
3 Dynamik von Spinsystemen

3.1 Evolution der Spins im
Magnetfeld

3.1.1 Drehimpuls und Drehmoment

Wenn wir die Bewegung eines Spins im Magnetfeld
betrachten, so müssen wir zunächst den Einfluss des
Magnetfeldes auf den assoziierten magnetischen Di-
pol berechnen.

Abbildung 3.1: Das Drehmoment ~T wirkt auf den
Drehimpuls~I, welcher an einen ma-
gnetischen Dipol gekoppelt ist, der
sich im Magnetfeld ~B befindet.

Die Energie des Dipols ist kleiner, wenn er paral-
lel zum Feld orientiert und größer bei antiparalleler
Orientierung. Deshalb wirkt auf den Dipol ein Dreh-
moment

~T =~
µ ⇥~B .

Wir verwenden jetzt die Proportionalität zwischen
dem Drehimpuls ~L und dem magnetischen Moment
~
µ = g

~L,

~T = g

~L⇥~B = �g

~B⇥~L .

Das Drehmoment (engl.: Torque) ist bekanntlich de-
finiert als die zeitliche Ableitung des Drehimpulses,

~T =
d~L
dt

.

Damit erhalten wir die Bewegungsgleichung für den
Drehimpuls bzw. den Spin~I =~L/h̄ in einem äußeren

Magnetfeld:

d
dt

h̄~I = �g

~B⇥ h̄~I = ~
wL ⇥ h̄~I .
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Abbildung 3.2: Evolution des Spin- / Magnetisie-
rungsvektors im Magnetfeld.

Offenbar ist die zeitliche Ableitung des Spins zu je-
der Zeit senkrecht zum Spinvektor selber und zur
Richtung des Magnetfeldes. Er führt deshalb ei-
ne Präzessionsbewegung um das Magnetfeld durch.
Diese Bewegung eines Drehimpulses in einem Ma-
gnetfeld wird als Larmorpräzession bezeichnet und
die Größe

~
wL = �g

~B

als Larmorfrequenz. Der Vektor ~
wL ist nach dieser

Definition entgegen dem Feld ~B ausgerichtet. Wir
werden jedoch im Folgenden meistens das Vorzei-
chen nicht beachten und ~

wL||~B setzen und damit der
gängigen Konvention folgen.

In einem Experiment beobachtet man meistens nicht
einen einzelnen Dipol, sondern immer ein Ensemble
von Dipolen. Man mittelt dabei über die in der Probe
enthaltenen Dipole, wobei die relevante Größe die
bereits eingeführte Magnetisierung ist:

~M =
1
V Â

i
~
µi =

g h̄
V Â

i

~Ii . (3.1)
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3 Dynamik von Spinsystemen

Die Bewegungsgleichung für die Magnetisierung
kann direkt aus der Bewegungsgleichung für die Di-
pole übernommen werden. Ausgehend von

d~I
dt

= ~
wL ⇥~I

ersetzt man auf beiden Seiten den Drehimpuls durch
den magnetischen Dipol ~

µ = g h̄~I, wobei das gyro-
magnetische Verhältnis eliminiert werden kann, und
erhält

d~µ
dt

= ~
wL ⇥~

µ .

Anschließend führt man wiederum auf beiden Seiten
die Mittelung über das Volumen gemäß Gleichung
(3.1) durch und erhält die identische Gleichung für
die Magnetisierung:

d ~M
dt

= ~
wL ⇥ ~M . (3.2)

Wir werden diese Identität für die Bewegungsglei-
chungen von Drehimpuls, Spin, Dipol und Magne-
tisierung im Folgenden verwenden und jeweils ein-
fach von der Größe sprechen, welche für das vorlie-
gende Problem am besten geeignet scheint.

3.1.2 Larmorpräzession

Für den üblichen Fall, dass das Magnetfeld paral-
lel zur z-Achse ausgerichtet ist, ~B = (0,0,B0), wird
~
wL = (0,0,wL). Damit kann man die Bewegungs-
gleichung in Komponentenform schreiben als

d
dt
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Die zwei gekoppelten Bewegungsgleichungen für
die transversalen Komponenten besitzen die allge-
meine Lösung

Mx(t) = Mxy(0)cos(wLt �j)

My(t) = Mxy(0)sin(wLt �j) ,

wobei die Parameter Amplitude Mxy und Phase j

durch die Anfangsbedingungen bestimmt werden.
Die z-Komponente ist konstant,

Mz(t) = Mz(0) .

Abbildung 3.3: Larmorpräzession der Magnetisie-
rung.

Dies bedeutet, dass der Spin in eine Präzessionsbe-
wegung um die Richtung des Magnetfeldes gezwun-
gen wird. Dies mag zunächst wenig intuitiv erschei-
nen, man hätte vielleicht eher eine Bewegung des
Dipols in Richtung des Feldes erwartet, wie bei einer
Magnetnadel. Der Unterschied ist darauf zurückzu-
führen, dass das magnetische Moment des Elektrons
oder Kerns an einen Drehimpuls gekoppelt ist. Bei
Drehimpulsen ist bekannt, dass sie einer Kraft seit-
lich ausweichen. Dies führt z.B. zur Präzessionsbe-
wegung eines Kreisels um die Vertikale, wenn sei-
ne Rotationsachse im Schwerefeld nicht senkrecht
steht.

In Anlehnung an die Theorie der Schwingungen und
Wellen wird diese Gleichung auch kompakter ge-
schrieben, mit Hilfe der komplexen Schreibweise

M± = Mx ± iMy .

Für diese Größen erhalten wir die Bewegungsglei-
chungen

d
dt

M± =
d
dt

(Mx ± iMy) = ±wL(�My ± iMx)

= ±iwLM±.
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3 Dynamik von Spinsystemen

Somit sind die zirkularen Komponenten M± Eigen-
funktionen der Bewegung. Ihre zeitliche Entwick-
lung kann geschrieben werden als

M±(t) = M±(0)e±iwLt .

Diese Linearkombinationen entsprechen einer Ma-
gnetisierung, welche im Uhrzeigersinn, resp. gegen
den Uhrzeigersinn um die z-Achse rotiert.

3.1.3 Radiofrequenzfeld

Übergänge zwischen Spinzuständen können spon-
tan oder induziert stattfinden. Die spontane Emissi-
on durch die Kopplung an das Strahlungsfeld ist je-
doch im Radiofrequenz (RF)-Bereich extrem gering:
Die Zeit, bis ein Spinsystem durch spontane Emissi-
on ins Gleichgewicht gelangt, ist länger als das Al-
ter des Universums! Spontane Emission braucht des-
halb in der Praxis nicht berücksichtigt werden.

Um induzierte Übergänge anzuregen, muss ein ma-
gnetisches Wechselfeld angelegt werden, dessen
Frequenz w in der Nähe der Larmorfrequenz wL

liegt.

B0 B1

Abbildung 3.4: Radiofrequenzfeld senkrecht zum
statischen Magnetfeld.

