
5 2D NMR
Bisher haben wir Spektren verstanden als eine Dar-
stellung von Absorption (oder Dispersion) als Funk-
tion einer Frequenz. In diesem Kapitel soll gezeigt
werden, wie man Absorption auch als Funktion von
mehr als einer Frequenz messen kann, und was man
daraus lernen kann. Man bezeichnet diese Form der
Spektroskopie als 2D-NMR (oder 3D, 4D ...).

5.1 Motivation und Grundlagen

Bevor wir die Methodik im Detail betrachten, soll
hier kurz dargestellt werden, wozu das ganze prinzi-
piell genutzt werden kann.

5.1.1 Korrelation

Wir betrachten als ein Beispiel ein System, in dem
zwei Arten von Molekülen mit je 2 Spins sich in ei-
nem Probenröhrchen befinden.

Abbildung 5.1: Spektrum von 2 Molekülen mit je
2 gekoppelten Spins. Die Summen-
spektren sind identisch, obwohl die
einzelnen Spektren unterschiedlich
sind.

Wir nehmen an, dass jedes der beiden Moleküle je-
weils ein Spektrum mit vier Linien ergibt. Das Spek-
trum der Probe besteht deshalb aus 8 Linien. Aller-
dings gibt es drei unterschiedliche Arten, wie die

Spektren der einzelnen Moleküle aussehen können,
welche alle das gleiche Gesamtspektrum ergeben.
Somit ist es unmöglich, aus dem gemssenenen Spek-
trum die Spektren der einzelnen Moleküle zu bestim-
men.

Eine Möglichkeit, diese drei Fälle zu unterscheiden,
liegt in der Nutzung von zweidimensionaler Spektro-
skopie. Bei einem solchen Experiment (Details siehe
später) wird im Prinzip zuerst die Resonanzfrequenz
eines Spins gemessen, danach wird die Magnetisie-
rung auf einen anderen (oder den gleichen) Spin des
gleichen Moleküls übertragen, und anschliessend die
Resonanzfrequenz nochmals gemessen. Die beiden
Frequenzen werden dann in einem zweidimensiona-
len Raster aufgetragen: Ein Signal ist hier mit zwei
Koordinaten definiert, welche der Resonanzfrequenz
vor-, resp. nach dem Transfer entsprechen.

Abbildung 5.2: 2D Spektren des gleichen Systems.
Die Spektren für die drei Fälle sind
unterschiedlich.

Das 2D Spektrum stellt die Signalamplitude als
Funktion beider Frequenzen dar, S(w1,w2). Maxi-
ma, d.h. Resonanzlinien müssen jeweils die Reso-
nanzbedingung für beide Koordinaten, w1 und w2
erfüllen. Im vorliegenden Beispiel gibt es für beide
Frequenzachsen 8 mögliche Resonanzbedingungen;
im 2D Spektrum erhält man somit 8 ⇥ 8 = 64 Paa-
re von Resonanzfrequenzen. Man findet jedoch nicht
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64, sondern nur 32 Linien. Dies liegt daran, dass ein
Magnetisierungstranfer nur zwischen Spins im glei-
chen Molekül stattfindet. In den 2D Spektren sind
die Linien, welche zum gleichen Molekül gehören,
durch die blauen Linien verbunden.

Zweidimensionale (2D) Spektroskopie wurde in den
70er Jahren entwickelt und hat sich rasch zu einer
Standardtechnik entwickelt. Etwa 20 Jahre lang wur-
den zweidimensionale Spektren nur in der Kernspin-
resonanz genutzt, danach auch in der Elektronen-
spinresonanz, und schließlich in der Optik.

Abbildung 5.3: Beispiel eines zweidimensionalen
ENDOR (Elektron-Kern Doppelre-
sonanz) Spektrums. Die linke Seite
zeigt das konventionelle (1D) Spek-
trum, in dem zwei Signalkomponen-
ten von 19F und 1H sich überla-
gern. Im zweidimensionalen Spek-
trum sind sie klar unterscheidbar.
[18]

Es gibt inzwischen hunderte von etwas unterschied-
lichen Techniken, welche das Prinzip verwenden
und etwas unterschiedliche Zielsetzungen haben.
Allgemein bieten zweidimensionale Spektren Mög-
lichkeiten für die Verbesserung der Auflösung oder
um Informationen zu erhalten, welche auf andere
Weise nicht zugänglich sind. In den meisten Fällen
ist das Ziel eines 2D Experimentes die Verteilung
der Information in eine Ebene statt auf einer Ach-
se wie bei einem 1D Spektrum. Dadurch erhält man
die Möglichkeit

• die vorhandene Information leichter zu analy-
sieren und / oder

• mehr Information ins Spektrum zu bringen.

5.1.2 Prinzip

Wenn man spektrale Information als Funktion von
zwei unabhängigen Frequenzvariablen darstellt, er-
hält man ein zweidimensionales oder 2D Spektrum.

Zweidimensionale Spektren werden praktisch aus-
schließlich im Zeitbereich aufgenommen. Man misst
in diesem Fall das Signal zunächst als Funktion
von zwei unabhängigen Zeiten und führt dann ei-
ne zweidimensionale Fouriertransformation bezüg-
lich dieser beiden Zeiten durch, um das entsprechen-
de Spektrum im Frequenzbereich zu erhalten.

Um zu sehen, wie ein 2D Spektrum entsteht, be-
trachten wir zunächst ein abstraktes quantenmecha-
nischen System mit stationären Zuständen welche
mit den Indizes i,k,r,s bezeichnet werden.

Abbildung 5.4: Grundschema für die zweidimensio-
nale Spektroskopie im Zeitbereich.

Man unterscheidet bei 2D Experimenten unter-
schiedliche Zeiten, wie in Abb. 5.4 schematisch dar-
gestellt. Zunächst wird während der Präparations-
zeit im System eine Kohärenz erzeugt, also z.B. ei-
ne transversale Magnetisierung. Dies beinhaltet i.
A. zunächst auch eine Relaxationszeit, während der
durch Spin-Gitter Relaxation eine longitudinale Ma-
gnetisierung erzeugt wird. Anschließend wird durch
einen RF Puls transversale Magnetisierung erzeugt,
d.h. Kohärenz zwischen den Zuständen i,k, . . . . In
Abb. 5.4 ist eine solche Kohärenz zwischen den Zu-
ständen i und k mit einer Wellenlinie bezeichnet.

In der anschließenden Evolutionszeit entwickelt sich
diese Kohärenz während einer Zeit t1 unter dem Ein-
fluss des Hamiltonoperators HE . Die Kohärenz zwi-
schen den Zuständen i und k erwirbt dabei einen Pha-
senfaktor

rik(t1) = rik(0)e�iwikt1 .
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Hier ist die Präzessionsfrequenz wik gegeben durch
die Energiedifferenz

wik =
Ei �Ek

h̄
.

Berücksichtigen wir auch die Relaxation, so ist die
Kohärenz am Ende der Evolutionszeit

rik(t1) = rik(0)e�(iwik+gik)t1 ,

mit gik als Relaxationsrate für den Übergang ik.
Würde man während der Evolutionszeit ein Signal
aufnehmen, so würde man einen FID messen. Im
2D Experiment kann die Kohärenz aber auch Kom-
ponenten enthalten, welche nicht der Auswahlregel
Dm = ±1 gehorchen und damit nicht beobachtba-
rer Magnetisierung entsprechen. Unabhängig davon
wird diese Kohärenz nicht direkt gemessen.

5.1.3 Informationstransfer

Statt dessen schließt an die Evolutionszeit eine
Mischzeit an, während der Kohärenz zwischen un-
terschiedlichen Übergängen ausgetauscht werden
kann. Die Kohärenz kann während dieser Zeit auch
als longitudinale Magnetisierung gespeichert wer-
den, welche z.B. durch chemischen Austausch zwi-
schen verschiedenen Spins übertragen werden kann.
Die Mischzeit kann stark unterschiedliche Länge ha-
ben: sie kann von der Länge Null sein, wenn die In-
formation nicht übertragen werden muss, oder sie
kann mehrere Sekunden betragen, wenn für die In-
formationsübertragung viel Zeit benötigt wird. Ent-
scheidend ist in allen Fällen, dass die Frequenzin-
formation, welche das System in Form des Phasen-
faktors e�iwikt1 akkumuliert hat, erhalten bleibt. Eine
obere Grenze für die Transferzeit ist deshalb die Re-
laxationszeit T1, falls die Information in Populatio-
nen gespeichert ist, und T2, falls sie in Kohärenzen
gespeichert ist.

Im Beispiel von Abb. 5.4 wird die Kohärenz wäh-
rend der Mischzeit vom Übergang i � k zum Über-
gang r� s übertragen. Dabei bleiben sowohl der Ab-
solutbetrag wie auch die Phaseninformation e�iwikt1

erhalten, resp. werden in den anderen Übergang

übertragen. Somit hat die Kohärenz im Übergang
r � s zu Beginn der Detektionszeit die Form

rrs(t1,0) = Â
ik

hrs,ikrik(0)e�(iwik+gik)t1 .

Die Übertragung von Kohärenz zwischen unter-
schiedlichen Übergängen während der Mischzeit
wird hier durch die Matrix hrs,ik zusammengefasst,
deren Elemente typischerweise im Bereich zwischen
-1 und +1 liegen, aber auch komplex sein können.

Während der Detektionszeit findet wiederum eine
freie Evolution unter dem entsprechenden Hamilton-
operator statt.

rrs(t1, t2) =

Â
ik

hrs,ikrik(0)e�(iwik+gik)t1 e�(iwrs+grs)t2 .

Während dieser Zeit wird das Signal gemessen. Je-
des Dichtepoeratorelement trägt dabei mit einem be-
stimmten Gewicht zum gesamten Signal bei. Wir
schreiben für dieses Gewicht ars. Das Gesamtsignal
ist somit

s(t1, t2) = Â
rs

arsrrs(t1; t2) =

Â
rs

ars Â
ik

hrs,ikrik(0)e�(iwik+gik)t1 e�(iwrs+grs)t2 .

Dies ist das Signal, welches in einem 2D Experiment
als Funktion der beiden Zeiten t1, t2 gemessen wird.

5.1.4 Datensatz

Das Signal hängt somit von beiden Zeiten t1 und t2
ab. Dabei bezeichnet t2 die Zeit, während der das Si-
gnal effektiv gemessen wird, während t1 die Dau-
er der Evolutionszeit bezeichnet. Man erhält eine
zweidimensionale Datenmatrix, indem man für ei-
ne Reihe von unterschiedlichen Evolutionszeiten je-
weils einen FID misst.

In Abb. 5.5 ist ein Beispiel für eine solche Datenma-
trix gezeigt. Jede Spur entspricht dem FID für eine
bestimmte Evolutionszeit t1, welche von vorn nach
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Abbildung 5.5: 2D Signal als Funktion der Evolu-
tionszeit t1 (schräge Achse) und t2
(horizontale Achse).

hinten zunimmt. Die horizontal verlaufende Varia-
ble t2 ist die Zeit, während der die Datenaufnahme
läuft.

Für dieses Beispiel wurden nur zwei Übergänge be-
rücksichtigt, nämlich lm und pq. Wir nehmen außer-
dem an, dass die transversale Relaxation für beide
Übergänge identisch ist und schreiben dafür die Re-
laxationsrate g0.

