
2 Physikalische Grundlagen

Dieses Kapitel diskutiert die Grundlagen für die fol-
genden Kapitel. Sie bilden einen Schnittpunkt von
Physik, Medizin und Biologie. Viele dieser Grund-
lagen werden auch im Rahmen der Biophysik disku-
tiert. Die Biophysik umfasst allgemein eine physika-
lische Betrachtung von Lebewesen, während sich die
Medizinphysik auf den Menschen fokussiert. Gebie-
te wie die Hydrodynamik des Schwimmens gehören
deshalb nur zur Biophysik, während die Statik des
Bewegungsapparats sowohl für die Biophysik wie
auch für die Medizinphysik relevant sind.
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2.1 Physik und Leben

2.1.1 Physik als Grundlagenwissenschaft

Die Physik hat den Anspruch, ausgehend von mög-
lichst wenigen einfachen Prinzipien, ein möglichst
vollständiges Verständnis unserer Umwelt zu erlan-
gen. Newton formulierte das so:

“Die Natur ist nämlich einfach und schwelgt nicht
in überflüssigen Ursachen der Dinge”.

Isaac Newton

Dabei verfolgt man das Ziel, dass man aus mög-
lichst einfachen Voraussetzungen möglichst vielfäl-
tige Konsequenzen ableiten möchte. In den Worten
Einsteins:

“Eine Theorie ist desto eindrucksvoller, je größer
die Einfachheit ihrer Prämissen ist, je verschie-
denartigere Dinge sie verknüpft, und je weiter ihr
Anwendungsbereich ist.”

Albert Einstein

Dass dieses Programm erfolgreich ist, formulierte
wiederum Peter Atkins so:

“Ein Großteil des Universums bedarf keiner Er-
klärung. Elefanten zum Beispiel. Sobald Molekü-
le gelernt haben, miteinander in Wettbewerb zu
treten und andere Moleküle nach ihrem Bild zu er-
schaffen, werden nach einiger Zeit Elefanten und
Dinge, die ihnen ähneln, durch die Lande ziehen.”

Peter Atkins

Die Physik liefert allgemein die Grundlagen für die
übrigen Naturwissenschaften, wie z.B. Chemie und
Biologie. Diese wiederum, zusammen mit der Phy-
sik, stellen die wichtigsten Werkzeuge für das Ver-
ständnis des Lebens, des menschlichen Körpers und
seiner Funktionen zur Verfügung.

Die Aussage, dass die Physik die Grundlagen für Na-
turwissenschaft und Physik liefert, impliziert nicht,
dass die Physik selber medizinische Phänomene er-
klären kann; dazu benötigt man zusätzliche Konzep-
te, welche durch die Chemie, Biologie und Medizin
erarbeitet werden. Diese Konzepte sollten allerdings
nicht im Widerspruch zu physikalischen Erkenntnis-
sen sein. Darüber hinaus kann die Physik direkte
Aussagen liefern, wie z.B. dazu, wie Kurzsichtigkeit
korrigiert werden kann.

Zu den allgemeinen Fragen des Lebens, zu denen
auch die Physik ihren Beitrag liefern kann, gehören
z.B.

• Was ist Leben?

• Warum ist Leben physikalisch möglich?
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2 Physikalische Grundlagen

Abbildung 2.1: Das “physikalische Weltbild”.

• Wie könnte das Leben entstanden sein?

Die physikalische Betrachtungsweise liefert auf
mehrere Arten ein hierarchisches Verständnis unse-
rer Umwelt: Eine Hierarchie der Längenskalen er-
klärt Eigenschaften von Molekülen mit Hilfe ato-
marer Eigenschaften, teilt diese in Atomkerne und
Elektronen auf etc. Ebenso erhält man in der Zeit ei-
ne hierarchische Entwicklung: Aus dem “big bang”
entwickeln sich nach und nach komplexere Struktu-
ren (Teilchen, Atome, Moleküle, Gaswolken, Son-
nensysteme und Galaxien etc.). Nach der Bildung
der Erde kann die Physik, in Kombination mit ande-
ren Naturwissenschaften, Szenarien entwickeln, wie
hier Moleküle, Zellen und höhere Organismen ent-
standen sind. Daraus entsteht somit auch eine Hier-
archie der Organisation und Komplexität: Phäno-
mene auf einer hierarchisch höher liegenden Ebe-
ne können (teilweise) auf die bekannten Gesetze
der darunter liegenden Ebene zurückgeführt werden.
Auf allen oben genannten Stufen spielen physikali-
sche Prinzipien oder Erkenntnisse eine wichtige Rol-
le.

Viele der Arbeiten zu diesen Themen sind stark in-
terdisziplinär. So könnte das Buch “Was ist Leben?”
von Schrödinger sowohl der Physik, wie auch der
Molekularbiologie oder der Philosophie zugeordnet
werden. Es gilt heute als Klassiker der naturwissen-
schaftlichen Literatur und als “Meilenstein in der

Geschichte der Molekularbiologie” (NDR).

2.1.2 Wesen und Entstehung von Leben

Es gibt noch keine umfassende und allgemein an-
erkannte Definition, was Leben überhaupt ist. Eine
mögliche Definition ist die Folgende:

Ein System wird als lebend bezeichnet, wenn es
die Fähigkeit besitzt,

• seine Form zu erhalten (Homeostasis) und

• durch Rückkopplungseffekte Form und
Funktion der sich ändernden Umgebung
anzupassen.

Als eine weitere wichtige Eigenschaft wird häufig
die Fähigkeit zur selbständigen Replikation betrach-
tet. Wird dies vorausgesetzt, so gehören z.B. Viren
nicht zu den Lebewesen, da sie nicht selbständig le-
ben und sich fortpflanzen können.

Auf dieser Basis kann man sich überlegen, unter
welchen Vorraussetzungen Leben entstehen kann.
So kann man sich überlegen, wie schnell ein bio-
logisches System sich ändern darf, ohne instabil zu
werden oder umgekehrt, wir schnell es sich ändern
muss, um sich in den rund 4,5 Milliarden Jahren
seit der Entstehung des Sonnensystems aus unbeleb-
ten Elementen zu bilden. Mit physikalischen, chemi-
schen und statistischen Argumenten lässt sich zei-
gen, dass die Vielfalt der möglichen Systeme groß
genug ist, um auf unterschiedliche Weise und in un-
terschiedlichen Randbedingungen Leben entstehen
zu lassen, dass andererseits aber eine Rückkopp-
lung nötigt ist, welche dafür sorgt, dass die Entwick-
lung bereits in einem frühen Stadium die erfolgrei-
che Entwicklungsrichtung findet.

Insgesamt ist dies jedoch ein extrem spekulatives
Feld, da wir nicht die Möglichkeit haben, alle denk-
baren Szenarien zu verfolgen. Diese Frage stellt sich
z.B. wenn die NASA auf dem Mars nach Spuren von
Leben sucht: welche Tests durchgeführt werden sol-
len hängt davon ab, welche Art von Lebewesen man
erwartet. Das gleiche gilt bei der Untersuchung von
Exoplaneten: welche Moleküle könnten als Signatur
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von Leben verstanden werden? Wir beschränken uns
im Folgenden darauf, Leben zu diskutieren, das auf
den uns bekannten Formen beruht, das also auf orga-
nischen Molekülen und Wasser basiert.

2.1.3 Physikalische Voraussetzungen für
organisches Leben

Alles uns bekannte Leben beruht auf molekularer
Ebene auf Wasser und einer Gruppe von organischen
Molekülen, welche im Kapitel 3 diskutiert werden.
Die Physik liefert ein plausibles Szenario dafür, wel-
che Voraussetzungen für diese Art von Leben vor-
handen sein müssen und wie auf der Erde Leben ent-
standen ist, angefangen beim Urknall über die Ent-
stehung des Sonnensystems und der Erde.

Die Kombination aus Erde und Sonne ist die erste
Grundlage für die Entstehung von Leben. Damit or-
ganisches Leben existieren kann, ist es notwendig,
dass flüssiges Wasser existiert. Dafür müssen die
Temperaturen im Bereich 273 K < T  373 K liegen.
Dies wird auf der Erde erreicht durch ein Gleich-
gewicht an eingestrahlter und abgestrahlter Energie.
Datails: siehe Übung 1. Die abgestrahlte Energie ist
nach dem Stefan-Boltzmann Gesetz proportional zu
T 4,

P" = aT 4,

während die eingestrahlte Energie davon unabhängig
ist,

P# = b .

Es ergibt sich somit ein Gleichgewicht bei

P" = P# ! T =
4

r
b

a

.

Die Temperatur darf darüber hinaus nicht zu stark
variieren - sowohl im Tag-Nacht Zyklus, wie auch
im jahreszeitlichen Zyklus. Dies limitiert z.B. die
Dauer des Tages (d.h. die Rotationsgeschwindigkeit
der Erde), die Exzentrizität der Planetenbahn, und
die Neigung der Erdachse.

Eine weitere wichtige physikalische Grundlage ist
die so genannte Anomalie des Wassers: Wasser ist

einer der wenigen Stoffe, bei denen der gefrorene
Zustand leichter ist als der flüssige. Dies verhindert
ein Durchfrieren der Meere auch bei niedrigen Tem-
peraturen und stellt damit eine wichtige Grundlage
dafür dar, dass Leben sich in den Meeren und Seen
entwickeln konnte.

Physikalische Prinzipien wie die Energieerhaltung
oder der zweite Hauptsatz der Thermodynamik kön-
nen z.B. auch erklären, auf welchen Größenska-
len sich komplexe Lebewesen wie Säugetiere ent-
wickeln und existieren können.

Sonnenwind

Plasma

Abbildung 2.2: Einfluss des Erdmagnetfeldes auf
den Sonnenwind.

Eine weitere wichtige Voraussetzung für das Leben
auf der Erde ist das Magnetfeld, welches die ener-
giereiche kosmische Strahlung und den Sonnenwind
ablenkt.

2.1.4 Zusammensetzung der
Erdatmosphäre

Zu den wichtigsten Voraussetzungen gehört die Exi-
stenz und Zusammensetzung der Atmosphäre. Sie
besteht heute aus

Stickstoff N2 78 %
Sauerstoff O2 21 %

Argon Ar 0,9 %
Kohlendioxid CO2 0,04 %

Die Gase in der Erdatmosphäre wurden zu einem
Teil bei der Entstehung der Erde gebunden, zum
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anderen durch geophysikalische und geochemische
Prozesse eingebracht. Der Sauerstoff wurde durch
die ersten Lebewesen über Photosynthese erzeugt.
Andere Komponenten gingen im Laufe der Erdge-
schichte verloren, wie z.B. der Wasserstoff, der in
den Weltraum entweicht, oder sie wurden chemisch
gebunden.

Abstand r vom Erdmittelpunkt

En
er

gi
e

0

Epot = �GMm

r

RE

Epot = �gmRE

Ekin =
m

2
v2

Abbildung 2.3: Energie von Molekülen in der
Erdatmosphäre.

Damit ein Molekül im Schwerefeld der Erde festge-
halten wird, muss seine potenzielle Energie größer
sein als die kinetische Energie. Die potenzielle Ener-
gie im Schwerefeld der Erde ist

Epot = �GMm
r

.

Hier ist M die Erdmasse, m die Molekülmasse, G
die Gravitationskonstante und r der Abstand vom
Erdmittelpunkt. Die Dicke der Erdatmosphäre (⇡ 50
km) ist gering im Vergleich zum Durchmesser der
Erde (⇡ 12000 km), so dass wir den Abstand durch
den Erdradius RE ersetzen können,

Epot = �GMm
RE

.

Diesen Ausdruck können wir vereinfachen, indem
wir die Schwerebeschleunigung g = GM/R2

E an der
Erdoberfläche einsetzen:

Epot = �gmRE .

Die Moleküle besitzen außerdem kinetische Energie

Ekin =
m
2

v2.

Daraus ergibt sich, dass Moleküle entweichen kön-
nen, ihre gesamte Energie positiv ist, Epot +Ekin > 0.
Dies passiert wenn die molekulare Geschwindigkeit
größer ist als die Entweichgeschwindigkeit vE , d.h.
die Geschwindigkeit, bei der kinetische und potenzi-
elle Energie den gleichen Betrag haben:

mgRE =
m
2

v2
E ! vE =

p
2gRE .

Diese beträgt für die Erde ca. 11,2 km/s. Die mittlere
kinetische Energie ist bei der Temperatur T

Ekin =
m
2

v̄2 =
3
2

kBT.

Daraus ergibt sich eine mittlere thermische Ge-
schwindigkeit

v̄ =

r
3kBT

m
.

Diese liegt z.B. für Stickstoff bei

v̄N2 =

s
3 ·1,38 ·10�23 ·273J

28 ·1,66 ·10�27kg
= 493

m
s

.

Dieser Wert ist sehr viel kleiner als die Entweich-
geschwindigkeit vE , so dass die meisten Molekü-
le gebunden bleiben. Auf Grund der Boltzmann-
Verteilung

p(v)dv = c4pv2e�mv2/2kBT dv

ist jedoch die Wahrscheinlichkeit für jede Geschwin-
digkeit endlich, es existiert somit immer ein klei-
ner Bruchteil an Molekülen, welche die Entweichge-
schwindigkeit überschreiten. Diese Wahrscheinlich-
keit nimmt exponentiell mit der Masse m der Mole-
küle ab.

Für leichte Atome (H, He) ist die resultierende Ge-
schwindigkeit hoch genug, dass sie aus der Erdatmo-
sphäre entweichen. Deshalb hat sich die Zusammen-
setzung der Erdatmosphäre im Laufe der Zeit stark
verändert: die leichten Gase sind verloren gegangen,
während die schwereren Gase unter anderem durch
Vulkanismus dazu gekommen sind. Der Sauerstoff
wurde von den frühen Pflanzen erzeugt. Die Ände-
rung der Zusammensetzung der Atmosphäre führte
auch zu Änderungen der Temperatur, auf Grund des
Treibhauseffektes.
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Abbildung 2.4: Geschwindigkeitsverteilung von
Molekülen unterschiedlicher Masse.

2.1.5 Skalengesetze und Körpergröße

Die physikalischen Grenzen für das Leben lassen
sich auch an verschiedenen Skalengesetzen erken-
nen, welche z.B. die maximale Größe eines Lebewe-
sens an Land bestimmen: das Gewicht wächst mit
der dritten Potenz der linearen Dimension, die Mus-
kelkraft mit dem Muskelquerschnitt und damit mit
der zweiten Potenz. Wird ein Tier zu groß, so kann
es sich somit an Land nicht mehr fortbewegen. Dies
führt dazu, dass sich die Proportionen der Körper
von Tieren mit ihrer Größe deutlich ändern (siehe
Abb. 2.5).

Abbildung 2.5: Unterschiedliche Körperpropotio-
nen unterschiedlich großer Tiere.

Wir betrachten als einfaches Beispiel ein Modell,
welches eine Beziehung zwischen dem energeti-
schen Grundumsatz und der Größe eines Lebe-
wesens erstellt. Wir setzen für den energetischen
Grundumsatz, also die Wärmeerzeugung des Kör-

pers,

P0 = ad3,

mit d als lineare Ausdehnung (Länge) und a als Wär-
meumsatz pro Volumen. Diese Wärme muss über die
Körperoberfläche abgeführt werden,

P0 = bd2

wobei wir annehmen, dass der Wärmeverlust b pro
Fläche konstant sei. Damit diese beiden Werte im
Gleichgewicht sind, muss

ad3 = bd2

sein. Bei gegebenem Wärmeverlust b wird somit der
energetische Grundumsatz pro Gewicht

a =
b
d

µ M�1/3.

