2 Physikalische Grundlagen

Dieses Kapitel diskutiert die Grundlagen fiir die fol-
genden Kapitel. Sie bilden einen Schnittpunkt von
Physik, Medizin und Biologie. Viele dieser Grund-
lagen werden auch im Rahmen der Biophysik disku-
tiert. Die Biophysik umfasst allgemein eine physika-
lische Betrachtung von Lebewesen, wihrend sich die
Medizinphysik auf den Menschen fokussiert. Gebie-
te wie die Hydrodynamik des Schwimmens gehoren
deshalb nur zur Biophysik, wihrend die Statik des
Bewegungsapparats sowohl fiir die Biophysik wie
auch fiir die Medizinphysik relevant sind.
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2.1 Physik und Leben

2.1.1 Physik als Grundlagenwissenschaft

Die Physik hat den Anspruch, ausgehend von mog-
lichst wenigen einfachen Prinzipien, ein moglichst
vollstdndiges Verstdndnis unserer Umwelt zu erlan-
gen. Newton formulierte das so:

“Die Natur ist ndmlich einfach und schwelgt nicht
in iiberfliissigen Ursachen der Dinge”.

Isaac Newton

Dabei verfolgt man das Ziel, dass man aus mog-
lichst einfachen Voraussetzungen moglichst vielfil-
tige Konsequenzen ableiten mochte. In den Worten
Einsteins:

“Eine Theorie ist desto eindrucksvoller, je groB3er
die Einfachheit ihrer Primissen ist, je verschie-
denartigere Dinge sie verkniipft, und je weiter ihr
Anwendungsbereich ist.”

Albert Einstein

Dass dieses Programm erfolgreich ist, formulierte
wiederum Peter Atkins so:

“Ein GroBteil des Universums bedarf keiner Er-
kldrung. Elefanten zum Beispiel. Sobald Molekii-
le gelernt haben, miteinander in Wettbewerb zu
treten und andere Molekiile nach ihrem Bild zu er-
schaffen, werden nach einiger Zeit Elefanten und
Dinge, die ihnen &hneln, durch die Lande ziehen.”

Peter Atkins

Die Physik liefert allgemein die Grundlagen fiir die
ibrigen Naturwissenschaften, wie z.B. Chemie und
Biologie. Diese wiederum, zusammen mit der Phy-
sik, stellen die wichtigsten Werkzeuge fiir das Ver-
standnis des Lebens, des menschlichen Korpers und
seiner Funktionen zur Verfiigung.

Die Aussage, dass die Physik die Grundlagen fiir Na-
turwissenschaft und Physik liefert, impliziert nicht,
dass die Physik selber medizinische Phinomene er-
kldren kann; dazu benétigt man zusitzliche Konzep-
te, welche durch die Chemie, Biologie und Medizin
erarbeitet werden. Diese Konzepte sollten allerdings
nicht im Widerspruch zu physikalischen Erkenntnis-
sen sein. Dariiber hinaus kann die Physik direkte
Aussagen liefern, wie z.B. dazu, wie Kurzsichtigkeit
korrigiert werden kann.

Zu den allgemeinen Fragen des Lebens, zu denen
auch die Physik ihren Beitrag liefern kann, gehdren
z.B.

* Was ist Leben?

* Warum ist Leben physikalisch moglich?
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Abbildung 2.1: Das “physikalische Weltbild”.

* Wie konnte das Leben entstanden sein?

Die physikalische Betrachtungsweise liefert auf
mehrere Arten ein hierarchisches Verstindnis unse-
rer Umwelt: Eine Hierarchie der Léngenskalen er-
kliart Eigenschaften von Molekiilen mit Hilfe ato-
marer Eigenschaften, teilt diese in Atomkerne und
Elektronen auf etc. Ebenso erhdlt man in der Zeit ei-
ne hierarchische Entwicklung: Aus dem “big bang”
entwickeln sich nach und nach komplexere Struktu-
ren (Teilchen, Atome, Molekiile, Gaswolken, Son-
nensysteme und Galaxien etc.). Nach der Bildung
der Erde kann die Physik, in Kombination mit ande-
ren Naturwissenschaften, Szenarien entwickeln, wie
hier Molekiile, Zellen und hohere Organismen ent-
standen sind. Daraus entsteht somit auch eine Hier-
archie der Organisation und Komplexitit: Phino-
mene auf einer hierarchisch hoher liegenden Ebe-
ne konnen (teilweise) auf die bekannten Gesetze
der darunter liegenden Ebene zuriickgefiihrt werden.
Auf allen oben genannten Stufen spielen physikali-
sche Prinzipien oder Erkenntnisse eine wichtige Rol-
le.

Viele der Arbeiten zu diesen Themen sind stark in-
terdisziplinér. So konnte das Buch “Was ist Leben?”
von Schrédinger sowohl der Physik, wie auch der
Molekularbiologie oder der Philosophie zugeordnet
werden. Es gilt heute als Klassiker der naturwissen-
schaftlichen Literatur und als “Meilenstein in der

Geschichte der Molekularbiologie” (NDR).

2.1.2 Wesen und Entstehung von Leben

= Es gibt noch keine umfassende und allgemein an-

erkannte Definition, was Leben tiberhaupt ist. Eine
mogliche Definition ist die Folgende:

Ein System wird als lebend bezeichnet, wenn es
die Fihigkeit besitzt,

¢ seine Form zu erhalten (Homeostasis) und

e durch Riickkopplungseffekte Form und
Funktion der sich &dndernden Umgebung
anzupassen.

Als eine weitere wichtige Eigenschaft wird hiufig
die Fihigkeit zur selbstindigen Replikation betrach-
tet. Wird dies vorausgesetzt, so gehoren z.B. Viren
nicht zu den Lebewesen, da sie nicht selbstindig le-
ben und sich fortpflanzen konnen.

Auf dieser Basis kann man sich iiberlegen, unter
welchen Vorraussetzungen Leben entstehen kann.
So kann man sich iiberlegen, wie schnell ein bio-
logisches System sich dndern darf, ohne instabil zu
werden oder umgekehrt, wir schnell es sich dndern
muss, um sich in den rund 4,5 Milliarden Jahren
seit der Entstehung des Sonnensystems aus unbeleb-
ten Elementen zu bilden. Mit physikalischen, chemi-
schen und statistischen Argumenten lésst sich zei-
gen, dass die Vielfalt der moglichen Systeme grof3
genug ist, um auf unterschiedliche Weise und in un-
terschiedlichen Randbedingungen Leben entstehen
zu lassen, dass andererseits aber eine Riickkopp-
lung noétigt ist, welche dafiir sorgt, dass die Entwick-
lung bereits in einem frithen Stadium die erfolgrei-
che Entwicklungsrichtung findet.

Insgesamt ist dies jedoch ein extrem spekulatives
Feld, da wir nicht die Moglichkeit haben, alle denk-
baren Szenarien zu verfolgen. Diese Frage stellt sich
z.B. wenn die NASA auf dem Mars nach Spuren von
Leben sucht: welche Tests durchgefiihrt werden sol-
len hingt davon ab, welche Art von Lebewesen man
erwartet. Das gleiche gilt bei der Untersuchung von
Exoplaneten: welche Molekiile konnten als Signatur
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von Leben verstanden werden? Wir beschrianken uns
im Folgenden darauf, Leben zu diskutieren, das auf
den uns bekannten Formen beruht, das also auf orga-
nischen Molekiilen und Wasser basiert.

2.1.3 Physikalische Voraussetzungen fiir
organisches Leben

Alles uns bekannte Leben beruht auf molekularer
Ebene auf Wasser und einer Gruppe von organischen
Molekiilen, welche im Kapitel 3 diskutiert werden.
Die Physik liefert ein plausibles Szenario dafiir, wel-
che Voraussetzungen fiir diese Art von Leben vor-
handen sein miissen und wie auf der Erde Leben ent-
standen ist, angefangen beim Urknall iiber die Ent-
stehung des Sonnensystems und der Erde.

Die Kombination aus Erde und Sonne ist die erste
Grundlage fiir die Entstehung von Leben. Damit or-
ganisches Leben existieren kann, ist es notwendig,
dass fliissiges Wasser existiert. Dafiir miissen die
Temperaturen im Bereich 273 K < T <373 K liegen.
Dies wird auf der Erde erreicht durch ein Gleich-
gewicht an eingestrahlter und abgestrahlter Energie.
Datails: siche Ubung 1. Die abgestrahlte Energie ist
nach dem Stefan-Boltzmann Gesetz proportional zu
T4,

P =aT*,
wihrend die eingestrahlte Energie davon unabhingig
ist,

P =p.

Es ergibt sich somit ein Gleichgewicht bei

/B
Pr=P — T=4/=.
T =P p”

Die Temperatur darf dariiber hinaus nicht zu stark
variieren - sowohl im Tag-Nacht Zyklus, wie auch
im jahreszeitlichen Zyklus. Dies limitiert z.B. die
Dauer des Tages (d.h. die Rotationsgeschwindigkeit
der Erde), die Exzentrizitit der Planetenbahn, und
die Neigung der Erdachse.

Eine weitere wichtige physikalische Grundlage ist
die so genannte Anomalie des Wassers: Wasser ist

einer der wenigen Stoffe, bei denen der gefrorene
Zustand leichter ist als der fliissige. Dies verhindert
ein Durchfrieren der Meere auch bei niedrigen Tem-
peraturen und stellt damit eine wichtige Grundlage
dafiir dar, dass Leben sich in den Meeren und Seen
entwickeln konnte.

Physikalische Prinzipien wie die Energieerhaltung
oder der zweite Hauptsatz der Thermodynamik kon-
nen z.B. auch erkldren, auf welchen GroBenska-
len sich komplexe Lebewesen wie Sdugetiere ent-
wickeln und existieren kénnen.

Abbildung 2.2: Einfluss des Erdmagnetfeldes auf
den Sonnenwind.

Eine weitere wichtige Voraussetzung fiir das Leben
auf der Erde ist das Magnetfeld, welches die ener-
giereiche kosmische Strahlung und den Sonnenwind
ablenkt.

2.1.4 Zusammensetzung der
Erdatmosphiire

Zu den wichtigsten Voraussetzungen gehort die Exi-
stenz und Zusammensetzung der Atmosphire. Sie
besteht heute aus

Stickstoff N, 78 %
Sauerstoff O, 21 %
Argon Ar | 09 %
Kohlendioxid | CO, | 0,04 %

Die Gase in der Erdatmosphidre wurden zu einem
Teil bei der Entstehung der Erde gebunden, zum
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anderen durch geophysikalische und geochemische
Prozesse eingebracht. Der Sauerstoff wurde durch
die ersten Lebewesen iiber Photosynthese erzeugt.
Andere Komponenten gingen im Laufe der Erdge-
schichte verloren, wie z.B. der Wasserstoff, der in
den Weltraum entweicht, oder sie wurden chemisch
gebunden.

~ GM

7

m

gpr)t = _ngF)

Abbildung 2.3: Energie von Molekiilen
Erdatmosphire.

in der

Damit ein Molekiil im Schwerefeld der Erde festge-
halten wird, muss seine potenzielle Energie grof3er
sein als die kinetische Energie. Die potenzielle Ener-
gie im Schwerefeld der Erde ist

GMm

r

gpo[ = -

Hier ist M die Erdmasse, m die Molekiilmasse, G
die Gravitationskonstante und r der Abstand vom
Erdmittelpunkt. Die Dicke der Erdatmosphire (= 50
km) ist gering im Vergleich zum Durchmesser der
Erde (=~ 12000 km), so dass wir den Abstand durch
den Erdradius R ersetzen konnen,

GMm

éapot = - R

Diesen Ausdruck konnen wir vereinfachen, indem
wir die Schwerebeschleunigung g = GM /R% an der
Erdoberfliche einsetzen:

éapot = _ngE-

Die Molekiile besitzen aulerdem kinetische Energie
m

2v2.

éakin =

Daraus ergibt sich, dass Molekiile entweichen kon-
nen, ihre gesamte Energie positiv ist, &y + &g > 0.
Dies passiert wenn die molekulare Geschwindigkeit
grofer ist als die Entweichgeschwindigkeit vg, d.h.
die Geschwindigkeit, bei der kinetische und potenzi-
elle Energie den gleichen Betrag haben:

m
mgRg = Ev% — vg = \/2¢REg.

Diese betrégt fiir die Erde ca. 11,2 km/s. Die mittlere
kinetische Energie ist bei der Temperatur T

m, 3

—v- = —kgT.

2" T2

Daraus ergibt sich eine mittlere thermische Ge-

schwindigkeit

gkin =

3kpT

m

Diese liegt z.B. fiir Stickstoff bei

VNZZ\/

Dieser Wert ist sehr viel kleiner als die Entweich-
geschwindigkeit vg, so dass die meisten Molekii-
le gebunden bleiben. Auf Grund der Boltzmann-
Verteilung

3.1,38-10-23.273]
28-1,66- 10 27kg

=493,
S

p(v)dv = cdmvie ™ 12T g,

ist jedoch die Wahrscheinlichkeit fiir jede Geschwin-
digkeit endlich, es existiert somit immer ein klei-
ner Bruchteil an Molekiilen, welche die Entweichge-
schwindigkeit iiberschreiten. Diese Wahrscheinlich-
keit nimmt exponentiell mit der Masse m der Mole-
kiile ab.

Fiir leichte Atome (H, He) ist die resultierende Ge-
schwindigkeit hoch genug, dass sie aus der Erdatmo-
sphire entweichen. Deshalb hat sich die Zusammen-
setzung der Erdatmosphére im Laufe der Zeit stark
verdndert: die leichten Gase sind verloren gegangen,
wihrend die schwereren Gase unter anderem durch
Vulkanismus dazu gekommen sind. Der Sauerstoff
wurde von den friihen Pflanzen erzeugt. Die Ande-
rung der Zusammensetzung der Atmosphire fiihrte
auch zu Anderungen der Temperatur, auf Grund des
Treibhauseffektes.
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Abbildung 2.4: Geschwindigkeitsverteilung von

Molekiilen unterschiedlicher Masse.

2.1.5 Skalengesetze und Korpergrofie

Die physikalischen Grenzen fiir das Leben lassen
sich auch an verschiedenen Skalengesetzen erken-
nen, welche z.B. die maximale Grof3e eines Lebewe-
sens an Land bestimmen: das Gewicht wichst mit
der dritten Potenz der linearen Dimension, die Mus-
kelkraft mit dem Muskelquerschnitt und damit mit
der zweiten Potenz. Wird ein Tier zu groB}, so kann
es sich somit an Land nicht mehr fortbewegen. Dies
fiihrt dazu, dass sich die Proportionen der Korper
von Tieren mit ihrer Grofe deutlich dndern (siehe
Abb. 2.5).

4

Abbildung 2.5: Unterschiedliche

Korperpropotio-
nen unterschiedlich groBer Tiere.

Wir betrachten als einfaches Beispiel ein Modell,
welches eine Beziehung zwischen dem energeti-
schen Grundumsatz und der Grofe eines Lebe-
wesens erstellt. Wir setzen fiir den energetischen
Grundumsatz, also die Wirmeerzeugung des Kor-

pers,
Po = ad3,

mit d als lineare Ausdehnung (Linge) und a als Wir-
meumsatz pro Volumen. Diese Wirme muss iiber die
Korperoberfliche abgefiihrt werden,

Py = bd?

wobei wir annehmen, dass der Wirmeverlust b pro
Flache konstant sei. Damit diese beiden Werte im
Gleichgewicht sind, muss

ad® = bd>

sein. Bei gegebenem Wirmeverlust b wird somit der
energetische Grundumsatz pro Gewicht

b

a=—ocM '3

Aufgrund dieses stark vereinfachten Modells erwar-
ten wir somit, dass der spezifische Grundumsatz mit
der dritten Wurzel aus der Masse abnimmt, respek-
tive dass der Gesamtumsatz Py mit d? o< M?/3 zu-
nimmt.

2.1.6 Empirische Daten

Die empirischen Daten stimmen qualitativ mit die-
ser Erwartung iiberein. Allerdings ist das Modell
stark vereinfacht, so dass die Ubereinstimmung nicht
quantitativ ist.