Der FID ist dann

s f id(t1, t2) = e�g0(t1+t2)

⇥

hpq,lmapq cos(wlmt1)cos(wpqt2)+

hpq,pqapq cos(wpqt1)cos(wpqt2) +

hlm,lmalm cos(wlmt1)cos(wlmt2) +

hlm,pqalm cos(wpqt1)cos(wlmt2)] .

Der erste Term entspricht einer Kohärenz, welche
während der Evolutionszeit im Übergang ik lokali-
siert war, während der Detektionszeit im Übergang
rs. Der zweite Term befand sich während beiden Pe-
rioden im Übergang rs. Der dritte blieb im Übergang
ik und der vierte wurde von rs nach ik übertragen.

5.1.5 2D Fouriertransformation

Um diese Daten zu analysieren, führt man eine zwei-
dimensionale Fourier-Transformation bezüglich der
beiden Variablen t1 und t2 durch:

f (w1,w2) =
Z •

�•
dt1eiw1t1

Z •

�•
dt2eiw2t2s(t1,, t2)

=
Z •

�•
dt1eiw1t1s f (t1,w2) .

Die innere Transformation t2 ! w2 ist identisch zur
Transformation der einzelnen FID’s in eindimensio-
nale Spektren. Wir erhalten damit Spektren zu jedem
Wert der Evolutionszeit t1:

s f (t1,w2) = e�g0t1

[(hpq,lmeiwlmt1 +hpq,pqeiwpqt1)apqg(w2 �wpq)

+(hlm,lmeiwlmt1 +hlm,pqeiwpqt1)almg(w2 �wlm)] .

Hier stellt g(w2 � w

ab

) eine komplexe Lorentzlinie
dar, welche um die Frequenz w

ab

zentriert ist.

Abbildung 5.6: Zweidimensionaler Datensatz nach
der ersten Fouriertransformation.

Abb. 5.6 stellt den Realteil des Signals nach der er-
sten Fouriertransformation t2 ! w2 dar. In horizon-
taler Richtung bildet es ein Spektrum als Funktion
der Variablen w2, welches Resonanzlinien bei den
beiden Frequenzen wik und wrs enthält. Amplitude
und Phase dieser beiden Resonanzlinien ändern als
Funktion der Evolutionszeit t1, wobei das Verhalten
für die beiden Linien unterschiedlich ist. Dies zeigt
bereits, dass die beiden detektierten Kohärenzen un-
terschiedliche Entwicklungen während der Evoluti-
onszeit erfahren haben.

Das zweidimensionale Spektrum erhalten wir nach
einer zweiten Fouriertransformation t1 ! w1. Die
vier Signalkomponenten können jeweils durch eine
zweidimensionale Linienform der Art

s(w1,w2) = g2(w1 �wik,w2 �wrs)

beschrieben werden. g2 ist eine zweidimensiona-
le Lorentzlinie, welche um die Position (w1 =
wik,w2 = wrs) zentriert ist.

Eine solche Resonanzlinie ist in der Figur darge-
stellt. Die Details der Linienform werden durch die
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Abbildung 5.7: Zweidimensionale Lorentzlinie

Relaxation bestimmt. Allerdings kann man auch an-
dere Varianten der Fouriertransformation verwen-
den. Bei der hier verwendeten "gewöhnlichen" Fou-
riertransformation entstehen lange "Rücken" entlang
der beiden Frequenzachsen, welche anzeigen dass
hier Absorption und Dispersion gemischt werden.
Reine Absorptionslinien sind kreisförmig und füh-
ren zu besser aufgelösten Spektren. Man erhält sie
durch eine geeignete Linearkombination von sin, re-
sp., cos transformierten Spektren. Die entsprechen-
de Transformation wird als Hyperkomplexe Fourier-
transformation bezeichnet.

5.1.6 Informationsgehalt der Spektren

Abbildung 5.8: 2D Austausch-Spektrum von 2 Spins
in Höhenkurvendarstellung.

Figur 5.8 zeigt das zweidimensionale Spektrum in
Höhenkurvendarstellung. Die beiden Resonanzfre-
quenzen wik, wrs ergeben im zweidimensionalen
Spektrum vier Linienpositionen. Die Linien auf der
Diagonalen (w1 = w2) rühren von Kohärenzen her,
welche während der Evolutionszeit und der Detek-
tionszeit in den gleichen Übergängen waren. Diese

sogenannten Diagonalpeaks enthalten die gleiche In-
formation wie die Linien im eindimensionalen Spek-
trum.

Die Linien außerhalb der Diagonalen, die sogenann-
ten Kreuzpeaks an den Positionen (w1 = wik,w2 =
wrs) und (w1 = wrs,w2 = wik) zeigen an, dass hier
ein Austausch von Kohärenz stattgefunden hat. Die
Amplituden der Kreuzpeaks sind ein Maß für die
Elemente h

ab ,nµ

der Austauschmatrix. Im Allge-
meinen ist der Austausch in beide Richtungen gleich
stark, h

ab ,nµ

= h

nµ,ab

, so dass beide Kreuzpeaks
gleich hoch sind, und das Spektrum bezüglich der
Diagonale symmetrisch ist: S(w1,w2) = S(w2,w1).

Abbildung 5.9: COSY Spektrum einer Zucker-
verbindung.

Abbildung 5.9 zeigt als Beispiel ein Proton-
Proton COSY Spektrum von Galactose- 1-2-methyl-
mannoside dargestellt [17][17]. Links ist das eindi-
mensionale NMR-Spektrum zu sehen, rechts dane-
ben das zweidimensionale in Höhenkurvendarstel-
lung. Die geraden Striche im 2D-Spektrum deuten
an, wie man, ausgehend von den aufgelösten Pro-
tonenresonanzen der beiden Monosaccharid- Ringe,
die Identifizierung der skalar gekoppelten Protonen
vornehmen kann.

5.1.7 Spektren mit mehr als 2 Dimensionen

Das Konzept der 2D Spektroskopie ist praktisch be-
liebig erweiterbar auf 3 und mehr Dimensionen. Für
jede zusätzliche Dimension muss eine zusätzliche
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Evolutionszeit eingeführt werden, sowie ev. eine da-
zu gehörende Mischzeit.

Abbildung 5.10: Einteilung der Zeitentwicklung bei
mehrdimensionalen Experimenten.

Die bedeutet, dass bei der Datenaufnahme jeweils ei-
ne zusätzliche Variable inkrementiert werden muss.
Bei einem typischen 2D Experiment werden z.B.
512 FIDs mit unterschiedlichen Werten von t1 aufge-
nommen. In einem 3D Experiment müsste man für
jeden dieser FID’s nochmals unabhängig die zwei-
te Evolutionszeit variieren. Damit misst man 512 ⇥
512 = 262144 FIDs. Bei einer minimalen Wieder-
holrate von 1 s�1 bedeutet dies eine Messzeit von 72
Stunden. Bei einem 4D Experiment mit gleicher An-
zahl Punkten in allen Dimensionen würde daraus ei-
ne Messzeit von über 4 Jahren. Solche Experimente
sind deshalb nur durchführbar, wenn man die Anzal
Messpunkte entsprechend reduziert.

Bei der Spektroskopie der Proteine sind 3 Dimensio-
nen heute sehr wichtig, während mehr Dimensionen
aus Gründen der Messzeit praktisch nicht verwendet
werden.

Für 3D Spektren kombiniert man typischerweise die
Frequenzen von drei unterschiedlichen Spinsorten,
z.B. NCH, also 15N13C1H. Andere Möglichkeiten
sind z.B. zwei 13C und eine 1H Dimension.

5.2 Austausch

5.2.1 Motivation und Phänomenologie

Wie bereits diskutiert, sind die Resonanzfrequenzen
der NMR empfindlich auf die Details der Umge-
bung eines Kernspins. Die Beeinflussung kann über

Abbildung 5.11: 3D Spektrum

die chemische Verschiebung oder über die Quadru-
polwechselwirkung geschehen. Man kann dies nicht
nur dazu verwenden, die einzelnen Resonanzlinien
einem bestimmten Kern zuzuordnen, sondern man
kann damit auch beobachten wenn sich die Umge-
bung eines Kerns ändert. Dies kann wiederum da-
durch geschehen dass in der Umgebung Bewegungs-
prozesse ablaufen, aber es kann auch auf einen Be-
wegungsprozess des Kerns selber zurückzuführen
sein.

Wir betrachten zunächst ein Ensemble von identi-
schen Spins, welche zwischen zwei Positionen mit
unterschiedlicher chemischer Verschiebung hin- und
her springen. Wenn die Aufenthaltszeit an einem der
beiden Orte kurz ist verglichen mit der transversa-
len Relaxationszeit, so wird sich während jeder Mes-
sung ein Teil der Spins an der einen Position befin-
den, ein Teil an der anderen, und mit ihrer jeweili-
gen Resonanzfrequenz zum Signal beitragen. Han-
delt es sich um einen Gleichgewichtsprozess, sind in
der Probe also beide Positionen mit der zugehörigen
Wahrscheinlichkeit besetzt, so findet man im Spek-
trum zwei Linien, deren Amplitude durch die Beset-
zungswahrscheinlichkeit der beiden Plätze gegeben
ist.

Könnte man den FID eines einzelnen Spins beobach-
ten, so würde man sehen wie beim Sprung die Lar-
morfrequenz ändert. Dies ist natürlich nicht möglich
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Abbildung 5.12: Sprungprozess in einem molekual-
ren System: Die Resonanzfrequenz
des Spins ändert sich mit der
Umgebung.

und man beobachtet statt dessen eine Überlagerung
der Frequenzen, welche für ein System im Gleichge-
wicht stationär ist.

5.2.2 Signal im Zeitbereich

Als nächstes betrachten wir den Einfluss der Aus-
tauschrate, resp. der Verweildauer auf das Signal.

Abbildung 5.13: NMR Signal von zwei statischen
Spins (links), resp. 2 Spins, die ihre
Plätze tauschen (rechts).

Sind die beiden Positionen stabil, d.h. es findet kein

Austausch statt, so ergibt sich das beobachtete Si-
gnal lediglich als Überlagerung der beiden Sinus-
schwingungen (linke Seite in Figur 5.13). Findet
hingegen ein Austausch statt (rechte Seite in Figur
5.13), so springt die Frequenz jedes Mal. Die Phase
des Spins zu einem Zeitpunkt t ist durch die gesamte
Vorgeschichte des Spins gegeben

j = Â
i

w

i
ti .

Hier bezeichnet i den Index einer Periode, während
der die Frequenz konstant ist, w

i die Präzessionsfre-
quenz während dieser Periode, und ti deren Dau-
er. Da die Dauer zufällig (und für jeden Spin un-
terschiedlich) variiert, laufen die Phasen der ver-
schiedenen Spins auseinander. Für das beobachte-
te maktroskopische Ensemble zerfällt die Kohärenz
und damit die beobachtbare Magnetisierung. Gegen-
über dem statischen Ensemble wird der FID kürzer,
im Spektrum beobachtet man dies als Verbreiterung
der Resonanzlinie.

