4 Zeitaufgeloste NMR

In diesem Kapitel sollen die grundlegendsten Expe-
rimente der magnetischen Resonanz diskutiert wer-
den.

4.1 FID und Spektrum

4.1.1 Motivation und Vorgehen

Allgemein wird in der magnetischen Resonanz
“zeitaufgelost” gemessen: dabei legt man am zu
messenden System eine kurze, intensive Storung an
und beobachtet anschlieend seine freie Evolution
unter dem Einfluss des ungestorten Hamiltonopera-
tors. Dies ist im Gegensatz zu den meisten iibrigen
Spektroskopien, wo man ein schwaches Storfeld mit
harmonischer Zeitabhingigkeit anlegt und die Ab-
sorption oder Dispersion dieses Feldes im Medium
als Funktion der Frequenz (oder eines anderen Para-
meters) misst. Diese Art des Experimentes wird mit
den Adjektiven

* frequenzaufgelost
* “slow passage”
e cw (=continuous wave)

bezeichnet.

Puls-Anregung

System im
Gleichgewicht

Systemantwort
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Abbildung 4.1: Prinzip eines zeitaufgeldsten Experi-
mentes.

Das frequenzaufgeloste Signal kann aus dem
einfachsten zeitaufgelosten Signal tiber Fourier-

Transformation erhalten werden. Die zeitaufgels-
sten Messungen bieten jedoch gegeniiber den fre-
quenzaufgeldsten Messungen eine Reihe von Vor-
teilen, welche dazu gefiihrt haben, dass heute in der
NMR nur mehr ausschlieBlich zeitaufgelost gemes-
sen wird, in der ESR teilweise, und in zunehmen-
dem Male auch in anderen Spektroskopien. Zu die-
sen Vorteilen gehdren

* hohere Empfindlichkeit

 hoherer Informationsgehalt (z.B. Relaxations-
zeiten)

* Moglichkeit fiir mehrdimensionale Experimen-
te.

Wir betrachten als erstes das Experiment, welches
das konventionelle (cw) Experiment ersetzt. Dafiir
legt man an des System im Gleichgewicht einen ein-
zelnen RF Puls an, misst das daraus resultierende
Signal und erhilt das Spektrum als dessen Fourier-
Transformierte.

4.1.2 Gleichgewichtszustand

Der einfachste Fall ergibt sich, wenn das Spinsystem
aus einer einzelnen Spinspezies I besteht. Der Ha-
miltonoperator kann dann direkt diagonal geschrie-
ben werden, indem wir die z- Achse parallel zum 4u-
Beren Magnetfeld wihlen. Im Laborsystem lautet er

A = —hol, .
Zu Beginn des Experiments ist das System im ther-
mischen Gleichgewicht, d.h. der Dichteoperator ist
o~ ksT
Peq = SpleH/ksT )"

In der NMR gilt allgemein die Hochtemperaturnédhe-
rung

A& < kpT,
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4 Zeitaufgeloste NMR
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Abbildung 4.2: Spinsystem im thermischen Gleich-
gewicht in einem statischen Magnet-
feld. Links: quantenmechanisch ist
der Zustand durch eine (geringe) Po-
pulationsdifferenz zwischen den bei-
den stationiren Zustédnden charakte-
risiert. Rechts: Dies entspricht einer

Magnetisierung parallel zum #dufe-
ren Magnetfeld.

so dass die Exponentialfunktion entwickelt werden
kann als

%AL
 kgT

L

21+1 )-

Peq =

Wir kénnen somit in guter Naherung schreiben

1
T oI+

hay

149
(JrkBT

Peq I).

4.1.3 Gepulste Anregung

Fiir diese Berechnung des Gleichgewichtsdichteope-
rators mussten wir das Laborsystem verwenden, da
das rotierende Koordinatensystem kein Inertialsy-
stem darstellt. Die nun folgenden Rechnungen wer-
den jedoch wiederum im rotierenden Koordinaten-
system durchgefiihrt.

Fiir die Berechnung des Signals nehmen wir an, dass
das System mit resonanter RF Einstrahlung ange-
regt wird, welche im rotierenden Koordinatensystem
parallel zur x-Achse anliegt. Der relevante Hamil-
tonoperator (im rotierenden Koordinatensystem) ist
dann

jﬁn = —wl,.