Man verwendet dafür eine Spule, welche senkrecht
zum statischen Magnetfeld orientiert ist und legt eine
Wechselspannung mit der entsprechenden Frequenz
w an. Der resultierende Wechselstrom erzeugt einen
Beitrag zum äußeren Magnetfeld, der mit der Fre-
quenz w oszilliert. Wir wählen die x-Achse in Rich-
tung der Spulenachse, so dass das RF-Feld geschrie-
ben werden kann als

~B1(t) = 2B1 cos(wt)
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Wir werden dieses zusätzliche Magnetfeld jedoch
nicht unmittelbar in die Bewegungsgleichung ein-
führen, da diese damit zeitabhängig würde und ana-
lytisch nicht lösbar wäre.

Abbildung 3.5: Ein linear polarisiertes RF-Feld
kann als Summe von 2 zirku-
lar polarisierten Feldern beschrieben
werden.

Dieses linear polarisierte RF-Feld kann auch ge-
schrieben werden als die Superposition von zwei ro-
tierenden RF-Feldern:

~B1(t) = B1
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Die beiden Komponenten stellen entgegengesetzt ro-
tierende Felder gleicher Amplitude dar. Es zeigt sich,
dass in der Praxis nur eine dieser beiden Komponen-
ten berücksichtigt werden muss, und zwar diejenige,
welche sich in der gleichen Richtung bewegt wie die
Spins im Magnetfeld.

3.1.4 Rotierendes Koordinatensystem

Diese Unterscheidung zwischen der wesentlichen
und der unwesentlichen Komponente kann man ein-
facher verstehen, wenn man sich in ein Koordinaten-
system setzt, welches sich mit der rotierenden Kom-
ponente des RF-Feldes um die z-Achse dreht.

Der Übergang in dieses Koordinatensystem ist durch
die Transformation

0
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Abbildung 3.6: Rotierendes Koordinatensystem re-
lativ zum Laborsystem.

definiert. In Vektorschreibweise kann dies auch ge-
schrieben werden als

~r r = R(t)~r ,

wobei R(t) die zeitabhängige Transformationsmatrix
darstellt.

Damit werden die zirkularen Komponenten der Ma-
gnetisierung wie folgt transformiert:

Mr
±(t) = ML

±(0)e±i(�w)t .

Die zirkularen Komponenten verhalten sich unter
dieser Transformation wesentlich einfacher, da sie
Eigenfunktionen der Rotation darstellen:

Mr
±(t) = Mr

±(0)e±i(wL�w)t .

Offenbar ist die Rotationsgeschwindigkeit dieser zir-
kularen Komponenten geringer geworden. Im reso-
nanten Fall, d.h. wenn wL = w , verschwindet die
Zeitabhängigkeit, Mr

±(t) = Mr
±(0). Dies entspricht

dem Fall, dass die Rotationsgeschwindigkeit des Ko-
ordinatensystems gleich der Rotationsgeschwindig-
keit des Spins ist.

3.1.5 RF-Feld im rotierenden
Koordinatensystem

Die Transformation wird einfach für die zirkular
polarisierten Komponenten. Diejenige Komponente,
welche im Laborsystem gegen den Uhrzeigersinn ro-
tiert

~B1(t) = B1

0

@

cos(wt)
sin(wt)

0

1

A ,

ergibt im rotierenden Koordinatensystem

~Br
1(t) =

B1

0

@

cos2(wt)+ sin2(wt)
�sin(wt)cos(wt)+ sin(wt)cos(wt)

0

1

A

= B1

0

@

1
0
0

1

A .

Sie ist somit zeitunabhängig. Für die entgegenge-
setzte Komponente jedoch wird

~Br
2(t) =

B1

0

@

cos2(wt)� sin2(wt)
�sin(wt)cos(wt)� sin(wt)cos(wt)

0

1

A

= B1

0
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�sin(2wt)

0

1

A .

Insgesant ist also das RF-Feld im rotierenden Koor-
dinatensystem

~Br
1(t) = B1
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Abbildung 3.7: Komponenten der RF Feldes im ro-
tierenden Koordinatensystem.

Während die beiden zirkularen Komponenten im La-
borsystem gleichwertig sind, wird durch den Über-
gang ins rotierende Koordinatensystem die eine
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3 Dynamik von Spinsystemen

Komponente statisch, während die andere mit der
doppelten Geschwindigkeit rotiert, wie in Abb. 3.7
dargestellt. Die Unterscheidung liegt in der Rotati-
onsrichtung beim Übergang ins rotierende Koordi-
natensystem.

Wie man durch zeitabhängige Störungsrechnung
zeigen kann, wird die zeitliche Entwicklung des Sy-
stems durch diejenige Komponente dominiert, wel-
che im rotierenden Koordinatensystem statisch, also
nicht zeitabhängig ist. Wir werden die gegenläufige
Komponente, welche im rotierenden Koordinatensy-
stem mit 2w oszilliert, deshalb nicht mehr weiter be-
rücksichtigen. Diese Näherung wird auch in ande-
ren Zusammenhängen verwendet und meist mit dem
englischen Ausdruck “rotating wave approximation”
bezeichnet.

3.1.6 Transformation der
Bewegungsgleichung

Die Bewegungsgleichung muss entsprechend ange-
passt werden. Wir berechnen zunächst die zeitliche
Ableitung für die zirkularen Komponenten

d
dt

Mr
±(t) =

d
dt

Mr
±(0)e±i(wL�w)t

= ±i(wL �w)Mr
±(t) .

Somit wird die Präzessionsgeschwindigkeit der Ma-
gnetisierung im rotierenden Koordinatensystem um
die Radiofrequenz reduziert. Dies ist natürlich auch
das, was wir aufgrund der Koordinatentransformati-
on erwarten.

Da die Rotation (=Larmorpräzession) um die z-
Achse durch das Magnetfeld bewirkt wird, scheint
es, als sei das Magnetfeld kleiner geworden. Das
effektive Magnetfeld im rotierenden Koordinatensy-
stem beträgt noch

B0
0 = B0 � w

g

,

d.h. es ist um den Betrag w/g kleiner geworden.
Dieser Effekt, dass eine Rotation durch ein virtuel-
les Magnetfeld beschrieben werden kann, resp. ein
Magnetfeld eine Rotation erzeugt, wird als gyroma-
gnetischer Effekt bezeichnet. Er führt z.B. dazu, dass

man durch schnelle Rotation eines Eisenstücks darin
eine Magnetisierung erzeugen kann.

In vielen Fällen ist es einfacher, die Feldstärke nicht
mehr in Tesla, sondern in Frequenzeinheiten zu mes-
sen. Die z-Komponente des Magnetfeldes beträgt im
rotierenden Koordinatensystem nicht mehr wL, son-
dern

Dw = wL �w

und kann somit positiv, negativ oder null sein.

3.1.7 Bewegungsgleichung mit RF-Feld

Unter Berücksichtigung des Radiofrequenzfeldes
wird das gesamte Feld im rotierenden Koordinaten-
system in Frequenzeinheiten

~
we f f =

0

@

w1
0

Dw

1

A , (3.3)

wobei w1 = �gB1 die Stärke des Radiofrequenzfel-
des darstellt, welches im rotierenden Koordinatensy-
stem statisch erscheint.

