat man drei Gleichungen und (im Allgemei-
nen) vier Geschwindigkeitskomponenten nach dem
StoB. Es ist somit nicht moglich, die Bewegung der
Korper nach dem Stof3 vorauszusagen.

Abbildung 2.69: Elastischer Stof} in 2 Dimensionen.

Dass man trotzdem zu niitzlichen Aussagen kommen
kann, zeigt z.B. der Spezialfall, dass die beiden Kor-
per gleiche Masse haben und der eine Korper zu Be-
ginn in Ruhe ist. Dann vereinfachen sich die Erhal-
tungsgleichungen zu

—

Vo =V + .

Ohne Beschrinkung der Allgemeinheit kdnnen wir
die Behandlung vereinfachen, indem wir die x-
Achse des Koordinatensystems in Richtung der An-
fangsbewegung ¥, legen. Dann folgt aus der Impuls-
erhaltung fiir die y-Komponente, dass die beiden y-
Komponenten nach dem Stof3 entgegengesetzt sind,

;) /
Vly = —V

y:Vy.

Wie bereits erwihnt, kann man die Bahnen der bei-
den Korper nicht bestimmen; sie hidngen u.a. da-
von ab, wie stark die beiden Korper gegeneinander
versetzt sind. Aus der obigen Beziehung zwischen
einlaufenden und auslaufenden Geschwindigkeiten
erhélt man aber eine Bedingung fiir die auslaufen-
den Geschwindigkeitsvektoren, welche fiir alle Sto-
e dieser Art erfiillt sein muss, unabhéngig von der
Art der Wechselwirkung: Der Winkel 6; + 6, zwi-
schen den beiden auslaufenden Bahnen ist immer
90°.

2.6 Drehbewegungen

2.6.1 Kreisbewegung

Genau so wie ein Korper sich ohne die Einwirkung
duBerer Krifte geradlinig mit konstanter Geschwin-
digkeit bewegt, so behilt er seine Orientierung ge-
geniiber einem Inertialsystem bei, sofern er sich zu
Beginn in Ruhe befindet, resp. behilt eine vorhande-
ne Drehbewegung bei.

Dies kann man anhand eines Kreisels im Horsaal
zeigen. Es gibt auBerdem eine lange Liste von physi-
kalisch relevanten Phdnomenen, bei denen dies eine
Rolle spielt.

Dies beginnt auf sehr kleinen Skalen mit dem Spin,
d.h. dem Eigendrehimpuls von Elementarteilchen,
und es setzt sich iiber viele Groflenordnungen fort,
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Eigendrehimpuls von
Elementarteilchen

Abbildung 2.70: Eigendrehimpuls findet man bei
Elementarteilchen wie auch bei
Galaxien.

z.B. zur Rotation von Planeten, ihrer Bahnbewegung
um die Sonne, oder der Rotationsbewegung von Ga-
laxien.

v(t)
At)

(P(l:)\ X

Abbildung 2.71: Kreisbewegung.

Die Basis fiir die folgende Diskussion ist die Be-
wegung eines Massenpunktes auf einer Kreisbahn
(—Abb. 2.71). Benutzt man Polarkoordinaten, so
bleibt dabei der Radius r fest, es dndert sich nur der
Winkel ¢. Im Fall der gleichférmigen Kreisbewe-
gung ist ¢ = wot. Ist die Winkelgeschwindigkeit

de
o) =—
(t)=-—
zeitabhidngig, so kann man die Winkelbeschleuni-
gung o bestimmen:

_do(t) _de()

o(t) dt dt?

Die Bahngeschwindigkeit, also die Geschwindigkeit

auf der Bahn, betragt

L dr
V= —
dt

Abbildung 2.72: Funken zeigen den Geschwindig-
keitsvektor.

Der Geschwindigkeitsvektor bildet iiberall eine Tan-
gente an den Kreis, wie man z.B. aus der Flugbahn
von Funken erkennen kann, die an einem Rad er-
zeugt werden (— Abb. 2.72).

Die Beschleunigung

av d*v

dt — dr?

wird sinnvollerweise in eine Komponente a| parallel
zum Geschwindigkeitsvektor ¥ und eine Komponen-
te a; senkrecht dazu aufteilt. Die parallele Kompo-
nente entspricht der Anderung des Betrags der Ge-
schwindigkeit |v(¢)|, wihrend die Komponente senk-
recht dazu die Richtungsinderung beschreibt:

A% V2
a(t) = dd(tt)é'n(t) 705 0.
Hier stellt

é() v(t)

den Einheitsvektor entlang der instantanen Bewe-
gungsrichtung dar und €, (r) denjenigen senkrecht
dazu.

a—=

V(1)

Fiir den Fall einer Kreisbewegung mit verschwin-
dender Winkelbeschleunigung, @ = 0, ist der Be-
trag der Geschwindigkeit || konstant und die Kom-
ponenten der Beschleunigung parallel und senkrecht
dazu sind

a

ai
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2.6.2 Drehimpuls eines Massenpunkts

Abbildung 2.73: Definition des Drehimpulses L =
X p.

Offenbar existiert hier ebenfalls ein Erhaltungssatz.
Die entsprechende Grofle ist der Drehimpuls. Fiir
einen Massenpunkt ist der Drehimpuls definiert als

-

L=7xp, [L]=m’kgs !=Nms=1Is,

also als Vektorprodukt aus Ort und Impuls. Der
Drehimpuls ist somit immer in Bezug auf ein Koor-
dinatensystem definiert. Im Beispiel von Abb. 2.73

zeigt er nicht in Richtung der Drehachse.

Abbildung 2.74: Kreisbewegung. Der Ursprung des
Koordinatensystems liegt im Zen-
trum des Kreises.

Abb. 2.74 zeigt die relevanten GroBen fiir den Fall
einer Kreisbewegung. In drei Dimensionen kann die
Geschwindigkeit eines Massenpunktes als Vektor-
produkt aus Winkelgeschwindigkeit @ und Abstand
7 von der Rotationsachse geschrieben werden:

V=00 XT7.

Der Winkelgeschwindigkeitsvektor steht parallel zur
Rotationsachse und sein Betrag ist die Rotationsfre-

quenz @. Der Drehimpuls wird somit

L=7Fxp=mix (& xF7). (2.13)

Im Fall der Kreisbewegung ist es sinnvoll, ein sym-
metrieangepasstes Koordinatensystem zu wihlen,
dessen Ursprung im Zentrum des Kreises liegt. Dann
sind die Vektoren 7, vV und @ jeweils senkrecht zuein-
ander und der Ausdruck (2.13) fiir den Drehimpuls
vereinfacht sich zu

L=mra®.

Offenbar ist hier der Drehimpuls proportional zur
Winkelgeschwindigkeit.

2.6.3 Tragheitsmoment

Wie am Beispiel eines Massenpunktes explizit ge-
zeigt, ist der Drehimpuls proportional zur Winkelge-
schwindigkeit. Die Proportionalititskonstante wird
allgemein als Trigheitsmoment / bezeichnet:

L=1&.

Fiir die Kreisbewegung eines Massenpunktes gilt of-
fenbar I = mr?

X

Abbildung 2.75: Berechnung von Trigheitsmomen-
ten beliebiger Korper durch Inte-
gration.

Fiir einen allgemeinen Korper wird das Trigheits-
moment / berechnet als Integral iiber die Beitrige
einzelner infinitesimaler Massenelemente dm. Wie
in Abb. 2.75 gezeigt, kann es berechnet werden als

1= [[[ Adn= [[[ Aotrav.
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wobei das Integral iiber den gesamten Korper lduft,
r | den Abstand von der Rotationsachse darstellt und
p die Dichte des Volumenelements dV. Das Trig-
heitsmoment ist deshalb im Allgemeinen abhin-
gig von der Orientierung der Rotationsachse. Man
spricht deshalb von einem Tréigheitstensor. Fiir einen
asymmetrischen Trégheitstensor ist der Drehimpuls
L nicht mehr parallel zur Winkelgeschwindigkeit @.

diinnwandiger Reif / Hohlzylinder mit
Radius R, bezuglich der Symmetrieachs

R
I= /R2d77z = R2/dm =mR?

Rotationsachse in der Ebene
1
1= E’mR2

»

dickwandiger Hohlzylinder,
beziglich der Symmetrieachse

1
I= 5m(Rf + R2)

Abbildung 2.76: Triagheitsmomente von Hohlzylin-
dern.

&% Vollizylinder, bezlglich der Symmetrieachse
1= 1mR2
=5m

-

y
){/ '

Vollzylinder,
1 Symmetrieachs

m
= 2472
12(31'% + L7)

R 1 3!
| . Stab, R+
" "L Symmetrieachse
//1 I 2
mL
1=
12
Mmoo 42
i Kugel I (a”+ bl )
f 2 i
CI= ngQ

Abbildung 2.77: Weitere Trigheitsmomente.

Abb. 2.76 und 2.77 zeigen die Trigheitsmomente fiir
einige einfach geformte Korper, beziiglich symme-
trieangepasster Achsen.

Auch ein Korper, der sich auf einer Geraden bewegt,
besitzt einen Drehimpuls; dieser wird als Bahndreh-
impuls bezeichnet. Im Gegensatz dazu unterscheidet
man den Eigendrehimpuls, bei dem man sich auf ei-
ne Achse durch den Schwerpunkt bezieht.

Translation | Rotation
Impuls D L Dreh-
impuls
Masse m 1 Tragheits-
moment
Geschwin; vV 0) Winkelge-
digkeit schwindig-
keit

Tabelle 2.3: Analogien zwischen Translations- und
Rotationsbewegung.

Offenbar bestehen eine Reihe von Analogien zwi-
schen Drehimpuls und linearem Impuls. Einige da-
von sind in Tabelle 2.3 zusammengestellt.

In Analogie zum Erhaltungsgesetz fiir den linearen
Impuls gilt ein Erhaltungssatz fiir den Drehimpuls:

So lange keine dufleren Krifte wirken, bleibt der
Drehimpuls eines Systems erhalten.

Die Erhaltung des Drehimpulses spielt eine grofle
Rolle in vielen Teilen der Physik, vom Mikrokos-
mos (z.B. Wechselwirkungen zwischen Elementar-
teilchen, Absorption von Licht) bis zum Makrokos-
mos (Planetenbewegung, Stabilitit von Galaxien).

2.6.4 Kinetische Energie

i
i
i
i
i

Abbildung 2.78: Beitrag eines Volumenelements zur
kinetischen Energie.

Mit Hilfe des Trigheitsmoments ldsst sich auch die
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kinetische Energie berechnen. Aus dem Ausdruck
fiir die kinetische Energie von Massenpunkten folgt

- *Zmlﬁg Zvl Pz

Ist die Rotation durch den Winkelgeschwindigkeits-
vektor @ bestimmt, so gilt

&rot
km

—

=®OXTF
und

r0t
ktn -

Zm,r 0’ = 2///r2dm,

mit o als Betrag der Winkelgeschwindigkeit und r;
resp. r dem Abstand yon der Drehachse. Mit Hilfe
des Tréigheitstensors [ ldsst sich die Summe, re-
spektive das Integral schreiben als

1, -

<~
@-L,

1
[ 0]

éarot
2

kin

2

Fillt die Rotationsachse mit einer Symmetrieach-
se zusammen, so kann der Trégheitstensor durch
das Tragheitsmoment beziiglich dieser Achse ersetzt
werden:

1

=-Io°.

Cg:rot
2

kin

2.6.5 Energieerhaltung

Vor dem Start Nach dem Start

Hohidylinder ~ Yolz¥linder
Abbildung 2.79: Rotationssymmetrische Korper auf
einer schiefen Ebene.

Die unterschiedlichen Trigheitsmomente haben z.B.
einen Einfluss darauf, wie schnell entsprechende
Korper eine schiefe Ebene hinunterrollen (— Abb.
2.79). Bei diesem Experiment wird potenzielle Ener-
gie &), = mgh in kinetische Energie umgewandelt.

Diese besteht aus zwei Beitrdgen, der translatori-
schen und der rotatorischen:
2

1(02+l
mvy-.

1
gkin =5 )

2
Die beiden Terme sind jedoch iiber v = @R anein-
ander gekoppelt, wobei R den Radius beziiglich der
Rotationsachse darstellt und dieser fiir alle Korper
gleich ist. Daraus folgt auch

da)
O T

~ 2wdv
R dt

2v
R2

do?
dt

Abbildung 2.80: Rotation iiber schiefe Ebene.

Die Erhaltung der Gesamtenergie kann geschrieben
werden als

d 1 dz
—&or = —va+mg— =0.

dt dt
z stellt hier die Hohe dar, v = dx/dt die Geschwin-
digkeit und x die zuriickgelegte Distanz. Mit & als
Starthohe ist

(2.14)

mva +

% — —vsin0.

= h—xsin®
Z X sin di

)

Einsetzen in (2.14) ergibt
mva + BV mgvsin @ = 0.

Diese Gleichung kann aufgelost werden nach der
Beschleunigung

Der Vorfaktor gsin 6 beschreibt die Beschleunigung
fiir einen reibungsfreien Massenpunkt, wihrend der
Ausdruck in Klammern die Modifikation durch die
Rotation beriicksichtigt und immer kleiner als 1 ist.
Die Beschleunigung ist somit am groften fiir den

mR?

MzgSin"(l‘

1

= gsin6 —
a = gsin w1
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+1

@

Abbildung 2.81: Maxwell-Rad.

Korper mit dem kleinsten Trigheitsmoment /. Dies
erkldrt, weshalb beim Experiment der K&rper mit
dem geringsten Triagheitsmoment zuerst das untere
Ende erreicht.

Einen sehr @hnlichen Effekt beobachtet man beim in
Abb. 2.81 gezeigten Maxwell-Rad: auch dieses de-
monstriert den Austausch von Energie zwischen un-
terschiedlichen Formen mechanischer Energie. Das
Rad hingt an zwei Fiden, die um die Achse ge-
wickelt sind. Nach dem Loslassen wickeln sich die
Féaden ab und bringen das Rad in Rotation. Es findet
ein standiger Austausch zwischen potenzieller Ener-
gie, der kinetischen Energie des Schwerpunktes und
der Rotationsenergie des Rades statt. Die Gesamt-
energie ist

m

I 5
> " +mgzs.

2
Vs+2

&= @(dkin + grot + gpoz =

Hier stellt zg die Hohe des Schwerpunkts dar, wel-
cher auf der Achse liegt, und vg = dzs/dt seine
Geschwindigkeit. Die lineare und die Rotationsge-
schwindigkeit sind aneinander gekoppelt, iiber v =
or, mit r dem Radius der Achse. Da die Achse rela-
tiv diinn ist und die Masse des Rades sich relativ weit
von der Achse befindet, wird die potentielle Ener-
gie zum grofBten Teil in rotatorische kinetische Ener-
gie umgewandelt und die Translationsgeschwindig-
keit des Rades bleibt relativ gering - es fillt deutlich
langsamer als ein frei fallendes Rad.

2.6.6 Drehmoment

Der Drehimpuls ist eine Erhaltungsgrofle wenn kei-
ne dullere Kraft angreift. Wie beim linearen Impuls
kann aber eine duflere Kraft den Drehimpuls verin-
dern. Allerdings spielt nicht nur der Betrag der Kraft
eine Rolle, sondern auch die Richtung und der An-
griffspunkt.

Abbildung 2.82: Experimentelle Bestimmung des
Drehmoments.

Abb. 2.82 zeigt ein Experiment, bei dem eine Kraft
in Form der Gewichtskraft eines Massenpunkts tan-
gential an einem Rad angreift, das um seine Achse
rotiert. Eine Anderung des Drehimpulses kann fiir
einen Massenpunkt geschrieben werden als

dL.  d
—(Fx

dr  dt

5 &
P)=u

L o dp
X p+FX a
Die beiden Vektoren des ersten Terms (V und p)
sind parallel, so dass das Vektorprodukt verschwin-
det. Bei einer Drehbewegung ohne duBere Krifte (@
konstant) ist auerdem ‘fl—f ||7, so dass auch der zweite
Term verschwindet: der Drehimpuls ist konstant.

Wenn jedoch eine geeignete Kraft angreift, welche
eine Komponente parallel zu p aufweist, so dndert
sich die Geschwindigkeit der Drehbewegung ent-
sprechend ‘2—? = ﬁ | und damit auch der Drehimpuls:

—7xF.
dt

Dies ist offenbar das Aquivalent zum zweiten New-

ton’schen Axiom. Man bezeichnet die Groe auf der

rechten Seite als Drehmoment

=7xF

M [M] =Nm.
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Damit kann man das Grundgesetz der Rotation
schreiben als

dl. - d®
T oM=1".
dt dt

Das Drehmoment liegt im rechten Winkel zur Kraft
und erzeugt damit einen Drehimpuls senkrecht zur
Kraft. Da das Drehmoment aus dem Vektorprodukt
FxF besteht, verschwindet es, wenn die Kraft par-
allel zum Ortsvektor (d.h. radial) angreift; in diesem
Fall wiirde eine Anderung des linearen Impulses er-
zeugt, falls keine Gegenkraft wirkt (z.B. durch die
Lager eines Rades).

2.6.7 Rotationsachse

Wie beim Drehimpuls ist auch beim Drehmoment
die Definition immer auf ein bestimmtes Koordina-
tensystem bezogen; Drehimpuls und Drehmoment
dndern sich wenn man den Ursprung des Koordina-
tensystems verschiebt.

Im Experiment von Abb. 2.82 wird die Kraft durch
ein Gewicht der Masse m erzeugt, welches an ei-
nem Seil im Schwerefeld der Erde zieht. Indem das
Gewicht tiber eine Hohe 4 fillt, wird eine Energie
A&, = mgh auf das Rad iibertragen und in kineti-
sche Energie der Rotation &, umgewandelt. Diese
betrigt

1
éarol = EICOZ = mgh

Somit ldsst sich aus diesem Experiment das Trag-
heitsmoment bestimmen:

2mgh
1=
(]

indem man die resultierende Rotationsgeschwindig-
keit @ des Rades misst.

Die Tatsache, dass sich das Drehmoment auf ein be-
stimmtes Koordinatensystem, respektive eine Dreh-
achse bezieht, ldsst sich anhand des in Abb. 2.83 ge-
zeigten Experimentes demonstrieren. Wenn man mit
Hilfe eines Bandes an einer Rolle eine Kraft aus-
iibt, so erzeugt dies ein Drehmoment, welches be-
ziiglich der Symmetrieachse immer in die gleiche

e

Abbildung 2.83: Folgsame Rolle.