Abbildung 2.6 stellt die empirischen Werte dar. Es
zeigt, dass der Energieumsatz eines Lebewesens mit
etwa dem Gewicht hoch 3/4 zunimmt, also etwas
stiarker als unser vereinfachtes Modell. Der Grund
fiir diesen Unterschied liegt unter anderem daran,
dass sich auch die Proportionen der Lebewesen mit
der Grofe dndern.

Der experimentell gefundene Grundumsatz an Ener-
gie kann fiir Sdugetiere in erster Nidherung iiber die

Formel
< > 3/4

M

AQ kJ
= 2 e
90 e

At~ 7 Tag

21



2 Physikalische Grundlagen

i Elephant ®~
1000 orsa .
36 g
& ECcm
. Mar "
Et 100- Sw“:wnmun
£ 009, R
2 ;
= 104 g~ Condor
= "rm,c-m_ Rabhit
2 PR
s::I: ,/".
- _.,,/'
& Mouse
0'1 II T L 1 1 L =—'
0.01 1.0 100 10000

Korpermasse / kg

Abbildung 2.6: Skalierung der metabolischen Rate
mit der GroBe des Organismus [20].

abgeschitzt werden. Fiir wechselwarme Tiere und
Einzeller unterscheiden sich die Konstanten, aber
der Exponent ist praktisch der gleiche.

Es gibt momentan eine Reihe von Versuchen, dieses
empirische Skalierungsgesetz zu erkldren. Ein mog-
licher Ansatz geht davon aus, dass der Energieum-
satz durch die Versorgung des Gewebes mit Sau-
erstoff beschrinkt wird. Man kann den Exponenten
herleiten, wenn man annimmt, dass der Korper durch
ein fraktales Netzwerk von Blutgefidlen versorgt
wird, welche alle Zellen erreichen. Allerdings kann
die Sauerstoffversorgung nicht wirklich ein limitie-
render Faktor sein fiir den minimalen Energieum-
satz, sondern fiir den maximalen. Minimale und ma-
ximale metabolische Rate zeigen ein unterschiedli-
ches Skalenverhalten. Die beiden Kurven treffen sich
etwa bei einer Spitzmaus, also beim kleinsten Siuge-
tier.

Man kann diese Skalierung auch noch iiber kleinere
Einheiten fortsetzen: Auch bei Zellen und ihren Or-
ganellen findet man das gleiche Skalengesetz. Insge-
samt werden dadurch 27 Gré8enordnungen der Mas-
se iiberdeckt.

2.1.7 Energieformen und Lingenskalen

Wir werden im Folgenden Phidnomene auf unter-
schiedlichen GroBenskalen diskutieren, von makro-

5L
Shrew
ok
— Mammals
=
oY 5L
2 5
>
ot
L
(]
— =10}
(@)}
(o] .
— Average mammalian
cell, in culture
_‘I 5 -
y Mitochondrion
Re.spiratory (mammatllan
-20F complex myocyte)
T T T T T T
-20 -15 -10 -5 0 5 10

Log. Masse [g]

Abbildung 2.7: Skalierung der metabolischen Ra-
te mit der Grofe von Organismen,

Zellen und subzelluldren Strukturen
[20].

skopischen (z.B. Menschen, [ ~ I m bis in den mi-
kroskopischen Bereich (z.B. Molekiile, / ~ 1nm).
Dabei stellt man fest, dass auf unterschiedlichen
GroBenskalen unterschiedliche Dinge wichtig sind.

Elektrostatische Energie
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Abbildung 2.8: Skalierung unterschiedlicher Energi-
en mit der Grofe.

Abb. 2.8 zeigt die GroBenabhingigkeit von un-
terschiedlichen Energieformen, die fiir biologische
Systeme relevant sind [20]. So ist die thermische
Energie eines Freiheitsgrades (kT = 4-1072'J bei
Raumtemperatur) unabhéngig von der Grofie des Sy-
stems; die Bindungsenergie eines Elektrons in ei-
nem Potentialtopf nimmt mit der Linge ab, &}, o< 2
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wihrend mechanische Energien oder die elektro-
statische Energie bei gegebener Ladungsdichte mit
der GroBie zunehmen. Fiir die geladene Kugelschale
wurden einfach geladene Aminosduren verwendet.

Interessanterweise kreuzen sich diese Energien im
Bereich von etwa 1 nm / 107 J, also im Bereich
molekularer Langenskalen und Energien. In diesem
Bereich miissen somit sehr unterschiedliche Ener-
gieformen miteinander verglichen und ihre Wirkung
beriicksichtigt werden. Dies bedeute auch, dass viele
Vereinfachungen, bei denen man eine Energieform
nicht oder nur als Stérung beriicksichtigt, hier nicht
ohne weiteres moglich sind. Es bedeutet aber auch,
dass hier kleine Ursachen sehr viel groere Effekte
haben konnen, was die Flexibilitdt und Vielseitigkeit
der entsprechenden Systeme stark erhoht.

2.1.8 Organisationsstufen von Organismen

Abbildung 2.9: Menschliche

Organe
physikalischen Gesetzen.

gehorchen

Auf der Erde haben sich wihrend der vergangenen
4 Milliarden Jahre viele Millionen unterschiedliche
Arten von Lebewesen entwickelt, die aber auch veiel
Gemeinsamkeiten aufweisen. So basieren alle kom-
plexen Organismen auf einer hierarchisch geordne-
ten Struktur.

Fiir die verschiedenen Funktionen des Organismus
sind unterschiedliche Organe ausgebildet, die aus
einzelnen Geweben aufgebaut sind. Die kleinste
selbstindige Lebenseinheit ist die Zelle (Kapitel
3.4). In ihr laufen die Lebensvorginge ab.

Die (kernhaltigen) Zellen der hoheren Lebewesen
sind wiederum hoch strukturiert, die Strukturele-
mente sind die Zellorganellen. Baumaterialien dafiir

Organismus: Mensch

Gewebe: Epidermis

Abbildung 2.10: Hierarchie biologischer Struktur-
elemente am Beispiel des Organis-
mus Mensch. [24]

Molekiil: Cytochrom

Abbildung 2.11: Fortsetzung der Hierarchie auf klei-
neren Skalen.

sind Biomembranen, Aggregate aus Lipidmolekii-
len, in die Proteine ein- oder angelagert sein kdnnen.
Proteine werden fiir den Erhalt des Lebens benétigt,
ebenso wie andere (Makro-) Molekiile wie Nuklein-
sduren, Zucker und die schon erwzhnten Lipide.

Jede dieser Organisationseinheiten fasst eine hoch-
komplexe Unterstruktur zusammen. So enthilt ei-
ne Zelle etwa 10'° Proteinmolekiile, welche zu 10*
unterschiedlichen Proteintypen gehoren. Der Auf-
bau und die Funktion von Proteinen wird im Kapitel
3.2.6 ausfiihrlicher behandelt.
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2.2 Thermodynamik

2.2.1 Grundlagen

“Eine Theorie ist desto eindrucksvoller, je gro-
Ber die Einfachheit ihrer Primissen ist, je ver-
schiedenartigere Dinge sie verkniipft, und je wei-
ter ihr Anwendungsbereich ist. Deshalb der tie-
fe Eindruck, den die klassische Thermodynamik
auf mich machte. Es ist die einzige physikalische
Theorie allgemeinen Inhaltes, von der ich iiber-
zeugt bin, dass sie im Rahmen der Anwendbarkeit
ihrer Grundbegriffe niemals umgestolen werden
wird.”

Albert Einstein, 1949

Die Thermodynamik beschreibt den Austausch von
Energie und Wirme zwischen unterschiedlichen Sy-
stemen. Sie wurde vor allem im 19. Jahrhundert ent-
wickelt, motiviert durch den Bau von Dampfmaschi-
nen im Rahmen der Industrialisierung.

Fiir die Physik biologischer Systeme (dazu gehort
der menschliche Korper) ist sie vor allem deswegen
relevant, weil sie es erlaubt, Gleichgewichtszustin-
de zu berechnen oder die Grenzen der Leistungsfi-
higkeit von Organen und Organismen abzuschitzen.
Beispiele dafiir umfassen den Energieverbrauch un-
terschiedlicher Organe. So wird z.B. in der Niere die
Salzkonzentration im Primérharn erhoht, was geméif
den Gesetzen der Thermodynamik nur unter Ener-
giezufuhr moglich ist. Die Niere verbraucht deshalb
rund 10 % des Grundumsatzes an Energie. Als ein
weiteres Beispiel kann die Lunge nur deshalb funk-
tionieren, weil die Oberflichenspannung der Fliis-
sigkeit, welche die Lungenblischen auskleidet, tiber
oberflichenaktive Substanzen reduziert wird.

Die Objekte der Thermodynamik sind Systeme, wel-
che in unterschiedlicher Weise mit ihrer Umge-
bung in Kontakt kommen. Dieser Kontakt kann ver-
schwinden - dann handelt es sich um ein isolier-
tes oder abgeschlossenes System. Biologische Sy-
steme sind meist offene Systeme, das heisst, sie
konnen Wirme, Arbeit und / oder Stoff mit ihrer
Umgebung austauschen. Allerdings ist gerade der
Stoffaustausch meist kontrolliert: eine Zelle regu-

Umgebung

System
T p, ni

Abbildung 2.12: Thermodynamisches System.

liert, welche Stoffe sie von ihrer Umgebung auf-
nimmt.

Eine der Grundlagen der Thermodynamik ist die
Unterscheidung zwischen Mikro- und Makrozustéin-
den. Ein Mikrozustand charakterisiert den Quanten-
zustand jedes einzelnen Teilchens im System. Fiir
den Makrozustand miissen nur die relevanten Zu-
standsvariablen bestimmt werden.

Als Beispiel betrachten wir eine Menge von N Wiir-
feln. Der Mikrozustand r beschreibt die N ein-
zelnen Augenzahlen, r = (ny,ny,...,ny), mit n;
1,2,...,6. Fir unterscheidbare Wiirfel gibt es 6N
verschiedene Zustdnde r. Diese Zahl wichst somit
sehr rasch mit der Grofle des Systems. Fiir biologi-
sche Systeme mit typischen Teilchenzahlen in der
GroBenordnung von N ~ 10%° ist eine vollstindige
Beschreibung durch ihren Mikrozustand deshalb un-
moglich. Solche Systeme werden deshalb iiber ih-
ren Makrozustand beschrieben, welcher auf makro-
skopischen GroBen wie Gesamtenergie, Druck oder
Temperatur basiert.

Fiir die Beschreibung der Makrozustinde verwendet
man Zustandsvariablen, wie z.B. Temperatur, Druck,
Volumen und Zusammensetzung. Bei vielen Prozes-
sen, in denen das System sich veridndert, bleiben ein-
zelne Zustandsvariablen konstant. Solche Prozesse
werden als iso- Prozesse bezeichnet:

* konstante Temperatur: isothermer Prozess
¢ konstanter Druck: isobarer Prozess
¢ konstantes Volumen: isochorer Prozess.

Biologische Prozesse laufen meist bei konstantem
Druck (Atmosphérendruck: ~ 10°Pa) und konstan-
ter Temperatur (z.B. Korpertemperatur: =~ 37°C) ab.
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Die Zustandsvariablen sind nicht unabhéngig von-
einander, sondern iiber Zustandsgleichungen mitein-
ander verkniipft, wie z.B. die Zustandsgleichung fiir
das ideale Gas:

pV =nRT

oder das van-der-Waals Gas (— Kapitel 2.2.8).

2.2.2 Energie

Zu den wichtigsten Zustandsvariablen gehort die in-
nere Energie U. Eine Anderung der inneren Energie
eines Systems setzt sich zusammen aus der Arbeit
W, die am System geleistet wird, und der Wirme Q,

die ihm zugefiihrt wird:
dU = 8W +6Q. 2.1)

Wird die entsprechende Energie aus dem System ab-
gezogen, so wird das Vorzeichen negativ.

Druck

Volumen

Abbildung 2.13: Der Zustand 2 kann vom Zustand 1
auf unterschiedlichen Wegen (a, b)
erreicht werden.

Im Gegensatz zu Temperatur, Druck und innerer
Energie sind Arbeit und Wirme keine Zustandsva-
riablen: sie hingen nicht nur vom momentanen Zu-
stand ab, sondern auch vom Weg, iiber den dieser
Zustand erreicht wurde, also von der Geschichte des
Systems. Die Arbeit 6W, welche an einem System
geleistet werden muss, um es von Zustand 1 in den
Zustand 2 zu bringen (siehe Abb. 2.13), ist

2

3W:—/pdV
1

und damit fiir die beiden Wege a, b unterschiedlich.
Dementsprechend unterscheidet sich auch die Wir-
me 60, wihrend die innere Energie dU die gleiche
ist.

Biologische Systeme arbeiten normalerweise bei
konstantem Druck. Ist das System komprimierbar,
kann das Volumen dndern und es wird an dem Sy-
stem Arbeit geleistet. Man verwendet dann eine wei-
tere Grofle, welche auch die Dimension einer Ener-
gie hat, die Enthalpie

H=U+DpV.

Die Enthalpie gibt an, wie die Energiebillanz einer
Reaktion aussieht, also z.B. wie viel Energie bei der
Verbrennung von Zucker frei wird:

Ce¢H1206(Glucose) + 0, — 6CO, +6H,0
AH = —2810kJ /mol.

Das negative Vorzeichen gibt an, dass bei dieser Um-
wandlung Energie frei wird.

Biologische Systeme zeigen eine zeitliche Entwick-
lung, welche durch den spontanen Ablauf von che-
mischen Reaktionen getrieben wird. Ob eine Reak-
tion spontan ablduft, hiingt einerseits davon ab, ob
dabei Energie frei wird, andererseits aber auch von
der Entropie.

2.2.3 Entropie und freie Enthalpie

Eine weitere wichtige Zustandsvariable ist die Entro-
pie S. Sie ist ein MaB fiir die Unordnung im System.
Thermodynamisch ist sie definiert als

6Qrev

ds = .
T

Hier ist 6Q,., die Wirmemenge, die bei reversibler
Prozessfiihrung aufgenommen wird: ldsst man den
Prozess riickwirts laufen, so wird die gleiche Wir-
memenge wieder abgegeben. Aus dieser Definition
folgt, dass die Entropie eine Zustandsvariable ist. Sie
hiingt also nicht davon ab, auf welchem Pfad der Zu-
stand des Systems erreicht wurde.
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Allgemein ist die Warmemenge, welche dem System
zugefiihrt wird, gemiB (2.1)

00 =dU — oW.

Bei einer nichtreversiblen Prozessfithrung muss dem
System mehr Arbeit zugefiihrt werden und damit
weniger Wirme. Somit ist die Anderung §Q der
Wirmeenergie des Systems bei irreversibler Pro-
zessfithrung kleiner als bei reversibler, 0Q < 0Qey.
Es gilt also

0
as > 7Q oder TdS>dU — 6W.
Das Gleichheitszeichen entspricht dem reversiblen
Fall.

Besteht die Arbeit W nur aus Volumenarbeit, W =
—pV, so kdonnen wir dies auch schreiben als
TdS>d(U + pV) > dH. 2.2)
Wir definieren deshalb eine neue Grofle, die freie
Enthalpie
G=H-TS=U+pV-TS. 2.3)
Diese Grof3e ist relevant fiir Prozesse, die bei kon-

stantem Druck und konstanter Temperatur ablaufen.
Eine infinitesimale Anderung ist

dG=dH —TdS — 5dT.

Fiir isotherme Prozesse (dT = 0) fallt der letzte Term
weg und

dG=dH —-Tds.

Dann folgt aus Gleichung (2.2) dG < 0. Dabei gilt
das Gleichheitszeichen fiir reversible Prozesse, bei
irreversiblen Prozessen ist dG < 0. Wir haben somit
ein Kriterium dafiir, dass ein Prozess bei konstanter
Temperatur und konstantem Druck selbstindig (d.h.
irreversibel) abléduft: die freie Enthalpie dafiir muss
negativ sein.

2.2.4 Hauptsiitze

Die Grundlagen der Thermodynamik werden durch
die vier Hauptsitze bestimmt. Der ‘nullte’ definiert
die Temperatur:

0. Hauptsatz Zwei Korper, die miteinander im
thermodynamischen Gleichgewicht stehen, haben
die gleiche Temperatur.

Der erste Hauptsatz entspricht der Energieerhaltung:

1. Hauptsatz Die innere Energie eines Systems,
welches keine Stoffe mit seiner Umgebung aus-
tauscht, dndert sich nur durch den Austausch von
Arbeit und Wirme,

dU = oW +90.