Die Verdanderung des Spinsystems durch den Puls

hv

X

Abbildung 4.3: RF Einstrahlung im rotierenden Ko-
ordinatensystem. Dadurch kann z.B.
die Magnetisierung von der z- zur y-
Achse gedreht werden.

kann damit geschrieben werden als

e—z’jﬁurp (0)e+iﬁ%r

eifwl pr (O)e_ifwllx
! hio
21+1 kgT

+1,sin(w; 7))].

p(7)

1+ (I;cos(@; )

Maximale transversale Magnetisierung erhélt man
fiir 0,7 = 7/2; man spricht dann von einem idea-
len 90-Grad Puls. Dieser dreht die Magnetisierung
von der z-Achse zur y-Achse:

1

T 2+1

hay

1+ —
[ +kBT

p(0+) ).

Dieser Anfangs - Dichteoperator entwickelt sich un-
ter dem Einfluss des Hamiltonoperators

e—i%tp (O—I—)eﬂ%t
LG

—(1
21+1( +kBT

1 [1+h
21+1 kpT

+ I, sin ayt)].

p(t)
olotl: I, e—ia)otlz)

(I, cos wyt

Wird zusitzlich die Relaxation beriicksichtigt, so er-
hilt man den Ausdruck

1

— 11
21+1[ *

p(t)

hi
—|——w0 (Iycos mot + I, sin wyt)e /T

kpT

2y

kBT Z(l - e_[/Tl )]

+ 4.1)
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4 Zeitaufgeloste NMR

Die transversale Relaxation dimpft die prazedieren-
de Magnetisierung, wihrend die longitudinale Ma-
gnetisierung neu aufgebaut wird.

4.1.4 Detektion

Prézedierende Spins =
rotierende Magnetisierung

Flussénderung
erzeugt in der
Drahtspule eine

Spannung

m ‘
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Abbildung 4.4: Detektion iiber das Faraday’sche
Induktionsgesetz.

Die anschlieBende Detektion misst die zeitliche Ab-
leitung einer Magnetisierungskomponente, indem
die Spannung aufgrund der magnetischen Fluss-
dnderung detektiert wird. Da wir die Spule in x-
Richtung gewihlt haben, ist die zeitliche Anderung
des magnetischen Flusses durch die Spule proportio-
nal zu

s(t)
Hier steht

F=Y1IL
i

fiir die Summe iiber alle Spins.

d

< (1)

Da die zeitliche Anderung der Magnetisierung im
Laborsystem im Wesentlichen durch die Larmorpri-
zession gegeben ist, wird das Signal somit

() = LiR) ~ on(B) = ov LI

Fiir einen Spin ist die MessgroBe somit gerade (/)
und das Signal wird

s(t) = aoSp{p(t)Ly},
wobei wir alle Proportionalitdtskonstanten, wie z.B.
die Induktivitidt der Spule zu eins gesetzt haben. Das
Signal ist somit direkt proportional zur transversalen
Magnetisierung.

4.1.5 Signal

Da

SP{Iny} = Sp{lzly} = Sp{lly} =0

und
1
Sp{LL} = gl(l—i- 1)(21+1)
gilt, und somit fiir einen Spin / = 1/2

Sp{lli} = Sp{liy} = Sp{LL} = 1/2,
konnen wir das Signal als

2
%)

— 7Z/T2
4kgT

s(1) cos(myt)e

schreiben, wobei einige Normierungsfaktoren nicht
beriicksichtigt wurden.

Wir erhalten also eine geddmpfte Oszillation, den
bereits erwihnten FID. Das Spektrum kann dar-
aus durch Fourier-Transformation berechnet werden
(siehe unten).

Ein wesentlicher Aspekt, der sich aus der Berech-
nung ergibt, ist, dass das Signal proportional zu a)g
ist und damit quadratisch mit der Stirke des Magnet-
felds zunimmt. Ein Faktor @y stammt von der Popu-
lationsdifferenz im thermischen Gleichgewicht, die
in der Hochtemperaturnéherung proportional zu @y
ist. Der zweite Faktor stammt von der Detektions-
empfindlichkeit, da das Signal proportional zur zeit-
lichen Anderung des magnetischen Flusses und da-
mit zur Prizessionsfrequenz ist.

Diese Proportionalitit ist ein wesentlicher Grund fiir
den Trend zu hoheren Feldern in der NMR: gegen-
iber den vor 50 Jahren iiblichen Resonanzfrequen-
zen von 60 MHz hat sich inzwischen die Feldstir-
ke verzehnfacht; die Empfindlichkeit ist damit um
einen Faktor 100 gestiegen. Um diesen Empfindlich-
keitsgewinn durch eine Verlingerung der Messzeit
zu kompensieren miisste man mindestens um einen
Faktor 10000 mal langer messen!
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4 Zeitaufgeloste NMR

a, =60 MHz
Messzeit = 3h

B,=14T

s=1

B,=14T
s=100

®, = 600 MHz
Messzeit= 1s
Abbildung 4.5: Unterschiedliche Feldstérken fiir die

NMR und die entsprechenden Emp-
findlichkeiten und Messzeiten.

