5 2D NMR

Bisher haben wir Spektren verstanden als eine Dar-
stellung von Absorption (oder Dispersion) als Funk-
tion einer Frequenz. In diesem Kapitel soll gezeigt
werden, wie man Absorption auch als Funktion von
mehr als einer Frequenz messen kann, und was man
daraus lernen kann. Man bezeichnet diese Form der
Spektroskopie als 2D-NMR (oder 3D, 4D ...).

5.1 Motivation und Grundlagen

Bevor wir die Methodik im Detail betrachten, soll
hier kurz dargestellt werden, wozu das ganze prinzi-
piell genutzt werden kann.

5.1.1 Korrelation

Wir betrachten als ein Beispiel ein System, in dem
zwei Arten von Molekiilen mit je 2 Spins sich in ei-
nem Probenr6hrchen befinden.
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Abbildung 5.1: Spektrum von 2 Molekiilen mit je
2 gekoppelten Spins. Die Summen-
spektren sind identisch, obwohl die
einzelnen Spektren unterschiedlich

sind.

Wir nehmen an, dass jedes der beiden Molekiile je-
weils ein Spektrum mit vier Linien ergibt. Das Spek-
trum der Probe besteht deshalb aus 8 Linien. Aller-
dings gibt es drei unterschiedliche Arten, wie die

Spektren der einzelnen Molekiile aussehen konnen,
welche alle das gleiche Gesamtspektrum ergeben.
Somit ist es unmoglich, aus dem gemssenenen Spek-
trum die Spektren der einzelnen Molekiile zu bestim-
men.

Eine Moglichkeit, diese drei Fille zu unterscheiden,
liegt in der Nutzung von zweidimensionaler Spektro-
skopie. Bei einem solchen Experiment (Details siche
spater) wird im Prinzip zuerst die Resonanzfrequenz
eines Spins gemessen, danach wird die Magnetisie-
rung auf einen anderen (oder den gleichen) Spin des
gleichen Molekiils iibertragen, und anschliessend die
Resonanzfrequenz nochmals gemessen. Die beiden
Frequenzen werden dann in einem zweidimensiona-
len Raster aufgetragen: Ein Signal ist hier mit zwei
Koordinaten definiert, welche der Resonanzfrequenz
vor-, resp. nach dem Transfer entsprechen.
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Abbildung 5.2: 2D Spektren des gleichen Systems.
Die Spektren fiir die drei Fille sind
unterschiedlich.

Das 2D Spektrum stellt die Signalamplitude als
Funktion beider Frequenzen dar, S(w;,®;). Maxi-
ma, d.h. Resonanzlinien miissen jeweils die Reso-
nanzbedingung fiir beide Koordinaten, @; und @,
erfiillen. Im vorliegenden Beispiel gibt es fiir beide
Frequenzachsen 8 mogliche Resonanzbedingungen;
im 2D Spektrum erhélt man somit 8 x 8 = 64 Paa-
re von Resonanzfrequenzen. Man findet jedoch nicht
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64, sondern nur 32 Linien. Dies liegt daran, dass ein
Magnetisierungstranfer nur zwischen Spins im glei-
chen Molekiil stattfindet. In den 2D Spektren sind
die Linien, welche zum gleichen Molekiil gehoren,
durch die blauen Linien verbunden.

Zweidimensionale (2D) Spektroskopie wurde in den
70er Jahren entwickelt und hat sich rasch zu einer
Standardtechnik entwickelt. Etwa 20 Jahre lang wur-
den zweidimensionale Spektren nur in der Kernspin-
resonanz genutzt, danach auch in der Elektronen-
spinresonanz, und schlieBlich in der Optik.
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Abbildung 5.3: Beispiel eines zweidimensionalen
ENDOR (Elektron-Kern Doppelre-
sonanz) Spektrums. Die linke Seite
zeigt das konventionelle (1D) Spek-
trum, in dem zwei Signalkomponen-
ten von '"F und 'H sich iiberla-
gern. Im zweidimensionalen Spek-
trum sind sie klar unterscheidbar.
[18]

Es gibt inzwischen hunderte von etwas unterschied-
lichen Techniken, welche das Prinzip verwenden
und etwas unterschiedliche Zielsetzungen haben.
Allgemein bieten zweidimensionale Spektren Mog-
lichkeiten fiir die Verbesserung der Auflésung oder
um Informationen zu erhalten, welche auf andere
Weise nicht zuginglich sind. In den meisten Fillen
ist das Ziel eines 2D Experimentes die Verteilung
der Information in eine Ebene statt auf einer Ach-
se wie bei einem 1D Spektrum. Dadurch erhélt man
die Moglichkeit

 die vorhandene Information leichter zu analy-
sieren und / oder

* mehr Information ins Spektrum zu bringen.

5.1.2 Prinzip

Wenn man spektrale Information als Funktion von
zwei unabhiéngigen Frequenzvariablen darstellt, er-
hilt man ein zweidimensionales oder 2D Spektrum.

Zweidimensionale Spektren werden praktisch aus-
schlieBlich im Zeitbereich aufgenommen. Man misst
in diesem Fall das Signal zunichst als Funktion
von zwei unabhingigen Zeiten und fiithrt dann ei-
ne zweidimensionale Fouriertransformation beziig-
lich dieser beiden Zeiten durch, um das entsprechen-
de Spektrum im Frequenzbereich zu erhalten.

Um zu sehen, wie ein 2D Spektrum entsteht, be-
trachten wir zunéchst ein abstraktes quantenmecha-
nischen System mit stationdren Zustinden welche
mit den Indizes i, k, 7, s bezeichnet werden.
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Abbildung 5.4: Grundschema fiir die zweidimensio-
nale Spektroskopie im Zeitbereich.

Man unterscheidet bei 2D Experimenten unter-
schiedliche Zeiten, wie in Abb. 5.4 schematisch dar-
gestellt. Zunichst wird wihrend der Priparations-
zeit im System eine Kohérenz erzeugt, also z.B. ei-
ne transversale Magnetisierung. Dies beinhaltet i.
A. zunichst auch eine Relaxationszeit, wihrend der
durch Spin-Gitter Relaxation eine longitudinale Ma-
gnetisierung erzeugt wird. AnschlieBend wird durch
einen RF Puls transversale Magnetisierung erzeugt,
d.h. Kohidrenz zwischen den Zustinden ik, .... In
Abb. 5.4 ist eine solche Kohédrenz zwischen den Zu-
standen i und & mit einer Wellenlinie bezeichnet.

In der anschlieBenden Evolutionszeit entwickelt sich
diese Koharenz wihrend einer Zeit ¢; unter dem Ein-
fluss des Hamiltonoperators .7#%. Die Kohédrenz zwi-
schen den Zustinden i und k erwirbt dabei einen Pha-
senfaktor

Pi(t1) = pu(0)e @1
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Hier ist die Prizessionsfrequenz wj gegeben durch iibertragen. Somit hat die Kohirenz im Ubergang

die Energiedifferenz

& — &
Wi = 7 .

Beriicksichtigen wir auch die Relaxation, so ist die
Kohirenz am Ende der Evolutionszeit

pic(11) = pix(0) e @t

mit ¥ als Relaxationsrate fiir den Ubergang ik.
Wiirde man wihrend der Evolutionszeit ein Signal
aufnehmen, so wiirde man einen FID messen. Im
2D Experiment kann die Kohirenz aber auch Kom-
ponenten enthalten, welche nicht der Auswahlregel
Am = £1 gehorchen und damit nicht beobachtba-
rer Magnetisierung entsprechen. Unabhéngig davon
wird diese Kohidrenz nicht direkt gemessen.

5.1.3 Informationstransfer

Statt dessen schlieft an die Evolutionszeit eine
Mischzeit an, wahrend der Kohirenz zwischen un-
terschiedlichen Ubergiingen ausgetauscht werden
kann. Die Kohédrenz kann wihrend dieser Zeit auch
als longitudinale Magnetisierung gespeichert wer-
den, welche z.B. durch chemischen Austausch zwi-
schen verschiedenen Spins iibertragen werden kann.
Die Mischzeit kann stark unterschiedliche Linge ha-
ben: sie kann von der Linge Null sein, wenn die In-
formation nicht iibertragen werden muss, oder sie
kann mehrere Sekunden betragen, wenn fiir die In-
formationsiibertragung viel Zeit benotigt wird. Ent-
scheidend ist in allen Féllen, dass die Frequenzin-
formation, welche das System in Form des Phasen-
faktors e ‘@'t gkkumuliert hat, erhalten bleibt. Eine
obere Grenze fiir die Transferzeit ist deshalb die Re-
laxationszeit 77, falls die Information in Populatio-
nen gespeichert ist, und 73, falls sie in Kohérenzen
gespeichert ist.

Im Beispiel von Abb. 5.4 wird die Kohédrenz wih-
rend der Mischzeit vom Ubergang i — k zum Uber-
gang r — s libertragen. Dabei bleiben sowohl der Ab-
solutbetrag wie auch die Phaseninformation e¢~®x"
erhalten, resp. werden in den anderen Ubergang

r — s zu Beginn der Detektionszeit die Form

Prs (tl , 0) = ans,ikpik (()) e*(iwikJr'}’ik)fl )
ik

Die Ubertragung von Kohirenz zwischen unter-
schiedlichen Ubergingen wihrend der Mischzeit
wird hier durch die Matrix 1, ;x zusammengefasst,
deren Elemente typischerweise im Bereich zwischen
-1 und +1 liegen, aber auch komplex sein konnen.

Wihrend der Detektionszeit findet wiederum eine
freie Evolution unter dem entsprechenden Hamilton-
operator statt.

prs(tl)tZ) =
ans ik Pik (O) e~ 10ty = ({05 +Ys)t2
ik

Wihrend dieser Zeit wird das Signal gemessen. Je-
des Dichtepoeratorelement trigt dabei mit einem be-
stimmten Gewicht zum gesamten Signal bei. Wir
schreiben fiir dieses Gewicht a,,. Das Gesamtsignal
ist somit

s(t1>t2) = Zarsprs(tl;t2) =
rs

Zars Z nrsjkpik(o) e_(lwik_'_%k)[l e—(la)rs-‘r%s)lz .
r. ik

Dies ist das Signal, welches in einem 2D Experiment
als Funktion der beiden Zeiten ¢, t, gemessen wird.

5.1.4 Datensatz

Das Signal hingt somit von beiden Zeiten #; und #,
ab. Dabei bezeichnet 1, die Zeit, wihrend der das Si-
gnal effektiv gemessen wird, wihrend #; die Dau-
er der Evolutionszeit bezeichnet. Man erhilt eine
zweidimensionale Datenmatrix, indem man fiir ei-
ne Reihe von unterschiedlichen Evolutionszeiten je-
weils einen FID misst.

In Abb. 5.5 ist ein Beispiel fiir eine solche Datenma-
trix gezeigt. Jede Spur entspricht dem FID fiir eine
bestimmte Evolutionszeit ¢;, welche von vorn nach
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2

Abbildung 5.5: 2D Signal als Funktion der Evolu-
tionszeit #; (schrige Achse) und f,
(horizontale Achse).

hinten zunimmt. Die horizontal verlaufende Varia-
ble 1, ist die Zeit, wihrend der die Datenaufnahme
lauft.

Fiir dieses Beispiel wurden nur zwei Ubergiinge be-
riicksichtigt, ndmlich /m und pg. Wir nehmen aufer-
dem an, dass die transversale Relaxation fiir beide
Uberginge identisch ist und schreiben dafiir die Re-
laxationsrate Y.