Aufgrund dieses stark vereinfachten Modells erwar-
ten wir somit, dass der spezifische Grundumsatz mit
der dritten Wurzel aus der Masse abnimmt, respek-
tive dass der Gesamtumsatz P0 mit d2 µ M2/3 zu-
nimmt.

2.1.6 Empirische Daten

Die empirischen Daten stimmen qualitativ mit die-
ser Erwartung überein. Allerdings ist das Modell
stark vereinfacht, so dass die Übereinstimmung nicht
quantitativ ist.

Abbildung 2.6 stellt die empirischen Werte dar. Es
zeigt, dass der Energieumsatz eines Lebewesens mit
etwa dem Gewicht hoch 3/4 zunimmt, also etwas
stärker als unser vereinfachtes Modell. Der Grund
für diesen Unterschied liegt unter anderem daran,
dass sich auch die Proportionen der Lebewesen mit
der Größe ändern.

Der experimentell gefundene Grundumsatz an Ener-
gie kann für Säugetiere in erster Näherung über die
Formel

DQ
Dt

⇡ 290
kJ

Tag

✓
M

1kg

◆3/4
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Abbildung 2.6: Skalierung der metabolischen Rate
mit der Größe des Organismus [20].

abgeschätzt werden. Für wechselwarme Tiere und
Einzeller unterscheiden sich die Konstanten, aber
der Exponent ist praktisch der gleiche.

Es gibt momentan eine Reihe von Versuchen, dieses
empirische Skalierungsgesetz zu erklären. Ein mög-
licher Ansatz geht davon aus, dass der Energieum-
satz durch die Versorgung des Gewebes mit Sau-
erstoff beschränkt wird. Man kann den Exponenten
herleiten, wenn man annimmt, dass der Körper durch
ein fraktales Netzwerk von Blutgefäßen versorgt
wird, welche alle Zellen erreichen. Allerdings kann
die Sauerstoffversorgung nicht wirklich ein limitie-
render Faktor sein für den minimalen Energieum-
satz, sondern für den maximalen. Minimale und ma-
ximale metabolische Rate zeigen ein unterschiedli-
ches Skalenverhalten. Die beiden Kurven treffen sich
etwa bei einer Spitzmaus, also beim kleinsten Säuge-
tier.

Man kann diese Skalierung auch noch über kleinere
Einheiten fortsetzen: Auch bei Zellen und ihren Or-
ganellen findet man das gleiche Skalengesetz. Insge-
samt werden dadurch 27 Größenordnungen der Mas-
se überdeckt.

2.1.7 Energieformen und Längenskalen

Wir werden im Folgenden Phänomene auf unter-
schiedlichen Größenskalen diskutieren, von makro-
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Abbildung 2.7: Skalierung der metabolischen Ra-
te mit der Größe von Organismen,
Zellen und subzellulären Strukturen
[20].

skopischen (z.B. Menschen, l ⇡ 1m bis in den mi-
kroskopischen Bereich (z.B. Moleküle, l ⇡ 1nm).
Dabei stellt man fest, dass auf unterschiedlichen
Größenskalen unterschiedliche Dinge wichtig sind.

Abbildung 2.8: Skalierung unterschiedlicher Energi-
en mit der Größe.

Abb. 2.8 zeigt die Größenabhängigkeit von un-
terschiedlichen Energieformen, die für biologische
Systeme relevant sind [20]. So ist die thermische
Energie eines Freiheitsgrades (kBT = 4 · 10�21J bei
Raumtemperatur) unabhängig von der Größe des Sy-
stems; die Bindungsenergie eines Elektrons in ei-
nem Potentialtopf nimmt mit der Länge ab, Eb µ `�2,
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während mechanische Energien oder die elektro-
statische Energie bei gegebener Ladungsdichte mit
der Größe zunehmen. Für die geladene Kugelschale
wurden einfach geladene Aminosäuren verwendet.

Interessanterweise kreuzen sich diese Energien im
Bereich von etwa 1 nm / 10�19 J, also im Bereich
molekularer Längenskalen und Energien. In diesem
Bereich müssen somit sehr unterschiedliche Ener-
gieformen miteinander verglichen und ihre Wirkung
berücksichtigt werden. Dies bedeute auch, dass viele
Vereinfachungen, bei denen man eine Energieform
nicht oder nur als Störung berücksichtigt, hier nicht
ohne weiteres möglich sind. Es bedeutet aber auch,
dass hier kleine Ursachen sehr viel größere Effekte
haben können, was die Flexibilität und Vielseitigkeit
der entsprechenden Systeme stark erhöht.

2.1.8 Organisationsstufen von Organismen

Abbildung 2.9: Menschliche Organe gehorchen
physikalischen Gesetzen.

Auf der Erde haben sich während der vergangenen
4 Milliarden Jahre viele Millionen unterschiedliche
Arten von Lebewesen entwickelt, die aber auch veiel
Gemeinsamkeiten aufweisen. So basieren alle kom-
plexen Organismen auf einer hierarchisch geordne-
ten Struktur.

Für die verschiedenen Funktionen des Organismus
sind unterschiedliche Organe ausgebildet, die aus
einzelnen Geweben aufgebaut sind. Die kleinste
selbständige Lebenseinheit ist die Zelle (Kapitel
3.4). In ihr laufen die Lebensvorgänge ab.

Die (kernhaltigen) Zellen der höheren Lebewesen
sind wiederum hoch strukturiert, die Strukturele-
mente sind die Zellorganellen. Baumaterialien dafür

Abbildung 2.10: Hierarchie biologischer Struktur-
elemente am Beispiel des Organis-
mus Mensch. [24]

Abbildung 2.11: Fortsetzung der Hierarchie auf klei-
neren Skalen.

sind Biomembranen, Aggregate aus Lipidmolekü-
len, in die Proteine ein- oder angelagert sein können.
Proteine werden für den Erhalt des Lebens benötigt,
ebenso wie andere (Makro-) Moleküle wie Nuklein-
säuren, Zucker und die schon erwähnten Lipide.

Jede dieser Organisationseinheiten fasst eine hoch-
komplexe Unterstruktur zusammen. So enthält ei-
ne Zelle etwa 1010 Proteinmoleküle, welche zu 104

unterschiedlichen Proteintypen gehören. Der Auf-
bau und die Funktion von Proteinen wird im Kapitel
3.2.6 ausführlicher behandelt.
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2.2 Thermodynamik

2.2.1 Grundlagen

“Eine Theorie ist desto eindrucksvoller, je grö-
ßer die Einfachheit ihrer Prämissen ist, je ver-
schiedenartigere Dinge sie verknüpft, und je wei-
ter ihr Anwendungsbereich ist. Deshalb der tie-
fe Eindruck, den die klassische Thermodynamik
auf mich machte. Es ist die einzige physikalische
Theorie allgemeinen Inhaltes, von der ich über-
zeugt bin, dass sie im Rahmen der Anwendbarkeit
ihrer Grundbegriffe niemals umgestoßen werden
wird.”

Albert Einstein, 1949

Die Thermodynamik beschreibt den Austausch von
Energie und Wärme zwischen unterschiedlichen Sy-
stemen. Sie wurde vor allem im 19. Jahrhundert ent-
wickelt, motiviert durch den Bau von Dampfmaschi-
nen im Rahmen der Industrialisierung.

Für die Physik biologischer Systeme (dazu gehört
der menschliche Körper) ist sie vor allem deswegen
relevant, weil sie es erlaubt, Gleichgewichtszustän-
de zu berechnen oder die Grenzen der Leistungsfä-
higkeit von Organen und Organismen abzuschätzen.
Beispiele dafür umfassen den Energieverbrauch un-
terschiedlicher Organe. So wird z.B. in der Niere die
Salzkonzentration im Primärharn erhöht, was gemäß
den Gesetzen der Thermodynamik nur unter Ener-
giezufuhr möglich ist. Die Niere verbraucht deshalb
rund 10 % des Grundumsatzes an Energie. Als ein
weiteres Beispiel kann die Lunge nur deshalb funk-
tionieren, weil die Oberflächenspannung der Flüs-
sigkeit, welche die Lungenbläschen auskleidet, über
oberflächenaktive Substanzen reduziert wird.

Die Objekte der Thermodynamik sind Systeme, wel-
che in unterschiedlicher Weise mit ihrer Umge-
bung in Kontakt kommen. Dieser Kontakt kann ver-
schwinden - dann handelt es sich um ein isolier-
tes oder abgeschlossenes System. Biologische Sy-
steme sind meist offene Systeme, das heisst, sie
können Wärme, Arbeit und / oder Stoff mit ihrer
Umgebung austauschen. Allerdings ist gerade der
Stoffaustausch meist kontrolliert: eine Zelle regu-

System
T, p, ni

Umgebung

Abbildung 2.12: Thermodynamisches System.

liert, welche Stoffe sie von ihrer Umgebung auf-
nimmt.

Eine der Grundlagen der Thermodynamik ist die
Unterscheidung zwischen Mikro- und Makrozustän-
den. Ein Mikrozustand charakterisiert den Quanten-
zustand jedes einzelnen Teilchens im System. Für
den Makrozustand müssen nur die relevanten Zu-
standsvariablen bestimmt werden.

Als Beispiel betrachten wir eine Menge von N Wür-
feln. Der Mikrozustand r beschreibt die N ein-
zelnen Augenzahlen, r = (n1,n2, . . . ,nN), mit ni =
1,2, . . . ,6. Für unterscheidbare Würfel gibt es 6N

verschiedene Zustände r. Diese Zahl wächst somit
sehr rasch mit der Größe des Systems. Für biologi-
sche Systeme mit typischen Teilchenzahlen in der
Größenordnung von N ⇡ 1020 ist eine vollständige
Beschreibung durch ihren Mikrozustand deshalb un-
möglich. Solche Systeme werden deshalb über ih-
ren Makrozustand beschrieben, welcher auf makro-
skopischen Größen wie Gesamtenergie, Druck oder
Temperatur basiert.

Für die Beschreibung der Makrozustände verwendet
man Zustandsvariablen, wie z.B. Temperatur, Druck,
Volumen und Zusammensetzung. Bei vielen Prozes-
sen, in denen das System sich verändert, bleiben ein-
zelne Zustandsvariablen konstant. Solche Prozesse
werden als iso- Prozesse bezeichnet:

• konstante Temperatur: isothermer Prozess

• konstanter Druck: isobarer Prozess

• konstantes Volumen: isochorer Prozess.

Biologische Prozesse laufen meist bei konstantem
Druck (Atmosphärendruck: ⇡ 105Pa) und konstan-
ter Temperatur (z.B. Körpertemperatur: ⇡ 37�C) ab.
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Die Zustandsvariablen sind nicht unabhängig von-
einander, sondern über Zustandsgleichungen mitein-
ander verknüpft, wie z.B. die Zustandsgleichung für
das ideale Gas:

pV = nRT

oder das van-der-Waals Gas (! Kapitel 2.2.8).

2.2.2 Energie

Zu den wichtigsten Zustandsvariablen gehört die in-
nere Energie U . Eine Änderung der inneren Energie
eines Systems setzt sich zusammen aus der Arbeit
W , die am System geleistet wird, und der Wärme Q,
die ihm zugeführt wird:

dU = dW +dQ. (2.1)

Wird die entsprechende Energie aus dem System ab-
gezogen, so wird das Vorzeichen negativ.

Volumen

D
ru
ck

1

2

a

b

Abbildung 2.13: Der Zustand 2 kann vom Zustand 1
auf unterschiedlichen Wegen (a, b)
erreicht werden.

Im Gegensatz zu Temperatur, Druck und innerer
Energie sind Arbeit und Wärme keine Zustandsva-
riablen: sie hängen nicht nur vom momentanen Zu-
stand ab, sondern auch vom Weg, über den dieser
Zustand erreicht wurde, also von der Geschichte des
Systems. Die Arbeit dW , welche an einem System
geleistet werden muss, um es von Zustand 1 in den
Zustand 2 zu bringen (siehe Abb. 2.13), ist

dW = �
2Z

1

pdV

und damit für die beiden Wege a, b unterschiedlich.
Dementsprechend unterscheidet sich auch die Wär-
me dQ, während die innere Energie dU die gleiche
ist.

Biologische Systeme arbeiten normalerweise bei
konstantem Druck. Ist das System komprimierbar,
kann das Volumen ändern und es wird an dem Sy-
stem Arbeit geleistet. Man verwendet dann eine wei-
tere Größe, welche auch die Dimension einer Ener-
gie hat, die Enthalpie

H = U + pV.

Die Enthalpie gibt an, wie die Energiebillanz einer
Reaktion aussieht, also z.B. wie viel Energie bei der
Verbrennung von Zucker frei wird:

C6H12O6(Glucose)+O2 ! 6CO2 +6H2O
DH = �2810kJ/mol.

Das negative Vorzeichen gibt an, dass bei dieser Um-
wandlung Energie frei wird.

Biologische Systeme zeigen eine zeitliche Entwick-
lung, welche durch den spontanen Ablauf von che-
mischen Reaktionen getrieben wird. Ob eine Reak-
tion spontan abläuft, hängt einerseits davon ab, ob
dabei Energie frei wird, andererseits aber auch von
der Entropie.

2.2.3 Entropie und freie Enthalpie

Eine weitere wichtige Zustandsvariable ist die Entro-
pie S. Sie ist ein Maß für die Unordnung im System.
Thermodynamisch ist sie definiert als

dS =
dQrev

T
.

Hier ist dQrev die Wärmemenge, die bei reversibler
Prozessführung aufgenommen wird: lässt man den
Prozess rückwärts laufen, so wird die gleiche Wär-
memenge wieder abgegeben. Aus dieser Definition
folgt, dass die Entropie eine Zustandsvariable ist. Sie
hängt also nicht davon ab, auf welchem Pfad der Zu-
stand des Systems erreicht wurde.
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Allgemein ist die Wärmemenge, welche dem System
zugeführt wird, gemäß (2.1)

dQ = dU �dW.

Bei einer nichtreversiblen Prozessführung muss dem
System mehr Arbeit zugeführt werden und damit
weniger Wärme. Somit ist die Änderung dQ der
Wärmeenergie des Systems bei irreversibler Pro-
zessführung kleiner als bei reversibler, dQ  dQrev.
Es gilt also

dS � dQ
T

oder T dS � dU �dW.

Das Gleichheitszeichen entspricht dem reversiblen
Fall.

Besteht die Arbeit W nur aus Volumenarbeit, W =
�pV , so können wir dies auch schreiben als

T dS � d(U + pV ) � dH. (2.2)

Wir definieren deshalb eine neue Größe, die freie
Enthalpie

G = H �T S = U + pV �T S. (2.3)

Diese Größe ist relevant für Prozesse, die bei kon-
stantem Druck und konstanter Temperatur ablaufen.
Eine infinitesimale Änderung ist

dG = dH �T dS �SdT.

Für isotherme Prozesse (dT = 0) fällt der letzte Term
weg und

dG = dH �T dS.

Dann folgt aus Gleichung (2.2) dG  0. Dabei gilt
das Gleichheitszeichen für reversible Prozesse, bei
irreversiblen Prozessen ist dG < 0. Wir haben somit
ein Kriterium dafür, dass ein Prozess bei konstanter
Temperatur und konstantem Druck selbständig (d.h.
irreversibel) abläuft: die freie Enthalpie dafür muss
negativ sein.

2.2.4 Hauptsätze

Die Grundlagen der Thermodynamik werden durch
die vier Hauptsätze bestimmt. Der ‘nullte’ definiert
die Temperatur:

0. Hauptsatz Zwei Körper, die miteinander im
thermodynamischen Gleichgewicht stehen, haben
die gleiche Temperatur.

Der erste Hauptsatz entspricht der Energieerhaltung:

1. Hauptsatz Die innere Energie eines Systems,
welches keine Stoffe mit seiner Umgebung aus-
tauscht, ändert sich nur durch den Austausch von
Arbeit und Wärme,

dU = ∂W +∂Q.