Abbildung 5.14: Entstehung des FID Signals durch
Überlagerung der Signale von ein-
zelnen Spins, deren Präzessions-
frequenz sich sprungartig ändert
(links). Rechts sind die dazuge-
hörigen Spektren gezeigt, die sich
durch Fouriertransformation erge-
ben. Die Frequenzdifferenz zwi-
schen den beiden Positionen be-
trägt Dw = 2 kHz.

In Figur 5.14 werden drei solche Überlagerungen
und die dazu gehörige Summe dargestellt, jeweils für
unterschiedliche Austauschraten. Mit zunehmender
Austauschrate wird der gemittelte FID kürzer, was
einer breiteren Resonanzlinie entspricht.
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Wird jedoch die mittlere Aufenthaltsdauer t sehr
kurz, tDw ⌧ 1, mit Dw = |wA �wB| als Frequenz-
differenz der beiden Linien, dann erfährt der Spin
während einer einzelnen Periode nur noch ein klei-
nes Phaseninkrement. In diesem Grenzfall kann die
Phase wiederum durch den Mittelwert

j ⇡ wA +wB

2 Â
i

ti =
wA +wB

2
t

angenähert werden. Das Spektrum des Systems be-
steht hier nur noch aus einer einzelnen Linie bei
der mittleren Frequenz (siehe unterste Zeile in Abb.
5.14).

5.2.3 Linienformen in 1D

Wenn der mittlere Abstand t zwischen zwei Sprün-
gen lang ist im Vergleich zur transversalen Rela-
xationszeit, wird das Spektrum durch die Sprünge
nicht beeinflusst. Wird der Austausch schneller, so
ist jedoch die Kohärenzzeit durch die Sprünge limi-
tiert und die Linie wird breiter. Nähert sich die Aus-
tauschrate 1/t der Differenz Dw der beiden Larmor-
frequenzen, so können die beiden Plätze nicht mehr
einzeln beobachtet werden; statt der beiden einzel-
nen Resonanzlinien findet man eine einzelne in der
Mitte zwischen den beiden. Diese ist stark verbrei-
tert, weil die Präzession noch beide Frequenzen ent-
hält. Erst wenn die Sprungrate weiter steigt und da-
durch die Mittelung auf einer sehr kurzen Zeitskala
abläuft, wird die Linie wieder schmaler.

In Figur 5.15 ist ein experimentelles Beispiel
dargestellt: Hier ist das Protonenspektrum des
Dimethylnitrosamin-Moleküls zu sehen. Die beiden
Methylgruppen haben unterschiedliche Umgebung
(Distanz zum Sauerstoff) und dementsprechend un-
terschiedliche Resonanzfrequenzen. Das Molekül
kann jedoch in der flüssigen Phase eine interne Ro-
tation um die N-N-Achse ausführen, welche die bei-
den Methylgruppen ineinander überführt. Bei nied-
riger Temperatur ist dieser Austausch sehr langsam
und die beiden Methylgruppen sind als getrennte Re-
sonanzlinien erkennbar. Mit zunehmender Tempera-
tur wird die Rotation um die N-N Bindung schneller,
welche die beiden Positionen ineinander überführt.

Abbildung 5.15: Spektren von Dimethyl-Nitrosamin
als Funktion der Temperatur: Über-
gang vom langsamen zum schnel-
len Austausch.

Dadurch werden die Linien zunächst breiter und ge-
hen dann ineinander über. Wird die Austauschfre-
quenz sehr hoch, so wird die Linie wieder schmäler.
In diesem Beispiel wird die Austauschrate über die
Temperatur gesteuert.

Bei dieser eindimensionalen Messung des Austau-
sches steht ein Zeitfenster zur Verfügung, das auf der
einen Seite durch die Frequenzdifferenz zwischen
den beiden Resonanzfrequenzen begrenzt wird, auf
der anderen Seite durch die Linienbreite der Reso-
nanzlinien: Ist der Austausch langsamer, so wird das
2-Linien Spektrum nicht beeinflusst. Ist die Aus-
tauschrate deutlich schneller als die Frequenzdiffe-
renz, so findet man nur eine verschmälerte Linie. Die
relevante Zeitskala wird somit durch die Frequenz-
differenz zwischen den beiden Resonanzlinien be-
stimmt.

In diesen einfachen Beispielen ist der Effekt des
Austausches sehr leicht zu erkennen. In komplizier-
ten Spektren, wo von z.B. 100 Linien nur 2 am Aus-
tausch teilnehmen, wird es sehr viel schwieriger.

5.2.4 2D Austausch

Eine besonders nützliche Methode zur Verfolgung
solcher Austauschprozesse ist die 2D Spektroskopie.
Sie erlaubt eine direkte Korrelation der Positionen
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zwischen denen Austausch stattfindet; dies ist insbe-
sondere dann nützlich, wenn es sich um einen Aus-
tausch zwischen mehr als zwei Plätzen handelt. Es
steht dafür ein Zeitfenster zur Verfügung, welches
nach unten durch die relevanten Frequenzdifferen-
zen, nach oben durch die Lebensdauer T1 der Spins
beschränkt wird. Damit ist es sehr viel breiter als bei
der Messung über das 1D Spektrum. Außerdem ist
es sehr viel einfacher, die Austauschpartner zu iden-
tifizieren.

Abbildung 5.16: Prinzip der 2D Austausch-
spektroskopie

Figur 5.16 zeigt die verwendete Pulssequenz. Der
erste Puls, angewendet auf das System im Gleich-
gewicht, erzeugt aus der longitudinalen Magnetisie-
rung transversale Magnetisierung, z.B.

Iz ! Ix .

Während der anschließenden freien Präzessionszeit
entwickelt sich der Zustand des Systems zu

r(t1) = Ix cos(wAt1) � Iy sin(wAt1) .

Durch den zweiten Puls wird eine Komponente da-
von entlang der z-Achse gespeichert, z.B.

r(t1,0) = Iz cos(wAt1) � Iy sin(wAt1) .

Die Mischzeit tm wird so lang gewählt, dass die
transversale Komponente zerfällt. Gleichzeitig kann
während der Mischzeit ein Austausch von Magneti-
sierung oder eine chemische Umwandlung stattfin-
den. Wenn z.B. ein Teil h der Moleküle sich so ver-
ändert, dass die Resonanzfrequenz am Schluss nicht
mehr wA, sondern wB ist, so können wir den Zustand
am Ende der Mischzeit schreiben als

r(t1,tM) = ((1�h)IA
z + hIB

z )cos(wAt1) .

Durch den dritten Puls wird daraus wieder transver-
sale Magnetisierung,

r(t1,tM,0) = ((1�h)IA
x + hIB

x )cos(wAt1) ,

welche sich während der Detektionszeit enwickelt:

r(t1,tM, t2) = cos(wAt1)
⇥

(1�h)IA
x cos(wAt2)+(1�h)IA

y sin(wAt2)

+hIB
x cos(wBt2)+ hIB

y sin(wBt2)
⇤

.

Für diesen einfachen Fall erwarten wir somit, dass
im 2D Spektrum eine Resonanzlinie bei den Fre-
quenzen (w1 = wA,w2 = wA) und eine bei (w1 =
wA,w2 = wB) auftaucht. Die erste Linie gehört zu
denjenigen Molekülen, die sich während der Misch-
zeit nicht verändert haben, die zweite zu denjenigen,
die sich geändert haben. Das Amplitudenverhältnis
h/(1�h) gibt an, wie groß der Anteil der Moleküle
ist, welche ihren Zustand gewechselt haben.

5.2.5 Beispiel : DMF

Als einfaches Beispiel betrachten wir die Rotati-
on eines Molekülteils gegen den Rest. Ein typi-
sches Beispiel ist die Rotation der Amidbindung in
Dimethylformamid. Die Protonen der beiden Me-
thylgruppen haben unterschiedliche chemische Ver-
schiebung, können also im NMR Spektrum getrennt
beobachtet werden. Solche Bindungen spielen z.B.
in Proteinen eine wichtige Rolle. Das Dimethylfor-
mamid dient hier als stark vereinfachtes Modellsy-
stem. Es zeigt eine behinderte Rotation, deren Rate
in der Nähe der Raumtemperatur etwa einmal pro
Sekunde beträgt.

Abbildung 5.17: 2D Austauschspektren von Dime-
thylformamid.
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Bei niedrigen Temperaturen ist der Austausch lang-
sam und man kann beide Linien getrennt beobach-
ten. Im 2D Spektrum findet man unter diesen Be-
dingungen das 1D Spektrum entlang der Diagonalen
(w1 = w2) und keine Linien außerhalb der Diago-
nalen. Steigt die Temperatur, so wird der Austausch
schneller. Man kann dann während der Mischzeit
einen Austausch beobachten, welcher zu Kreuz-
peaks mit w1 6= w2 führt.

Ist der Austausch sehr schnell, d.h. ist die mittlere
Aufenthaltszeit kurz im Vergleich zur inversen Fre-
quenzdifferenz, Dw t ⌧ 1, so beobachtet man im
Spektrum (1D und 2D) nur eine gemittelte Reso-
nanzfrequenz. Im Zwischenbereich verbreitern sich
die Linien. Mittels Variation der Temperatur kann
man deshalb in vielen Systemen sowohl den Bereich
des langsamen Austausches, wie auch den Bereich
des schnellen Austausches und den Übergangsbe-
reich untersuchen.

Weitere Beispiele und eine detailliertere Auswertung
werden wir im Kapitel ”Biomoleküle” diskutieren.

5.2.6 Spindiffusion

Ein Austausch von Kohärenz zwischen zwei unter-
schiedlichen Spins muss nicht unbedingt auf chemi-
schen Austausch zurückzuführen sein. Es ist auch
möglich, dass die Polarisation eines Spins auf einen
anderen übertragen wird, ohne dass sie ihre Plätze
tauschen.

Abbildung 5.18: Polarisationsaustausch von 2 Spins.

Ein Mechanismus dafür ist die so genannte Spindif-
fusion, ein Prozess der durch den B-Term des Dipol-
alphabeths getrieben wird:

H B
dd = �wd

1�3cos2
q

4
(I1+I2� + I1�I2+) .

Dieser Operator entspricht einem gleichzeitigen,
entgegengesetzten Umklappen von zwei antiparalle-
len Spins. Da die Gesamtpolarisation des Systems
sich dabei nicht ändert, bleibt die gesamte Energie
erhalten. Der Prozess benötigt deshalb keine thermi-
sche Aktivierung, sondern kann auch bei sehr nied-
rigen Temperaturen ablaufen.

Dabei wird zwar keine Energie übertragen, aber Po-
larisation. Sind z.B. Spins in einem Bereich im Zu-
stand | "i und in einem benachbarten Bereich im Zu-
stand | #i, so können solche flip-flop Prozesse die
Polarisation der beiden Bereiche angleichen. Bei ei-
nem Elementarschritt wird dabei Polarisation über
eine Strecke übertragen, welche dem Abstand zwi-
schen zwei Spins entspricht, d.h. typischerweise ei-
nige 10�10 m. Die Zeit, welche dafür benötigt wird,
entspricht der inversen Kopplungskonstante, tdd ⇡
1

wd
.

