
4 Zeitaufgelöste NMR

In diesem Kapitel sollen die grundlegendsten Expe-
rimente der magnetischen Resonanz diskutiert wer-
den.

4.1 FID und Spektrum

4.1.1 Motivation und Vorgehen

Allgemein wird in der magnetischen Resonanz
“zeitaufgelöst” gemessen: dabei legt man am zu
messenden System eine kurze, intensive Störung an
und beobachtet anschließend seine freie Evolution
unter dem Einfluss des ungestörten Hamiltonopera-
tors. Dies ist im Gegensatz zu den meisten übrigen
Spektroskopien, wo man ein schwaches Störfeld mit
harmonischer Zeitabhängigkeit anlegt und die Ab-
sorption oder Dispersion dieses Feldes im Medium
als Funktion der Frequenz (oder eines anderen Para-
meters) misst. Diese Art des Experimentes wird mit
den Adjektiven

• frequenzaufgelöst

• “slow passage”

• cw (=continuous wave)

bezeichnet.
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Abbildung 4.1: Prinzip eines zeitaufgelösten Experi-
mentes.

Das frequenzaufgelöste Signal kann aus dem
einfachsten zeitaufgelösten Signal über Fourier-

Transformation erhalten werden. Die zeitaufgelö-
sten Messungen bieten jedoch gegenüber den fre-
quenzaufgelösten Messungen eine Reihe von Vor-
teilen, welche dazu geführt haben, dass heute in der
NMR nur mehr ausschließlich zeitaufgelöst gemes-
sen wird, in der ESR teilweise, und in zunehmen-
dem Maße auch in anderen Spektroskopien. Zu die-
sen Vorteilen gehören

• höhere Empfindlichkeit

• höherer Informationsgehalt (z.B. Relaxations-
zeiten)

• Möglichkeit für mehrdimensionale Experimen-
te.

Wir betrachten als erstes das Experiment, welches
das konventionelle (cw) Experiment ersetzt. Dafür
legt man an des System im Gleichgewicht einen ein-
zelnen RF Puls an, misst das daraus resultierende
Signal und erhält das Spektrum als dessen Fourier-
Transformierte.

4.1.2 Gleichgewichtszustand

Der einfachste Fall ergibt sich, wenn das Spinsystem
aus einer einzelnen Spinspezies I besteht. Der Ha-
miltonoperator kann dann direkt diagonal geschrie-
ben werden, indem wir die z- Achse parallel zum äu-
ßeren Magnetfeld wählen. Im Laborsystem lautet er

H L = �h̄w0Iz .

Zu Beginn des Experiments ist das System im ther-
mischen Gleichgewicht, d.h. der Dichteoperator ist

req =
e�H /kBT

Sp{e�H /kBT }
.

In der NMR gilt allgemein die Hochtemperaturnähe-
rung

DE ⌧ kBT ,
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4 Zeitaufgelöste NMR
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Abbildung 4.2: Spinsystem im thermischen Gleich-
gewicht in einem statischen Magnet-
feld. Links: quantenmechanisch ist
der Zustand durch eine (geringe) Po-
pulationsdifferenz zwischen den bei-
den stationären Zuständen charakte-
risiert. Rechts: Dies entspricht einer
Magnetisierung parallel zum äuße-
ren Magnetfeld.

so dass die Exponentialfunktion entwickelt werden
kann als

req ⇡ 1
2I +1

(1� H L

kBT
) .

Wir können somit in guter Näherung schreiben

req ⇡ 1
2I +1

(1+
h̄w0

kBT
Iz) .

4.1.3 Gepulste Anregung

Für diese Berechnung des Gleichgewichtsdichteope-
rators mussten wir das Laborsystem verwenden, da
das rotierende Koordinatensystem kein Inertialsy-
stem darstellt. Die nun folgenden Rechnungen wer-
den jedoch wiederum im rotierenden Koordinaten-
system durchgeführt.

Für die Berechnung des Signals nehmen wir an, dass
das System mit resonanter RF Einstrahlung ange-
regt wird, welche im rotierenden Koordinatensystem
parallel zur x-Achse anliegt. Der relevante Hamil-
tonoperator (im rotierenden Koordinatensystem) ist
dann

HP = �w1Ix .

Die Veränderung des Spinsystems durch den Puls

Abbildung 4.3: RF Einstrahlung im rotierenden Ko-
ordinatensystem. Dadurch kann z.B.
die Magnetisierung von der z- zur y-
Achse gedreht werden.

kann damit geschrieben werden als

r(t) = e�iHPt

r(0)e+iHPt

= eitw1Ix
r(0)e�itw1Ix

=
1

2I +1
[1+

h̄w0

kBT
(Iz cos(w1t)

+Iy sin(w1t))].