Der zweite betrifft die Entropie und definiert damit
die Richtung, in der spontan ablaufende Prozesse
sich bewegen. Er kann auf unterschiedliche Weise
formuliert werden, z.B.

2. Hauptsatz Ohne Einsatz von Energie kann
Wärme nicht von einem Körper niedriger Tempe-
ratur auf einen Körper höherer Temperatur über-
tragen werden.

Daraus folgt, dass der thermodynamische Gleich-
gewichtszustand abgeschlossener Systeme eindeutig
definiert ist dadurch, dass seine Entropie maximal
ist, dS = 0.

Der dritte Hauptsatz ist für biologische Systeme
nicht relevant, wir führen ihn aber der Vollständig-
keit halber auf:

3. Hauptsatz Es ist unmöglich, ein System zum
absoluten Nullpunkt zu kühlen.

2.2.5 Wahrscheinlichkeit, Energie und
Zustandssumme

Wenn wir ein thermodynamisches System (in Ge-
danken oder Taten) in zwei Teile teilen, können wir
für jeden Teil die Wahrscheinlichkeit r(E1) berech-
nen, dass die Energie dieses Teils den Wert E1 hat
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und entsprechend für den Teil 2. Die Energie des Ge-
samtsystems ist in guter Näherung die Summe der
beiden Energien, und somit ist die Wahrscheinlich-
keit dafür, dass die Gesamtenergie den Wert Eg =
E1 +E2 besitzt,

r(Eg) = r(E1 +E2) = r(E1)r(E2)

oder

ln(r(Eg)) = ln(r(E1))+ ln(r(E2)) .

Diese Beziehung muss für beliebige Unterteilungen
gültig sein. Somit muss allgemein gelten

r(E ) =
e�bE

Z
.

Die Konstante b muss für alle Teilsysteme die glei-
che sein. Der Nenner ergibt sich aus der Normierung
der Wahrscheinlichkeit zu

Z = Â
n

e�bEn .

Die Summe läuft über alle Mikrozustände. Die Grö-
ße Z wird als Zustandssumme bezeichnet. Für ein
makroskopisches System enthält sie somit eine sehr
große Zahl von Termen. Für einen bestimmten Mi-
krozustand i mit Energie Ei, der mit den makrosko-
pischen Variablen kompatibel ist, beträgt die Reali-
sierungswahrscheinlichkeit

pi =
e�bEi

Z
.

Aus der Zustandssumme können prinzipiell alle
thermodynamischen Größen bestimmt werden. Am
einfachsten ist dies für die freie Energie

F = U �T S = �kBT lnZ.

Allerdings kann die Zustandssumme nur in einfa-
chen Spezialfällen, wie z.B. dem idealen Gas, expli-
zit berechnet werden.

2.2.6 Wahrscheinlichkeit und Entropie

Entsprechend dieser Wahrscheinlichkeit gab Boltz-
mann der Entropie eine Bedeutung, indem er sie mit

der Wahrscheinlichkeit W für die Besetzung des ent-
sprechenden Zustandes verknüpfte:

S = kB lnW + const. (2.4)

Einstein schlug vor, diese Beziehung auch umge-
kehrt zu nutzen:
“Man bestimmt aus dem empirisch ermittelten
thermischen Verhalten des Systems die Entro-
piewerte der einzelnen Zustände und berechnet
daraus mit Hilfe der Boltzmannschen Gleichung
deren Wahrscheinlichkeiten ...” “Charakteristisch
für diesen Standpunkt ist, dass man die (zeitliche)
Wahrscheinlichkeit eines rein phänomenologisch
definierten Zustandes benutzt. Man erreicht da-
durch den Vorteil, dass man keine Elementartheo-
rie (z.B. statistische Mechanik) der Betrachtung
zugrunde zu legen braucht.”

Albert Einstein, Solvay Konferenz 1911

Das System durchläuft als Funktion der Zeit alle mi-
kroskopischen Zustände, wobei die Wahrscheinlich-
keit, dass es sich zu einem bestimmten Zeitpunkt in
einem bestimmten Zustand befindet, proportional zu
W ist.

Als Beispiel betrachten wir die Wahrscheinlichkeit,
dass sich ein Teilchen im Schwerefeld in einer Höhe
z aufhält, wenn es durch Stöße von Molekülen mit
einer Temperatur T gestört wird. Die Arbeit, welche
benötigt wird, um es in die Höhe z zu heben, beträgt
mgz. Diese Arbeit stammt aus der thermischen Ener-
gie. Somit nimmt der Wärmeinhalt um dQ = �mgz
ab. Die Entropie beträgt somit, als Funktion der Teil-
chenhöhe,

S = const. � mgz
T

.

Eingesetzt in die Boltzmann-Formel (2.4) erhält man
damit für die Aufenthaltswahrscheinlichkeit

W µ e� mgz
kBT ,

also eine exponentielle Druckabnahme, was gut mit
den experimentellen Messungen übereinstimmt.

Wird die Entropie als Funktion einer Zustandsvaria-
blen x um einen Gleichgewichtspunkt mit der Entro-
pie S0 entwickelt, erhält man

S ⇡ S0 +
∂S
∂x

dx+
1
2

∂

2S
∂x2 (dx)2 + . . . .
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Als Funktion der Zustandsvariablen x befindet sich
das System mit der größten Wahrscheinlichkeit in
demjenigen Zustand, welcher der maximalen Entro-
pie entspricht, so dass ∂S

∂x = 0. In der obigen
Gleichung verschwindet somit der lineare Term,
∂S/∂x = 0. Den resultierenden Ausdruck kann man
in die Boltzmann-Gleichung S = kB lnW einsetzen
und diese nach der Wahrscheinlichkeit W auflösen.
Dann erhält man den Ausdruck

W ⇡ exp


1
2kB

∂

2S
∂x2 (dx)2

�
.

Die Wahrscheinlichkeitsverteilung als Funktion der
Zustandsvariablen entspricht somit einer Gaußfunk-
tion.

Der lineare Term entspricht einer Kraft, welche im
Gleichgewicht verschwindet, während der quadrati-
sche Term einer Krümmung entspricht, die angibt,
wie weit die Fluktuationen gehen. In der Nähe eines
Phasenübergangs wird die Krümmung klein und die
Fluktuationen werden groß. Man bezeichnet diese
Effekte in der Umgebung eines Phasenübergangs als
kritisches Verhalten. Es gibt Belege dafür, dass vie-
le biologische Systeme sich in der Nähe eines Kriti-
schen Punktes befinden, so dass sie sehr empfindlich
auf Änderungen der Umwelt reagieren.

2.2.7 Ordnung und negative Entropie

Schrödinger kehrte die Boltzmann’sche Gleichung
um:

�S = kB ln
1

W
.

Diese negative Entropie stellt also ein Maß für die in-
verse Wahrscheinlichkeit für die Besetzung des ent-
sprechenden Zustandes dar. Ein unwahrscheinlicher
Zustand ist ein geordneter Zustand, und dies stellt
eines der charakteristischen Eigenschaften des Le-
bens dar. Schrödinger zeigte, dass Leben dadurch
charakterisiert werden kann, dass es negative Entro-
pie (‘Negentropie’ oder ‘Syntropie’) aus der Umge-
bung entnimmt. Dieser Prozess muss kontinuierlich
ablaufen, um das Leben aufrechtzuerhalten.

Biologische Systeme sind stark strukturiert. Dies be-
deutet, dass sie sich nicht im Zustand maximaler

Entropie befinden, wie das vom zweiten Hauptsatz
gefordert wird. Der Grund dafür ist, dass es sich hier
nicht um abgeschlossene Systeme handelt, sondern
um Systeme, welche sich mit Hilfe von Energie in
einem Zustand fern des Gleichgewichts halten. Dies
wird auch gerne als Definition von Leben verwendet.

Heiß

Flüssigkeit
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Sc
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Abbildung 2.14: Rayleigh-Bénard Instabilität als
Beispiel von spontaner Erzeugung
von lokaler Ordnung.

Die Aufrechterhaltung solcher geordneter Zustän-
de bei gleichzeitiger Erzeugung von Entropie in der
Umgebung findet man nicht nur in lebenden Syste-
men, sondern auch in der unbelebten Natur. Typi-
sche Beispiele sind die Lasertätigkeit, bei der ein
hochgeordneter Zustand von Photonen entsteht, oder
die Rayleigh-Bénard Instabilität, bei der sich durch
eine Temperaturdifferenz geordnete wirbelförmige
Strukturen bilden.

Wie in Abb. 2.15 gezeigt, kann die Entstehung des
Lebens als eine Abfolge von solchen Prozessen ver-
standen werden, bei denen in einem thermodyna-
mischen Nichtgleichgewichtssystem lokal spontan
Ordnung entsteht.

Allgemein beschreibt die Thermodynamik irrever-
sibler Prozesse das Verhalten von Systemen, die
sich nicht im Gleichgewicht befinden. Die Beschrei-
bung basiert auf verallgemeinerten Kräften (z.B.
Konzentrations- oder Temperaturgradienten) und da-
zu konjugierten Flüssen (z.B. Wärmefluss, Diffusi-
on). Ein wichtiger Aspekt dabei ist, dass diese Flüs-
se meist aneinander gekoppelt sind, dass also z.B.
ein Transport von Cl�-Ionen nicht nur die Chlorid-
Konzentration ändert, sondern auch das elektrische
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Nukleonen, Elektronen, Photonen

Atome, Moleküle

Proteine, Nukleinsäuren

Hyperzyklen, RNA, DNA

Einzeller, Vielzeller

kosmische Evolution

chemische Evolution

Selbstorganisation

biologische Evolution

Abbildung 2.15: Entstehung des Lebens als Abfol-
ge spontaner Entstehung von Ord-
nung.

Feld und damit einen Transport anderer Ionen indu-
ziert, oder dass ein Massetransport an einen Wärme-
transport gekoppelt ist.

Literatur: I. Prigogine, Thermodynamic of Irrever-
sible Processes, John Wiley and Sons, New York
(1961).

2.2.8 Van der Waals Gas

Viele dieser Effekte werden durch Wechselwirkun-
gen zwischen molekularen Bestandteilen getrieben.
Diese werden beim Modell des ideale Gases ver-
nachlässigt: Die Gasteilchen werden als ausdeh-
nungslos betrachtet und wechselwirken nur durch
perfekt elastische Stöße. Unter den realen Gasen
kommen die leichten Edelgase und der Wasserstoff
diesem Zustand am nächsten, insbesondere bei nied-
rigem Druck und hoher Temperatur, da die Mole-
küle dann im Vergleich zu ihrer mittleren freien
Weglänge eine verschwindend kleine Ausdehnung
besitzen. Die Geschwindigkeitsverteilung der Teil-
chen in einem idealen Gas wird durch die Maxwell-
Boltzmann-Verteilung beschrieben. Die thermische
Zustandsgleichung (allgemeine Gasgleichung) eines
idealen Gases lautet:

p ·V = n ·R ·T

wobei p der Druck, V das Volumen, n die Stoffmen-
ge, R die universelle Gaskonstante und T die absolu-
te Temperatur ist.

Das Modell des idealen Gases ist somit nicht ge-
eignet für die Beschreibung von Prozessen, die
durch molekulare Wechselwirkungen getrieben wer-
den, wie z.B. die Lösung von Gasen in Flüssigkeiten
(Sauerstoff in Wasser). Dafür ist das Modell des Van
der Waals Gases besser geeignet, welches gewis-
se Wechselwirkungen qualitativ richtig beschreiben
kann. Es ist außerdem so flexibel, dass es auch ge-
löste Stoffe in wässriger Lösung beschreiben kann.
Dadurch wird es sehr nützlich für die Beschreibung
von physiologischen Prozessen.

Die Wechselwirkung zwischen den Teilchen eines
Van der Waals Gases kann über das Lennard-Jones
Potenzial

U(R) = 4e

⇣
s

R

⌘12
�

⇣
s

R

⌘6
�
.

genähert werden (siehe 3.1.10).
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ausgeschlossener Bereich Va

Abbildung 2.16: Van der Waals Wechselwirkung mit
ausgeschlossenem Bereich.

Wichtig ist, dass die Wechselwirkung im Bereich
R < s stark abstoßend ist. Kein Molekül kann somit
in den Bereich der anderen Moleküle eindringen, es
gibt ein ausgeschlossenes Volumen Va, welches pro-
portional zur Anzahl N der Moleküle ist,

Va = Nb0.

Hier ist b0 das ausgeschlossene Volumen pro Mole-
kül, welches für kugelförmige Moleküle dem vierfa-
chen Volumen des Moleküls entspricht.
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Gas Kohäsionsdruck a
in Pa·m6

mol2

Kovolumen b
in 10�6 m3

mol

He 0,00345 23,7
N2 0,141 39,1
O2 0,138 31,8

Luft 0,136 36,4

Im anziehenden Bereich des Potenzials kann man
über die Anziehungskraft als Funktion des Abstan-
des mitteln und erhält ein effektives Potenzial

Ue f f = �a0 N
V

.

Damit kann man die Zustandsgleichung des Van der
Waals Gases bestimmen als

�
p+a0n2�

✓
1
n

�b0
◆

= kBT.

log(Volumen)

D
ru

ck

steigende Temperatur

Abbildung 2.17: Isothermen der Van der Waals Glei-
chung.

Abb. 2.17 stellt Lösungen dieser Gleichung für ver-
schiedene Temperaturen in der p, V Ebene dar. Bei
gegebenem Druck und Temperatur findet man 1 oder
3 Lösungen für das Volumen. Im Falle von 3 Lösun-
gen ist die mittlere instabil, die beiden stabilen Lö-
sungen entsprechen der gasförmigen und der flüssi-
gen Phase.

2.3 Konzentrationsgleichgewichte

Wir betrachten als nächstes Mischungen von unter-
schiedlichen Substanzen, also z.B. Salze gelöst in
Wasser.

2.3.1 Chemisches Potenzial

Zusätzlich zu den bisher diskutierten Energiebeiträ-
gen (Wärme, Arbeit) kann man weitere Energiefor-
men berücksichtigen, wie z.B. Oberflächenenergie
oder elektrostatische Energie, indem man zu einem
bekannten Differenzial das Produkt aus einer gene-
ralisierten Kraft (z.B. Oberflächenspannung, Druck)
und dem Differenzial aus der Systemgröße addiert,
auf die sie wirkt (z.B. Oberfläche oder Volumen).

Sy
st
em Umgebung

Abbildung 2.18: Großkanonische Verteilung: Ein
System kann mit seiner Umgebung
Energie und Teilchen austauschen.

Eine wichtige Abhängigkeit ist die von der Teilchen-
zahl. Dafür betrachten wir wieder in Gedanken ei-
ne Aufteilung des Gesamtsystems in Teilsysteme,
welche hier sowohl Energie, wie auch Teilchen mit-
einander austauschen können. Wir schreiben für die
Teilchenzahl Ni, wobei sich der Index auf die Art der
Teichen bezieht. Diese stellt die Systemgröße dar,
die entsprechende generalisierte Kraft ist das chemi-
sche Potenzial µi. Berücksichtigen wir dies, so wird
die freie Enthalpie G von (2.3) zu

dG = �SdT +V dP+Â
i

µidNi.

Wir können somit das chemische Potenzial schrei-
ben als

µi =
∂G
∂Ni

. (2.5)
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Die gleiche Größe findet man auch in der Festkör-
perphysik, wo sie die mittlere Energie bezeichnet,
welche ein zusätzliches Elektron im System besitzt.
Das chemische Potenzial einer Teilchensorte ist im
gesamten zugänglichen Bereich eines Systems im
Gleichgewicht konstant.

2.3.2 Löslichkeit

Abbildung 2.19: Gelöste Teilchen in einer Flüssig-
keit.