Richtung zeigt. Allerdings steht die Rolle in Kon-
takt mit dem Boden und dadurch erfolgt die Rotati-
on um den Auflagepunkt, nicht um die Achse. Be-
ziiglich dieses Punkts kann das Drehmoment positiv
oder negativ sein. Dementsprechend ist es moglich,
die Rolle in Richtung auf den Experimentator oder
von ihm weg zu bewegen.

2.6.8 Kriiftegleichgewicht

Drehmomente spielen vor allem bei ausgedehnten
Korpern eine Rolle. Dies werden meist als starre
Korper behandelt, man vernachléssigt also Deforma-
tionen.

Abbildung 2.84: Gleichgewicht eines starren Kor-
pers.

Abb. 2.84 zeigt einen einfachen starren Korper, be-
stehend aus 2 Massenpunkten, welche starr mitein-
ander verbunden sind. Damit dieser im Gleichge-
wicht ist, also seinen Bewegungszustand nicht &n-
dert, miissen zwei Bedingungen erfiillt sein. Zum er-
sten muss die Summe der von auflen auf den Korper
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wirkenden Krifte verschwinden,
ﬁtot = ZF; =0.
i

Im vorliegenden Fall muss die Summe der Schwer-
kréfte auf die beiden Massen durch eine Stiitzkraft
F, ausgeglichen werden,

Eot = (m1+m2)§+ﬁs =0.

Fiir die Translationsbewegung spielt es keine Rolle,
wo die Krifte angreifen.

Dies wird jedoch relevant, wenn es um eine Rota-
tionsbewegung geht. Damit der Korper auch beziig-
lich einer Drehung im Gleichgewicht ist, muss zu-
sitzlich die Summe der Drehmomente verschwin-
den. Dafiir verwenden wir ein Koordinatensystem,
bei dem die Stiitzkraft F; am Punkt 7, angreift. Da-
mit verschwindet ihr Beitrag zum Drehmoment. Der
Beitrag der Gewichtskréfte is

My + M, = my(Fy —Fs) x §+my(F —Fs) x §=0.
(2.15)

Daraus folgt die Bedingung fiir die Lage 7s des Mas-
senschwerpunkts:

mi (71 — ?S) —|—m2(72 —?S) =0.
Auflésen nach 7y ergibt

L myT+mpP,
my +my

also den mit den Massen gewichteten Mittelwert
der beiden Ortsvektoren. Dieser Punkt wird des-
halb auch als Schwerpunkt bezeichnet. Die Rech-
nung lédsst sich leicht auf eine beliebige Zahl von
Massenpunkten oder Massenelementen erweitern:

o Yimir
S = .
Yim;

Die Gleichgewichtsbedingung (2.15) ist auch be-
kannt als Hebelgesetz, welches besagt, dass die
Summe der Produkte aus Kraft und Distanz vom
Schwerpunkt verschwinden muss,

ZEXi =0.
i

Abbildung 2.85: Stabiles, indifferentes und labiles
Gleichgewicht, abhéngig vom Auf-
hingepunkt.

Hierbei geht man iiblicherweise davon aus, dass die
Kréfte senkrecht zum Hebel angreifen.

Mit Hilfe des Schwerpunkts kann man untersuchen,
ob ein Korper stabil aufgestellt oder aufgehingt ist:
Wenn sich der Schwerpunkt eines Korpers iiber oder
unter seiner Auflagefliche befindet, dann fillt er
nicht um. Ob das Gleichgewicht stabil, instabil oder
indifferent ist, hingt wiederum davon ab, ob die
mogliche Drehachse des Korpers ober-, unter- oder
auf der Hohe des Schwerpunkts ist. Abb. 2.85 il-
lustriert dies fiir einen Holzstab. Daraus ergibt sich
auch eine Moglichkeit, den Schwerpunkt eines Kor-
pers zu bestimmen: Man hingt ihn an verschiede-
nen Punkten auf und markiert die Richtung nach Un-
ten. Die entsprechenden Geraden schneiden sich im
Schwerpunkt.

2.6.9 Pirouette

el =
)

Abbildung 2.86: Pirouette.

Eine bekannte Anwendung der Drehimpulserhaltung
ist die Pirouette von Eiskunstldufern (— Abb. 2.86).
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Hier reduziert der Artist das Tragheitsmoment indem
er die Arme anzieht und erhoht dadurch die Winkel-
geschwindigkeit: Da der Drehimpuls konstant bleibt,
muss gelten

Li=L=Lo=Lw.

Daraus folgt

Als Beispiel nehmen wir an, dass er sich zunéchst
mit einer Drehfrequenz von vy = 1 s~! bewegt und,
dass sein Trigheitsmoment zunichst Iy = 6 kg m?
betridgt. Durch Anziehen der Arme reduziert er die-
ses auf I} = 1,5 kg m?. Sind Reibungsverluste ver-
nachléssigbar, muss der Drehimpuls dabei erhalten
bleiben und damit die Drehfrequenz zunehmen auf

Die kinetische Energie bleibt dabei nicht erhalten;
diese wird dem System iiber eine Arbeitsleistung zu-
gefiihrt, indem die Arme gegen die Zentrifugalkraft
angezogen werden miissen. Die entsprechende Ar-
beit betrigt

1
W = 5(116012—]0(03)

1
= 5(1,5-631 —6-39,5)J=592J.

cls-

Abbildung 2.87: Erhohung der Winkelgeschwindig-
keit durch Reduktion des Trig-
heitsmoments.

Das Experiment kann auch im Horsaal durchgefiihrt
werden, wobei der Effekt durch Gewichte in den

Hinden verstirkt wird (— Abb. 2.87). Beim Anzie-
hen der Arme wird das Tragheitsmoment reduziert
und die Erhaltung des Drehimpulses fiihrt zu einer
Erhohung der Winkelgeschwindigkeit.

<_"—>Lz,Rad + Lz,Stuhl =0
Abbildung 2.88: Erhaltung des Gesamt-

Drehimpuls-Vektors.

Der Drehimpuls ist eine vektorielle Grof3e, die sich
aus mehreren Komponenten zusammensetzen kann.
Im Beispiel von Abb. 2.88 bleibt jedoch nur die ver-
tikale Komponente erhalten, da der Drehstuhl um
diese Achse frei beweglich ist. Die Achse des Ra-
des wird zunichst in horizontaler Richtung gehal-
ten. Dreht man das Rad, so dass der Drehimpuls
nach oben zeigt, muss sich der Drehstuhl in ent-
gegengesetzter Richtung bewegen, um den Gesamt-
Drehimpuls beziiglich der vertikalen Achse zu erhal-
ten. Dreht man die Achse des Rades nach unten, ro-
tiert der Drehstuhl in die entgegengesetzte Richtung.

Abbildung 2.89: Turner an einem Reck.

Auf dhnliche Weise kann ein Turner an einem Reck
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seine Winkelgeschwindigkeit vergroBern. Wie in
Abb. 2.89 gezeigt, dndert er durch seine Korper-
haltung sein Tragheitsmoment und damit auch sei-
ne Winkelgeschwindigkeit. Indem er dies synchroni-
siert mit dem Drehwinkel durchfiihrt, leistet er auch
Arbeit gegen die Schwerkraft und erhoht damit seine
kinetische Energie und seinen Drehimpuls.

Abbildung 2.90: Feuertornado.

Drehimpulserhaltung spielt auch bei der Dynamik
von Gasen eine Rolle. Abb. 2.90 zeigt einen so-
genannten Feuertornado, welcher durch Drehen ei-
nes Tellers mit einer brennenden Fliissigkeit erzeugt
wird. Die Flamme wird von einem Drahtkéfig um-
schlossen, der sich ebenfalls dreht. Durch die Flam-
me steigen im Drahtkéfig heile Luft und Verbren-
nungsgase auf und saugen dadurch von auflen fri-
sche Luft in den Zylinder hinein. Beim Einstromen
sinkt der Abstand von der Drehachse. Wie bei der
Pirouette wird dadurch die Rotationsgeschwindig-
keit groBer. Entsprechend dreht sich die Feuersiule
viel schneller als der Kiifig. Gleichzeitig wird durch
die Drehbewegung die radiale Stromungsgeschwin-
digkeit reduziert. Dementsprechend dauert es lédnger,
bis geniigend Sauerstoff die Flamme erreicht und die
Gase konnen weiter aufsteigen - die Flamme steigt
hoher. Auf dhnliche Weise kommt die Rotation von
Winden um Hoch- und Tiefdruckgebiete zustanden,

wie auch bei Hurrikanen, Taifunen oder Tornados.

2.6.10 Kreisel

Ein Kreisel ist ein starrer Korper, der um eine Achse
rotiert. In diesem Fall gelten Erhaltungsgesetze fiir
alle drei Komponenten des Drehimpulses. Fiir prak-
tische Anwendungen sollte die Rotationsachse mit
einer Symmetrieachse des Korpers zusammenfallen,
in diesem Fall kann die Rotation sehr stabil sein.

Abbildung 2.91: Kardanisch aufgehingter Kreisel.

Lagert man den Kreisel so, dass keine Drehmomente
M auf ihn wirken (— Abb. 2.91), so bleibt wegen

dL

M=0

dt
der Drehimpuls L und auch die Drehachse konstant.
Je groBer der Drehimpuls, desto schwieriger wird es,
seine Richtung zu dndern. Deshalb sind Kreisel bei

hohen Drehzahlen sehr stabil.

Kurskreisel

Ein solcher kriftefreier Kreisel behilt seine einmal
vorgegebene Orientierung auch dann bei, wenn man
ihn mit dem Aufbau als Ganzes beliebig durch den
Raum trégt. Ein Kreisel kann so im Prinzip als Kurs-
kreisel zur Richtungsbestimmung in der Navigation
eingesetzt werden. Allerdings ergeben Reibungsef-
fekte und Drehmomente Abweichungen.
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Backstein

Eine freie Rotation ist stabil bei Rotation um die
Achse mit dem kleinsten oder dem groBten Trig-
heitsmoment.

Nutation

Rotiert der kriftefreie Kreisel nicht um eine Symme-
trieachse, so bleibt zwar die Richtung des Drehim-
pulses konstant, nicht aber die Richtung der Rotati-
onsachse. Der allgemeine Zusammenhang zwischen
Drehimpuls und Winkelgeschwindigkeit ist

& =

L=1-.

Hier stellt / den Tragheitstensor dar, welcher den
Vektor @ rotiert und multipliziert. Drehachse und
Symmetrieachse des Kreisels d&ndern mit der Zeit ih-
re Richtung und bewegen sich auf Kegelminteln um
die Drehimpuls-Achse L.

Priizession

Wirkt eine Kraft auf einen Kreisel, z.B. die Schwer-
kraft, so erzeugt diese i.A. auch ein Drehmoment
und damit eine Anderung des Drehimpulses:

dL

dt

—

?XFc;.

Da die Anderung des Drehimpulses senkrecht zur
Richtung der Gewichtskraft liegt, fillt der Kreisel
nicht um, sondern er prizediert um die Richtung der
Gewichtskraft, also um die Vertikale.

Das Experiment zeigt ein einfaches Beispiel, in dem
die Drehimpulserhaltung ein selbstindig navigieren-
des System ergibt. Man benutzt dazu einen Kreisel,
der in ein Kunststoffrohr eingebaut ist. Der Kreisel
rollt auf einem gebogenen Draht eine schiefe Ebene
hinunter und folgt den Kurven eines diinnen Metall-
rohrs (— Abb. 2.92). Dies wird durch die Drehim-
pulserhaltung moglich. Man kann den Effekt quali-
tativ so erkléren:

e Der Kreisel lduft rechts oder links von der
Bahn. Sein Schwerpunkt S liegt jetzt nicht mehr
direkt iiber der Schiene.

Abbildung 2.92: Ein Zylinder wird durch einen
Kreisel stabilisiert und kann so ei-
nem diinnen Metallrohr folgen.

Es wirkt ein Drehmoment M = g x mg.

Das Drehmoment erzeugt eine eine Prizession
des Kreisels um die Achse senkrecht zu L.

Dadurch dndert sich die Richtung der Rotati-
onsachse des Zylinders und damit die Richtung
der Schwerpunktsbewegung.

Bei korrektem Drehsinn des Kreisels bewegt
sich der Zylinder so, dass der Schwerpunkt wie-
der iber dem Draht liegt.

2.7 Astronomische Anwendungen

2.7.1 Drehimpuls und Planetenbahnen

Die Erhaltung des Drehimpulses ist auch verantwort-
lich fiir die Rotation von Planeten im Sonnensy-
stem, von Satelliten (Monden, Ringen) um Planeten,
und der Sonnensysteme in der Galaxis: diese bilde-
ten sich aus Wolken von Gas und Staub durch Kon-
traktion unter dem Einfluss der Schwerkraft. Die Er-
haltung des Drehimpulses bei der Kontraktion fiihr-
te zu einer Erhohung der anfangs geringen Rotati-
onsgeschwindigkeit und verhindert eine vollstindige
Kontraktion: ohne Drehimpulserhaltung wiirden die
Planten unter dem FEinfluss der Schwerkraft in die
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Abbildung 2.93: Ringe des Saturns.

Sonne fallen. Ahnliche Effekte fithren zur Form der
Galaxien.
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Abbildung 2.94: Das Ptoleméische Weltbild.

Die Planetenbahnen haben die Menschen seit Lan-
gem fasziniert. Ptoleméus fasste im 2. Jh. nach Chri-
stus den damaligen Wissenstand zusammen und er-
stellte ein Weltbild (— Abb. 2.94), welches mehr
als tausend Jahre Bestand hatte. In seinem System
war die Erde im Zentrum des Universums und der
Mond, Merkur, Sonne, Mars, Jupiter und Saturn be-
wegten sich in Kreisen um die Erde. Dies war al-
lerdings nicht mit allen Beobachtungen kompatibel;
so bewegen sich die Planeten von der Erde aus be-
trachtet nicht immer in die gleiche Richtung, son-
dern folgen manchmal einer Art von Schleife. Man
versuchte das Ptolemiische Modell deshalb durch
sogenannte Epizyklen zu korrigieren: Die Planeten
liefen nicht direkt auf Kreisen, sondern auf Kreisen,
deren Mittelpunkte wiederum auf Kreisen um die Er-
de liefen. Noch genauere Messungen zeigten, dass

mehrere Generationen von Epizyklen notwendig wa-
ren, um die Beobachtungen erkldren zu kdnnen.

Die wichtigste Neuerung wurde von Kopernikus
(1473-1543) initiiert, welcher anstelle der Erde die
Sonne ins Zentrum stellte. Dies konnte einige der
Beobachtungen qualitativ erklédren, aber eine quan-
titative Ubereinstimmung wurde nicht erreicht, weil
die Planten in seinem Modell sich immer noch
auf Kreisbahnen bewegten. Der didnische Hofastro-
nom Tycho Brahe (1546-1601) stellte umfangrei-
che Beobachtungen an, welche insgesamt weder mit
dem kopernikanischen noch mit dem ptoleméischen
Weltbild wirklich vereinbar waren.

2.7.2 Die Kepler’schen Gesetze

Abbildung 2.95: Johannes Kepler (1571-1630).

Die erste Theorie, welche die Beobachtungen an-
hand einiger weniger Gesetze erkliren konnte
stammt von Johannes Kepler (1571-1630; — Abb.
2.95). Er formulierte die ersten zwei seiner Geset-
ze 1609, das dritte 1619. Sie wurden fiir Planeten
formuliert, gelten aber analog z.B. fiir die Umlauf-
bahnen von Monden. Zu Kepler’s Zeit waren dies
neue Grundgesetze, welche nur der Beschreibung
der astronmoischen Daten dienten. Erst gegen En-
de des 17. Jahrhunderts lieferte Newton die theo-
retischen Grundlagen, mit denen diese Gesetze aus
grundlegenderen Gesetzen hergeleitet werden konn-
ten.

1. Kepler'sches Gesetz: Die Planeten bewegen
sich auf Ellipsen. Die Sonne steht jeweils in ei-

73



2 Mechanik

Abbildung 2.96: 1. Kepler’sches Gesetz: Die Plane-
tenbahnen sind Ellipsen; die Sonne
steht in einem der Brennpunkte.

nem der Brennpunkte. Ellipsen sind geschlos-

sene Kurven, welche z.B. durch die Gleichung

2 2

A
beschrieben werden konnen. a und b stellen die
Halbachsen der Ellipse dar (— Abb. 2.96). Fiira =5
geht die Ellipse in einen Kreis iiber. Ellipsen kénnen
u.a. konstruiert werden, indem man zwischen den
beiden Brennpunkten einen Faden spannt und mit ei-
nem Bleistift bei gespanntem Faden die Kurve zieht.
Dabei nutzt man aus, dass die Strecke u + v konstant
ist.

1

Das Gesetz beinhaltet verschiedene Néherungen,
z.B. dass die Sonne unendlich schwer ist. Dies ist
eine gute Niaherung: Die Masse der Sonne betrdgt
etwa 2-10°0 kg, diejenige der Erde etwa 6 - 10%*
kg. Beriicksichtigt man die endliche Masse, so be-
wegen sich Sonne und Planet um den gemeinsamen
Schwerpunkt, dieser liegt in einem Brennpunkt der
Ellipse. AuBerdem storen andere Planeten die Bahn.

2.7.3 2. Kepler’sches Gesetz

Das 2. Kepler’sche Gesetz beschreibt die Geschwin-
digkeit auf der Bahn.

Der von der Sonne zum Planeten gezogene Radius-
vektor 7 tiberstreicht in gleichen Zeiten At konstante
Fldchen AA: AA/At = konstant (— Abb. 2.97). Die-
ses Gesetz ldsst sich beweisen, wenn man die Fliche
dA berechnet, welche in der (infinitesimalen) Zeit dt
iiberstrichen wird:

Abbildung 2.97: 2. Kepler’sches Gesetz: Die Fli-
chen A| und A; sind gleich.

1 1
1 dr 1
= 7><md—: di = 5 |F > ¥ di.
Da 7 x mv =L den Drehimpuls darstellt, ist
A _ 1 |L| = const
dt  2m'" '

konstant, wenn der Drehimpuls sich nicht &ndert.
Dies gilt fiir endliche Zeiten genau so,

t+At dA 1 .
A(At) = —dt = —|L|Ar.
(Ar) [ = L]

Das zweite Kepler’sche Gesetz ist also eine direkte
Manifestation der Erhaltung des Drehimpulses.

2.7.4 3. Kepler’sches Gesetz

Das dritte Kepler’sche Gesetz betrifft das Verhilt-
nis zwischen Abstand und Umlaufzeit der Planeten.
Kepler fand es erst etwa 10 Jahre nach den ersten
beiden Gesetzen; es wurde 1619 publiziert, im Werk
Harmonices mundi.