Der FID ist dann

Spiaty f) = e PO
[npqlmapq cos(@yut1) cos(®pgt2) +
Npa.patipq COS(@pqt1) COS(Dpgt) +
Nim, im@im COS(Oput1) COS(Wymta) +

Nim,pg@im €OS(Wpyt1) cOS(Wyut2)] -

Der erste Term entspricht einer Kohdrenz, welche
wihrend der Evolutionszeit im Ubergang ik lokali-
siert war, withrend der Detektionszeit im Ubergang
rs. Der zweite Term befand sich wéhrend beiden Pe-
rioden im Ubergang rs. Der dritte blieb im Ubergang
ik und der vierte wurde von rs nach ik tibertragen.

5.1.5 2D Fouriertransformation
Um diese Daten zu analysieren, fithrt man eine zwei-

dimensionale Fourier-Transformation beziiglich der
beiden Variablen #; und #, durch:

/ dt; e/ / dtye'™2s(ty 1)

:/ dne®sf(t, a).

wla

Die innere Transformation t, — @, ist identisch zur
Transformation der einzelnen FID’s in eindimensio-
nale Spektren. Wir erhalten damit Spektren zu jedem
Wert der Evolutionszeit #;:

sf(ti, @) = e "

[(Mpgame™™™ + Tpg,pge" " )apq8 (@2 — ©pq)

"i_(nlm,lmeiwlmt1 + nlm,pqeiwpqtl )almg<a)2 - wlm)] .

Hier stellt g(@; — @wyp) eine komplexe Lorentzlinie
dar, welche um die Frequenz @, zentriert ist.
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Abbildung 5.6: Zweidimensionaler Datensatz nach
der ersten Fouriertransformation.

Abb. 5.6 stellt den Realteil des Signals nach der er-
sten Fouriertransformation t, — @, dar. In horizon-
taler Richtung bildet es ein Spektrum als Funktion
der Variablen @,, welches Resonanzlinien bei den
beiden Frequenzen wj, und @, enthdlt. Amplitude
und Phase dieser beiden Resonanzlinien dndern als
Funktion der Evolutionszeit #;, wobei das Verhalten
fiir die beiden Linien unterschiedlich ist. Dies zeigt
bereits, dass die beiden detektierten Kohidrenzen un-
terschiedliche Entwicklungen wihrend der Evoluti-
onszeit erfahren haben.

Das zweidimensionale Spektrum erhalten wir nach
einer zweiten Fouriertransformation #; — ®;. Die
vier Signalkomponenten konnen jeweils durch eine
zweidimensionale Linienform der Art

s(@r,m) = g2(0) — g, W — W)

beschrieben werden. g, ist eine zweidimensiona-
le Lorentzlinie, welche um die Position (m,
Wi, W) = Q) zentriert ist.

Eine solche Resonanzlinie ist in der Figur darge-
stellt. Die Details der Linienform werden durch die
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Abbildung 5.7: Zweidimensionale Lorentzlinie

Relaxation bestimmt. Allerdings kann man auch an-
dere Varianten der Fouriertransformation verwen-
den. Bei der hier verwendeten "gewohnlichen" Fou-
riertransformation entstehen lange "Riicken" entlang
der beiden Frequenzachsen, welche anzeigen dass
hier Absorption und Dispersion gemischt werden.
Reine Absorptionslinien sind kreisférmig und fiih-
ren zu besser aufgelosten Spektren. Man erhilt sie
durch eine geeignete Linearkombination von sin, re-
sp., cos transformierten Spektren. Die entsprechen-
de Transformation wird als Hyperkomplexe Fourier-
transformation bezeichnet.

5.1.6 Informationsgehalt der Spektren

Evolutionsfrequenz cw;

Detektionsfrequenz wy

Abbildung 5.8: 2D Austausch-Spektrum von 2 Spins
in Hohenkurvendarstellung.

Figur 5.8 zeigt das zweidimensionale Spektrum in
Hohenkurvendarstellung. Die beiden Resonanzfre-
quenzen @, My ergeben im zweidimensionalen
Spektrum vier Linienpositionen. Die Linien auf der
Diagonalen (w; = @) rithren von Kohérenzen her,
welche wihrend der Evolutionszeit und der Detek-
tionszeit in den gleichen Ubergingen waren. Diese

sogenannten Diagonalpeaks enthalten die gleiche In-
formation wie die Linien im eindimensionalen Spek-
trum.

Die Linien auBlerhalb der Diagonalen, die sogenann-
ten Kreuzpeaks an den Positionen (@) = @y, 0y =
@) und (®] = Oy, W) = ;) zeigen an, dass hier
ein Austausch von Kohirenz stattgefunden hat. Die
Amplituden der Kreuzpeaks sind ein MalB} fiir die
Elemente 1qp,y, der Austauschmatrix. Im Allge-
meinen ist der Austausch in beide Richtungen gleich
stark, Ngg vy = Mvu,ap» SO dass beide Kreuzpeaks
gleich hoch sind, und das Spektrum beziiglich der
Diagonale symmetrisch ist: S(w;, @) = S(@,, ).
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Abbildung 5.9: COSY Spektrum einer Zucker-
verbindung.

Abbildung 5.9 =zeigt als Beispiel ein Proton-
Proton COSY Spektrum von Galactose- 1-2-methyl-
mannoside dargestellt [17][17]. Links ist das eindi-
mensionale NMR-Spektrum zu sehen, rechts dane-
ben das zweidimensionale in Hohenkurvendarstel-
lung. Die geraden Striche im 2D-Spektrum deuten
an, wie man, ausgehend von den aufgeldsten Pro-
tonenresonanzen der beiden Monosaccharid- Ringe,
die Identifizierung der skalar gekoppelten Protonen
vornehmen kann.

5.1.7 Spektren mit mehr als 2 Dimensionen

Das Konzept der 2D Spektroskopie ist praktisch be-
liebig erweiterbar auf 3 und mehr Dimensionen. Fiir
jede zusitzliche Dimension muss eine zusitzliche
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Evolutionszeit eingefiihrt werden, sowie ev. eine da-
zu gehdrende Mischzeit.

2D Priparation | Evolution | Mischzeit! Detektion
| | 4 ] 1§}
3D Praparation | Evolution | 'MI Ev.2 1\13§ Detektion
—— = H -
4D Priparation

i Evolution 1 "MI + Ev.2 ‘M2 Ev. 3 M3: Detektion
ty | Ly

Abbildung 5.10: Einteilung der Zeitentwicklung bei
mehrdimensionalen Experimenten.

t i

Die bedeutet, dass bei der Datenaufnahme jeweils ei-
ne zusitzliche Variable inkrementiert werden muss.
Bei einem typischen 2D Experiment werden z.B.
512 FIDs mit unterschiedlichen Werten von #; aufge-
nommen. In einem 3D Experiment miisste man fiir
jeden dieser FID’s nochmals unabhingig die zwei-
te Evolutionszeit variieren. Damit misst man 512 X
512 = 262144 FIDs. Bei einer minimalen Wieder-
holrate von 1 s~! bedeutet dies eine Messzeit von 72
Stunden. Bei einem 4D Experiment mit gleicher An-
zahl Punkten in allen Dimensionen wiirde daraus ei-
ne Messzeit von iiber 4 Jahren. Solche Experimente
sind deshalb nur durchfiihrbar, wenn man die Anzal
Messpunkte entsprechend reduziert.

Bei der Spektroskopie der Proteine sind 3 Dimensio-
nen heute sehr wichtig, wihrend mehr Dimensionen
aus Griinden der Messzeit praktisch nicht verwendet
werden.

Fiir 3D Spektren kombiniert man typischerweise die
Frequenzen von drei unterschiedlichen Spinsorten,
z.B. NCH, also PN'3C!'H. Andere Mdoglichkeiten
sind z.B. zwei '>C und eine 'H Dimension.

5.2 Austausch

5.2.1 Motivation und Phinomenologie

Wie bereits diskutiert, sind die Resonanzfrequenzen
der NMR empfindlich auf die Details der Umge-
bung eines Kernspins. Die Beeinflussung kann iiber

Abbildung 5.11: 3D Spektrum

die chemische Verschiebung oder iiber die Quadru-
polwechselwirkung geschehen. Man kann dies nicht
nur dazu verwenden, die einzelnen Resonanzlinien
einem bestimmten Kern zuzuordnen, sondern man
kann damit auch beobachten wenn sich die Umge-
bung eines Kerns dndert. Dies kann wiederum da-
durch geschehen dass in der Umgebung Bewegungs-
prozesse ablaufen, aber es kann auch auf einen Be-
wegungsprozess des Kerns selber zuriickzufithren
sein.

Wir betrachten zuniéchst ein Ensemble von identi-
schen Spins, welche zwischen zwei Positionen mit
unterschiedlicher chemischer Verschiebung hin- und
her springen. Wenn die Aufenthaltszeit an einem der
beiden Orte kurz ist verglichen mit der transversa-
len Relaxationszeit, so wird sich wihrend jeder Mes-
sung ein Teil der Spins an der einen Position befin-
den, ein Teil an der anderen, und mit ihrer jeweili-
gen Resonanzfrequenz zum Signal beitragen. Han-
delt es sich um einen Gleichgewichtsprozess, sind in
der Probe also beide Positionen mit der zugehorigen
Wahrscheinlichkeit besetzt, so findet man im Spek-
trum zwei Linien, deren Amplitude durch die Beset-
zungswahrscheinlichkeit der beiden Plitze gegeben
ist.

Konnte man den FID eines einzelnen Spins beobach-
ten, so wiirde man sehen wie beim Sprung die Lar-
morfrequenz dndert. Dies ist natiirlich nicht moglich
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Abbildung 5.12: Sprungprozess in einem molekual-
ren System: Die Resonanzfrequenz
des Spins #dndert sich mit der
Umgebung.

und man beobachtet statt dessen eine Uberlagerung
der Frequenzen, welche fiir ein System im Gleichge-
wicht stationdr ist.

5.2.2 Signal im Zeitbereich

Als nichstes betrachten wir den Einfluss der Aus-
tauschrate, resp. der Verweildauer auf das Signal.

kein Austausch zwischen

. . mittlere Verwelldauer
den Plitzen A und B mit o e

Austauschrate k= 1/ T
\/\/\A/ A \MI\/\M
3 ! | 4>

T

Zelt

Statische Information
Spektrum cnthilt 2 Linicn

Dynamische Information
Spektrum hicfert

Abbildung 5.13: NMR Signal von zwei statischen
Spins (links), resp. 2 Spins, die ihre
Plitze tauschen (rechts).

Sind die beiden Positionen stabil, d.h. es findet kein

Austausch statt, so ergibt sich das beobachtete Si-
gnal lediglich als Uberlagerung der beiden Sinus-
schwingungen (linke Seite in Figur 5.13). Findet
hingegen ein Austausch statt (rechte Seite in Figur
5.13), so springt die Frequenz jedes Mal. Die Phase
des Spins zu einem Zeitpunkt ¢ ist durch die gesamte
Vorgeschichte des Spins gegeben

o=)Y o7

Hier bezeichnet i den Index einer Periode, wihrend
der die Frequenz konstant ist, @ die Priizessionsfre-
quenz wihrend dieser Periode, und 7; deren Dau-
er. Da die Dauer zufillig (und fiir jeden Spin un-
terschiedlich) variiert, laufen die Phasen der ver-
schiedenen Spins auseinander. Fiir das beobachte-
te maktroskopische Ensemble zerfillt die Kohdrenz
und damit die beobachtbare Magnetisierung. Gegen-
iber dem statischen Ensemble wird der FID kiirzer,
im Spektrum beobachtet man dies als Verbreiterung
der Resonanzlinie.
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Abbildung 5.14: Entstehung des FID Signals durch
Uberlagerung der Signale von ein-
zelnen Spins, deren Pridzessions-
frequenz sich sprungartig #@ndert
(links). Rechts sind die dazuge-
horigen Spektren gezeigt, die sich
durch Fouriertransformation erge-
ben. Die Frequenzdifferenz zwi-
schen den beiden Positionen be-
trigt Aw = 2 kHz.