Abbildung 3.8: Effektives Feld im rotierenden Koor-
dinatensystem.

Der Feldvektor liegt somit in der xz-Ebene unter ei-
nem Winkel

q = tan�1 w1

Dw

von der z-Achse. Die Stärke dieses Feldes ist

we f f =
q

Dw

2 +w

2
1 .
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3 Dynamik von Spinsystemen

Für dieses zeitunabhängige effektive Magnetfeld
lässt sich die Dynamik analytisch lösen. Die Bewe-
gungsgleichung für die Magnetisierung ~M ist wie-
derum (3.2), wobei ~

wL durch das effektive Magnet-
feld ~

we f f ersetzt werden muss:

d ~M
dt

= ~
we f f ⇥ ~M.

Für das vorliegende effektive Feld (3.3) entspricht
dies in Komponenten-Schreibweise

dMx

dt
= �Dw My

dMy

dt
= Dw Mx � w1Mz (3.4)

dMz

dt
= w1 My ,

oder, in Matrixschreibweise,

d
dt
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1
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Hier handelt es sich wieder um eine Bewegungsglei-
chung für eine Präzession, wobei die Rotationsachse
um den Winkel q von der z-Achse in die xz-Ebene
gedreht wurde.

3.1.8 Lösung der Bewegungsgleichung

Die allgemeine Lösung lautet somit

~M(t) = a

0

@

sinq

0
cosq

1

A

+ b

0

@

cosq

0
�sinq

1

Acos(we f f t +j)

+ b

0

@

0
1
0

1

Asin(we f f t +j) ,

wobei die Amplituden a und b sowie die Phase j

durch die Anfangsbedingungen bestimmt werden.
Der erste Vektor stellt die Komponente in Richtung
des effektiven Feldes dar, die zweite und dritte Kom-
ponente stehen senkrecht dazu und beschreiben eine
Komponente, die um das effektive Feld rotiert.

Diese Lösung basiert auf Bewegungsgleichungen,
welche nur eine der beiden rotierenden Komponen-
ten des Magnetfeldes berücksichtigen.

0

1

Mz Näherung
exakt

Zeit

Abbildung 3.9: Vergleich der exakten Lösung der
Bewegungsgleichung mit der Nähe-
rungslösung im rotierenden Koor-
dinatensystem. Die Parameter sind
so gewählt, dass die Abweichungen
sichtbar werden; unter realistischen
Bedingungen sind die Unterschiede
kaum sichtbar.

Man macht dadurch einen kleinen Fehler, der aber
auf die Langzeitentwicklung des Systems nur einen
geringen Einfluss hat. Abb. 3.9 zeigt die zeitliche
Entwicklung der Magnetisierung. Einmal wurden
dafür direkt die zeitabhängigen Bewegungsgleichun-
gen numerisch integriert. Für die Abbildung wurden
dabei Parameter verwendet, welche den Unterschied
gegenüber einer realistischen Situation stark vergrö-
ßern. Das zweite Mal wurde die Näherungsform be-
nutzt, welche die gegenläufige zirkulare Komponen-
te nicht berücksichtigt.

Es gibt zwei Unterschiede zwischen der exakten und
der genäherten Form: die genäherte Form enthält
keine Anteile, die mit der doppelten Larmorfrequenz
oszillieren und die niedrige Frequenz ist gegenüber
Dw leicht verschoben. Beide Effekte sind bei reali-
stischen Parametern sehr viel kleiner als hier gezeigt.
Die Verschiebung der Resonanzfrequenz, die qua-
dratisch vom Frequenzverhältnis abhängt, ist jedoch
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unter geeigneten Bedingungen messbar und wird als
Bloch-Siegert-Verschiebung bezeichnet. Im Folgen-
den soll jedoch immer die Näherung verwendet wer-
den und diese geringen Abweichungen werden nicht
weiter behandelt.

3.1.9 Spezialfälle

Es lohnt sich, einige Spezialfälle zu betrachten.
Die Larmorpräzession im rotierenden Koordinaten-
system geschieht immer um das effektive Feld ~

we f f ,
welches durch die Vektorsumme des RF-Feldes w1
mit dem Verstimmungsfeld Dw in z-Richtung gebil-
det wird. Verschwindet eine dieser beiden Kompo-
nenten, so geschieht die Präzession um die andere
Koordinatenachse.

freie Präzession resonante Anregung

a) b) c)

S
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y
z
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x
y
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Abbildung 3.10: Lösung der Bewegungsgleichung:
Präzessionsbewegung des Spins für
den Fall der freien Präzession
(links), der resonanten Anregung
(rechts) und den allgemeinen Fall
(Mitte).

Den einfachsten Fall erhalten wir, wenn das RF Feld
verschwindet, also bei der freien Präzession (Bild
3.10 a). Der andere Extremfall ist derjenige der re-
sonanten Einstrahlung, Dw = 0, mit einer entlang
der x-Achse orientierten Spule. In diesem Fall ge-
schieht die Präzession um die x-Achse (Bild 3.10 c).
Die Präzessionsgeschwindigkeit ist in diesem Fall
w1. Die Magnetisierung wird mit der Kreisfrequenz
w1 zwischen den Zuständen " und # ausgetauscht.
Dieser Prozess wurde zuerst von Rabi in Molekular-
strahlen beobachtet [20]. w1 wird deshalb als Rabi-
Frequenz bezeichnet. Die Form des Kegels ist ab-
hängig von den Anfangsbedingungen.

3.1.10 Resonante Anregung

Bei den meisten Experimenten ist das System zu Be-
ginn im thermischen Gleichgewicht. Es besteht dann
eine Magnetisierung mit Betrag M0, welche parallel
zum Magnetfeld ausgerichtet ist,

~M0 = ~M(0) = M0
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@
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0
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1

A .

Wird dieser Zustand mit einem resonanten RF-Feld
angeregt, so beginnt die Magnetisierung um das ef-
fektive Feld zu präzedieren. Die Bewegung erfolgt
somit auf einem Großkreis der Kugel mit Radius M0.
Der einfachste Fall entspricht der Einstrahlung eines
RF-Feldes entlang der x-Achse. Im rotierenden Sy-
stem vereinfachen sich die Bewegungsgleichungen
(3.4) dann zu

dMx

dt
= 0

dMy

dt
= �w1Mz

dMz

dt
= w1 My ,

was eine einfache Rotationsbewegung (Rabi-
Präzession) in der yz-Ebene beschreibt:

Mx(t) = 0
My(t) = �M0 sin(w1t)

Mz(t) = M0 cos(w1t) .

Strahlt man nur für eine zeitlich begrenzte Dauer
tPuls ein, dann kann man den Drehwinkel j = w1tPuls
einstellen, den der Magnetisierungsvektor nach dem
Puls mit der z-Achse einschließt:

j = w1tPuls = �gB1tPuls .