Die Quadrate der Umlaufzeiten 77, 7> zweier Plane-
ten verhalten sich wie die Kuben der gro3en Halb-
achsen a;, a, (— Abb. 2.98):

() -(2)-




2 Mechanik
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Abbildung 2.98: 3. Kepler’sches Gesetz.

Diese Beobachtung kann fiir eine Kreisbewegung
leicht erkldrt werden: In diesem Fall wirkt die Gra-
vitation

als Zentripetalkraft. Diese muss der Zentrifugalkraft
F;= msz

entsprechen. Die Kreisfrequenz @ ist invers propor-
tional zur Periode, @ = 27 /T. Somit ist

:m< >2R.

Umstellen ergibt das 3. Kepler’sche Gesetz:

Mm
R

21

T

G

T2 2

— = —— =const.
R  GM

Solche Potenzgesetze kann man am besten iiberprii-
fen indem man die vorhandenen Daten logarithmiert:
Bildet man auf beiden Seiten den Logarithmus dann
findet man

2(logTh —logT>)

3
log <al) = 3(loga; —logay)
a

oder
loga; —loga, 2

logTi —logTh 3
Trigt man loga gegen log T auf, so erhilt man somit
eine Gerade mit Steigung 2/3. Wie in Abb. 2.99 ge-
zeigt, passen die experimentellen Daten sehr gut zu
dieser Voraussage.

10124

101

grofle Bahnhalbachse a [m]

1Jahr 408 109

Umlaufzeit T [s]

107

Abbildung 2.99: Vergleich des 3. Kepler’schen Ge-
setzes mit Daten der Planetenbah-
nen.

2.7.5 Theorie der Gravitation

Die Kepler’schen Gesetze lieferten hervorragende
Vorhersagen welche innerhalb der Messgenauigkeit
die Beobachtungen erklidren konnten. Sie liefern
aber keine Erkldrung fiir die beobachteten Phino-
mene. Kepler versuchte auch, eine Erkldrung zu lie-
fern, aber es gelang ihm nicht. Diese lieferte jedoch
Newton mit seinen Gesetzen der Mechanik (— Ab-
schnitt 2.2.2) und mit seiner Theorie der Gravitation
(— 2.2.5). Diese besagt, dass die unterschiedliche
Massen sich anziehen, mit einer Kraft

mpmy
2
V)

|Fg| =G

Die Gravitationskonstante G war zu Newton’s Zeit
noch nicht bekannt. Der heute anerkannte Wert be-
triagt

Nm?2
kg2

m3

G=6,673-10""" =6,673-107"" ——.
kgs?

Nachdem die Gravitationskonstante bestimmt ist,
kann man eine Messung der Fallbeschleunigung an
der Erdoberfliche dazu verwenden, die Erdmasse
zu bestimmen. Mit dem mittleren Erdradius r =
6,37-10°m erhilt man mg = 5,97-10* kg. Analog
kann man aus dem Radius einer Planetenbahn und
seiner Umlaufzeit die Masse der Sonne bestimmen:
Aus dem Gleichgewicht zwischen Zentrifugalkraft
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und Gravitationskraft der Sonne

mpng

2
r'p

Fzp = mprpa),% =F;=G

Die Sonnenmasse erhilt man daraus als
ms =rywp/G~2-10%g.

Dies beinhaltet gleichzeitig das dritte Kepler’sche
Gesetz (fiir den Grenzfall eines Kreises, d.h. ver-
schwindender Elliptizitét).

Zu Beginn des 20. Jahrhunderts erkannte Einstein,
dass die Newton’sche Theorie als eine Nidherungs-
form betrachtet werden muss. In dieser Theorie er-
folgt die Wechselwirkung zwischen unterschiedli-
chen schweren Korpern nicht mehr iiber Krifte, son-
dern indem jeder Massenpunkt den Raum in sei-
ner Umgebung verzerrt. Die Theorie behandelt somit
nicht Krifte, sondern die Geometrie des vierdimen-
sionalen Raum-Zeit Kontinuums.

Abbildung 2.100: Kriimmung des Raum-Zeit Konti-
nuums durch eine Masse.

Abb. 2.100 zeigt diese Kriimmung schematisch, an-
hand einer Projektion in den zweidimensionalen
Raum, respektive die dreidimensionale Raum-Zeit.
Jede Masse erzeugt eine Kriimmung in ihrer Umge-
bung.

Sie gibt in vielen Fillen die gleichen Voraussagen zu
experimentell beobachtbaren Gréen wie die New-
ton’sche Theorie. In einigen wenigen Spezialfil-
len findet man Unterschiede. So kann sie z.B. die
Prizessionsbewegung bei der Merkurbahn erkléren,
oder die Ablenkung von Sternenlicht beim Passie-
ren der Sonne. Eine wichtige Bestitigung der allge-
meinen Relativitétstheorie erfolgte 2016, als zum er-
sten Mal Gravitationswellen gemessen wurden. Gra-
vitationswellen sind Verzerrungen des Raums, wel-
che sich mit Lichtgeschwindigkeit ausbreiten. Alle
bewegten Korper erzeugen Gravitationswellen, aber
die entsprechenden Verzerrungen sind meistens zu
klein, um sie messen zu konnen. Lediglich wenn sich

sehr gro3e Massen sehr schnell bewegen, sind die
Amplituden der Wellen grof} genug um messbar zu
sein. Die bisher gemessenen Signale wurden Paaren
von schwarzen Lochern und Neutronensternen zuge-
schrieben, die sich verschmolzen haben. Einige der
beteiligten Forscher erhielten 2017 den Nobelpreis
fiir Physik.
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2.8 Mechanik in bewegten
Bezugssystemen

2.8.1 Galilei’sche Relativitiit

Die Beschreibung einer Bewegung hingt ab vom
verwendeten Bezugssystem: Wenn jemand in einem
Eisenbahnwagen einen Ball aufwirft, so hingt die
Form der Bahnkurve davon ab, ob der Betrachter
ebenfalls in der Eisenbahn sitzt oder auf dem Bahn-
steig steht.

Man ist grundsitzlich frei in der Wahl des Bezugs-
systems, d.h. man kann auswihlen welches Bezugs-
system man verwendet, um die beobachteten Phi-
nomene zu beschreiben. Im oben genannten Bei-
spiel unterscheiden sich die beiden Bezugssyste-
me lediglich um die Anfangsgeschwindigkeit in der
Bewegungsrichtung der Eisenbahn. Es gibt meist
ein Bezugssystem, welches eine besonders einfache
Beschreibung ermoglicht. Vor allem aber ist nicht
garantiert, dass in jedem Bezugssystem die New-
ton’schen Axiome erfiillt sind. Ist dies der Fall, so
bezeichnet man das System als Inertialsystem. Es
gibt beliebig viele unterschiedliche Inertialsysteme.

Jedes ortsfeste Inertialsystem kann man in ein an-
deres transformieren, wenn man eine Translation
oder Rotation vornimmt. Auflerdem kann man das
Bezugssystem immer mit konstanter Geschwindig-
keit gegeniiber einem Inertialsystem verschieben
und erhilt ein weiteres Inertialsystem. Die Tatsache,
dass alle diese Systeme gleichwertige Moglichkei-
ten fiir die Beschreibung der beobachteten Phinome-
ne darstellen, bedeutet, dass absolute Geschwindig-
keit keine Bedeutung hat. Ahnlich bedeutet die Tat-
sache, dass der Ursprung des Koordinatensystems
frei wihlbar ist, dass absolute Position keine Bedeu-
tung hat. Aus der (experimentell verifizierten) Tatsa-
che, dass die physikalischen Gesetze giiltig bleiben
bei einer beliebigen (konstanten) Bewegung des Be-
zugssystems kann man u. a. die Erhaltung des linea-
ren Impulses herleiten.

Wir betrachten zunichst die beiden Bezugssysteme
von Abb. 2.101, welche gegeneinander in Ruhe sind,
aber einen unterschiedlichen Ursprung besitzen. Ist
der Ursprung des Systems B im System A am Ort

Yo
Ya

Xb

Xa

Abbildung 2.101: Ortsvektor 7 eine Punktes P in
2 unterschiedlichen Bezugssyste-
men A, B.

7ap, und der Ortsvektor des Punktes P im System B
7gp, so ist offenbar der Ortsvektor 74p im System A

YAP = YAB + VBP.

2.8.2 Relativgeschwindigkeit

Ya

Xb

Xa

Abbildung 2.102: Bewegte Bezugssysteme.

Man verwendet nicht immer ruhende Bezugssyste-
me. Abb. 2.102 zeigt einen Fall, bei dem sich das
System B gegeniiber dem System A mit der konstan-
ten Geschwindigkeit V45 bewegt. Ist die Position des
Bezugssystems B relativ zu A zum Zeitpunkt 1 = 0
748(0), so gilt offenbar zur Zeit ¢

VAB(I‘) = FAB(O) + Vapt.

Fiir einen Punkt P, der sich gegeniiber dem System
B mit der konstanten Geschwindigkeit V4 bewegt,

7gp(t) = 7pp(0) +Vppt
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gilt somit
7;AP(Z‘) = ?AB(t)+?BP(t) =
= TaB (0) + ?BP(O) + Vgt + Vgpt
= Tap(0) +Vapt,

wobei die Geschwindigkeit V4p des Punktes P ge-
geniiber dem System A durch die Vektorsumme

VAP = VAR + VBp

gegeben ist. Die Geschwindigkeit im Bezugssystem
A ist somit gegeben durch die Summe aus der Ge-
schwindigkeit im Bezugssystem B und der Relativ-
geschwindigkeit der beiden Bezugssysteme.

2.8.3 Gleichformig beschleunigte
Bezugssysteme

Die Relativgeschwindigkeit zwischen zwei Bezugs-
systemen ist nicht immer konstant. Typische Bei-
spiele sind Aufziige oder Eisenbahnen beim Anfah-
ren oder Abbremsen oder Flugzeuge beim Start. Hier
sollen nur gleichférmige Beschleunigungen disku-
tiert werden, d.h. a =konstant. Deren Behandlung
ist zundchst analog zur Behandlung von Bezugssy-
stemen, die sich mit gleichférmiger Geschwindig-
keit bewegen. Wir betrachten hier nur den einfachen
Fall, dass die beiden Systeme zum Zeitpunkt t = 0
identisch sind, das System B gegeniiber dem System
A jedoch gleichformig beschleunigt wird mit dap.
In beiden Systemen gilt die iibliche Kinematik. Fiir
den Punkt P, der gegeniiber System B mit dpp be-
schleunigt wird, findet man im System A in Analogie
zur obigen Herleitung fiir die Geschwindigkeiten die
Beschleunigung

aap = dap+dpp.-

Fiir Geschwindigkeit und Ort gilt fiir 745(0) = 0,
Vap(0) =0

Vap = Vap+Vpp = dapt +Vpp,
2
FAp = FYap+7pp= aABE + rgp.

Anders sieht es aus bei der Dynamik. Da die Be-
schleunigung in den beiden Bezugssystemen unter-
schiedlich ist, konnen Newton’s Axiome nicht in bei-
den Systemen gelten. Gelten sie z.B. im System A
und ist die resultierende Kraft auf den Korper

=

dvap
=m
dt

= mdap = m(dap + dpp),

so konnen wir im Bezugssystem B schreiben

=

mEin = m(ﬁAp — EiAB) =F— mZiAB.

Der zusitzliche Term —mdsp in der Bewegungs-
gleichung kann als scheinbare Kraft, als Trigheits-
kraft interpretiert werden. Wir spiiren sie z.B. beim
Anfahren eines Aufzugs: beschleunigt der Aufzug
nach oben, so driickt uns eine Kraft nach unten, wel-
che proportional zur Beschleunigung und zu unserer
Masse ist. In einem Bezugssystem, welches mit der
Erdbeschleunigung g nach unten beschleunigt wird,

verschwindet scheinbar die Schwerkraft.

2.8.4 Schwerelosigkeit

in Bremen.

Fallturm
Rechts: Kapsel im Fallturm.

Abbildung 2.103: Links:

Dies wird z.B. im Fallturm Bremen ausgenutzt. Wie
in Abb. 2.103 gezeigt, werden dort Experimente in
der Schwerelosigkeit durchgefiihrt, die sonst nur im
Weltraum moglich sind. So konnen fiir Kurzzeitex-
perimente die hohen Kosten einer Weltraumexpediti-
on eingespart werden. In dem 110 m hohen Rohr des
Turms wird eine Fallkapsel hochgezogen und losge-
lassen.
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Wihrend des freien Falls von knapp fiinf Sekun-
den herrscht in der Kapsel Schwerelosigkeit. Das
Fallrohr wird luftleer gepumpt, um Storungen durch
Luftreibung zu vermeiden.

10 - —
5 45° aufwarts \ 45° abwarts
£ :
o 9 :
<
:0
I
8]
~ 18g | 0y | 18g
0 20 45 65
Zeit [s]

Abbildung 2.104: Prinzip des Parabelflugs.

Lingere Zeiten von Schwerelosigkeit kann man in
Spezialflugzeugen von NASA und ESA erleben,
oder bei der Firma ”Go Zero g”. Wie in Abb. 2.104
gezeigt, fliegen diese Flugzeuge steil nach oben und
folgen dann fiir ca. 25 s einer Parabel. Dieser Teil
der Flugbahn entspricht einer Wurfparabel, d.h. das
Flugzeug fliegt mit konstanter Horizontalgeschwin-
digkeit und einer vertikalen Beschleunigung nach
unten von 9,81 ms~2. Wihrend dieser Zeit sind Pas-
sagiere und Ausriistung praktisch schwerelos, wie in
Abb. 2.105 gezeigt.

_AQ ‘

Abbildung 2.105: Schwerelosigkeit beim Parabel-
flug.

Wihrend Ort, Geschwindigkeit, Beschleunigung
und Kraft von der Wahl des Bezugssystems abhén-

gen, gilt dies nicht fiir Abstdnde oder Geschwindig-
keitsdifferenzen: diese sind im Rahmen der klassi-
schen Mechanik nicht von der Wahl des Bezugssy-
stems abhéngig.

2.8.5 Kreishewegung

Ein Spezialfall der Bewegung in zwei (oder drei) Di-
mensionen ist die Kreisbewegung (— Kap. 2.6.1).

4

Abbildung 2.106: Ort, Geschwindigkeit und Be-
schleunigung fiir einen Massen-
punkt bei einer Kreisbewegung.

Hiufig geniigt es, wenn man die Kreisbewegung mit
einer einzigen Koordinate beschreibt, dem Winkel ¢
beziiglich der x-Achse, gemessen vom Zentrum des
Kreises (—Abb. 2.106). Die entsprechende Winkel-
geschwindigkeit @ = d¢ /dt entspricht dann eben-
falls einer skalaren GroBe. In drei Dimensionen wird
sie als Vektor dargestellt, der senkrecht auf dem
Kreis steht und mit der Drehbewegung zusammen
eine Rechtsschraube bildet.

In 2 Dimensionen kann der Ortsvektor eines Punk-
tes, welcher im drehenden Koordinatensystem in
Ruhe ist, geschrieben werden als

o )

Somit betrigt die Geschwindigkeit

ro <

cos(@t + @)
sin(wt+¢0)

. dr
V= — =

dt

—sin(@t + @)
cos(®t + @)

)
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und die Beschleunigung

()

d.h. sie wirkt in radialer Richtung nach innen.

av _
dr

—cos(t + @)

a= —sin( @t + @)

Offenbar ist eine Kreisbewegung eine beschleunigte
Bewegung. Beschreibt man die Bewegung von Ob-
jekten in einem rotierenden Koordinatensystem, so
haben deshalb die Newton’schen Axiome keine Giil-
tigkeit, sondern es treten zusétzliche Krifte auf, so-
genannte Scheinkrifte.

2.8.6 Bewegungsgleichung im rotierenden
Bezugssystem

Wir versuchen jetzt, die Bewegungsgleichungen fiir
eine allgemeine Bewegung im rotierenden System
herzuleiten. Wir beschrinken uns auf eine Ebene,
die senkrecht zur Rotationsachse steht. Dies ist keine
wesentliche Einschrinkung, da die Bewegung par-
allel zur Achse durch die Rotation nicht beeinflusst
wird.

Bahn
Y 0
y(t) o /()
x(t)
B
a

rotierendes R
Koordinatensystem x(0)

Abbildung 2.107: Bewegung in einem rotierenden
Koordinatensystem.

Abb. 2.107 zeigt ein Koordinatensystem X(¢), ¥(¢),
welches sich um die z-Achse dreht und einen Mas-
senpunkt, der sich entlang einer Bahn 7(r) bewegt.
Im rotierenden Koordinatensystem lautet der Orts-
vektor des Massenpunktes

7= o(t)%(1) + B (1) ¥(t).

Sowohl die Koordinaten a(t), B(¢) wie auch die
Achsen X(¢), y(¢) sind hier im Allgemeinen zeitab-
hingig. Die Geschwindigkeit erhilt man wie iiblich
durch Ableiten:

_d,
Cdt

d

v(t) (1) =~ la()x() + B()y(1)].

Die Rotation der Koordinatenachsen kann beschrie-
ben werden als

%(0) cos wr + y(0) sin et
¥(0) cos wt — X(0) sin @t .

Die Geschwindigkeit des Massenpunkts ist demnach

(1) = a()(1) + B()F(1) + a(0)x() + B (1)¥(1).

Die zeitlichen Ableitungen der Koordinatenachsen
sind

vV

X(t) = —X(0)wsin(wt)+5(0)wcos(wr)
= wy().

() = —¥(0)wsin(wr)—X(0)wcos(wr)
= —wX(t)

Demnach ist

(1) = c(r)(r) + B (1)(1) + o[ex(1)F (1) — B (1)(r))

Der erste Term besitzt die gleiche Form wie in einem
Inertialsystem. Der zusitzliche zweite Term beriick-
sichtigt die Zeitabhéngigkeit der Basisvektoren. Er
tritt auch dann auf, wenn o(z) = a(0) und B(r) =
B(0), d.h. wenn sich der Punkt gegeniiber dem rotie-
renden Koordinatensystem nicht bewegt.

—

v X

2.8.7 Scheinkriifte im rotierenden
Koordinatensystem

Nach dem gleichen Verfahren kdnnen wir die Be-
schleunigung berechnen:

i) = ()
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Der gleiche Sachverhalt kann auch etwas kompakter
geschrieben werden wenn wir die Vektoren

r=(a,B,0),
Vv = (a,B,0),
a = (&,p,0),

einfithren, d.h. Position, Geschwindigkeit und Be-
schleunigung im rotierenden Koordinatensystem,
sowie den Winkelgeschwindigkeitsvektor

®=(0,0,0).
Damit wird
d=a +20 xv — 1.