Der zweite betrifft die Entropie und definiert damit
die Richtung, in der spontan ablaufende Prozesse
sich bewegen. Er kann auf unterschiedliche Weise
formuliert werden, z.B.

2. Hauptsatz Ohne Einsatz von Energie kann
Wirme nicht von einem Korper niedriger Tempe-
ratur auf einen Korper hoherer Temperatur tiber-
tragen werden.

Daraus folgt, dass der thermodynamische Gleich-
gewichtszustand abgeschlossener Systeme eindeutig
definiert ist dadurch, dass seine Entropie maximal
ist, dS = 0.

Der dritte Hauptsatz ist fiir biologische Systeme
nicht relevant, wir fithren ihn aber der Vollstdndig-
keit halber auf:

3. Hauptsatz Es ist unméglich, ein System zum
absoluten Nullpunkt zu kiihlen.

2.2.5 Wahrscheinlichkeit, Energie und
Zustandssumme

Wenn wir ein thermodynamisches System (in Ge-
danken oder Taten) in zwei Teile teilen, konnen wir
fiir jeden Teil die Wahrscheinlichkeit p(&7) berech-
nen, dass die Energie dieses Teils den Wert &) hat
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und entsprechend fiir den Teil 2. Die Energie des Ge-
samtsystems ist in guter Ndherung die Summe der
beiden Energien, und somit ist die Wahrscheinlich-
keit dafiir, dass die Gesamtenergie den Wert &, =
&1 + & besitzt,

p(&) =p(&1+ &) =p(61)p(62)

oder

In(p(&,)) = In(p(&)) +1n (p(&))..

Diese Beziehung muss fiir beliebige Unterteilungen
giiltig sein. Somit muss allgemein gelten

o BS
p(&)=—

Die Konstante 8 muss fiir alle Teilsysteme die glei-
che sein. Der Nenner ergibt sich aus der Normierung
der Wahrscheinlichkeit zu

Z:Ze*ﬁ"@".

Die Summe liuft iiber alle Mikrozustinde. Die Gro-
e Z wird als Zustandssumme bezeichnet. Fiir ein
makroskopisches System enthilt sie somit eine sehr
groB3e Zahl von Termen. Fiir einen bestimmten Mi-
krozustand i mit Energie &;, der mit den makrosko-
pischen Variablen kompatibel ist, betridgt die Reali-
sierungswahrscheinlichkeit

efﬁé(;’
pi= 7

Aus der Zustandssumme konnen prinzipiell alle
thermodynamischen Groflen bestimmt werden. Am
einfachsten ist dies fiir die freie Energie

F=U—-TS=—kgT InZ.

Allerdings kann die Zustandssumme nur in einfa-
chen Spezialfillen, wie z.B. dem idealen Gas, expli-
zit berechnet werden.

2.2.6 Wahrscheinlichkeit und Entropie

Entsprechend dieser Wahrscheinlichkeit gab Boltz-
mann der Entropie eine Bedeutung, indem er sie mit

der Wahrscheinlichkeit W fiir die Besetzung des ent-

sprechenden Zustandes verkniipfte:
S = kgInW 4 const. 2.4)

Einstein schlug vor, diese Beziehung auch umge-
kehrt zu nutzen:

“Man bestimmt aus dem empirisch ermittelten
thermischen Verhalten des Systems die Entro-
piewerte der einzelnen Zustinde und berechnet
daraus mit Hilfe der Boltzmannschen Gleichung
deren Wahrscheinlichkeiten ...” “Charakteristisch
fiir diesen Standpunkt ist, dass man die (zeitliche)
Wabhrscheinlichkeit eines rein phanomenologisch
definierten Zustandes benutzt. Man erreicht da-
durch den Vorteil, dass man keine Elementartheo-
rie (z.B. statistische Mechanik) der Betrachtung
zugrunde zu legen braucht.”

Albert Einstein, Solvay Konferenz 1911

Das System durchlduft als Funktion der Zeit alle mi-
kroskopischen Zustidnde, wobei die Wahrscheinlich-
keit, dass es sich zu einem bestimmten Zeitpunkt in
einem bestimmten Zustand befindet, proportional zu
W ist.

Als Beispiel betrachten wir die Wahrscheinlichkeit,
dass sich ein Teilchen im Schwerefeld in einer Hohe
z aufhilt, wenn es durch St6Be von Molekiilen mit
einer Temperatur 7' gestort wird. Die Arbeit, welche
benétigt wird, um es in die Hohe z zu heben, betrigt
mgz. Diese Arbeit stammt aus der thermischen Ener-
gie. Somit nimmt der Wirmeinhalt um 6Q = —mgz
ab. Die Entropie betrdgt somit, als Funktion der Teil-
chenhohe,

mgz
T
Eingesetzt in die Boltzmann-Formel (2.4) erhélt man
damit fiir die Aufenthaltswahrscheinlichkeit

S = const. —

mgz

W o e Gl

also eine exponentielle Druckabnahme, was gut mit
den experimentellen Messungen iibereinstimmt.

Wird die Entropie als Funktion einer Zustandsvaria-
blen x um einen Gleichgewichtspunkt mit der Entro-
pie Sp entwickelt, erhilt man

as 1928
S~ So+ 5 0x+ 2=

2
St 5 (597
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Als Funktion der Zustandsvariablen x befindet sich
das System mit der groBten Wahrscheinlichkeit in
demjenigen Zustand, welcher der maximalen Entro-
pie entspricht, so dass % = 0. In der obigen
Gleichung verschwindet somit der lineare Term,
dS/dx = 0. Den resultierenden Ausdruck kann man
in die Boltzmann-Gleichung S = kglnW einsetzen
und diese nach der Wahrscheinlichkeit W auflosen.
Dann erhilt man den Ausdruck

1 92 ( &)ﬂ '

2kp 9x%
Die Wahrscheinlichkeitsverteilung als Funktion der
Zustandsvariablen entspricht somit einer Gaul3funk-
tion.

erxp{

Der lineare Term entspricht einer Kraft, welche im
Gleichgewicht verschwindet, wihrend der quadrati-
sche Term einer Kriimmung entspricht, die angibt,
wie weit die Fluktuationen gehen. In der Néhe eines
Phaseniibergangs wird die Kriimmung klein und die
Fluktuationen werden grofl. Man bezeichnet diese
Effekte in der Umgebung eines Phaseniibergangs als
kritisches Verhalten. Es gibt Belege dafiir, dass vie-
le biologische Systeme sich in der Nihe eines Kriti-
schen Punktes befinden, so dass sie sehr empfindlich
auf Anderungen der Umwelt reagieren.

2.2.7 Ordnung und negative Entropie

Schrodinger kehrte die Boltzmann’sche Gleichung
um:

1
S = kB In W .

Diese negative Entropie stellt also ein MaB fiir die in-
verse Wahrscheinlichkeit fiir die Besetzung des ent-
sprechenden Zustandes dar. Ein unwahrscheinlicher
Zustand ist ein geordneter Zustand, und dies stellt
eines der charakteristischen Eigenschaften des Le-
bens dar. Schrodinger zeigte, dass Leben dadurch
charakterisiert werden kann, dass es negative Entro-
pie (‘Negentropie’ oder ‘Syntropie’) aus der Umge-
bung entnimmt. Dieser Prozess muss kontinuierlich
ablaufen, um das Leben aufrechtzuerhalten.

Biologische Systeme sind stark strukturiert. Dies be-
deutet, dass sie sich nicht im Zustand maximaler

Entropie befinden, wie das vom zweiten Hauptsatz
gefordert wird. Der Grund dafiir ist, dass es sich hier
nicht um abgeschlossene Systeme handelt, sondern
um Systeme, welche sich mit Hilfe von Energie in
einem Zustand fern des Gleichgewichts halten. Dies
wird auch gerne als Definition von Leben verwendet.

Kalt

«af tte

0000

LA S R B |

Heil3

Flussigkeit

Schwerkraft

Abbildung 2.14: Rayleigh-Bénard Instabilitdt als
Beispiel von spontaner Erzeugung
von lokaler Ordnung.

Die Aufrechterhaltung solcher geordneter Zustéin-
de bei gleichzeitiger Erzeugung von Entropie in der
Umgebung findet man nicht nur in lebenden Syste-
men, sondern auch in der unbelebten Natur. Typi-
sche Beispiele sind die Lasertitigkeit, bei der ein
hochgeordneter Zustand von Photonen entsteht, oder
die Rayleigh-Bénard Instabilitit, bei der sich durch
eine Temperaturdifferenz geordnete wirbelférmige
Strukturen bilden.

Wie in Abb. 2.15 gezeigt, kann die Entstehung des
Lebens als eine Abfolge von solchen Prozessen ver-
standen werden, bei denen in einem thermodyna-
mischen Nichtgleichgewichtssystem lokal spontan
Ordnung entsteht.

Allgemein beschreibt die Thermodynamik irrever-
sibler Prozesse das Verhalten von Systemen, die
sich nicht im Gleichgewicht befinden. Die Beschrei-
bung basiert auf verallgemeinerten Kriften (z.B.
Konzentrations- oder Temperaturgradienten) und da-
zu konjugierten Fliissen (z.B. Wirmefluss, Diffusi-
on). Ein wichtiger Aspekt dabei ist, dass diese Fliis-
se meist aneinander gekoppelt sind, dass also z.B.
ein Transport von CI™-Ionen nicht nur die Chlorid-
Konzentration dndert, sondern auch das elektrische
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| Nukleonen, Elektronen, Photonen I

@ kosmische Evolution

@ chemische Evolution

Selbstorganisation

@ biologische Evolution

Abbildung 2.15: Entstehung des Lebens als Abfol-
ge spontaner Entstehung von Ord-
nung.

Atome, Molekiile

Proteine, Nukleinsauren

J

Hyperzyklen, RNA, DNA

Einzeller, Vielzeller

Feld und damit einen Transport anderer lonen indu-
ziert, oder dass ein Massetransport an einen Wirme-
transport gekoppelt ist.

Literatur: 1. Prigogine, Thermodynamic of Irrever-
sible Processes, John Wiley and Sons, New York
(1961).

2.2.8 Van der Waals Gas

Viele dieser Effekte werden durch Wechselwirkun-
gen zwischen molekularen Bestandteilen getrieben.
Diese werden beim Modell des ideale Gases ver-
nachlédssigt: Die Gasteilchen werden als ausdeh-
nungslos betrachtet und wechselwirken nur durch
perfekt elastische Stofe. Unter den realen Gasen
kommen die leichten Edelgase und der Wasserstoff
diesem Zustand am néchsten, insbesondere bei nied-
rigem Druck und hoher Temperatur, da die Mole-
kiile dann im Vergleich zu ihrer mittleren freien
Weglinge eine verschwindend kleine Ausdehnung
besitzen. Die Geschwindigkeitsverteilung der Teil-
chen in einem idealen Gas wird durch die Maxwell-
Boltzmann-Verteilung beschrieben. Die thermische
Zustandsgleichung (allgemeine Gasgleichung) eines
idealen Gases lautet:

pV=n-R-T

wobei p der Druck, V das Volumen, n die Stoffmen-
ge, R die universelle Gaskonstante und 7" die absolu-
te Temperatur ist.

Das Modell des idealen Gases ist somit nicht ge-
eignet fiir die Beschreibung von Prozessen, die
durch molekulare Wechselwirkungen getrieben wer-
den, wie z.B. die Losung von Gasen in Fliissigkeiten
(Sauerstoff in Wasser). Dafiir ist das Modell des Van
der Waals Gases besser geeignet, welches gewis-
se Wechselwirkungen qualitativ richtig beschreiben
kann. Es ist auBerdem so flexibel, dass es auch ge-
loste Stoffe in wéssriger Losung beschreiben kann.
Dadurch wird es sehr niitzlich fiir die Beschreibung
von physiologischen Prozessen.

Die Wechselwirkung zwischen den Teilchen eines
Van der Waals Gases kann iiber das Lennard-Jones
Potenzial

) -

gendhert werden (siche 3.1.10).

(o}

R

(o

U(R) = 4¢ [( .

)]

U

€

ausgeschlossener Bereich V,

Abstand R/c

Abbildung 2.16: Van der Waals Wechselwirkung mit
ausgeschlossenem Bereich.

Wichtig ist, dass die Wechselwirkung im Bereich
R < o stark abstoBend ist. Kein Molekiil kann somit
in den Bereich der anderen Molekiile eindringen, es
gibt ein ausgeschlossenes Volumen V,, welches pro-
portional zur Anzahl N der Molekiile ist,

V,=Nb'.

Hier ist b’ das ausgeschlossene Volumen pro Mole-
kiil, welches fiir kugelférmige Molekiile dem vierfa-
chen Volumen des Molekiils entspricht.
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Gas | Kohisionsdruck a Kovolumen b
in }:33?26 in 107© I;n—;
He 0,00345 23,7
N» 0,141 39,1
(0)) 0,138 31,8
Luft 0,136 36,4

Im anziehenden Bereich des Potenzials kann man
iber die Anziehungskraft als Funktion des Abstan-
des mitteln und erhilt ein effektives Potenzial

N
Ue]‘f = —alv.

Damit kann man die Zustandsgleichung des Van der
Waals Gases bestimmen als

(p—i—a’nz) (i —b’) = kpT.

\\\\\

Druck

I\

log(Volumen)

Abbildung 2.17: Isothermen der Van der Waals Glei-
chung.

Abb. 2.17 stellt Losungen dieser Gleichung fiir ver-
schiedene Temperaturen in der p, V Ebene dar. Bei
gegebenem Druck und Temperatur findet man 1 oder
3 Losungen fiir das Volumen. Im Falle von 3 Losun-
gen ist die mittlere instabil, die beiden stabilen L&-
sungen entsprechen der gasférmigen und der fliissi-
gen Phase.

2.3 Konzentrationsgleichgewichte

Wir betrachten als nichstes Mischungen von unter-
schiedlichen Substanzen, also z.B. Salze gelost in
Wasser.

2.3.1 Chemisches Potenzial

Zusitzlich zu den bisher diskutierten Energiebeitra-
gen (Wirme, Arbeit) kann man weitere Energiefor-
men beriicksichtigen, wie z.B. Oberflichenenergie
oder elektrostatische Energie, indem man zu einem
bekannten Differenzial das Produkt aus einer gene-
ralisierten Kraft (z.B. Oberflachenspannung, Druck)
und dem Differenzial aus der Systemgrofe addiert,
auf die sie wirkt (z.B. Oberfliche oder Volumen).

Abbildung 2.18: Grolkanonische Verteilung: Ein
System kann mit seiner Umgebung
Energie und Teilchen austauschen.

Eine wichtige Abhiéngigkeit ist die von der Teilchen-
zahl. Dafiir betrachten wir wieder in Gedanken ei-
ne Aufteilung des Gesamtsystems in Teilsysteme,
welche hier sowohl Energie, wie auch Teilchen mit-
einander austauschen kénnen. Wir schreiben fiir die
Teilchenzahl N;, wobei sich der Index auf die Art der
Teichen bezieht. Diese stellt die Systemgrofe dar,
die entsprechende generalisierte Kraft ist das chemi-
sche Potenzial ;. Beriicksichtigen wir dies, so wird
die freie Enthalpie G von (2.3) zu

dG = —SdT +VdP+ Y wdN;.

Wir konnen somit das chemische Potenzial schrei-
ben als

dG
ON;’

W= 2.5)
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Die gleiche Grofle findet man auch in der Festkor-
perphysik, wo sie die mittlere Energie bezeichnet,
welche ein zusitzliches Elektron im System besitzt.
Das chemische Potenzial einer Teilchensorte ist im
gesamten zugénglichen Bereich eines Systems im
Gleichgewicht konstant.

2.3.2 Loslichkeit

Abbildung 2.19: Geloste Teilchen in einer Fliissig-
keit.

Die Menge von Gas, die in einer Fliissigkeit gelost
werden kann, ist in guter Ndaherung proportional zum
Druck des Gases, welches mit der Fliissigkeit im
Gleichgewicht steht:

% = Kupi.