Maximale transversale Magnetisierung erhält man
für w1t = p/2; man spricht dann von einem idea-
len 90-Grad Puls. Dieser dreht die Magnetisierung
von der z-Achse zur y-Achse:

r(0+) =
1

2I +1
[1+

h̄w0

kBT
Iy].

Dieser Anfangs - Dichteoperator entwickelt sich un-
ter dem Einfluss des Hamiltonoperators

r(t) = e�iH t
r(0+)e+iH t

=
1

2I +1
(1+

h̄w0

kBT
eiw0tIz Iye�iw0tIz)

=
1

2I +1
[1+

h̄w0

kBT
(Iy cosw0t

+ Ix sinw0t)].

Wird zusätzlich die Relaxation berücksichtigt, so er-
hält man den Ausdruck

r(t) =
1

2I +1
[1 +

+
h̄w0

kBT
(Iy cosw0t + Ix sinw0t)e�t/T2

+
h̄w0

kBT
Iz(1� e�t/T1)] (4.1)
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4 Zeitaufgelöste NMR

Die transversale Relaxation dämpft die präzedieren-
de Magnetisierung, während die longitudinale Ma-
gnetisierung neu aufgebaut wird.

4.1.4 Detektion
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Abbildung 4.4: Detektion über das Faraday’sche
Induktionsgesetz.

Die anschließende Detektion misst die zeitliche Ab-
leitung einer Magnetisierungskomponente, indem
die Spannung aufgrund der magnetischen Fluss-
änderung detektiert wird. Da wir die Spule in x-
Richtung gewählt haben, ist die zeitliche Änderung
des magnetischen Flusses durch die Spule proportio-
nal zu

s(t) µ d
dt

F(t) µ d
dt

hFxi .

Hier steht

Fx = Â
i

Ii
x

für die Summe über alle Spins.

Da die zeitliche Änderung der Magnetisierung im
Laborsystem im Wesentlichen durch die Larmorprä-
zession gegeben ist, wird das Signal somit

s(t) µ d
dt

hFxi ⇡ w0hFyi = w0 Â
i
hIi

yi .

Für einen Spin ist die Messgröße somit gerade hIyi
und das Signal wird

s(t) = w0Sp{r(t)Iy} ,

wobei wir alle Proportionalitätskonstanten, wie z.B.
die Induktivität der Spule zu eins gesetzt haben. Das
Signal ist somit direkt proportional zur transversalen
Magnetisierung.

4.1.5 Signal

Da

Sp{IxIy} = Sp{IzIy} = Sp{1Iy} = 0

und

Sp{IyIy} =
1
3

I(I +1)(2I +1)

gilt, und somit für einen Spin I = 1/2

Sp{IxIx} = Sp{IyIy} = Sp{IzIz} = 1/2 ,

können wir das Signal als

s(t) =
h̄w

2
0

4kBT
cos(w0t)e�t/T2

schreiben, wobei einige Normierungsfaktoren nicht
berücksichtigt wurden.

Wir erhalten also eine gedämpfte Oszillation, den
bereits erwähnten FID. Das Spektrum kann dar-
aus durch Fourier-Transformation berechnet werden
(siehe unten).

Ein wesentlicher Aspekt, der sich aus der Berech-
nung ergibt, ist, dass das Signal proportional zu w

2
0

ist und damit quadratisch mit der Stärke des Magnet-
felds zunimmt. Ein Faktor w0 stammt von der Popu-
lationsdifferenz im thermischen Gleichgewicht, die
in der Hochtemperaturnäherung proportional zu w0
ist. Der zweite Faktor stammt von der Detektions-
empfindlichkeit, da das Signal proportional zur zeit-
lichen Änderung des magnetischen Flusses und da-
mit zur Präzessionsfrequenz ist.

Diese Proportionalität ist ein wesentlicher Grund für
den Trend zu höheren Feldern in der NMR: gegen-
über den vor 50 Jahren üblichen Resonanzfrequen-
zen von 60 MHz hat sich inzwischen die Feldstär-
ke verzehnfacht; die Empfindlichkeit ist damit um
einen Faktor 100 gestiegen. Um diesen Empfindlich-
keitsgewinn durch eine Verlängerung der Messzeit
zu kompensieren müsste man mindestens um einen
Faktor 10000 mal länger messen!
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4 Zeitaufgelöste NMR

Abbildung 4.5: Unterschiedliche Feldstärken für die
NMR und die entsprechenden Emp-
findlichkeiten und Messzeiten.