Wir konnen diese Gleichung natiirlich auch nach der
Beschleunigung im rotierenden Koordinatensystem
auflosen:

a=a-20xv+o’r. (2.16)
Der erste Term entspricht der Beschleunigung im In-
ertialsystem. Fiir ein kriftefreies System verschwin-
det er nach dem Grundgesetz der Mechanik. Be-
schreibt man die Bewegung eines kriftefreien Kor-
pers im Inertialsystem, so verschwindet die Be-
schleunigung und der entsprechende Punkt bewegt
sich mit konstanter Geschwindigkeit tangential vom
Kreis weg.

Die beiden anderen Terme in (2.16) beschreiben eine
Beschleunigung im rotierenden Koordinatensystem,
welche nicht von duBeren Kréften bestimmt wird;
sie werden deshalb als Scheinkrifte bezeichnet. Der
mittlere Term ist proportional zur Geschwindigkeit
v des Massenpunktes im rotierenden Koordinaten-
system und zur Rotationsgeschwindigkeit des Sy-
stems. Der dritte Term ist proportional zum Qua-
drat der Winkelgeschwindigkeit, und zum Abstand
r von der Drehachse.

2.8.8 Zentrifugalkraft

Der letzte Term entspricht der Zentrifugalbeschleu-
nigung (resp. Zentrifugalkraft). Sie muss durch ei-
ne gleich grofle Zentripetalkraft kompensiert werden
wenn der Massenpunkt im rotierenden Koordinaten-
system am Ort bleiben soll. Der Betrag ist

2
my
|F| = ml|a| = mo?*r = —.
r
Kraftmesser :
Angelschnur
m=150g

—

Abbildung 2.108: Messung der Zentrifugalkraft auf
eine rotierende Masse.

Die Zentrifugalkraft kann auch experimentell ge-
messen werden, wie in Abb. 2.108 gezeigt. Man lésst
dazu ein Gewicht um einen Punkt rotieren und misst,
iber eine Umlenkung, die Kraft, mit der das Gewicht
an der Schnur nach auf3en zieht.

Im Experiment wurden folgende Werte gefunden:

31,5 | 0,15 3,6 | 1,75 | 0,14
33 0,3 2,7 | 233|027
388 | 0,75 | 1,7 37 | 08

Offenbar stimmen die gerechneten Werte in der letz-
ten Spalte im Rahmen der Messgenauigkeit mit den
gemessenen Werten in der zweiten Spalte iiberein.

Die Beschleunigungskrifte konnen auch in Fliissig-
keiten gemessen werden. Abb. 2.109 zeigt als Bei-
spiel eine rotierende Kiivette, in der die eingeschlos-
sene Fliissigkeit eine Parabelform annimmt, wenn
die Kiivette um die vertikale Achse rotiert wird.

Abb. 2.110 erlautert den Effekt. Die Oberflache
der Fliissigkeit wird durch die Gleichgewichtsbedin-
gung definiert, dass die Kraft auf die Molekiile an
der Oberfliche senkrecht zur Oberfliche sein muss
(— Kapitel 2.9.3). Sie setzt sich zusammen aus der
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Abbildung 2.109: Zentrifugalkiivette.

Gewichtskraft (unabhingig vom Abstand von der
Rotationsachse) und der Zentrifugalkraft (~r?). So-
mit ist die Steigung der Oberfliche proportional zur
Zentrifugalkraft. Damit erhdlt man folgende Form
fiir die Oberfldche:

(02 r2

2¢

=

Offenbar bildet die Oberfliche eine Parabel. Dies
kann im Experiment gut bestétigt werden. Auflerdem
konnen wir die Abhédngigkeit von der Rotationsge-
schwindigkeit semi-quantitativ verifizieren.

2.8.9 Beispiele

Die Zentrifugalkraft wirkt auf alle Korper proportio-
nal zu ihrer Masse. Sie wird u.a. dazu verwendet,
um Suspensionen zu trennen, indem man diese in ei-
ne Zentrifuge 14dt. Ultrazentrifugen erzeugen Krifte
bis zu 10° g.

In der Kernspinresonanz (NMR) verwendet man
ebenfalls sehr schnelle Drehungen: Man rotiert Pro-
ben mit bis zu 120 kHz um ihre eigene Achse, um
ausgemittelte Spektren zu erhalten. Bei typischen

Abbildung 2.110: Kriftegleichgewicht an der Fliis-
sigkeitsoberfldche.

Zahlen von v, = 12 kHz, d = 5 mm erhilt man

(21,2105 22mm = 1,1.-10"m/s*
1,2-10%,

azr

also mehr als 1 Million mal die Erdbeschleunigung.

Abbildung 2.111: Loopingbahn.

Die Zentrifugalkraft wird auch in vielen spieleri-
schen Anwendungen genutzt, wie z.B. bei einer
Achterbahn wie in Abb. 2.111 und 2.112. In Ex-
periment von Abb. 2.112 kann man messen, wie
schnell ein Fahrzeug durch den Looping fahren muss
um nicht herunterzufallen. Dafiir muss am hochsten
Punkt die Zentrifugalkraft gerade die Erdanziehung
kompensieren. Die explizite Rechnung wird in den
Ubungen durchgefiihrt.

Abb. 2.113 zeigt eine Sportart, bei der die Zentrifu-
galkraft die Geschwindigkeit beschrinkt. Die Zentri-
fugalbeschleunigung kann hier direkt gemessen wer-
den an der Neigung der Sportler: Die Summe aus
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Startposition

Abbildung 2.112: Experiment zur Loopingbahn:
fallt der Wagen herunter?

Abbildung 2.113: Eisschnellldufer in einer Kurve.

Gewichtskraft und Zentrifugalkraft muss entlang der
Korperachse wirken, damit die Léufer stabil um die
Kurve fahren.

Wir betrachten als Beispiel eine sich drehende
Scheibe, auf der ein Korper liegt. So lange sich die-
ser mit der Scheibe dreht, fiihrt er offenbar eine be-
schleunigte Bewegung durch. In einem Koordinaten-
system, welches an die Scheibe gekoppelt ist, ist er
jedoch in Ruhe, d.h. nach Newton’s Axiom diirfte
keine Kraft auf ihn wirken. Lisst man ihn los, so
dreht sich das Bild: im Ruhesystem ist er jetzt krif-
tefrei und fiihrt deshalb eine gradlinige Bewegung
durch (tangential zur Scheibe). Im rotierenden Koor-
dinatensystem beginnt er zunéchst, sich radial nach
auflen zu bewegen und fiihrt dann eine gekriimmte
Bewegung aus; gemill Newtons Axiom miissen so-
mit Kréfte auf den Korper wirken. Die Bewegung im
rotierenden Koordinatensystem wird aufgezeichnet,
indem man die Kugel iiber ein Kohlepapier rollen
lasst.

2.8.10 Corioliskraft

Wenn ein Korper sich auf einer rotierenden Scheibe
bewegt, so wird er durch die Zentrifugalkraft nach
auBlen beschleunigt. Er folgt jedoch keiner geradlini-
gen Bahn, sondern diese ist gekriimmt. Verantwort-
lich dafiir ist die zweite Scheinkraft, die als Coriolis-
kraft bezeichnet wird, nach dem franzdsischen Phy-
siker Gaspard Gustave de Coriolis (1792-1843). Die
Corioliskraft kann geschrieben werden als

ﬁcZZﬁX(?),

wobei der Impuls sich auf das rotierende Koordi-
natensystem bezieht. Er fiihrt dazu, dass die Bewe-
gung von reibungsfreien Korpern in einem rotieren-
den Koordinatensystem gekriimmt ist, falls die Be-
wegung eine Komponente senkrecht zur Rotations-
achse aufweist.

Bahn der Kugel

Abbildung 2.114: Zentrifugal- und Corioliskraft im
Drehstuhl.

Abb. 2.114 zeigt die Richtung der beiden Schein-
krifte fiir eine Kugel, die zu Beginn radial nach
auBlen rollt. Die Corioliskraft ist proportional zur
Geschwindigkeit des bewegten Korpers und zur
Winkelgeschwindigkeit des Systems, wobei nur die
senkrechte Komponente beitrigt. Wenn der Korper
aufgrund der Zentrifugalkraft nach auBen beschleu-
nigt wird, setzt auch die Corioliskraft ein, welche
proportional zur Geschwindigkeit ist und senkrecht
zur Geschwindigkeit wirkt, d.h. die Bahn biegt. Der
Effekt der beiden Kriifte ist eine spiralférmige Be-
wegung nach auflen.
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Die gleichen Krifte treten z.B. auch bei Bewegun-
gen auf der Erdoberflache auf. Hier ist die Coriolis-
kraft z.B. fiir die Ablenkung der Windsysteme ver-
antwortlich. Gébe es keine Erdrotation so wiirden
die Winde direkt in Richtung des Zentrums eines
Tiefdruckgebietes blasen. Aufgrund der Erdrotation
wird bewegte Luft jedoch abgelenkt. Die Richtung
wird durch das Vektorprodukt v x @ bestimmt. Der
Winkelgeschwindigkeitsvektor @ zeigt auf der Er-
de nach Norden. Auf der Nordhalbkugel werden die
Winde nach rechts abgelenkt. Dies ist der Grund fiir
die dominanten Westwinde in unseren Breitengra-
den: es handelt sich um Luft, die aus den Hochdruck-
gebieten im Bereich der Sahara nach Norden flief3t
und dabei durch die Corioliskraft nach Osten abge-
lenkt wird.

nordliche Halbkugel stidliche Halbkugel

N

AN

s
T )
E 7’/ \ /g‘\/{[/ E

/ o
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Abbildung 2.115: Windrichtung von Tiefdruckge-
bieten auf der nordlichen, resp.
stidlichen Halbkugel.

Gleichzeitig fiihrt die Corioliskraft dazu, dass Luft
nicht gerade in ein Tiefdruckgebiet hinein flief3t,
sondern sich im Gegenuhrzeigersinn darum dreht.
Auf der Siidhalbkugel wechselt das Vorzeichen von
V x @, die Winde werden nach links abgelenkt und
drehen sich im Uhrzeigersinn um die Tiefdruckge-
biete. Abb. 2.115 zeigt die Situation fiir beide Fille.

Die resultierende Drehung der Tiefdruckgebiete ist
praktisch in jeder Wetterkarte sichtbar. Abb. 2.116
zeigt als Beispiel einen Hurrikan iiber dem siidostli-
chen Teil der USA.

Ebenso kann die Drehung der Pendelebene beim
Foucault’schen Pendel als Effekt der Coriolis-Kraft
verstanden werden. Die Geschwindigkeit der Pen-
delmasse ist ndherungsweise parallel zur Erdober-

Abbildung 2.117: Das Foucault’sche Pendel.

fliche, wihrend der Rotationsvektor @ parallel zur
Siid-Nord Achse der Erde steht. Die Projektion des
Vektorprodukts ¥ X @ in die Horizontale hat den Be-
trag

Fe = —2mov(t)sin @,

wobei ¢ die geographische Breite darstellt. Somit
variiert die Prizessionsgeschwindigkeit mit sin .
An den Polen dreht sich dadurch die Schwingungs-
ebene in 24 Stunden einmal um 360°. In Dortmund
dauert eine Rotation gegeniiber dem terrestrischen
Bezugssystem rund 30,67 Stunden.

2.8.11 Die Einstein’sche Relativititstheorie

Nach der Galilei’schen Relativititstheorie erhilt
man unterschiedliche Messresultate fiir die Ge-
schwindigkeit eines Korpers, wenn man sie in unter-
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schiedlichen Bezugssystemen misst, welche sich ge-
geneinander bewegen. Galilei versuchte als einer der
ersten, die Ausbreitungsgeschwindigkeit von Licht
zu messen. Er verwendete dafiir Laternen und eine
Messstrecke von 15 km. Um diese Distanz zweimal
zuriick zu legen, benétigt Licht rund 10~* Sekunden.
Seine Messung konnte deshalb nur eine untere Gren-
ze liefern. Die erste erfolgreiche Messung wurde von
Ole Rémer 1676 durchgefiihrt, indem er die Ver-
dunkelungsperioden der Jupitermonde maS. Er fand
einen Wert von 240000 km/s. Die erste rein terrestri-
sche Messung wurde 1849 von Fizeau durchgefiihrt;
er verwendete dhnlich wie Galilei eine Messstrecke,
die von Licht zweimal durchlaufen wurde, aber an-
stelle von Menschen ein schnell drehendes Zahnrad.

Gegen Ende des 19. Jahrhunderts versuchte man, die
Lichtgeschwindigkeit in unterschiedlichen Bezugs-
systemen zu messen. Damals ging man davon aus,
dass Licht sich in einem Medium namens Ather aus-
breitet, welches sowohl im Vakuum wie auch in op-
tisch transparenten Materialien vorhanden sei. Mes-
sungen der Lichtgeschwindigkeit sollten deshalb In-
formationen dariiber liefern, wie sich z.B. die Er-
de gegeniiber dem Ather bewegt. Es wurden ent-
sprechend sorgfiltige Messungen durchgefiihrt, z.B.
von Michelson und Morley ab 1881. Die Resultate
zeigten jedoch keine messbare Richtungsabhingig-
keit der Lichtgeschwindigkeit. Zum Beispiel ist die
Geschwindigkeit des Lichts von einem Stern unab-
hingig davon, ob sich die Erde auf den Stern zu-
oder wegbewegt. In einer 1905 verdffentlichten Ar-
beit beschrieb Albert Einstein die Konsequenzen der
Konstanz der Lichtgeschwindigkeit. Sie sind Gegen-
stand der “speziellen Relativitiitstheorie” und weicht
in einigen Punkten ab von der Galilei’schen Theorie.
Insbesondere die folgenden Grundvoraussetzungen
der Galilei’schen Theorie gelten nur noch im Grenz-
fall niedriger Geschwindigkeiten:

* Die Zeit ist absolut und unverdnderlich und
hingt nicht von der Bewegung und dem Ort ab.

* Es gibt einen “absoluten Raum”, d.h. ein abso-
lut ruhendes System, in dem alle Bewegungs-
abldufe stattfinden.

* Die Eigenschaft “Masse” eines Korpers geht
nie verloren oder entsteht aus dem Nichts. Mas-

se ist unabhingig vom Bewegungszustand und
bleibt erhalten.

Die Grundannahme der speziellen Relativititstheo-
rie ist, dass die Lichtgeschwindigkeit

¢ = 299792458
S

in allen moglichen Bezugssystemen konstant ist.
Im Rahmen der Galilei’schen Relativitétstheorie ist
dies nicht moglich. Die Transformationsgleichungen
zwischen den Koordinatensystemen miissen deshalb
modifiziert werden. Die entsprechenden Gleichun-
gen werden als Lorentz-Transformation bezeichnet.
Fiir eine Relativgeschwindigkeit v in x-Richtung lau-
ten die entsprechenden Gleichungen

'~

Y(x—vr)
y

Z
-

~

~

VX
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Hier stellt
B 1 B 1
VI=(/e)}  J1-pB2

den Lorentz-Faktor dar und

P

c

Y

ist das Verhiltnis zwischen der Relativgeschwin-
digkeit v und der Lichtgeschwindigkeit c. Fiir v <
¢, dh. B < 1 und y — 1 geht die Lorentz-
Transformation in die Galilei-Transformation iiber.

Die spezielle Relativitétstheorie kann im Wesentli-
chen folgende Effekte erkliren:

Lorentzkontraktion: In zwei gegeneinander beweg-
ten Bezugssystemen erscheinen® die im jeweils an-
deren System ruhenden MaBstéibe verkiirzt.

Zeitdilatation: In zwei gegeneinander bewegten Be-
zugssystemen erscheint die Zeit des jeweils anderen
Systems verlangsamt.

3uerscheint” ist hier nicht im Sinn einer Tduschung gemeint,

sondern es handelt sich um messbare Tatsachen.
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Relativistischer Dopplereffekt: Das Licht von Ster-
nen, die sich von uns entfernen, erscheint rotver-
schoben.

Relativistische Massenzunahme: Die Lichtge-
schwindigkeit kann von Korpern mit Masse nicht
erreicht werden. Bei gleicher Kraft ist die Beschleu-
nigung um so kleiner, je grofer die Geschwindigkeit
ist. Dies kann als Zunahme der Masse gedeutet
werden: m = mgYy.

Zwillingsparadoxon: Ein Zwilling begibt sich auf
einen Raumflug, der andere bleibt auf der Erde. Man
kann nachrechnen, dass der Raumfahrer bei seiner
Riickkehr weniger gealtert ist als der andere Zwil-
ling. Dies wurde 1971 mit Atomuhren bestétigt, die
auf Linienflugzeugen mitgenommen wurden.

Die 1916 von Einstein vorgestellte “allgemeine Re-
lativitdtstheorie” ist eine Beschreibung der Gravita-
tion als Raumkriimmung in der Umgebung von Mas-
sen und beruht auf der Aquivalenz von schwerer und
trager Masse.

2.9 Hydrostatik

2.9.1 Aggregatzustinde

Fest Flussig Gasférmig
C ¢ «
.
€80 @®
(8 (8 b
_ [

Fluide

2.8 Hydrostatik
2.10 Hydrodynamik, Aerodynamik

kondensierte
Materie

Abbildung 2.118: Die drei wichtigsten Aggregatzu-
stinde.

Die drei wichtigsten Aggregatzustinde sind Festkor-
per, Fliissigkeiten und Gase (— Abb. 2.118). Die
wesentlichsten Unterscheidungsmerkmale sind, dass
Festkorper eine Gestalt haben; diese kann unter dem
Einfluss einer dulleren Kraft indern, so lange diese
Kraft nicht zu gro8 wird kehrt der Korper jedoch
nach Nachlassen der dulleren Kraft in die urspriing-
liche Form zuriick; man nennt dies Formgedécht-
nis. Eine Fliissigkeit besitzt keine bestimmte Form,
sie nimmt jedoch ein definiertes Volumen ein. Unter
dem Einfluss einer duBeren Kraft kann dieses Volu-
men kleiner werden; nach Entfernen der Kraft dehnt
sich die Fliissigkeit wieder aus bis sie das urspriingli-
che Volumen wieder einnimmt. Man bezeichnet dies
als Volumengedéachtnis. Ein Gas fiillt im Gegensatz
dazu immer das gesamte verfiigbare Volumen.