Hier ist S; die Loslichkeit ([S] mT"l), n; die Menge
des entsprechenden Stoffes in Mol, V das Volumen,
und p; der Partialdruck, d.h. der Anteil des Gesamt-
drucks p, der dem Anteil der i-ten Komponente ent-
spricht. Die Proportionalitdtskonstante Ky wird als
Henrykonstante bezeichnet.

S;

Das chemische Potenzial von Losungsmittel wie
auch gelostem Stoff dndert sich mit der Konzentra-
tion. Aus statistischen Argumenten folgt fiir das Lo-
sungsmittel

N
= up —kgT th
i=1
wobei
Yini
der Molenbruch, d.h. die Anzahl der Teilchen des

Stoffes i, dividiert durch die gesamte Zahl der Teil-
chen darstellt und p? das chemische Potenzial des

Xi

reinen Losungsmittels. Fiir die gelosten Substanzen
erhilt man

Wi = + kT Inx;. (2.6)

Da x; < 1 ist Inx; < 0. Somit wird das chemische
Potenzial des reinen Losungsmittels durch die An-
wesenheit der gelosten Stoffe reduziert, p; < ,LL,-O .

2.3.3 Osmose

>c
n>n

n=n

n

impermeable

permeable Wand
Wand

fiir das Losungsmittel

Abbildung 2.20: Osmose.

In Abschnitt 2.3.2 hatten wir gesehen, dass geloste
Stoffe das chemische Potenzial eines Losungsmittels
reduzieren. Das bedeutet, dass die Diffusion von Lo-
sungsmittelmolekiilen bevorzugt in Richtung einer
hoheren Konzentration an geldsten Stoffen lduft, al-
so z.B. vom SiiBwasser zum Salzwasser. Dies ist vor
allem dann relevant, wenn nur die Losungsmittelmo-
lekiile diffundieren konnen, nicht aber die gelosten
Stoffe. Dies wird durch sogenannte semipermeable
Membranen ermoglicht, welche z.B. Wasser durch-
lassen, aber nicht groe Molekiile oder Ionen. Sol-
che Membranen spielen technisch eine wichtige Rol-
le (z.B. Meerwasser-Entsalzung) aber auch in biolo-
gischen Systemen.

Falls die Wand zwischen den Bereichen A und B fiir
Wasser permeabel ist, dann flieft Wasser von A nach
B bis der osmotische Druckunterschied ausgeglichen
ist. Losungsmittel (Wasser) flieit in die Richtung,
in der die Konzentration (osmotischer Druck) grofler
ist. Wasserverschiebung fithrt daher zum Konzentra-
tionsausgleich. Der Konzentrationsausgleich erfolgt
nicht durch Diffusion der Ionen, sondern durch Dif-
fusion des Losungsmittels durch die Membran.
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Das chemische Potenzial des Losungsmittels ist, hohe Konzentration niedrige Konzentration
neben der Konzentrationsabhingigkeit, auch vom .. Erythrozyt . . ..

Druck abhingig. Wir schreiben es als ...:'- B =
peo = pi(pa) —ksT ) 3} !
i . Jeve’et ot W.\. ] 55 .
= ur(ps) - kBTZX? Blutplasma
i

Abbildung 2.21: Osmose bei Erythrozyten in unter-

schiedlich konzentrierten Losun-
oder

gen.

UL(pa) — k(ps) = ksT (Zx‘;‘ — Zx?) . (27)

Hier bezeichnen p; und xf.‘ den Druck und den Mo-
lenbruch im Bereich k = {A,B}. Die Abhingigkeit . S S
des chemischen Potenzials vom Druck erhalten wir s '_ : -' -
aus (2.5) zu 2 S

ur 9°G _advV B

ﬁ - W T ON VL Abbildung 2.22: Zwei Phasen (Hier: Wasser, Ol) im
Gleichgewicht.

Hier beschreibt v;, das Molvolumen, d.h. das Volu-

men, welches ein Mol des reinen Losungsmittels be-

. . o _ ~  2.3.4 Mehrphasensysteme
notigt. Damit konnen wir die Gleichung (2.7) schrei-

ben als Liegen mehrere Phasen vor, wie z.B. Luft und Blut,
zwischen denen sich eine Substanz verteilen kann,
wie z.B. Sauerstoff, so wird das Gleichgewicht er-
ve(pp—pa) = RT (Z)‘? - szB ) . reicht, wenn in beiden Phasen nicht nur die gleiche
i i Temperatur und der gleiche Druck herrschen, son-
dern auch das chemische Potenzial dieser Substanz

Man kann dies so zusammenfassen, dass jede ge- in beiden Phasen gleich ist:
loste Komponente einen Druck ausiibt als wenn sie
ein ideales Gas wire. Da die Konzentration in Was-

ser deutlich hoher sein kann, als in Luft, konnen die  Hier beziehen sich A, B auf die beiden Phasen. Wir

Driicke auch leicht mehrere Atmosphéren betragen  kgnnen daraus das Konzentrationsgleichgewicht be-
und so z.B. ein rotes Blutkdrperchen zum Platzen stimmen:

= p 0+ kT Inxf = pf = pB0+ kT Inx?.

bringen. x? B “?’Z’#go
Ein wichtiges Beispiel sind rote Blutkdrperchen. Ih- B ° ’

re Zellwand ist fiir Wasser durchléssig, aber nicht fiir
Proteine, wie z.B. Himoglobin, oder Salze. Wasser
diffundiert deshalb durch die Membran, bis sein che-
misches Potenzial auf beiden Seiten das gleiche ist.
Ist die Salzkonzentration im Inneren grofer als au- Fiir das Gas kann man das chemische Potenzial in
Ben, so erhoht sich dadurch der Druck im Inneren. erster Naherung durch dasjenige eines idealen Gases

Somit ist das Verhiltnis der Konzentrationen kon-
stant und nur vom Unterschied der chemischen Po-
tenziale und von der Temperatur abhingig.
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ndhern:

3
th

V)

Hig = kgT In <N

Hier ist A, die thermische Lénge, d.h. die quanten-
mechanische Wellenlidnge eines Teilchens mit der ki-
netischen Energie wkpT':

h

M= T

Ist die Teilchendichte in der Gasphase ng, so erhilt
man daraus den Gleichgewichtswert in der Fliissig-
keit zu

#A.O
— n A3 e T
xg—ngﬁ,the 8T

Die Gleichgewichtskonzentration ist somit propor-
tional zur Teilchendichte und damit zum Partial-
druck. Daraus folgt z.B., dass die Sauerstoffkonzen-
tration im Blut mit zunehmender Hohe abnimmt,
aber auch dass die Konzentration von gelosten Ga-
sen im Blut beim Tauchen mit der Tiefe zunimmt.
Dies fiihrt dazu, dass beim Tauchen in gro3en Tiefen
eine hohe Menge an Stickstoff im Blut geldst wird,
welche beim Auftauchen in Form von Blasen wie-
der ausgeschieden wird. Dieses Phinomen ist sehr
gefihrlich und als Taucherkrankheit bekannt.

Solche Beziehungen spielen nicht nur fiir die At-
mung eine Rolle, sondern z.B. fiir Aniisthetika: diese
miissen gut in Wasser 16slich sein, damit sie gut vom
Blut transportiert werden, gleichzeitig aber auch fett-
loslich sein, damit sie Zellmembranen durchqueren
konnen.

2.3.5 Reaktionsgleichgewichte
Eine chemische Reaktion wie z.B.

CgH 206 + 60, — CO;, +H50,

welche die Umwandlung von Zucker und Sauerstoff
zu CO, und Wasser beschreibt, kann allgemein in
der Form

ZviAi =0
i

geschrieben werden. Hier stellen die ganzen Zah-
len v; die Anzahl Formeleinheiten pro Spezies dar.
Sie sind negativ fiir Edukte und positiv fiir Produk-
te. Das Gleichgewicht dieser Reaktion ist bestimmt
durch die Extremalbedingung

n
dG=0=—SdT +Vdp+ Y dN;.
i=1
Wir gehen davon aus, dass die Reaktion bei konstan-
ter Temperatur und Druck ablduft, so dass die beiden
ersten Differenziale verschwinden und die Gleichge-
wichtsbedingung sich reduziert zu

i [JidN,‘ =0.
i=1

Wir kénnen den Fortgang der Reaktion durch die
‘Reaktionslaufzahl’ y parametrisieren: ¥ = 0 be-
deutet, dass nur die Ausgangsstoffe vorhanden sind,
x = 1 dass sie vollstindig in die Produkte umge-
wandelt wurden. Damit kann das Gleichgewicht ge-
schrieben werden als

i uivid?j =0.
i=1

Wir setzen Gleichung (2.6) fiir das chemische Poten-
zial der geldsten Stoffe ein und erhalten

S

(,ulo +kgT lnx,') Vidé =0.

) -eol-55)

Dieser Ausdruck ist in der Chemie als ‘Massenwir-
kungsgesetz’ bekannt. AG? = ¥, ,ul-ov,- ist die freie
Enthalpie der Reaktion bei ‘Standardbedingungen’.
Leider gibt es verschiedene Konventionen, was un-
ter ‘Standardbedingungen’ gemeint ist.

I
—

Wir 16sen dies auf nach

n

AGP
kgT

ITL x; = exp (‘
i=1

2.3.6 Siure-Base Gleichgewichte

Zu den wichtigsten Reaktionsgleichgewichten ge-
hort das Sdure-Base Gleichgewicht. Dazu gehort
z.B. die Selbstdissoziation von Wasser:

2H,0 < H3;O0" +OH . (2.8)
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Hier stellt H30™ die Sdure und OH™ die Base dar.
Das allgemeine Schema lautet

S + H,0 <> H;0"+B".

Hier stellt S die Séure dar, welche durch Abgabe ei-
nes Protons zur Base B~ wird. Klassische Beispiele
sind Salzsdure HCI, welche bei der Verdauung eine
wichtige Rolle spielt, sowie viele organische Sduren,
darunter auch Aminosduren, welche meist die Form
R-CO-OH aufweisen.

Diese Reaktionen befinden sich meist in einem
Gleichgewichtszustand, welchen man durch die
Gleichgewichtskonstanten beschreiben kann. Fiir die
Selbstdissoziation von Wasser (2.8) gilt bei 25 °C

Ky K, [H,0)* = [H;0™7][OH].

2
1,02-1014< )

Auf Grund der Ladungsneutralitit miissen in reinem
Wasser die Konzentrationen der beiden lonen gleich
sein, sie betragen also

mol

] 2.9)

1
[H;0%] = [OH ] ~ 10*72.
Man kiirzt dies ab iiber den pH-Wert:

[H;07]

H=—log b2 1,
P 810 T mol /1

Somit ist der pH-Wert von reinem Wasser 7. Sduren
erhohen die Konzentration von H;O™ und erniedri-
gen somit den pH-Wert. Im Magen liegt er nahe bei
1. Basen erhohen die Konzentration von OH™ und
erniedrigen gemiB (2.9) die H;0" Konzentration,
d.h. sie erhohen den pH-Wert.

2.4 Kinetik

Die Kinetik beschreibt den zeitlichen Verlauf che-
mischer Reaktionen. Dies bestimmt z.B. die Ge-
schwindigkeit, mit der Sauerstoff vom Blut aufge-
nommen wird, oder mit der Ionen durch Zellmem-
branen transportiert werden konnen.

98

95+

90+

851

0O, Sattigung [%]

T T T
015 0,20 0.25

Zeit [s]

T T
0,05 0,10

Abbildung 2.23: Zeitlicher Verlauf der Sauerstoff-
aufnahme des Himoglobins in
Blutlamellen.

2.4.1 Unimolekulare Reaktionen

Reaktionen
A—B+C,

bei denen ein Ausgangsmolekiil A in ein oder meh-
rere Produkte B, C umgewandelt wird, laufen typi-
scherweise ab wie ein radioaktiver Zerfall, d.h. die
Konzentration von A nimmt exponentiell ab,

dA]

—=—kA = A

7 (t) = A(0)e ™.

Hier ist [A] die Konzentration des Stoffes und k die
Reaktionsrate. Diese ist abhéngig von der Tempera-
tur, typischerweise iiber eine Beziehung der Art

k(T) =Ae%/RT.

Hier stellt E, eine Energie dar, die Aktivierungsener-
gie, und R = §,314 J/(mol K) die universelle Gas-
konstante.

Ein mehratomiges Molekiil besitzt praktisch immer
viele Konformationen, welche eine lokale Stabilitit
aufweisen. Es kann aus einer solchen Konformati-
on in eine andere iibergehen, wenn es das lokale
Energiemaximum dazwischen iiberwindet. Dies ge-
schieht mit einer typischen Zeit

é

T = 1pe’a/ksT

(2.10)

Hier bezeichnet 79 ~ 10~13...107!* s eine moleku-
lare Zeitskala, mit der die Molekiile *versuchen’, die
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Barriere zu iiberwinden. Dies entspricht einer typi-
schen Schwingungsperiode des Molekiils. Der ex-
ponentielle Term beschreibt die Wahrscheinlichkeit
dafiir, dass dieser Versuch erfolgreich ist. Die darin
enthaltene Aktivierungsenergie &, ist die Energiedif-
ferenz zwischen dem Ubergangszustand minus die
Energie des Anfangszustandes.

Daraus erhidlt man den relevanten Bereich fiir die
Aktivierungsenergien. Die thermische Energie bei
Raumtemperatur betrdgt ca. kgT ~ 25meV. Ist die
Aktivierungsenergie etwa 30 mal hoher, so wird die
Reaktionszeit etwa 0,1 s, bei der 60-fachen thermi-
schen Energie betriigt sie ca. 30000 Jahre.

2.4.2 Reaktionsgeschwindigkeit

Allgemeine Reaktionen kdnnen geschrieben werden
als

VAA+VvgB+--- > vy X +wY +...

oder
ZV,’A,’ = O,
i

wobei V; die “stochiometrische Zahl” fiir die i-te
Komponente darstellt. Sie ist negativ fiir Ausgangs-
molekiile, welche im Laufe der Reaktion verschwin-
den, und positiv fiir Produktmolekiile, welche dabei
gebildet werden.

Den Ablauf einer Reaktion kann man gedanklich in
drei Schritte aufteilen:

1. Zusammendiffusion der Edukte
2. Chemische Reaktion
3. Auseinanderdiffusion der Produkte

Damit wird die Geschwindigkeit vor allem von 2
Faktoren bestimmt:

1. Die Zeit, bis 2 Reaktionspartner auf Grund der
Diffusion aufeinander treffen und

2. Die Wahrscheinlichkeit, dass die Reaktion statt-
findet.

Die Diffusionszeit hingt offensichtlich von der Kon-
zentration der entsprechenden Molekiile ab. In vie-
len Féllen kann deshalb die Reaktionsgeschwindig-
keit geschrieben werden als

VR = k(T)H,Cf'

Hier beschreibt k(T') die Reaktionsgeschwindigeits-
konstante fiir die normierte Konzentration. Dies
hiingt in erster Linie von der Temperatur und der Art
der Reaktion ab, namlich iiber die Wahrscheinlich-
keit, dass die Reaktionspartner, die aufeinander ge-
troffen sind, auch reagieren. c; ist die Konzentration
des i-ten Stoffes und x; die Ordnung, welche hiufig
gegeben ist durch die stochiometrische Zahl, x; = v;.
Ahnlich wie in 2.4.1 kann die Reaktionsgeschwin-
digkeitskontante hiufig als

k(T) = koe~“4/ksT

geschrieben werden. Dies entspricht der Arrhenius-
Abhingigkeit.

2.4.3 Katalyse

Katalysatoren sind Stoffe, welche chemische Reak-
tionen beschleunigen, ohne selber dabei verdndert zu
werden. Katalysatoren sind z.B. bei Abgasfiltern in
Automobilen bekannt, wo sie dazu dienen, Schad-
stoffe in weniger schidliche Substanzen umzuwan-
deln. Die chemische Industrie verwendet Katalysa-
toren fiir praktisch alle technischen Prozesse.