4.1.6 Berechnung des Spektrums

In diesem einfachen Beispiel kann die Fourier-
Transformation analytisch durchgeführt werden und
man erhält den Ausdruck

s(w) =
q

1
2p

h̄w

2
0

4kBT
T2

1+(w�w0)2T 2
2

=
q

1
2p

h̄w

2
0

4kBT
1/T2

1/T 2
2 +(w�w0)2 ,

der eine Lorentz-Linie beschreibt. Sie ist zentriert an
der Frequenz w0, und ihre Breite ist gegeben durch
die Zerfallszeit T2.

Diese Resonanzlinie entspricht gerade der Linien-
form, die wir als stationäre Lösung der Blochglei-
chungen im Grenzfall eines schwachen Feldes er-
halten hatten. Es gilt allgemein, dass die Fourier-
transformierte des FID’s das Spektrum des entspre-
chenden cw-Experimentes ergibt (sofern keine Sät-
tigungseffekte auftreten).

Besteht das Spinsystem aus mehreren Spins, welche
nicht aneinander gekoppelt sind, so erhält man als
Signal eine Summe aus zerfallenden Exponential-
funktionen. Im FID sind diese Beiträge schwierig zu
unterscheiden. Es ist deshalb meist nützlich, sie zu
Fourier-transformieren. Im resultierenden Spektrum
ist die Trennung wieder relativ einfach ersichtlich.

Ein völlig analoges Verhalten erhält man, wenn man
verschiedene Übergänge in einem einzelnen Spinsy-
stem diskutiert, wie z.B. bei einem Quadrupolspin.

A = 3  ν = 0,7

A = 2  ν = 0,3

A = 1  ν = 1,0

Zeit
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F

Frequenz

Abbildung 4.6: Signal aus 3 Frequenzkomponenten.
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Abbildung 4.7: Frequenz und Amplitude in einem
Spektrum mit mehreren Linien.

Da das Signal durch die Spur des Produktes

sFID(t) = Sp{rA} = Â
i, j

ri jA ji = Â
i, j

r

⇤
jiA ji

bestimmt wird, können wir einzelne Signalbeiträge
aus den Matrixelementen von Dichteoperator r und
Observablen A bestimmen. Im typischen Fall dass
diese identisch sind,

r(0) = A = Iy ,

erhalten wir einzelne Resonanzlinien im Spektrum
direkt aus den Matrixelementen von Iy, wobei diese
in der Eigenbasis des Hamiltonoperators ausgewer-
tet werden müssen. Wenn wir das Signal zerlegen in
einzelne Komponenten

sFID(t) = Â
i, j

ai jeiwi jt ,

so ergeben sich daraus im Spektrum die Amplituden
ai j und Frequenzen wi j, welche zu einem Übergang
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4 Zeitaufgelöste NMR

i $ j zwischen stationären Zuständen i und j gehö-
ren. Frequenz wi j und Amplitude ai j sind gegeben
durch

wi j =
Ei �E j

h̄
, ai j µ |(Iy)i, j |

2 .

Hier ist (Iy)i, j das Matrixelement (i, j) von Iy in der
Eigenbasis des Hamiltonoperators.

4.2 Echos

Die bisher betrachteten Experimente, bei denen ein
Signal nach einem einzelnen Radiofrequenzpuls auf-
genommen und Fourier-transformiert wird, ergeben
Informationen, welche weitgehend mit den konven-
tionell (CW = continuous wave = Dauerstrichmes-
sung) aufgenommenen Spektren äquivalent sind. Es
zeigt sich jedoch, dass es in vielen Fällen nützlich
ist, das System nicht nur mit einem einzelnen, son-
dern mit einer Reihe von Radiofrequenzpulsen an-
zuregen. Man gewinnt dadurch z.B. mehr Informa-
tion oder höhere Auflösung. Wir beginnen mit dem
einfachsten und ältesten Mehrpulsexperiment, dem
Hahn-Echo.

Abbildung 4.8: Erwin Hahn

Es wurde 1950 von Erwin Hahn beschrieben[16].

4.2.1 Das Hahn-Echo

Ein FID wird niemals durch einen einzelnen Spin er-
zeugt. Statt dessen beobachtet man immer ein En-
semble. Das beobachtete Signal stammt von einem
Ensemble von Spins, welches durch einen Dichte-
operator beschrieben wird. Weil nicht alle Spins ge-
nau das gleiche Magnetfeld spüren, präzedieren die

Abbildung 4.9: Hahn’s Original Echo.

zugehörigen Magnetisierungsvektoren nicht gleich
schnell, und der FID zerfällt. Dieser Zerfall kann
mit Hilfe eines Radiofrequenzpulses rückgängig ge-
macht werden – die Spins werden “refokussiert”.