Man fasst Festkorper und Fliissigkeiten unter dem
Begriff “kondensierte Materie” zusammen; Fliissig-
keiten und Gase werden unter dem Begriff “Fluide”
zusammengefasst.

Diese Eigenschaften sind jedoch nicht absolut
scharf: Auch Eis, oder sogar Steine, die iiblicherwei-
se als Festkorper bezeichnet werden, haben die Ten-
denz, unter hohem Druck und iiber lange Zeiten zu
flieBen. AuBlerdem gibt es eine Reihe von Substan-
zen, die sich nur schlecht in dieses Schema einord-
nen lassen: Granulare Medien (z.B. Zucker, Sand)
bestehen aus vielen festen Korpern, aber als gesam-
te Medien zeigen sie typisches FlieBverhalten. Gla-
ser sind unterkiihlte Fliissigkeiten, die sich fiir viele
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Belange wie Festkorper verhalten.

2.9.2 Spannung

b dFn

dFt

Abbildung 2.119: Spannung als Quotient aus Kraft
und Fliche; Zerlegung in Normal-
und Schubspannung.

Spannung ist definiert als Kraft pro Fléache,

N

— = Pa = Pascal.
m

_dF

e
dA

[S] =
Wie in Abb. 2.119 gezeigt, kann eine allgemeine
Spannung zerlegt werden in eine Normalspannung
o und eine Tangential- (Schub-) Spannung 7:

dF,
dA

L
dA

S::SJ_-I-SH:G-I-T:

Die Normalspannung wirkt senkrecht zur Flidche, die
Schubspannung parallel dazu. Liegt z.B. ein Korper
mit einer Flache A auf einer horizontalen Unterlage,
so wirkt die Normalspannung

_FL mg

Si=x =2

Mit Hilfe dieser Klassifizierung kann man den Un-
terschied zwischen Fluiden und Festkorpern so for-
mulieren: Bei Fluiden verschwindet der Schermo-
dul, es treten also (im statischen Grenzfall) keine
Scherspannungen auf.

2.9.3 Fliissigkeitsoberfliche

Die Oberfldche einer ruhenden Fliissigkeit ist im-
mer senkrecht zu der Richtung der auf sie wirken-
den Kraft, wie in Abb. 2.120 gezeigt. Wiirde sich

Abbildung 2.120: Die Oberfliche einer ruhenden
Fliissigkeit ist immer senkrecht zu
der Richtung der auf sie wirken-
den Kraft.

ein Fliissigkeitshiigel bilden, dann hitte er eine ho-
here potentielle Energie als seine Umgebung. Um sie
zu minimieren, versuchen alle Fliissigkeitsvolumina
die tiefst-mdglichen Positionen einzunehmen. Dies
ist erfiillt, wenn die Oberfliche eine horizontale Ebe-
ne bildet. Bei Festkorpern wird dieses ,,ZerflieBen*
durch Reibung oder innere Krifte verhindert.

Abbildung 2.121: Fliissigkeitsoberfliche in einer ro-
tierenden Kiivette.

Dies kann auch zur Messung der Kraft verwendet
werden. Abb. 2.121 zeigt als Beispiel die Fliissig-
keitsoberfldache in einer rotierenden Kiivette. Fiir die
Berechnung der Oberfliche verwendet man die Be-
dingung, dass die resultierende Kraft auf ein Fliissig-
keitselement immer senkrecht zur Oberfliche steht.
Die Kraft auf ein Volumenelement ist gegeben durch
die Vektorsumme aus Schwerkraft

Fg=mg
und Zentrifugalkraft
F, = mx(oz.
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Die Zentrifugalkraft wirkt in radialer Richtung (x im
Koordinatensystem) und die Schwerkraft in vertika-
ler Richtung. Damit bildet die die resultierende Kraft
mit der Vertikalen einen Winkel o, gegeben durch

F o
tang = — = —x.
Fe g

Die Steigung nimmt somit mit dem Abstand x von
der Drehachse zu und die Oberfldche selber folgt der
Funktion

also einer Parabel.

2.9.4 Hydrostatischer Druck

Fz

Fy

A
|

Fz

Abbildung 2.122: Hydrostatischer Druck.

Man spricht von hydrostatischem Druck, wenn die
Normalspannung aus allen Raumrichtungen gleich
ist und die Scherspannung verschwindet. Wie in
Abb. 2.122 gezeigt sind dann die Krifte auf die Sei-
ten eines infinitesimalen Wiirfels alle gleich grof,
F, = F. = F,. Man verwendet dann anstelle von
Spannungen die skalare Grofe Druck und verwen-
det das Symbol p. Spannungen allgemein und da-
mit auch der Druck werden im SI System in der
Einheit Pascal = N/m? gemessen. Normaldruck, d.h.
der mittlere Luftdruck auf Meereshohe, (1 atm) ent-
spricht ca. 103 N/m?. Nach DIN ist der Normaldruck
101325 Pa (=760 mm Hg), ebenso in der Medizin,
nach IUPAC 100000 Pa.

Ist die vertikale Ausdehnung eines Systems von
Rohren klein, so herrscht innerhalb im Gleichge-
wicht iiberall derselbe Druck. Dies kann man u.A.
fiir die Ubertragung und Umwandlung von Kriften
verwenden.

kleiner Kolben groRer Kolben

| [~
s « ||
-

Abbildung 2.123: Hydraulische Presse.

Damit gilt fiir die beiden Kolben in Abb. 2.123

IR R Y
A P A 270y

Somit lassen sich auch kleine Krifte Fj in sehr grof3e
Krifte F5> umwandeln, sofern das Fliachenverhiltnis
A, /A entsprechend gewihlt wird. Die Wege, die da-
bei zuriickgelegt werden, verhalten sich genau ent-
gegengesetzt.

Abbildung 2.124: Hydraulischer Lift.

Auf diese Weise werden z.B. mit hydraulischen
Pressen groBe Krifte erzeugt (— Abb. 2.124).

2.9.5 Schweredruck

Bei tiefen Fliissigkeiten und Gasen tritt ein Schwe-
redruck auf: zusitzlich zum AuBendruck wirkt an
jeder Stelle die Gewichtskraft der dariiber liegen-
den Fliissigkeit. Die Gewichtskraft einer Fliissig-
keitssdule mit Querschnittsfliche A, Dichte p und
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Abbildung 2.125: Berechnung des Schweredrucks.

Hohe h = hy — hy (— Abb. 2.125) betriigt
Fs=mg=Vpg=Ahpg.

Wenn sich das in Abb. 2.125 markierte Volumen-
element im Gleichgewicht befindet, muss diese Ge-
wichtskraft Fg durch eine entsprechende Kraft kom-
pensiert werden, welche auf die Unterseite des Volu-
menelements wirkt, zusitzlich zur Kraft, welche die-
jenige auf die Oberseite kompensiert. Der Druckun-
terschied zwischen oben und unten muss somit

Fs
ps=-——-=hpg

A
sein. Dieser Druckbeitrag wird als Schweredruck be-
zeichnet.

Der gesamte hydrostatische Druck p(z) ist demnach

p(z) =patzpg, (2.17)
wobei p, den AuBlendruck an der Oberfliche dar-
stellt und z die Distanz zur Oberfliche. Der Druck
ist somit nur abhingig von der Dichte der Fliissig-
keit und von der Hohe der Fliissigkeitssiule. Fiir den
Fall von Wasser gilt

kg
2

kg m
10°-2.9.81— ~ 10*
m3 77 s? m?2s2

pwg

0.1.105N/mM o am
) m T m’

d.h. der Druck nimmt pro 10 m Tiefe um 1 atm (=
10° N/m?) zu. Innerhalb des Systems ist der Druck

Abbildung 2.126: Kommunizierende Rohren.

nur von der Hohe abhingig, nicht vom (horizon-
talen) Ort. Dieses Prinzip gilt fiir alle unbewegten
Fluide.

Eine Konsequenz davon ist, dass die Fliissigkeit in
einem System von verbundenen (=“kommunizieren-
den”) Rohren iiberall bis zur gleichen Hohe auf-
steigt, unabhingig vom Querschnitt und Form der
Rohre. Abb. 2.126 zeigt dies fiir ein System von ver-
bundenen Glasgefédfen.

Abbildung 2.127: Druckverteilung im Wasserrohr-
Netz.

Die gleichméBige Verteilung des Drucks in einem
System von Rohren wird verwendet, um den Wasser-
druck in der stdadtischen Wasserversorgung sicher-
zustellen: Wie in Abb. 2.127 gezeigt, muss das Re-
servoir mindestens so hoch liegen wie das hochste
Haus. Eine Erweiterung dieses Prinzip ist, dass man
- in einer gewissen Niherung - die Rohre auch weg-
lassen darf: Eine Fonténe erreicht die Hohe des Was-
serspiegels im Reservoir.

Es ist jedoch auch moglich, einen Springbrunnen zu
bauen, dessen Fontiine hoher steigt als die Wassero-
berfliche des Reservoirs. Wie in Abb. 2.128 gezeigt,
wird dafiir auf einem Teil der Strecke der Druck
nicht durch Wasser iibertragen, sondern durch Luft.
Der Schweredruck der Luft ist fast tausendmal ge-
ringer als derjenige des Wassers und kann deshalb
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Fontane steigt
hoher als
Flussigkeits-
oberflache

Abbildung 2.128: Hero’s Springbrunnen.

praktisch vernachlidssigt werden. Dadurch steigt die
Fonténe entsprechend hoher. Das Prinzip wurde von
Heron von Alexandria (wahrscheinlich 1. Jhd nach
Chr.).

2.9.6 Hydrostatischer Druck in Gasen

Im Falle von Gasen ist die Dichte abhingig vom
Druck. Die Druckzunahme ist deshalb nicht mehr
proportional zur Hohe der Gas-Saule. Fiir die Be-
rechnung der Hohenabhingigkeit des Druckes in der
Atmosphire betrachtet man zunéchst eine Schicht,
welche so diinn ist, dass die Dichte noch als konstant
betrachtet werden kann. Die Druckinderung durch
diese Schicht ist dann wie bei einer Fliissigkeit

dp=—pgdh,
wobei i nach oben zunimmt und somit der Druck ab-
nimmt. Fiir ein ideales Gas gilt bei konstanter Tem-

peratur:
_ P :
p = po— (Boyle — Mariotte Gesetz),
Po

mit pg als Referenzdruck und pg als Referenzdichte.
Damit wird

dp

—poLgdh.
Po

Trennung der Variablen und Integration ergibt

h
—@g/ dh=1n 2 = P
po Jo Po

Po

Pdp_
po P

oder
Po
P = po exp(—=——gh),
Po

d.h. der Druck nimmt mit zunehmender Hohe expo-
nentiell ab.

14
0.84
= ]
.‘i 0.6+
Q 4
S 0.4
c
[m]
0.2
0 10 20
Hoéhe G. M. / km

Abbildung 2.129: Atmosphirischer Druck als Funk-
tion der Hohe.

Numerische Werte fiir diese Parameter sind fiir Nor-
malatmosphire (T = 0°C, py = 1,013-10° Pa) py =
1,293 kg/m?. Damit hat das Produkt pog/po den nu-
merischen Wert 1,254-10~* m~"! oder
p= poe—h/8km.

Interessant dabei ist, dass die Druckabnahme mit der
Hohe rein aus Messungen an der Erdoberfliche be-
rechnet werden kann. Abb. 2.129 zeigt den Druck
als Funktion der Hohe. Er fillt pro 8 km Hohe auf
1/e oder pro 5,5 km auf die Hilfte ab. In Wirklich-
keit variieren sowohl die Temperatur wie auch die
Zusammensetzung der Erdatmosphire mit der Ho-
he. Die obige Formel gibt aber eine gute Niherung
fiir das tatsdchliche Verhalten.

2.9.7 Das Prinzip von Archimedes

Ein Effekt des Schweredrucks ist, dass das schein-
bare Gewicht eines Korpers in einer Fliissigkeit ge-
ringer ist als im Vakuum. Dies wird als Auftrieb be-
zeichnet. Typische Anwendungen davon sind Schif-
fe oder andere Korper, welche auf dem Wasser
schwimmen.
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Abbildung 2.130: Auftrieb: der Druck auf die untere
Flache ist groBer als auf die obere
Fléche.

Dieser Effekt lisst sich relativ leicht am Beispiel ei-
nes Kubus in einer Fliissigkeit berechnen (— Abb.
2.130). Der Druck auf die beiden Seitenflichen ist
der gleiche; in horizontaler Richtung heben sich die
Druckkrifte somit auf. Der Druck auf den Boden ist
aber aufgrund des Schweredrucks groBer als auf die
obere Flidche. Damit erhilt man eine resultierende
Druckkraft auf den Korper, die nach oben wirkt. Die
resultierende Kraft kann direkt aus der Druckdiffe-
renz berechnet werden, welche durch den Schwere-
druck (2.17) erzeugt wird:

Fy

F,—F =A(p2—p1)
Appig(hy—hi) = prgV

Myerdringt8 = F G, verdringt -

(2.18)

Abbildung 2.131: Archimedes von Syrakus (287 -
212 v. Chr.).

Gleichung (2.18) beschreibt das Prinzip von Archi-

medes:

Die Auftriebskraft entspricht der Gewichtskraft
der verdringten Fliissigkeit.

Dieses Resultat wurde hier fiir einen Kubus hergelei-
tet. Das Resultat ist aber allgemein giiltig, unabhén-
gig von der Form des Korpers. Dieses Gesetz wur-
de zuerst von Archimedes (— Abb. 2.131) formu-
liert und wird deshalb als Prinzip von Archimedes
bezeichnet. Es ist eines der dltesten immer noch giil-
tigen physikalischen Gesetze.

2.9.8 Auftriebsmessungen

Abbildung 2.132: Der Holzblock klebt am Boden
des Wassertanks.

Man kann die Kraft auf die Unterseite eliminieren,
indem man den Korper so auf dem Boden driickt,
dass keine Fliissigkeit darunter bleibt. Abb. 2.132
zeigt einen Holzblock, der am Boden des mit Was-
ser gefiillten Glasgefifes klebt. Weil unter dem Kor-
per kein Wasser ist, wirkt dort ein hydrostatischer
Druck, der Korper erfihrt keinen Auftrieb. Erst nach
einer gewissen Zeit gelangt Wasser wieder darunter
und erzeugt Auftrieb.

Der Auftrieb reduziert das Gewicht des schwimmen-
den Korpers. Dabei steigt jedoch der Fliissigkeitspe-
gel und damit der Schweredruck, der auf den Boden
des Gefifles wirkt. Die Gewichtskraft des schwim-
menden Korpers wird somit auf den Boden des Ge-
fifes iibertragen. Dies kann man z.B. mit der Was-
serglaswippe nachweisen: Hier werden 2 teilweise
mit Wasser gefiillte Becherglédser auf einer Waage im
Gleichgewicht gehalten. Taucht man einen Finger in
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eines der Bechergliser, so steigt dessen Wasserober-
flache und es wird schwerer als das auf der Gegen-
seite.

Abbildung 2.133: Messung des Auftriebs.

Der Auftrieb kann experimentell gemessen werden,
indem man die Reduktion der Gewichtskraft misst,
wenn der Korper in eine Fliissigkeit eingetaucht wird
(— Abb. 2.133). Die verdringte Fliissigkeitsmenge
wird dadurch gemessen, dass sie in einem Becher-
glas aufgefangen wird. Wird sie anschlieBend in den
oberen Behilter gegossen, welcher am gleichen Fe-
derkraftmesser hingt wie der Aluminiumblock, so
misst man wieder die gleiche Kraft wie ohne die
Wirkung des Auftriebs.

Eine Messung des Auftriebs kann auch dazu verwen-
det werden, um die Dichte eines Korpers zu bestim-
men. Misst man sein Gewicht ohne Auftrieb, so ist
es gegeben durch

Fg=mg=gpV.

Misst man das Gewicht mit Auftrieb in einer Fliis-
sigkeit der Dichte pg;, so erhélt man

Foa=g(p—pri)V.
Das Verhiltnis ist

FGa _ p—Pri
Fg P

Somit ist die Dichte des Korpers

PFI

p= 1 —Fga/Fs

Der Legende nach nutzte Archimedes dies, um die
Dichte des Metalls in der Krone von Konig Hieron
II von Syrakus zu bestimmen. Beispiel: Das Gewicht
betrage in Luft 13,5 N und in Wasser 12,214 N. Dies
ergibt

1000 kg
p= —3
1-12,214/13,5m

K
— 104982
m

Dies passt gut zur Dichte von Silber (p = 10,49
g/cm?).

Ein wichtiges Beispiel ist Eis in Wasser. Die Dich-
te von Eis liegt bei etwa 0,92 g/cm’. Deshalb
schwimmt es auf dem Wasser, wobei rund 92% des
Volumens eines Eisblocks unter Wasser sind.

Im Fall der cartesischen Taucher kann man die Dich-
te der Korper iiber den Druck steuern: Sie enthalten
Luftkammern, welche bei entsprechendem Druck
komprimiert werden. Durch die Verkleinerung des
Volumens steigt die Dichte und die Taucher sinken
ab.

2.9.9 Auftrieb in Luft

Abbildung 2.134: Ballonflug.

Nicht nur in Fliissigkeiten, sondern auch in Luft und
anderen Gasen existiert dieser Auftrieb. Dies ist z.B.
die Grundlage fiir den Ballonflug (— Abb. 2.134),
kann aber auch anhand eines einfachen Laborexpe-
rimentes nachgewiesen werden.
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Abbildung 2.135: Auftriebswaage.

Man kann den Effekt u.a. nachweisen, indem man
die Luft entfernt (siche Abb. 2.135). Im Experiment
wird der Auftrieb fiir 2 Korper gemessen, welche in
der Atmosphire gleich schwer sind. Der eine davon
besteht aus Blei, der andere aus Styropor.

in Luft mit Auftrieb

Styropor
Blei
F
FG v Fres FG v res
Fa Fa

Abbildung 2.136: Gleichgewicht in Luft.

In Luft sind die beiden Korper im Gleichgewicht.
Wie in Abb. 2.136 gezeigt, ist die Summe Fj.; aus
Schwerkraft Fi; und Auftrieb Fy ist fiir beide gleich.
Wird die Luft abgepumpt, so verschwindet der Auf-
trieb. Da dieser fiir den groferen Korper erheblich
grofer ist, als fiir den kleinen Korper sinkt er ab.

Der Auftrieb fiir den eingetauchten Korper bedeu-
tet umgekehrt, dass das Gefd3, welches die Fliissig-
keit enthilt, entsprechend schwerer wird. Man kann
dies dadurch verstehen, dass die Fliissigkeitsséule,
welche auf den Boden des Gefisses driickt, entspre-
chend dem verdringten Volumen hoher geworden
ist.