In Figur 5.14 werden drei solche Uberlagerungen
und die dazu gehorige Summe dargestellt, jeweils fiir
unterschiedliche Austauschraten. Mit zunehmender
Austauschrate wird der gemittelte FID kiirzer, was
einer breiteren Resonanzlinie entspricht.
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Wird jedoch die mittlere Aufenthaltsdauer 7 sehr
kurz, TAw < 1, mit Aw = |ws — wp| als Frequenz-
differenz der beiden Linien, dann erfihrt der Spin
wihrend einer einzelnen Periode nur noch ein klei-
nes Phaseninkrement. In diesem Grenzfall kann die
Phase wiederum durch den Mittelwert

_ a+wp

. (DA+COBt
2

Zfi_ 2

i

angenihert werden. Das Spektrum des Systems be-
steht hier nur noch aus einer einzelnen Linie bei
der mittleren Frequenz (siehe unterste Zeile in Abb.
5.14).

5.2.3 Linienformen in 1D

Wenn der mittlere Abstand 7 zwischen zwei Spriin-
gen lang ist im Vergleich zur transversalen Rela-
xationszeit, wird das Spektrum durch die Spriinge
nicht beeinflusst. Wird der Austausch schneller, so
ist jedoch die Kohérenzzeit durch die Spriinge limi-
tiert und die Linie wird breiter. Nihert sich die Aus-
tauschrate 1/7 der Differenz Aw der beiden Larmor-
frequenzen, so konnen die beiden Plitze nicht mehr
einzeln beobachtet werden; statt der beiden einzel-
nen Resonanzlinien findet man eine einzelne in der
Mitte zwischen den beiden. Diese ist stark verbrei-
tert, weil die Pridzession noch beide Frequenzen ent-
hilt. Erst wenn die Sprungrate weiter steigt und da-
durch die Mittelung auf einer sehr kurzen Zeitskala
abliduft, wird die Linie wieder schmaler.

In Figur 5.15 ist ein experimentelles Beispiel
dargestellt: Hier ist das Protonenspektrum des
Dimethylnitrosamin-Molekiils zu sehen. Die beiden
Methylgruppen haben unterschiedliche Umgebung
(Distanz zum Sauerstoff) und dementsprechend un-
terschiedliche Resonanzfrequenzen. Das Molekiil
kann jedoch in der fliissigen Phase eine interne Ro-
tation um die N-N-Achse ausfiihren, welche die bei-
den Methylgruppen ineinander iiberfiihrt. Bei nied-
riger Temperatur ist dieser Austausch sehr langsam
und die beiden Methylgruppen sind als getrennte Re-
sonanzlinien erkennbar. Mit zunehmender Tempera-
tur wird die Rotation um die N-N Bindung schneller,
welche die beiden Positionen ineinander iiberfiihrt.

@H;C\

N.

H;C/
M i/\/\
M (i,/\
v

30 Hz
—_—

AN

o Dimethylnitrosamin

2 170-2°C (1, =69 ms);
b 188-5°C (1, =20 ms);
€ 198-3°C (1, = 12 ms);
d 209-9°C (7, = 5-8 ms);
€ 240-2°C (7, =11 ms).

(e)

RK. Harzis, NMR Spectroscopy, p. 119

Abbildung 5.15: Spektren von Dimethyl-Nitrosamin
als Funktion der Temperatur: Uber-
gang vom langsamen zum schnel-
len Austausch.

Dadurch werden die Linien zunéchst breiter und ge-
hen dann ineinander iiber. Wird die Austauschfre-
quenz sehr hoch, so wird die Linie wieder schmiler.
In diesem Beispiel wird die Austauschrate iiber die
Temperatur gesteuert.

Bei dieser eindimensionalen Messung des Austau-
sches steht ein Zeitfenster zur Verfiigung, das auf der
einen Seite durch die Frequenzdifferenz zwischen
den beiden Resonanzfrequenzen begrenzt wird, auf
der anderen Seite durch die Linienbreite der Reso-
nanzlinien: Ist der Austausch langsamer, so wird das
2-Linien Spektrum nicht beeinflusst. Ist die Aus-
tauschrate deutlich schneller als die Frequenzdiffe-
renz, so findet man nur eine verschmilerte Linie. Die
relevante Zeitskala wird somit durch die Frequenz-
differenz zwischen den beiden Resonanzlinien be-
stimmt.

In diesen einfachen Beispielen ist der Effekt des
Austausches sehr leicht zu erkennen. In komplizier-
ten Spektren, wo von z.B. 100 Linien nur 2 am Aus-
tausch teilnehmen, wird es sehr viel schwieriger.

5.2.4 2D Austausch

Eine besonders niitzliche Methode zur Verfolgung
solcher Austauschprozesse ist die 2D Spektroskopie.
Sie erlaubt eine direkte Korrelation der Positionen
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zwischen denen Austausch stattfindet; dies ist insbe-
sondere dann niitzlich, wenn es sich um einen Aus-
tausch zwischen mehr als zwei Plidtzen handelt. Es
steht dafiir ein Zeitfenster zur Verfiigung, welches
nach unten durch die relevanten Frequenzdifferen-
zen, nach oben durch die Lebensdauer 77 der Spins
beschrinkt wird. Damit ist es sehr viel breiter als bei
der Messung iiber das 1D Spektrum. AuBlerdem ist
es sehr viel einfacher, die Austauschpartner zu iden-
tifizieren.

T e

Abbildung 5.16: Prinzip  der
spektroskopie

2D  Austausch-

Figur 5.16 zeigt die verwendete Pulssequenz. Der
erste Puls, angewendet auf das System im Gleich-
gewicht, erzeugt aus der longitudinalen Magnetisie-
rung transversale Magnetisierung, z.B.

L—1,.

Wihrend der anschlieBenden freien Prizessionszeit
entwickelt sich der Zustand des Systems zu

p(t1) = Ircos(watr) — Iy sin(waty) .

Durch den zweiten Puls wird eine Komponente da-
von entlang der z-Achse gespeichert, z.B.

p(tl,()) = IZCOS((DAtl) — IySin(COAt]).

Die Mischzeit 7,, wird so lang gewihlt, dass die
transversale Komponente zerfillt. Gleichzeitig kann
wihrend der Mischzeit ein Austausch von Magneti-
sierung oder eine chemische Umwandlung stattfin-
den. Wenn z.B. ein Teil 1 der Molekiile sich so ver-
dndert, dass die Resonanzfrequenz am Schluss nicht
mehr wy, sondern @g ist, so konnen wir den Zustand
am Ende der Mischzeit schreiben als

p(t1, ) = (1 =ML+ ni7)cos(watr).

Durch den dritten Puls wird daraus wieder transver-
sale Magnetisierung,

p(t1,71,0) = ((1—n)I} + nIf) cos(mary),

welche sich wihrend der Detektionszeit enwickelt:

p(tl,TM,l‘z) = COS(O)Atl)
[(1 — n)If cos(matr) + (1 — n)l;\ sin(@aty)

+niB N1 sin(wpt2)] .

cos(wphr) +
Fiir diesen einfachen Fall erwarten wir somit, dass
im 2D Spektrum eine Resonanzlinie bei den Fre-
quenzen (W = W4, @ = W) und eine bei (@,
Wy, @ = wg) auftaucht. Die erste Linie gehort zu
denjenigen Molekiilen, die sich wihrend der Misch-
zeit nicht verindert haben, die zweite zu denjenigen,
die sich gedndert haben. Das Amplitudenverhéltnis
n/(1—mn) gibt an, wie grof der Anteil der Molekiile
ist, welche ihren Zustand gewechselt haben.

5.2.5 Beispiel : DMF

Als einfaches Beispiel betrachten wir die Rotati-
on eines Molekiilteils gegen den Rest. Ein typi-
sches Beispiel ist die Rotation der Amidbindung in
Dimethylformamid. Die Protonen der beiden Me-
thylgruppen haben unterschiedliche chemische Ver-
schiebung, konnen also im NMR Spektrum getrennt
beobachtet werden. Solche Bindungen spielen z.B.
in Proteinen eine wichtige Rolle. Das Dimethylfor-
mamid dient hier als stark vereinfachtes Modellsy-
stem. Es zeigt eine behinderte Rotation, deren Rate
in der Ndhe der Raumtemperatur etwa einmal pro
Sekunde betragt.

Abbildung 5.17: 2D Austauschspektren von Dime-
thylformamid.
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Bei niedrigen Temperaturen ist der Austausch lang-
sam und man kann beide Linien getrennt beobach-
ten. Im 2D Spektrum findet man unter diesen Be-
dingungen das 1D Spektrum entlang der Diagonalen
(0 = @) und keine Linien auBerhalb der Diago-
nalen. Steigt die Temperatur, so wird der Austausch
schneller. Man kann dann wéhrend der Mischzeit
einen Austausch beobachten, welcher zu Kreuz-
peaks mit @; # @, fiihrt.

Ist der Austausch sehr schnell, d.h. ist die mittlere
Aufenthaltszeit kurz im Vergleich zur inversen Fre-
quenzdifferenz, AwT < 1, so beobachtet man im
Spektrum (1D und 2D) nur eine gemittelte Reso-
nanzfrequenz. Im Zwischenbereich verbreitern sich
die Linien. Mittels Variation der Temperatur kann
man deshalb in vielen Systemen sowohl den Bereich
des langsamen Austausches, wie auch den Bereich
des schnellen Austausches und den Ubergangsbe-
reich untersuchen.

Weitere Beispiele und eine detailliertere Auswertung
werden wir im Kapitel "Biomolekiile” diskutieren.

5.2.6 Spindiffusion

Ein Austausch von Kohidrenz zwischen zwei unter-
schiedlichen Spins muss nicht unbedingt auf chemi-
schen Austausch zuriickzufiihren sein. Es ist auch
moglich, dass die Polarisation eines Spins auf einen
anderen iibertragen wird, ohne dass sie ihre Plitze

—

E~0 E~0

Abbildung 5.18: Polarisationsaustausch von 2 Spins.

Ein Mechanismus dafiir ist die so genannte Spindif-
fusion, ein Prozess der durch den B-Term des Dipol-
alphabeths getrieben wird:

1—3cos?0

) (hisbh-+15L_hy).

Dieser Operator entspricht einem gleichzeitigen,
entgegengesetzten Umklappen von zwei antiparalle-
len Spins. Da die Gesamtpolarisation des Systems
sich dabei nicht @ndert, bleibt die gesamte Energie
erhalten. Der Prozess benétigt deshalb keine thermi-
sche Aktivierung, sondern kann auch bei sehr nied-
rigen Temperaturen ablaufen.

Dabei wird zwar keine Energie libertragen, aber Po-
larisation. Sind z.B. Spins in einem Bereich im Zu-
stand | 1) und in einem benachbarten Bereich im Zu-
stand | }), so konnen solche flip-flop Prozesse die
Polarisation der beiden Bereiche angleichen. Bei ei-
nem Elementarschritt wird dabei Polarisation iiber
eine Strecke iibertragen, welche dem Abstand zwi-
schen zwei Spins entspricht, d.h. typischerweise ei-
nige 107 m. Die Zeit, welche dafiir benotigt wird,
entspricht der inversen Kopplungskonstante, 7,5 ~
o

In einem typischen Festkorper besitzt jeder Spin vie-
le Nachbarn, an die er iiber Dipol-Dipol Wechsel-
wirkung gekoppelt ist. Er kann prinzipiell mit jedem
Nachbarn Magnetisierung austauschen. Magnetisie-
rung ist deshalb meistens nicht lokalisiert, sondern
breitet sich diffusionsartig durch den gesamten Fest-
korper aus. Man kann diesen Prozess durch eine Dif-
fusionsgleichung beschreiben, wobei die Diffusions-
konstante durch den mittleren Abstand zwischen den
Spins und die mittlere Kopplungsstirke gegeben ist.