τ
π/2 π

RF
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τ

Abbildung 4.10: Pulssequenz für das Hahn-Echo
Experiment.

Wie in Abb. 4.10 gezeigt beginnt das Experiment
mit einem (idealen) 90� Puls, welcher die Gleich-
gewichtsmagnetisierung von der z- zur x- Achse des
rotierenden Koordinatensystems dreht. Der resultie-
rende Zustand wird durch den Dichteoperator

r(0) = Â
i

I(i)
y

beschrieben (wir haben hier die üblichen Vorfak-
toren weggelassen). Anschließend präzedieren die
Mitglieder des Ensembles mit ihrer individuellen
Resonanzfrequenz Dw

(i)
0 . Die entsprechende Zeit-

entwicklung des Dichteoperators ist demnach

r(t) = Â
i
(cos(Dw

(i)
0 t)I(i)

y

+ sin(Dw

(i)
0 t)I(i)

x )e�t/T2 .

Wenn wir die y-Magnetisierung messen, erhalten wir
somit ein Signal

stot = Â
i
hI(i)

y i(t) =
1
2 Â

i
cos(Dw

(i)
0 t)e�t/T2 .
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4 Zeitaufgelöste NMR

Die Resonanzfrequenzen Dw

(i)
0 der einzelnen Spins

sind nicht exakt identisch, da verschiedene Wechsel-
wirkungen einen Unterschied hervorrufen können.
Im aktuellen Zusammenhang betrachten wir dazu le-
diglich ein inhomogenes Magnetfeld, welches eine
entsprechende Verteilung der Larmorfrequenzen er-
zeugt. Man erhält somit einen “Spinfächer”, dessen
Breite durch das Produkt aus der Zeit t und der Breite
der Verteilung der Resonanzfrequenzen Dw

(i)
0 gege-

ben ist. Ist dieses Produkt groß gegen eins, so sind
die Phasen Dw

(i)
0 t in der xy Ebene gleichmäßig ver-

teilt, der Mittelwert der Magnetisierung verschwin-
det.

In Abb. 4.10 ist der Zerfall der transversalen Ma-
gnetisierung gezeigt; der Zerfall der Magnetisierung
nach dem ersten Puls ist durch die Breite der Vertei-
lung der Resonanzfrequenzen im inhomogenen Feld
bestimmt.

Abbildung 4.11: Maxwell’s Dämon und bewegte
Moleküle

Die Dephasierung der Spins kann mit dem Ausein-
anderfliegen von Gasmolekülen verglichen werden,
wenn ein Gefäß mit komprimiertem Gas geöffnet
wird. Es ist in beiden Fällen prinzipiell denkbar,
aber sehr unwahrscheinlich, dass die Moleküle, resp.
Spins wieder in den Ausgangspunkt zurückkehren.
Wie von Maxwell porträtiert, wäre dies auch mög-
lich, wenn ein Dämon, welcher die einzelnen Mo-
leküle (Spins) beobachtet, deren Geschwindigkeiten
(Präzessionsfrequenzen) alle gleichzeitig invertieren
würde.

4.2.2 Refokussierung

Im Gegensatz zu einem molekularen Gas, wo kein
Maxwell-Dämon existiert, welcher die Bewegung
der Moleküle umdrehen kann, ist es im Falle ei-
nes Spinsystems möglich, die Phasen aller Spins zu
invertieren, von e�iDw

(i)t zu eiDw

(i)t . Dazu muss die
gesamte Magnetisierung mit einem RF Puls in y-
Richtung um p rotiert werden. Ein solcher Puls in-
vertiert Ix und Iz, lässt aber Iy invariant:

0

@

Ix

Iy

Iz

1

A

e�ipIy

!

0

@

�Ix

Iy

�Iz

1

A .

Das Experiment eignet sich zur Refokussierung von
Wechselwirkungen, die linear in Iz sind. Beispiele
hierfür sind die chemische Verschiebung, die hetero-
nukleare Dipol-Dipolwechselwirkung, sowie Inho-
mogenitäten des äusseren Magnetfeldes. Der Hamil-
tonoperator ist H = �Dw0Iz.

Um die Liouville-von-Neumann-Gleichung auszu-
werten, wählen wir folgende Vorgehensweise:

1. Als Anfangszustand betrachten wir entweder
r(0) = Ix oder Iy, d.h. wir haben vorher einen
(idealen) 90° Puls auf die Gleichgewichtsma-
gnetisierung (Hochtemperaturnäherung!) wir-
ken lassen.