Man kann z.B. j = p/2, d.h. eine Pulslänge tPuls =
p/(2w1) wählen und so die Magnetisierung in die
y-Richtung des rotierenden Systems drehen. Mit ei-
nem solchen p/2- oder 90�-Puls kann man also eine
transversale Magnetisierung (d.h. ~M ? ~B) erzeugen.
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Wählt man die Pulsdauer doppelt so lang, d.h.
strahlt man einen p-Puls ein, dann kann man die z-
Magnetisierung invertieren. Diese Magnetisierungs-
zustände, also z.B. ~M||y und ~M||� z, sind nach Ab-
schalten des RF-Feldes im rotierenden System (und
~M||� z sogar im Laborsystem) zeitlich stabil, solan-
ge wir keine Relaxationseffekte (! Kap. 3.2) be-
trachten.

Abbildung 3.11: Bewegung des Magnetisierungs-
vektors im Laborsystem.

Betrachtet man die z.B. zu einem p-Puls korrespon-
dierende Bewegung der Magnetisierung im Labor-
system, so muss diese Präzessionsbewegung um das
effektive Feld der Larmorpräzession überlagert wer-
den. Die resultierende Bewegung kann, vom Labor-
system aus betrachtet, als Spirale auf der Einheitsku-
gel dargestellt werden, wie in Abb. 3.11 gezeigt.

3.2 Relaxation

3.2.1 Phänomenologie

Es ist physikalisch unplausibel, dass die Präzessions-
bewegung der Spins um das äußere Magnetfeld be-
liebig lange weiterläuft.

Wir wissen auch experimentell, dass in einem Mate-
rial, das sich längere Zeit in einem Magnetfeld befin-
det, eine Magnetisierung entsteht, die parallel zum
Feld ausgerichtet ist. Dies wird von unserem bis-
herigen Modell nicht richtig vorausgesagt. Um ein
realistischeres Modell zu erhalten, müssen wir zu-
sätzliche Mechanismen betrachten, welche die Ma-
gnetisierung in Richtung auf die Gleichgewichtslage
~M||~B treiben. Analog dauert es eine gewisse Zeit bis

Zeit

M0
M(t)

B0
B(t)

Abbildung 3.12: Aufbau und Zerfall der Magnetisie-
rung beim Ein- und Ausschalten ei-
nes Magnetfeldes.

eine ursprünglich vorhandene Kernmagnetisierung,
nach Entnahme der Probe aus einem Magnetfeld, ab-
geklungen ist, wie in Abb. 3.12 skizziert. Man fasst
diese Phänomene unter dem Namen Relaxation zu-
sammen.

Eine Untersuchung der Relaxation ist aus zwei
Gründen wichtig: Zum einen ist sie notwendig,
um die beobachtete Spindynamik zu verstehen und
die Durchführung von Experimenten zu optimieren.
Zum anderen liefert die Messung von Relaxations-
raten oft interessante Informationen über die Um-
gebung des Systems, insbesondere über molekula-
re Bewegungsprozesse. In der bildgebenden NMR
(MRI) werden Relaxationsprozesse als Kontrastme-
chanismen verwendet, z.B. um Tumore zu erkennen.

3.2.2 Longitudinale Relaxation

Es ist sinnvoll, bei der Betrachtung der Relaxation
die Komponenten der Magnetisierung parallel und
senkrecht zum Magnetfeld getrennt zu diskutieren.
Ein wesentlicher Unterschied zwischen den beiden
liegt in der Tatsache, dass die Energie des Systems
von der z-Komponente, also der Komponente par-
allel zum Magnetfeld, abhängt, aber nicht von den
Komponenten senkrecht dazu. Eine Änderung der
Komponente parallel zum Feld beinhaltet deshalb
einen Austausch von Energie zwischen dem System
und seiner Umgebung.

Abb. 3.13 zeigt schematisch die mikroskopischen
Prozesse, welche bei der longitudinalen Relaxati-
on ablaufen: In einem Ensemble von Spins, wel-
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Abbildung 3.13: Relaxation der Populationen.

ches sich nicht im thermischen Gleichgewicht befin-
det, ändern einzelne Spins ihre Orientierung, bis der
Gleichgewichtszustand erreicht ist.

Makroskopisch betrifft dies die Komponente der
Magnetisierung parallel zum Magnetfeld, welche
durch die Larmorpräzession nicht beeinflusst wird.
Im Gleichgewicht ist ihr Betrag ist proportional zur
Stärke des Feldes,

~Meq = ~M0 =

0

@

0
0

M0

1

A ; M0 = cB0 ,

wobei wir die übliche Orientierung des B-Feldes vor-
ausgesetzt haben. Die Proportionalitätskonstante c
ist nach Curie gegeben durch die Temperatur T , die
Dipolstärke µ und die Dichte N der magnetischen
Dipole:

c = N
µ

2

3kBT
= N (g h̄)2 I(I +1)

3kBT
.

Diese Form kann leicht aus dem Boltzmann Gesetz,
d.h. aus der Maximierung der freien Energie herge-
leitet werden.

M0

Zeit

Abbildung 3.14: Zeitabhängigkeit der longitudina-
len Magnetisierung.

In einfachen Fällen findet man, dass die Magneti-
sierung exponentiell auf den Gleichgewichtswert zu-

strebt, wie in Abb. 3.14 dargestellt

Mz(t) = M0 +(Mz(0)�M0)e�t/T1 .

Hier ist M0 der Gleichgewichtswert der Magneti-
sierung und T1 die Zeitkonstante, mit der das Sy-
stem diesem Gleichgewicht zustrebt. Die exponen-
tielle Zeitabhängigkeit ist zunächst ein experimen-
teller Befund. Für einen Spin 1/2 kann man sie auch
herleiten, wenn man annimmt, dass die Umgebung
einer Rauschquelle ohne Gedächtnis entspricht. Dies
ist in den meisten Fällen eine sehr gute Näherung.

Die Zeitkonstante T1 wird als longitudinale Relaxa-
tionszeit oder Spin-Gitter Relaxationszeit bezeich-
net. Der letztere Name bezieht sich darauf, dass bei
diesem Relaxationsprozess Energie zwischen dem
Spinsystem und der Umgebung ausgetauscht wird,
welche aus historischen Gründen als Gitter bezeich-
net wird.

3.2.3 Dynamik im Gleichgewicht

Die zugrunde liegende Physik wollen wir nun für
den einfachen Fall eines Spin-1/2 Systems etwas ge-
nauer betrachten. Hier es gibt zwei Energieniveaus
E± = ⌥h̄w m, die wir mit "+" und "-" kennzeich-
nen. Hierbei ist m die magnetische Quantenzahl mit
|m|=1/2. Die Niveaus sind mit N+ (unteres Niveau)
bzw. N� (oberes Niveau) magnetischen Momenten
des Betrags

µ = gL = g h̄I

besetzt. Für die z-Komponente der Magnetisierung
gilt also

Mz = g h̄
N+ �N�

2
.