4.1.6 Berechnung des Spektrums

In diesem einfachen Beispiel kann die Fourier-
Transformation analytisch durchgefiihrt werden und
man erhélt den Ausdruck

_ Lh“’g )
S(@) =\ maT oy
ha)o ]/T2

271: 4kgT 1/T2 +(w—ay)?’

der eine Lorentz-Linie beschreibt. Sie ist zentriert an
der Frequenz @y, und ihre Breite ist gegeben durch
die Zerfallszeit 7>.

Diese Resonanzlinie entspricht gerade der Linien-
form, die wir als stationdre Losung der Blochglei-
chungen im Grenzfall eines schwachen Feldes er-
halten hatten. Es gilt allgemein, dass die Fourier-
transformierte des FID’s das Spektrum des entspre-
chenden cw-Experimentes ergibt (sofern keine Sét-
tigungseffekte auftreten).

Besteht das Spinsystem aus mehreren Spins, welche
nicht aneinander gekoppelt sind, so erhélt man als
Signal eine Summe aus zerfallenden Exponential-
funktionen. Im FID sind diese Beitrige schwierig zu
unterscheiden. Es ist deshalb meist niitzlich, sie zu
Fourier-transformieren. Im resultierenden Spektrum
ist die Trennung wieder relativ einfach ersichtlich.

Ein vollig analoges Verhalten erhélt man, wenn man
verschiedene Uberginge in einem einzelnen Spinsy-
stem diskutiert, wie z.B. bei einem Quadrupolspin.

A=2v=03

A=3v=07
A=1 v—10
_ Zeit |
Summe

Frequenz

Abbildung 4.6: Signal aus 3 Frequenzkomponenten.
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Abbildung 4.7: Frequenz und Amplitude in einem
Spektrum mit mehreren Linien.

Frequenz

Da das Signal durch die Spur des Produktes
seip(t) = Sp{pA} =Y pijAji = Y pPAji
ij

ij
bestimmt wird, kdnnen wir einzelne Signalbeitrige
aus den Matrixelementen von Dichteoperator p und
Observablen A bestimmen. Im typischen Fall dass
diese identisch sind,

p(0)

erhalten wir einzelne Resonanzlinien im Spektrum
direkt aus den Matrixelementen von /,, wobei diese
in der Eigenbasis des Hamiltonoperators ausgewer-
tet werden miissen. Wenn wir das Signal zerlegen in
einzelne Komponenten

_ i;jt
) = Zaije 7
i?j

so ergeben sich daraus im Spektrum die Amplituden
a;; und Frequenzen ;;, welche zu einem Ubergang

:A:Iy’

srip(t

81



4 Zeitaufgeloste NMR

i +» j zwischen stationdren Zustidnden i und j geho-
ren. Frequenz @;; und Amplitude a;; sind gegeben
durch

G-
e 1),

Hier ist (Iy), ; das Matrixelement (i, j) von I, in der
Eigenbasis des Hamiltonoperators.

4.2 Echos

Die bisher betrachteten Experimente, bei denen ein
Signal nach einem einzelnen Radiofrequenzpuls auf-
genommen und Fourier-transformiert wird, ergeben
Informationen, welche weitgehend mit den konven-
tionell (CW = continuous wave = Dauerstrichmes-
sung) aufgenommenen Spektren dquivalent sind. Es
zeigt sich jedoch, dass es in vielen Fillen niitzlich
ist, das System nicht nur mit einem einzelnen, son-
dern mit einer Reihe von Radiofrequenzpulsen an-
zuregen. Man gewinnt dadurch z.B. mehr Informa-
tion oder hohere Auflosung. Wir beginnen mit dem
einfachsten und iltesten Mehrpulsexperiment, dem
Hahn-Echo.

Abbildung 4.8: Erwin Hahn

Es wurde 1950 von Erwin Hahn beschrieben[16].

4.2.1 Das Hahn-Echo

Ein FID wird niemals durch einen einzelnen Spin er-
zeugt. Statt dessen beobachtet man immer ein En-
semble. Das beobachtete Signal stammt von einem
Ensemble von Spins, welches durch einen Dichte-
operator beschrieben wird. Weil nicht alle Spins ge-
nau das gleiche Magnetfeld spiiren, priazedieren die

Abbildung 4.9: Hahn’s Original Echo.

zugehorigen Magnetisierungsvektoren nicht gleich
schnell, und der FID zerfillt. Dieser Zerfall kann
mit Hilfe eines Radiofrequenzpulses riickgingig ge-
macht werden — die Spins werden “refokussiert”.