In einem typischen Festkörper besitzt jeder Spin vie-
le Nachbarn, an die er über Dipol-Dipol Wechsel-
wirkung gekoppelt ist. Er kann prinzipiell mit jedem
Nachbarn Magnetisierung austauschen. Magnetisie-
rung ist deshalb meistens nicht lokalisiert, sondern
breitet sich diffusionsartig durch den gesamten Fest-
körper aus. Man kann diesen Prozess durch eine Dif-
fusionsgleichung beschreiben, wobei die Diffusions-
konstante durch den mittleren Abstand zwischen den
Spins und die mittlere Kopplungsstärke gegeben ist.

Die Distanz d , über welche dieser Prozess effektiv
ist, kann abgeschätzt werden als

d ⇡
p

Dt .

Hier stellt D die Diffusionskonstante dar und t die
Messzeit. Typische Werte für d betragen wenige nm.
Man kann ihn deshalb dazu verwenden, Nachbar-
schaft in einem Festkörper zu analysieren.

5.2.7 Anwendungsbeispiel

Hier wurde z.B. Spindiffusion in einem Mischkri-
stall aus Adamantan und Hexamethylbenzol (HMB)
gemessen. Für das obere Spektrum wurde eine Mi-
schung von Pulvern der beiden Substanzen herge-
stellt und daran Spindiffusion gemessen. Jedes der
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Abbildung 5.19: Austauschspektren einer Mischung
aus Adamantan und Hexamethyl-
benzol. Oben: Pulvermischung, un-
ten Mischkristalle.

beiden Moleküle enthält zwei unterschiedliche 13C
Kerne, trägt also zwei Linien zum Spektrum bei. Da
sich beide Kerne in der gleichen Einheitszelle befin-
den, ist die Distanz kürzer als die Diffusionslänge,
es findet eine Übertragung statt. Wir sehen jedoch
keine Übertragung von HMB nach Adamantan. Der
Grund dafür ist, dass die Distanz zwischen Molekü-
len unterschiedlichen Typs zu groß ist, so dass die
Spindiffusion zu lange dauert.

Für das untere Spektrum wurde ein Mischkristall
hergestellt, indem beide Komponenten zusammen
geschmolzen und daraus ein Pulver kristallisiert
wurde. In diesem Fall befinden sich Moleküle von
beiden Spezies in unmittelbarer Nachbarschaft und
es findet Polarisationstranfer zwischen den beiden
statt.

5.2.8 NOESY: Prinzip

Eines der wichtigsten zweidimensionalen NMR Ex-
perimente wird als NOESY (für Nucluear Overhau-
ser Effect SpectroscopY) bezeichnet. In diesem Ex-
periment misst man den Austausch von Polarisati-

on über Dipol-Dipol Wechselwirkung und damit den
geometrischen Abstand zwischen den entsprechen-
den Spins. Dieser Austausch wird durch die (zeitab-
hängige) Dipolkopplung getrieben. Es ist damit eng
verwandt mit dem oben beschriebenen Spindiffusi-
onsexperiment. Allerdings handelt es sich hier um
ein Experiment an Molekülen in Flüssigkeiten. In
diesen bewegen sich die Moleküle und die moleku-
lare Bewegung kann Energie mit den Spins austau-
schen. Dadurch werden auch Prozesse möglich, bei
denen die Spin-Energie nicht erhalten bleibt.

Abbildung 5.20: Pulsfolge für das NOESY Expe-
riment. Alle drei Pulse sind p/2
Pulse.

Das NOESY Experiment verwendet eine Dreipuls-
folge. Wir betrachten ein Zweispinsystem und be-
zeichnen die beiden Spins mit A und X . Im thermi-
schen Gleichgewicht sind die beiden Spins entlang
der z-Achse polarisiert,

r0 = Az +Xz .

Der erste RF Puls dreht die Spins um 90 Grad um
die x-Achse und wir erhalten

r(0+) = Ay +Xy .

Während der Evolutionszeit präzedieren die Spins
um die z-Achse:

r(t1) = Ay cos(wAt1)+Ax sin(wAt1)

+Xy cos(wXt1)+Xx sin(wXt1) .

Der zweite Puls, welcher die Evolutionszeit ab-
schließt, erzeugt daraus

r(t1,0) = �Az cos(wAt1)+Ax sin(wAt1)

�Xz cos(wXt1)+Xx sin(wXt1) .
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Die transversalen Terme Ax und Xx zerfallen wäh-
rend der Mischzeit tm und werden nicht mehr be-
rücksichtigt. Die longitudinalen Terme sind jetzt mit
einer Amplitude moduliert (=markiert), welche ihre
Präzessionsfrequenz enthält.

Sind die beiden Spins geometrisch benachbart, so
spüren sie eine Dipolwechselwirkung

Hdd = wd [(1�3cos2
q)(A1zX2z

�1
4
(A1+X2� +A1�X2+))

�3
2

sinq cosq [(A1zX2+ +A1+X2z)e�if

+(A1zX2� +A1�X2z)eif ]

�3
4

sin2
q [A1+X2+e�2if +A1�X2�e2if ]] .

Aufgrund der molekularen Bewegung in einer
Flüssigkeit verschwindet die Kopplung im zeitli-
chen Mittel. Die Terme (A1+X2� + A1�X2+) und
(A1+X2+ + A1�X2�) können jedoch, gerade auf-
grund der Zeitabhängigkeit, Übergänge zwischen
den Zuständen |ab i $ |bai resp. |aai $ |bb i
anregen. In beiden Fällen wird Zeeman-Polarisation
zwischen den gekoppelten Spins ausgetauscht, wo-
bei im zweiten Fall das Vorzeichen gedreht wird.

Findet ein Austausch statt, so ist der Zustand am En-
de der Mischzeit

r(t1,tm) =

�Az[(1�h)cos(wAt1)+h cos(wxt1)]

�Xz[(1�h)cos(wXt1)+h cos(wAt1)] .

Der dritte Puls erzeugt daraus

r(t1,tm,0) =

�Ay[(1�h)cos(wAt1)+h cos(wxt1)]

�Xy[(1�h)cos(wXt1)+h cos(wAt1)] .

Dieser Zustand präzediert während der Detekti-
onszeit weiter. Dadurch erhät der erste Term eine
Phase e�iwAt2 und der zweite entsprechend e�iwXt2 .
Das Signal im Zeitbereich enthält somit Terme,
die mit cos(wAt1)cos(wAt2), cos(wAt1)cos(wXt2),
cos(wXt1)cos(wAt2) und cos(wXt1)cos(wXt2) mo-
duliert sind.

5.2.9 Signale

Wir erhalten somit insgesamt vier Linien:

w1 w2 Amplitude
wA wA 1�h

wA wX h

wX wA h

wX wX 1�h

Der Koeffizient h gibt an, wie viel Austausch statt-
gefunden hat. Die Linien auf der Diagonalen (w1 =
w2) haben die Amplitude 1 � h , d.h. sie sind besit-
zen die maximale Amplitude wenn kein Austausch
stattfindet (h = 0), während die Außerdiagonalpeaks
(w1 6= w2) erst für h > 0 erscheinen.

Abbildung 5.21: Resonanzlinien im NOESY Spek-
trum

Die Diagonale enthält wie üblich die Information des
1D Spektrums, während die Außerdiagonalelemente
anzeigen welche Spins Magnetisierung ausgetauscht
haben. Die Existienz dieser Linien ist somit ein Hin-
weis drauf, dass die entsprechenden Kerne geome-
trisch benachbart sind.

Der Austausch wird durch die Dipolwechselwir-
kung getrieben; in zweiter Ordnung Störungsrech-
nung kann man die Rate k berechnen, welche pro-
portional zum Quadrat der Kopplungskonstante ist
und damit k µ d�6.

5.2.10 Austauschmechanismen

Während der Mischzeit ist der Dichteoperator diago-
nal in der Eigenbasis des Hamiltonoperators, d.h. nur
die Populationen der Zustände spielen eine Rolle.
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Der Austauschprozess kann deshalb auch als Über-
tragung von Population zwischen unterschiedlichen
Spinzuständen verstanden werden.

Voraussetzung ist immer die Existenz einer Dipol-
kopplung zwischen den beteiligten Kernspins. Der
Betrag der Kopplungskonstante wd bestimmt, wie
schnell der Austausch abläuft, während die Opera-
toren bestimmen, zwischen welchen Zuständen der
Austausch stattfindet.

Im Fall des NOESY Experimentes können zwei Ter-
me im Dipoloperator den Austausch treiben. In der
üblichen Schreibweise des Dipoloperators (Dipolal-
phabet) handelt es sich um den “B-Term” A+X� +
A�X+ (Nullquantenterm, flip-flop Term) und den
E- und F-Term A+X+ +A�X� (Doppelquantenterm,
flop-flop Term). Die dazugehörigen Raten erhält
man als Produkt aus einem Vorfaktor

ki = |hi|H1| ji|2

und der spektralen Leistungsdichte J(0), resp. J(2w)
für den entsprechenden Übergang. Hier stellt H1 den
Störoperator dar, in diesem Fall somit einen Term
des Dipoloperators, und |ii und | ji sind die Eigenzu-
stände des Hamiltonoperators, zwischen denen der
Austausch stattfindet.

Die spektrale Leistungsdichte J(w) gibt an, wieviel
Bewegungsenergie im entsprechenden Frequenz-
band von der molekularen Bewegung zur Verfügung
steht. Mathematisch erhält man die spektrale Lei-
stungsdichte aus der Fouriertransformierten der Au-
tokorrelationsfunktion,

J(w) = 2
Z •

0
G(t)e�iwt dt .

Hier stellt G(t) die Autokorrelationsfunktion

G(t) = hA(0)A(t)i

der Kopplungsstärke A dar. Bei Molekülen in Flüs-
sigkeit kann die Kopplungsstärke durch molekulare
Reorientierung (d.h. über die Winkel q ,f variieren,
oder über den Abstand r. Je schneller die molekula-
ren Bewegungsprozesse sind, desto schneller zerfällt
die Korrelationsfunktion. In vielen Fällen kann sie
durch eine Exponentialfunktion

G(t) = hA(0)2ie�t/tc

dargestellt werden. Die Zeitkonstante tc wird als
Korrelationszeit bezeichnet.

Abbildung 5.22: Fluktuation der Kopplungskonstan-
ten (links), Korrelationsfunktion
(Mitte) und spektrale Leistungs-
dichte (rechts) für schnelle Bewe-
gungsprozesse (oben), resp. langsa-
me (unten).

Eine schnelle Bewegung führt zu einem schnellen
Abfall der Korrelationszeit (d.h. das Molekül “ver-
gisst” schnell seine frühere Orientierung) und des-
halb nach der Fouriertransformation zu einer brei-
ten Verteilung der spektralen Leistungsdichte. Ei-
ne langsame Bewegung führt entsprechend zu einer
schmalen Verteilung der Leistungsdichte. Für eine
exponentielle Korrelationsfunktion ist die spektrale
Leistungsdichte eine lorentzförmige Verteilung, mit
einer Breite ⇠ 1/tc .

Bei großen Molekülen mit entsprechend langen Kor-
relationszeiten ist die spektrale Leistungsdichte bei
der Frequenz 0 deutlich höher als bei 2w , so dass
in diesem Fall der Nullquanten (=Flip-Flop) Prozess
dominiert. Dieser Prozess überträgt Magnetisierung
zwischen den beiden Spins, so dass die Außerdiago-
nalpeaks das gleiche Vorzeichen haben wie die Lini-
en auf der Diagonalen.