Wenn Übergänge zwischen diesen beiden Zuständen
stattfinden, ist es sinnvoll, eine Bilanzgleichung zu
formulieren. Die beiden Populationen ändern sich
auf Grund von Übergängen um

dN+

dt
= +N�W# �N+W" = �dN�

dt
dN�
dt

= �N�W# +N+W" . (3.5)
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m = -1/2

m = +1/2

W↑ W↓

E- = +ℏ/2

E+ = -ℏ/2

Abbildung 3.15: Übergänge zwischen den beiden
Spinzuständen.

Hierbei bezeichnen W" und W# die Raten, d.h.
die Übergangswahrscheinlichkeit pro Zeiteinheit,
zwischen den beiden Zuständen. Im thermischen
Gleichgewicht ändern sich die Besetzungszahlen
nicht, d.h.

dN+

dt
= �dN�

dt
imGleichgewicht

= 0 .

3.2.4 Detailliertes Gleichgewicht

Diese Bedingung liefert das so genannte Prinzip vom
detaillierten Gleichgewicht (detailed balance) für die
durch die Null gekennzeichneten Gleichgewichtsbe-
setzungen N0

±: Aus der Gleichung

dN+

dt
= +N�W# �N+W"

imGleichgewicht
= 0

folgt

N0
+

N0
�

=
W#
W"

.

Die Besetzungswahrscheinlichkeiten sind proportio-
nal zu den entsprechenden Boltzmann-Faktoren, die
wir für kleine Argumente, d.h. in der Hochtempera-
turnäherung, entwickeln können

N0
+

N0
�

=
e�E+/kBT

e�E�/kBT ⇡ 1�E+/kBT
1�E�/kBT

=
1+ h̄wL/2kBT
1� h̄wL/2kBT

=
1+a
1�a

=
W#
W"

.

Hier haben wir die dimensionslose Größe a =
h̄wL/2kBT definiert, welche dem halben Verhältnis

zwischen magnetischer und thermischer Energie ent-
spricht. Wir können nun die Besetzungszahldiffe-
renz im Gleichgewicht N0

+ �N0
� = n0 mit dem Fak-

tor a und der Gesamtzahl der Spins

N+ +N� = N = N0
+ +N0

�

in Verbindung setzen. Denn aus

N0
+

N0
�

=
1+a
1�a

folgt

N0
+(1�a) = N0

�(1+a)

oder

N0
+ �N0

� = n0 = a(N0
+ +N0

�) = aN.

In der NMR sind die typischen relativen Besetzungs-
zahldifferenzen

n0

N
= a =

N0
+ �N0

�
N0

+ +N0
�

⌧ 1 ,

d.h. sehr klein. Dies rechtfertigt die obige, linea-
re Entwicklung der Exponentialfunktion. Für wL =
2p 600 MHz (der Larmorfrequenz von Protonen in
einem Feld von 14 T) und T = 300 K (dies entspricht
einer Frequenz von wT = kBT/h̄ = 30000 GHz) ist
|a| = 5 ·10�5. Das bedeutet, dass typischerweise nur
ca. ein Hunderttausendstel aller Spins in der Gesamt-
Kernspin-Magnetisierung sichtbar werden.

Die Addition der Bilanzgleichungen (3.5) liefert

d
dt

(N+ +N�) = 0 ,

d.h. die Gesamtzahl der Spins ist konstant, wie es
sein sollte. Die Differenz ergibt

d
dt

(N+ �N�) = 2(N�W# �N+W")

= 2W0[N�(1+a)�N+(1�a)] ,

wobei W0 die mittlere Rate darstellt, W0 = (W# +
W")/2. Mit der Abkürzung n = N+ �N� erhält man

d
dt

n(t) = 2W0[�n(t)+aN].
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Durch Multiplikation dieser Gleichung mit g h̄/2 fin-
det man schließlich

d
dt

Mz =
M0 �Mz

T1
,

wobei M0 die Gleichgewichtsmagnetisierung
bezeichnet. Offenbar gilt für die Spin-Gitter-
Relaxationszeit 1/T1 = 2W0.

Die Differential-Gleichungen werden durch den ex-
ponentiellen Ansatz

n(t) = Ae�2W0t +B ,

bzw. den entsprechenden Ausdruck für die Magne-
tisierung gelöst, wobei die Konstanten A und B aus
den Anfangsbedingungen zu bestimmen sind.

Die Raten W",# und damit die Spin-Gitter-
Relaxationszeit T1 werden durch eine zeitabhängige
Wechselwirkung V (t) zwischen System und Umge-
bung vermittelt. Für solche Prozesse kann man die
Zahl der Übergänge von Zustand a nach b aus der
zeitabhängigen Störungstheorie herleiten (Fermi’s
Goldene Regel)

Pa!b =
2p

h̄
|hb|V |ai|2 d (Ea �Eb � h̄w) .

Hier bezeichnet V die Störung und die Deltafunk-
tion zeigt an, dass die Störung eine Frequenzkom-
ponente bei der Übergangsenergie enthalten muss.
Die relevanten Prozesse, welche die Übergänge trei-
ben, sind meist Bewegungsprozesse von Atomen
oder Molekülen, oder von magnetischen Verunreini-
gungen. ”Spontane” Übergänge, d.h. Übergänge auf
Grund der Kopplung an die Vakuum-Fluktuationen
des elektromagnetischen Feldes, spielen bei der ma-
gnetischen Resonanz praktisch keine Rolle, da die
entsprechenden Raten sehr gering sind.

3.2.5 Transversale Komponenten

Die transversalen Komponenten würden aufgrund
der Larmorpräzession dauerhaft um das Magnetfeld
rotieren. Experimentell findet man, dass diese Rota-
tionsbewegung gedämpft ist, d.h. die transversalen

Komponenten zerfallen, wobei der Zerfall in einfa-
chen Fällen wiederum exponentiell abläuft. Anstel-
le der oben angegeben Lösung für die transversalen
Komponenten findet man deshalb ein Verhalten, das
als Rotation mit zerfallender Amplitude beschrieben
werden kann:

Mx(t) = Mxy(0) cos(Dwt �j)e�t/T2

My(t) = Mxy(0) sin(Dwt �j)e�t/T2 .

Die Zeitkonstante T2 wird hierbei als transversale
Relaxationszeit bezeichnet. Der Name Spin-Spin-
Relaxationszeit, welcher ebenfalls gebräuchlich ist,
kann in diesem Zusammenhang höchstens so moti-
viert werden, dass dafür keine Kopplung ans Gitter
nötig ist.

y

x

~Mxy

Mxy � e�t/T2

Zeit

Mx

Abbildung 3.16: Evolution der transversalen Ma-
gnetisierung (links) und der x-
Komponente (rechts).

Die aus der transversalen Relaxation resultierende
Bewegung des Vektors der Gesamtmagnetisierung
ist offenbar eine Spirale, resp. für die einzelnen
Komponenten eine gedämpfte Oszillation. Die trans-
versale Relaxation kann wiederum in den Bewe-
gungsgleichungen durch einen Zusatzterm berück-
sichtigt werden. Die entsprechenden Gleichungen
lauten dann im rotierenden Koordinatensystem (aber
immer noch ohne RF-Feld)

d
dt

Mx = �Dw My � 1
T2

Mx

d
dt

My = Dw Mx � 1
T2

My .