Die Distanz 0, iiber welche dieser Prozess effektiv
ist, kann abgeschétzt werden als

d~+VDrt.

Hier stellt D die Diffusionskonstante dar und 7 die
Messzeit. Typische Werte fiir 6 betragen wenige nm.
Man kann ihn deshalb dazu verwenden, Nachbar-
schaft in einem Festkorper zu analysieren.

5.2.7 Anwendungsbeispiel

Hier wurde z.B. Spindiffusion in einem Mischkri-
stall aus Adamantan und Hexamethylbenzol (HMB)
gemessen. Fiir das obere Spektrum wurde eine Mi-
schung von Pulvern der beiden Substanzen herge-
stellt und daran Spindiffusion gemessen. Jedes der
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Pulver

Abbildung 5.19: Austauschspektren einer Mischung
aus Adamantan und Hexamethyl-
benzol. Oben: Pulvermischung, un-
ten Mischkristalle.

beiden Molekiile enthilt zwei unterschiedliche '*C
Kerne, trigt also zwei Linien zum Spektrum bei. Da
sich beide Kerne in der gleichen Einheitszelle befin-
den, ist die Distanz kiirzer als die Diffusionslinge,
es findet eine Ubertragung statt. Wir sehen jedoch
keine Ubertragung von HMB nach Adamantan. Der
Grund dafiir ist, dass die Distanz zwischen Molekii-
len unterschiedlichen Typs zu groB ist, so dass die
Spindiffusion zu lange dauert.

Fiir das untere Spektrum wurde ein Mischkristall
hergestellt, indem beide Komponenten zusammen
geschmolzen und daraus ein Pulver kristallisiert
wurde. In diesem Fall befinden sich Molekiile von
beiden Spezies in unmittelbarer Nachbarschaft und
es findet Polarisationstranfer zwischen den beiden
statt.

5.2.8 NOESY: Prinzip

Eines der wichtigsten zweidimensionalen NMR Ex-
perimente wird als NOESY (fiir Nucluear Overhau-
ser Effect SpectroscopY) bezeichnet. In diesem Ex-
periment misst man den Austausch von Polarisati-

on iiber Dipol-Dipol Wechselwirkung und damit den
geometrischen Abstand zwischen den entsprechen-
den Spins. Dieser Austausch wird durch die (zeitab-
hiingige) Dipolkopplung getrieben. Es ist damit eng
verwandt mit dem oben beschriebenen Spindiffusi-
onsexperiment. Allerdings handelt es sich hier um
ein Experiment an Molekiilen in Fliissigkeiten. In
diesen bewegen sich die Molekiile und die moleku-
lare Bewegung kann Energie mit den Spins austau-
schen. Dadurch werden auch Prozesse moglich, bei
denen die Spin-Energie nicht erhalten bleibt.

Abbildung 5.20: Pulsfolge fiir das NOESY Expe-
riment. Alle drei Pulse sind /2
Pulse.

Das NOESY Experiment verwendet eine Dreipuls-
folge. Wir betrachten ein Zweispinsystem und be-
zeichnen die beiden Spins mit A und X. Im thermi-
schen Gleichgewicht sind die beiden Spins entlang
der z-Achse polarisiert,

po=A+X.

Der erste RF Puls dreht die Spins um 90 Grad um
die x-Achse und wir erhalten

p(0+) = A, +X,.

Wihrend der Evolutionszeit prazedieren die Spins
um die z-Achse:

= A cos(maty) +Aysin(maty)
+X, cos(wxt1) + X, sin(wxt) .

p(t)

Der zweite Puls, welcher die Evolutionszeit ab-
schlief3t, erzeugt daraus

p(t1,0) —Acos(maty) + Ay sin(waty)

—X;cos(wxt;) + X, sin(wxt) .
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Die transversalen Terme A, und X, zerfallen wih-
rend der Mischzeit 7,, und werden nicht mehr be-
riicksichtigt. Die longitudinalen Terme sind jetzt mit
einer Amplitude moduliert (=markiert), welche ihre
Prizessionsfrequenz enthilt.

Sind die beiden Spins geometrisch benachbart, so
spiiren sie eine Dipolwechselwirkung

Hyg = @g[(1— 3cos? 0)(A1.Xo,
_%(AH-XQ— +A1-Xp4))
—% sin@cos O[(A1.Xo, +A1 1 Xo,)e
+HALXy + A1 Xp)e]
—% sin® 6[A1+X2+e*2"¢ +A1_X2_82i¢]] )
Aufgrund der molekularen Bewegung in einer

Fliissigkeit verschwindet die Kopplung im zeitli-
chen Mittel. Die Terme (A;+X>— +A;-Xp4) und
(A1+X2+ + A1_X,—) konnen jedoch, gerade auf-
grund der Zeitabhingigkeit, Uberginge zwischen
den Zustinden |af) < |[Ba) resp. |oa) < |BP)
anregen. In beiden Fillen wird Zeeman-Polarisation
zwischen den gekoppelten Spins ausgetauscht, wo-
bei im zweiten Fall das Vorzeichen gedreht wird.

Findet ein Austausch statt, so ist der Zustand am En-
de der Mischzeit

p(thfm) =
—A[(1 —1n)cos(wat;) + 1 cos(myt)]
—X:[(1 —7n)cos(wxt1) +n cos(waty)].

Der dritte Puls erzeugt daraus

p(tl ) Tm70) =
—Ay[(1—n)cos(wat1) + 1 cos( @yt )]
—Xy[(l — T])COS((DXn) +n COS((DAt])] .

Dieser Zustand prizediert wihrend der Detekti-
onszeit weiter. Dadurch erhit der erste Term eine
Phase e~/ und der zweite entsprechend e /®x’2,
Das Signal im Zeitbereich enthélt somit Terme,
die mit cos(@at;)cos(waty), cos(wat)cos(wxty),
cos(mxt)cos(watz) und cos(wxt)cos(mxtz) mo-
duliert sind.

5.2.9 Signale

Wir erhalten somit insgesamt vier Linien:

] o) \ [0)) \ Amplitude ‘

Wy | 0y 1—7n
Wy | Ox n
Wx | W4 n
Wy | Wy 1—7n

Der Koeffizient i gibt an, wie viel Austausch statt-
gefunden hat. Die Linien auf der Diagonalen (®; =
) haben die Amplitude 1 — 7, d.h. sie sind besit-
zen die maximale Amplitude wenn kein Austausch
stattfindet (n = 0), wihrend die Auflerdiagonalpeaks
(w1 # @) erst fiir n > 0 erscheinen.

Oxl .. 0 o

®y

0, @ @
A @, X

Abbildung 5.21: Resonanzlinien im NOESY Spek-
trum

Die Diagonale enthélt wie iiblich die Information des
1D Spektrums, wihrend die AuBlerdiagonalelemente
anzeigen welche Spins Magnetisierung ausgetauscht
haben. Die Existienz dieser Linien ist somit ein Hin-
weis drauf, dass die entsprechenden Kerne geome-
trisch benachbart sind.

Der Austausch wird durch die Dipolwechselwir-
kung getrieben; in zweiter Ordnung Storungsrech-
nung kann man die Rate £ berechnen, welche pro-
portional zum Quadrat der Kopplungskonstante ist
und damit k o< d .

5.2.10 Austauschmechanismen

Wihrend der Mischzeit ist der Dichteoperator diago-
nal in der Eigenbasis des Hamiltonoperators, d.h. nur
die Populationen der Zustinde spielen eine Rolle.
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Der Austauschprozess kann deshalb auch als Uber-
tragung von Population zwischen unterschiedlichen
Spinzustidnden verstanden werden.

Voraussetzung ist immer die Existenz einer Dipol-
kopplung zwischen den beteiligten Kernspins. Der
Betrag der Kopplungskonstante w,; bestimmt, wie
schnell der Austausch ablduft, wiahrend die Opera-
toren bestimmen, zwischen welchen Zustinden der
Austausch stattfindet.

Im Fall des NOESY Experimentes konnen zwei Ter-
me im Dipoloperator den Austausch treiben. In der
tiblichen Schreibweise des Dipoloperators (Dipolal-
phabet) handelt es sich um den “B-Term” A, X_ +
A_Xy (Nullquantenterm, flip-flop Term) und den
E- und F-Term A; X, +A_X_ (Doppelquantenterm,
flop-flop Term). Die dazugehorigen Raten erhélt
man als Produkt aus einem Vorfaktor

ki = |41 )P

und der spektralen Leistungsdichte J(0), resp. J(2®)
fiir den entsprechenden Ubergang. Hier stellt /7] den
Storoperator dar, in diesem Fall somit einen Term
des Dipoloperators, und |i) und | j) sind die Eigenzu-
stinde des Hamiltonoperators, zwischen denen der
Austausch stattfindet.

Die spektrale Leistungsdichte J(®) gibt an, wieviel
Bewegungsenergie im entsprechenden Frequenz-
band von der molekularen Bewegung zur Verfiigung
steht. Mathematisch erhélt man die spektrale Lei-
stungsdichte aus der Fouriertransformierten der Au-
tokorrelationsfunktion,

J(w) = 2/ G(t)e%drt.
0
Hier stellt G(7) die Autokorrelationsfunktion
G(1) = (A(0)A(7))

der Kopplungsstirke A dar. Bei Molekiilen in Fliis-
sigkeit kann die Kopplungsstirke durch molekulare
Reorientierung (d.h. iiber die Winkel 8, ¢ variieren,
oder iiber den Abstand r. Je schneller die molekula-
ren Bewegungsprozesse sind, desto schneller zerfillt
die Korrelationsfunktion. In vielen Féllen kann sie
durch eine Exponentialfunktion

G(r) = (A(0)2) e ¥/

dargestellt werden. Die Zeitkonstante 7, wird als
Korrelationszeit bezeichnet.

A® 6

T,=0.2ns Spektrale

Lelstungsdlchte J(w)

-500 0 500 1000
/2x/ MHz

G(7)
{ T, =2.0ns

500
(0/2715/ MHz

A(D)

Abbildung 5.22: Fluktuation der Kopplungskonstan-
ten (links), Korrelationsfunktion
(Mitte) und spektrale Leistungs-
dichte (rechts) fiir schnelle Bewe-
gungsprozesse (oben), resp. langsa-
me (unten).

Eine schnelle Bewegung fiihrt zu einem schnellen
Abfall der Korrelationszeit (d.h. das Molekiil “ver-
gisst” schnell seine frithere Orientierung) und des-
halb nach der Fouriertransformation zu einer brei-
ten Verteilung der spektralen Leistungsdichte. Ei-
ne langsame Bewegung fiihrt entsprechend zu einer
schmalen Verteilung der Leistungsdichte. Fiir eine
exponentielle Korrelationsfunktion ist die spektrale
Leistungsdichte eine lorentzférmige Verteilung, mit
einer Breite ~ 1/7,.

Bei groBen Molekiilen mit entsprechend langen Kor-
relationszeiten ist die spektrale Leistungsdichte bei
der Frequenz O deutlich hoher als bei 2w, so dass
in diesem Fall der Nullquanten (=Flip-Flop) Prozess
dominiert. Dieser Prozess iibertrigt Magnetisierung
zwischen den beiden Spins, so dass die AuBerdiago-
nalpeaks das gleiche Vorzeichen haben wie die Lini-
en auf der Diagonalen.