Bei kleinen Molekülen sind jedoch die Korrelations-
zeiten so kurz, dass die spektralen Leistungsdich-
ten vergleichbar sind. In diesem Fall dominiert, auf-
grund der unterschiedlichen Vorfaktoren, der Dop-
pelquantenprozess. Dieser tauscht das Vorzeichen
der Magnetisierung bei der Übertragung und führt
deshalb zu negativen Außerdiagonalpeaks.
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Abbildung 5.23: Vorzeichen der Kreuzpeaks: bei
großen Molekülen sind die Kreuz-
peaks positiv, bei kleinen negativ.

5.2.11 Zeitabhängigkeit

Die Austauschamplitude h ist abhängig von der
Mischzeit tm. Der Austausch kann beschrieben wer-
den durch ein lineares Differentialgleichungssystem

d
dt

Az = �k(Az �Xz)�Az/T1

d
dt

Xz = �k(Xz �Az)�Xz/T1 ,

wobei T1 die Spin-Gitter Relaxationszeit beschreibt,
und k die Austauschrate durch die d-d Wechselwir-
kung. Diese Form gilt für den Fall, dass der Null-
quantenprozess dominiert; dominiert der Doppel-
quantenprozess, so wechselt das Vorzeichen:

d
dt

Az = �k(Az +Xz)�Az/T1

d
dt

Xz = �k(Xz +Az)�Xz/T1.

Die beobachtete Zeitabhängigkeit enthält somit zwei
Raten, resp. Zeitkonstanten.

Nach der Mischzeit ist der Zustand des Systems

r(t1,tm) = �Az[(1�h)cos(wAt1)+h cos(wXt1)]

�Xz[(1�h)cos(wXt1)+h cos(wAt1)]

und nach dem dritten p/2 Puls:

r(t1,tm,0) = �Ay[(1�h)cos(wAt1)+h cos(wXt1)]

�Xy[(1�h)cos(wXt1)+h cos(wAt1)].

Das Signal während der Detektionrszeit wird damit

sy(t1,tm, t2) = �Ay[(1�h)cos(wAt1)cos(wAt2)

+h cos(wXt1)cos(wAt2)]

�Xy[(1�h)cos(wXt1)cos(wXt2)

+h cos(wAt1)cos(wXt2)].

Abbildung 5.24: Amplitude von Kreuz- und Dia-
gonalpeaks als Funktion der
Mischzeit.

Der Austauschprozess führt mit der Rate k zum Auf-
bau der Kreuzpeaks und gleichzeitig zu einer Reduk-
tion der Diagonalpeaks - dieser Prozess dominiert
z.B. in Figur 5.24. Die Relaxationsprozesse führen
zu einer Dämpfung aller Linien. In der Figur ist das
Verhalten für Kreuzpeak und Diagonalpeak für un-
terschiedliche Austauschraten dargestellt.

Die verschiedenen Kurven stellen die Zeitabhängig-
keit der Amplituden für unterschiedliche Korrelati-
onszeiten dar.

In Figur 5.25 ist das NOESY Spektrum von BPTI,
einem kleinen Protein dargestellt. Auf der Diago-
nalen erscheint das 1D Spektrum, welches sehr we-
nig Auflösung zeigt. Die gestrichelten Linien geben
die Bereiche an, in denen die wichtigsten Kreuz-
peaks für die Zuordnung liegen: Die Amidprotonen
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Abbildung 5.25: NOESY Spektrum von BPTI.

NH liegen im Bereich > 6.5 ppm, die C
a

Protonen
im Bereich 4-6 ppm und die C

b

Protonen unterhalb
3.5 ppm. Die Rechtecke bezeichnen somit den Aus-
tausch NH-NH, NH-C

a

und NH-C
b

.

Da die Stärke wd der Wechselwirkung mit 1/r3 ska-
liert, verschwindet die Kreuzrelaxation mit 1/r6. Sie
hängt damit sehr stark vom Abstand ab, ergibt also
sehr genaue Messwerte für intramolekulare Distan-
zen. Für die Bestimmung der Raten muss eine Reihe
von Spektren mit unterschiedlicher Mischzeit aufge-
nommen werden.

5.3 Korrelationsspektroskopie

5.3.1 Kopplungen in NMR Spektren

Eine weitere wichtige Anwendung der 2D Spektro-
skopie ist das COSY (=COrrelation SpectroscopY)
Experiment, welches dazu dient, Verknüpfungen
zwischen Kernspins zu finden: man erhält Kreuz-
peaks wenn zwei Kerne über eine (skalare) Kopp-
lung aneinader gekoppelt sind. Während im NOE-
SY Experiment Dipolkopplungen gemessen werden
(und damit räumliche Distanzen), welche im Spek-
trum nicht sichtbar sind, werden beim COSY Ex-
periment skalare Spin-Spin Kopplungen, welche im
Spektrum zu Aufspaltungen führen, verwendet, um
zu klären, zwischen welchen Kernen chemische Bin-
dungen bestehen.

Bei einfachen Spektren kann man die Kopplung im

Abbildung 5.26: 1H-NMR Spektrum von Ethanol.
Die Kopplung zwischen der CH2-
Gruppe bei 3,5 ppm und der
CH3-Gruppe bei 1,1 ppm ist klar
erkennbar.

Spektrum direkt erkennen und die Kopplungspartner
einander zuordnen. Im Beispiel von Ethanol besteht
eine Kopplung zwischen den Protonen der CH2- und
der CH3-Gruppe. Das zeigt sich dadurch, dass die
Linien um den gleichen Betrag aufgespalten sind
und die Anzahl der Linien durch die Anzahl der Pro-
tonen in der anderen Gruppe bestimmt ist: Kerne, die
an 3 identische Protonen gekoppelt sind, zeigen ein
Quartett mit dem Amplitudenmuster 1:3:3:1. Kerne,
die an zwei identische Protonen gebunden sind, wer-
den dagegen im Verhältnis 1:2:1 aufgespalten.

Abbildung 5.27: 1H-NMR Spektrum von Ubiquitin.

Betrachtet man dagegen ein Spektrum eines etwas
größeren Moleküls, wie z.B. des (relativ kleinen)
Proteins Ubiquitin (76 AS, 8564 Da), so wird es
schwierig, einzelne Linien zuzuordnen, und Auf-
spaltungsmuster sind nicht mehr erkennbar.

5.3.2 COSY

Im einfachsten Fall verwendet man dafür eine Folge
aus zwei RF Pulsen, welche alle Spins anregen. Die
Evolutionszeit und die Detektionszeit sind hier nur
durch einen Radiofrequenzpuls getrennt. Im Folgen-
den soll für ein einfaches Modellsystem gezeigt wer-
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Abbildung 5.28: Pulsfolge für Korrelationsspek-
troskopie (COSY). Damit erhält
man Spektren, in denen gekoppelte
Übergänge als Kreuzpeaks sichtbar
werden.

den, wie diese Verbindungen sichtbar gemacht wer-
den können.

Wir diskutieren hier den Fall eines homonuklearen,
schwach gekoppelten Zweispinsystems AX mit ei-
nem Hamiltonoperator

H = �wAAz �wX Xz +2p J AzXz . (5.1)

Die Gleichgewichtsmagnetisierung

r0 = Az +Xz

wird durch den ersten
�

p

2
�

x Puls in transversale Ma-
gnetisierung

r(0) = Ay +Xy

umgewandelt.

Während der Evolutionszeit entwickelt sich die Ma-
gnetisierung unter dem Einfluss des Hamiltonopera-
tors (5.1):

r(t1) = e�iH t1
r(0)eiH t1 .

Da die einzelnen Terme miteinander vertauschen,
können wir ihren Einfluss getrennt berechnen, d.h.

e�iH t1 = eiwAAzt1eiwX Xzt1e�i2pJAzXzt1 .

Die wichtigsten Beziehungen sind für die Larmor-
präzession

eiwAAztAx e�iwAAzt = Ax cos(wAt) � Ay sin(wAt) ,

eiwAAztAy e�iwAAzt = Ay cos(wAt) + Ax sin(wAt)

und für die Kopplung

e�i2pJAzXztAx ei2pJAzXzt =

Ax cos(pJt) + 2AyXz sin(pJt) ,

e�i2pJAzXzt2AyXz ei2pJAzXzt =

2AyXz cos(pJt) � Ax sin(pJt) .

5.3.3 Zeitentwicklung

Damit erhalten wir für die Zeitentwicklung während
der Evolutionszeit t1

r(t1) = [Ay cos(wAt1)+Ax sin(wAt1)

+Xy cos(wXt1)+Xx sin(wXt1)]cos(pJt1)

+[�2AxXz cos(wAt1)+2AyXz sin(wAt1)

�2XxAz cos(wXt1)+2XyAz sin(wXt1)]sin(pJt1) .

Der zweite
�

p

2
�

x Puls erzeugt daraus

r(t1,0) = [�Az cos(wAt1)�+Ax sin(wAt1)

(�Xz cos(wXt1)�Xx sin(wXt1)]cos(pJt1)

+[�2AxXy cos(wAt1)�2AzXy sin(wAt1)

�2XxAy cos(wXt1)�2XzAy sin(wXt1)]sin(pJt1) .

Von diesen Termen stellen nur die Komponenten
Ax, Xx, AzXy und XzAy beobachtbare Magnetisierung
dar. Davon stellen der 3te und 4te Term sogenannte
”Antiphasen-Magnetisierung” dar: das entsprechen-
de Signal ist zunächst (zu Beginn des FIDs) Null,
es entsteht daraus jedoch messbare Magnetisierung.
Dies äußert sich im Spektrum so, dass das Integral
dieses Signalbeitrags verschwindet (entspricht dem
Anfangswert des FIDs) und man erhält zwei Reso-
nanzlinien mit entgegengesetzem Vorzeichen.

In beiden Fällen hat der zweite Puls die Rollen der
beiden Spins vertauscht: vor dem Puls bestehen die
beiden Terme aus transversaler Magnetisierung des
A-Spins (Ay), anti-Phase bez. des X-Spins (Xz). Nach
dem Puls bestehen die beiden Terme aus transversa-
ler Magnetisierung des X-Spins (Xy), anti-Phase bez.
A-Spin (Az). Man spricht deshalb von einem Magne-
tisierungstransfer. Diese Art des Kohärenztransfers
wird häufig benutzt, um

• Signale einer Spin-Sorte mit kleinem gyroma-
gnetischem Verhältnis zu verstärken

• Kohärenz für die Detektion auf Protonen zu
übertragen, wo die Empfindlichkeit höher ist
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• Gekoppelte Spins zu korrelieren.

Während der Detektionszeit t2 entwickelt sich die re-
levanten Komponenten des Dichteoperators wie

Ay cos(wAt1)cos(pJt1) ! cos(wAt1)cos(pJt1)

[(Ay cos(wAt2)+Ax sin(wAt2))cos(pJt2)

�(2AxXz cos(wAt2)+2AyXz sin(wAt2))sin(pJt2)] .

Abbildung 5.29: Signalbeitrag der Ay Komponente.

Messen wir z.B. die y-Komponente der Magnetisie-
rung, so erhalten wir davon einen Signalbeitrag

s(t1, t2) = cos(wAt1)cos(pJt1) cos(wAt2)cos(pJt2) .