Die Menge von Gas, die in einer Flüssigkeit gelöst
werden kann, ist in guter Näherung proportional zum
Druck des Gases, welches mit der Flüssigkeit im
Gleichgewicht steht:

Si =
ni

V
= KH pi.

Hier ist Si die Löslichkeit ([S] = mol
l ), ni die Menge

des entsprechenden Stoffes in Mol, V das Volumen,
und pi der Partialdruck, d.h. der Anteil des Gesamt-
drucks p, der dem Anteil der i-ten Komponente ent-
spricht. Die Proportionalitätskonstante KH wird als
Henrykonstante bezeichnet.

Das chemische Potenzial von Lösungsmittel wie
auch gelöstem Stoff ändert sich mit der Konzentra-
tion. Aus statistischen Argumenten folgt für das Lö-
sungsmittel

µL = µ

0
L � kBT

N

Â
i=1

xi,

wobei

xi =
ni

Âi ni

der Molenbruch, d.h. die Anzahl der Teilchen des
Stoffes i, dividiert durch die gesamte Zahl der Teil-
chen darstellt und µ

0
L das chemische Potenzial des

reinen Lösungsmittels. Für die gelösten Substanzen
erhält man

µi = µ

0
i + kBT lnxi. (2.6)

Da xi < 1 ist lnxi < 0. Somit wird das chemische
Potenzial des reinen Lösungsmittels durch die An-
wesenheit der gelösten Stoffe reduziert, µi < µ

0
i .

2.3.3 Osmose

Abbildung 2.20: Osmose.

In Abschnitt 2.3.2 hatten wir gesehen, dass gelöste
Stoffe das chemische Potenzial eines Lösungsmittels
reduzieren. Das bedeutet, dass die Diffusion von Lö-
sungsmittelmolekülen bevorzugt in Richtung einer
höheren Konzentration an gelösten Stoffen läuft, al-
so z.B. vom Süßwasser zum Salzwasser. Dies ist vor
allem dann relevant, wenn nur die Lösungsmittelmo-
leküle diffundieren können, nicht aber die gelösten
Stoffe. Dies wird durch sogenannte semipermeable
Membranen ermöglicht, welche z.B. Wasser durch-
lassen, aber nicht große Moleküle oder Ionen. Sol-
che Membranen spielen technisch eine wichtige Rol-
le (z.B. Meerwasser-Entsalzung) aber auch in biolo-
gischen Systemen.

Falls die Wand zwischen den Bereichen A und B für
Wasser permeabel ist, dann fließt Wasser von A nach
B bis der osmotische Druckunterschied ausgeglichen
ist. Lösungsmittel (Wasser) fließt in die Richtung,
in der die Konzentration (osmotischer Druck) größer
ist. Wasserverschiebung führt daher zum Konzentra-
tionsausgleich. Der Konzentrationsausgleich erfolgt
nicht durch Diffusion der Ionen, sondern durch Dif-
fusion des Lösungsmittels durch die Membran.
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Das chemische Potenzial des Lösungsmittels ist,
neben der Konzentrationsabhängigkeit, auch vom
Druck abhängig. Wir schreiben es als

µL = µL(pA)� kBT Â
i

xA
i

= µL(pB)� kBT Â
i

xB
i

oder

µL(pA)� µL(pB) = kBT

 

Â
i

xA
i �Â

i
xB

i

!
. (2.7)

Hier bezeichnen pk und xk
i den Druck und den Mo-

lenbruch im Bereich k = {A,B}. Die Abhängigkeit
des chemischen Potenzials vom Druck erhalten wir
aus (2.5) zu

∂ µL

∂ p
=

∂

2G
∂ p∂N

=
∂V
∂N

= vL.

Hier beschreibt vL das Molvolumen, d.h. das Volu-
men, welches ein Mol des reinen Lösungsmittels be-
nötigt. Damit können wir die Gleichung (2.7) schrei-
ben als

vL(pB � pA) = RT

 

Â
i

xA
i �Â

i
xB

i

!
.

Man kann dies so zusammenfassen, dass jede ge-
löste Komponente einen Druck ausübt als wenn sie
ein ideales Gas wäre. Da die Konzentration in Was-
ser deutlich höher sein kann, als in Luft, können die
Drücke auch leicht mehrere Atmosphären betragen
und so z.B. ein rotes Blutkörperchen zum Platzen
bringen.

Ein wichtiges Beispiel sind rote Blutkörperchen. Ih-
re Zellwand ist für Wasser durchlässig, aber nicht für
Proteine, wie z.B. Hämoglobin, oder Salze. Wasser
diffundiert deshalb durch die Membran, bis sein che-
misches Potenzial auf beiden Seiten das gleiche ist.
Ist die Salzkonzentration im Inneren größer als au-
ßen, so erhöht sich dadurch der Druck im Inneren.

hohe Konzentration niedrige Konzentration

Erythrozyt

Blutplasma

Abbildung 2.21: Osmose bei Erythrozyten in unter-
schiedlich konzentrierten Lösun-
gen.

Abbildung 2.22: Zwei Phasen (Hier: Wasser, Öl) im
Gleichgewicht.

2.3.4 Mehrphasensysteme

Liegen mehrere Phasen vor, wie z.B. Luft und Blut,
zwischen denen sich eine Substanz verteilen kann,
wie z.B. Sauerstoff, so wird das Gleichgewicht er-
reicht, wenn in beiden Phasen nicht nur die gleiche
Temperatur und der gleiche Druck herrschen, son-
dern auch das chemische Potenzial dieser Substanz
in beiden Phasen gleich ist:

µ

A
g = µ

A,0
g +kBT lnxA

g = µ

B
g = µ

B,0
g +kBT lnxB

g .

Hier beziehen sich A, B auf die beiden Phasen. Wir
können daraus das Konzentrationsgleichgewicht be-
stimmen:

xA
g

xB
g

= e� µ

A,0
g �µ

B,0
g

kBT .

Somit ist das Verhältnis der Konzentrationen kon-
stant und nur vom Unterschied der chemischen Po-
tenziale und von der Temperatur abhängig.

Für das Gas kann man das chemische Potenzial in
erster Näherung durch dasjenige eines idealen Gases
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nähern:

µig = kBT ln
✓

N
l

3
th

V

◆
.

Hier ist lth die thermische Länge, d.h. die quanten-
mechanische Wellenlänge eines Teilchens mit der ki-
netischen Energie pkBT :

lth =
hp

2pmkBT
.

Ist die Teilchendichte in der Gasphase ng, so erhält
man daraus den Gleichgewichtswert in der Flüssig-
keit zu

xA
g = ngl

3
the� µ

A,0
g

kBT .

Die Gleichgewichtskonzentration ist somit propor-
tional zur Teilchendichte und damit zum Partial-
druck. Daraus folgt z.B., dass die Sauerstoffkonzen-
tration im Blut mit zunehmender Höhe abnimmt,
aber auch dass die Konzentration von gelösten Ga-
sen im Blut beim Tauchen mit der Tiefe zunimmt.
Dies führt dazu, dass beim Tauchen in großen Tiefen
eine hohe Menge an Stickstoff im Blut gelöst wird,
welche beim Auftauchen in Form von Blasen wie-
der ausgeschieden wird. Dieses Phänomen ist sehr
gefährlich und als Taucherkrankheit bekannt.

Solche Beziehungen spielen nicht nur für die At-
mung eine Rolle, sondern z.B. für Anästhetika: diese
müssen gut in Wasser löslich sein, damit sie gut vom
Blut transportiert werden, gleichzeitig aber auch fett-
löslich sein, damit sie Zellmembranen durchqueren
können.

2.3.5 Reaktionsgleichgewichte

Eine chemische Reaktion wie z.B.

C6H12O6 +6O2 ! CO2 +H2O,

welche die Umwandlung von Zucker und Sauerstoff
zu CO2 und Wasser beschreibt, kann allgemein in
der Form

Â
i

niAi = 0

geschrieben werden. Hier stellen die ganzen Zah-
len ni die Anzahl Formeleinheiten pro Spezies dar.
Sie sind negativ für Edukte und positiv für Produk-
te. Das Gleichgewicht dieser Reaktion ist bestimmt
durch die Extremalbedingung

dG = 0 = �SdT +V d p+
n

Â
i=1

µidNi.

Wir gehen davon aus, dass die Reaktion bei konstan-
ter Temperatur und Druck abläuft, so dass die beiden
ersten Differenziale verschwinden und die Gleichge-
wichtsbedingung sich reduziert zu

n

Â
i=1

µidNi = 0.

Wir können den Fortgang der Reaktion durch die
‘Reaktionslaufzahl’ c parametrisieren: c = 0 be-
deutet, dass nur die Ausgangsstoffe vorhanden sind,
c = 1 dass sie vollständig in die Produkte umge-
wandelt wurden. Damit kann das Gleichgewicht ge-
schrieben werden als

n

Â
i=1

µinidx = 0.

Wir setzen Gleichung (2.6) für das chemische Poten-
zial der gelösten Stoffe ein und erhalten

n

Â
i=1

�
µ

0
i + kBT lnxi

�
nidx = 0.

Wir lösen dies auf nach

Pn
i=1xi = exp

 
�

n

Â
i=1

µ

0
i ni

kBT

!
= exp

✓
�DG0

kBT

◆
.

Dieser Ausdruck ist in der Chemie als ‘Massenwir-
kungsgesetz’ bekannt. DG0 = Ân

i=1 µ

0
i ni ist die freie

Enthalpie der Reaktion bei ‘Standardbedingungen’.
Leider gibt es verschiedene Konventionen, was un-
ter ‘Standardbedingungen’ gemeint ist.

2.3.6 Säure-Base Gleichgewichte

Zu den wichtigsten Reaktionsgleichgewichten ge-
hört das Säure-Base Gleichgewicht. Dazu gehört
z.B. die Selbstdissoziation von Wasser:

2H2O $ H3O+ +OH�. (2.8)
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Hier stellt H3O+ die Säure und OH� die Base dar.
Das allgemeine Schema lautet

S + H2O $ H3O+ +B�.

Hier stellt S die Säure dar, welche durch Abgabe ei-
nes Protons zur Base B� wird. Klassische Beispiele
sind Salzsäure HCl, welche bei der Verdauung eine
wichtige Rolle spielt, sowie viele organische Säuren,
darunter auch Aminosäuren, welche meist die Form
R-CO-OH aufweisen.

Diese Reaktionen befinden sich meist in einem
Gleichgewichtszustand, welchen man durch die
Gleichgewichtskonstanten beschreiben kann. Für die
Selbstdissoziation von Wasser (2.8) gilt bei 25 �C

KW = Kd [H2O]2 = [H3O+][OH�].

⇡ 1,02 ·10�14
✓

mol
l

◆2

(2.9)

Auf Grund der Ladungsneutralität müssen in reinem
Wasser die Konzentrationen der beiden Ionen gleich
sein, sie betragen also

[H3O+] = [OH�] ⇡ 10�7 mol
l

.

Man kürzt dies ab über den pH-Wert:

pH = � log10
[H3O+]

1mol/l
.

Somit ist der pH-Wert von reinem Wasser 7. Säuren
erhöhen die Konzentration von H3O+ und erniedri-
gen somit den pH-Wert. Im Magen liegt er nahe bei
1. Basen erhöhen die Konzentration von OH� und
erniedrigen gemäß (2.9) die H3O+ Konzentration,
d.h. sie erhöhen den pH-Wert.

2.4 Kinetik

Die Kinetik beschreibt den zeitlichen Verlauf che-
mischer Reaktionen. Dies bestimmt z.B. die Ge-
schwindigkeit, mit der Sauerstoff vom Blut aufge-
nommen wird, oder mit der Ionen durch Zellmem-
branen transportiert werden können.

Zeit [s]

O
2 S

ät
tig

un
g 

[%
]

Abbildung 2.23: Zeitlicher Verlauf der Sauerstoff-
aufnahme des Hämoglobins in
Blutlamellen.

2.4.1 Unimolekulare Reaktionen

Reaktionen

A ! B+C,

bei denen ein Ausgangsmolekül A in ein oder meh-
rere Produkte B, C umgewandelt wird, laufen typi-
scherweise ab wie ein radioaktiver Zerfall, d.h. die
Konzentration von A nimmt exponentiell ab,

d[A]

dt
= �kA ! A(t) = A(0)e�kt .

Hier ist [A] die Konzentration des Stoffes und k die
Reaktionsrate. Diese ist abhängig von der Tempera-
tur, typischerweise über eine Beziehung der Art

k(T ) = Ae�Ea/RT .

Hier stellt Ea eine Energie dar, die Aktivierungsener-
gie, und R = 8,314 J/(mol K) die universelle Gas-
konstante.

Ein mehratomiges Molekül besitzt praktisch immer
viele Konformationen, welche eine lokale Stabilität
aufweisen. Es kann aus einer solchen Konformati-
on in eine andere übergehen, wenn es das lokale
Energiemaximum dazwischen überwindet. Dies ge-
schieht mit einer typischen Zeit

t = t0eEa/kBT . (2.10)

Hier bezeichnet t0 ⇡ 10�13 . . .10�14 s eine moleku-
lare Zeitskala, mit der die Moleküle ’versuchen’, die
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Barriere zu überwinden. Dies entspricht einer typi-
schen Schwingungsperiode des Moleküls. Der ex-
ponentielle Term beschreibt die Wahrscheinlichkeit
dafür, dass dieser Versuch erfolgreich ist. Die darin
enthaltene Aktivierungsenergie Ea ist die Energiedif-
ferenz zwischen dem Übergangszustand minus die
Energie des Anfangszustandes.

Daraus erhält man den relevanten Bereich für die
Aktivierungsenergien. Die thermische Energie bei
Raumtemperatur beträgt ca. kBT ⇡ 25meV. Ist die
Aktivierungsenergie etwa 30 mal höher, so wird die
Reaktionszeit etwa 0,1 s, bei der 60-fachen thermi-
schen Energie beträgt sie ca. 30000 Jahre.

2.4.2 Reaktionsgeschwindigkeit

Allgemeine Reaktionen können geschrieben werden
als

nAA+nBB+ · · · ! nX X +nYY + . . .

oder

Â
i

niAi = 0,

wobei ni die “stöchiometrische Zahl” für die i-te
Komponente darstellt. Sie ist negativ für Ausgangs-
moleküle, welche im Laufe der Reaktion verschwin-
den, und positiv für Produktmoleküle, welche dabei
gebildet werden.

Den Ablauf einer Reaktion kann man gedanklich in
drei Schritte aufteilen:

1. Zusammendiffusion der Edukte

2. Chemische Reaktion

3. Auseinanderdiffusion der Produkte

Damit wird die Geschwindigkeit vor allem von 2
Faktoren bestimmt:

1. Die Zeit, bis 2 Reaktionspartner auf Grund der
Diffusion aufeinander treffen und

2. Die Wahrscheinlichkeit, dass die Reaktion statt-
findet.

Die Diffusionszeit hängt offensichtlich von der Kon-
zentration der entsprechenden Moleküle ab. In vie-
len Fällen kann deshalb die Reaktionsgeschwindig-
keit geschrieben werden als

vR = k(T )Picxi
i .

Hier beschreibt k(T ) die Reaktionsgeschwindigeits-
konstante für die normierte Konzentration. Dies
hängt in erster Linie von der Temperatur und der Art
der Reaktion ab, nämlich über die Wahrscheinlich-
keit, dass die Reaktionspartner, die aufeinander ge-
troffen sind, auch reagieren. ci ist die Konzentration
des i-ten Stoffes und xi die Ordnung, welche häufig
gegeben ist durch die stöchiometrische Zahl, xi = ni.
Ähnlich wie in 2.4.1 kann die Reaktionsgeschwin-
digkeitskontante häufig als

k(T ) = k0e�EA/kBT

geschrieben werden. Dies entspricht der Arrhenius-
Abhängigkeit.