Bei kleinen Molekiilen sind jedoch die Korrelations-
zeiten so kurz, dass die spektralen Leistungsdich-
ten vergleichbar sind. In diesem Fall dominiert, auf-
grund der unterschiedlichen Vorfaktoren, der Dop-
pelquantenprozess. Dieser tauscht das Vorzeichen
der Magnetisierung bei der Ubertragung und fiihrt
deshalb zu negativen AuBerdiagonalpeaks.
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Grofie Molekiile
Langsame Bewegung

@ @ 20
4 '
Frequenz o
J(0) >> J20)
Kleine Molekiile

Schnelle Bewegung

I@ ° 2o

Frequenz o

J(0) ~ J2w)

Verhiltnis der Vorfakroren
Wi W W, =2:3:12
Abbildung 5.23: Vorzeichen der Kreuzpeaks: bei

groflen Molekiilen sind die Kreuz-
peaks positiv, bei kleinen negativ.

5.2.11 Zeitabhingigkeit

Die Austauschamplitude 1 ist abhéngig von der
Mischzeit 7,,. Der Austausch kann beschrieben wer-
den durch ein lineares Differentialgleichungssystem

d
E z = _k(Az_Xz)_Az/Tl
d
EXZ = _k(Xz_Az)_Xz/Tla

wobei 77 die Spin-Gitter Relaxationszeit beschreibt,
und k die Austauschrate durch die d-d Wechselwir-
kung. Diese Form gilt fiir den Fall, dass der Null-
quantenprozess dominiert; dominiert der Doppel-
quantenprozess, so wechselt das Vorzeichen:

d
E b4 _k(Az +Xz) _AZ/TI
d
E Z _k(Xz +Az) _XZ/TI'

Die beobachtete Zeitabhédngigkeit enthilt somit zwei
Raten, resp. Zeitkonstanten.

Nach der Mischzeit ist der Zustand des Systems

—A [(1 —1n)cos(wat;) + 1N cos(wxt)]
—XZ[(I — T]) COS(wxll ) +n COS((DAl] )]

p(tlvfm)

und nach dem dritten 7 /2 Puls:

—A,[(1 —1n)cos(waty) + 1 cos(wxty)]

p(tlarmao)

—X,[(1—n)cos(wxt;) + ncos(mwaty)].

Das Signal wihrend der Detektionrszeit wird damit

—A,[(1—1n)cos(maty) cos(watr)
+1 cos(wxt;) cos(waty)]
—X,[(1—n)cos(wxt)cos(wxt)
+1 cos(waty) cos(wxtz)].

sy(tl s Tm>t2)

0.3r

0.2}

0.1

-0.1F

weT;=0.112

-0.2

Abbildung 5.24: Amplitude von Kreuz- und Dia-
gonalpeaks als Funktion der
Mischzeit.

Der Austauschprozess fithrt mit der Rate k zum Auf-
bau der Kreuzpeaks und gleichzeitig zu einer Reduk-
tion der Diagonalpeaks - dieser Prozess dominiert
z.B. in Figur 5.24. Die Relaxationsprozesse fiithren
zu einer Dampfung aller Linien. In der Figur ist das
Verhalten fiir Kreuzpeak und Diagonalpeak fiir un-
terschiedliche Austauschraten dargestellt.

Die verschiedenen Kurven stellen die Zeitabhangig-
keit der Amplituden fiir unterschiedliche Korrelati-
onszeiten dar.

In Figur 5.25 ist das NOESY Spektrum von BPTI,
einem kleinen Protein dargestellt. Auf der Diago-
nalen erscheint das 1D Spektrum, welches sehr we-
nig Auflosung zeigt. Die gestrichelten Linien geben
die Bereiche an, in denen die wichtigsten Kreuz-
peaks fiir die Zuordnung liegen: Die Amidprotonen
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F22 CUH <oy
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NH > 6.5 ppm
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1 Cpow < 3.5 ppm.

Abbildung 5.25: NOESY Spektrum von BPTL

NH liegen im Bereich > 6.5 ppm, die C, Protonen
im Bereich 4-6 ppm und die Cg Protonen unterhalb
3.5 ppm. Die Rechtecke bezeichnen somit den Aus-
tausch NH-NH, NH-C,, und NH—Cﬁ.

Da die Stirke @, der Wechselwirkung mit 1/r° ska-
liert, verschwindet die Kreuzrelaxation mit 1/r°. Sie
hingt damit sehr stark vom Abstand ab, ergibt also
sehr genaue Messwerte fiir intramolekulare Distan-
zen. Fir die Bestimmung der Raten muss eine Reihe
von Spektren mit unterschiedlicher Mischzeit aufge-
nommen werden.

5.3 Korrelationsspektroskopie

5.3.1 Kopplungen in NMR Spektren

Eine weitere wichtige Anwendung der 2D Spektro-
skopie ist das COSY (=COrrelation SpectroscopY)
Experiment, welches dazu dient, Verkniipfungen
zwischen Kernspins zu finden: man erhilt Kreuz-
peaks wenn zwei Kerne iiber eine (skalare) Kopp-
lung aneinader gekoppelt sind. Wahrend im NOE-
SY Experiment Dipolkopplungen gemessen werden
(und damit rdumliche Distanzen), welche im Spek-
trum nicht sichtbar sind, werden beim COSY Ex-
periment skalare Spin-Spin Kopplungen, welche im
Spektrum zu Aufspaltungen fithren, verwendet, um
zu kldren, zwischen welchen Kernen chemische Bin-
dungen bestehen.

Bei einfachen Spektren kann man die Kopplung im

e L

T T T T T
5 4 3 2 1

chem. Verschiebung / ppm

o

Abbildung 5.26: 'TH-NMR Spektrum von Ethanol.
Die Kopplung zwischen der CHj-
Gruppe bei 3,5 ppm und der
CHj3-Gruppe bei 1,1 ppm ist klar
erkennbar.

Spektrum direkt erkennen und die Kopplungspartner
einander zuordnen. Im Beispiel von Ethanol besteht
eine Kopplung zwischen den Protonen der CH;- und
der CH3-Gruppe. Das zeigt sich dadurch, dass die
Linien um den gleichen Betrag aufgespalten sind
und die Anzahl der Linien durch die Anzahl der Pro-
tonen in der anderen Gruppe bestimmt ist: Kerne, die
an 3 identische Protonen gekoppelt sind, zeigen ein
Quartett mit dem Amplitudenmuster 1:3:3:1. Kerne,
die an zwei identische Protonen gebunden sind, wer-
den dagegen im Verhiltnis 1:2:1 aufgespalten.
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Abbildung 5.27: "H-NMR Spektrum von Ubiquitin.

Betrachtet man dagegen ein Spektrum eines etwas
groferen Molekiils, wie z.B. des (relativ kleinen)
Proteins Ubiquitin (76 AS, 8564 Da), so wird es
schwierig, einzelne Linien zuzuordnen, und Auf-
spaltungsmuster sind nicht mehr erkennbar.

5.3.2 COSY

Im einfachsten Fall verwendet man dafiir eine Folge
aus zwei RF Pulsen, welche alle Spins anregen. Die
Evolutionszeit und die Detektionszeit sind hier nur
durch einen Radiofrequenzpuls getrennt. Im Folgen-
den soll fiir ein einfaches Modellsystem gezeigt wer-
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Abbildung 5.28: Pulsfolge fiir Korrelationsspek-
troskopie (COSY). Damit erhilt
man Spektren, in denen gekoppelte
Ubergiinge als Kreuzpeaks sichtbar
werden.

den, wie diese Verbindungen sichtbar gemacht wer-
den konnen.

Wir diskutieren hier den Fall eines homonuklearen,
schwach gekoppelten Zweispinsystems AX mit ei-
nem Hamiltonoperator

H = —0uA, — OxX, + 2T T AX, . (5.1)

Die Gleichgewichtsmagnetisierung
po=A;+X;

wird durch den ersten (%)x Puls in transversale Ma-
gnetisierung

p(0) = A, +X,
umgewandelt.

Wihrend der Evolutionszeit entwickelt sich die Ma-
gnetisierung unter dem Einfluss des Hamiltonopera-
tors (5.1):

p() = e Mp(0)e”n.
Da die einzelnen Terme miteinander vertauschen,

konnen wir ihren Einfluss getrennt berechnen, d.h.

e*ll%ﬂll — eiwAAztl eia)xthleleﬂ'JAZXZIl .

Die wichtigsten Beziehungen sind fiir die Larmor-
prizession

el(l)AAzl‘Ax e—lCOAAzl

= A,cos(wat) — Aysin(wat),

Ay cos(wat) + Aysin(wat)

elCOAAZIAy e—lCOAAzl‘

und fiir die Kopplung
¢ I2RIAX g RRIAXE

Aycos(mJt) 4+ 2A, X sin(mJt),

o~ i2MIAX 1y AX. P2MIAXE

2A,X; cos(mJt) — A, sin(mJr).

5.3.3 Zeitentwicklung

Damit erhalten wir fiir die Zeitentwicklung wéhrend
der Evolutionszeit t;

p(t1) = [Aycos(wati) +A,sin(@aty)

+X, cos(wyx? ) + X, sin(wxt)] cos(mJ1y)
+ [—ZAXXZ COS((DAt]) + 2Asz Sin((J)At])
—2X,A;cos(wxt) +2X,A, sin(wxt; )] sin(wJt;) .

Der zweite (5 ) Puls erzeugt daraus
p(11,0) = [—A;cos(@wat;) — +A,sin(waty)

(—X;cos(wxt) — X, sin(wxty )] cos(mwJ1y)
+ [—2A. X, cos(wat1) — 2A X, sin(@aty)
—2XA,cos(wxt) —2X.Aysin(wxty)]sin(mwJty) .

Von diesen Termen stellen nur die Komponenten
Ay, Xy, A X, und XA, beobachtbare Magnetisierung
dar. Davon stellen der 3te und 4te Term sogenannte
” Antiphasen-Magnetisierung” dar: das entsprechen-
de Signal ist zundchst (zu Beginn des FIDs) Null,
es entsteht daraus jedoch messbare Magnetisierung.
Dies duBlert sich im Spektrum so, dass das Integral
dieses Signalbeitrags verschwindet (entspricht dem
Anfangswert des FIDs) und man erhilt zwei Reso-
nanzlinien mit entgegengesetzem Vorzeichen.

In beiden Féllen hat der zweite Puls die Rollen der
beiden Spins vertauscht: vor dem Puls bestehen die
beiden Terme aus transversaler Magnetisierung des
A-Spins (A,), anti-Phase bez. des X-Spins (X;). Nach
dem Puls bestehen die beiden Terme aus transversa-
ler Magnetisierung des X-Spins (X)), anti-Phase bez.
A-Spin (A;). Man spricht deshalb von einem Magne-
tisierungstransfer. Diese Art des Koharenztransfers
wird hiufig benutzt, um

* Signale einer Spin-Sorte mit kleinem gyroma-
gnetischem Verhiltnis zu verstdarken

e Kohirenz fiir die Detektion auf Protonen zu
ibertragen, wo die Empfindlichkeit hoher ist
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* Gekoppelte Spins zu korrelieren.

Wihrend der Detektionszeit t, entwickelt sich die re-
levanten Komponenten des Dichteoperators wie

Ay cos(muty) cos(mJty) — cos(waty)cos(mJty)

[(Aycos(watr) +Axsin(watr)) cos(mJt)
—(2A,X; cos(watr) +2A,X; sin(wat2)) sin(7J1y)] .

Signal

u A“’/\ e
)Y AT s

Abbildung 5.29: Signalbeitrag der A, Komponente.