Solange wir das RF Feld nicht berücksichtigen, sind
die transversalen Komponenten unabhängig von der
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longitudinalen Komponente. Wir können damit die
Evolution des Systems direkt aus der Evolution der
einzelnen Komponenten zusammensetzen.

Abbildung 3.17: Evolution der Magnetisierung un-
ter Berücksichtigung von Larmor-
präzession und Relaxation.

Wie in Abb. 3.17 gezeigt, entspricht die dreidimen-
sionale Lösung der Bewegungsgleichung einer spi-
ralförmigen Bewegung in Richtung auf die Gleich-
gewichtsmagnetisierung M0, welche parallel zur z-
Achse ausgerichtet ist.

Wenn wir jetzt auch das RF-Feld berücksichtigen,
erhalten wir die vollständigen Bewegungsgleichun-
gen für die Magnetisierung

d
dt

0

@

Mx

My

Mz

1

A =
1
T1

0

@

0
0

M0

1

A+

0

@

�1/T2 �Dw0
Dw0 �1/T2 �w1

w1 �1/T1

1

A

0

@

Mx

My

Mz

1

A .

Diese Gleichungen werden als Bloch-Gleichungen
bezeichnet, nach Felix Bloch, einem der Entdecker
der NMR, der sie zuerst verwendete, um die Ex-
perimente zu erklären [1]. Sie werden inzwischen
nicht nur in der magnetischen Resonanz verwen-
det, da Feynman, Vernon und Helwarth gezeigt ha-
ben, dass ein beliebiges quantenmechanisches Zwei-
niveausystem sich wie ein Spin-1/2 verhält und des-
halb durch die Blochgleichungen beschrieben wer-
den kann [10].

3.3 Stationäre Lösung der
Bloch-Gleichungen

Die stationären Lösungen der Bloch-Gleichungen
können relativ einfach gefunden werden, z.B. indem
man jeweils eine Gleichung

d
dt

Mx = �Dw0 My � 1
T2

Mx = 0

nach einer Variablen auflöst, z. B.

Mx = �Dw0T2 My ,

und damit Mx in der zweiten Zeile eliminiert.

Als Resultat erhält man die folgende stationäre Lö-
sung:
0

@

Mx

My

Mz

1

A

•

=
M0

1
T 2

2
+Dw

2
0 +w

2
1

T1
T2

0

B

@

Dw0w1
w1/T2

1
T 2

2
+Dw

2
0

1

C

A

.

Wir betrachten nun zunächst die Komponenten ein-
zeln. Es zeigt sich dabei, dass die Relaxationszei-
ten die Form und Amplitude der Resonanzlinien als
Funktion der Frequenz bestimmen. Dies bietet prin-
zipiell die Möglichkeit, T1 und T2 auch in einem
CW-Experiment, also ohne die Einstrahlung von RF-
Pulsen zu bestimmen.

3.3.1 Longitudinale Magnetisierung

Die z-Komponente wird

Mz• = M0

1
T 2

2
+Dw

2
0

1
T 2

2
+Dw

2
0 +w

2
1

T1
T2

= M0

✓

1� w

2
1 T1T2

1+Dw

2
0 T 2

2 +w

2
1 T1T2

◆

.(3.6)

Wir betrachten folgende Grenzfälle:

• verschwindende RF-Feldstärke, w1 ! 0,

Mz• = M0 ,

d.h. wir erhalten den ungestörten Fall (System im
Gleichgewicht) zurück.
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• große RF-Feldstärke, w1 ! •: in diesem Fall
können wir bei den Termen im Nenner die bei-
den, die nicht von der RF Feldstärke abhängen,
vernachlässigen und erhalten

Mz• = M0(1�1) = 0 ,

d.h. die longitudinale Magnetisierung verschwindet
weil beide Zustände gleich stark bevölkert sind. Man
bezeichnet dies als Sättigung.

Verstimmungsabhängigkeit:

-5

T1 = T2 = 1

0.5

1.0

0 5

Abbildung 3.18: Verstsimmungsabhängigkeit der
longitudinalen Magnetisierung für
unterschiedlich starke Einstrah-
lung.

Die z-Magnetisierung wird minimal für resonante
Einstrahlung, d.h. Dw = 0. Der Wert der verblei-
benden Magnetisierung hängt ab von der Stärke der
RF-Einstrahlung, d.h. von w1. Abb. 3.18 zeigt die
Abhängigkeit von der Resonanzverstimmung Dw0
für die folgenden Parameter: T2 = 1,T1 = 1,w1 =
1.0 und 3.0. Die Verstimmungsabhängigkeit dieser
Funktion gibt uns somit die Form der Absorptionsli-
nie. Man erkennt leicht, dass die Funktion ihr Mini-
mum erreicht, wenn die Verstimmung verschwindet,
Dw0 = 0.

Die Breite der Resonanzlinie kann aus der obigen
Form bestimmt werden: Die Abweichung von 1
nimmt auf die Hälfte ab, wenn Dw

2
0 T 2

2 gleich groß
wird wie die beiden andern Terme. Dies bedeu-
tet, dass für niedrige RF-Leistung, w

2
1 T1T2 ⌧ 1 die

Halbwertsbreite gerade durch die transversale Rela-
xationszeit gegeben ist, Dw1/2 = 1/T2. Für höhere
Leistungen erhält man eine Leistungsverbreiterung:

Dw1/2 =

s

1
T 2

2
+w

2
1

T1
T2

.

3.3.2 Absorbierte Leistung

Die Energiedichte der Magnetisierung ist gegeben
durch

Emag

V
= �~M ·~B = �MzB0 .

Somit ist die z-Komponente der Magnetisierung ein
Maß für die Energiedichte des Systems.

Wie in Kapitel 3.2.2 diskutiert, zerfällt die Differenz
Mz �M0 mit der Zeitkonstante T1, indem sie Energie
mit dem Gitter austauscht. Im stationären Fall muss
die Energiedichte konstant sein und das Spinsystem
gleich viel Energie vom RF Feld aufnehmen, wie es
an das Gitter abgibt. Somit ist die absorbierte Lei-
stung pro Volumen

P
V

=
d
dt

Emag

V
= B0

M0 �Mz

T1

=
B0M0

T1

✓

w

2
1 T1T2

1+Dw

2
0 T 2

2 +w

2
1 T1T2

◆

,

wobei für Mz der stationäre Wert (3.6) eingesetzt
wurde. Der Term in Klammern verschwindet für
kleine RF Leistungen (w1 ⌧ T1T2) oder große Ver-
stimmungen Dw

2
0 � T 2

2 , d.h. es wird dann keine
Energie mehr absorbiert. Der Maximalbetrag für
große Leistungen

w

2
1 T1T2 � 1, Dw

2
0 T 2

2

ist offenbar

Pmax

V
=

B0M0

T1
.