2.9.10 Kompressibilitit

Unter dem FEinfluss des Druckes dndert jedes reale
Medium sein Volumen um AV. In linearer Ndherung
ist die Volumenénderung proportional zum Volumen
V und zur Druckidnderung Ap:

AV
=
wobei die Proportionalitdtskonstante k als Kompres-

sibilitdt bezeichnet wird. Sie ist das Inverse des
Kompressionsmoduls K.

KAp

Die Dichte eines Mediums ist definiert als Masse pro
Volumen; da das Volumen mit zunehmendem Druck
abnimmt, steigt somit die Dichte an. Fiir infinitesi-
male Anderungen gilt

A—p =—— =KAp.

p Vv
Diese Gleichungen gelten sowohl fiir Fliissigkeiten
wie auch fiir Gase; bei Fliissigkeiten ist die Kom-
pressibilitét jedoch sehr viel geringer als bei Gasen.
Typische Werte fiir die Kompressibilitit von Fliis-
sigkeiten sind rund zwei Gréenordnungen hoher als
bei Festkorpern. Einige Beispiele sind (bei 20 °C, 1
atm):

| Fliissigkeit K |
Quecksilber | 0,4-10~°m?/N
Wasser 5.10 OmZ/N
Benzol 10-10 Om2/N
Athanol 10-10 Om2/N

Fiir ein ideales Gas ist die Kompressibilitit x;, =
1/p, bei Normaldruck also 10~ m?/N und damit um
rund 4 GroBenordnungen iiber dem entsprechenden
Wert fiir eine typische Fliissigkeit. Die Grofenord-
nung der Kompressibilitit ist somit, neben der Dich-
te, das wesentliche Kriterium, welches Fliissigkeiten
von Gasen unterscheidet.

Man kann damit z.B. die Kompression von Wasser
in einer Tiefe von 4000 m (=mittlere Meerestiefe)
ausrechnen. Hier betriigt der Druck 4-107 N/m? und
die entsprechende Volumenénderung etwa

AV

—_— = —Kp =
% p

~5.-107'9.4.10" = —0.02 = —2%.
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Eine Volumeninderung wird auch durch eine Tem-
peraturdnderung erzeugt:

AV
— =YAT

= [v]

Die Proportionalititskonstante wird als Volumen-
ausdehnungskoeffizient bezeichnet. Wie bei der
Kompressibilitit ist der Volumenausdehnungskoeffi-
zient fiir Fliissigkeiten sehr viel kleiner als fiir Gase.
Fiir ideale Gase ist y=1/T (~1/300K bei Raumtem-
peratur).

2.10 Grenzflaicheneffekte

2.10.1 Oberflaichenspannung

An Grenzflachen treten besondere Effekte auf, wel-
che im Volumen nicht beobachtbar sind. Die mole-
kulare Grundlage dafiir sind Kohisionskrifte, d.h.
Krifte zwischen gleichartigen Atomen / Molekiilen.
In den meisten Fliissigkeiten dominieren dabei van
der Waals Krifte. Sie erniedrigen die Energie des
Molekiils gegeniiber einem Molekiil im Vakuum und
sind damit die Ursache dafiir, dass sich Fliissigkeiten
tiberhaupt bilden. Eng verwandt damit sind Adhé-
sionskréfte: diese wirken zwischen Molekiilen ver-
schiedener Stoffe, also z.B. zwischen einem Molekiil
in der Fliissigkeit und einer festen Oberflidche.

Abbildung 2.137: Berechnung der Oberflichenspan-
nung.

Befindet sich ein Molekiil an der Oberfliche einer
Fliissigkeit so ist es weniger Kohdsionskriften aus-
gesetzt und seine Energie ist hoher als im Innern der
Fliissigkeit. Auf solche Molekiile wirkt deshalb ei-
ne Kraft Fiesultierend Nach innen. Mit einer Oberfliche
ist deshalb eine potenzielle Energie verbunden, die
“Oberflichenenergie”. Diese ist in guter Niherung
proportional zur Oberfliche. Somit erhilt man eine
universelle Beschreibung, wenn man die spezifische
Oberflachenenergie, also den Quotienten aus Ener-
gie und Oberfldche betrachtet:

_aw N
“aA
Diese GroBe wird auch als Oberflichenspannung be-

zeichnet. Die Energie dW muss dem System als Ar-
beit zugefiihrt werden, um die Oberflache um dA zu

(o}
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vergro3ern (— Abb. 2.137). Im Gegensatz zu Span-
nungen im Volumen handelt es sich hier aber um ei-
ne Kraft pro Langeneinheit. Dies ist mit einem Blick
auf Abb. 2.137 auch nachvollziehbar: je linger der
Biigel, desto mehr Kraft muss aufgewendet werden.

Abbildung 2.138: Messung der Oberflichenspan-
nung.

Die Grenzflachenspannung kann gemessen werden,
indem man an einem Biigel zieht, an den eine La-
melle anschlieft. Wie in Abb. 2.138 gezeigt, wird
dabei di Oberfliche der Lamelle vergrofert, wobei
der Oberflichenzuwachs auf beiden Seiten der La-
melle erfolgt. Bei einem Radius r des Kreises wird
die Oberfliche der Lamelle um den Betrag

AA =2Ahl =2Ah27r

vergroBert, wobei ¢ = 27r den Umfang des Bii-
gels darstellt und Ah die Hohenédnderung. Der Faktor
2 beriicksichtigt, dass die Fliissigkeitslamelle zwei
Oberflachen besitzt. Die Kraft, welche fiir die Ver-
groferung der Oberflache benétigt wird, 1dsst sich
berechnen aus der Anderung der Oberflichenenergie
Ws pro Wegelement Ah:

—GAA—4TL'6
_Ah_A = royp.

F
Ah

Im Experiment hat der Ring einen Radius von 1 cm.
Man misst eine Kraft von ca. 10 mN, was einer Ober-
flachenspannung von

_F 0,01 N
"~ 4mr 470,01 m

N
=0,08—
m

(o)}

entspricht, in guter Ubereinstimmung mit dem Lite-
raturwert von 0.072 N/m (Wasser bei 20 °C).

Abbildung 2.139: Wasserlaufer.

Die Oberflichenspannung wird hédufig von kleinen
Tieren wie z.B. Wasserldufern durchgefiihrt (—
Abb. 2.139): Sie kdnnen auf dem Wasser gehen, weil
Ihre Korpergewicht so klein ist, dass die Kraft auf
die Wasseroberflache kleiner ist als die Kraft, wel-
che benotigt wiirde, um ein Loch in der Wasserober-
fliche zu driicken und damit die Oberflache zu ver-
groBern.

Oberflachenspannungen kann es sowohl zwischen
festen Korpern und Gasen wie zwischen Fliissigkei-
ten und Gasen oder zwischen zwei Fliissigkeiten ge-
ben.

Am grofiten sind die Oberflichenspannungen bei
Metallen. Dies ist ein Hinweis darauf, dass die Me-
tallatome eine sehr starke Wechselwirkung unterein-
ander besitzen. Wasser besitzt im Vergleich mit an-
deren Fliissigkeiten ebenfalls eine relativ hohe Ober-
flichenspannung. Dies ist ein Hinweis auf die relativ
starken intermolekularen Krifte in Wasser, welche
auch fiir den relativ hohen Siedepunkt (im Vergleich
zu gleich schweren Molekiilen) verantwortlich sind.

2.10.2 Minimalflichen

Im Gleichgewicht besitzt ein System die niedrigste
mogliche Energie. Dazu gehort offenbar, dass die
Oberflachen moglichst klein sind. Oberflichen sind
deshalb Minimalfidchen.

In Abb. 2.140 wird dies anhand von Einzelbil-
dern beim Abfallen eines Wassertropfens gezeigt:
Zunichst findet man ein Gleichgewicht von Ober-
flachenspannung und Schwerkraft; erst wenn die
Fliissigkeitsmenge grofl genug wird iiberwiegt die
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Abbildung 2.140: Entstehung eines Wassertropfens.

Schwerkraft und der Tropfen reist ab. Der Tropfen
nimmt darauf Kugelform (eine Minimalfliche) an,
wobei transiente Schwingungen um die Gleichge-
wichtsform beobachtet werden konnen.

T

(AR
0]

L

wassrige Phase

Luft

bbb

wassrige Phase

]
S

W

Abbildung 2.141: Tenside an unterschiedlichen

Grenzflichen.

Die Oberflichenspannung kann durch Zusatzstof-
fe stark variiert werden. Die geschieht z.B. durch
sogenannte Tenside. Das sind Molekiile, die sich
an der Grenzfliche einordnen und sowohl mit der
wissrigen, wie auch mit der anderen Phase (Luft
oder Ol) eine anziehende Wechselwirkung haben,
wie in Abb. 2.141 gezeigt. Solche Molekiile werden
z.B. in Waschmitteln verwendet, und sie spielen in
vielen biologischen Systemen eine wichtige Rolle,
z.B. in der Lunge, wo sie eine wesentlich effizien-
tere Atmung ermoglichen. Im Experiment nehmen
Athermolekiile in Wasser diese Funktion. Sie redu-
zieren die Oberflachenspannung. Dadurch werden
beim Abtropfen aus einem Glasrohr kleinere Trop-
fen erzeugt, was z.B. iiber die Zunahme der Tropf-
Frequenz gemessen werden kann.

Minimalflichen kann man z.B. erzeugen, indem

Abbildung 2.142: Minimalfldche in einem Wiirfel.

man Seifenlamellen aufspannt. Je nach Randbedin-
gung (Drihte) erzeugen die Seifenlamellen diejeni-
gen Oberflichen, welche die Grofle der Lamelle mi-
nimieren. Abb. 2.142 zeigt ein Beispiel.

2.10.3 Seifenblasen

Ein Beispiel wo keine Drihte bendtigt werden, ist
die Seifenblase. Hier ist das Volumen durch die ein-
geschlossene Gasmenge vorgegeben. Die Minimal-
flache bei gegebenem Volumen ist eine Kugel. Durch
die Seife wird die Oberflichenspannung reduziert
auf 30 mN/m. Wir untersuchen folgende Fragen:

¢ Wie hoch ist der Druck im Innern der Seifen-
blase im Vergleich zum Aufendruck?

* Was passiert, wenn eine grole und eine kleine
Seifenblase zusammenkommen?

Wir berechnen zunichst die Arbeit, welche benotigt
wird, um den Radius der Kugel von r auf r+ dr zu
vergroBern. Die Kraft ist gegeben durch das Produkt
aus Druckdifferenz p und Oberflache A. Der zuriick-
gelegte Weg ist gegeben durch die Anderung dr des
Radius. Damit wird die Arbeit

dW = Fdr = pAdr = p4nrdr,

Diese Arbeit wird benétigt, um die Oberflichenener-
gie zu vergroflern,

dw 0dA = o[4n(r+dr)?* —4nr’]

cl4nr? + 8nrdr — 4nr’) = o8mrdr,
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wobei wie iiblich der Term o dr? (quadratisch in
einer infinitesimalen Grofe) weggelassen wurde.
Gleichsetzen der beiden Terme ergibt

panrtdr=o8trdr —p=22. (219
r

Fiir eine Seifenblase mit einem Radius von r = 1.8
cm erhilt man z.B. einen Uberdruck von p = 3.33
N/m?.

zwischen

Abbildung 2.143: Druckausgleich
Seifenblasen.

Der Druck ist indirekt proportional zum Radius, d.h.
in groBeren Seifenblasen ist der Druck kleiner. Wer-
den zwei Seifenblasen durch ein Rohr so verbunden
(—Abb. 2.143), dass Gas aus der einen in die ande-
re flieBen kann, so pumpt die kleinere die grofere
auf. Die resultierende gemeinsame Seifenblase be-
sitzt wiederum eine minimale Oberfliche.

Die Abhingigkeit (2.19) des Drucks vom Durch-
messer der Seifenblase hat wichtige Konsequenzen,
z.B. fiir unsere Lunge. Zweck der Atmung ist es,
Sauerstoff aus der Luft in die Blutbahn zu {iberfiih-
ren und CO, aus dem Blut in die Luft. Damit die-
ser Austausch effektiv stattfindet, bendtigt die Lun-
ge eine grofe Oberfliche von rund 100 m?. Da-
mit diese im Brustkorb Platz findet, wird sie auf
kleine Lungenblédschen aufgeteilt: diese besitzen ein
grofles Oberflichen/Volumen Verhiltnis. Der Nach-
teil ist, dass damit laut Gleichung (2.19) ein sehr
hoher Druck entsteht, den unser Atemsystem nicht
tiberwinden konnte. Die Natur hat dieses Problem
mit Hilfe von oberflichenaktiven Substanzen gelost,
welche die Oberflachenspannung und damit den be-
notigten Druck reduzieren.

2.10.4 Benetzung

Befinden sich Fliissigkeiten auf Oberflichen, so
existieren drei verschiedene Arten von Grenzfli-
chen (fest-fliissig, fest-gas und fliissig-gas). Dadurch
kommt es zu einem Wettbewerb zwischen Kohisi-
onskriften und Adhisionskriften. Adhédsionskrifte
erniedrigen die Energie eines Molekiils, welches in
Kontakt ist mit einer festen Oberfldache.

Benetzung keine Benetzung

Adhasionskraft > Kohasionskraft

Adhasionskraft < Kohasionskraft

Ausbreitung der Flussigkeit
auf der Oberflache

Flussigkeit zieht sich
tropfenférmig zusammen

gasférmig

g - -

fest

Abbildung 2.144: Benetzung und Definition des
Kontaktwinkels.

Ist die Adhision stéirker als die Kohision, wird die
Kontaktfliche zwischen Fliissigkeit und Oberflache
vergrofert. Dies ist z.B. fiir Wasser auf Glas der
Fall. Man quantifiziert das Verhéltnis von Kohisi-
on zu Adhision iiber den Randwinkel o (— Abb.
2.144). Dieser stellt sich als Gleichgewichtswert da-
durch ein, dass die drei Grenzflichenspannungen
(fest-fliissig, fest-gasformig und fliissig-gasformig)
gleichzeitig minimiert werden miissen. Ist der Be-
netzungswinkel kleiner als 90° so spricht man von
Benetzung; liegt er bei 0° so handelt es sich um voll-
standige Benetzung. Bei & > 90° liegt eine nicht be-
netzende Fliissigkeit vor.

Einige Beispiele fiir Benetzungswinkel:

’ Grenzfliche o
Wasser auf fettfreiem Glas ~ 0°
Wasser auf Paraffin 105-110
Quecksilber auf Glas 140
Quecksilber auf Stahl 154

Quecksilber ist ein typisches Beispiel einer nicht be-
netzenden Fliissigkeit. In diesem Fall sind die Ko-
hisionskrifte stirker als die Adhisionskréfte. Das
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System verkleinert deshalb die Kontaktflache. Diese
Eigenschaft ist eine Folge der hohen Oberflachen-
spannung von Quecksilber.

2.10.5 Kapillarkrifte

Grenzflicheneffekte erzeugen auch die so genann-
ten Kapillarkrifte: Die Energie, welche ein System
durch die VergroBerung der Kontaktflache gewinnt,
kann dazu verwendet werden, um die Fliissigkeit auf
eine groflere Hohe anzuheben.

Rohr

Flussigkeit, Steighéhe
z.B. Wasser

A i I TR SRR T sy T

Abbildung 2.145: Kapillarkrifte.

Die Kraft, welche die Fliissigkeit in der Kapillare
nach oben zieht, kann in erster Ndherung berechnet
werden, wenn man die Oberfliche in der Kapillare
als Halbkugel annéhert, was etwa dem in Abb. 2.145
gezeigten Fall entspricht. Dann ist die Druckdiffe-
renz gegeben durch Gleichung (2.19) und die Kraft,
welche die Fliissigkeitssdule nach oben zieht, als das
Produkt aus Druckdifferenz und Querschnittfliche
A:

F = AT ,
wobei R den Kriimmungsradius der Oberflache be-
zeichnet (—Abb. 2.145). Wird die Kapillare voll-
standig benetzt (Kontaktwinkel o ~ 0) so ist dieser
Kriimmungsradius gerade gleich dem Radius r der
Kapillare. Diese Kraft muss gerade die Gewichts-
kraft der Fliissigkeit in der Kapillare kompensieren,
welche

Fg =mg = pAhg

betrdgt. Offenbar ist das Gleichgewicht erreicht
wenn die beiden Krifte gleich sind, F; = Fg. Dies
wird bei der Hohe

. ZGA

h=
prg

erreicht. Die Steighthe ist somit proportional zur
Oberflichenspannung und invers proportional zum
Radius der Kapillare. Fiir Wasser (64 = 0.072 N/m)
in einer Kapillare von 0.1 mm Radius erhilt man so-
mit eine Steighohe von 0.144 m ~ 14 cm.

Anordnung der Platten Flussigkeitspiegel
/[
d
h=11m
— X I
x =20 mm

Abbildung 2.146: Kapillarkrifte zwischen 2 Glas-
platten. Links blickt man von
oben auf die Anordnung, rechts
von der Seite.

Man kann dies auch mit Hilfe von Glasplatten zei-
gen. Wie in Abb. 2.146 links dargestellt, stehen
zwei Glasplatten unter einem spitzen Winkel, so dass
der keilformige Bereich dazwischen unterschiedli-
che Kapillardurchmesser darstellt. Man findet eine
hyperbolische Abhingigkeit der Steighohe von der
Position und damit vom Abstand der Platten.

Istdie Benetzung nicht vollstiandig (d.h. der Kontakt-
winkel o > 0°), so fillt der Effekt entsprechend ge-
ringer aus.

. ZGA

h=——cosx.
prg

Auch hier kann der umgekehrte Fall eintreten, dass
die Kohisionskrifte stirker sind. In diesem Fall ist &
> 90° und cos < 0: es kommt also zu einer Kapillar-
depression, d.h. die Fliissigkeitsoberfliche im Innern
der Kapillare ist tiefer als auBen, wie in Abb. 2.147
gezeigt.
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Rohr

Flussigkeit, z.B.
Quecksilber

Abbildung 2.147: Kapillardepression.

2.11 Hydrodynamik und
Aerodynamik

Genau wie die Hydrostatik behandelt die Hydrody-
namik, respektive die Aerodynamik, Fluide. Im Ge-
gensatz zur Hydrostatik, wo sich das Medium im
stationdren Gleichgewicht befindet, wird hier jedoch
ein bewegtes Medium behandelt. Durch die Bewe-
gung kommen 2 Aspekte dazu, welche bei der Hy-
drostatik nicht diskutiert wurden:

* In bewegten Fluiden existieren Scherspannun-
gen auf Grund der endlichen Viskositit. Diese
innere Reibung ist proportional zum Geschwin-
digkeitsgradienten.