Mit Hilfe der trigonometrischen Beziehung

cosa cosb =
1
2

[cos(a +b )+ cos(a �b )]

sieht man, dass ein moduliertes Signal
cos(wAt1)cos(pJt1) ein Spektrum mit zwei Li-
nien bei der Frequenz wA ± J

2 ergibt. In zwei
Dimensionen erhalten wir somit vier Linien, welche
jeweils um die Kopplungskonstante getrennt sind.

5.3.4 Form und Interpretation des
Spektrums

Eine zweidimensionale Fouriertransformation er-
zeugt daraus vier Linien bei den Frequenzen [w1 =
wA ± pJ,w2 = wA ± pJ]. Einen entsprechenden Si-
gnalbeitrag bei der Frequenz [w1 = wX ± pJ,w2 =
wX ±pJ] liefert der Term Xx sin(wxt1)cos(pJt1).

Einen weiteren Signalbeitrag erhält man von
den Termen AzXy sin(wAt1)sin(pJt1) und

XzAy sin(wXt1)sin(pJt1). Der erste entwickelt
sich während der Detektion wie

2AzXy sin(wAt1)sin(pJt1) ! sin(wAt1)sin(pJt1)

[(2AzXy cos(wXt2)+2AzXx sin(wXt2))cos(pJt1)

�(Xx cos(wXt2)�Xy sin(wXt2))sin(pJt1)] .

Mit der Observablen Xy wird das Signal im Zeitbe-
reich

sin(wAt1)sin(pJt1)sin(wXt2)sin(pJt1)

und im Frequenzbereich erhalten wir vier Lini-
en bei [w1 = wA ± pJ,w2 = wX ± pJ]. Der Term
XzAy sin(wXt1)sin(pJt1) erzeugt dementsprechend
Linien bei [w1 = wX ±pJ,w2 = wA ±pJ].

Abbildung 5.30: Resonanzlinien im COSY
Spektrum.

Das gesamte Spektrum besteht somit aus vier Grup-
pen zu je vier Linien. Die Quartette in der Nähe der
Diagonalen enthalten die gleiche Information wie
das eindimensionale Spektrum; die Kreuzpeaks hin-
gegen zeigen, dass die beiden aneinander gekoppelt
sind. Da solche Kopplungen immer über chemische
Bindungen (eine oder mehrere) laufen erlauben sie
Rückschlüsse auf die Struktur des Moleküls, wel-
ches den Kern enthält.

5.3.5 Beispiele

In der Figur ist eines der ältesten COSY Spektren
dargestellt, welches die beiden Protonen in Dibromt-
hiophen dargestellt. Die zusätzlichen Resonanzlini-
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Abbildung 5.31: COSY Spektrum von Dibrom-
thiophen.

en bei w1 = 0 stammen von Magnetisierungsbeiträ-
gen, welche während der Evolutionszeit durch Rela-
xation entstanden sind. Ihre Phase ist deshalb nicht
von t1 abhängig und ihre Signale erscheinen nach
der Fouriertransformation bei w1 = 0. Sie werden in
den meisten Experimenten durch Phasenzyklen eli-
miniert.

Ein Phasenzyklus ist eine Kombination von zwei
oder mehr Experimenten, die sich durch die Phase
der RF Pulse unterscheiden. In diesem Beispiel kann
man z,B, die Phase des ersten Pulses zwischen x und
�x ändern. Dabei ändert sich das Vorzeichen aller
relevanten Teile des Dichteoperators und damit des
berechneten Signals. Eine Komponente, die durch
Relaxation entsteht, ist jedoch unabhängig von die-
ser Phase. Subtrahiert man die beiden Experimente,
so fallen die Komponenten, die nicht von der Phase
abhängen heraus, während die gewünschten Signal-
beiträge bleiben.

Abbildung 5.32: Struktur von Carboran.

Als weiteres Beispiel betrachten wir das COSY
Spektrum von 11B in o-Carboran. Das Molekül ent-
hält 10 B Atome, welche aufgrund der Symmetrie
des Moleküls in drei Zweier- und einer Vierergrup-

pen äquivalent sind.

Abbildung 5.33: COSY Spektrum von o-Carboran

Die verschiedenen Atome sind über skalare Kopp-
lungen mit ihren nächsten Nachbarn gekoppelt. Dies
kann dazu verwendet werden, die Resonanzlinien
zuzuordnen. So sind die Atome 3 und 6 nicht an die
Atome 9 und 12 gekoppelt, während die Atome an
den Positionen 8, 10, 4, 5, 7 und 11 an alle anderen
Positionen gekoppelt sind.

Die einzelnen Liniengruppen sind hier nicht aufge-
löst weil die Relaxation durch das Quadrupolmo-
ment (I=3/2) relativ schnell und dadurch die Lini-
enbreite größer ist als die Kopplungen.

5.3.6 Heteronukleare
Korrelationsexperimente

Beim COSY werden Kopplungen zwischen Proto-
nen verwendet, um Informationen über die Bin-
dungsstruktur eines Moleküle zu erhalten. Genau
so kann man Kopplungen zwischen unterschiedli-
chen Kernen verwenden, z.B. 1H-13C, 1H-15N, oder
13C-15N. Experimente mit mehren unterschiedlichen
Kernen werden als ”heteronukleare” Experimente
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bezeichnet, im Gegensatz zu ”homonuklearen” Ex-
perimenten.

Heterokerne weisen typischerweise einen deutlich
größeren Bereich chemischer Verschiebungen auf
als Protonen. Dadurch liefern sie häufig mehr spek-
trale Information, besonders bei großen Molekülen.
Allerdings ist auch die Empfindlichkeit deutlich ge-
ringer, da die Resonanzfrequenzen nideriger sind
und teilweise die natürliche Häufigkeit sehr niedrig.
Einen Teil der Empfindlichkeit kann man in hete-
ronuklearen Experimenten wieder gewinnen, indem
man Polarisation von den Protonen auf die Hetero-
kerne überträgt um das Signal zu verstärken und /
oder für die Detektion die Protonen verwendet, da
sie bei gegebener Polarisation ein größeres Signal
liefern.

Das vielleicht wichtigste heteronukleare Experiment
wird mit HSQC abgekürzt. Das Akronym steht für
Heteronuclear Single Quantum Spectrosopy. Wir
diskutieren es anhand eines einfachen Systems von
zwei gekoppelten Spins. Der Hamiltonoperator die-
ses Systems lautet

H = wIIz + wSSz + 2pJ IzSz ,

wobei I meist für Protonen steht, S z.B. für 15N.

Abbildung 5.34: Pulsprogramm des HSQC
Experimentes.

Im ersten Teil des Experiments wird Polarisation von
den Protonen auf den Heterokern1 (meist 15N, auch
13C) übertragen. Nach dem ersten p/2-Puls ist der
relevante Teil des Dichteopertors

r(0) = Ix .

Darauf folgt eine freie Evolutionszeit, wobei in der
Mitte auf beiden Kernen ein p-Puls angelegt wird.
Dieser refokussiert die chemische Verschiebung bei-
der Kerne, lässt aber die Kopplung invariant, da bei-
de Kerne invertiert werden,

IzSz ! (�Iz)(�Sz) = IzSz .

1Als Heterokern wird jeder Kern außer 1H bezeichnet.

Damit wird aus dem Anfangszustand

r(2t) = Ix cos(2pJt) + IySz sin(2pJt) .

Wählt man t = 1/4J, so erhält man

r(1/2J) = �IySz .

Zu diesem Zeitpunkt wird auf beiden Spins jeweils
ein p/2 Puls angelegt, so dass

r(1/2J+) = IzSy .

Dies ist die ”Heteronukleare Einquantenkohärenz”,
welche der Methode den Namen gegeben hat: Der S-
Spin ist als transversale Magnetisierung vorhanden,
allerdings in “antiphase” bezüglich des I-Spins: Die
Komponente, welche zum -1/2 Zustand des I-Spins
gehört hat positives Vorzeichen, diejenige, welche
zur +1/2 Komponente gehört negatives Vorzeichen.

Abbildung 5.35: Anti-Phasen Magnetisierung.

Man kann dies so verstehen, dass die Magnetisie-
rung in den beiden Übergängen (deren Frequenz
sich um die Kopplungskonstante unterscheidet) un-
terschiedliches Vorzeichen hat. Würde man diesen
Zustand als FID des S-Spins beobachten, so würde
das Signal zuerst verschwinden (da sich die Beiträ-
ge der beiden Signalkomponenten auslöschen). Auf-
grund der unterschiedlichen Frequenz geraten sie
aber nach einer Zeit 1/2J in Phase (als Sx) und man
erhält ein oszillierendes Signal. Über Fouriertrans-
formation erhält man daraus ein Dublett, dessen Li-
nien entgegengesetztes Vorzeichen besitzen.

Im HSQC Experiment wird dieses Signal jedoch
nicht detektiert. Statt dessen lässt man das System
frei evolvieren. Der Dichteoperator wird durch den
I-Spin Zeemanterm nicht beeinflusst, aber durch den
S�Spin Zeemanterm und den Kopplungsterm. Der
letztere wird durch einen p-Puls auf den I-Spins in
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der Mitte der Evolutionszeit refokussiert. Zum Ende
der Evolutionszeit ist deshalb der Zustand

r(t1) = �IzSy cos(wSt1) + IzSx sin(wSt1) .

Das zweite Paar von p/2-Pulsen erzeugt daraus

r(t1+) = �IySz cos(wSt1) + IySx sin(wSt1) .

Beim zweiten Term handelt es sich um Null- und
Doppeltquantenkohärenz, welche nicht zum beob-
achtbaren Signal beiträgt; wir betrachten es hier
nicht weiter. Der erste Term wird durch die Evoluti-
on unter der Kopplung wärend einer Zeit 2t wieder
aus anti-Phasen Magnetisierung zu in-Phasen Ma-
gnetisierung:

r(t1,0) = Ix cos(wSt1) .

Zu diesem Zeitpunkt beginnt man mit der Datenauf-
nahme. Während der Messung werden die Stickstof-
fe entkoppelt (GARP). Die Protonen erhalten des-
halb nur ihre Zeemanfrequenz,

r(t1, t2) = Ix cos(wSt1)cos(wIt2)

+ Iy cos(wSt1)sin(wIt2) .

Das Signal enthält somit nur die Larmorfrequenzen
der beiden Kerne, jedoch keine Kopplungen (Auf-
spaltungen). Dies vereinfacht das Spektrum und er-
höht die Empfindlichkeit.

Abbildung 5.36: HSQC Spektrum.

In einem heteronuklearen Spektrum entsprechen die
beiden Dimensionen unterschiedlichen Kernen. So-
mit wird nur Kohärenz beobachtet, welche von einer
Kernsorte auf eine andere übertragen wurde, und es
existiert keine Diagonale (w1 = w2). Man beobach-
tet nur Signale, die einem Kohärenztransfer entspre-
chen.

In diesem Beispiel wird ein Protein untersucht, bei
dem Signale zwischen 1H und 15N übertragen wer-
den. Dies erlaubt eine relativ rasche Zuordnung der
einzelnen Aminosäuren und ist Bestandteil von vie-
len 3D Experimenten.