/2

RF[ H

Abbildung 4.10: Pulssequenz fiir das Hahn-Echo
Experiment.

m
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Zeit

Wie in Abb. 4.10 gezeigt beginnt das Experiment
mit einem (idealen) 90° Puls, welcher die Gleich-
gewichtsmagnetisierung von der z- zur x- Achse des
rotierenden Koordinatensystems dreht. Der resultie-
rende Zustand wird durch den Dichteoperator

p(0) = L1

beschrieben (wir haben hier die iiblichen Vorfak-
toren weggelassen). Anschlieend prizedieren die
Mitglieder des Ensembles mit ihrer individuellen

Resonanzfrequenz Aa)éi). Die entsprechende Zeit-

entwicklung des Dichteoperators ist demnach

_ 10

Z(cos(Aa)(()i)t)

1

+sin(Aa) 1) e !/

p(t)

Wenn wir die y-Magnetisierung messen, erhalten wir
somit ein Signal

Stot = Z<

i

1! o\t e /™.

)t) = %ZCOS(A
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4 Zeitaufgeloste NMR

(

Die Resonanzfrequenzen Aa)oi) der einzelnen Spins
sind nicht exakt identisch, da verschiedene Wechsel-
wirkungen einen Unterschied hervorrufen kdnnen.
Im aktuellen Zusammenhang betrachten wir dazu le-
diglich ein inhomogenes Magnetfeld, welches eine
entsprechende Verteilung der Larmorfrequenzen er-
zeugt. Man erhilt somit einen “Spinfdcher”, dessen
Breite durch das Produkt aus der Zeit ¢ und der Breite
der Verteilung der Resonanzfrequenzen Aa)(gl> gege-
ben ist. Ist dieses Produkt gro3 gegen eins, so sind

die Phasen Aa)éi)t in der xy Ebene gleichmifig ver-

teilt, der Mittelwert der Magnetisierung verschwin-
det.

In Abb. 4.10 ist der Zerfall der transversalen Ma-
gnetisierung gezeigt; der Zerfall der Magnetisierung
nach dem ersten Puls ist durch die Breite der Vertei-
lung der Resonanzfrequenzen im inhomogenen Feld
bestimmt.

~ L

Abbildung 4.11: Maxwell’s Damon und bewegte
Molekiile

Die Dephasierung der Spins kann mit dem Ausein-
anderfliegen von Gasmolekiilen verglichen werden,
wenn ein Gefdl mit komprimiertem Gas gedffnet
wird. Es ist in beiden Fillen prinzipiell denkbar,
aber sehr unwahrscheinlich, dass die Molekiile, resp.
Spins wieder in den Ausgangspunkt zuriickkehren.
Wie von Maxwell portritiert, wére dies auch mog-
lich, wenn ein Damon, welcher die einzelnen Mo-
lekiile (Spins) beobachtet, deren Geschwindigkeiten
(Prazessionsfrequenzen) alle gleichzeitig invertieren
wiirde.

4.2.2 Refokussierung

Im Gegensatz zu einem molekularen Gas, wo kein
Maxwell-Ddmon existiert, welcher die Bewegung
der Molekiile umdrehen kann, ist es im Falle ei-
nes Spinsystems moglich, die Phasen aller Spins zu
invertieren, von e~ 7y ¢80t Dazu muss die
gesamte Magnetisierung mit einem RF Puls in y-
Richtung um 7 rotiert werden. Ein solcher Puls in-

vertiert I, und I, ldsst aber /, invariant:

I efin,'ly —Iy
I, N I
I —I

Das Experiment eignet sich zur Refokussierung von
Wechselwirkungen, die linear in I, sind. Beispiele
hierfiir sind die chemische Verschiebung, die hetero-
nukleare Dipol-Dipolwechselwirkung, sowie Inho-
mogenititen des dusseren Magnetfeldes. Der Hamil-
tonoperator ist 5 = —Awpl,.

Um die Liouville-von-Neumann-Gleichung auszu-
werten, wihlen wir folgende Vorgehensweise:

1. Als Anfangszustand betrachten wir entweder
p(0) = I, oder I, d.h. wir haben vorher einen
(idealen) 90° Puls auf die Gleichgewichtsma-
gnetisierung (Hochtemperaturnidherung!) wir-
ken lassen.

. Wir zerlegen die Zeitentwicklung in Intervalle,
in denen der Hamiltonoperator im rotierenden
Koordinatensystem jeweils konstant ist.