In biologischen Systemen ist die Katalyse unabding-
bar. Wihrend Reaktionen in der Chemie meist bei
hohen Temperaturen und teilweise bei hohem Druck
durchgefiihrt werden, miissen alle biologisch rele-
vanten Reaktionen in wéssriger Losung bei Korper-
temperatur durchgefiihrt werden. Dies ist nur durch
Katalyse moglich. In biologischen Systemen wird
die Rolle des Katalysators von Proteinen iibernom-
men - diese werden als Enzyme bezeichnet. Dadurch
wird es nicht nur moglich, die Reaktionen unter phy-
siologischen Bedingungen durchzufithren, sondern
die Enzyme konnen auch gezielt aktiviert oder deak-
tiviert und die Reaktionen auf diese Weise gesteuert
werden.
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Direkte P
Reaktion
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Reaktionskoordinate

Abbildung 2.24: Reaktionsweg fiir eine direkte und
eine katalysierte Reaktion.

Abb. 2.24 zeigt schematisch die Wirkungsweise
von Enzymen (und auch konventionellen Katalysa-
toren): diese binden zunichst die Edukte, wobei hier
teilweise eine kleine Energiebarriere iiberwunden
werden muss. In der gebundenen Form ist jedoch
die Energie des Ubergangszustandes gegeniiber der
nichtkatalysierten Reaktion stark reduziert. Die Re-
duktion der Energie des Ubergangszustandes durch
die Bindung an das Enzym ist deutlich hoher als die
Reduktion der Energie des Ausgangsmolekiils. Die
Bindung des Ubergangszustandes ist somit immer
stiarker als die Bindung des Eduktes oder Produk-
tes. GemaB Gleichung (2.10) wird dadurch die Reak-
tionsgeschwindigkeit erhoht, wobei die Beschleuni-
gung exponentiell von der Erniedrigung der Energie
des Ubergangszustandes abhingt.

Typische Beispiele sind die Amylase, welche die
Spaltung von Stirke um den Faktor 3- 10! beschleu-
nigt, oder das Lysozym, welches die Spaltung von
Zuckerketten in den Zellwdnden von Bakterien um
den Faktor 2 - 10° beschleunigt.

2.5 Energiefluss

2.5.1 Quellen und Senken

Lebewesen sind hochkomplexe Systeme, welche
sich offensichtlich nicht im thermodynamischen
Gleichgewicht befinden. Leben ist somit physika-
lisch gesehen ein Nichtgleichgewichtssystem, wel-
ches nur existieren kann, wenn ihm stindig Energie

und Rohstoffe zugefiihrt werden. Die Energie wird
dabei natiirlich nicht verbraucht, sie wird jedoch um-
gewandelt (z.B. chemische Energie in Wirme), und
jeder Organismus erzeugt dabei Entropie.

Der Energiefluss ist bei allen lebenden Systemen
ein entscheidender Faktor fiir die Funktionsfihig-
keit der Organismen. Dabei wird Energie in chemi-
scher oder optischer Form in das System eingespeist,
dort fiir eine Vielzahl chemischer Prozesse verwen-
det und in chemischer oder thermischer Form wie-
der abgegeben. Aus der Sicht der Thermodynamik
sind die Triebkrifte chemischer Reaktionen die Ab-
nahme der Freien Energie F(7,V) beziehungswei-
se der Freien Enthalpie G(T, p).

Die Quelle der Freien Energie fiir das Leben auf der
Erde ist die Kernfusion in der Sonne. Der wichtigste
Prozess kann dabei iiber die Gleichung

4'H — “He?* + 2e~ + Energie

zusammengefasst werden. Nach mehrfacher Um-
wandlung der freiwerdenden Energie erreicht ein
Teil davon die Erde, im Wesentlichen als sichtba-
res Licht. Das Licht mit Wellenldngen von A= 400
nm bis 750 nm dient zur Erwdrmung (Entropieer-
zeugung), und wird bei der Photosynthese in den
griinen Pflanzen direkt in chemische Energie umge-
setzt. Ein Mol Lichtquanten transportiert dabei etwa
180 kJ Energie.

Sonne

[anzen
eZdle

autotrop.
4H-=He+2e

6 CO, 6 HyO

Synthese: Bio-Maky omol ddile

NutzarEa't: Chem. Transportarh eit
—

‘Wirme
>

Zucker
tierische Zelle
(heter otrophe

) Zellen)

(C0Oy) (Hy0) sonst. Ausscheidungen

Abbildung 2.25: Umwandlung der Sonnenenergie in
Zucker.

Wihrend autotrophe Organismen (Pflanzen, einige
Mikroorganismen) in der Lage sind, aus anorgani-
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schen Vorstufen alle von ihnen bendétigten organi-
schen Verbindungen zu synthetisieren (z.B. Kohlen-
hydrate), sind die heterotrophen Organismen wie
Tiere oder der Mensch auf die Zufuhr von organi-
schen Substanzen aus der Nahrung angewiesen.

2.5.2 Energiefluss im Organismus

Der Mensch hat einen Energieumsatz von 10-20
MIJ/Tag (fiir vorwiegend sitzende Titigkeit / Schwer-
arbeiter). Diese Energie muss bereitgestellt und um-
gesetzt werden. Im Organismus miissen dafiir Nihr-
stoffe und Sauerstoff verteilt werden. Dazu sind ei-
ne Reihe von Prozessen notwendig, welche inein-
ander greifen. Voraussetzung fiir die Bereitstellung
der Energie im Organismus ist nicht nur die Bereit-
stellung des Brennstoffs (entweder iiber Photosyn-
these oder Nahrung), sondern auch des Sauerstoffs,
welcher benétigt wird, um die chemisch gespeicher-
te Energie freizusetzen. Der Sauerstoff muss in jede
einzelne Zelle gelangen (siehe Kapitel 6.2.7).

Angeh ot

1) Ventilation

2) Diffusion in der Lunge

3) Leistung des Herzes

4 Diffusion Kapillaren - G ewehe

5) Diffusion in Mitochondrien
Nachfrage

6) Protdn synthese

7) lonenpumpen

8) Muskeln: ATPase

Abbildung 2.26: Energieumsatz und  Sauerstoft-
transport im Organismus

In Figur 2.26 sind die wichtigsten Stufen dargestellt,
in denen die Energie, respektive der fiir die Ener-
gieerzeugung notwendige Sauerstoff im Organismus
transportiert wird. Dabei muss z.B. der Sauerstoff
mehrmals in ein anderes Medium wechseln, z.B. aus
der Luft ins Gewebe, ins Blut, und wieder in die
Zellen. In den Zellen findet ein weiterer, diffusiver
Transportprozess statt.

Energie und damit Sauerstoff werden bei sehr vie-
len Prozessen benotigt. Wihrend der Brennstoff im
Korper iiber ldngere Zeit gelagert werden kann (z.B.
im Fettgewebe), muss der Sauerstoff dann zur Ver-
figung gestellt werden, wenn die Energie benotigt
wird. Die wichtigsten Energie verbrauchenden Pro-
zesse sind

* Proteinsynthese

* Jonenpumpen (z.B. Nervenzellen)

* Bewegungsprozesse in den Muskeln
Die verschiedenen Prozesse skalieren unterschied-
lich mit der GroBe eines Organismus. Das gleiche
gilt fiir die wichtigsten ”Verbraucher”. Damit die Le-

bensprozesse aufrecht erhalten werden konnen, miis-
sen alle diese Prozesse im Gleichgewicht sein.

. Mouse
= 80
\EJ Opossug
L 60
2 Rat
12 Mule
2 40
s Elephant
on
;\ 20 -
o —1/12th
relation
0 T T T
0 0.5 1 1.5

Mammal mass to the —1/12 power

Abbildung 2.27: Sauerstoffdruck im Blut fiir ver-
schiedene Organismen.

Auch hier ergeben sich fiir unterschiedliche Orga-
nismen unterschiedliche Anforderungen. Bei grofe-
ren Organismen ist z.B. der Transportweg im Kor-
per linger. Wie in Figur 2.27 gezeigt, nimmt der
Blut-Sauerstoffgehalt von Sdugetieren mit der 12-
ten Wurzel aus der Masse der Tiere ab. Berticksich-
tigt man weitere Faktoren wie die Grofle des Blut-
kreislaufs, Druck und Pulsrate, so ergibt dies eine
Anderung der Transportleistung, welche etwa mit
der Masse hoch 3/4 skaliert.
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2.5.3 Energiefluss in der Zelle

Der Fluss von Energie (Brennstoff) und Sauerstoff

spielt sich wiederum auf hierarchisch unterschiedli-
chen Ebenen ab. Der Energiefluss in der Zelle ist in
der Abbildung 2.28 veranschaulicht.

SN b ikaiass dreitain
inderN umwandlung E it
enthaltene Energie
. B ——————
Kohlenhydrate » | Enzyme | Bewegung von
Fette . | imZyto- Muskeln
EiweiRe + [0z | plasma
¥ Transpcrt von
Molekiilen
— JKraftwere®
Xi = Mitochondrum Iﬁufbau neuer
| 20 Zellstrusturen
l\ | (Biosynthese)
et WP L
Ck:-"-__":g;’:) Abfallprodulde
Tt | COLHO |
LIS 15
ADP + (P)

Abbildung 2.28: Energiefluss in der Zelle. [7]

Die Nahrungsbestandteile, wie z.B. Glukose, wer-
den iiber den Blutkreislauf in die Zelle transpor-
tiert und dort in den Mitochondrien verwendet, um
aus Adenosin-Diphosphat (ADP) und einer weite-
ren Phosphatgruppe Adenosin-Triphosphat (ATP) zu
erzeugen. Bei diesem Prozess wird Sauerstoff ver-
braucht und Kohlendioxid und Wasser erzeugt.

Der Prozess umfasst in Wirklichkeit eine Vielzahl
von Schritten. Zunichst werden die Energietréger,
also die Kohlenhydrate, Fettsduren oder Proteine
in kleinere Bestandteile aufgetrennt. Im Citratzy-
klus werden sie, zusammen mit Wasser, zu CO; ab-
gebaut, wobei Wasserstoff frei wird. Dieser Was-
serstoff wird, in chemisch gebundener Form (z.B.
NADH, FADH) in die Atmungskette iiberfiihrt, wo
er, wiederum mit Sauerstoff, zu H>,O oxidiert wird
und dabei die Energie liefert, um ADP in ATP um-
zuwandeln. Dieser Schritt wird auch als Phosphory-
lierung bezeichnet.

Adenosintriphosphat ist der universelle biologische
Energiespeicher. Es besteht aus der Grundeinheit
Adenosin (=Adenin + Ribose) und drei Phosphat-
gruppen. ATP wird aus dem energieirmeren Adeno-
sindiphosphat (ADP) durch Anhiingen einer weite-
ren Phosphatgruppe gebildet.

Adenin
1

C
N e\

[ | cH (o RRH0 o RN

HEG P O [ | L
| CHg O—P—0—b—0—P—0

Ribhose ||_| 2 o o

OH

Adenosin

A
L

Adenosin-Diphosphat, ADP

Adenosin-Triphosphat, ATP

Abbildung 2.29: Adenosintriphosphat.

Dieses Molekiil dient als Zwischenspeicher fiir die
Energie. Viele Prozesse in der Zelle werden direkt
durch ATP angetrieben, indem dieses Molekiil von
Enzymen gespalten wird:

(ATP)*~ + H,0O
— (ADP)*~ + (HPO4)?>~ +H* + Energie

Die dabei frei werdende Energie kann z.B. dafiir ein-
gesetzt werden, um Muskeln zu bewegen, fiir den
Transport von Molekiilen oder fiir die Biosynthese.

Grundsitzlich konnen energiereiche Molekiile wie
die Glukose auch ohne Sauerstoff abgebaut und mit
der dabei frei werdenden Energie ATP aufgebaut
werden. Wiirde der Mensch auf diesen Prozess zu-
riickgreifen, so konnte er den gesamten Lungenappa-
rat sparen. Allerdings erhélt man bei der anaeroben
Glycolyse aus einem Mol (D-)Glucose lediglich 2
Mol ATP. Mit aeroben Prozessen, also unter Einsatz
von Sauerstoff, erhilt der menschliche Organismus
dagegen aus einem Mol (D-)Glucose 38 Mol ATP,
davon 36 Mol aus der Atmungskette! Dies bedeutet
einen erheblichen Vorteil fiir aerobe Organismen, die
einen wesentlich groferen Energiebetrag pro Mole-
kiil freisetzen konnen (11,4eV pro Molekiil) als nur
durch Glycolyse (0,6eV pro Molekiil).

ATP spielt eine Schliisselrolle im Stoffwechsel;
praktisch alle Prozesse werden von ihm angetrie-
ben. Um sich seine Rolle anschaulicher zu machen,
kann man folgende Uberschlagsrechnung durchfiih-
ren: Ein Mensch hat einen tiglichen Energieumsatz
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von ca. 15 MJ. Wenn etwa die Hilfte davon (7,2 MJ)
fiir die Herstellung von ATP verwendet wird, so ent-
spricht das einem Umsatz von ca.

Eor  7200kJ
Earp  90kJ/Mol

pro Tag. Hier ist E4rp = 90kJ/Mol die Hydrolisie-
rungsenergie von ATP. Ein Mol ATP wiegt etwa 500
g; somit betrdgt der tdgliche Umsatz von ATP rund

= 80Mol

NATP =

marp = narp - 0,5kg = 40kg!

2.5.4 Arbeit und Leistung

Die Energie, welche bei der Oxidation von einem
Mol Zucker frei wird, betréigt etwa 2,9 MJ:

CgH 2064+ 60, =6CO, + 6H,O0+2,9M].

Pro Mol Sauerstoff werden somit 2900 kJ/6 ~ 480
kJ frei. Dies gilt auch fiir andere Ausgangsstofte, wie
z.B. Kohlenhydrate, Fette oder Proteine, in guter Na-
herung. Man spricht deshalb vom kalorischen Sauer-
stoffaquivalent, welches man auf einen Liter gasfor-
migen Sauerstoff bezieht. Ein Mol eines idealen Ga-
ses hat unter Normalbedingungen ein Volumen von
22,4 Litern. Somit ist das kalorische Sauerstoffaqui-
valent

480 kJ %21,43
22,41 1

kalO, Aequiv ~

oder, als Faustregel: Die Verbrennung von ca. 1 Liter
Sauerstoff erzeugt ca. 20 kJ Energie.

Ohne korperliche Anstrengung verbraucht ein
Mensch bei Tag etwa 110 W, im Schlaf etwa 60 W.
Die mittlere Leistung liegt damit (fiir 7 h Schlaf) bei

p~1
~ 24

Dies entspricht einem Tagesverbrauch von:

(7-60 + 17-110) ~ 95 W.

95W-3600% .24h ~ 8,2MJ.

Der tatsidchliche Verbrauch hingt stark von unter-
schiedlichen Faktoren ab, wie z.B. Leistung, Kor-
peroberfliche, Alter, Geschlecht etc. typische Bei-
spiele sind Schlafen: 350 kJ/Stunde, gemiitlich rad-
fahren: 1000 kJ/Stunde, Langstreckenlauf : 4000

Energieverbrauch pro
Stunde und

Korperoberflache /Mann

/

Frau

70 [
60 |
50

40 —
30 ——
20
10 ——

J/s'm2

20 40 60
Alter/Jahre

80

Abbildung 2.30: Energieverbrauch als Funktion des
Alters.

kJ/Stunde. Fiir einzelne Organe betragen typische
Leistungen in Watt:

Pumpleistung Herz | 1,3-1,7
Atmung 0,7-1,4
Wirmehaushalt 75-90
Gehirn 15-20

Obwohl das Gehirn nur 2% des Gesamtgewichts
ausmacht (ca. 1.5 kg), wird im Gehirn 20% der
Sauerstoffaufnahme verbraucht. Daraus kann man
schlieBen, dass das Gehirn ca. 20% des gesamten
Energiehaushalts ausmacht. Der Energieverbrauch
des Gehirns ist unabhingig vom Wach- oder Schlaf-
zustand.

1000

Anaerobe
Phase

500

Aerobe Phase

Mégliche Leistung (W)

1,0 10
Dauer der Anstrengung (min)

Abbildung 2.31: Maximale Leistung als Funktion
der Dauer, iiber die sie erbracht
wird.