Unter diesen Bedingungen verschwindet Mz, d.h.
beide Spinzustände sind gleich besetzt. Da eine wei-
tere Erhöhung der eingestrahlten Leistung nicht zu
einer höheren Absorption führt, sagt man, das Sy-
stem sei vollständig gesättigt.
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3.3.3 Absorption und Dispersion

Die transversalen Komponenten der Magnetisierung
beschreiben Absorption und Dispersion des Medi-
ums. Ihr Einfluss auf das detektierte Signal kann di-
rekt aus dem Faraday’schen Induktionsgesetz herge-
leitet werden. Demnach ist die Spannung über einer
Leiterschlaufe

V (t) =
dF
dt

=
d
dt

Z

Spule
~B ·~ndA ,

wobei F den magnetischen Fluss durch die Schleife
darstellt, ~B die Flussdichte und~n die Flächennormale
auf die Ebene der Leiterschleife.

Im vorliegenden Fall ist die Schleife gegeben durch
die Windungen der RF Spule. Die transversalen
Komponenten der Magnetisierung liefern einen Bei-
trag zur magnetischen Induktion

~B = µ0(~H + ~M) .

Der Fluss durch die Spule wird bestimmt durch die
x-Komponente, d.h.

~Bx = µ0(Hx +Mx) .

Da Hx nicht zeitabhängig ist, verschwindet sein Bei-
trag. Der Beitrag der Magnetisierung zur Spannung
ist proportional zu

V (t) µ dMx

dt
= �w0My .

Da diese Messung im Laborsystem durchgeführt
wird, müssen die Magnetisierungskomponenten im
Laborsystem eingesetzt werden, während die oben
berechneten stationären Lösungen der Blochglei-
chung sich auf das rotierende Koordinatensystem be-
ziehen. Die Transformation ins Laborsystem ergibt,
dass beide transversalen Komponenten der statio-
nären Lösung zum Signal beitragen:

V (t) µ �w0ML
y

= �w0 [My• cos(wt) + Mx• sin(wt)] .

Normalerweise führt man einen phasenempfindli-
chen Nachweis durch, d.h. man misst die Kompo-
nenten µ cos(wt) und µ sin(wt) separat. Damit er-
hält man die sog. Quadraturkomponenten Mx• und
My•, welche den stationären Werten im rotierenden
Koordinatensystem entsprechen.

3.3.4 Transversale Komponenten

Die transversale Magnetisierung kann (jetzt wie-
der im rotierenden Koordinatensystem) geschrieben
werden als

✓

Mx

My

◆

•

=
M0

1+Dw

2
0 T 2

2 +w

2
1 T1T2

✓

Dw0w1T 2
2

w1T2

◆

.

In dieser Darstellung sind alle Terme (abgesehen
vom Vorfaktor M0) dimensionslos. Für große Ver-
stimmung Dw ! ±• geht der Gleichgewichtswert
! 0, da dann der Verstimmungsterm im Nenner
dominiert. Allerdings fällt die x-Komponente mit
1/Dw0 ab, die y-Komponente mit 1/Dw

2
0 .

Am stärksten unterscheiden sich die beiden Terme in
ihrem Verhalten in der Nähe der Resonanz (Dw0 =
0): Die x-Komponente, welche im Zähler proportio-
nal zu Dw0 ist, weist auf der Resonanz einen Null-
durchgang auf, während die y-Komponente hier ihr
Maximum erreicht.

0

1

0 3-3

yM xM

zM

Verstimmung

Abbildung 3.19: Stationäre Werte der Magnetisie-
rung als Funktion der Verstim-
mung.

Die beiden Kurven zeigen offenbar qualitativ das
gleiche Verhalten wie im Falle des klassischen har-
monischen Oszillators. Für kleine Intensitäten,

w

2
1 ⌧

⇢

1
T1T2

, Dw

2
0

T2

T1

�

,

resultiert das bekannte Lorentzprofil mit der Brei-
te 1/T2. Der dritte Term im Nenner beschreibt den
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Effekt einer Leistungsverbreiterung, also einer Ver-
breiterung der Resonanzlinie bei hohen Leistungen.
Abb. 3.19 zeigt die Abhängigkeit aller drei Kompo-
nenten der Magnetisierung von der normierten Ver-
stimmung d = Dw0T2.

3.4 Grundlagen der
quantenmechanischen
Beschreibung

Bisher haben wir alle Wechselwirkungen klassisch
beschrieben, wobei wir die Tatsache, dass die un-
tersuchten Systeme in Wirklichkeit stationäre Zu-
stände besitzen, als zusätzliche ad-hoc Annahme
berücksichtigt haben. Um wirklich Signale berech-
nen zu können, ist es jedoch notwendig, zu einer
echt quantenmechanischen Beschreibung überzuge-
hen. Dies ist glücklicherweise für Spinsysteme be-
sonders einfach: Sie können exakt in einem endlich-
dimensionalen Hilbertraum beschrieben werden, im
Gegensatz zu allen Systemen mit räumlichen Frei-
heitsgraden, welche prinzipiell immer unendlich vie-
le Zustände besitzen.

3.4.1 Vorgehen

Wie bei anderen spektroskopischen Experimenten
wird auch in der NMR oder ESR ein Spektrum da-
durch bestimmt, dass unterschiedliche Frequenzen
der elektromagnetischen Strahlung unterschiedlich
stark absorbiert werden.

Lage der Resonanzlinien wird 
durch Abstände zwischen 
Energieniveaus bestimmtB

A

Abbildung 3.20: Resonanzbedingung und Absorpti-
onslinie.

Für ein gegebenes quantenmechanisches System
hängt die Stärke einer Absorption davon ab, ob die
Resonanzbedingung DE = hn erfüllt ist, wie groß
die Populationsdifferenz zwischen den entsprechen-
den Zuständen ist, und wie stark die Übergangsma-
trixelemente für den entsprechenden Übergang sind.
Neben der Lage und Höhe der Resonanzlinien inter-
essiert auch die Breite, welche durch Relaxations-
prozesse bestimmt wird.

a
ab
c

Quantenmechanischer 
Formalismus

 

Spinsystem

Wechsel-
wirkungen

Spektrum: Frequenzen, 
Amplituden, Phasen, 

Linienbreiten

Abbildung 3.21: Berechnung des Spektrums aus den
Parametern des Spinsystems.

Zu jedem gemessenen Spektrum möchte man die zu-
gehörigen Parameter des mikroskopischen Systems
bestimmen können. Während dies für geübte Spek-
troskopiker in vielen Fällen möglich ist, gibt es kein
systematisches Vorgehen dazu. Ein solches existiert
nur für den umgekehrten Weg, d.h. für die Berech-
nung des Spektrums aus den bekannten Parametern
des Spinsystems.

Dazu muss man zunächst den Hamiltonoperator auf-
stellen und diagonalisieren. Aus den Eigenwerten,
d.h. den Energien, erhält man die Resonanzfrequen-
zen als Differenzen zwischen den Energien der be-
teiligten Zustände. Für die Berechnung der Amplitu-
den muss der transversale Spinoperator (z.B. I+) in
die Eigenbasis transformiert werden. Die Quadrate
der Matrixelemente dieses Operators bestimmen in
einfachen Fällen die Amplituden. Die Linienbreiten
erhält man aus dem Relaxationsverhalten, welches
zuvor nur kurz phänomenologisch diskutiert wurde.