Wir nihern die Hochfrequenzpulse durch o-
Funktionen, d.h. wir vernachlédssigen die an-
sonsten zu beriicksichtigende Zeitentwicklung
wihrend des Pulses. Die entsprechenden Propa-
gatoren sind somit e/?’, resp. ¢/*>, wobei ¢ den
Flipwinkel und x, y die Phase des Pulses darstel-
len.

Wird zu einer Zeit T nach dem Anregungspuls ein
solcher Refokussierungspuls auf das System ange-
legt, so wird der Zustand des Systems danach

Z[cos (Aa)(gi) r)I)(,i)

1

+sin(Ao(! 1) 1)) e T/,

p(t+)
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4 Zeitaufgeloste NMR

Der Zustand nach dem Puls ist somit der gleiche wie
vor dem Puls, auler dass die Phase aller Spins inver-
tiert wurde, AwyT — —AwyT. Dies kann auch als
Zeitumkehr T — —T interpretiert werden. Die Pha-
se ist gleichzeitig der Winkel der Spins gegeniiber
der y-Achse. Wie in Abb. 4.12 gezeigt, nimmt die-
ser Winkel linear mit der Zeit zu, mit der Steigung
Aa)(gi). Die Inversion der Phase, ¢ — — @, entspricht
einer Spiegelung an der Zeitachse (¢ = 0).

n/2

Abbildung 4.12: Inversion der Phasen durch den
Refokussierungspuls. Fiir zwei der
Spins ist exemplarisch dargestellt,
wie sie mit unterschiedlicher Fre-
quenz prizedieren und deshalb un-
terschiedliche Phasen erhalten.

Nach dem Puls lduft die Evolution der Spins wieder
wie vor dem Puls, d.h. die Phase wichst gemif

Z[cos(Aa)éi) (t—

i

—sin(Aay (1 — 7)) 1 ]e= /T2,

p(t+1)

Die Zeit t misst hier die Dauer der freien Prizession
nach dem Refokussierungspuls.

Wenn diese gleich lang wird wie die Dauer zwi-
schen Anregung und Refokussierungspuls, t = T,
verschwinden alle Phasen Aa)éi) (t—T), da sich die
negativen Werte aus der ersten Prizessionszeit gera-
de gegeniiber den positiven aus der zweiten Periode
aufheben, unabhéngig von der Frequenz der einzel-
nen Spins. Die obere Hilfte von Abb. 4.13 zeigt ei-

nige solche Trajektorien. Die untere Hélfte zeigt das

—(T+1)/T>

| IR
Signale der I “ ‘

einzelnen Spins ‘H”“ \

i HW(MM”\”I‘I |
ALAT Y

Gesamtsignal

Zeit

Abbildung 4.13: Bildung des Echos: Zum Zeitpunkt
des Echos sind alle Phasen iden-
tisch (=0).

Gesamtsignal, welches der Summe iiber alle Spins
entspricht. Zum Zeitpunkt ¢t = 27 ist die destruktive
Interferenz aufgehoben, es entsteht “spontan” ein Si-
gnal, ein Echo. Dieses ist gegeniiber dem urspriing-
lichen Signal lediglich um die Dampfung e =27/ re-
duziert. Diese Dampfung ist fiir alle Spins vorhan-
den, auch in einem homogenen Feld, und wird des-
halb als homogener Beitrag zur Relaxation, respek-
tive zur Linienbreite bezeichnet.

4.2.3 Propagator

Als Alternative zu dieser “direkten” Beschreibung
soll hier auch eine Operatoren-Schreibweise dis-
kutiert werden. Diese ist mathematisch etwas an-
spruchsvoller, dafiir eleganter, und sie ldsst sich
leichter verallgemeinern. Man schreibt dafiir die Be-
wegungsgleichung der Dichtematrix (die Liouville-
von-Neumann-Gleichung) als

d .

5P =il p)].
Sie wird fiir einen nicht explizit von der Zeit abhén-
gigen Hamiltonoperator ¢ gelost durch

eI (0)e” T = U)p (U (1)

p(t) =
Der Operator U(t) = e~**", der den Dichteoperator
p (wie auch die Zustandsfunktion W) in der Zeit ent-
wickelt, wird Propagator genannt. Wir bestimmen
den Propagator nach der Zeit t = 2T

p (t) efifftp (O)eiift

p(21) = UQD)p(0)U'(27)
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4 Zeitaufgeloste NMR

und betrachten die Pulssequenz (90°), — 7 —
(180°) 1, — 7 - sozusagen von rechts nach links

U(Z’L’) — eiAa)olzre—inlxeiAa)olzr'
Wir fiigen dahinter den Einheitsoperator e/™xe =/
an:

U(ZT) — e*lAa)olzTe*lﬂlxelAwolzTelﬂlxe*lﬂlx

und vereinfachen die 3 mittleren Terme

—lﬂ'lxelAwolzTelﬂ'lx _ e—lA(UolzT )

e

Dieser ist der inverse Propagator des ersten Terms
und der gesamte Propagator wird

UQ2t) = e '™,
Dies entspricht einer 180°-Rotation um die x-Achse
und ist unabhingig von Aay.