Hochstleistungen konnen nur fiir ganze kurze Zeit
gebracht werden. Wenn die Leistung die maxima-
le Sauerstoffaufnahme iibersteigt, dann spricht man
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von anaerober Phase. Bei Beanspruchung iiber lan-
ge Zeit muss die Sauerstoffaufnahme der erbrach-
ten Leistung entsprechen (aerobe Phase). Bei der
anaeroben Belastung erfolgt die Energieversorgung
durch die einfache Aufspaltung von Kreatinphosphat
(KrP) zu Kreatin und Phosphat sowie den anaeroben
Abbau von Glukose zu Laktat. Dies liefert schnell
Energie, ist aber zeitlich begrenzt.

2.6 Transportprozesse

2.6.1 Wasser im Korper

Wasser ist der wichtigste Bestandteil aller lebenden
Organismen und nimmt damit eine Sonderstellung
ein. Ein ausgeglichener Wasserhaushalt ist fiir die
Gesundheit entscheidend. AuBlerdem spielt das Was-
ser bei diagnostischen und therapeutischen Metho-
den eine wichtige Rolle.

Der Wassergehalt von Neugeborenen betrdgt unge-
fahr 75%, bei Erwachsenen ist er deutlich geringer:
50-65%. Der Wassergehalt in den Geweben ist sehr
verschieden: wihrend Fett- und Knochengewebe nur
10-20% Wasser enthalten, haben die meisten ande-
ren Gewebearten einen hoheren Wassergehalt von
70-80%.

Transzelluléres
Wasser

Lunge <= piiiplasma Ly Niere
Haut < 351

4,
A
Interstitielle
Fliissigkeit
101

A,
'y

Intrazelluléire
Fliissigkeit
301

Abbildung 2.32: Verteilung von Wasser im mensch-
lichen Korper.

Die verschiedenen Kompartimente des Korpers,
welche Wasser enthalten, sind durch Membranen

voneinander getrennt, welche fiir Wasser durchlis-
sig sind. Der grofte Teil des Wassers befindet sich in
den Zellen, kleinere Teile im interzelluldren Raum,
im Blutplasma und im Magen-Darm Trakt.

Eine lebensnotwendige Vorraussetzung fiir das Le-
ben ist die Konstanthaltung des so genannten inne-
ren Milieus (Homoostase).

N

== (Stuhl 4%
Metabolismus 10% N Schweiss 8%
|- 200 ml ! Verlust iiber
Nahrung 30% Haut und Lunge
700 ml 28%
Urin 60%
. o
Getrinke 60% 1500 ml

Wasseraufnahme Ausscheidung

Abbildung 2.33: Wasserhaushalt des Korpers

Pro Tag werden etwa 2.5 1 Wasser aufgenommen,
respektive durch Verbrennung von Nahrung erzeugt
und wieder ausgeschieden. Ein Teil davon ist un-
vermeidbar, wie z.B. die Feuchtigkeit der Luft beim
Ausatmen. Bei korperlicher Anstrengung kann der
Wasserverlust auf ein Vielfaches ansteigen. Der Kor-
per steuert die Wasserausscheidung iiber die Niere
so0, dass ein Gleichgewicht aufrechterhalten wird.

2.6.2 Kompartiment Modelle

Werden Stoffe, wie z.B. Wasser, Nahrung oder Me-
dikamente in den Korper aufgenommen, so vertei-
len sie sich nicht gleichmifig, sondern reichern sich
selektiv in bestimmten Organen an und werden, je
nach Ort, auf unterschiedlichen Zeitskalen wieder
ausgeschieden. Man beschreibt dieses Verhalten ger-
ne mit sogenannten Kompartiment-Modellen. Da-
bei handelt es sich um ein Rechenmodell, bei dem
die Verteilung eines Stoffes in einem oder mehre-
ren Kompartimenten dargestellt wird. Ein Kompar-
timent kann z.B. ein bestimmtes Organ sein, oder
das Blut. Im Rahmen dieser Modelle nimmt man an,
dass innerhalb eines Kompartiments die Konzentra-
tion des Stoffes homogen sei.
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Abbildung 2.34: Kompartiment Modell fiir Aufnah-
me, Speicherung und Ausschei-
dung von Stoffen.

1 Kompartiment

l

2 Kompartiment

1

|

zeitlicher Verlauf:

-

log(Konz.)
log(Konz.)

Zeit Zeit
Abbildung 2.35: Kompartiment Modelle mit einem
oder zwei Kompartimenten.

Solche Modelle sind z.B. wichtig fiir die Analyse
von nukleardiagnostischen Messungen. Die Kom-
partimente stehen miteinander in Kontakt und kon-
nen Stoffe austauschen. Man kann diese Systeme
modellieren und durch Anpassen der Parameter die
beobachteten zeitlichen Verldufe modellieren. Dar-
aus kann man z.B. die Aufenthaltsdauer in den ein-
zelnen Kompartimenten (Organen) bestimmen.

2.6.3 Diffusion

Die Diffusion ist sehr eng verwandt mit der Wir-
meleitung. Sie ist auch von einem grundsitzlichen
Interesse, weil hier, ausgehend von (scheinbar) rein
zufilligen Bewegungen, durch die Gesetze der Stati-
stik ein deterministischer Prozess entsteht.

Abbildung 2.36: Trajektorie einer fluoreszierenden
Mikrokugel, gemessen mit Fluo-
reszenzmikroskopie.

Ausgangspunkt ist die thermische Bewegung der
Molekiile (Brown’sche Bewegung). Wie in Abb.
2.36 gezeigt, fiihrt sie zu einer scheinbar zufilligen
Bewegung. Die gezeigt Trajektorie wurde an einer
fluoreszierenden Mikrokugel in Ol mit Hilfe eines
Fluoreszenzmikroskops gemessen. Sie umfasst 1000
Schritte zu 20 ms.

10

Distanz2 [umZ2]

0.1 g1 N | P |

1
Zeit [s]

Abbildung 2.37: Quadrat der zuriickgelegten Di-
stanz (Mittelwert) des Teilchen aus
Abb. 2.36 als Funktion der Zeit.

Tragt man das Quadrat der mittleren zuriickgelege-
ten Distanz gegen die Zeit auf, so erhdlt man in guter
Néherung einen linearen Verlauf

([72) () o< 1.

Im Beispiel von Abb. 2.36 betrégt der Proportionali-
tatsfaktor

m2
(7)) ~ 1,785 1.

~
~

1,78
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Geht man davon aus, dass die Bewegung rein stocha-
stisch ist, so erhilt man eine mittlere zuriickgelegte
Distanz eines bestimmten Molekiils, welche propor-
tional ist zur Wurzel aus der Zeit,

-

([#?)(r) = 2nDt.

Hier stellt n die Dimension (1, 2 oder 3) dar und
D den Diffusionskoeffizienten. Er hat die Einheit
[D] = m?/s und hingt sowohl vom diffundieren-
den Teilchen, wie auch vom Losungsmittel und der
Temperatur ab. Fiir Wassermolekiile in Wasser be-
triigt er bei 25°C 2,3 - 10~?m?/s. Fiir Ionen in ver-
diinnten wissrigen Losungen betrédgt er typischer-
weise 0,6-1072m? /s bis 2-10~?m?/s. Biologische
Molekiile, welche eine deutlich groere Masse be-
sitzen, diffundieren langsamer, mit typischen Dif-
fusionskoeffizienten im Bereich von 107! m?/s bis
10719m? /s,

1000 kleine Molekiile

100

Viren %

T T T
107

Diffusionskoeffizient D [um2/s]

1 T T

T
105
Masse [amu]

Abbildung 2.38: Abhéngigkeit der Diffusionskon-
stanten von der Masse des Teil-
chens.

Insgesamt skaliert die Diffusionskonstante etwa mit
der dritten Wurzel aus der Masse des Teilchens, D o<
M~'/3_ Dies entspricht der Vorhersage der Einstein-
Smoluchowski Beziehung

kT
- 6mnR’

Hier stellt n die Viskositit des Mediums dar und
R den hydrodynamischen Radius des Teilchens. Fiir
Teilchen mit gleicher Dichte ist dieser proportional
zur dritten Wurzel aus der Masse, R o< v/M.

2.6.4 Diffusionsgleichung

Fiir eine inhomogene Verteilung fiihrt diese Zufalls-
bewegung zu einem Ausgleich der Konzentration,
die man {iiber die Diffusionsgleichung berechnen
kann.

..: [ ] o ® Y
)

SR R PR
’.’.. e o
(X o ©
O °

e o o

e © 0 ©

Abbildung 2.39: Ausgleich der Konzentrationsun-
terschiede durch Diffusion.

Fiir ein gegebenes Volumenelement fiihrt die zufilli-
ge Bewegung der Teilchen dazu, dass pro Zeiteinheit
eine Anzahl Teilchen das Volumen verlésst, die pro-
portional zur Zahl der enthaltenen Teilchen ist. Fiir
ein homogenes Medium gilt das gleiche fiir das be-
nachbarte Volumenelement. Damit ist die Zahl der
Teilchen, die aus einem Volumenelement dV her-
aus diffundieren, proportional zur Konzentration der
Teilchen in diesem Volumenelement. Ist die Konzen-
tration des benachbarten Volumenelementes niedri-
ger, so flieft netto ein Teilchenstrom Jn, der propor-
tional ist zur Konzentrationsdifferenz:

-

jn=-—D V.

Hier stellt n die Teilchenzahldichte und j, den zuge-
horigen Teilchenstrom dar. Das negative Vorzeichen
gibt an, dass der Strom in Richtung der abnehmen-
den Konzentration flieBt. Diese Gleichung wird als
1. Fick’sches Gesetz bezeichnet.

Ist die Teilchenzahl eine Erhaltungsgrofe, so gilt die
Kontinuitétsgleichung

fl:_§‘fn7

welche besagt, dass eine Anderung der Konzentra-
tion nur durch eine Divergenz der Stromdichte zu-
stande kommen kann. Wir kombinieren diese bei-
den Gleichungen und erhalten die allgemeine Dif-
fusionsgleichung

ﬁzD%-%n:DAn.
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Diese wird auch als 2. Fick’sches Gesetz bezeich-
net und entspricht der allgemeinen Wérmeleitungs-
gleichung. Die Losungen der Diffusionsgleichung
sind deshalb identisch zu den Losungen der Wérme-
leitungsgleichung, welche in Kapitel 2.7 diskutiert
wird.

Wihend diese Diskussion sich auf drei Raumdimen-
sionen bezieht, sind fiir biologische Systeme haufig
zweidimensionale Systeme relevant. Das wichtigste
Beispiel sind biologische Membranen (— Kap. 3.3).
In diesem Fall ist die Wahrscheinlichkeit, dass zwei
Molekiile aufeinander treffen, hoher als in 3D. Des-
halb laufen in zwei Dimensionen diffusionskontrol-
lierte Reaktionen schneller ab als in 3D. Dies ist ein
Grund dafiir, dass biologische Systeme Enzyme ger-
ne in Membranen (zweidimensionalen Lipidschich-
ten) einbetten.

2.7 Wiarmeleitung

In diesem Unterkapitel wird der Transport von Wir-
me diskutiert. Er erfolgt vollig analog zur Diffusion:
Obwohl die mikroskopische Ursache dafiir als zu-
fillige Bewegung atomarer Teilchen verstanden wer-
den kann, erfolgt der makroskopische Transport ge-
richtet und deterministisch.

2.7.1 Phinomenologie

Wirme ist ungeordnete Molekiilbewegung: die Mo-
lekiile bewegen sich translatorisch wie auch rota-
torisch und enthalten deshalb Energie. Diese Ener-
gie wird als Wirmeenergie gemessen und kann auch
zwischen Molekiilen oder iiber lingere Distanzen
iibertragen werden. Die Gesetze dieser Ubertragung
gelten auch fiir viele andere Vorgiinge.

Wirmeenergie kann durch Strahlung, Leitung oder
Stromung (Konvektion) transportiert werden. Wir-
mestrahlung ist elektromagnetischer Natur, wie das
Licht. Sie ermoglicht die Abgabe von Wirme auch
ins Vakuum. Diese Abgabe ist nur von der Tempe-
ratur des strahlenden Korpers abhingig, aber fiir die
Energiebilanz ist auch die Riickstrahlung der Umge-
bung wichtig.

schr heill kalt
CC 000000000
OOO CQ 00000

000000
0%0000000000

Abbildung 2.40: Wirmeleitung.

Wirmestromung setzt makroskopische Bewegungen
in der Flissigkeit oder dem Gas voraus, deren Wir-
meinhalt so an andere Stellen transportiert wird.
Wirmeleitung erfolgt nur in Materie, ist aber nicht
mit deren makroskopischer Bewegung verbunden,
sondern nur mit Energieiibertragung durch Sto8e.

Wirmetransport tritt dann auf, wenn die Temperatur
nicht homogen ist. Er ist so gerichtet, dass er zu ei-
ner Verringerung des Temperaturgefilles fiihrt. Da-
bei werden wir zwischen stationédren und nichtsta-
tiondren Problemen unterscheiden. Stationédre Pro-
bleme werden durch inhomogene Randbedingungen
charakterisiert, nichtstationidre durch eine inhomo-
gene Anfangsbedingung. Inhomogene Randbedin-
gungen konnen durch Wirmequellen wie z. B. Heiz-
drihte erzeugt werden. Negative Wirmequellen oder
Senken sind Stellen, wo Wirme in andere Energie-
formen iiberfithrt wird, z. B. in chemische Ener-
gie, Verdampfungs- oder Schmelzenergie. Zwischen
Quellen und Senken kann sich dann eine stationire
Temperaturverteilung einstellen.

2.7.2 Wirmeleitung

Besteht eine inhomogene Temperaturverteilung, so
fiihrt die Wiarmeleitung zu einem Ausgleich der
Temperatur. Dabei wird Wirmeenergie aus dem Be-
reich hoherer Temperatur in den Bereich tieferer
Temperatur {ibertragen.

Die Ubertragung von Wirme kann quantifiziert wer-
den durch die Wérmestromdichte

dPy

I=aa "
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Sie beschreibt die Menge an Warmeenergie, die pro
Zeiteinheit durch ein Flichenelement dA mit Nor-
malenvektor 7 fliet und hat demnach die Einheit

=%

Betrag und Richtung der Wirmestromdichte ; sind
dabei durch den Gradienten der Temperatur und die
Wirmeleitfahigkeit A des Materials gegeben,

j=—AVT. (2.11)

Warmestrom

Temperatur

Ort

Abbildung 2.41: Abhédngigkeit des Wirmestroms
von der Temperaturverteilung.

Der Wirmestrom zeigt dabei immer in Richtung der
sinkenden Temperatur und nimmt mit zunehmender
Steilheit der Temperaturverteilung zu.

Die Wirmeleitfahigkeit A ist eine temperaturabhén-
gige Stoffkonstante und hat die Einheit

A=
Tabelle 2.1 vergleicht die Warmeleitfahigkeitskoef-
fizienten fiir einige Materialien. Allgemein sind Me-
talle gute Warmeleiter, wobei der Wirmeleitkoeffi-
zient stark mit der elektrischen Leitfahigkeit korre-
liert. In diesen Materialien wird die Wirme primir
iber freie Elektronen iibertragen. Elektrische Iso-
latoren wie z.B. Glas leiten um mehrere GroBen-
ordnungen schlechter. Hier sind Gitterschwingungen
(Phononen) fiir den Transport verantwortlich. In Ga-
sen ist der Wirmeleitkoeffizient nochmals deutlich
geringer. In diesem Fall wird die Energie vor allem
durch molekulare StoBprozesse libertragen. In Was-
ser und anderen Fliissigkeiten wird die Warme durch

Stoff T A Mechanismus
°Cl | [qxl
Silber 0 420 Freie
Elektronen
Kupfer 50 390 Freie
Elektronen
Quarzglas 50 1,4 Gitterschwing-
ungen
Luft 0 0,024 StoBe
Wasser 0 0,54 Diffusion
Gewebe 37 0,1-0,2 Diffusion,
Konvektion
Vakuum Strahlung

Tabelle 2.1: Wirmeleitfahigkeit verschiedener Stof-
fe.

molekulare Diffusion iibertragen. Im Gewebe spielt
die Diffusion ebenfalls eine wichtige Rolle. Zusitz-
lich kann hier auch Konvektion (z.B. durch das Blut)
beitragen.