Messen wir z.B. die y-Komponente der Magnetisie-
rung, so erhalten wir davon einen Signalbeitrag

s(t1,t2) = cos(waty)cos(mJt;) cos(watz) cos(mlty).

Mit Hilfe der trigonometrischen Beziehung

cosa cosfB = % [cos(a+ B) +cos(o — B)]

sieht man, dass ein moduliertes Signal
cos(maty)cos(mJt;) ein Spektrum mit zwei Li-
nien bei der Frequenz @y :I:% ergibt. In zwei
Dimensionen erhalten wir somit vier Linien, welche
jeweils um die Kopplungskonstante getrennt sind.

5.3.4 Form und Interpretation des
Spektrums

Eine zweidimensionale Fouriertransformation er-
zeugt daraus vier Linien bei den Frequenzen [, =
wy £ 7J, 0, = s £ wJ]. Einen entsprechenden Si-
gnalbeitrag bei der Frequenz [w = Wy = 7J, 0 =
wx £ nJ] liefert der Term X, sin( @yt ) cos(mJty).

Einen weiteren Signalbeitrag erhdlt man von
den  Termen A X,sin(waty)sin(mJy;)  und

XAysin(wyxt)sin(zwJt;). Der erste entwickelt

sich wihrend der Detektion wie
2A Xy sin(waty) sin(mJt;) — sin(waty ) sin(wJt;)
[(2A X, cos(wxtr) +2A X, sin(wx 1)) cos(mwJt)
— (X cos(wxtr) — X, sin(wxt)) sin(mJ1y)] .

Mit der Observablen X, wird das Signal im Zeitbe-
reich

sin(@aty) sin(wJt; ) sin(@xt,) sin(7wJt;)

und im Frequenzbereich erhalten wir vier Lini-
en bei [ = wy + nJ,w, = wxy £ wJ]. Der Term
X:Aysin(wxty)sin(mJt;) erzeugt dementsprechend
Linien bei [0 = wx £ ], 0, = @wa + 7J].

) oo
*x .m0 o
g

oo oéo
Dy | oo LR )
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Abbildung 5.30: Resonanzlinien im COSY

Spektrum.

Das gesamte Spektrum besteht somit aus vier Grup-
pen zu je vier Linien. Die Quartette in der Nédhe der
Diagonalen enthalten die gleiche Information wie
das eindimensionale Spektrum; die Kreuzpeaks hin-
gegen zeigen, dass die beiden aneinander gekoppelt
sind. Da solche Kopplungen immer iiber chemische
Bindungen (eine oder mehrere) laufen erlauben sie
Riickschliisse auf die Struktur des Molekiils, wel-
ches den Kern enthiilt.

5.3.5 Beispiele

In der Figur ist eines der dltesten COSY Spektren
dargestellt, welches die beiden Protonen in Dibromt-
hiophen dargestellt. Die zusétzlichen Resonanzlini-
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Abbildung 5.31: COSY Spektrum von Dibrom-
thiophen.

en bei @; = 0 stammen von Magnetisierungsbeitra-
gen, welche withrend der Evolutionszeit durch Rela-
xation entstanden sind. Thre Phase ist deshalb nicht
von f; abhéngig und ihre Signale erscheinen nach
der Fouriertransformation bei @; = 0. Sie werden in
den meisten Experimenten durch Phasenzyklen eli-
miniert.

Ein Phasenzyklus ist eine Kombination von zwei
oder mehr Experimenten, die sich durch die Phase
der RF Pulse unterscheiden. In diesem Beispiel kann
man z,B, die Phase des ersten Pulses zwischen x und
—x dndern. Dabei dndert sich das Vorzeichen aller
relevanten Teile des Dichteoperators und damit des
berechneten Signals. Eine Komponente, die durch
Relaxation entsteht, ist jedoch unabhiéngig von die-
ser Phase. Subtrahiert man die beiden Experimente,
so fallen die Komponenten, die nicht von der Phase
abhéngen heraus, wihrend die gewiinschten Signal-
beitrige bleiben.

Abbildung 5.32: Struktur von Carboran.

Als weiteres Beispiel betrachten wir das COSY
Spektrum von !'B in o-Carboran. Das Molekiil ent-
hilt 10 B Atome, welche aufgrund der Symmetrie
des Molekiils in drei Zweier- und einer Vierergrup-

pen dquivalent sind.
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Abbildung 5.33: COSY Spektrum von o-Carboran

Die verschiedenen Atome sind iiber skalare Kopp-
lungen mit ihren ndchsten Nachbarn gekoppelt. Dies
kann dazu verwendet werden, die Resonanzlinien
zuzuordnen. So sind die Atome 3 und 6 nicht an die
Atome 9 und 12 gekoppelt, wihrend die Atome an
den Positionen 8, 10, 4, 5, 7 und 11 an alle anderen
Positionen gekoppelt sind.

Die einzelnen Liniengruppen sind hier nicht aufge-
lost weil die Relaxation durch das Quadrupolmo-
ment (/=3/2) relativ schnell und dadurch die Lini-
enbreite grofer ist als die Kopplungen.

5.3.6 Heteronukleare
Korrelationsexperimente

Beim COSY werden Kopplungen zwischen Proto-
nen verwendet, um Informationen iiber die Bin-
dungsstruktur eines Molekiile zu erhalten. Genau
so kann man Kopplungen zwischen unterschiedli-
chen Kernen verwenden, z.B. 'H-13C, 'H-I>N, oder
13C-15N. Experimente mit mehren unterschiedlichen
Kernen werden als “heteronukleare” Experimente
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bezeichnet, im Gegensatz zu “homonuklearen” Ex-
perimenten.

Heterokerne weisen typischerweise einen deutlich
groferen Bereich chemischer Verschiebungen auf
als Protonen. Dadurch liefern sie haufig mehr spek-
trale Information, besonders bei groen Molekiilen.
Allerdings ist auch die Empfindlichkeit deutlich ge-
ringer, da die Resonanzfrequenzen nideriger sind
und teilweise die natiirliche Haufigkeit sehr niedrig.
Einen Teil der Empfindlichkeit kann man in hete-
ronuklearen Experimenten wieder gewinnen, indem
man Polarisation von den Protonen auf die Hetero-
kerne iibertrdgt um das Signal zu verstirken und /
oder fiir die Detektion die Protonen verwendet, da
sie bei gegebener Polarisation ein groferes Signal
liefern.

Das vielleicht wichtigste heteronukleare Experiment
wird mit HSQC abgekiirzt. Das Akronym steht fiir
Heteronuclear Single Quantum Spectrosopy. Wir
diskutieren es anhand eines einfachen Systems von
zwei gekoppelten Spins. Der Hamiltonoperator die-
ses Systems lautet

I = oyl + @sS; + 2nJ LS,

wobei I meist fiir Protonen steht, S z.B. fiir °N.

y n
H | <]+ |

15N

I’l.' TE t2

1]« w2 | | [caer

Abbildung 5.34: Pulsprogramm des

Experimentes.

HSQC

Im ersten Teil des Experiments wird Polarisation von
den Protonen auf den Heterokern! (meist '°N, auch
13C) iibertragen. Nach dem ersten 7/2-Puls ist der
relevante Teil des Dichteopertors

p(O) =1I.

Darauf folgt eine freie Evolutionszeit, wobei in der
Mitte auf beiden Kernen ein 7-Puls angelegt wird.
Dieser refokussiert die chemische Verschiebung bei-
der Kerne, lisst aber die Kopplung invariant, da bei-
de Kerne invertiert werden,

LS, — (_Iz)(_Sz) =LS;.

! Als Heterokern wird jeder Kern auBer 'H bezeichnet.

Damit wird aus dem Anfangszustand

p(2t) = L,cos(2nJT) + IS, sin(2nJ 7).
Wiihlt man 7 = 1/4J, so erhilt man

p(1/2J) = —-LS;.

Zu diesem Zeitpunkt wird auf beiden Spins jeweils
ein /2 Puls angelegt, so dass

p(1/2J+) = LS, .

Dies ist die "Heteronukleare Einquantenkohirenz”,
welche der Methode den Namen gegeben hat: Der S-
Spin ist als transversale Magnetisierung vorhanden,
allerdings in “antiphase” beziiglich des /-Spins: Die
Komponente, welche zum -1/2 Zustand des /-Spins
gehort hat positives Vorzeichen, diejenige, welche
zur +1/2 Komponente gehort negatives Vorzeichen.

in-Phase anti-Phase

W
fff:\_

Abbildung 5.35: Anti-Phasen Magnetisierung.

Frequenz Frequenz

Man kann dies so verstehen, dass die Magnetisie-
rung in den beiden Ubergingen (deren Frequenz
sich um die Kopplungskonstante unterscheidet) un-
terschiedliches Vorzeichen hat. Wiirde man diesen
Zustand als FID des S-Spins beobachten, so wiirde
das Signal zuerst verschwinden (da sich die Beitri-
ge der beiden Signalkomponenten ausloschen). Auf-
grund der unterschiedlichen Frequenz geraten sie
aber nach einer Zeit 1/2J in Phase (als Sy) und man
erhilt ein oszillierendes Signal. Uber Fouriertrans-
formation erhilt man daraus ein Dublett, dessen Li-
nien entgegengesetztes Vorzeichen besitzen.

Im HSQC Experiment wird dieses Signal jedoch
nicht detektiert. Statt dessen ldsst man das System
frei evolvieren. Der Dichteoperator wird durch den
I-Spin Zeemanterm nicht beeinflusst, aber durch den
S—Spin Zeemanterm und den Kopplungsterm. Der
letztere wird durch einen 7-Puls auf den /-Spins in
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der Mitte der Evolutionszeit refokussiert. Zum Ende
der Evolutionszeit ist deshalb der Zustand

p(h) = —IZS},COS(wsll) + LS Sil’l((l)gl‘]) .

Das zweite Paar von 7 /2-Pulsen erzeugt daraus
p(ti+) = —1,S;cos(wsty) + 1,5, sin(wst1) .

Beim zweiten Term handelt es sich um Null- und
Doppeltquantenkohirenz, welche nicht zum beob-
achtbaren Signal beitrdgt; wir betrachten es hier
nicht weiter. Der erste Term wird durch die Evoluti-
on unter der Kopplung wirend einer Zeit 27 wieder
aus anti-Phasen Magnetisierung zu in-Phasen Ma-
gnetisierung:

p(tl,()) = IXCOS(COSH) .

Zu diesem Zeitpunkt beginnt man mit der Datenauf-
nahme. Wihrend der Messung werden die Stickstof-
fe entkoppelt (GARP). Die Protonen erhalten des-
halb nur ihre Zeemanfrequenz,

p(t1,t2) = I;cos(wsty) cos(myty)
+1, cos(wsty ) sin(wyt) .

Das Signal enthilt somit nur die Larmorfrequenzen
der beiden Kerne, jedoch keine Kopplungen (Auf-
spaltungen). Dies vereinfacht das Spektrum und er-
hoht die Empfindlichkeit.
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Abbildung 5.36: HSQC Spektrum.

In einem heteronuklearen Spektrum entsprechen die
beiden Dimensionen unterschiedlichen Kernen. So-
mit wird nur Kohirenz beobachtet, welche von einer
Kernsorte auf eine andere tibertragen wurde, und es
existiert keine Diagonale (®; = @;). Man beobach-
tet nur Signale, die einem Kohirenztransfer entspre-
chen.

In diesem Beispiel wird ein Protein untersucht, bei
dem Signale zwischen 'H und "N iibertragen wer-
den. Dies erlaubt eine relativ rasche Zuordnung der
einzelnen Aminosduren und ist Bestandteil von vie-
len 3D Experimenten.