5.4 Multiquanten-NMR

Bisher haben wir Experimente diskutiert, bei de-
nen die Erweiterung auf mehrere Dimensionen in
erster Linie genutzt wurde, um mehr (oder genaue-
re, oder leichter verwertbare) Informationen über die
Resonanzen zu erhalten, welche man auch bei den
“normalen” eindimensionalen Experimenten beob-
achten kann. Hier soll nun eine grundsätzlich ande-
re Möglichkeit diskutiert werden: mit Hilfe mehr-
dimensionaler Experimente können Prozesse oder
spektroskopische Übergänge untersucht werden, die
mit eindimensionalen Experimenten gar nicht beob-
achtet werden können. Die zweite Dimension ist hier
also nicht einfach eine Wiederholung der ersten Di-
mension, sie ist eine “neue” Dimension.

5.4.1 Multiquanten Übergänge

Normalerweise beobachtet man in der NMR Über-
gänge, bei denen genau ein Spin seinen Zustand um
Dm = ±1 ändert. Dies sind die einzigen Übergänge,
welche direkt beobachtbar sind.

Ein Beispiel für erlaubte Übergänge in einem 3-Spin
System ist in Abbildung 5.37 dargestellt.

In diesem Fall sind 12 Übergänge erlaubt: für
jeden Spin existieren 4 Übergänge, welche den
Zuständen| ""i, | "#i, | #"i, | ##i der beidern anderen
Spins zugeordnet werden können.
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Abbildung 5.37: Erlaubte Übergänge in einem Sy-
stem von 3 Spins 1/2.

Abbildung 5.38: Spektrum eines 3-Spin Systems.

Insgesamt hat das System aber wesentlich mehr
Übergänge: Das System besitzt insgesamt 23 = 8 Zu-
stände, zwischen denen

7 ·8
2

= 28

Übergänge stattfinden können.

Das gleiche Resultat erhält man auch wenn man die
Elemente des Dichteoperators betrachtet: von den 64
Elementen sind 8 Populationen, es bleiben also 56
Außerdiagonalelemente. Diese entsprechen jeweils
28 Übergängen von unten nach oben und von oben
nach unten.

Die zusätzlichen 16 Übergänge können jedoch we-
der direkt angeregt noch beobachtet werden, da das
magnetische Dipolmoment, welche für die Kopp-
lung an das Radiofrequenzfeld verantwortlich ist,
in diesen Übergängen keine Matrixelemente enthält.
Kohärenzen in diesen Übergängen sind deshalb “un-
sichtbar”. Obwohl diese Übergänge nicht an ein ma-
gnetisches Dipolmoment koppeln können sie trotz-
dem angeregt werden, d.h. es ist möglich, Kohären-
zen in diesen Übergängen zu erzeugen. Diese auch
zu messen ist in unterschiedlichen Zusammenhän-
gen wichtig; es gibt spektroskopische Anwendun-
gen (siehe Ende des Kapitels); in anderen Fällen, wie

Abbildung 5.39: 3 Beispiele für nicht beobachtbare
Übergänge.

z.B. in der Quanteninformation, möchte man den ge-
samten Zustand des Systems kennen, und dies bein-
haltet auch die nicht direkt beobachtbaren Übergän-
ge.

Abbildung 5.40: Eine 2QT ist nicht das gleiche wie
2 1QT !

Es darf hier nicht der Eindruck entstehen, dass
ein Mehrquantenübergang gleich einer Abfolge von
Einquantenübergängen sei. So absorbieren bei ei-
nem 2-Quantenübergang zwei Spins gleichzeitig 2
Photonen. Die Zustände | "#i und | #"i, welche
bei aufeinanderfolgenden 1QTs zwischenzeitlich be-
setzt würden, werden bei einem 2QT nie bevölkert.

5.4.2 CW MQ-NMR

Merhquantenübergänge sind “verboten”, d.h. die
Matrixelemente des magnetischen Dipoloperators in
diesen Übergängen verschwinden. Allerdings kön-
nen sie in höherer Ordnung Störungsrechnung trotz-
dem angeregt werden.

Die Anregungsamplitude ist dabei gegeben durch ein

109



5 2D NMR

Abbildung 5.41: Anregung eines Mehrquantenüber-
gangs ist in höherer Ordnung Stö-
rungsrechnung möglich.

Produkt aus zwei Matrixelementen,

w2 µ hi|µ|kihk|µ|li
d

.

Hier stellt d die Differenz zwischen der Energie
des Zwischenzustandes |ki und dem virtuellen Zwi-
schenzustand dar, dessen Energie durch den Mittel-
wert der Energien von |ii und |li gegeben ist. Da die
beiden Matrixelemente im Zähler meist kleiner sind
als das im Nenner spielen diese Übergänge erst bei
starken RF-Feldern eine Rolle.

Abbildung 5.42: Anregung von Doppelquanten-
Übergängen bei hoher Leistung.

Erste Messungen wurden von Anderson et al.
durchgeführt (Anderson et al., J. Chem. Phys. 39
1518–1531 (1963).). Im oberent (Teil-)spektrum
sieht man die 4 Linien eines AB-Spinsystems, wel-
che mit niedriger Leistung gemessen wurden. Er-
höht man die Leistung, so erhält man eine zusätzli-
che Linie im Zentrum des Spektrums. Die normalen
(1QT) Linien werden gleichzeitig durch die höhere
RF Feldstärke verbreitert.

5.4.3 Zeitaufgelöste MQ-NMR

Heute werden Mehrquanten-NMR Experimente
praktisch nur noch mit gepulster Anregung aufge-
nommen. Da die Mehrquantenübergänge nicht di-
rekt beobachtbar sind, benötigt man dafür eine in-
direkte Detektionsmethode, d.h. ein zweidimensio-
nales Experiment.

Abbildung 5.43: Pulssequenz für Multiquanten-
NMR.

Wir betrachten dafür ein einfaches Zweispinsystem,

H = wIIz + wSSz + 2pJ IzSz .

Der erste p/2-Puls erzeugt aus dem Gleichgewicht
den Zustand

r(0) = Ix +Sx .

Während der darauf folgenden Zeit entwickelt
sich das System unter dem Hamiltonoperator
H . Dabei refokussiert der p-Puls die Zeeman-
Wechselwirkung, lässt aber die Kopplung unverän-
dert, so dass der Propagator als

U(2t) = e�4ptiJIzSz

geschrieben werden kann. Wird die Zeit t geeignet
gewählt (t = 1/4J), so ist der Zustand danach

r(2t) = IySz +SyIz .

Der zweite p/2-Puls ist wiederum ein y-Puls, so dass

r(2t,0) = IySx + IxSy .

Dieser Zustand kann mit Hilfe von

Ix =
1
2
(I+ + I�) Iy =

i
2
(�I+ + I�)

auch geschrieben werden als

r(2t,0) =
i
2
[�I+S+ + I�S�] .

Dieser Operator beschreibt eine Kohärenz zwischen
den beiden Zuständen | ""i und | ##i, also eine reine
Doppelquantenkohärenz.
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Während der folgenden Evolutionszeit t1 entwickelt
sich dieser Zustand unter dem Einfluss des Hamil-
tonoperators. Dabei spielt der Kopplungsterm keine
Rolle, der Endzustand ist

r(2t, t1) =
i
2
[�I+S+e�i(wI+ws)t1

+I�S�ei(wI+ws)t1 ]

= (IySx + IxSy)cos(wI +wS)t1
+(IxSx + IySy)sin(wI +wS)t1 .

Die Evolutionszeit wird durch einen weiteren
(p/2)y-Puls abgeschlossen. Danach ist der Zustand

r(2t, t1) = (IySz + IzSy)cos(wI +wS)t1
+(IzSz + IySy)sin(wI +wS)t1 .

Der Term IzSz stellt hier Populationen dar, der Term
IySy enthält 0- und 2-Quantenkohärenzen. Beide
sind somit nicht beobachtbar. Der Term (IySz + IzSy)
stellt Antiphasenmagnetisierung dar, welche durch
die darauf folgende Verzögerungszeit der Länge 2t

wieder in beobachtbare Magnetisierung umgewan-
delt wird. Der p-Puls dient wiederum der Refokus-
sierung der Zeeman-Wechselwirkung.

Wie in der 2D-NMR üblich, misst man einen 2D-
Datensatz. Nach der 2D-FFT findet man in der w2-
Richtung das normale Spektrum, in w1-Richtung
das Mehrquantenspektrum. In unserem idealisierten
Beispiel wurde hier nur der Zweiquantenübergang
bei der Frequenz wI +wS angeregt.

Abbildung 5.44: Mehrquantenspektrum eines Zwei-
spinsystems. Es ist nur die indirek-
te Dimension dargestellt.

Allgemein kann man hier sämtliche möglichen
Übergänge des Systems beobachten. In diesem

Zweispinsystem wären dies zusätzlich die 4 Ein-
quantenübergänge und der Nullquantenübergang.
Bei der Bestimmung der Resonanzfrequenzen ist zu
beachten, dass die Energien Ei im Laborsystem dar-
gestellt sind, während die beobachteten Frequenzen
wi j im rotierenden Koordinatensystem dargestellt
werden. Für Übergänge unterschiedlicher Quanten-
Ordnung Dm gilt

wi j =
E j �Ei

h̄
�Dmwr f .

5.4.4 Beispiel

Als Beispiel betrachten wir das Spektrum von Di-
Brom-Essigsäure.

Abbildung 5.45: 1D NMR Spektrum von Di-Brom-
Essigsäure (gerechnet).

Die 3 Protonen von Di-Brom-Essigsäure haben un-
terschiedliche chemische Verschiebungen und sind
über paarweise Kopplungen aneinander gekoppelt.
Wir finden deshalb im normalen 1D-Spektrum drei
Gruppen mit je vier Linien (jede der Resonanzlinien
der drei Kerne ist durch die beiden Wechselwirkun-
gen jeweils 2 mal aufgespalten).

Abbildung 5.46: 1H-MQT-NMR Spektrum vom Di-
Brom-Essigsäure.

Im Mehrquantenspektrum findet man bei jeder der
Linien im 1D Spektrum praktisch alle Linien des
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Mehrquantenspektrums. Es können insgesamt

n =
N (N �1)

2

Linien auftreten, wobei N = 23 = 8 die Anzahl der
Zustände darstellt. Von den 28 möglichen Linien fin-
det man nicht alle, da die Auflösung nicht hoch ge-
nug ist.

Interessiert man sich nicht für alle Linien oder ist
das Spektrum zu voll, so gibt es die Möglichkeit, nur
Spektren mit einer bestimmten Quantenzahl Dm auf-
zunehmen.

Abbildung 5.47: Reines 3-Quanten Spektrum.

Dafür wird ein “Phasenzyklus verwendet, d.h. man
wiederholt das Experiment mehrmals, wobei die
Phase der RF Pulse in der Präparationszeit um einen
Betrag j verschoben wird. Die Kohärenzen der Ord-
nung Dm erhalten dann jeweils einen Phasenfaktor
Dm ·j und können so unterschieden werden.