Bewegte Fluide besitzen kinetische Energie. Es
findet deshalb eine Umwandlung von potenzi-
eller (Hohe, Druck) in kinetische Energie (und
umgekehrt) statt.

Der wichtigste Unterschied zwischen stromenden
Fliissigkeiten und stromenden Gasen ist, dass man
bei Fliissigkeiten meist davon ausgehen kann, dass
die Volumenédnderungen der Fliissigkeit gering sind,
d.h., dass es sich um ein inkompressibles Medium
handelt. Im Falle der Aerodynamik (bei Gasen) muss
die Kompressibilitét beriicksichtigt werden.

2.11.1 Stromlinien und
Geschwindigkeitsfelder

Um ein stromendes Medium zu beschreiben, gibt
es verschiedene Methoden. Die Lagrange-Methode

entspricht einer zeitlichen Verfolgung der Masse-
elemente dm. Einfacher ist die Euler-Methode bei
der zu einem beliebigen Zeitpunkt die Geschwindig-
keitsvektoren der einzelnen Masseelemente betrach-
tet werden.

Flussigkeits-
element

Stromlinie

Abbildung 2.148: Darstellung eines Flussfeldes mit
Flusslinien.

Die Gesamtheit dieser Geschwindigkeitsvektoren
wird als Geschwindigkeitsfeld bezeichnet. Zur Dar-
stellung verwendet man meist Stromlinien (— Abb.
2.148). Dabei handelt es sich um orientierte Kur-
ven, welche den Weg der Fliissigkeitselemente ver-
folgen. Die momentane Tangente an diese Kurven
ergibt jeweils die lokale Richtung der Stromungs-
geschwindigkeit. Im Rahmen der Vorlesung werden
die Stromlinien meist als stationir angenommen.

Gebiet niedriger
Geschwindigkeit

et hoher
Geschwindigkeit

Abbildung 2.149: Stromliniendichte als Ma fiir die
lokale Geschwindigkeit.

Die Dichte der Stromlinien ist ein Maf fiir den Be-
trag der Geschwindigkeit: Je groer die Anzahl der
Stromlinien durch eine Flidche sind, desto groBer ist
die Stromdichte und damit die lokale Geschwindig-
keit. Wie in Abb. 2.149 gezeigt kann man dies zei-
gen, indem man gleiche Volumina (rot eingezeich-
net) betrachtet, welche durch Stromlinien einge-
schlossen werden. Die Linge des Volumenelements
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entspricht der Verschiebung pro Zeiteinheit. Fiir in-
kompressible Fluide muss somit die Geschwindig-
keit in einem Bereich hoher Stromliniendichte hoher
sein, als in einem Gebiet niedriger Stromliniendich-
te.

Diese Stromlinien kdnnen auch sichtbar gemacht
werden; sie sind nicht nur ein theoretisches Konzept.
Man injiziert dafiir z.B. gefarbtes Wasser oder kleine
Partikel in das flieBende Medium.

Abbildung 2.150: Laminare Stromung um einen Zy-
linder.

In Abb. 2.150 werden die Stromlinien beim Umflie-
Ben eines Zylinders dargestellt. Sie zeigen, dass auf
der Vorder- und Hinterseite ein Stau entsteht, also ei-
ne Region geringer Geschwindigkeit, und auf beiden
Seiten eine Region hoher Geschwindigkeit.

Abbildung 2.151: Automobil im Windkanal.

Abb. 2.151 stellt entsprechende Untersuchungen an
einem Automobil in einem Windkanal dar. Die Stro-
mungslinien werden sichtbar gemacht, indem Rauch
in den Gasstrom geblasen wird. Solche Experimen-
te spielen z.B. fiir den Entwurf von Fahrzeugen und
Flugzeugen eine wichtige Rolle.

Stromungen werden als stationédr bezeichnet, wenn

die Stromlinien zeitlich konstant sind. Es gibt lami-
nare und turbulente Stromungen.

langsam
laminar

schnell
turbulent

] I

Wasser \\:\
i geférbtes | (it i—
+ !!1“-E ‘ Wasser “\‘&’

M7
i 33214

Wirbel

Abbildung 2.152: Laminare und turbulente Stro-
mungen.

In Abb. 2.152 geht die Stromung von laminar nach
turbulent iiber. Dies geschieht z.B. bei hoherer Ge-
schwindigkeit. Die Charakterisierung von turbulen-
ten Stromungen gehort ins Gebiet der nichtlinearen
Dynamik und kann in diesem Zusammenhang nicht
diskutiert werden.

2.11.2 Kontinuitiitsgleichung

Geschwindigkeiten in bewegten Fliissigkeiten be-
schreiben den Transport von Materie. Lokal kann
dieser Transport durch die Massenstromdichte

j=pv

quantifiziert werden.

Volumen-
element

Abbildung 2.153: Massenbilanz fiir ein Volumenele-
ment.

Wir betrachten die Anderung der Masse in einem
Volumen V aufgrund der Zu- und Abfliisse (— Abb.
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2.153). Der Anteil des Massenstroms dm/dt durch
ein kleines Fliachenelement dA ist

dm - - o
— =j-dA=|jldA cosax
il |j1dA cos e,
wobei a den Winkel zwischen der FlieBrichtung und
der Oberflichennormalen darstellt. Integration iiber
die geschlossene Oberfliche ergibt die gesamte An-
derung der Masse im Volumen pro Zeiteinheit als

m://}-dﬁ://pv-dxzo,
A A

da Masse weder erzeugt noch vernichtet wird. Die
Gleichung besagt einfach, dass die Summe der Zu-
und Abfliisse verschwinden muss. Sie kann iiber den
Satz von Gauf}

//Ov.dix’:///vdivvzo.

(die Integralgrenzen sind O = Oberfliche und V =
Volumen) auch geschrieben werden als

divi =0,

da die Gleichung fiir beliebige Volumina V gelten
muss. Dies ist eine Bedingung fiir das Geschwindig-
keitsfeld einer inkompressiblen Fliissigkeit: es ent-
hilt weder Quellen noch Senken.

Ay

A

AV

Abbildung 2.154: Transport eines Volumenelemen-
tes in einer laminaren Stromung.

Diese Aussage gilt fiir beliebige Korper. Wir kon-
nen z.B. einen Flussschlauch betrachten, der auf
der AuBenseite von Flusslinien begrenzt wird (V-
dA = 0) und an den Stirnflichen von zwei Schei-
ben mit Flachen A; und A; (siehe Abb. 2.154). Da
die Seitenwinde durch Flusslinien gebildet werden,

flieft kein Material durch diesen Teil der Oberfld-
che. Damit sind Ein- und Ausfluss gegeben durch
die Durchflussmenge durch die beiden Flachen links
und rechts.

Die Fliissigkeitsmenge, welche pro Zeiteinheit durch
eine Stirnfliche fliet, ist proportional zum Pro-
dukt aus Querschnittsfliche und FlieBgeschwindig-
keit vdm = p Av, da die Geschwindigkeit senkrecht
auf der Fliche steht. Bei konstanter Dichte kann die
Massenbilanz somit geschrieben werden als

V1A1 = V2A2 (2.20)
oder
Ay
V) =V —.
2 1 A,

Dies entspricht der Quantifizierung der oben ge-
machten Aussage, dass nahe beieinander liegen-
de Stromlinien hohe Geschwindigkeiten markieren
und geringe Stromliniendichte einer langsamen Ge-
schwindigkeit entspricht.

Fiir kompressible Fliissigkeiten muss die Gleichung
um die Dichte erweitert werden:

VIP1AL = Vv2P2As.

Fiir wirbelfreie Stromungen kann man das Ge-
schwindigkeitsfeld V(¥) als Gradient eines Ge-
schwindigkeitspotenzials @ (¥) schreiben:

W(F) = grad §(F) = V ¢ (7).

Solche Stromungen werden deshalb auch als Poten-
zialstromungen bezeichnet.

2.11.3 Druck und kinetische Energie

Wir betrachten eine Stromung in einem Rohr, das
sich verengt. Die Zunahme der Geschwindigkeit auf-
grund der Verengung bedeutet laut Gleichung (2.20)
fiir die Fliissigkeitselemente eine Beschleunigung.
Die dafiir notwendige Kraft stammt aus einer Druck-
differenz.

Wir betrachten eine diinne Scheibe der Fliissigkeit,
wie in Abb. 2.155 gezeigt. Die Masse des Zylinders
mit Querschnittfliche A und Dicke dx betragt

dm=pAdx.
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Abbildung 2.155: Druckkraft auf
Fliissigkeitsscheibe.

diinne

Das Newton’sche Axiom fiir dieses Fliissigkeitsele-
ment lautet

dv

dF = —Adp =adm = (pAdx) o

Hier bezeichnet dp = p(x+ dx) — p(x) die (infini-
tesimale) Druckdifferenz, a die Beschleunigung und
p die Dichte der Fliissigkeit. Offenbar ist die Bezie-
hung unabhingig von der Querschnittflache:

—dp =pvdv.
Integration zwischen zwei Punkten 1 und 2 ergibt

P
pP1—p2= E(Vﬁ—V%)

oder

P p
p1+ EV% =pr+ EV%
Offenbar wird eine Zunahme der Geschwindigkeit
(Zunahme der kinetischen Energie) durch eine Ab-
nahme des Druckes (Reduzierung der potenziellen

Energie) kompensiert.

AN |
Re]

Bernoulli-

der

Abbildung 2.156: Herleitung
Gleichung.

Abb. 2.156 zeigt die Verhiltnisse fiir ein Rohr mit
unterschiedlichen Querschnitten. Die Geschwindig-
keit ist am Punkt B am hochsten und deshalb der
Druck am niedrigsten.

Die GroBe %pv2 hat die Dimension einer Energie-
dichte

5] 5 [t] v

und gleichzeitig der des Drucks und wird als Stau-
druck bezeichnet. Offenbar ist die Summe aus stati-
schem Druck und Staudruck fiir eine reibungsfreie
Fliissigkeit konstant. Man bezeichnet dies als Ge-
samtdruck und schreibt

1 2
p+ EPV = Pges

fiir eine reibungsfreie Fliissigkeit.

Abbildung 2.157: Daniel Bernoulli (1700-1782).

Dies wird als die Bernoulli’sche Gleichung bezeich-
net (nach Daniel Bernoulli, 1700-1782). Sie be-
schreibt im Wesentlichen die Erhaltung der mecha-
nischen (potenzielle + kinetische) Energie und gilt
nur so lange wie die Reibung vernachlissigt werden
kann.

Der Staudruck kommt durch die Impulsédnderung des
Gases zustande. Er wird u.a. in Kraftwerken genutzt,
wo der Staudruck auf die Turbinenschaufeln driickt.
Der Effekt kann noch verstirkt werden, wenn das
Wasser so umgeleitet wird, dass seine Geschwindig-
keit v nicht auf O reduziert wird, sondern es nach
riickwirts abgelenkt wird: Ay = —v —v = —2v. Dies
wird z.B. bei der Pelton-Turbine genutzt, welche vor
allem in Hochdruck-Wasserkraftwerken verwendet
wird.
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2.11.4 Druckinderung in einer Stromung

linearer

\Druckabfall

Abbildung 2.158: Experimentelle Verifizierung der
Bernoulli-Gleichung.

Die Voraussagen der Bernoulli Gleichung konnen
experimentell leicht iiberpriift werden. Im Experi-
mente von Abb. 2.158 verwendet man dafiir ein
Rohr, das in der Mitte verengt ist, an beiden Enden
aber den gleichen (groBeren) Querschnitt zeigt. In
den beiden duBleren Rohren steigt das Wasser hoher;
an dieser Stelle ist offenbar der statische Druck ho-
her als in der Mitte, wo das Wasser schneller flief3t.
Da die Stromung im Experiment nicht reibungsfrei
ist findet man zusitzlich zum Staudruck auch einen
linearen Druckabfall, welcher die Reibungsverluste
enthilt.

Prandtl'sches

Pitot-Rohr Staurohr

Bezeichnung Drucksonde

Aufbau
Differenzmessung
von Pitot-Rohr und
Drucksonde
MessgroRe |statischer Druck | statischer Druck Staudruck,
+ Staudruck Strémungs-
geschwindigkeit

Abbildung 2.159: Messgerite fiir unterschiedliche
Arten von Druck.

Geeignete Druckmessgerite konnen diese unter-

schiedlichen Beitrdge messen, wie in Abb. 2.159 ge-
zeigt. Die Drucksonde misst den statischen Druck,
wihrend das Pitot-Rohr den Gesamtdruck misst. Das
Prandtl’sche Staurohr besitzt zwei Offnungen fiir
den statischen und den Gesamtdruck, welche auf
unterschiedlichen Seiten der Fliissigkeit angeordnet
sind. Die Hohendifferenz ist dann direkt proportio-

nal zum Staudruck.

V2, p2, h2

vi, p1, h1

Abbildung 2.160: Beitrag des Schweredrucks zur
Bernoulli-Gleichung.

Eine etwas allgemeinere Form der Bernoulli-
Gleichung erhilt man, wenn man zusitzlich den
Schweredruck beriicksichtigt. Dann ist der Gesamt-
druck zusitzlich von der Hohe abhéngig; er betrigt
dann

1
P0+Pgh+§PV2 = Pges-

Insgesamt sind beide Formen der Bernoulli-
Gleichung Ausdriicke der Energieerhaltung: jeder
Term stellt eine Energiedichte, d.h. Energie pro Vo-
lumen dar; der erste enthilt die elastische Energie,
der zweite die potenzielle Energie der Gravitation,
der dritte die kinetische Energiedichte.

Eine weitere Konsequenz davon ist das Gesetz von
Torricelli: Tritt Fliissigkeit aus einem kleinen Loch
in einem Behdilter aus, so ist seine FlieBgeschwindig-
keit v = /2gh, mit h der Distanz unterhalb der Fliis-
sigkeitsoberfliche. Dies ist die gleiche Geschwin-
digkeit, die sie hitte, wenn sie von der Fliissigkeitso-
berfliche frei gefallen wire und entspricht der Um-
wandlung von potenzieller in kinetische Energie.

2.11.5 Demonstrationen zur
Bernoulli-Gleichung

Einige interessante Konsequenzen konnen leicht de-
monstriert werden.
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Platte 1

Abbildung 2.161: Stromung zieht Platte an.

Blédst man durch ein Loch in einer Platte auf eine
zweite Platte so dass das Gas zwischen den beiden
Platten entweichen muss (— Abb. 2.161), so erzeugt
die hohe Geschwindigkeit des Gases zwischen den
beiden Platten einen Unterdruck, welcher stark ge-
nug ist, das Gewicht der Platte zu halten und die
Kraft zu tiberwinden, welche durch die Impulsidnde-
rung des stromenden Gases auf die freie Platte aus-
geiibt wird.

Abbildung 2.162: Tanzender Ping-Pong Ball.

Blidst man auf einen Pingpong Ball schrig nach oben
(— Abb. 2.162), so fillt er nicht zu Boden, sondern
gelangt in eine Gleichgewichtsposition etwas unter-
halb der Mitte des Luftstrahls: an dieser Stelle ist
die Geschwindigkeit des Gases oberhalb etwas gro-
Ber als unterhalb, so dass eine Auftriebskraft wirkt,
welche groB genug ist, die Gewichtskraft zu kom-
pensieren.

Verwendet man einen Trichter, so kann man sogar
nach unten auf den Ball blasen, wie in Abb. 2.163
gezeigt; da die Luft sich oberhalb des Balls schneller

Abbildung 2.163: Ping-Pong Ball in einem Trichter.

bewegt als unten, fillt er nicht zu Boden.

2.11.6 Viskositit

Eine Fliissigkeit bewegt sich nie widerstandsfrei.

reiner reiner Reibungs- und
Reibungswiderstand Druckwiderstand Druckwiderstand
//——

langs Uberstromte  quer Uberstromte
Platte Platte

Uberstrémte Kugel

Abbildung 2.164: Widerstand in einer Fliissigkeit.

Der Stromungswiderstand kommt aufgrund von Rei-
bungswiderstand und Druckwiderstand zustande.
Der zweite Effekt kann vor allem auf Verwirbelun-
gen zuriickgefiihrt werden. Abb. 2.164 zeigt typische
Anordnungen, bei denen die beiden Effekte relevant
sind.

Der Reibungswiderstand wirkt auerdem auch im
Innern einer Fliissigkeit, wo keine Wande vorhanden
sind. Er wird dann als innere Reibungs bezeichnet.
Abb. 2.165 zeigt eine typische Messanordnung: die
zu untersuchende Fliissigkeit befindet sich zwischen
2 parallelen Platten. Eine davon wird fest gehalten,
die andere mit einer konstanten Geschwindigkeit v
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Abbildung 2.165: Geschwindigkeitsdifferenzen
zwischen Fliissigkeitsschichten.

nach oben bewegt. Direkt an der Oberfldache der bei-
den Platten ist die Fliissigkeit gegeniiber der Platte in
Ruhe. Dazwischen beobachtet man eine lineare Zu-
nahme der Geschwindigkeit der Fliissigkeitsschich-
ten. Fiir viele Substanzen kann er beschrieben wer-
den als eine Kraft

dv Ns

Fr=nA—" [1]= — =Pas. 2.21)

Diese ist proportional zur Fliche A, an der die Rei-
bungskraft angreift, und zur Anderung dv/dx der
Geschwindigkeit mit der Entfernung x von der Ober-
flache. Gilt diese Beziehung nicht, so spricht man
von nicht-Newton’schen Fliissigkeiten. Die Propor-
tionalititskonstante 17 zwischen Kraft und Fldche
mal Geschwindigkeitsgradient wird als Viskositit
oder Zihigkeit bezeichnet. Neben der SI-Einheit N
s / m? wird hiufig auch noch die iltere Einheit Poise
(= 0.1 N s / m?) verwendet. Sie stellt eine Materi-
aleigenschaft dar, welche stark von der Temperatur
abhingt.

Die Reibungskraft wirkt parallel zur Fliche A und
ist somit eine Scherkraft, respektive eine Scherspan-
nung. Wiahrend Scherkrifte in statischen Fliissig-
keiten verschwinden, treten sie in der Form dyna-
mischer Krifte bei nicht verschwindender Viskosi-
tit auf. Diese quantifiziert somit die Scherkrifte in
einem fluiden Medium. Bei sehr hoher Viskositit
(Glas) verhilt sich eine Fliissigkeit praktisch wie ein
Festkorper.