2. Wir zerlegen die Zeitentwicklung in Intervalle,
in denen der Hamiltonoperator im rotierenden
Koordinatensystem jeweils konstant ist.

3. Wir nähern die Hochfrequenzpulse durch d -
Funktionen, d.h. wir vernachlässigen die an-
sonsten zu berücksichtigende Zeitentwicklung
während des Pulses. Die entsprechenden Propa-
gatoren sind somit eif Ix , resp. eif Iy , wobei f den
Flipwinkel und x,y die Phase des Pulses darstel-
len.

Wird zu einer Zeit T nach dem Anregungspuls ein
solcher Refokussierungspuls auf das System ange-
legt, so wird der Zustand des Systems danach

r(t+) = Â
i
[cos(Dw

(i)
0 t)I(i)

y

+sin(Dw

(i)
0 t) I(i)

x ]e�T/T2 .
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4 Zeitaufgelöste NMR

Der Zustand nach dem Puls ist somit der gleiche wie
vor dem Puls, außer dass die Phase aller Spins inver-
tiert wurde, Dw0T ! �Dw0T . Dies kann auch als
Zeitumkehr T ! �T interpretiert werden. Die Pha-
se ist gleichzeitig der Winkel der Spins gegenüber
der y-Achse. Wie in Abb. 4.12 gezeigt, nimmt die-
ser Winkel linear mit der Zeit zu, mit der Steigung
Dw

(i)
0 . Die Inversion der Phase, j ! �j , entspricht

einer Spiegelung an der Zeitachse (j = 0).

τ
π/2 π

RF

Zeit

τ

P
ha
se

Abbildung 4.12: Inversion der Phasen durch den
Refokussierungspuls. Für zwei der
Spins ist exemplarisch dargestellt,
wie sie mit unterschiedlicher Fre-
quenz präzedieren und deshalb un-
terschiedliche Phasen erhalten.

Nach dem Puls läuft die Evolution der Spins wieder
wie vor dem Puls, d.h. die Phase wächst gemäß

r(t + t) = Â
i
[cos(Dw

(i)
0 (t � t))I(i)

y

�sin(Dw

(i)
0 (t � t)) I(i)

x ]e�(t+t)/T2 .

Die Zeit t misst hier die Dauer der freien Präzession
nach dem Refokussierungspuls.

Wenn diese gleich lang wird wie die Dauer zwi-
schen Anregung und Refokussierungspuls, t = T ,
verschwinden alle Phasen Dw

(i)
0 (t � T ), da sich die

negativen Werte aus der ersten Präzessionszeit gera-
de gegenüber den positiven aus der zweiten Periode
aufheben, unabhängig von der Frequenz der einzel-
nen Spins. Die obere Hälfte von Abb. 4.13 zeigt ei-
nige solche Trajektorien. Die untere Hälfte zeigt das

Zeit

Zeit

Gesamtsignal

Signale der 
einzelnen Spins

Abbildung 4.13: Bildung des Echos: Zum Zeitpunkt
des Echos sind alle Phasen iden-
tisch (=0).

Gesamtsignal, welches der Summe über alle Spins
entspricht. Zum Zeitpunkt t = 2T ist die destruktive
Interferenz aufgehoben, es entsteht “spontan” ein Si-
gnal, ein Echo. Dieses ist gegenüber dem ursprüng-
lichen Signal lediglich um die Dämpfung e�2T/T2 re-
duziert. Diese Dämpfung ist für alle Spins vorhan-
den, auch in einem homogenen Feld, und wird des-
halb als homogener Beitrag zur Relaxation, respek-
tive zur Linienbreite bezeichnet.

4.2.3 Propagator

Als Alternative zu dieser “direkten” Beschreibung
soll hier auch eine Operatoren-Schreibweise dis-
kutiert werden. Diese ist mathematisch etwas an-
spruchsvoller, dafür eleganter, und sie lässt sich
leichter verallgemeinern. Man schreibt dafür die Be-
wegungsgleichung der Dichtematrix (die Liouville-
von-Neumann-Gleichung) als

d
dt

r(t) = �i[H ,r(t)] .

Sie wird für einen nicht explizit von der Zeit abhän-
gigen Hamiltonoperator H gelöst durch

r(t) = e�iH t
r(0)eiH t = U(t)r(0)U�1(t) .