5.4.5 Komplexität der Spektren

Mehrquantenspektren werden aus sehr unterschied-
lichen Gründen eingesetzt. Vielleicht der einfachste
Grund ist die Vereinfachung von Spektren. So ist in
einem System aus N Spins 1/2 jeweils der Übergang
mit der maximalen Quantenzahl Dm = N nicht entar-
tet und nicht aufgespalten: es existiert nur ein Über-
gang

| "" .... "i $ | ## .... #i

Abbildung 5.48: 1H-NMR Mehrquantenspek-
trum von Benzol in einem
Flüssigkristall.

zwischen dem niedrigsten (nicht entarteten) Zustand
und dem höchsten (ebenfalls nicht entartet.

Figur 5.48 zeigt ein Beispiel eines Mehrquanten-
spektrums: hier handelt es sich um die 6 Protonen
eines 1H NMR Spektrums von Benzol in einem Flüs-
sigkristall. Bei den niedrigen Quantenzahlen sieht
man eine große Zahl von Übergängen, bei 5 Quanten
nur noch 2, bei 6 Quanten nur noch einen.

5.4.6 Mehrquantenfilter

Ein ähnliche Anwendung ist die Verwendung von
Multiquanten-Übergängen, um bestimmte Moleküle
zu selektieren. Ein klassisches Beispiel ist das INA-
DEQUATE Experiment: man misst ein vereinfach-
tes Mehrquantenspektrum, betrachtet aber nur das
1D Spektrum als Funktion von w2, d.h. der Detek-
tionsfrequenz, bei der Frequenz des Doppelquanten-
übergangs. Zu diesem Spektrum tragen offenbar nur
Moleküle bei, welche zwei gekoppelte Spins enthal-
ten.

Abbildung 5.49: 13C NMR Spektrum von Ethanol.

Das Spektrum in Figur 5.49 zeigt das normale 1D
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13C NMR Spektrum von Ethanol. Die beiden Lini-
en entsprechen den beiden Kohlenstoffatomen. Da
13C nur in ca. 1% natürlicher Häufigkeit vorhanden
ist, enthalten die meisten Moleküle nur jeweils einen
13C Spin - die linke Linie gehört zur CH2-Gruppe,
die rechte zur CH3-Gruppe.

Abbildung 5.50: 13C Satelliten der rechten Linie
(CH3-Gruppe).

Eine genauere Messung zeigt, dass in der Nähe jeder
Linie jeweils noch 2 “Satelliten” auftreten. Diese Li-
nien stammen von Molekülen, welche 2 13C-Kerne
enthalten; diese sind über eine J-Kopplung anein-
ander gekoppelt. Sie machen einen Anteil von rund
10�4 aller Moleküle in der Probe aus. Wegen der ge-
ringeren Häufigkeit und der Aufspaltung der Linie
sind diese Satelliten etwa einen Faktor 200 kleiner
als die Zentrallinie.

Abbildung 5.51: INADEQUATE Spektrum des
Ethanols.

Betrachtet man anstelle des 1D Spektrums das INA-
DEQUATE Spektrum, so wird die Zentrallinie stark
unterdrückt; sie ist in diesen Spektren um rund
einen Faktor 200 kleiner geworden, so dass die Sa-
telliten deutlich besser sichtbar werden. Bei die-
sem Experimt misst man praktisch eine Zeile des
2-Quantenspektrums, welche dem Doppelquanten-
übergang entspricht. Da nur Moleküle hier beitragen

können, welche 2 13C Kerne enthalten, werden die
übrigen sehr effektiv unterdrückt.

Mehrquantenspektren können auch dazu benutzt
werden, Linien in Spektren zuzuordnen, ähnlich wie
COSY Spektren.

5.4.7 Zählen von Spins

Mehrquantenexperiment in Festkörpern können da-
zu verwendet werden, die Größe von “Clustern” zu
bestimmen, also von Gruppen von räumlich benach-
barten und damit gekoppelten Spins. Die Grundla-
ge dafür ist relativ einfach: die Größe des Cluster
bestimmt die Zahl der möglichen Zustände und die
maximale Quantenzahl, welche in dem System an-
geregt werden kann. Eine Messung der Signalampli-
tuden der einzelnen Quantenordnungen kann somit
die Größe des Spinsystems bestimmen.

Abbildung 5.52: Wasserstoffatome in Si: bilden sie
Cluster ?

Ein Beispiel für ein System, wo sich die Frage nach
der Clusterbildung stellt, ist amorphes Silizium. Da
es amorph ist, enthält es viele Fehlstellen, wie z.B.
Leerstellen. Es kann erhebliche Mengen an Wasser-
stoff binden kann, welche vermutlich in der Nähe der
Fehlstellen akkumulieren. Es gibt Modelle, welche
voraussagen, dass die Wasserstoffatome dabei Clu-
ster bilden.

Um diese Modelle zu testen, kann man MQ-NMR
messen. Dabei erzeugt man Mehrquantenkohärenz,
aber praktisch nur um sie sogleich wieder zurück
zu transformieren und nachzuweisen. Man bestimmt
damit lediglich die Amplitude der erzeugten Mehr-
quantenkohärenz, ihre Präzessionsfrequenz ist nicht
relevant.

Wie oben gezeigt benötigt man eine Zeit t in der
Größenordnung von t ⇡ 1/J, um Mehrquantenko-
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härenzen zwischen Spins zu erzeugen, welche durch
eine Kopplung mit Stärke J aneinander gekoppelt
sind. Je länger die Zeit ist, die man dem System
lässt, um Mehrquantenkohärenzen zu erzeugen, de-
sto schwächere Kopplungen (d.h. größere Distan-
zen) tragen noch zu den Mehrquantenkohärenzen
bei. Trägt man die Systemgröße (d.h. die maximale
Quantenzahl) gegen die Zeit auf, so findet man in ei-
nem endlichen System, dass dieser Wert gegen einen
endlichen Grenzwert strebt (die Anzahl der Spins im
System), während sie bei einem undenlichen System
ohne Grenzwert beliebig lange ansteigt.

Abbildung 5.53: Effektive Größe des Spinsystems al
Funktion der Anregungszeiten für
verschiedene Konzentrationen von
Wasserstoff in Si.

Im Fall von amorphem Silizium stellt man fest, dass
bei kleinen Konzentrationen tatsächlich eine ausge-
prägte Tendenz zur Clusterbildung besteht. Bei einer
Belegung von 8% Wasserstoff beobachtet man eine
Clustergröße von etwa 6 Spins. Bei größeren Bele-
gungen werden die Cluster größer; gleichzeitig sind
sie weniger gut isoliert, es gibt keine stationäre Grö-
ße mehr für die Clustergröße.

5.4.8 Quadrupol-Kerne

Die letzte Anwendung von MQ-NMR, die hier noch
diskutiert werden soll, betrifft Kerne mit I > 1/2 in
Festkörpern. Wie bereits diskutiert unterliegen diese
der Quadrupolwechselwirkung, d.h. der Wechselwir-
kung zwischen dem Quadrupolmoment des Kerns
und dem elektrischen Feldgradiententensor. Diese
Kopplung kann sehr stark sein (im Bereich von kHz
- MHz), und sie ist orientierungsabhängig.

Abbildung 5.54: Quadrupolwechselwirkung bei ei-
nem Spin I=3/2: Effekt in 0ter, 1ter
und 2ter Ordnung.

Die Wechselwirkung kann nützlich sein, die kann
aber auch stören, insbesondere in Pulvern, wo sie
zu einer sehr starken Linieverbreiterung führt. Häu-
fig ist dann nur noch der zentrale Übergang m =
�1/2 $ m0 = 1/2 beobachtbar, welcher in er-
ster Ordnung durch die Quadrupol-Wechselwirkung
nicht beeinflusst wird. In 2ter Ordnung Störungs-
rechnung findet man aber auch auf diesem Übergang
einen Einfluss der Quadrupolwechselwirkung.

Abbildung 5.55: Rotationsplot eines RbNO3 Kri-
stalls. Es sind nur die Zentralüber-
gänge sichtbar.

In Figur 5.55 sind die 87Rb Spektren eines RbClO4
Einkristalls gezeigt, wenn man um drei unter-
schiedliche Achsen rotiert. Die unterschiedliche Fre-
quenz ist auf die Abhängigkeit der Quadrupol-
Wechselwirkung von der Orientierung des Quadru-
poltensors im Magnetfeld zurückzuführen.

Führt man die gleiche Messung nicht an einem Ein-
kristall, sondern an einem Pulver durch, so entsteht
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das Signal als Mittelung über alle möglichen Ori-
entierungen; anstelle von mehreren einzelnen Linien
erhält man eine breite, gemittelte Linie.

Abbildung 5.56: Pulverspektrum von 87Rb
(gerechnet).

Dies ist generell das gleiche Problem wie bei der
anisotropen chemischen Verschiebung; allerdings ist
hier die Winkelabhängigkeit etwas anders, da es sich
um einen Effekt höherer Ordnung handelt.

Abbildung 5.57: Pulvermittel der 2-Ordnung
Quadruupol-WW unter MAS
Bedingungen.

Während man bei der ansisotropen chemischen Ver-
schiebung die Linienverbreiterung durch Magisch-
Winkel-Rotation (MAS) eliminieren kann, ist dies
bei der Quadrupolwechselwirkung 2ter Ordnung
nicht möglich: man erhält auch unter MAS noch eine
deutlich verbreiterte Linie.

5.4.9 Multiquanten-MAS

Eine Möglichkeit, dieses Problem zu lösen, liegt in
der Mehrquanten-NMR: Neben dem m = �1/2 $
m0 = 1/2 Übergang wird auch der m = �3/2 $ m0 =
3/2 Übergang nur in zweiter Ordnung beeinflusst.
Die Orientierungsabhängigkeit für diesen Übergang
ist jedoch eine andere als für den 1-Quanten Über-
gang. Das kann man nutzen: man führt ein zeitaufge-
löstes (zweidimensionales) NMR Experiment durch,

in dem man die Kohärenz während t1 im 3-Quanten
Übergang lässt, danach in den 1-Quanten Übergang
transferiert und dort beobachtet. Damit kann man er-
reichen, dass zu einem bestimmten Zeitpunkt wäh-
rend der Detektion das Signal für alle Kristallorien-
tierungen zusammenfällt.

Abbildung 5.58: MQMAS Spektrum von 87Rb.

In Figur 5.58 ist das so aufgenommene Multiquan-
tenspektrum von 87Rb dargestellt. Auf der linken
Seite ist das 2D Spektrum dargestellt, darüber das
normale 1D Spektrum. Rechts davon ist die Projek-
tion des 2D Spektrums auf die isotrope Achse darge-
stellt: es sind klar 3 Linien erkennbar. Diese gehören
zu den drei kristallographisch nicht äquivalenten Po-
sitionen in 87Rb.

Rechts im Bild sind die Pulverspektren dargestellt,
welche zu den drei Linien gehören (linke Kolonne
Experiment, rechte Seite Theorie). Für die getrenn-
ten Linien ist es offenbar möglich, die Linienformen
exakt zu berechnen.

Figur 5.59 zeigt ein weiteres Beispiel, diesmal für
23Na, ebenfalls einen Quadrupolkern mit I=3/2.
Auch in diesem Fall bietet das 1D Spektrum keine
verwertbaren Informationen. Im 2D MQMAS Spek-
trum kann man jedoch klar die einzelnen Sites für
die verschiedenen Verbindungen unterscheiden.
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Abbildung 5.59: MQMAS Spektren von 23Na
(I=3/2).
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