2.4.3 Katalyse

Katalysatoren sind Stoffe, welche chemische Reak-
tionen beschleunigen, ohne selber dabei verändert zu
werden. Katalysatoren sind z.B. bei Abgasfiltern in
Automobilen bekannt, wo sie dazu dienen, Schad-
stoffe in weniger schädliche Substanzen umzuwan-
deln. Die chemische Industrie verwendet Katalysa-
toren für praktisch alle technischen Prozesse.

In biologischen Systemen ist die Katalyse unabding-
bar. Während Reaktionen in der Chemie meist bei
hohen Temperaturen und teilweise bei hohem Druck
durchgeführt werden, müssen alle biologisch rele-
vanten Reaktionen in wässriger Lösung bei Körper-
temperatur durchgeführt werden. Dies ist nur durch
Katalyse möglich. In biologischen Systemen wird
die Rolle des Katalysators von Proteinen übernom-
men - diese werden als Enzyme bezeichnet. Dadurch
wird es nicht nur möglich, die Reaktionen unter phy-
siologischen Bedingungen durchzuführen, sondern
die Enzyme können auch gezielt aktiviert oder deak-
tiviert und die Reaktionen auf diese Weise gesteuert
werden.
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Abbildung 2.24: Reaktionsweg für eine direkte und
eine katalysierte Reaktion.

Abb. 2.24 zeigt schematisch die Wirkungsweise
von Enzymen (und auch konventionellen Katalysa-
toren): diese binden zunächst die Edukte, wobei hier
teilweise eine kleine Energiebarriere überwunden
werden muss. In der gebundenen Form ist jedoch
die Energie des Übergangszustandes gegenüber der
nichtkatalysierten Reaktion stark reduziert. Die Re-
duktion der Energie des Übergangszustandes durch
die Bindung an das Enzym ist deutlich höher als die
Reduktion der Energie des Ausgangsmoleküls. Die
Bindung des Übergangszustandes ist somit immer
stärker als die Bindung des Eduktes oder Produk-
tes. Gemäß Gleichung (2.10) wird dadurch die Reak-
tionsgeschwindigkeit erhöht, wobei die Beschleuni-
gung exponentiell von der Erniedrigung der Energie
des Übergangszustandes abhängt.

Typische Beispiele sind die Amylase, welche die
Spaltung von Stärke um den Faktor 3 ·1011 beschleu-
nigt, oder das Lysozym, welches die Spaltung von
Zuckerketten in den Zellwänden von Bakterien um
den Faktor 2 ·106 beschleunigt.

2.5 Energiefluss

2.5.1 Quellen und Senken

Lebewesen sind hochkomplexe Systeme, welche
sich offensichtlich nicht im thermodynamischen
Gleichgewicht befinden. Leben ist somit physika-
lisch gesehen ein Nichtgleichgewichtssystem, wel-
ches nur existieren kann, wenn ihm ständig Energie

und Rohstoffe zugeführt werden. Die Energie wird
dabei natürlich nicht verbraucht, sie wird jedoch um-
gewandelt (z.B. chemische Energie in Wärme), und
jeder Organismus erzeugt dabei Entropie.

Der Energiefluss ist bei allen lebenden Systemen
ein entscheidender Faktor für die Funktionsfähig-
keit der Organismen. Dabei wird Energie in chemi-
scher oder optischer Form in das System eingespeist,
dort für eine Vielzahl chemischer Prozesse verwen-
det und in chemischer oder thermischer Form wie-
der abgegeben. Aus der Sicht der Thermodynamik
sind die Triebkräfte chemischer Reaktionen die Ab-
nahme der Freien Energie F(T,V ) beziehungswei-
se der Freien Enthalpie G(T, p).

Die Quelle der Freien Energie für das Leben auf der
Erde ist die Kernfusion in der Sonne. Der wichtigste
Prozess kann dabei über die Gleichung

4 1H ! 4He2+ + 2e� + Energie

zusammengefasst werden. Nach mehrfacher Um-
wandlung der freiwerdenden Energie erreicht ein
Teil davon die Erde, im Wesentlichen als sichtba-
res Licht. Das Licht mit Wellenlängen von l= 400
nm bis 750 nm dient zur Erwärmung (Entropieer-
zeugung), und wird bei der Photosynthese in den
grünen Pflanzen direkt in chemische Energie umge-
setzt. Ein Mol Lichtquanten transportiert dabei etwa
180 kJ Energie.

Abbildung 2.25: Umwandlung der Sonnenenergie in
Zucker.

Während autotrophe Organismen (Pflanzen, einige
Mikroorganismen) in der Lage sind, aus anorgani-
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schen Vorstufen alle von ihnen benötigten organi-
schen Verbindungen zu synthetisieren (z.B. Kohlen-
hydrate), sind die heterotrophen Organismen wie
Tiere oder der Mensch auf die Zufuhr von organi-
schen Substanzen aus der Nahrung angewiesen.

2.5.2 Energiefluss im Organismus

Der Mensch hat einen Energieumsatz von 10-20
MJ/Tag (für vorwiegend sitzende Tätigkeit / Schwer-
arbeiter). Diese Energie muss bereitgestellt und um-
gesetzt werden. Im Organismus müssen dafür Nähr-
stoffe und Sauerstoff verteilt werden. Dazu sind ei-
ne Reihe von Prozessen notwendig, welche inein-
ander greifen. Voraussetzung für die Bereitstellung
der Energie im Organismus ist nicht nur die Bereit-
stellung des Brennstoffs (entweder über Photosyn-
these oder Nahrung), sondern auch des Sauerstoffs,
welcher benötigt wird, um die chemisch gespeicher-
te Energie freizusetzen. Der Sauerstoff muss in jede
einzelne Zelle gelangen (siehe Kapitel 6.2.7).

Abbildung 2.26: Energieumsatz und Sauerstoff-
transport im Organismus

In Figur 2.26 sind die wichtigsten Stufen dargestellt,
in denen die Energie, respektive der für die Ener-
gieerzeugung notwendige Sauerstoff im Organismus
transportiert wird. Dabei muss z.B. der Sauerstoff
mehrmals in ein anderes Medium wechseln, z.B. aus
der Luft ins Gewebe, ins Blut, und wieder in die
Zellen. In den Zellen findet ein weiterer, diffusiver
Transportprozess statt.

Energie und damit Sauerstoff werden bei sehr vie-
len Prozessen benötigt. Während der Brennstoff im
Körper über längere Zeit gelagert werden kann (z.B.
im Fettgewebe), muss der Sauerstoff dann zur Ver-
fügung gestellt werden, wenn die Energie benötigt
wird. Die wichtigsten Energie verbrauchenden Pro-
zesse sind

• Proteinsynthese

• Ionenpumpen (z.B. Nervenzellen)

• Bewegungsprozesse in den Muskeln

Die verschiedenen Prozesse skalieren unterschied-
lich mit der Größe eines Organismus. Das gleiche
gilt für die wichtigsten ”Verbraucher”. Damit die Le-
bensprozesse aufrecht erhalten werden können, müs-
sen alle diese Prozesse im Gleichgewicht sein.
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Abbildung 2.27: Sauerstoffdruck im Blut für ver-
schiedene Organismen.

Auch hier ergeben sich für unterschiedliche Orga-
nismen unterschiedliche Anforderungen. Bei größe-
ren Organismen ist z.B. der Transportweg im Kör-
per länger. Wie in Figur 2.27 gezeigt, nimmt der
Blut-Sauerstoffgehalt von Säugetieren mit der 12-
ten Wurzel aus der Masse der Tiere ab. Berücksich-
tigt man weitere Faktoren wie die Größe des Blut-
kreislaufs, Druck und Pulsrate, so ergibt dies eine
Änderung der Transportleistung, welche etwa mit
der Masse hoch 3/4 skaliert.
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2.5.3 Energiefluss in der Zelle

Der Fluss von Energie (Brennstoff) und Sauerstoff
spielt sich wiederum auf hierarchisch unterschiedli-
chen Ebenen ab. Der Energiefluss in der Zelle ist in
der Abbildung 2.28 veranschaulicht.

Abbildung 2.28: Energiefluss in der Zelle. [7]

Die Nahrungsbestandteile, wie z.B. Glukose, wer-
den über den Blutkreislauf in die Zelle transpor-
tiert und dort in den Mitochondrien verwendet, um
aus Adenosin-Diphosphat (ADP) und einer weite-
ren Phosphatgruppe Adenosin-Triphosphat (ATP) zu
erzeugen. Bei diesem Prozess wird Sauerstoff ver-
braucht und Kohlendioxid und Wasser erzeugt.

Der Prozess umfasst in Wirklichkeit eine Vielzahl
von Schritten. Zunächst werden die Energieträger,
also die Kohlenhydrate, Fettsäuren oder Proteine
in kleinere Bestandteile aufgetrennt. Im Citratzy-
klus werden sie, zusammen mit Wasser, zu CO2 ab-
gebaut, wobei Wasserstoff frei wird. Dieser Was-
serstoff wird, in chemisch gebundener Form (z.B.
NADH, FADH) in die Atmungskette überführt, wo
er, wiederum mit Sauerstoff, zu H2O oxidiert wird
und dabei die Energie liefert, um ADP in ATP um-
zuwandeln. Dieser Schritt wird auch als Phosphory-
lierung bezeichnet.

Adenosintriphosphat ist der universelle biologische
Energiespeicher. Es besteht aus der Grundeinheit
Adenosin (=Adenin + Ribose) und drei Phosphat-
gruppen. ATP wird aus dem energieärmeren Adeno-
sindiphosphat (ADP) durch Anhängen einer weite-
ren Phosphatgruppe gebildet.

Abbildung 2.29: Adenosintriphosphat.

Dieses Molekül dient als Zwischenspeicher für die
Energie. Viele Prozesse in der Zelle werden direkt
durch ATP angetrieben, indem dieses Molekül von
Enzymen gespalten wird:

(ATP)4� +H2O
! (ADP)3� +(HPO4)2� +H+ +Energie

Die dabei frei werdende Energie kann z.B. dafür ein-
gesetzt werden, um Muskeln zu bewegen, für den
Transport von Molekülen oder für die Biosynthese.

Grundsätzlich können energiereiche Moleküle wie
die Glukose auch ohne Sauerstoff abgebaut und mit
der dabei frei werdenden Energie ATP aufgebaut
werden. Würde der Mensch auf diesen Prozess zu-
rückgreifen, so könnte er den gesamten Lungenappa-
rat sparen. Allerdings erhält man bei der anaeroben
Glycolyse aus einem Mol (D-)Glucose lediglich 2
Mol ATP. Mit aeroben Prozessen, also unter Einsatz
von Sauerstoff, erhält der menschliche Organismus
dagegen aus einem Mol (D-)Glucose 38 Mol ATP,
davon 36 Mol aus der Atmungskette! Dies bedeutet
einen erheblichen Vorteil für aerobe Organismen, die
einen wesentlich größeren Energiebetrag pro Mole-
kül freisetzen können (11,4eV pro Molekül) als nur
durch Glycolyse (0,6eV pro Molekül).

ATP spielt eine Schlüsselrolle im Stoffwechsel;
praktisch alle Prozesse werden von ihm angetrie-
ben. Um sich seine Rolle anschaulicher zu machen,
kann man folgende Überschlagsrechnung durchfüh-
ren: Ein Mensch hat einen täglichen Energieumsatz
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von ca. 15 MJ. Wenn etwa die Hälfte davon (7,2 MJ)
für die Herstellung von ATP verwendet wird, so ent-
spricht das einem Umsatz von ca.

nAT P =
Etot

EAT P
=

7200kJ
90kJ/Mol

= 80Mol

pro Tag. Hier ist EAT P = 90kJ/Mol die Hydrolisie-
rungsenergie von ATP. Ein Mol ATP wiegt etwa 500
g; somit beträgt der tägliche Umsatz von ATP rund

mAT P = nAT P ·0,5kg = 40kg!

2.5.4 Arbeit und Leistung

Die Energie, welche bei der Oxidation von einem
Mol Zucker frei wird, beträgt etwa 2,9 MJ:

C6H12O6 +6O2 = 6CO2 +6H2O+2,9MJ.

Pro Mol Sauerstoff werden somit 2900 kJ/6 ⇡ 480
kJ frei. Dies gilt auch für andere Ausgangsstoffe, wie
z.B. Kohlenhydrate, Fette oder Proteine, in guter Nä-
herung. Man spricht deshalb vom kalorischen Sauer-
stoffäquivalent, welches man auf einen Liter gasför-
migen Sauerstoff bezieht. Ein Mol eines idealen Ga-
ses hat unter Normalbedingungen ein Volumen von
22,4 Litern. Somit ist das kalorische Sauerstoffäqui-
valent

kalO2Aequiv ⇡ 480
22,4

kJ
l

⇡ 21,4
kJ
l

,

oder, als Faustregel: Die Verbrennung von ca. 1 Liter
Sauerstoff erzeugt ca. 20 kJ Energie.

Ohne körperliche Anstrengung verbraucht ein
Mensch bei Tag etwa 110 W, im Schlaf etwa 60 W.
Die mittlere Leistung liegt damit (für 7 h Schlaf) bei

P̄ ⇡ 1
24

(7 ·60 + 17 ·110) ⇡ 95W.

Dies entspricht einem Tagesverbrauch von:

95W ·3600
s
h

·24h ⇡ 8,2MJ.

Der tatsächliche Verbrauch hängt stark von unter-
schiedlichen Faktoren ab, wie z.B. Leistung, Kör-
peroberfläche, Alter, Geschlecht etc. typische Bei-
spiele sind Schlafen: 350 kJ/Stunde, gemütlich rad-
fahren: 1000 kJ/Stunde, Langstreckenlauf : 4000
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Abbildung 2.30: Energieverbrauch als Funktion des
Alters.

kJ/Stunde. Für einzelne Organe betragen typische
Leistungen in Watt:

Pumpleistung Herz 1,3-1,7
Atmung 0,7-1,4
Wärmehaushalt 75-90
Gehirn 15-20

Obwohl das Gehirn nur 2% des Gesamtgewichts
ausmacht (ca. 1.5 kg), wird im Gehirn 20% der
Sauerstoffaufnahme verbraucht. Daraus kann man
schließen, dass das Gehirn ca. 20% des gesamten
Energiehaushalts ausmacht. Der Energieverbrauch
des Gehirns ist unabhängig vom Wach- oder Schlaf-
zustand.
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Abbildung 2.31: Maximale Leistung als Funktion
der Dauer, über die sie erbracht
wird.

Höchstleistungen können nur für ganze kurze Zeit
gebracht werden. Wenn die Leistung die maxima-
le Sauerstoffaufnahme übersteigt, dann spricht man
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von anaerober Phase. Bei Beanspruchung über lan-
ge Zeit muss die Sauerstoffaufnahme der erbrach-
ten Leistung entsprechen (aerobe Phase). Bei der
anaeroben Belastung erfolgt die Energieversorgung
durch die einfache Aufspaltung von Kreatinphosphat
(KrP) zu Kreatin und Phosphat sowie den anaeroben
Abbau von Glukose zu Laktat. Dies liefert schnell
Energie, ist aber zeitlich begrenzt.

2.6 Transportprozesse

2.6.1 Wasser im Körper

Wasser ist der wichtigste Bestandteil aller lebenden
Organismen und nimmt damit eine Sonderstellung
ein. Ein ausgeglichener Wasserhaushalt ist für die
Gesundheit entscheidend. Außerdem spielt das Was-
ser bei diagnostischen und therapeutischen Metho-
den eine wichtige Rolle.