Der Operator U(t) = e�iH t , der den Dichteoperator
r (wie auch die Zustandsfunktion Y) in der Zeit ent-
wickelt, wird Propagator genannt. Wir bestimmen
den Propagator nach der Zeit t = 2T

r(t) = e�iH t
r(0)eiH t

r(2t) = U(2t)r(0)U�1(2t)
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4 Zeitaufgelöste NMR

und betrachten die Pulssequenz (90�)x � t �
(180�)±x � t - sozusagen von rechts nach links

U(2t) = eiDw0Izte�ipIxeiDw0Izt .

Wir fügen dahinter den Einheitsoperator eipIxe�ipIx

an:

U(2t) = e�iDw0Izte�ipIxeiDw0IzteipIxe�ipIx

und vereinfachen die 3 mittleren Terme

e�ipIxeiDw0IzteipIx = e�iDw0Izt .

Dieser ist der inverse Propagator des ersten Terms
und der gesamte Propagator wird

U(2t) = e�ipIx .

Dies entspricht einer 180�-Rotation um die x-Achse
und ist unabhängig von Dw0.

Die anfängliche Dichtematrix nach einem 90� Puls
beliebiger Phase kann als Überlagerung von Ix und
Iy geschrieben werden. Wir betrachten die Fälle ge-
trennt.

a) r(0) = Ix

r(2t) = e�ipIx IxeipIx = Ix.

Insgesamt ist also

r(2t) = r(0) .

b) r(0) = Iy

r(2t) = e�ipIx IyeipIx = �Iy.

Dies entspricht einer Drehung von Iy um +180�. Da-
mit ist

r(2t) = �r(0) .

Wir hätten das selbe Ergebnis erhalten, wenn wir ei-
ne Drehung um -180� ausgeführt hätten, d.h. bei In-
version der Phase des zweiten Pulses.

Den Schritt

e�ipIxe�iDw0IzteipIx = eiDw0Izt

kann man übrigens so interpretieren, dass das Vor-
zeichen des Hamiltonoperators invertiert wird,

H̃z = �Hz .

Im Mittel hebt sich dann die Wirkung der Operatoren
Hz und �Hz weg. Deshalb tritt zum Zeitpunkt des
Echos wieder die volle Anfangsmagnetisierung auf.
Wenn wir anstelle des Hamiltonoperators den Propa-
gator U(t) = e�iH t betrachten, können wir die Vor-
zeichenumkehr mit

e�i(�H )t = e�iH (�t)

auch als eine Zeitumkehr deuten.

Diese Argumente gelten natürlich nur für die sy-
stematische Zeitentwicklung unter der Wirkung von
Hz. Andere Einflüsse haben wir bis jetzt nicht be-
trachtet. Stochastische Prozesse, etwa molekulare
Bewegungsvorgänge in den zu untersuchenden Pro-
ben sind nicht reversibel. Es ist der damit ver-
knüpfte Abfall des Hahn-Echos für den man sich
dann eigentlich interessiert, um etwas über solche
Bewegungsvorgänge zu erfahren. Der Vorteil des
Hahn’schen Spin-Echos liegt darin, dass man sich
um die trivialen Dephasierungen (wen interessiert
schon eine etwaige Inhomogenität des Magnetfel-
des) nicht zu kümmern braucht.

4.2.4 Das stimulierte Echo

Es gibt viele weitere Echo-Experimente, in denen
unterschiedliche Wechselwirkungen “refokussiert”
werden. Die direkteste Erweiterung des Hahn-Echos
ist das stimulierte Echo, welches aus drei p/2-
Pulsen besteht. Man kann es sich so vorstellen, dass
dabei der p-Puls des Hahn-Echos in zwei p/2-Pulse
aufgeteilt wird. Abb. 4.14 zeigt den Ablauf des Ex-
periments.

RF

Zeit

π/2 π/2 π/2
τ τm τ

Abbildung 4.14: Stimuliertes oder 3-Puls Echo.
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Das Experiment verläuft zunächst gleich wie beim
Hahn-Echo. Nach der ersten Evolutionszeit (Dauer
t) ist das System somit im Zustand

r(t) = Â
i
(cos(Dw

(i)
0 t)I(i)

y � sin(Dw

(i)
0 t)I(i)

x ) .

Der zweite p/2-Puls transformiert
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1
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und transformiert damit das System in

r(t+) = Â
i
(cos(Dw

(i)
0 t)I(i)

z � sin(Dw

(i)
0 t)I(i)

x ) .

Während der darauffolgenden Zeit zerfällt die trans-
versale x-Komponente. Ist die Zeit tm lange genug,
tm � T ⇤

2 , ist der Zerfall vollständig und diese Kom-
ponente braucht nicht weiter betrachtet zu werden.
Die z-Komponente hingegen vertauscht mit dem Ha-
miltonoperator und ist somit unabhängig von der
Zeit:

r(t,tm) = Â
i

cos(Dw

(i)
0 t)I(i)

z .