5.4 Multiquanten-NMR

Bisher haben wir Experimente diskutiert, bei de-
nen die Erweiterung auf mehrere Dimensionen in
erster Linie genutzt wurde, um mehr (oder genaue-
re, oder leichter verwertbare) Informationen iiber die
Resonanzen zu erhalten, welche man auch bei den
“normalen” eindimensionalen Experimenten beob-
achten kann. Hier soll nun eine grundsitzlich ande-
re Moglichkeit diskutiert werden: mit Hilfe mehr-
dimensionaler Experimente konnen Prozesse oder
spektroskopische Uberginge untersucht werden, die
mit eindimensionalen Experimenten gar nicht beob-
achtet werden konnen. Die zweite Dimension ist hier
also nicht einfach eine Wiederholung der ersten Di-
mension, sie ist eine “neue” Dimension.

5.4.1 Multiquanten Ubergiinge

Normalerweise beobachtet man in der NMR Uber-
ginge, bei denen genau ein Spin seinen Zustand um
Am = =1 dndert. Dies sind die einzigen Ubergiinge,
welche direkt beobachtbar sind.

Ein Beispiel fiir erlaubte Ubergiinge in einem 3-Spin
System ist in Abbildung 5.37 dargestellt.

In diesem Fall sind 12 Uberginge erlaubt: fiir
jeden Spin existieren 4 Uberginge, welche den
Zustianden| 1), | 1)), [ 1), | J4) der beidern anderen
Spins zugeordnet werden konnen.
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Abbildung 5.37: Erlaubte Uberginge in einem Sy-

stem von 3 Spins 1/2.

Abbildung 5.38: Spektrum eines 3-Spin Systems.

Insgesamt hat das System aber wesentlich mehr
Ubergiinge: Das System besitzt insgesamt 23 = 8 Zu-
stande, zwischen denen

78 _

28
2

Ubergiinge stattfinden konnen.

Das gleiche Resultat erhélt man auch wenn man die
Elemente des Dichteoperators betrachtet: von den 64
Elementen sind 8 Populationen, es bleiben also 56
Auferdiagonalelemente. Diese entsprechen jeweils
28 Ubergingen von unten nach oben und von oben
nach unten.

Die zusitzlichen 16 Ubergiinge konnen jedoch we-
der direkt angeregt noch beobachtet werden, da das
magnetische Dipolmoment, welche fiir die Kopp-
lung an das Radiofrequenzfeld verantwortlich ist,
in diesen Ubergiingen keine Matrixelemente enthiilt.
Kohirenzen in diesen Ubergingen sind deshalb “un-
sichtbar”. Obwohl diese Uberginge nicht an ein ma-
gnetisches Dipolmoment koppeln konnen sie trotz-
dem angeregt werden, d.h. es ist moglich, Kohiren-
zen in diesen Ubergiingen zu erzeugen. Diese auch
zu messen ist in unterschiedlichen Zusammenhin-
gen wichtig; es gibt spektroskopische Anwendun-
gen (siehe Ende des Kapitels); in anderen Fillen, wie

AL

H)ZIN#
:

Abbildung 5.39: 3 Beispiele fiir nicht beobachtbare
Ubergéinge.

z.B. in der Quanteninformation, mochte man den ge-
samten Zustand des Systems kennen, und dies bein-
haltet auch die nicht direkt beobachtbaren Ubergin-

ge.
_

Abbildung 5.40: Eine 2QT ist nicht das gleiche wie
21QT!

Es darf hier nicht der Eindruck entstehen, dass
ein Mehrquanteniibergang gleich einer Abfolge von
Einquanteniibergéngen sei. So absorbieren bei ei-
nem 2-Quanteniibergang zwei Spins gleichzeitig 2
Photonen. Die Zustinde | 1)) und | 1), welche
bei aufeinanderfolgenden 1QTs zwischenzeitlich be-
setzt wiirden, werden bei einem 2QT nie bevolkert.

5.4.2 CW MQ-NMR

Merhquanteniibergiinge sind “verboten”, d.h. die
Matrixelemente des magnetischen Dipoloperators in
diesen Ubergiingen verschwinden. Allerdings kon-
nen sie in hoherer Ordnung Stérungsrechnung trotz-
dem angeregt werden.

Die Anregungsamplitude ist dabei gegeben durch ein
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Abbildung 5.41: Anregung eines Mehrquanteniiber-
gangs ist in hoherer Ordnung Sto-
rungsrechnung moglich.

Produkt aus zwei Matrixelementen,

(il k) (K| | 2)
5 .

o<

Hier stellt 0 die Differenz zwischen der Energie
des Zwischenzustandes |k) und dem virtuellen Zwi-
schenzustand dar, dessen Energie durch den Mittel-
wert der Energien von |i) und |/) gegeben ist. Da die
beiden Matrixelemente im Zihler meist kleiner sind
als das im Nenner spielen diese Ubergiinge erst bei
starken RF-Feldern eine Rolle.

Frequenz

Abbildung 5.42: Anregung von Doppelquanten-
Ubergingen bei hoher Leistung.

Erste Messungen wurden von Anderson et al.
durchgefiihrt (Anderson et al., J. Chem. Phys. 39
1518-1531 (1963).). Im oberent (Teil-)spektrum
sieht man die 4 Linien eines AB-Spinsystems, wel-
che mit niedriger Leistung gemessen wurden. Er-
hoht man die Leistung, so erhélt man eine zusétzli-
che Linie im Zentrum des Spektrums. Die normalen
(1QT) Linien werden gleichzeitig durch die hohere
RF Feldstirke verbreitert.

5.4.3 Zeitaufgeloste MQ-NMR

Heute werden Mehrquanten-NMR Experimente
praktisch nur noch mit gepulster Anregung aufge-
nommen. Da die Mehrquanteniibergénge nicht di-
rekt beobachtbar sind, benotigt man dafiir eine in-
direkte Detektionsmethode, d.h. ein zweidimensio-
nales Experiment.

& B R E

Abbildung 5.43: Pulssequenz
NMR.

fir Multiquanten-

Wir betrachten dafiir ein einfaches Zweispinsystem,
I = oI, + wsS, + 27 LS, .

Der erste 7/2-Puls erzeugt aus dem Gleichgewicht
den Zustand

p(0) = L+ Sx.

Wihrend der darauf folgenden Zeit entwickelt
sich das System unter dem Hamiltonoperator
. Dabei refokussiert der m-Puls die Zeeman-
Wechselwirkung, ldsst aber die Kopplung unverin-
dert, so dass der Propagator als

U(2T) — ef47m'z‘JIZSZ

geschrieben werden kann. Wird die Zeit T geeignet
gewihlt (7 = 1/4J), so ist der Zustand danach

p(2t) = LS.+ SyI;.
Der zweite 7t /2-Puls ist wiederum ein y-Puls, so dass
p(27,0) = LSy + LSy .
Dieser Zustand kann mit Hilfe von
1 i

Ix:5(1+ +1_) Iy 2

auch geschrieben werden als

(—L,+1)

p(21,0) = %[—I+S++I_S_].

Dieser Operator beschreibt eine Kohérenz zwischen
den beiden Zustéinden | 11) und | |{), also eine reine
Doppelquantenkohirenz.
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Wihrend der folgenden Evolutionszeit ¢; entwickelt
sich dieser Zustand unter dem Einfluss des Hamil-
tonoperators. Dabei spielt der Kopplungsterm keine
Rolle, der Endzustand ist

p(2T7tl) = %[_I+S+e_i(wl+a)x)f1

_i_I_S_ei(a)H»o)x)tl]
= (IS¢ +LS,) cos( @y + ws)1
+ (IxSx + IySy) Sin((l)j + (1)5)[1 .

Die Evolutionszeit wird durch einen weiteren
(7/2)y-Puls abgeschlossen. Danach ist der Zustand

p(2f,l‘1) = (IySz +IzSy) COS((O] + COS)tl
+ (IZSZ +IySy) Sil’l((!)] + (J)S)l‘l .

Der Term I,S, stellt hier Populationen dar, der Term
LSy enthdlt 0- und 2-Quantenkohidrenzen. Beide
sind somit nicht beobachtbar. Der Term (1,,S; + L.Sy)
stellt Antiphasenmagnetisierung dar, welche durch
die darauf folgende Verzogerungszeit der Linge 27
wieder in beobachtbare Magnetisierung umgewan-
delt wird. Der 7-Puls dient wiederum der Refokus-
sierung der Zeeman-Wechselwirkung.

Wie in der 2D-NMR iiblich, misst man einen 2D-
Datensatz. Nach der 2D-FFT findet man in der @,-
Richtung das normale Spektrum, in @;-Richtung
das Mehrquantenspektrum. In unserem idealisierten
Beispiel wurde hier nur der Zweiquanteniibergang
bei der Frequenz w; + ws angeregt.

.
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Abbildung 5.44: Mehrquantenspektrum eines Zwei-
spinsystems. Es ist nur die indirek-
te Dimension dargestellt.

Allgemein kann man hier sdmtliche méglichen
Ubergiinge des Systems beobachten. In diesem

Zweispinsystem wiren dies zusitzlich die 4 FEin-
quanteniibergidnge und der Nullquanteniibergang.
Bei der Bestimmung der Resonanzfrequenzen ist zu
beachten, dass die Energien E; im Laborsystem dar-
gestellt sind, wihrend die beobachteten Frequenzen
;; im rotierenden Koordinatensystem dargestellt
werden. Fiir Ubergiinge unterschiedlicher Quanten-

Ordnung Am gilt
@ = E;—E;

n

—Amﬁ)rf.

5.4.4 Beispiel

Als Beispiel betrachten wir das Spektrum von Di-

Brom-Essigsiure.

Abbildung 5.45: 1D NMR Spektrum von Di-Brom-
Essigsdure (gerechnet).

Die 3 Protonen von Di-Brom-Essigsdure haben un-
terschiedliche chemische Verschiebungen und sind
iiber paarweise Kopplungen aneinander gekoppelt.
Wir finden deshalb im normalen 1D-Spektrum drei
Gruppen mit je vier Linien (jede der Resonanzlinien
der drei Kerne ist durch die beiden Wechselwirkun-
gen jeweils 2 mal aufgespalten).
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Abbildung 5.46: '"H-MQT-NMR Spektrum vom Di-
Brom-Essigsiure.

Im Mehrquantenspektrum findet man bei jeder der
Linien im 1D Spektrum praktisch alle Linien des
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Mehrquantenspektrums. Es konnen insgesamt

N(N=1)
2

n—

Linien auftreten, wobei N = 23 = 8 die Anzahl der
Zustinde darstellt. Von den 28 méglichen Linien fin-
det man nicht alle, da die Auflosung nicht hoch ge-
nug ist.

Interessiert man sich nicht fiir alle Linien oder ist
das Spektrum zu voll, so gibt es die Moglichkeit, nur
Spektren mit einer bestimmten Quantenzahl Am auf-
zunehmen.

400
1 Di-Brom-Essigsiure
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Abbildung 5.47: Reines 3-Quanten Spektrum.

Dafiir wird ein “Phasenzyklus verwendet, d.h. man
wiederholt das Experiment mehrmals, wobei die
Phase der RF Pulse in der Priparationszeit um einen
Betrag ¢ verschoben wird. Die Kohérenzen der Ord-
nung Am erhalten dann jeweils einen Phasenfaktor
Am - ¢ und konnen so unterschieden werden.

5.4.5 Komplexitit der Spektren

Mehrquantenspektren werden aus sehr unterschied-
lichen Griinden eingesetzt. Vielleicht der einfachste
Grund ist die Vereinfachung von Spektren. So ist in
einem System aus N Spins 1/2 jeweils der Ubergang
mit der maximalen Quantenzahl Am = N nicht entar-
tet und nicht aufgespalten: es existiert nur ein Uber-

gang

[t ) 0 [ D)
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Abbildung 5.48: "H-NMR Mehrquantenspek-
trum von Benzol in einem
Fliissigkristall.

zwischen dem niedrigsten (nicht entarteten) Zustand
und dem hochsten (ebenfalls nicht entartet.