Der Wassergehalt von Neugeborenen beträgt unge-
fähr 75%, bei Erwachsenen ist er deutlich geringer:
50-65%. Der Wassergehalt in den Geweben ist sehr
verschieden: während Fett- und Knochengewebe nur
10-20% Wasser enthalten, haben die meisten ande-
ren Gewebearten einen höheren Wassergehalt von
70-80%.

Interstitielle

Flüssigkeit

10 l

Intrazelluläre

Flüssigkeit

30 l

Blutplasma

3.5 l

Lunge

Haut
Niere

Magen Darm

Transzelluläres

Wasser

Abbildung 2.32: Verteilung von Wasser im mensch-
lichen Körper.

Die verschiedenen Kompartimente des Körpers,
welche Wasser enthalten, sind durch Membranen

voneinander getrennt, welche für Wasser durchläs-
sig sind. Der größte Teil des Wassers befindet sich in
den Zellen, kleinere Teile im interzellulären Raum,
im Blutplasma und im Magen-Darm Trakt.

Eine lebensnotwendige Vorraussetzung für das Le-
ben ist die Konstanthaltung des so genannten inne-
ren Milieus (Homöostase).
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Abbildung 2.33: Wasserhaushalt des Körpers

Pro Tag werden etwa 2.5 l Wasser aufgenommen,
respektive durch Verbrennung von Nahrung erzeugt
und wieder ausgeschieden. Ein Teil davon ist un-
vermeidbar, wie z.B. die Feuchtigkeit der Luft beim
Ausatmen. Bei körperlicher Anstrengung kann der
Wasserverlust auf ein Vielfaches ansteigen. Der Kör-
per steuert die Wasserausscheidung über die Niere
so, dass ein Gleichgewicht aufrechterhalten wird.

2.6.2 Kompartiment Modelle

Werden Stoffe, wie z.B. Wasser, Nahrung oder Me-
dikamente in den Körper aufgenommen, so vertei-
len sie sich nicht gleichmäßig, sondern reichern sich
selektiv in bestimmten Organen an und werden, je
nach Ort, auf unterschiedlichen Zeitskalen wieder
ausgeschieden. Man beschreibt dieses Verhalten ger-
ne mit sogenannten Kompartiment-Modellen. Da-
bei handelt es sich um ein Rechenmodell, bei dem
die Verteilung eines Stoffes in einem oder mehre-
ren Kompartimenten dargestellt wird. Ein Kompar-
timent kann z.B. ein bestimmtes Organ sein, oder
das Blut. Im Rahmen dieser Modelle nimmt man an,
dass innerhalb eines Kompartiments die Konzentra-
tion des Stoffes homogen sei.
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Ausscheidung
Anreicherung

Abbildung 2.34: Kompartiment Modell für Aufnah-
me, Speicherung und Ausschei-
dung von Stoffen.
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Abbildung 2.35: Kompartiment Modelle mit einem
oder zwei Kompartimenten.

Solche Modelle sind z.B. wichtig für die Analyse
von nukleardiagnostischen Messungen. Die Kom-
partimente stehen miteinander in Kontakt und kön-
nen Stoffe austauschen. Man kann diese Systeme
modellieren und durch Anpassen der Parameter die
beobachteten zeitlichen Verläufe modellieren. Dar-
aus kann man z.B. die Aufenthaltsdauer in den ein-
zelnen Kompartimenten (Organen) bestimmen.

2.6.3 Diffusion

Die Diffusion ist sehr eng verwandt mit der Wär-
meleitung. Sie ist auch von einem grundsätzlichen
Interesse, weil hier, ausgehend von (scheinbar) rein
zufälligen Bewegungen, durch die Gesetze der Stati-
stik ein deterministischer Prozess entsteht.

Start

Ende

1 µm

Abbildung 2.36: Trajektorie einer fluoreszierenden
Mikrokugel, gemessen mit Fluo-
reszenzmikroskopie.

Ausgangspunkt ist die thermische Bewegung der
Moleküle (Brown’sche Bewegung). Wie in Abb.
2.36 gezeigt, führt sie zu einer scheinbar zufälligen
Bewegung. Die gezeigt Trajektorie wurde an einer
fluoreszierenden Mikrokugel in Öl mit Hilfe eines
Fluoreszenzmikroskops gemessen. Sie umfasst 1000
Schritte zu 20 ms.
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Abbildung 2.37: Quadrat der zurückgelegten Di-
stanz (Mittelwert) des Teilchen aus
Abb. 2.36 als Funktion der Zeit.

Trägt man das Quadrat der mittleren zurückgelege-
ten Distanz gegen die Zeit auf, so erhält man in guter
Näherung einen linearen Verlauf

h|~r|2i(t) µ t.

Im Beispiel von Abb. 2.36 beträgt der Proportionali-
tätsfaktor

h|~r|2i(t) ⇡ 1,78
µm2

s
t .
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Geht man davon aus, dass die Bewegung rein stocha-
stisch ist, so erhält man eine mittlere zurückgelegte
Distanz eines bestimmten Moleküls, welche propor-
tional ist zur Wurzel aus der Zeit,

h|~r|2i(t) = 2nDt.

Hier stellt n die Dimension (1, 2 oder 3) dar und
D den Diffusionskoeffizienten. Er hat die Einheit
[D] = m2/s und hängt sowohl vom diffundieren-
den Teilchen, wie auch vom Lösungsmittel und der
Temperatur ab. Für Wassermoleküle in Wasser be-
trägt er bei 25�C 2,3 · 10�9 m2/s. Für Ionen in ver-
dünnten wässrigen Lösungen beträgt er typischer-
weise 0,6 ·10�9 m2/s bis 2 ·10�9 m2/s. Biologische
Moleküle, welche eine deutlich größere Masse be-
sitzen, diffundieren langsamer, mit typischen Dif-
fusionskoeffizienten im Bereich von 10�11 m2/s bis
10�10 m2/s.
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Abbildung 2.38: Abhängigkeit der Diffusionskon-
stanten von der Masse des Teil-
chens.

Insgesamt skaliert die Diffusionskonstante etwa mit
der dritten Wurzel aus der Masse des Teilchens, D µ
M�1/3. Dies entspricht der Vorhersage der Einstein-
Smoluchowski Beziehung

D =
kBT

6ph R
.

Hier stellt h die Viskosität des Mediums dar und
R den hydrodynamischen Radius des Teilchens. Für
Teilchen mit gleicher Dichte ist dieser proportional
zur dritten Wurzel aus der Masse, R µ 3

p
M.

2.6.4 Diffusionsgleichung

Für eine inhomogene Verteilung führt diese Zufalls-
bewegung zu einem Ausgleich der Konzentration,
die man über die Diffusionsgleichung berechnen
kann.

14.12.10 13:02 http://upload.wikimedia.org/wikipedia/commons/1/12/Diffusion.svg

Page 1 of 1

Abbildung 2.39: Ausgleich der Konzentrationsun-
terschiede durch Diffusion.

Für ein gegebenes Volumenelement führt die zufälli-
ge Bewegung der Teilchen dazu, dass pro Zeiteinheit
eine Anzahl Teilchen das Volumen verlässt, die pro-
portional zur Zahl der enthaltenen Teilchen ist. Für
ein homogenes Medium gilt das gleiche für das be-
nachbarte Volumenelement. Damit ist die Zahl der
Teilchen, die aus einem Volumenelement dV her-
aus diffundieren, proportional zur Konzentration der
Teilchen in diesem Volumenelement. Ist die Konzen-
tration des benachbarten Volumenelementes niedri-
ger, so fließt netto ein Teilchenstrom ~jn, der propor-
tional ist zur Konzentrationsdifferenz:

~jn = �D~—n.

Hier stellt n die Teilchenzahldichte und ~jn den zuge-
hörigen Teilchenstrom dar. Das negative Vorzeichen
gibt an, dass der Strom in Richtung der abnehmen-
den Konzentration fließt. Diese Gleichung wird als
1. Fick’sches Gesetz bezeichnet.

Ist die Teilchenzahl eine Erhaltungsgröße, so gilt die
Kontinuitätsgleichung

ṅ = �~— ·~jn,

welche besagt, dass eine Änderung der Konzentra-
tion nur durch eine Divergenz der Stromdichte zu-
stande kommen kann. Wir kombinieren diese bei-
den Gleichungen und erhalten die allgemeine Dif-
fusionsgleichung

ṅ = D~— ·~—n = DDn.

42



2 Physikalische Grundlagen

Diese wird auch als 2. Fick’sches Gesetz bezeich-
net und entspricht der allgemeinen Wärmeleitungs-
gleichung. Die Lösungen der Diffusionsgleichung
sind deshalb identisch zu den Lösungen der Wärme-
leitungsgleichung, welche in Kapitel 2.7 diskutiert
wird.

Wähend diese Diskussion sich auf drei Raumdimen-
sionen bezieht, sind für biologische Systeme häufig
zweidimensionale Systeme relevant. Das wichtigste
Beispiel sind biologische Membranen (! Kap. 3.3).
In diesem Fall ist die Wahrscheinlichkeit, dass zwei
Moleküle aufeinander treffen, höher als in 3D. Des-
halb laufen in zwei Dimensionen diffusionskontrol-
lierte Reaktionen schneller ab als in 3D. Dies ist ein
Grund dafür, dass biologische Systeme Enzyme ger-
ne in Membranen (zweidimensionalen Lipidschich-
ten) einbetten.

2.7 Wärmeleitung

In diesem Unterkapitel wird der Transport von Wär-
me diskutiert. Er erfolgt völlig analog zur Diffusion:
Obwohl die mikroskopische Ursache dafür als zu-
fällige Bewegung atomarer Teilchen verstanden wer-
den kann, erfolgt der makroskopische Transport ge-
richtet und deterministisch.

2.7.1 Phänomenologie

Wärme ist ungeordnete Molekülbewegung: die Mo-
leküle bewegen sich translatorisch wie auch rota-
torisch und enthalten deshalb Energie. Diese Ener-
gie wird als Wärmeenergie gemessen und kann auch
zwischen Molekülen oder über längere Distanzen
übertragen werden. Die Gesetze dieser Übertragung
gelten auch für viele andere Vorgänge.

Wärmeenergie kann durch Strahlung, Leitung oder
Strömung (Konvektion) transportiert werden. Wär-
mestrahlung ist elektromagnetischer Natur, wie das
Licht. Sie ermöglicht die Abgabe von Wärme auch
ins Vakuum. Diese Abgabe ist nur von der Tempe-
ratur des strahlenden Körpers abhängig, aber für die
Energiebilanz ist auch die Rückstrahlung der Umge-
bung wichtig.

Abbildung 2.40: Wärmeleitung.

Wärmeströmung setzt makroskopische Bewegungen
in der Flüssigkeit oder dem Gas voraus, deren Wär-
meinhalt so an andere Stellen transportiert wird.
Wärmeleitung erfolgt nur in Materie, ist aber nicht
mit deren makroskopischer Bewegung verbunden,
sondern nur mit Energieübertragung durch Stöße.

Wärmetransport tritt dann auf, wenn die Temperatur
nicht homogen ist. Er ist so gerichtet, dass er zu ei-
ner Verringerung des Temperaturgefälles führt. Da-
bei werden wir zwischen stationären und nichtsta-
tionären Problemen unterscheiden. Stationäre Pro-
bleme werden durch inhomogene Randbedingungen
charakterisiert, nichtstationäre durch eine inhomo-
gene Anfangsbedingung. Inhomogene Randbedin-
gungen können durch Wärmequellen wie z. B. Heiz-
drähte erzeugt werden. Negative Wärmequellen oder
Senken sind Stellen, wo Wärme in andere Energie-
formen überführt wird, z. B. in chemische Ener-
gie, Verdampfungs- oder Schmelzenergie. Zwischen
Quellen und Senken kann sich dann eine stationäre
Temperaturverteilung einstellen.

2.7.2 Wärmeleitung

Besteht eine inhomogene Temperaturverteilung, so
führt die Wärmeleitung zu einem Ausgleich der
Temperatur. Dabei wird Wärmeenergie aus dem Be-
reich höherer Temperatur in den Bereich tieferer
Temperatur übertragen.

Die Übertragung von Wärme kann quantifiziert wer-
den durch die Wärmestromdichte

~j =
dPQ

dA
~n.

43



2 Physikalische Grundlagen

Sie beschreibt die Menge an Wärmeenergie, die pro
Zeiteinheit durch ein Flächenelement dA mit Nor-
malenvektor~n fließt und hat demnach die Einheit

[~j] =
W
m2 .

Betrag und Richtung der Wärmestromdichte ~j sind
dabei durch den Gradienten der Temperatur und die
Wärmeleitfähigkeit l des Materials gegeben,

~j = �l

~—T. (2.11)
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Abbildung 2.41: Abhängigkeit des Wärmestroms
von der Temperaturverteilung.

Der Wärmestrom zeigt dabei immer in Richtung der
sinkenden Temperatur und nimmt mit zunehmender
Steilheit der Temperaturverteilung zu.

Die Wärmeleitfähigkeit l ist eine temperaturabhän-
gige Stoffkonstante und hat die Einheit

[l ] =
W

K ·m
.

Tabelle 2.1 vergleicht die Wärmeleitfähigkeitskoef-
fizienten für einige Materialien. Allgemein sind Me-
talle gute Wärmeleiter, wobei der Wärmeleitkoeffi-
zient stark mit der elektrischen Leitfähigkeit korre-
liert. In diesen Materialien wird die Wärme primär
über freie Elektronen übertragen. Elektrische Iso-
latoren wie z.B. Glas leiten um mehrere Größen-
ordnungen schlechter. Hier sind Gitterschwingungen
(Phononen) für den Transport verantwortlich. In Ga-
sen ist der Wärmeleitkoeffizient nochmals deutlich
geringer. In diesem Fall wird die Energie vor allem
durch molekulare Stoßprozesse übertragen. In Was-
ser und anderen Flüssigkeiten wird die Wärme durch

Stoff T
[�C]

l⇥ W
m·K

⇤ Mechanismus

Silber 0 420 Freie
Elektronen

Kupfer 50 390 Freie
Elektronen

Quarzglas 50 1,4 Gitterschwing-
ungen

Luft 0 0,024 Stöße
Wasser 0 0,54 Diffusion
Gewebe 37 0,1-0,2 Diffusion,

Konvektion
Vakuum Strahlung

Tabelle 2.1: Wärmeleitfähigkeit verschiedener Stof-
fe.

molekulare Diffusion übertragen. Im Gewebe spielt
die Diffusion ebenfalls eine wichtige Rolle. Zusätz-
lich kann hier auch Konvektion (z.B. durch das Blut)
beitragen.

Die unterschiedliche thermische Leitfähigkeit hat
viele praktische Konsequenzen. So ist eine gerin-
ge thermische Leitfähigkeit die wichtigste Voraus-
setzung für eine warme Kleidung. Schweiß kann
die Leitfähigkeit deutlich erhöhen und so, nicht nur
durch die Verdunstung, zu einer Abkühlung führen.
Weil Wasser eine deutlich höhere Leitfähigkeit als
Luft besitzt, kühlt man beim Schwimmen deutlich
schneller aus als an der Luft. Metalle fühlen sich
wegen der hohen thermischen Leitfähigkeit auch be-
sonders kalt (oder heiß) an.

Wir betrachten als einfaches Beispiel die Wärme-
leitung entlang eines Stabes mit Querschnitt A und
Länge `. In diesem Fall ist die Wärmeleistung

PQ = jA = Al

T1 �T2

`
, (2.12)

also proportional zum Querschnitt des Stabes und
zur Temperaturdifferenz, sowie indirekt proportional
zur Länge. Wie in Abb. 2.42 gezeigt, bildet sich im
stationären Gleichgewicht eine lineare Temperatur-
verteilung entlang des Stabes aus.
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Abbildung 2.42: Wärme wird über einen Stab zwi-
schen 2 Wärmereservoiren übertra-
gen.