Der dritte p/2-Puls erzeugt daraus wieder transver-
sale Magnetisierung, Iz ! �Iy:

r(t,tm,0) = �Â
i

cos(Dw

(i)
0 t)I(i)

y .

Wir schreiben diesen Zustand als eine Summe
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� 1
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Der erste Term entspricht bis auf den Faktor 1/2
dem Zustand beim Hahn-Echo nach dem Refokus-
sierungspuls. Er entwickelt sich zu einem Echo, wel-
ches zur Zeit t nach dem dritten Puls erscheint. Die
Dauer vom dritten Pulse bis zum Echo ist somit
gleich dem Abstand zwischen dem ersten und dem
zweiten Puls und unabhängig von tm. Dieses Echo
wird als stimuliertes Echo bezeichnet. Der zweite
Term hat die umgekehrte Phase; in diesem Term sind

die Phasen gleich wie wenn die Zeitentwicklung des
Systems während der Zeit zwischen den beiden Pul-
sen angehalten worden wäre und die Dephasierung
jetzt weiter läuft. Im Mittel über das Ensemble ver-
schwindet er deshalb.

In dieser Betrachtungsweise erscheint das stimulier-
te Echo praktisch die gleiche Information zu liefern
wie das Hahn Echo (abgesehen vom Faktor 1/2). Der
wesentliche Unterschied wird erst ersichtlich, wenn
man zusätzlich die Relaxation berücksichtigt: Das
Echo-Signal wird in diesem Fall nicht mit e�2t/T2

gedämpft, sondern mit

sE µ e�2t/T2 e�tM/T1 .

Während der Zeit zwischen den Pulsen wird die In-
formation in der Form longitudinaler Magnetisie-
rung gespeichert, welche mit der Zeitkonstanten T1
zerfällt. Da in vielen Systemen T1 � T2 ist, er-
möglicht dieses Experimente deshalb häufig längere
Messungen. Es wird insbesondere zur Untersuchung
langsamer Bewegungsprozesse verwendet.

4.3 Messung von Relaxationszeiten

Zu den wichtigsten Anwendungen von Mehrpuls-
Experimenten gehört die Bestimmung von Relaxati-
onszeiten. Wir beginnen mit der Messung der trans-
versalen Relaxationszeit T2.

4.3.1 T2 Messung : Hahn-Echo

Im einfachsten Fall reicht es, zur Messung einen
90� Puls zu verwenden, welcher die anfängliche z-
Magnetisierung in die xy-Ebene klappt. Benutzen
wir dazu einen y-Puls, dann zeigt der Vektor der Ge-
samtmagnetisierung zunächst in die x-Richtung des
rotierenden Systems. Wie in Kapitel 3 diskutiert, zer-
fällt die transversale Magnetisierung mit einer Zeit-
konstante T2:

Mx(t) = Mxy(0) cos(Dw0t �j)e�t/T2 .

Diese Zeitkonstante können wir daher im einfach-
sten Fall messen, indem wir die Spannung aufzeich-
nen, welche die Gesamtmagnetisierung in einer Spu-
le induziert (siehe Kapitel 4.1).
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Da die Experimente praktisch immer in nicht perfekt
homogenen Magnetfeldern durchgeführt werden, er-
hält man dadurch eine zusätzliche Dephasierung, für
die man sich in vielen Fällen nicht interessiert. Sol-
che “trivialen”, zeitunabhängigen Inhomogenitäten
lassen sich mit Echo-Experimenten wieder “refokus-
sieren” (siehe Kapitel 4.2.1, Hahn-Echo). Wie dort
gezeigt wurde, ist die Amplitude des Echo-Signals
µ e�2t/T2 , unabhängig von der Larmorfrequenz, und
damit unabhängig von Inhomogenitäten des Magnet-
feldes.

1

Wasser

Si
gn

al

Zeit [s]

T2 = 0,404 s

π/2 π

0 2

Abbildung 4.15: Beispiel einer T2-Messung der Pro-
tonen in Wasser. Der Zerfall des Si-
gnals ist durch T2-Relaxation be-
stimmt.

Man kann dementsprechend den Wert von T2 bestim-
men, indem man eine Reihe von Hahn-Echo Expe-
rimenten durchführt, in denen der Pulsabstand sy-
stematisch inkrementiert wird. In Abb. 4.15 sind als
Beispiel Messdaten von Protonen in H2O gezeigt.
Die Resonanzlinien (Spektren) werden als Funktion
der Messzeit dargestellt, wobei sie um die Amplitu-
de nach oben . Aus den Daten wurde der Wert von T2
zu 0,404 s bestimmt, indem die Signale an die Funk-
tion s(2t) = ae�2t/T2 angefittet wurde.