Die unterschiedliche thermische Leitfdhigkeit hat
viele praktische Konsequenzen. So ist eine gerin-
ge thermische Leitfdhigkeit die wichtigste Voraus-
setzung fiir eine warme Kleidung. Schweifl kann
die Leitfahigkeit deutlich erhohen und so, nicht nur
durch die Verdunstung, zu einer Abkiihlung fiihren.
Weil Wasser eine deutlich hohere Leitfahigkeit als
Luft besitzt, kithlt man beim Schwimmen deutlich
schneller aus als an der Luft. Metalle fiihlen sich
wegen der hohen thermischen Leitfdhigkeit auch be-
sonders kalt (oder heif3) an.

Wir betrachten als einfaches Beispiel die Wirme-
leitung entlang eines Stabes mit Querschnitt A und
Linge /. In diesem Fall ist die Wérmeleistung

h-7

)

Py=jA=AA (2.12)

also proportional zum Querschnitt des Stabes und
zur Temperaturdifferenz, sowie indirekt proportional
zur Lange. Wie in Abb. 2.42 gezeigt, bildet sich im
stationdren Gleichgewicht eine lineare Temperatur-
verteilung entlang des Stabes aus.
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heiBes Reservoir kaltes Reservoir

Temperatur

Ort

Abbildung 2.42: Wirme wird iiber einen Stab zwi-
schen 2 Wirmereservoiren iibertra-
gen.

2.7.3 Wirmewiderstand

In Analogie zum Ohm’schen Gesetz [ = V /R fiir
die Leitung von Strom spricht man bei dieser Pro-
portionalitit auch gerne von einem Wiarmewider-
stand: Die transportierte Wiarmemenge pro Zeit (der
Wirmestrom) ist proportional zur Temperaturdiffe-
renz (der Wirmespannung) und indirekt proportio-
nal zum Wirmewiderstand Ry:
Py = TIR_ L
Q

(2.13)

Der Vergleich der beiden Ausdriicke (2.12) und
(2.13) ergibt

Ro— 14 Ro] = K
T A P w
Der Wirmewiderstand ist allgemein das Produkt aus

der Materialkonstanten pp = 1/A und dem geome-
trischen Faktor ¢/A:

14
RQ:PQX-

Fiir Wirmewidersténde gelten die gleichen Rechen-
regeln wie fiir elektrische Widerstinde: man kann
sie in Reihe oder parallel anordnen. Bei einer Rei-
henschaltung (z.B. verschiedene Schichten von Klei-
dungsstiicken) muss im stationédren Fall der Wirme-
strom durch zwei aufeinander folgende Schichten

T Ra1 | Ra2 T

T F— |

T2

Temperatur T

Ort x

Abbildung 2.43: Reihenschaltung von Wirmewider-
stinden.

gleich sein, Pp; = Pp;. Somit gilt

I —T1; -1
RQ1 RQ2
hLh-7
0

Hier ist 73 die Temperatur zwischen den beiden
Schichten und R;z der Widerstand der Reihenschal-
tung. Wir kdnnen sie bestimmen aus Pp; = Pp> = FPp:

i — RpxTi +Ro1 T
Roi+Rpy

Sie entspricht somit einem gewichteten Mittelwert.
Einsetzen in Pp; oder Py, ergibt den Ausdruck fiir
PQ, z.B.

hH—-T3 T RplitRol
Roi Rg1  Roi(Roi +Rg)

Po

= Rl(Tl(l—RQZ)
ol Rp1 +Rgpo
_ 2R91>
(Ro1 +Rg2)
-1
~ Ro1+Rp

und damit den Gesamtwiderstand

RSQ = Rp1 +Rpo.

Somit addieren sich in der Reihenschaltung die Wi-
derstidnde, wie beim elektrischen Widerstand. Dies
nutzt man z.B. wenn man mehrere Kleidungsschich-
ten verwendet, um sich warm zu halten.

45



2 Physikalische Grundlagen
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Abbildung 2.44: Parallelschaltung von Wirmewi-
derstidnden.

Bei Parallelschaltung addieren sich die Warmestro-
me durch die beiden Leiter, Pp = Pp1 + Pg2 und da-
mit ihre Leitwerte:

1 1 1

R[é RQ] RQ2

2.7.4 Wirmeleitungsgleichung

Da Energie eine Erhaltungsgrofle ist, gilt fiir die
Ubertragung von Energie eine Kontinuititsglei-
chung. Wirme ist im Allgemeinen keine Erhaltungs-
grofle, da sie in andere Energieformen umgewandelt,
resp. daraus erzeugt werden kann. Wir beschrin-
ken uns hier jedoch auf Systeme, in denen keine
solchen Umwandlungsprozesse stattfinden, so dass
wir auch fiir die Wiarmeenergie eine Kontinuitéts-
gleichung aufstellen konnen: stromt mehr Energie in
ein Volumenelement hinein als hinaus, so dndert sich
die darin enthaltene Wirmeenergie und damit seine
Temperatur:

Y

V.jdv = -2,
J ot

(2.14)

Hier stellt dQ die im Volumenelement dV enthaltene
Wirmeenergie dar.

Wir verwenden die Wiarmekapazitit

do

c=ar

= p C‘dV7
mit der spezifischen Wiarmekapazitit p.. Damit kon-

nen wir Gleichung (2.14) schreiben als

_p. o7
Peor

—

¥.7— 20 1 T

9T dV dt

Mit Hilfe von Gleichung (2.11) fiir die Warmestrom-
dichte erhalten wir daraus die allgemeine Wirmelei-
tungsgleichung

oT 1> o A= o
—=——V.j=—V.VT =D,AT. (2.15)
ot Pe Pe
Hier bezeichnet
A
D,=—
Pc

den Wirmeleitungskoeffizienten, welcher dem Dif-
fusionskoeffizienten entspricht.

Temperatur

Ort

Abbildung 2.45: Abhingigkeit der Temperaturdnde-
rung von der Temperaturverteilung.

Die Wirmeleitungsgleichung (2.15) sagt, dass die
Temperaturdnderung proportional zur Kriimmung
der Temperaturverteilung ist. Die Temperatur steigt
somit in Bereichen mit positiver Kriimmung und
sinkt in Bereichen negativer Kriimmung. Dies ent-
spricht den Erwartungen aus der Kontinuitéitsbedin-
gung: in Bereichen positiver Kriimmung flieft mehr
Wirme hinein als hinaus und umgekehrt in Berei-
chen negativer Kritmmung. Dies fiihrt dazu, dass die
Kriimmungen reduziert werden. Im stationiren Fall
wird die Temperaturverteilung bei einem eindimen-
sionalen System linear.

Die Wirmeleitungsgleichung sieht formal #hnlich
aus wie eine Wellengleichung. Im Gegensatz dazu
steht jedoch auf der linken Seite die erste statt der
zweiten Ableitung nach der Zeit. Dieser Unterschied
fiihren zu einem vollig anderen Verhalten:

¢ Sowohl im Ortsraum wie im Zeitraum ist die
Ausbreitung einer Stérung nicht oszillatorisch,
sondern monoton.
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* Bei der Wirmeleitung gibt es keine Ausbrei-
tungsfront oder Ausbreitungsgeschwindigkeit.

* Bei der Wirmeleitung hat die Zeit eine Rich-
tung: Alle Systeme bewegen sich in Richtung
auf einen Gleichgewichtszustand, in dem die
Temperatur moglichst gleichférmig verteilt ist.

2.7.5 Wirmeleitung in 1D

Ein effektiv eindimensionales System erhilt man
auch bei der Diskussion des Warmetransfers durch
eine Wand. Dabei reduziert sich die Wirmeleitungs-
gleichung (2.15) zu

oT A 9°T
9 pan (210
S stationare Losung
— 5

%

H"
'\..g,,:

g =f T
~ -;' T /
g‘ 0 LT

Abbildung 2.46: Wirmeleitung durch Mauer als 1D
Problem.
Die stationidre Losung,
oT A 9T
ot peox?’
erhilt man z.B. durch zweimalige Integration:

Ty (x,t) = A+ Bx.

=0

Die beiden Konstanten bestimmen wir aus den
Randbedingungen:

]}t(O’t) == Tl :A
und

Ty(L,t) =T, =T, +BL.

Auflésen nach B ergibt
T, —-T
Bp=-2"L
L
Somit ist die Temperaturverteilung linear,
h—-T

T;t(x,t) :T1+ X.

2.7.6 Zeitabhingigkeit

Die allgemeine Losung der Gleichung erhilt man
durch Trennung der Variablen:

T(x,t) =X (x)Y(1).

Hier stellt X (x) den rdumlichen und Y () den zeitli-
chen Anteil der Funktion dar. Einsetzen in die eindi-
mensionale Warmeleitungsgleichung (2.16) ergibt
Y 2
x2Y _AypoX
dt  p. 0Ix?

Wir dividieren durch A XY /p,:

pc oY 19°X

AY ot X ox2

2

)

mit —a? als Separationskonstante. Fiir die Zeitab-
hingigkeit lautet die Gleichung damit

Y

A
- = 27
5 oa - —Y

Pe
und die Losung

Y(f) = Y (0)e "®*A/Pe. 2.17)

Die rechte Seite ist identisch zur Wellengleichung
und kann somit iiber den Ansatz

X (x) = B cos(ax) + C sin(ox)

gelost werden.

Fiir die weitere Auswertung wihlen wird die Rand-
bedingungen 7(0,7) = 0 = T(L,t). Daraus folgt,
dass B =0 und @ = n7/L mit n ganzzahlig. Damit
erhalten wir die allgemeine Losung als Linearkom-
bination der einzelnen Moden:

= . (ATX\ _
T(x,t) = ; CnSin (T) e !/,
n=
Die Zeitkonstante fiir die einzelnen Moden ist laut
2.17)

pc  pl?

T, = =
" A02 An2m?’

d.h. die Zerfallsrate einer Mode wichst «< n%. Dies
entspricht der Erwartung: mit zunehmendem Index
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n nimmt der Abstand zwischen Maximum und Mi-
nimum ab. Genau wie bei der Diffusion ist auch
bei der Wirmeleitung die mittlere zuriickgelegte Di-
stanz proportional zur Wurzel aus der Zeit. Die Wiir-
me braucht somit viermal so viel Zeit, um die dop-
pelte Distanz zuriickzulegen.

2.7.7 Losung in 1D

Jede dieser Moden entspricht einem Punkt mit Ko-
ordinate n im reziproken Raum, und jede Mode
zerfdllt unabhédngig von den anderen. Wir konnen
deshalb die Wirmeleitungsgleichung 16sen, indem
wir die anfidngliche Temperaturverteilung Fourier-
transformieren, im reziproken Raum mit e~*/™ mul-
tiplizieren und zuriick transformieren. Die Losung
lautet somit

> T
T(x,t) =Y Dy,sin (%) ¢!/
n=1

mit den Fouier-Koeffizienten

L

i/T(x,O)sin(

0

nmwx

L

D,

)dx.

Als einfaches Beispiel betrachten wir die homo-
gene Wiarmeleitungsgleichung auf einem unendlich
langen Stab, L — o und einer Anfangsbedingung
T(x,0) = 8(0). Abb. 2.47 stellt die Anfangsbedin-
gung und die Losung zu einem Zeitpunkt dar.

T(x,0) = 6(0)

Temperatur

Abbildung 2.47: Losung der Wirmeleitungsglei-
chung in 1D fiir 7'(x;¢ = 0) = 6(0).

Die Temperaturverteilung zu jedem spiteren Zeit-
punkt entspricht einer Gau3-Funktion

_ Q[P (pjar)
pVTht VA

T(x,1)

mit Breite

dnphn(t) = 2\/””(2)3~

Hier bezeichnet Q die zum Zeitpunkt ¢ = O eingetra-
gene Wirmemenge.

Obwohl bei der Wirmeleitung keine Wellenfront de-
finiert werden kann, ist es doch sinnvoll, eine Diffu-
sionsldnge zu definieren. Man verwendet dafiir

lp = 2+/Dyt =24 /t;}.

Die Distanz wéchst somit nicht linear mit der Zeit,
wie bei Massenpunkten und Wellen, sondern mit der
Wurzel daraus.

2.7.8 Wirmeleitung in 2D

Der Ortsteil der Wirmeleitungsgleichung ist iden-
tisch zur Wellengleichung,

AT = —a?.

Somit kennen wir die relevanten Losungsfunktio-
nen bereits aus der Diskussion der Wellengleichung.
In zwei Dimensionen konnen wir bei kreisférmigen
Randbedingungen somit die Besselfunktionen ver-
wenden, um die Losung darzustellen.

Der stationére Fall der Wirmeleitungsgleichung

AT =0
wird als Laplace-Gleichung bezeichnet. Die Losun-
gen sind die harmonischen Funktionen.

Abb. 2.48 zeigt als Beispiel die stationdre Tempera-
turverteilung auf einem Ring fiir die Randbedingun-
genT(r=2)=0und T(r=4) =4sin(5¢).
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Ve

vi ‘ﬁ“.-».’k;i

N

Abbildung 2.48: Stationdre = Temperaturverteilung
auf einem Ring.

2.7.9 Wirmeleitung in 3D

Auch in drei Dimensionen konnen wir fiir die Lo6-
sung der Wirmeleitungsgleichung

oT
— =D,AT
at v

auf die Diskussion der Wellengleichung zuriickgrei-
fen. Bei einem Separationsansatz

T(71) = R(7) Q1)

wird die Wirmeleitungsgleichung zu
190 D, ’
—— =—AR=-D,x
Qdt R v

in volliger Analogie zum eindimensionalen Fall.
Diese Gleichung kann somit wiederum mit einem
Separationsansatz gelost werden. Wir diskutieren
hier jedoch keine spezifischen Losungen, sondern
stellen noch einige qualitative Uberlegungen zur
Wirmeleitung an.

Wenn z. B. ein wiirfelférmiger Bereich der Kanten-
linge d um T Kilter ist als seine Umgebung, herrscht
an seinen Réndern ein Temperaturgefille von der
GroRenordnung T /d, das einen Wirmestrom

P:Alg ~ATd

hervorruft. Dieser gleicht das Energiedefizit £ ~
d*p.T in der Zeit

aus. Diese Zeitkonstante bezeichnet man als ther-
mische Relaxationszeit. Sie skaliert somit mit der
Oberflache des Wiirfels.

Fiir die Berechnung der stationdren Temperaturver-
teilung
1 dT

——=—=0=AT

D,, ot
miissen wir exakt die gleiche Gleichung (die
Laplace-Gleichung) I6sen, wie z.B. in der Elektro-
statik.

Auch bei der Wirmeleitung kann das Problem Quel-
len oder Senken enthalten. Quellen sind z.B. Hei-
zungen, ein Beispiel fiir eine Senke ist verdunsten-
des Wasser. Existieren Quellen, so wird die Laplace-
Gleichung zu
n()

1
Hier bezeichnet 1 (7) die Wéarmequelldichte, d.h. die
Wirmeerzeugung pro Volumen ([n] = %), welche
lokal einen Beitrag
_n

Pe
zur Temperaturdnderung liefert. Ist die Warmequelle
eine Punktquelle, so nimmt die stationidre Tempera-
tur in der Umgebung mit
1

T o —
p,

AT = —

T

ab, exakt wie die elektrische Feldstérke in der Umge-
bung einer Punktladung. Bei einem langen geraden
Heizrohr ist die Temperaturverteilung in der Umge-
bung

T < Inr,

analog zur Feldstirke in der Umgebung eines gela-
denen Drahtes.

Der Laplace-Operator berechnet die Kriimmung ei-
ner Flidche. Somit ist die Randbedingung (die Quel-
le) eine Randbedingung fiir die Kriimmung der Fla-
che. Im Quellen-freien Bereich muss die Kriim-
mung verschwinden. Die Losung entspricht deshalb
im Allgemeinen einer Sattelfliche, wo sich positive
und negative Kriimmungen kompensieren. Abb. 2.48
zeigt dies am Beispiel eines Rings.
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2.7.10 Wirmehaushalt des Korpers

20°C Lufttemperatur 30°C

o

28°

age

31°

Abbildung 2.49: Temperaturverteilung im Korper
bei unterschiedlichen Luft-
Temperaturen.

Der Korper enthilt eine erhebliche Warmemenge:
Bei einer Masse von m =70 kg und einer mittleren
spezifischen Wéarme von p.=3,5 kJ/(kg K) wird die
gesamte Wirmeenergie

AQor = pemAT = 245 gAT.