2.7.3 Wärmewiderstand

In Analogie zum Ohm’schen Gesetz I = V/R für
die Leitung von Strom spricht man bei dieser Pro-
portionalität auch gerne von einem Wärmewider-
stand: Die transportierte Wärmemenge pro Zeit (der
Wärmestrom) ist proportional zur Temperaturdiffe-
renz (der Wärmespannung) und indirekt proportio-
nal zum Wärmewiderstand RQ:

PQ =
T1 �T2

RQ
. (2.13)

Der Vergleich der beiden Ausdrücke (2.12) und
(2.13) ergibt

RQ =
`

Al

, [RQ] =
K
W

.

Der Wärmewiderstand ist allgemein das Produkt aus
der Materialkonstanten rQ = 1/l und dem geome-
trischen Faktor `/A:

RQ = rQ
`

A
.

Für Wärmewiderstände gelten die gleichen Rechen-
regeln wie für elektrische Widerstände: man kann
sie in Reihe oder parallel anordnen. Bei einer Rei-
henschaltung (z.B. verschiedene Schichten von Klei-
dungsstücken) muss im stationären Fall der Wärme-
strom durch zwei aufeinander folgende Schichten
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T1 T2RQ1 RQ2
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Abbildung 2.43: Reihenschaltung von Wärmewider-
ständen.

gleich sein, PQ1 = PQ2. Somit gilt

PQ1 =
T1 �T3

RQ1
= PQ2 =

T3 �T2

RQ2

= PQ =
T1 �T2

Rs
Q

.

Hier ist T3 die Temperatur zwischen den beiden
Schichten und Rs

Q der Widerstand der Reihenschal-
tung. Wir können sie bestimmen aus PQ1 = PQ2 = PQ:

T3 =
RQ2T1 +RQ1T2

RQ1 +RQ2
.

Sie entspricht somit einem gewichteten Mittelwert.
Einsetzen in PQ1 oder PQ2 ergibt den Ausdruck für
PQ, z.B.

PQ =
T1 �T3

RQ1
=

T1

RQ1
� RQ2T1 +RQ1T2

RQ1(RQ1 +RQ2)

=
1

RQ1

✓
T1(1� RQ2

RQ1 +RQ2
)

� T2
RQ1

(RQ1 +RQ2)

◆

=
T1 �T2

RQ1 +RQ2

und damit den Gesamtwiderstand

Rs
Q = RQ1 +RQ2.

Somit addieren sich in der Reihenschaltung die Wi-
derstände, wie beim elektrischen Widerstand. Dies
nutzt man z.B. wenn man mehrere Kleidungsschich-
ten verwendet, um sich warm zu halten.
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Abbildung 2.44: Parallelschaltung von Wärmewi-
derständen.

Bei Parallelschaltung addieren sich die Wärmeströ-
me durch die beiden Leiter, PQ = PQ1 + PQ2 und da-
mit ihre Leitwerte:

1
Rp

Q
=

1
RQ1

+
1

RQ2
.

2.7.4 Wärmeleitungsgleichung

Da Energie eine Erhaltungsgröße ist, gilt für die
Übertragung von Energie eine Kontinuitätsglei-
chung. Wärme ist im Allgemeinen keine Erhaltungs-
größe, da sie in andere Energieformen umgewandelt,
resp. daraus erzeugt werden kann. Wir beschrän-
ken uns hier jedoch auf Systeme, in denen keine
solchen Umwandlungsprozesse stattfinden, so dass
wir auch für die Wärmeenergie eine Kontinuitäts-
gleichung aufstellen können: strömt mehr Energie in
ein Volumenelement hinein als hinaus, so ändert sich
die darin enthaltene Wärmeenergie und damit seine
Temperatur:

~— ·~j dV = �∂Q
∂ t

. (2.14)

Hier stellt ∂Q die im Volumenelement dV enthaltene
Wärmeenergie dar.

Wir verwenden die Wärmekapazität

c =
dQ
dT

= rcdV,

mit der spezifischen Wärmekapazität rc. Damit kön-
nen wir Gleichung (2.14) schreiben als

~— ·~j = �∂Q
∂T

1
dV

∂T
∂ t

= �rc
∂T
∂ t

.

Mit Hilfe von Gleichung (2.11) für die Wärmestrom-
dichte erhalten wir daraus die allgemeine Wärmelei-
tungsgleichung

∂T
∂ t

= � 1
rc

~— ·~j =
l

rc
~— ·~—T = DwDT. (2.15)

Hier bezeichnet

Dw =
l

rc

den Wärmeleitungskoeffizienten, welcher dem Dif-
fusionskoeffizienten entspricht.
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Abbildung 2.45: Abhängigkeit der Temperaturände-
rung von der Temperaturverteilung.

Die Wärmeleitungsgleichung (2.15) sagt, dass die
Temperaturänderung proportional zur Krümmung
der Temperaturverteilung ist. Die Temperatur steigt
somit in Bereichen mit positiver Krümmung und
sinkt in Bereichen negativer Krümmung. Dies ent-
spricht den Erwartungen aus der Kontinuitätsbedin-
gung: in Bereichen positiver Krümmung fließt mehr
Wärme hinein als hinaus und umgekehrt in Berei-
chen negativer Krümmung. Dies führt dazu, dass die
Krümmungen reduziert werden. Im stationären Fall
wird die Temperaturverteilung bei einem eindimen-
sionalen System linear.

Die Wärmeleitungsgleichung sieht formal ähnlich
aus wie eine Wellengleichung. Im Gegensatz dazu
steht jedoch auf der linken Seite die erste statt der
zweiten Ableitung nach der Zeit. Dieser Unterschied
führen zu einem völlig anderen Verhalten:

• Sowohl im Ortsraum wie im Zeitraum ist die
Ausbreitung einer Störung nicht oszillatorisch,
sondern monoton.
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• Bei der Wärmeleitung gibt es keine Ausbrei-
tungsfront oder Ausbreitungsgeschwindigkeit.

• Bei der Wärmeleitung hat die Zeit eine Rich-
tung: Alle Systeme bewegen sich in Richtung
auf einen Gleichgewichtszustand, in dem die
Temperatur möglichst gleichförmig verteilt ist.

2.7.5 Wärmeleitung in 1D

Ein effektiv eindimensionales System erhält man
auch bei der Diskussion des Wärmetransfers durch
eine Wand. Dabei reduziert sich die Wärmeleitungs-
gleichung (2.15) zu

∂T
∂ t

=
l

rc

∂

2T
∂x2 . (2.16)

Abbildung 2.46: Wärmeleitung durch Mauer als 1D
Problem.

Die stationäre Lösung,

∂T
∂ t

= 0 =
l

rc

∂

2T
∂x2 ,

erhält man z.B. durch zweimalige Integration:

Tst(x, t) = A+Bx.

Die beiden Konstanten bestimmen wir aus den
Randbedingungen:

Tst(0, t) = T1 = A

und

Tst(L, t) = T2 = T1 +BL.

Auflösen nach B ergibt

B =
T2 �T1

L
.

Somit ist die Temperaturverteilung linear,

Tst(x, t) = T1 +
T2 �T1

L
x.

2.7.6 Zeitabhängigkeit

Die allgemeine Lösung der Gleichung erhält man
durch Trennung der Variablen:

T (x, t) = X(x)Y (t).

Hier stellt X(x) den räumlichen und Y (t) den zeitli-
chen Anteil der Funktion dar. Einsetzen in die eindi-
mensionale Wärmeleitungsgleichung (2.16) ergibt

X
∂Y
∂ t

=
l

rc
Y

∂

2X
∂x2 .

Wir dividieren durch lXY/rc:

rc

lY
∂Y
∂ t

=
1
X

∂

2X
∂x2 = �a

2,

mit �a

2 als Separationskonstante. Für die Zeitab-
hängigkeit lautet die Gleichung damit

∂Y
∂ t

= �a

2 l

rc
Y

und die Lösung

Y (t) = Y (0)e�ta2
l/rc . (2.17)

Die rechte Seite ist identisch zur Wellengleichung
und kann somit über den Ansatz

X(x) = B cos(ax)+C sin(ax)

gelöst werden.

Für die weitere Auswertung wählen wird die Rand-
bedingungen T (0, t) = 0 = T (L, t). Daraus folgt,
dass B = 0 und a = np/L mit n ganzzahlig. Damit
erhalten wir die allgemeine Lösung als Linearkom-
bination der einzelnen Moden:

T (x, t) =
•

Â
n=1

cn sin
⇣npx

L

⌘
e�t/tn .

Die Zeitkonstante für die einzelnen Moden ist laut
(2.17)

tn =
rc

la

2 =
rcL2

ln2
p

2 ,

d.h. die Zerfallsrate einer Mode wächst µ n2. Dies
entspricht der Erwartung: mit zunehmendem Index
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n nimmt der Abstand zwischen Maximum und Mi-
nimum ab. Genau wie bei der Diffusion ist auch
bei der Wärmeleitung die mittlere zurückgelegte Di-
stanz proportional zur Wurzel aus der Zeit. Die Wär-
me braucht somit viermal so viel Zeit, um die dop-
pelte Distanz zurückzulegen.

2.7.7 Lösung in 1D

Jede dieser Moden entspricht einem Punkt mit Ko-
ordinate n im reziproken Raum, und jede Mode
zerfällt unabhängig von den anderen. Wir können
deshalb die Wärmeleitungsgleichung lösen, indem
wir die anfängliche Temperaturverteilung Fourier-
transformieren, im reziproken Raum mit e�t/tn mul-
tiplizieren und zurück transformieren. Die Lösung
lautet somit

T (x, t) =
•

Â
n=1

Dn sin
⇣npx

L

⌘
e�t/tn

mit den Fouier-Koeffizienten

Dn =
2
L

LZ

0

T (x,0)sin
⇣npx

L

⌘
dx.

Als einfaches Beispiel betrachten wir die homo-
gene Wärmeleitungsgleichung auf einem unendlich
langen Stab, L ! • und einer Anfangsbedingung
T (x,0) = d (0). Abb. 2.47 stellt die Anfangsbedin-
gung und die Lösung zu einem Zeitpunkt dar.
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Ort

Abbildung 2.47: Lösung der Wärmeleitungsglei-
chung in 1D für T (x; t = 0) = d (0).

Die Temperaturverteilung zu jedem späteren Zeit-
punkt entspricht einer Gauß-Funktion

T (x, t) =
Q

rc
p

p4t

r
rc

l

e�(x2
rc/4l t)

mit Breite

dhbhh(t) = 2

s

t ln(2)
l

rc
.

Hier bezeichnet Q die zum Zeitpunkt t = 0 eingetra-
gene Wärmemenge.

Obwohl bei der Wärmeleitung keine Wellenfront de-
finiert werden kann, ist es doch sinnvoll, eine Diffu-
sionslänge zu definieren. Man verwendet dafür

`D = 2
p

Dwt = 2

s

t
l

rc
.

Die Distanz wächst somit nicht linear mit der Zeit,
wie bei Massenpunkten und Wellen, sondern mit der
Wurzel daraus.

2.7.8 Wärmeleitung in 2D

Der Ortsteil der Wärmeleitungsgleichung ist iden-
tisch zur Wellengleichung,

DT = �a

2.

Somit kennen wir die relevanten Lösungsfunktio-
nen bereits aus der Diskussion der Wellengleichung.
In zwei Dimensionen können wir bei kreisförmigen
Randbedingungen somit die Besselfunktionen ver-
wenden, um die Lösung darzustellen.

Der stationäre Fall der Wärmeleitungsgleichung

DT = 0

wird als Laplace-Gleichung bezeichnet. Die Lösun-
gen sind die harmonischen Funktionen.

Abb. 2.48 zeigt als Beispiel die stationäre Tempera-
turverteilung auf einem Ring für die Randbedingun-
gen T (r = 2) = 0 und T (r = 4) = 4 sin(5j).
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x

y

x
y

Abbildung 2.48: Stationäre Temperaturverteilung
auf einem Ring.

2.7.9 Wärmeleitung in 3D

Auch in drei Dimensionen können wir für die Lö-
sung der Wärmeleitungsgleichung

∂T
∂ t

= DwDT

auf die Diskussion der Wellengleichung zurückgrei-
fen. Bei einem Separationsansatz

T (~r, t) = R(~r)Q(t)

wird die Wärmeleitungsgleichung zu

1
Q

∂Q
∂ t

=
Dw

R
DR = �Dwa

2,

in völliger Analogie zum eindimensionalen Fall.
Diese Gleichung kann somit wiederum mit einem
Separationsansatz gelöst werden. Wir diskutieren
hier jedoch keine spezifischen Lösungen, sondern
stellen noch einige qualitative Überlegungen zur
Wärmeleitung an.

Wenn z. B. ein würfelförmiger Bereich der Kanten-
länge d um T kälter ist als seine Umgebung, herrscht
an seinen Rändern ein Temperaturgefälle von der
Größenordnung T/d, das einen Wärmestrom

P = Al

T
d

⇡ lT d

hervorruft. Dieser gleicht das Energiedefizit E ⇡
d3

rcT in der Zeit

t ⇡ E
P

⇡ d3
rcT

lT d
⇡ d2 rc

l

aus. Diese Zeitkonstante bezeichnet man als ther-
mische Relaxationszeit. Sie skaliert somit mit der
Oberfläche des Würfels.

Für die Berechnung der stationären Temperaturver-
teilung

1
Dw

∂T
∂ t

= 0 = DT

müssen wir exakt die gleiche Gleichung (die
Laplace-Gleichung) lösen, wie z.B. in der Elektro-
statik.

Auch bei der Wärmeleitung kann das Problem Quel-
len oder Senken enthalten. Quellen sind z.B. Hei-
zungen, ein Beispiel für eine Senke ist verdunsten-
des Wasser. Existieren Quellen, so wird die Laplace-
Gleichung zu

DT = �h(~r)
l

.

Hier bezeichnet h(~r) die Wärmequelldichte, d.h. die
Wärmeerzeugung pro Volumen ([h ] = W

m3 ), welche
lokal einen Beitrag

Ṫ
h

=
h

rc

zur Temperaturänderung liefert. Ist die Wärmequelle
eine Punktquelle, so nimmt die stationäre Tempera-
tur in der Umgebung mit

T µ 1
r

ab, exakt wie die elektrische Feldstärke in der Umge-
bung einer Punktladung. Bei einem langen geraden
Heizrohr ist die Temperaturverteilung in der Umge-
bung

T µ lnr,

analog zur Feldstärke in der Umgebung eines gela-
denen Drahtes.

Der Laplace-Operator berechnet die Krümmung ei-
ner Fläche. Somit ist die Randbedingung (die Quel-
le) eine Randbedingung für die Krümmung der Flä-
che. Im Quellen-freien Bereich muss die Krüm-
mung verschwinden. Die Lösung entspricht deshalb
im Allgemeinen einer Sattelfläche, wo sich positive
und negative Krümmungen kompensieren. Abb. 2.48
zeigt dies am Beispiel eines Rings.
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2.7.10 Wärmehaushalt des Körpers

20oC 30oCLufttemperatur

Abbildung 2.49: Temperaturverteilung im Körper
bei unterschiedlichen Luft-
Temperaturen.

Der Körper enthält eine erhebliche Wärmemenge:
Bei einer Masse von m =70 kg und einer mittleren
spezifischen Wärme von rc=3,5 kJ/(kg K) wird die
gesamte Wärmeenergie

DQtot = rcmDT = 245
kJ
K

DT.

Wir wählen als Referenztemperatur den Schmelz-
punkt von Wasser, so dass

DQ = 245 ·37kJ ⇡ 9MJ

wird.