Die anfingliche Dichtematrix nach einem 90° Puls
beliebiger Phase kann als Uberlagerung von I, und
I, geschrieben werden. Wir betrachten die Fille ge-
trennt.

a) p(0) =1
p(21) = e il = .
Insgesamt ist also

p(27) = p(0).

b) p(0) =1,
p(27) = e e = .

Dies entspricht einer Drehung von 7, um +180°. Da-
mit ist

p(27) = —p(0).

Wir hitten das selbe Ergebnis erhalten, wenn wir ei-
ne Drehung um -180° ausgefiihrt hitten, d.h. bei In-
version der Phase des zweiten Pulses.

Den Schritt

e*lﬂ'lxe*lAonzTelﬂlx _ elAa)()IZ‘L'

kann man {iibrigens so interpretieren, dass das Vor-
zeichen des Hamiltonoperators invertiert wird,

e = — ..

Im Mittel hebt sich dann die Wirkung der Operatoren
2, und —7, weg. Deshalb tritt zum Zeitpunkt des
Echos wieder die volle Anfangsmagnetisierung auf.
Wenn wir anstelle des Hamiltonoperators den Propa-
gator U(t) = e~*" betrachten, konnen wir die Vor-
zeichenumkehr mit

—i(=) _ e—i%(—z)

e

auch als eine Zeitumkehr deuten.

Diese Argumente gelten natiirlich nur fiir die sy-
stematische Zeitentwicklung unter der Wirkung von
J¢,. Andere Einfliisse haben wir bis jetzt nicht be-
trachtet. Stochastische Prozesse, etwa molekulare
Bewegungsvorginge in den zu untersuchenden Pro-
ben sind nicht reversibel. Es ist der damit ver-
kniipfte Abfall des Hahn-Echos fiir den man sich
dann eigentlich interessiert, um etwas iiber solche
Bewegungsvorginge zu erfahren. Der Vorteil des
Hahn’schen Spin-Echos liegt darin, dass man sich
um die trivialen Dephasierungen (wen interessiert
schon eine etwaige Inhomogenitit des Magnetfel-
des) nicht zu kiilmmern braucht.

4.2.4 Das stimulierte Echo

Es gibt viele weitere Echo-Experimente, in denen
unterschiedliche Wechselwirkungen “refokussiert”
werden. Die direkteste Erweiterung des Hahn-Echos
ist das stimulierte Echo, welches aus drei 7/2-
Pulsen besteht. Man kann es sich so vorstellen, dass
dabei der m-Puls des Hahn-Echos in zwei 7 /2-Pulse
aufgeteilt wird. Abb. 4.14 zeigt den Ablauf des Ex-
periments.

/2

RFH—‘ T

Abbildung 4.14: Stimuliertes oder 3-Puls Echo.
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4 Zeitaufgeloste NMR

Das Experiment verlduft zunichst gleich wie beim
Hahn-Echo. Nach der ersten Evolutionszeit (Dauer
T) ist das System somit im Zustand

p(7) = Y (cos(an))

1

10

A I(l)

— sin(Aa)(gi) 7)1

).

Der zweite 7 /2-Puls transformiert

L\ itz Iy
I, N I
I 1,

und transformiert damit das System in

p(r+) = ¥ (cos(aa}e)1) — sin(aa) 0)1{") .

1

Wihrend der darauffolgenden Zeit zerfillt die trans-
versale x-Komponente. Ist die Zeit 7, lange genug,
Tn > T, ist der Zerfall vollstindig und diese Kom-
ponente braucht nicht weiter betrachtet zu werden.
Die z-Komponente hingegen vertauscht mit dem Ha-
miltonoperator und ist somit unabhingig von der
Zeit:

p(T,T) = Zcos(Aw(()i) A

).
Der dritte 7/2-Puls erzeugt daraus wieder transver-
sale Magnetisierung, I, — —I:

/0

p(7,%0,0) = =Y cos(aay ).