4.3.2 Carr-Purcell & Meiboom-Gill

In der oben diskutierten Version des Experimentes
muss für jeden Wert der Zeit T ein separates Experi-
ment durchgeführt werden. Es ist jedoch auch mög-
lich, alle Werte in einem einzelnen Experiment zu
messen. Dazu legt man nach dem ersten Echo einen

weiteren 180-Grad Puls an, welcher die Magnetisie-
rung erneut refokussiert. Dieses Vorgehen kann im
Prinzip beliebig oft wiederholt werden, bis das Si-
gnal vollständig zerfallen ist. Diese Vereinfachung
wurde zuerst von Carr und Purcell verwendet [5].
Eine weitere Verbesserung wurde von Meiboom und
Gill eingeführt [20]. Details zu dieser Methode wer-
den im Rahmen des FP (Versuch 49) untersucht.

Abbildung 4.16: Mehrfachechos mit Carr-Purcell-
Meiboom-Gill Methode.

Neben der Verkürzung der Messzeit bietet die
CPMG Methode auch die Möglichkeit, den stö-
renden Einfluss von Diffusionsprozessen zu unter-
drücken: Bewegen sich die Spins (z.B. in einer Flüs-
sigkeit), so funktioniert die Refokussierung nicht
mehr richtig. Da beim CPMG Experiment die Ab-
stände zwischen den Pulsen kürzer sind, ist der Ein-
fluss der Diffusion geringer. Variiert man die Abstän-
de zwischen den Pulsen, kann man die spektrale Zu-
sammensetzung des Rauschens messen [1].

4.3.3 T1-Messung

Um die Spin-Gitter-Relaxationszeit (T1) zu mes-
sen, muss man zunächst Nichtgleichwichtsmagneti-
sierung Mz 6= M0 erzeugen. Die Abweichung vom
Gleichgewicht wird maximal, wenn man zu Beginn
des Experimentes mit einem p-Puls die Gleichge-
wichtsmagnetisierung M0 invertiert. Im Laufe der
Zeit wird sich die longitudinale Magnetisierung, d.h.
Mz(t), wieder in Richtung auf den Gleichgewichts-
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wert +M0 entwickelt. Um den momentanen Wert
von Mz(t) zu ermitteln, legt man einen 2. RF-Puls
an, der die Magnetisierung im rotierenden System
um 90� dreht. Dieser p/2-Puls klappt somit die Ma-
gnetisierung Mz(t) von der z-Achse in die xy- Ebene,
wo sie nachgewiesen werden kann.

Unmittelbar nach dem Inversionspuls beträgt die
Magnetisierung des Systems

~M(0) =

0

@

0
0

�M0

1

A .

Danach nähert es sich wieder dem Gleichgewicht,
wobei der Aufbau der z-Magnetisierung wie

Mz(t) = M0(1�2e�t/T1)

läuft. Die z-Magnetisierung ist nicht direkt messbar.
Sie muss deshalb mit einem Auslesepuls in beob-
achtbare transversale Magnetisierung umgewandelt
werden. Dieser erzeugt daraus

~M(t+) =

0

@

M0(1�2e�t/T1)
0
0

1

A .

Messen wir die x-Komponente des Signals, so erhal-
ten wir somit

s(t) = M0(1�2e�t/T1). (4.2)

Um T1 zu bestimmen führt man deshalb Messungen
mit unterschiedlichem Pulsabstand t durch und passt
die Parameter M0 und T1 an die Messdaten an.

Abb. 4.17 zeigt als Beispiel gemessene Daten einer
Wasserprobe, zusammen mit der gefitteten Funktion
(4.2) für eine Relaxationszeit von T1 =1,098 s.

Die Messung der longitudinalen Relaxationszeit
wird normalerweise vor anderen Messungen durch-
geführt, da sie z.B. angibt, wie rasch Messungen
wiederholt werden können: für die meisten Experi-
mente muss man eine Wartezeit von � 3T1 abwarten,
damit das System wieder nahe zum Gleichgewicht
gelangt. Außerdem werden Messungen der longitu-
dinalen Relaxationszeit häufig verwendet, um Bewe-
gungsprozesse im Material zu untersuchen.

Si
gn

al

-M0

M0

T1 = 1,098 s

Zeit [s]

1 2 3 4 5

Abbildung 4.17: Beispiel für eine T1-Messung.
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