Verschiedene Regelmechanismen des Körpers sor-
gen dafür, dass diese Wärmemenge recht konstant
bleibt. Die Zufuhr an Wärmeenergie erfolgt vor al-
lem über metabolische Prozesse, der Verlust über

• Abstrahlung: Infrarotstrahlung, µ T 4

• Konvektion: Luftströmung

• Wärmeleitung durch direkten Kontakt

• Verdunstung: Siehe 2.7.11.

Abbildung 2.50: Lage des Hypothalamus.

Der Körper besitzt einen vielfältigen Regelappa-
rat, welcher die Temperatur konstant hält. Er um-
fasst Temperatursensoren im gesamten Körper, eine
zentrale Steuerung im Hypothalamus, sowie Stell-
elemente. Dies können zusätzlich Wärme erzeugen
durch Zittern, den Wärmeverlust der Haut über die
Erweiterung oder Kontraktion der Blutgefäße steu-
ern, oder über die Verdunstung von Schweiss.

2.7.11 Verdunstung

Voraussetzung für Verdunstung ist das Öffnen von
Poren in der Haut, so dass Schwitzen möglich wird.
Bei Verdunstung wird dem Körper Verdampfungs-
wärme entzogen. Die Verdampfungswärme von
Wasser ist besonders groß. Um einen Liter Wasser
beim Siedepunkt zu verdampfen, wird eine Ener-
gie von 2,26 MJ benötigt. Wärmeabgabe durch Ver-
dampfung von Wasser auf der Haupt hängt von der
relativen Luftfeuchtigkeit der Umgebung ab. Ist die-
se größer, als der Dampfdruck, den Wasser bei 37°C
auf der Haut erzeugt (6.3 kPa), dann kann kein Was-
ser verdampft werden. Bei trockener Luft funktio-
niert dieser Mechanismus auch dann, wenn die Um-
gebungstemperatur höher ist als die Körpertempera-
tur. Sie dient deshalb z.B. für die Wärmeregelung in
der Wüste. Der Wärmeverlust ist grob

dQ
dt

Verdunstung
= K ADP.

Hier ist K der Wärmekoeffizient, A die Fläche und
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DP die Differenz zum Partialdruck von Wasser in der
Luft.

Als Beispiel betrachten wir die Verdunstung von 1
Liter Wasser über einen Zeitraum von 2 Stunden.
Dies entspricht einer Kühlleistung

Pverd =
2,26 ·106

2 ·3600
J
s

⇡ 300W.

2.7.12 Konvektion
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Abbildung 2.51: Wärmeverlust durch Konvektion.

Der Wärmeverlust der Haut hängt stark von der Ge-
schwindigkeit ab, mit der sich die Luft bewegt. Man
kann ihn abschätzen als

Hc = KcA(Th �Tl).

Hier bezeichnet A die Oberfläche der Haut, Th die
Temperatur der Haut, Tl die Lufttemperatur und Hc
den Wärmeverlust pro Zeit. Die Proportionalitäts-
konstante Kc hängt von der Geschwindigkeit ab, wie
in Abb. 2.51 gezeigt.

2.8 Modelle für Biologie und
Medizin

2.8.1 Evolution

Die Physik erstellt Modelle von realen Systemen.
Damit kann sie Aussagen machen über Bestandtei-
le des menschlichen Körpers, über Funktionen, über

den Verlauf oder die Ausbreitung von Krankheiten,
oder über den Ablauf von evolutionären Prozessen.
Viele Physiker haben mit solchen Fragen wichtige
Beiträge zur Entwicklung von Medizin und Biolo-
gie geliefert. Zu diesen Pionieren gehört z.B. Erwin
Schrödinger. Er hielt in Dublin einen Vortrag zur
Frage “Was ist Leben”. Dieser wurde 1944 auch als
Buch veröffentlicht1. Dieses Buch hat die Entwick-
lung der modernen Biologie nach 1945 maßgeblich
beeinflusst und gehört zu den Klassikern der natur-
wissenschaftlichen Literatur. Es wird als “Meilen-
stein in der Geschichte der Molekularbiologie” be-
zeichnet. Schrödinger diskutiert hier vor allem die
Stabilität von genetischem Material aus der Sicht des
Physikers - dies zu einer Zeit, als die Struktur der
DNA und der genetische Code noch nicht bekannt
waren.

Es gibt aber auch sehr abstrakte Modelle, welche
nach physikalischen Prinzipien erstellt werden, um
z.B. die Evolution zu beschreiben, oder den Vorteil
von sexueller Reproduktion.

Die Darwin’sche Evolutionstheorie ist eine der
wichtigsten Grundlagen der Biologie und damit auch
der Medizin. Manchmal ist es auch nützlich, nach
vereinfachten Versionen dieser Theorie zu suchen.
Ein Beispiel dafür ist die präbiotische Evolution, al-
so die Evolution von molekularen Strukturen, wel-
che vermutlich der biologischen Evolution voraus-
gingen. Aus solchen Modellen kann man z.B. be-
rechnen, wie groß eine Population sein muss, damit
sie stabil ist, und auf Umweltveränderungen auf ei-
ner gewissen Zeitskala reagieren kann, oder welche
Fehlerraten bei der Replikation optimal sind, damit
die relevante genetische Information erhalten bleibt,
aber trotzdem Evolution möglich bleibt.

Evolution kann auch als abstrakter Prozess verstan-
den werden, in dem ein System seinen Informations-
gehalt vergrößert. Solche Systeme stehen somit fern
vom thermodynamischen Gleichgewicht. Sie müs-
sen Entropie an ihre Umgebung abgeben, um diesen
Prozess durchführen zu können.

1Erwin Schrödinger. Was ist Leben? - Die lebende Zelle mit
den Augen des Physikers betrachtet. Pieper, 1944.
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2.8.2 Populationsdynamik

Abbildung 2.52: Prognostizierte Bevölkerungsent-
wicklung für die BRD.

Mit anderen Modellen kann man z.B. die Popula-
tion von Tieren oder die Bevölkerungsentwicklung
von Ländern vorhersagen2 oder die Ausbreitung von
Seuchen.

Als einfaches Beispiel berechnen wir die Bevölke-
rung N eines Landes durch die Lösung der Bewe-
gungsgleichung

dN
dT

= Geburten�Todelsfälle+Migration.

Unter der Annahme, dass Geburten und Todesfälle
proportional sind zur gegenwärtigen Bevölkerungs-
zahl, wird

dN
dT

= bN �dN+Migration.

Ohne die Migration erhalten wir somit eine homo-
gene Differentialgleichung. Wenn wir eine mögliche
Zeitabhängigkeit der Koeffizienten vernachlässigen,
erhalten wir die Lösung

N(t) = N0e(b�d)t ,

also ein exponentielles Wachstum, oder eine expo-
nentielle Abnahme. In beiden Fällen ist das System
somit instabil.

2z.B. http://www.herwig-birg.de/downloads/dokumente/-
BVerfG.pdf

Eine stabile Lösung erhält man im System von Ver-
hulst3: er führte einen zusätzlichen Term ein

dN
dT

= bN
✓

1� N
K

◆
�dN.

Hier stellt K die Kapazität des Systems dar. In die-
sem Modell steigt die Population zunächst ebenfalls
exponentiell an. Wird sie vergleichbar mit der Kapa-
zität K, so nimmt das Wachstum ab und nähert sich
dem Grenzwert

N• = K
b�d

b
.

Die entsprechende Kurve wird als logistische Kurve
bezeichnet.

2.8.3 Gekoppelte Populationen

Als nichttriviales Beispiel für die Berechnung der
Populationsdynamik betrachten wir die Entwicklung
von 2 Tierarten, die sich gegenseitig beeinflussen.
Dabei kann man zwischen drei Typen von Wechsel-
wirkung unterscheiden:

• Wenn die Wachstumsrate einer Population ver-
mindert und die einer anderen erhöht wird,
befinden sich Populationen in einer Räuber-
Beute-Situation (predator-prey).

• Wenn die Wachstumsrate jeder Population ver-
mindert wird, liegt eine Wettbewerbssituation
vor.

• Wenn die Wachstumsraten der Populationen er-
höht wird, liegt ein Mutualismus bzw. eine
Symbiose vor.

Von den beiden Tierarten ist eine eine Raubtierspe-
zies, die andere ihr Beutetier. x stellt die Bevölke-
rungszahl der Beutetiere und y die Bevölkerungszahl
der Raubtiere dar.

Eine sinnvolle Bewegungsgleichung für die Beute ist
z.B.

ẋ = x(g1 � s1 �a1x� ry).

Hier bezeichnet g1 die Geburtsrate, s1 die natürli-
che Sterberate, a1 eine erhöhte Sterberate bei hoher

3Pierre-François Verhulst, 1804-1849
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Population (Begrenzung durch natürliche Ressour-
cen) und r die Rate, mit der sie von den Raubtieren
gerissen werden. Die entsprechende Bewegungsglei-
chung für die Raubtiere lautet

ẏ = y(g2 � s2 �a2y+bx).

Die Koeffizienten g2,s2 und a2 haben eine analoge
Bedeutung wie bei den Beutetieren, b bezeichnet ei-
ne erhöhte Fruchtbarkeit bei gutem Nahrungsange-
bot (hoher Beutepopulation).

Raubtiere

Zeit

Po
pu
la
tio
ne
n

Beute

Abbildung 2.53: Oszillationen der Populationen von
Raubtier und Beutetier.

Löst man diese Bewegungsgleichungen numerisch,
so findet man meist keine kontinuierliche Zeitent-
wicklung, sondern ein oszillatorisches Verhalten,
welches je nach Parametern einem stationären Zu-
stand zustrebt.

Wir untersuchen das System, indem wir zunächst
nach Fixpunkten suchen. Fixpunkte sind Wertepaa-
re, bei denen die Populationen zeitunabhängig sind.
Neben dem trivialen Fixpunkt x0 = y0 = 0 existieren
drei weitere Fixpunkte. Wir finden diese, indem wir
die beiden Ableitungen = 0 setzen:

0 = x(g1 � s1 �a1x� ry)
0 = y(g2 � s2 �a2y+bx).

Die Lösungen sind

x1 = 0, y1 =
g2 � s2

a2
,

x2 =
g1 � s1

a1
, y2 = 0,

x3 =
a2(g1 � s1)� r(g2 � s2)

a1a2 +br

y3 =
b(g1 � s1)+a1(g2 � s2)

a1a2 +br
.

Bei den ersten beiden Lösungen existiert jeweils nur
eine der beiden Spezies. Nur die dritte Lösung ent-
spricht einem Gleichgewicht zwischen den beiden
Tierarten. Das Verhältnis zwischen den beiden Ar-
ten ist

x3

y3
=

�a2(g1 � s1)+ r(g2 � s2)

b(g1 � s1)+a1(g2 � s2)
.

Einen vereinfachten Ausdruck erhalten wir, wenn
wir die Beschränkung durch die Umwelt für diese
Lösung vernachlässigen, a1 = a2 = 0 :

x3 = �g2

b
; y3 =

g1

r
. (2.18)

Hier haben wir außerdem die Sterberate eliminiert:
es spielt jeweils nur die Netto-Geburtenrate (=gi �si)
eine Rolle.

Diese Lösung ist zwar mathematisch korrekt, aber
physikalisch unsinnig: Populationen können nicht
negativ sein. Die Beschränkung durch die Umwelt
ist also notwendig, wenn wir einen Fixpunkt, also
eine stationäre Population, haben wollen. Vorausset-
zung für eine positive Population der Beutetiere ist

a2 > r
g2

g1
.

Dieser Fixpunkt ist über einen weiten Parameterbe-
reich stabil.

2.8.4 Populationsoszillationen

Es gibt allerdings doch eine Möglichkeit, dass Glei-
chung (2.18) einen physikalisch sinnvollen Zustand
beschreibt: wenn g2 < 0, d.h. wenn die Netto-
Geburtenrate der Raubtiere negativ ist. Dies wür-
de zu einem Verschwinden der Raubtierpopulation
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führen, wenn nicht die Beutetier-abhängige Gebur-
tenrate bxy wäre. Wir schreiben die negative Netto-
Geburtsrate als Sterberate �ys2 und erhalten

ẋ = x(g1 � ry)
ẏ = y(�s2 +bx).

Beim Beutetier haben wir die Sterberate s1 = 0
gesetzt (resp. wir betrachten g1 als die Netto-
Geburtenrate). Beim Raubtier sind Geburten nur
proportional zur Population des Beutetiers mög-
lich. Dieses Gleichungssystem wird auch als Lotka-
Volterra Modell bezeichnet. Dieses System hat einen
Fixpunkt bei

x =
s2

b
y =

g1

r
.

Weil das System nicht dissipativ ist, laufen Trajekto-
rien in der Umgebung dieses Fixpunktes nicht darauf
zu, sondern bilden Ellipsen um diesen Punkt. Größe-
re Kurven sind verformte Ellipsen, wie in Abb. 2.54
gezeigt.
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Abbildung 2.54: Oszillationen der Populationen von
Raubtier und Beutetier im Lotka-
Volterra Modell.

Abb. 2.54 zeigt typische Populationsoszillationen
im Lotka-Volterra Modell. Wenn die Population der
Raubtiere niedrig ist, steigt die Population der Beu-
tetiere exponentiell an. Dies führt dann (etwas verzö-
gert) zu einer Zunahme der Population bei den Raub-
tieren. Dadurch bricht die Population der Beutetie-
re ein, und, wiederum verzögert, die Population der
Raubtiere. Danach beginnt der Zyklus von vorn.

Solche Oszillationen hat man auch tatsächlich in vie-
len Fällen beobachtet. Abb. 2.55 zeigt ein Beispiel.

Abbildung 2.55: Oszillationen der Populationen von
Raubtier und Beutetier; aus C.B.
Huffaker, Experimental studies on
predation: dispersion factors and
predator-prey oscillations; Hilgar-
dia 27, 343 (1958).

2.8.5 Verzögerte Rückkopplung

Das hier betrachtete Modell ist stark vereinfacht, und
einige Punkte, die bei einem realistischeren Modell
zu berücksichtigen wären, führen auch zu Oszilla-
tionen. Dazu gehört z.B. eine zeitliche Verzögerung:
So führt eine erhöhte Geburtenrate jetzt zu einem
späteren Zeitpunkt zu geringeren Ressourcen, höhe-
rem Bedarf an Beutetieren und höheren Todesraten.
Die Bewegungsgleichungen enthalten dann Terme
der Art

ẋ = x(t)(1� x(t � t)),

wobei t die Verzögerungszeit darstellt. Wenn wir in
diesem System eine dimensionslose Zeit z = at ein-
führen und c = at definieren, erhalten wir

dx
dz

= x(z)(1� x(z� c)).

Dieses System hat offenbar zwei Fixpunkte: den tri-
vialen x = 0 und außerdem x = 1. Für c = 0 ist der
erste instabil, der zweite stabil. Wir können um die-
sen linearisieren, indem wir

x = 1+u

setzen und erhalten
du
dz

= (1+u(z))(�u(z�c)) ⇡ �u(z�c). (2.19)

Ein sinnvoller Lösungsansatz ist somit eine Expo-
nentialfunktion,

u(z) = u0el z.
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Einsetzen in (2.19) ergibt

lu(z) = �u(z� c) = �u(z)e�lc

und somit

l = �e�lc.

Das System hat somit stabile Lösungen (l < 0) so-
fern c genügend klein ist (d.h. sofern die Verzöge-
rung genügend kurz ist). Betrachten wir auch kom-
plexe Raten l , so erhalten wir oszillatorische Lösun-
gen mit ¬{l} = 0 für c = p/2 und l = i. In die-
sem Fall ist das System periodisch, mit der Periode
T = 4t . Diese Art von Dynamik findet man in sehr
unterschiedlichen Systemen, u.a. in der Elektronik,
wo zeitlich verzögerte Rückkopplungen oft zu Os-
zillationen führen.
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