Wir schreiben diesen Zustand als eine Summe

p(T7 Tm? 0) =
_1 Z [COS(A(L)(i) T)I(l) + Sil’l(A(D(i) T)I(l)
2 L 0 y 0 X
+ cos(Aa)(gi)f)Iy(i)) — sin(Aa)(gi)f)If)]

Der erste Term entspricht bis auf den Faktor 1/2
dem Zustand beim Hahn-Echo nach dem Refokus-
sierungspuls. Er entwickelt sich zu einem Echo, wel-
ches zur Zeit T nach dem dritten Puls erscheint. Die
Dauer vom dritten Pulse bis zum Echo ist somit
gleich dem Abstand zwischen dem ersten und dem
zweiten Puls und unabhéngig von 7,,. Dieses Echo
wird als stimuliertes Echo bezeichnet. Der zweite
Term hat die umgekehrte Phase; in diesem Term sind

die Phasen gleich wie wenn die Zeitentwicklung des
Systems wihrend der Zeit zwischen den beiden Pul-
sen angehalten worden wire und die Dephasierung
jetzt weiter lauft. Im Mittel iiber das Ensemble ver-
schwindet er deshalb.

In dieser Betrachtungsweise erscheint das stimulier-
te Echo praktisch die gleiche Information zu liefern
wie das Hahn Echo (abgesehen vom Faktor 1/2). Der
wesentliche Unterschied wird erst ersichtlich, wenn
man zusitzlich die Relaxation beriicksichtigt: Das
Echo-Signal wird in diesem Fall nicht mit =27/
gedampft, sondern mit

Sp o< e—2r/T2 e—TM/Tl )

Wihrend der Zeit zwischen den Pulsen wird die In-
formation in der Form longitudinaler Magnetisie-
rung gespeichert, welche mit der Zeitkonstanten 73
zerfillt. Da in vielen Systemen 77 > T, ist, er-
moglicht dieses Experimente deshalb hiufig lingere
Messungen. Es wird insbesondere zur Untersuchung
langsamer Bewegungsprozesse verwendet.

4.3 Messung von Relaxationszeiten

Zu den wichtigsten Anwendungen von Mehrpuls-
Experimenten gehort die Bestimmung von Relaxati-
onszeiten. Wir beginnen mit der Messung der trans-
versalen Relaxationszeit 7.

4.3.1 T, Messung : Hahn-Echo

Im einfachsten Fall reicht es, zur Messung einen
90° Puls zu verwenden, welcher die anfingliche z-
Magnetisierung in die xy-Ebene klappt. Benutzen
wir dazu einen y-Puls, dann zeigt der Vektor der Ge-
samtmagnetisierung zunéchst in die x-Richtung des
rotierenden Systems. Wie in Kapitel 3 diskutiert, zer-
fillt die transversale Magnetisierung mit einer Zeit-
konstante 75:

M, (1) = My,(0) cos(Aapr — @) e /™.

Diese Zeitkonstante konnen wir daher im einfach-
sten Fall messen, indem wir die Spannung aufzeich-
nen, welche die Gesamtmagnetisierung in einer Spu-
le induziert (siehe Kapitel 4.1).
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Da die Experimente praktisch immer in nicht perfekt
homogenen Magnetfeldern durchgefiihrt werden, er-
hilt man dadurch eine zusétzliche Dephasierung, fiir
die man sich in vielen Fillen nicht interessiert. Sol-
che “trivialen”, zeitunabhidngigen Inhomogenititen
lassen sich mit Echo-Experimenten wieder “refokus-
sieren” (siehe Kapitel 4.2.1, Hahn-Echo). Wie dort
gezeigt wurde, ist die Amplitude des Echo-Signals
oc ¢~2%/T2 unabhiingig von der Larmorfrequenz, und
damit unabhiingig von Inhomogenitéiten des Magnet-
feldes.

2 m
—e
A

© Wasser
C
ko) T
(V]

T2=0,404s
-

0 1 Zeit[s] 2

Abbildung 4.15: Beispiel einer T,-Messung der Pro-
tonen in Wasser. Der Zerfall des Si-
gnals ist durch 7,-Relaxation be-
stimmt.

Man kann dementsprechend den Wert von 7; bestim-
men, indem man eine Reihe von Hahn-Echo Expe-
rimenten durchfiihrt, in denen der Pulsabstand sy-
stematisch inkrementiert wird. In Abb. 4.15 sind als
Beispiel Messdaten von Protonen in HyO gezeigt.
Die Resonanzlinien (Spektren) werden als Funktion
der Messzeit dargestellt, wobei sie um die Amplitu-
de nach oben . Aus den Daten wurde der Wert von 75
zu 0,404 s bestimmt, indem die Signale an die Funk-
tion 5(27) = ae~*/™ angefittet wurde.