Die Viskositit von Wasser und dhnlichen Fliissigkei-
ten liegt bei etwa 1073 N's m~2. Die Werte fiir Gase

sind etwa hundertmal niedriger; da die Dichte von
Luft etwa 1000 mal niedriger ist als die von Was-
ser, ist aber die Viskositdt pro Masse bei Luft gro-
Ber als bei Wasser. Die Viskositit wie in Gleichung
(2.21) definiert wird auch als dynamische Viskosi-
tdt bezeichnet, das Verhiltnis n/p aus dynamischer
Viskositit und Dicht als kinematische Viskositit.

Flussigkeiten Gase
Luft
5
Z |5
T 27
o
=
= %sserdampf
0 T T = T T
0 20 40 0 100 200
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Abbildung 2.166: Temperaturabhiingigkeit der Vis-
kositit von Fliissigkeiten und Ga-
sen.

Die Viskositét von Fliissigkeiten nimmt mit steigen-
der Temperatur ab, da dann die molekularen Bin-
dungen gegeniiber der Bewegung der Molekiile an
Bedeutung verlieren. Das Extrembeispiel dafiir ist
Glas, wo die Viskositit beim Abkiihlen kontinu-
ierlich um viele GroBenordnungen zunimmt. Abb.
2.166 zeigt den Verlauf fiir unterschiedliche Fliissig-
keiten (links) und Gase (rechts). Bei Gasen nimmt
offenbar die Viskositit mit steigender Temperatur
zu, da sie auf der Bewegung von Molekiilen be-
ruht, deren Geschwindigkeit mit der Temperatur zu-
nimmt.

2.11.7 Reibungswiderstand in Fliissigkeiten

Die viskose Reibungskraft wirkt als Bremskraft fiir
die Fliissigkeit und fiihrt gleichzeitig dazu, dass stro-
mende Flissigkeiten eine Kraft auf den Behilter
oder den umstromten Korper ausiiben. Fiir einen
Korper in einer Fliissigkeit oder einem Gas schreibt
die resultierende Kraft als

N

FR = —kv. [k] m
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In Ubereinstimmung mit Gleichung (2.21) ist die
Kraft proportional zur Geschwindigkeit. Die Propor-
tionalitdtskonstante k& wird als Widerstandsbeiwert
bezeichnet. Sie hdangt sowohl von der Form des Kor-
pers ab, wie auch von der Viskositét der Fliissigkeit.
Fiir eine Kugel mit Radius r betriigt sie

kg =6mnr.

Dies wird als Stokes’sches Reibungsgesetz bezeich-
net. Die Tatsache, dass die Kraft proportional ist zur
Geschwindigkeit, fiihrt z.B. dazu, dass ein fallender
Korper in der Erdatmosphére nach einer kurzen Be-
schleunigungsphase eine konstante Geschwindigkeit
erreicht. Diese ist dadurch bestimmt, dass die Rei-
bungskraft gerade die Gewichtskraft aufhebt.

Abbildung 2.167: Freier Fall einer Kugel in Ol.

Diese kann gemessen werden, indem man die Sink-
geschwindigkeit von Kugeln in einer viskosen Fliis-
sigkeit misst. Abb. 2.167 zeigt ein Beispiel. Nach
einer “Anlaufstrecke” erreicht die Kugel eine kon-
stante Geschwindigkeit. Diese ist dadurch bestimmt,
dass die Schwerkraft gerade gleich grofl wie und ent-
gegengesetzt gerichtet zur Reibungskraft ist:

4w
(mk —mp1)g = g(px — 1) =1

e = 3

= Fp=6nnr.

Hier ist mg die Masse der Kugel und my; die Mas-
se der verdringten Fliissigkeit, welche Auftrieb er-
zeugt. Wir schreiben diesen Ausdruck als

4r
(px — pF1)7r3g =6mnrv

und 16sen auf nach der Geschwindigkeit v:

v=(px— sz)ng;rz.
GroBere Kugeln sollten also schneller fallen. Dies
wird im Experiment bestétigt. Hier werden 2 Kugeln
verglichen. Ihr Durchmesser betrigt 4 und 8 mm und
die Dichte 1,42 g/cm?. Die gemessenen Fallzeiten
sind 110, respektive 25 s, was nahe beim erwarteten
Verhiltnis von 4 liegt.

2.11.8 Turbulente Reibung und
Luftwiderstand

Wenn Luft einen K6rper umstromt, wird hiufig Tur-
bulenz erzeugt. Durch die Turbulenz wird kinetische
Energie sehr effektiv dissipiert und der Widerstand
wichst mit zunehmender Geschwindigkeit. Die Rei-
bungskraft wird dadurch niherungsweise proportio-
nal zum Quadrat der Geschwindigkeit:

FR = a’vz.

Der Luftreibungskoeffizient d hingt von Form und
Oberflache des Korpers, aber auch von der Art des
stromenden Mediums ab. Eine iibliche Beschreibung
verwendet den Widerstandsbeiwert c,,:

1
d= 5CWPA7

wobei p die Dichte des Mediums und A die Quer-
schnittfliche darstellt, wihrend c,, in erster Linie von
der Form des Gegenstands abhéngt.

Abb. 2.168 zeigt Stromlinienfelder fiir unterschied-
liche Korper und die resultierenden Widerstandsbei-
werte. Der unterste Korper erzielt den geringsten
Widerstand, indem er die Bildung von Wirbeln durch
eine scharfe Kante auf der Windschattenseite ver-
meidet.

2.11.9 Rohrdurchfluss

In einem Rohr fiihrt der Stromungswiderstand da-
zu, dass der Druck in einem System nicht gleich-
maiBig verteilt ist, sondern abfillt in Richtung der
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Stromlinien WiLQeIfeId

2 ——— Cw=

1,98

Abbildung 2.168: Widerstandsbeiwerte fiir unter-
schiedliche Korper.

Stromung. Dieser Druckgradient wird bendtigt, um
die Reibungsverluste aufgrund der inneren Rei-
bung zu kompensieren. Der Stromungswiderstand
beschrinkt deshalb auch den Durchfluss durch ein
Rohr.

D2
\‘E R Ay
N | Vmax
{
‘Fp
-R 0 R
v Abstand r
P1

Abbildung 2.169: Durchfluss durch ein zylindri-
sches Rohr und resultierendes Ge-
schwindigkeitsprofil.

AuBlerdem ist die FlieBgeschwindigkeit nicht homo-
gen, sondern das Geschwindigkeitsfeld bildet sich
s0, dass der FlieBwiderstand minimal wird. Die Fliis-
sigkeitskomponenten in der Nihe der Rohroberfli-
che werden durch die Reibung am stirksten ge-
bremst und bewegen sich deshalb am langsamsten;
die Komponenten in der Mitte werden am wenig-
sten gebremst und bewegen sich am schnellsten. Wie

in Abb. 2.169 gezeigt, ist deshalb die Stromungsge-
schwindigkeit im Zentrum am hochsten, in der Nihe
der Rohrwand nimmt sie auf Null ab.

Um den Durchfluss zu berechnen, ist es sinnvoll,
die rotationssymmetrischen Randbedingungen zu
beriicksichtigen. Diese fiihren dazu, dass die Ge-
schwindigkeit nur vom Abstand r von der Zylinder-
achse abhéngt. Man teilt deshalb das Fliissigkeits-
volumen in konzentrische Zylinder ein, wie in Abb.
2.169 gezeigt. Auf einen Fliissigkeitszylinder mit
Radius r und Linge ¢ wirkt die Reibungskraft an sei-
ner Auflenwand

dv dv

E =1 2rrd E .

Diese muss kompensiert werden durch eine Druck-
differenz Ap = p, — p1, welche von auflen erzeugt
werden muss, um die Stromung aufrecht zu erhalten.
Die Druckkraft auf diesen Zylinder betréagt

FR:T'A

F,= —Apn'rz.

Im dynamischen Gleichgewicht sind die beiden
Krifte entgegengesetzt und gleich gro3, so dass

n2nrldv = Apnr’dr
oder

dv=_—rdr.
v i rdr.
Die Randbedingung ist, dass die Geschwindigkeit an
der Oberfliche des Rohrs verschwindet, v(r = R) =
0. Damit ergibt die Integration
A
v(r) = ng (P —R).

Ap beschreibt hier die Druckédnderung; da der Druck
in FlieBrichtung abfillt, ist die Druckénderung Ap <
0. Wie in Abb. 2.169 gezeigt, wird die Geschwin-
digkeit deshalb bei » = 0 maximal und fallt mit dem
Abstand vom Zentrum des Rohr parabolisch ab.

2.11.10 Das Gesetz von Hagen-Poiseuille

Der Maximalwert der Geschwindigkeit betridgt (in
der Mitte des Rohrs)

Ap ,
———R~.
an/

Viax = v(0) =
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Sie ist somit positiv wenn Ap negativ ist, d.h. wenn
der Druck in der FlieBrichtung abnimmt, und sie
wichst linear mit der Querschnittfliche des Rohrs,
respektive quadratisch mit dessen Radius R.

Die mittlere Geschwindigkeit iiber den Querschnitt
erhilt man, indem man iiber konzentrische Kreisrin-
ge mittelt. Integriert man die Geschwindigkeit iiber
den gesamten Querschnitt, so erhédlt man den Vo-
Iumenfluss. Dividiert man diesen durch die Quer-
schnittsfliche A = 772 so erhilt man die mittlere Ge-
schwindigkeit. Jeder Kreisring hat die Flache 2xrdr,
mit r als innerem und r + dr als duBleren Radius. Der
Mittelwert ist somit

1 R
Vo= 7 ) v(r)2nrdr =
R

= 1324Anp€.o (P —R*)rdr

. Ap [r“_rsz}R
2RIl |4 2 |,

B Ap R4_ ApRz_vmax
2R?n{ 4 8N/ 2

Der gesamte Durchfluss durch das Rohr betrigt dem-
nach

ApmR*

I: _A:
" 800

Dies ist bekannt als das Gesetz von Hagen-
Poiseuille: Der Durchfluss durch ein gerades Rohr
ist proportional zur vierten Potenz des Rohrradius,
zum Druckabfall Ap/¢ und invers proportional zur
Viskositit 7.

Im Experiment (— Abb. 2.170) kann der konstan-
te Wasserdruck dadurch erzeugt werden, dass bei
sinkender Fliissigkeitssdule ein abnehmender Luft-
druck tiber der Fliissigkeit steht: es wird nur soviel
Luft nachgezogen, dass am unteren Ende des Roh-
res gerade der Druck pg, d.h. der atmosphérische
AuBendruck entsteht, unabhéngig von der Hohe der
Fliissigkeitsoberflache. Es wird die Fliissigkeitsmen-
ge gemessen, welche in 30 Sekunden durch jeweils
ein Rohr mit gegebenem Querschnitt fliet. Das Ver-
hiltnis der beiden Rohr-Innendurchmesser betréigt
0.8 / 1.5 mm; wir erwarten somit ein Verhiltnis der

l] Zweiweghahn

Py

J(,Luftblasen
-

Py *

Abbildung 2.170: Verifizierung des Gesetzes von
Hagen-Poiseuille. Die Anordnung
stellt sicher, dass der Druck beim
Ausfluss konstant is, auch wenn
die Fliissigkeitsoberfliche sinkt.

Fliissigkeitsmengen von (1.5/0.8)* = 12.4. Experi-
mentell finden wir ein Verhéltnis von ca. 12.

Die Druckdifferenz, welche benétigt wird, um eine
mittlere Geschwindigkeit durch das Rohr zu erzie-
len, betrigt

_8n¢

Ap ="V

d.h. sie sinkt mit der Querschnittsfliche des Rohrs,
wihrend die Durchflussmenge ansteigt. Im stati-
schen Grenzfall (v — 0) verschwindet der Druckab-
fall, wir erhalten das hydrostatische Gleichgewicht.

Daraus konnen wir auch den Widerstandsbeiwert fiir
die Stromung durch das Rohr berechnen als

F R?
k=—"2 = —Apﬂ?? =8nim.

Er hidngt somit nur von der Viskositit des Mediums
und der Lénge der Rohres ab, aber nicht vom Radius.
Die zunehmende Oberfliche wird gerade kompen-
siert durch den kleineren Gradienten der Geschwin-
digkeit.

2.11.11 Ahnlichkeit von Stromungen

Die Viskositit spielt auch eine wichtige Rolle bei
der Charakterisierung von Stromungen. So wird der
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Ubergang von laminaren zu turbulenten Stromungen
oder die Art des Stromungswiderstandes durch das
Verhiltnis aus kinetischer Energie zu Reibungsener-
gie beeinflusst. Ist dieses Verhiltnis gleich, so spricht
man von dhnlichen Stromungen.

Abbildung 2.171: Osborne Reynolds (1842 - 1912).

Ob zwei Stromungen dhnlich sind, kann man einfach
anhand der dimensionslosen Reynolds-Zahl (nach
Osborne Reynolds, Abb. 2.171) bestimmen:

Re:M.

[Re] =1

Hier stellen p und 7 die Dichte und Viskositit des
Mediums, v die Stromungsgeschwindigkeit und d
eine typische Dimension des Korpers dar. Niedrige
Reynolds-Zahlen findet man z.B. bei kleinen Dimen-
sionen (z.B. Einzeller in Wasser) oder groflen Di-
mensionen (z.B. Meeresstrémungen).

'u“l'l‘iiﬂ ~
v }I;H:ﬂ '3 ‘((:;,f,/h Wirbel
" % b e

i )
Il }‘/E’f/
laminar
(geringe Stromungs-
geschwindigkeit ?

turbulent
(hohe Stromungs-
geschwindigkeit )

Abbildung 2.172: Einsetzen von Turbulenz.

Bei kleinen Geschwindigkeiten (und damit klei-
nen Reynolds-Zahlen) sind Stromungen laminar, bei

groflen Reynolds-Zahlen werden sie turbulent. Abb.
2.172 zeigt schematisch das unterschiedliche Ver-
halten. Im Bereich der turbulenten Strémung bil-
den sich Wirbel auf unterschiedlichen Lingenska-
len. Die kinetische Energie des stromenden Medi-
ums wird dabei von groBen auf kleinere Skalen iiber-
tragen, wo die Reibung sie effizient in Wirme um-
wandelt. Da hier mehr Energie dissipiert wird, steigt
der Stromungswiderstand stark an. Biologische Sy-
steme, wie z.B. das Blut-Kreislaufsystem des Men-
schen, sind deshalb darauf optimiert, Turbulenz zu
vermeiden.

Wirbel kénnen auch an Unstetigkeiten in den Rand-
bedingungen entstehen, wie z.B. an den Enden
von Flugzeugfliigeln. Unter bestimmten Bedingun-
gen sind Wirbel recht stabil und konnen iiber l4n-
gere Zeiten bestehen bleiben und dabei erhebliche
Distanzen zuriicklegen.

2.11.12 Stromende Gase (Aerodynamik)

Bei der Diskussion der Stromung von Gasen muss
zusitzlich die Kompressibilitit beriicksichtigt wer-
den. Qualitativ bleiben die bisher diskutierten Ergeb-
nisse jedoch erhalten. Quantitative Ergebnisse sollen
hier auch nicht erhalten werden.

Resultierende Kraft

Druckverlauf = Auftrieb +

um Tragfliigel /

anstromende
Luft

Abbildung 2.173: Auftrieb an einem Flugzeugflii-
gel.

So kann z.B. der Auftrieb eines Flugzeugfliigels
mit Hilfe der Bernoulli-Gleichung diskutiert wer-
den. Abb. 2.173 stellt schematisch einen Flugzeug-
fliigel dar, welcher von Luft umstromt wird. Auf der
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Oberseite ist die Geschwindigkeit hoher und dar-
um der Druck geringer als auf der Unterseite. Die
gesamte am Fliigel angreifende Kraft besteht aus
der Auftriebskraft und der Widerstandskraft, welche
mit Hilfe eines Motors oder Triebwerks tiberwunden
wird.

Abbildung 2.174: Stromungsabriss.

Voraussetzung fiir diesen Effekt ist eine laminare
Strémung. Macht man den Anstellwinkel zu grof,
so wird die Stromung am hinteren Ende des Fliigels
turbulent, wie in Abb. 2.174 gezeigt. Damit wird die
Geschwindigkeit geringer und der Druck hoher, so
dass der Auftrieb “abbricht”. Man spricht vom Stro-
mungsabriss.

Ahnliche Stromungsprofile findet man auch bei Se-
gelbooten oder Windsurfern.

2.11.13 Der Magnus-Effekt

Punten

Vunten

Abbildung 2.175: Links:
Rechts:

der
Flettner-Rotor als
Schiffsantrieb.

Magnus-Effekt.

Eine etwas andere Anwendung des Bernoulli’schen
Prinzips verwendet der Flettner-Rotor, der z.T. fiir
Segelschiffe verwendet wurde. Das zu Grunde lie-
gende Prinzip wird als Magnus Effekt bezeichnet.
Das Schiff verwendet senkrecht stehende Zylinder,
welche um ihre Achse rotieren (— Abb. 2.175).

Von der Seite anstromende Luft fliet dann aufgrund
der Oberflachenreibung bevorzugt in Drehrichtung
um den Zylinder. Auf der Vorderseite ist deshalb die
Stromungsgeschwindigkeit groler und der statische
Druck geringer. Das Schiff erhilt damit eine Kraft in
Vorwirtsrichtung.

Die Geschwindigkeiten betragen
Voben =V + OR; Vypren = v — OR,

mit R als Radius des Zylinders und v der Geschwin-
digkeit der Luft ohne den Rotor. Aus dem Bernoulli-
Gesetz folgt, dass der Gesamtdruck, bestehend aus
statischem plus Staudruck auf beiden -Seiten gleich
sein muss:

1 1
poben + EP(V + (DR)Z = punten + EP(V - (l)R)z

Somit existiert eine Druckdifferenz

1
Ap = Poben — Punten = —Ep(4a)Rv) = —2p®Rv.

Diese Druckdifferenz ergibt eine antreibende Kraft
F = A.rfAp = —2RL(2p ®Rv) = —4R*Lp o,

mit A.ry = 2RL als Querschnittfliche des Zylinders
und L dessen Hohe.

Der Effekt kann in einem einfachen Experiment ge-
zeigt werden. Dazu wird eine Kunststoffrolle wie
ein Jojo an einer Schnur fallengelassen, so dass sie
sich dabei dreht. Dadurch erhilt man die Kombina-
tion von Drehung und Relativgeschwindigkeit, wel-
che fiir den Magnus-Effekt benotigt werden: die Rol-
le fdllt in einem Bogen.
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