Figur 5.48 zeigt ein Beispiel eines Mehrquanten-
spektrums: hier handelt es sich um die 6 Protonen
eines "H NMR Spektrums von Benzol in einem Fliis-
sigkristall. Bei den niedrigen Quantenzahlen sieht
man eine groe Zahl von Ubergingen, bei 5 Quanten
nur noch 2, bei 6 Quanten nur noch einen.

5.4.6 Mehrquantenfilter

Ein dhnliche Anwendung ist die Verwendung von
Multiquanten-Ubergingen, um bestimmte Molekiile
zu selektieren. Ein klassisches Beispiel ist das INA-
DEQUATE Experiment: man misst ein vereinfach-
tes Mehrquantenspektrum, betrachtet aber nur das
1D Spektrum als Funktion von @», d.h. der Detek-
tionsfrequenz, bei der Frequenz des Doppelquanten-
ibergangs. Zu diesem Spektrum tragen offenbar nur
Molekiile bei, welche zwei gekoppelte Spins enthal-
ten.

Frequenz/kHz

Abbildung 5.49: 3C NMR Spektrum von Ethanol.

Das Spektrum in Figur 5.49 zeigt das normale 1D
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13C NMR Spektrum von Ethanol. Die beiden Lini-
en entsprechen den beiden Kohlenstoffatomen. Da
13C nur in ca. 1% natiirlicher Hiufigkeit vorhanden
ist, enthalten die meisten Molekiile nur jeweils einen
13C Spin - die linke Linie gehort zur CH,-Gruppe,
die rechte zur CH3-Gruppe.

B¢ Satelliten
“a

H

Abbildung 5.50: 3C Satelliten der rechten Linie
(CH3-Gruppe).

Eine genauere Messung zeigt, dass in der Nihe jeder
Linie jeweils noch 2 “Satelliten” auftreten. Diese Li-
nien stammen von Molekiilen, welche 2 '3C-Kerne
enthalten; diese sind iiber eine J-Kopplung anein-
ander gekoppelt. Sie machen einen Anteil von rund
10~* aller Molekiile in der Probe aus. Wegen der ge-
ringeren Hiufigkeit und der Aufspaltung der Linie
sind diese Satelliten etwa einen Faktor 200 kleiner
als die Zentrallinie.

T T —t———t ——t—t———————
-2 -1 0 1 2 3

Frequenz / kHz

Abbildung 5.51: INADEQUATE  Spektrum des

Ethanols.

Betrachtet man anstelle des 1D Spektrums das INA-
DEQUATE Spektrum, so wird die Zentrallinie stark
unterdriickt; sie ist in diesen Spektren um rund
einen Faktor 200 kleiner geworden, so dass die Sa-
telliten deutlich besser sichtbar werden. Bei die-
sem Experimt misst man praktisch eine Zeile des
2-Quantenspektrums, welche dem Doppelquanten-
iibergang entspricht. Da nur Molekiile hier beitragen

konnen, welche 2 13C Kerne enthalten, werden die
ibrigen sehr effektiv unterdriickt.

Mehrquantenspektren konnen auch dazu benutzt
werden, Linien in Spektren zuzuordnen, dhnlich wie
COSY Spektren.

5.4.7 Zihlen von Spins

Mehrquantenexperiment in Festkorpern konnen da-
zu verwendet werden, die Grofle von “Clustern” zu
bestimmen, also von Gruppen von raumlich benach-
barten und damit gekoppelten Spins. Die Grundla-
ge dafiir ist relativ einfach: die GréBe des Cluster
bestimmt die Zahl der moglichen Zustidnde und die
maximale Quantenzahl, welche in dem System an-
geregt werden kann. Eine Messung der Signalampli-
tuden der einzelnen Quantenordnungen kann somit
die GroBe des Spinsystems bestimmen.

Abbildung 5.52: Wasserstoffatome in Si: bilden sie
Cluster ?

Ein Beispiel fiir ein System, wo sich die Frage nach
der Clusterbildung stellt, ist amorphes Silizium. Da
es amorph ist, enthilt es viele Fehlstellen, wie z.B.
Leerstellen. Es kann erhebliche Mengen an Wasser-
stoff binden kann, welche vermutlich in der Néhe der
Fehlstellen akkumulieren. Es gibt Modelle, welche
voraussagen, dass die Wasserstoffatome dabei Clu-
ster bilden.

Um diese Modelle zu testen, kann man MQ-NMR
messen. Dabei erzeugt man Mehrquantenkohirenz,
aber praktisch nur um sie sogleich wieder zuriick
zu transformieren und nachzuweisen. Man bestimmt
damit lediglich die Amplitude der erzeugten Mehr-
quantenkohirenz, ihre Prizessionsfrequenz ist nicht
relevant.

Wie oben gezeigt bendtigt man eine Zeit T in der
GroBenordnung von 7 ~ 1/J, um Mehrquantenko-
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hirenzen zwischen Spins zu erzeugen, welche durch
eine Kopplung mit Stdrke J aneinander gekoppelt
sind. Je lidnger die Zeit ist, die man dem System
lasst, um Mehrquantenkohirenzen zu erzeugen, de-
sto schwichere Kopplungen (d.h. groBere Distan-
zen) tragen noch zu den Mehrquantenkohédrenzen
bei. Tragt man die SystemgroBe (d.h. die maximale
Quantenzahl) gegen die Zeit auf, so findet man in ei-
nem endlichen System, dass dieser Wert gegen einen
endlichen Grenzwert strebt (die Anzahl der Spins im
System), wihrend sie bei einem undenlichen System
ohne Grenzwert beliebig lange ansteigt.
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Abbildung 5.53: Effektive GroBe des Spinsystems al
Funktion der Anregungszeiten fiir
verschiedene Konzentrationen von
Wasserstoff in Si.

Im Fall von amorphem Silizium stellt man fest, dass
bei kleinen Konzentrationen tatséchlich eine ausge-
pragte Tendenz zur Clusterbildung besteht. Bei einer
Belegung von 8% Wasserstoff beobachtet man eine
ClustergroBe von etwa 6 Spins. Bei groferen Bele-
gungen werden die Cluster grofler; gleichzeitig sind
sie weniger gut isoliert, es gibt keine stationdre Gro-
Be mehr fiir die Clustergrof3e.

5.4.8 Quadrupol-Kerne

Die letzte Anwendung von MQ-NMR, die hier noch
diskutiert werden soll, betrifft Kerne mit 7 > 1/2 in
Festkorpern. Wie bereits diskutiert unterliegen diese
der Quadrupolwechselwirkung, d.h. der Wechselwir-
kung zwischen dem Quadrupolmoment des Kerns
und dem elektrischen Feldgradiententensor. Diese
Kopplung kann sehr stark sein (im Bereich von kHz
- MHz), und sie ist orientierungsabhéingig.

+ Quadrupolar  + Quadrupolar
(ﬁrst order) (second order)

3vy ‘TL L +A‘ ‘
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Abbildung 5.54: Quadrupolwechselwirkung bei ei-
nem Spin /=3/2: Effekt in Oter, 1ter
und 2ter Ordnung.

Die Wechselwirkung kann niitzlich sein, die kann
aber auch storen, insbesondere in Pulvern, wo sie
zu einer sehr starken Linieverbreiterung fiihrt. Hiu-
fig ist dann nur noch der zentrale Ubergang m =
—1/2 <+ m' = 1/2 beobachtbar, welcher in er-
ster Ordnung durch die Quadrupol-Wechselwirkung
nicht beeinflusst wird. In 2ter Ordnung Stdrungs-
rechnung findet man aber auch auf diesem Ubergang
einen Einfluss der Quadrupolwechselwirkung.
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Abbildung 5.55: Rotationsplot eines RbNOj3 Kii-
stalls. Es sind nur die Zentraliiber-
ginge sichtbar.

In Figur 5.55 sind die ’Rb Spektren eines RbClOy
Einkristalls gezeigt, wenn man um drei unter-
schiedliche Achsen rotiert. Die unterschiedliche Fre-
quenz ist auf die Abhingigkeit der Quadrupol-
Wechselwirkung von der Orientierung des Quadru-
poltensors im Magnetfeld zuriickzufiihren.

Fiihrt man die gleiche Messung nicht an einem Ein-
kristall, sondern an einem Pulver durch, so entsteht
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das Signal als Mittelung iiber alle moglichen Ori-
entierungen; anstelle von mehreren einzelnen Linien
erhélt man eine breite, gemittelte Linie.

-

Frequenz

Abbildung 5.56: Pulverspektrum von 87Rb

(gerechnet).

Dies ist generell das gleiche Problem wie bei der
anisotropen chemischen Verschiebung; allerdings ist
hier die Winkelabhdngigkeit etwas anders, da es sich
um einen Effekt hoherer Ordnung handelt.

R Se—

Frequenz

L

Abbildung 5.57: Pulvermittel ~ der
Quadruupol-WW
Bedingungen.

2-Ordnung
unter MAS

Wihrend man bei der ansisotropen chemischen Ver-
schiebung die Linienverbreiterung durch Magisch-
Winkel-Rotation (MAS) eliminieren kann, ist dies
bei der Quadrupolwechselwirkung 2ter Ordnung
nicht moglich: man erhélt auch unter MAS noch eine
deutlich verbreiterte Linie.

5.4.9 Multiquanten-MAS

Eine Moglichkeit, dieses Problem zu losen, liegt in
der Mehrquanten-NMR: Neben dem m = —1/2 <
m' = 1/2 Ubergang wird auchder m = —3/2 <> m' =
3/2 Ubergang nur in zweiter Ordnung beeinflusst.
Die Orientierungsabhingigkeit fiir diesen Ubergang
ist jedoch eine andere als fiir den 1-Quanten Uber-
gang. Das kann man nutzen: man fiihrt ein zeitaufge-
lostes (zweidimensionales) NMR Experiment durch,

in dem man die Kohdrenz wihrend #; im 3-Quanten
Ubergang lisst, danach in den 1-Quanten Ubergang
transferiert und dort beobachtet. Damit kann man er-
reichen, dass zu einem bestimmten Zeitpunkt wih-
rend der Detektion das Signal fiir alle Kristallorien-
tierungen zusammenfallt.
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Abbildung 5.58: MQMAS Spektrum von 8'Rb.

In Figur 5.58 ist das so aufgenommene Multiquan-
tenspektrum von 8’Rb dargestellt. Auf der linken
Seite ist das 2D Spektrum dargestellt, dariiber das
normale 1D Spektrum. Rechts davon ist die Projek-
tion des 2D Spektrums auf die isotrope Achse darge-
stellt: es sind klar 3 Linien erkennbar. Diese gehdren
zu den drei kristallographisch nicht dquivalenten Po-
sitionen in 3"Rb.

Rechts im Bild sind die Pulverspektren dargestellt,
welche zu den drei Linien gehoren (linke Kolonne
Experiment, rechte Seite Theorie). Fiir die getrenn-
ten Linien ist es offenbar moglich, die Linienformen
exakt zu berechnen.

Figur 5.59 zeigt ein weiteres Beispiel, diesmal fiir
23Na, ebenfalls einen Quadrupolkern mit /=3/2.
Auch in diesem Fall bietet das 1D Spektrum keine
verwertbaren Informationen. Im 2D MQMAS Spek-
trum kann man jedoch klar die einzelnen Sites fiir
die verschiedenen Verbindungen unterscheiden.
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Abbildung 5.59: MQMAS  Spektren von Z3Na

(1=3/2).
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