4.3.2 Carr-Purcell & Meiboom-Gill

In der oben diskutierten Version des Experimentes
muss fiir jeden Wert der Zeit T ein separates Experi-
ment durchgefiihrt werden. Es ist jedoch auch mog-
lich, alle Werte in einem einzelnen Experiment zu
messen. Dazu legt man nach dem ersten Echo einen

weiteren 180-Grad Puls an, welcher die Magnetisie-
rung erneut refokussiert. Dieses Vorgehen kann im
Prinzip beliebig oft wiederholt werden, bis das Si-
gnal vollstindig zerfallen ist. Diese Vereinfachung
wurde zuerst von Carr und Purcell verwendet [5].
Eine weitere Verbesserung wurde von Meiboom und
Gill eingefiihrt [20]. Details zu dieser Methode wer-
den im Rahmen des FP (Versuch 49) untersucht.

%, 180, 180° 180% 180% 180°
[ | | %
exp(-t/TF)

exp(=t/Typ)

Carr-Purcell-Meiboom-Gill
(90°)- [ £- (180°) - 7 - Echa -],

Abbildung 4.16: Mehrfachechos mit Carr-Purcell-
Meiboom-Gill Methode.

Neben der Verkiirzung der Messzeit bietet die
CPMG Methode auch die Moglichkeit, den sto-
renden Einfluss von Diffusionsprozessen zu unter-
driicken: Bewegen sich die Spins (z.B. in einer Fliis-
sigkeit), so funktioniert die Refokussierung nicht
mehr richtig. Da beim CPMG Experiment die Ab-
stande zwischen den Pulsen kiirzer sind, ist der Ein-
fluss der Diffusion geringer. Variiert man die Abstén-
de zwischen den Pulsen, kann man die spektrale Zu-
sammensetzung des Rauschens messen [1].

4.3.3 T;-Messung

Um die Spin-Gitter-Relaxationszeit (77) zu mes-
sen, muss man zunichst Nichtgleichwichtsmagneti-
sierung M, # M, erzeugen. Die Abweichung vom
Gleichgewicht wird maximal, wenn man zu Beginn
des Experimentes mit einem 7m-Puls die Gleichge-
wichtsmagnetisierung M, invertiert. Im Laufe der
Zeit wird sich die longitudinale Magnetisierung, d.h.
M_(t), wieder in Richtung auf den Gleichgewichts-
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wert +M, entwickelt. Um den momentanen Wert
von M,(t) zu ermitteln, legt man einen 2. RF-Puls
an, der die Magnetisierung im rotierenden System
um 90° dreht. Dieser 7 /2-Puls klappt somit die Ma-
gnetisierung M. (¢) von der z-Achse in die xy- Ebene,
wo sie nachgewiesen werden kann.

Unmittelbar nach dem Inversionspuls betrigt die
Magnetisierung des Systems

—M,

Danach néhert es sich wieder dem Gleichgewicht,
wobei der Aufbau der z-Magnetisierung wie

M. (1) = My(1—2¢7"/T)

lauft. Die z-Magnetisierung ist nicht direkt messbar.
Sie muss deshalb mit einem Auslesepuls in beob-
achtbare transversale Magnetisierung umgewandelt
werden. Dieser erzeugt daraus

My(1—2e71/Ti)
M(t+) = 0
0

Messen wir die x-Komponente des Signals, so erhal-
ten wir somit

s(t) = Mo(1 =27/, (4.2)

Um 7} zu bestimmen fiithrt man deshalb Messungen
mit unterschiedlichem Pulsabstand ¢ durch und passt
die Parameter My und 7] an die Messdaten an.

Abb. 4.17 zeigt als Beispiel gemessene Daten einer
Wasserprobe, zusammen mit der gefitteten Funktion
(4.2) fiir eine Relaxationszeit von 77 =1,098 s.

Die Messung der longitudinalen Relaxationszeit
wird normalerweise vor anderen Messungen durch-
gefithrt, da sie z.B. angibt, wie rasch Messungen
wiederholt werden konnen: fiir die meisten Experi-
mente muss man eine Wartezeit von > 3 71 abwarten,
damit das System wieder nahe zum Gleichgewicht
gelangt. AuBerdem werden Messungen der longitu-
dinalen Relaxationszeit hiufig verwendet, um Bewe-
gungsprozesse im Material zu untersuchen.

Mo
T1=1,098 s
©
c
2 Zeit [s]
m T T T T T
1 2 3 4 5
-Mo

Abbildung 4.17: Beispiel fiir eine T1-Messung.
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