Wir wihlen als Referenztemperatur den Schmelz-
punkt von Wasser, so dass

AQ =245-37k]l ~9MJ

wird.

Verschiedene Regelmechanismen des Korpers sor-
gen dafiir, dass diese Wiarmemenge recht konstant
bleibt. Die Zufuhr an Wirmeenergie erfolgt vor al-
lem iiber metabolische Prozesse, der Verlust tiber

* Abstrahlung: Infrarotstrahlung, o 7%
* Konvektion: Luftstrémung
* Wirmeleitung durch direkten Kontakt

* Verdunstung: Siehe 2.7.11.

Abbildung 2.50: Lage des Hypothalamus.

Der Korper besitzt einen vielfiltigen Regelappa-
rat, welcher die Temperatur konstant hélt. Er um-
fasst Temperatursensoren im gesamten Korper, eine
zentrale Steuerung im Hypothalamus, sowie Stell-
elemente. Dies konnen zusétzlich Warme erzeugen
durch Zittern, den Wirmeverlust der Haut iiber die
Erweiterung oder Kontraktion der Blutgefifie steu-
ern, oder iiber die Verdunstung von Schweiss.

2.7.11 Verdunstung

Voraussetzung fiir Verdunstung ist das Offnen von
Poren in der Haut, so dass Schwitzen moglich wird.
Bei Verdunstung wird dem Korper Verdampfungs-
wirme entzogen. Die Verdampfungswirme von
Wasser ist besonders grofl. Um einen Liter Wasser
beim Siedepunkt zu verdampfen, wird eine Ener-
gie von 2,26 MJ benotigt. Wiarmeabgabe durch Ver-
dampfung von Wasser auf der Haupt hiangt von der
relativen Luftfeuchtigkeit der Umgebung ab. Ist die-
se grofer, als der Dampfdruck, den Wasser bei 37°C
auf der Haut erzeugt (6.3 kPa), dann kann kein Was-
ser verdampft werden. Bei trockener Luft funktio-
niert dieser Mechanismus auch dann, wenn die Um-
gebungstemperatur hoher ist als die Korpertempera-
tur. Sie dient deshalb z.B. fiir die Wiarmeregelung in
der Wiiste. Der Warmeverlust ist grob

d Q Verdunstung

=KAAP.
dt

Hier ist K der Wiarmekoeffizient, A die Fldche und
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AP die Differenz zum Partialdruck von Wasser in der
Luft.

Als Beispiel betrachten wir die Verdunstung von 1
Liter Wasser iiber einen Zeitraum von 2 Stunden.
Dies entspricht einer Kiihlleistung

2,26-10°7

53600 s ~ 300W.

Pverd =

2.7.12 Konvektion

Warmeverlust Kc [kJ/m2heC]

0 T T T T T
0 2 4

Windgeschwindigkeit [m/s]

Abbildung 2.51: Warmeverlust durch Konvektion.

Der Wirmeverlust der Haut hingt stark von der Ge-
schwindigkeit ab, mit der sich die Luft bewegt. Man
kann ihn abschitzen als

H.= KCA(Th - Tl)

Hier bezeichnet A die Oberfliche der Haut, 7}, die
Temperatur der Haut, 7; die Lufttemperatur und H,
den Wirmeverlust pro Zeit. Die Proportionalitits-
konstante K, hiangt von der Geschwindigkeit ab, wie
in Abb. 2.51 gezeigt.

2.8 Modelle fiir Biologie und
Medizin

2.8.1 Evolution

Die Physik erstellt Modelle von realen Systemen.
Damit kann sie Aussagen machen iiber Bestandtei-
le des menschlichen Kérpers, iiber Funktionen, iiber

den Verlauf oder die Ausbreitung von Krankheiten,
oder iiber den Ablauf von evolutioniren Prozessen.
Viele Physiker haben mit solchen Fragen wichtige
Beitrdge zur Entwicklung von Medizin und Biolo-
gie geliefert. Zu diesen Pionieren gehort z.B. Erwin
Schrodinger. Er hielt in Dublin einen Vortrag zur
Frage “Was ist Leben”. Dieser wurde 1944 auch als
Buch verdffentlicht!. Dieses Buch hat die Entwick-
lung der modernen Biologie nach 1945 malgeblich
beeinflusst und gehort zu den Klassikern der natur-
wissenschaftlichen Literatur. Es wird als “Meilen-
stein in der Geschichte der Molekularbiologie” be-
zeichnet. Schrédinger diskutiert hier vor allem die
Stabilitédt von genetischem Material aus der Sicht des
Physikers - dies zu einer Zeit, als die Struktur der
DNA und der genetische Code noch nicht bekannt
waren.

Es gibt aber auch sehr abstrakte Modelle, welche
nach physikalischen Prinzipien erstellt werden, um
z.B. die Evolution zu beschreiben, oder den Vorteil
von sexueller Reproduktion.

Die Darwin’sche Evolutionstheorie ist eine der
wichtigsten Grundlagen der Biologie und damit auch
der Medizin. Manchmal ist es auch niitzlich, nach
vereinfachten Versionen dieser Theorie zu suchen.
Ein Beispiel dafiir ist die pribiotische Evolution, al-
so die Evolution von molekularen Strukturen, wel-
che vermutlich der biologischen Evolution voraus-
gingen. Aus solchen Modellen kann man z.B. be-
rechnen, wie grof} eine Population sein muss, damit
sie stabil ist, und auf Umweltveridnderungen auf ei-
ner gewissen Zeitskala reagieren kann, oder welche
Fehlerraten bei der Replikation optimal sind, damit
die relevante genetische Information erhalten bleibt,
aber trotzdem Evolution moglich bleibt.

Evolution kann auch als abstrakter Prozess verstan-
den werden, in dem ein System seinen Informations-
gehalt vergroBert. Solche Systeme stehen somit fern
vom thermodynamischen Gleichgewicht. Sie miis-
sen Entropie an ihre Umgebung abgeben, um diesen
Prozess durchfiihren zu konnen.

'Erwin Schrédinger. Was ist Leben? - Die lebende Zelle mit
den Augen des Physikers betrachtet. Pieper, 1944.
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2.8.2 Populationsdynamik

Entwickiung der Bevilkerung in Deutschland bis 2050
9.

AN

Abbildung 2.52: Prognostizierte Bevolkerungsent-
wicklung fiir die BRD.

Mit anderen Modellen kann man z.B. die Popula-
tion von Tieren oder die Bevolkerungsentwicklung
von Lindern vorhersagen? oder die Ausbreitung von
Seuchen.

Als einfaches Beispiel berechnen wir die Bevolke-
rung N eines Landes durch die Losung der Bewe-
gungsgleichung

dN

a7 Geburten — Todelsfélle + Migration.

Unter der Annahme, dass Geburten und Todesfille
proportional sind zur gegenwértigen Bevolkerungs-
zahl, wird

dN

T bN — dN+Migration.

Ohne die Migration erhalten wir somit eine homo-
gene Differentialgleichung. Wenn wir eine mogliche
Zeitabhidngigkeit der Koeffizienten vernachléssigen,
erhalten wir die Losung

N(1) = Noe =9,

also ein exponentielles Wachstum, oder eine expo-
nentielle Abnahme. In beiden Fillen ist das System
somit instabil.

22.B. http://www.herwig-birg.de/downloads/dokumente/-
BVerfG.pdf

Eine stabile Losung erhdlt man im System von Ver-
hulst®: er fiihrte einen zusitzlichen Term ein

dN < N

d—T—bN IK) —dN.
Hier stellt K die Kapazitit des Systems dar. In die-
sem Modell steigt die Population zunichst ebenfalls
exponentiell an. Wird sie vergleichbar mit der Kapa-
zitat K, so nimmt das Wachstum ab und nahert sich
dem Grenzwert

N. _Ku
oo T b .

Die entsprechende Kurve wird als logistische Kurve
bezeichnet.

2.8.3 Gekoppelte Populationen

Als nichttriviales Beispiel fiir die Berechnung der
Populationsdynamik betrachten wir die Entwicklung
von 2 Tierarten, die sich gegenseitig beeinflussen.
Dabei kann man zwischen drei Typen von Wechsel-
wirkung unterscheiden:

* Wenn die Wachstumsrate einer Population ver-
mindert und die einer anderen erhoht wird,
befinden sich Populationen in einer Riuber-
Beute-Situation (predator-prey).

Wenn die Wachstumsrate jeder Population ver-
mindert wird, liegt eine Wettbewerbssituation
VOr.

Wenn die Wachstumsraten der Populationen er-
hoht wird, liegt ein Mutualismus bzw. eine
Symbiose vor.

Von den beiden Tierarten ist eine eine Raubtierspe-
zies, die andere ihr Beutetier. x stellt die Bevolke-
rungszahl der Beutetiere und y die Bevolkerungszahl
der Raubtiere dar.

Eine sinnvolle Bewegungsgleichung fiir die Beute ist
z.B.

x=x(g1—s1—ax—ry).

Hier bezeichnet g; die Geburtsrate, s; die natiirli-
che Sterberate, a; eine erhohte Sterberate bei hoher

3Pierre—Frang:0is Verhulst, 1804-1849
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Population (Begrenzung durch natiirliche Ressour-
cen) und r die Rate, mit der sie von den Raubtieren
gerissen werden. Die entsprechende Bewegungsglei-
chung fiir die Raubtiere lautet

y=y(g2 — 852 —axy+bx).

Die Koeffizienten g,,s, und a; haben eine analoge
Bedeutung wie bei den Beutetieren, b bezeichnet ei-
ne erhohte Fruchtbarkeit bei gutem Nahrungsange-
bot (hoher Beutepopulation).

Beute

Populationen

Raubtiere

>
o

Zeit

Abbildung 2.53: Oszillationen der Populationen von
Raubtier und Beutetier.

Lost man diese Bewegungsgleichungen numerisch,
so findet man meist keine kontinuierliche Zeitent-
wicklung, sondern ein oszillatorisches Verhalten,
welches je nach Parametern einem stationdren Zu-
stand zustrebt.

Wir untersuchen das System, indem wir zunichst
nach Fixpunkten suchen. Fixpunkte sind Wertepaa-
re, bei denen die Populationen zeitunabhingig sind.
Neben dem trivialen Fixpunkt xo = yo = 0 existieren
drei weitere Fixpunkte. Wir finden diese, indem wir
die beiden Ableitungen = 0 setzen:

x(g1—s1—aix—ry)

v(g2 — 52 — axy + bx).

Die Losungen sind

2— 82
xt = 0, yi= g ’
an
1— 81
X2 = g y Y2 :07
ai
o = algi—s)—r(g2—s)
3 ajap +br
v = b(g1—s1)+ai(g2—s2)
3 ajar +br '

Bei den ersten beiden Losungen existiert jeweils nur
eine der beiden Spezies. Nur die dritte Losung ent-
spricht einem Gleichgewicht zwischen den beiden
Tierarten. Das Verhiltnis zwischen den beiden Ar-
ten ist

X3 _ —aa(g1—s1) +r(g2—52)
y3  b(g1—s1)+ai(gr—s2)

Einen vereinfachten Ausdruck erhalten wir, wenn
wir die Beschrinkung durch die Umwelt fiir diese
Losung vernachléssigen, a; =a; =0:
_82. _8

b’ '
Hier haben wir aulerdem die Sterberate eliminiert:

es spielt jeweils nur die Netto-Geburtenrate (=g; — s;)
eine Rolle.

X3 = y3 (2.18)

Diese Losung ist zwar mathematisch korrekt, aber
physikalisch unsinnig: Populationen kénnen nicht
negativ sein. Die Beschrinkung durch die Umwelt
ist also notwendig, wenn wir einen Fixpunkt, also
eine stationére Population, haben wollen. Vorausset-
zung fiir eine positive Population der Beutetiere ist

2
an >r&.

81

Dieser Fixpunkt ist iiber einen weiten Parameterbe-
reich stabil.

2.8.4 Populationsoszillationen

Es gibt allerdings doch eine Mdoglichkeit, dass Glei-
chung (2.18) einen physikalisch sinnvollen Zustand
beschreibt: wenn gr < 0, d.h. wenn die Netto-
Geburtenrate der Raubtiere negativ ist. Dies wiir-
de zu einem Verschwinden der Raubtierpopulation
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fiihren, wenn nicht die Beutetier-abhingige Gebur-
tenrate bxy wire. Wir schreiben die negative Netto-
Geburtsrate als Sterberate —y s, und erhalten

x(g1—ry)
y(—s2+bx).

X

Beim Beutetier haben wir die Sterberate s; = 0
gesetzt (resp. wir betrachten g; als die Netto-
Geburtenrate). Beim Raubtier sind Geburten nur
proportional zur Population des Beutetiers mog-
lich. Dieses Gleichungssystem wird auch als Lotka-
Volterra Modell bezeichnet. Dieses System hat einen
Fixpunkt bei

_ 81

)
Weil das System nicht dissipativ ist, laufen Trajekto-
rien in der Umgebung dieses Fixpunktes nicht darauf
zu, sondern bilden Ellipsen um diesen Punkt. Grofe-
re Kurven sind verformte Ellipsen, wie in Abb. 2.54
gezeigt.

n
S

o
14
©®

Populationen x, y
3

Raubtiere y

° °

> o

o
N

5 10 15

Beute x

5 10 15 20 25 30 35 20

Zeit

Abbildung 2.54: Oszillationen der Populationen von
Raubtier und Beutetier im Lotka-
Volterra Modell.

Abb. 2.54 zeigt typische Populationsoszillationen
im Lotka-Volterra Modell. Wenn die Population der
Raubtiere niedrig ist, steigt die Population der Beu-
tetiere exponentiell an. Dies fiithrt dann (etwas verzo-
gert) zu einer Zunahme der Population bei den Raub-
tieren. Dadurch bricht die Population der Beutetie-
re ein, und, wiederum verzogert, die Population der
Raubtiere. Danach beginnt der Zyklus von vorn.

Solche Oszillationen hat man auch tatséchlich in vie-
len Fillen beobachtet. Abb. 2.55 zeigt ein Beispiel.
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Abbildung 2.55: Oszillationen der Populationen von
Raubtier und Beutetier; aus C.B.
Huffaker, Experimental studies on
predation: dispersion factors and
predator-prey oscillations; Hilgar-
dia 27, 343 (1958).

2.8.5 Verzogerte Riickkopplung

Das hier betrachtete Modell ist stark vereinfacht, und
einige Punkte, die bei einem realistischeren Modell
zu beriicksichtigen wiren, fithren auch zu Oszilla-
tionen. Dazu gehort z.B. eine zeitliche Verzogerung:
So fiihrt eine erhohte Geburtenrate jetzt zu einem
spateren Zeitpunkt zu geringeren Ressourcen, hohe-
rem Bedarf an Beutetieren und hoheren Todesraten.
Die Bewegungsgleichungen enthalten dann Terme
der Art

x=x(t)(1—-x(t—1)),

wobei T die Verzogerungszeit darstellt. Wenn wir in
diesem System eine dimensionslose Zeit z = at ein-
fithren und ¢ = a1 definieren, erhalten wir

D ()1 x(z—0)).

dz
Dieses System hat offenbar zwei Fixpunkte: den tri-
vialen x = 0 und auBerdem x = 1. Fiir ¢ = O ist der
erste instabil, der zweite stabil. Wir konnen um die-
sen linearisieren, indem wir

x=1+4u
setzen und erhalten
d
diz‘ = (1+u(2))(~u(z—c)) ~ —u(z—c). (2.19)

Ein sinnvoller Losungsansatz ist somit eine Expo-
nentialfunktion,

u(z) = upe™.
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Einsetzen in (2.19) ergibt

Au(z) = —u(z—c) = —u(z)e ™
und somit

p———

Das System hat somit stabile Losungen (A < 0) so-
fern ¢ geniigend klein ist (d.h. sofern die Verzoge-
rung geniigend kurz ist). Betrachten wir auch kom-
plexe Raten A, so erhalten wir oszillatorische Losun-
gen mit R{A} =0 fir c = /2 und A = i. In die-
sem Fall ist das System periodisch, mit der Periode
T = 47. Diese Art von Dynamik findet man in sehr
unterschiedlichen Systemen, u.a. in der Elektronik,
wo zeitlich verzdgerte Riickkopplungen oft zu Os-
zillationen fiihren.
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