Für die Berechnung des Spektrums verfolgen wir
hier direkt das Experiment, d.h. wir berechnen das
erwartete Signal, indem wir den Zustand des Sy-
stems und die Observable bestimmen, mit der die
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Präparation freie Evolution, Messung
ρ(0)

Zeit

ρ(t), Ix / Iy / Iz
S

ig
na

l

Abbildung 3.22: Schema zur Berechnung des Spek-
trums.

Messung durchgeführt wird. Wir diskutieren hier le-
diglich zeitaufgelöste Experimente, d.h. Experimen-
te, bei denen ein Spinsystem durch einen RF-Puls
angeregt wird und während der anschließenden frei-
en Evolution das Signal als Funktion der Zeit gemes-
sen wird (! Abb. 3.22). Das Spektrum erhält man
anschließend durch Fourier-Transformation. Dies ist
ein wesentlicher Unterschied zu praktisch allen üb-
rigen spektroskopischen Methoden, bei denen meist
die so genannte CW (= continuous wave) oder fre-
quenzaufgelöste Methode verwendet wird: In diesen
Fällen wird das System durch eine monochromati-
sche Strahlungsquelle angeregt und die Absorption
oder Dispersion für diese Strahlung gemessen, wenn
die Frequenz langsam variiert wird. Die zeitaufgelö-
ste Methode ist demgegenüber deutlich flexibler und
leistungsfähiger. Sie kann so eingestellt werden, dass
sie die gleichen Informationen liefert wie die fre-
quenzaufgelöste Messung, allerdings in wesentlich
kürzerer Zeit. Sie kann aber auch dazu genutzt wer-
den, um Informationen zu erhalten, welche über die
CW-Methode nicht zugänglich sind, wie z.B. bei der
mehrdimensionalen Spektroskopie (! Kap. 5).

3.4.2 Spin-Zustände

Die quantenmechanische Beschreibung der NMR ist
deshalb besonders einfach, weil wir es für alle prak-
tischen Belange mit einem endlich dimensionalen
Hilbertraum zu tun haben. Im einfachsten Fall eines
Spin-1/2-Systems wird dieser durch 2 Basiszustän-

de aufgespannt, die wir je nach Kontext mit

|+ 1
2i

|� 1
2i oder |ai

|b i oder | "i
| #i

bezeichnen werden. Wir wollen dabei immer ortho-
normierte Basiszustände wählen, um damit beliebige
Überlagerungszustände

|yi = c1| "i+ c2| #i

beziehungsweise den adjungierten Zustand

hy| = c⇤
1h" |+ c⇤

2h# |

mit den komplexen Koeffizienten c1 und c2 darzu-
stellen. Diese geben Wahrscheinlichkeitsamplituden
an, sodass

|c1|2 + |c2|2 = 1

gilt. Oft ist es zweckmässig, die Zustandsfunktionen
als Vektoren auszudrücken,

|Yi ! Y = c1

✓

1
0

◆

+ c2

✓

0
1

◆

=

✓

c1
c2

◆

.

Die Adjungierte ist

hY| ! Y† = (c⇤
1,c

⇤
2).

Für Spins I > 1/2 schreibt man die Spin-Zustände
oft explizit mit Hilfe der Spinquantenzahl I und der
magnetischen Quantenzahl m, d.h. des Eigenwertes
von Iz, als |YI,mi = |I,mi. Es gilt

Î2|I,mi = I(I +1)|I,mi
Îz|I,mi = m|I,mi,

d.h. die |I,mi sind simultan Eigenfunktionen von Î2

und Îz. Diese Operatoren können somit gleichzeitig
scharf gemessen werden. Dies kann man durch den
Kommutator

[Î2, Îz] = 0

ausdrücken. Im Folgenden, werden die Operatoren
nicht mehr gesondert durch ein ^ gekennzeichnet.
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3.4.3 Spin-Operatoren

Wie für andere Drehimpulse gelten auch für den
Spin die Vertauschungsregeln

[Ix, Iy] = i Iz

und cycl. Es kann somit immer nur eine Komponen-
te des Spins einen dispersionsfreien Wert annehmen.
Wie wir das gerade getan haben, wählt man dafür im
Allgemeinen die z-Komponente und schreibt für den
Eigenwert des Iz-Operators m. Somit gilt, dass m die
Werte von �I bis +I annehmen kann.

Für einen Spin 1/2 sind die Matrixdarstellungen der
einzelnen Operatoren

Ix =

✓

1/2
1/2

◆

, Iy =

✓

�i/2
i/2

◆

,

Iz =

✓

1/2
�1/2

◆

.

In vielen Fällen ist es auch nützlich, die Operatoren

I+ = Ix + i Iy =

✓

0 1
0 0

◆

und

I� = Ix � i Iy =

✓

0 0
1 0

◆

zu verwenden. Offenbar ist

Ix =
1
2
(I+ + I�) Iy =

i
2
(�I+ + I�) .

Gelegentlich werden diese Operatoren auch anders
normiert, z.B.

Ix =
1p
2
(I+ + I�) .

Spin-Operatoren für Spins I � 1/2 können mit Hilfe
der Formeln

hYI,m+1|I+|YI,mi =
p

I(I +1)�m(m+1)

hYI,m�1|I�|YI,mi =
p

I(I +1)�m(m�1)

hYI,m|Iz|YI,mi = m

berechnet werden. Alle übrigen Matrixelemente ver-
schwinden.

Als einfaches Beispiel berechnen wir explizit die
Matrixelemente des Leiteroperators I+ für einen
Spin 1/2:

I+ =

✓

h+1
2 |I+|+ 1

2i h+ 1
2 |I+|� 1

2i
h�1

2 |I+|+ 1
2i h� 1

2 |I+|� 1
2i

◆

=

✓

0 1
0 0

◆

.

3.4.4 Beschreibung eines Ensembles

In vielen Experimenten, die in diesem Zusammen-
hang interessieren, besteht das physikalische System
aus einem Ensemble von Atomen, welches nicht mit
Hilfe einer Wellenfunktion oder Zustandsfunktion
beschrieben werden kann. Als einfaches Beispiel be-
trachten wir drei Spins, von denen sich zwei im Zu-
stand " und einer im Zustand # befinden. Man könnte
versucht sein, diesen Zustand mit der Funktion

|Yi =
1p
5
(2| "i+ | #i) =

1p
5

✓

2
1

◆

zu beschreiben. Um zu überprüfen, ob dies sinnvoll
ist, berechnen wir die x-Komponente des Spins für
diesen Zustand:

hIxi = hY|Ix|Yi

=
1
5

✓

2
1

◆

1
2

✓

0 1
1 0

◆✓

2
1

◆�

=
1

10
(2+2) =

2
5

.

Das Resultat dieser Rechnung ist somit, dass in die-
sem System eine Magnetisierung in x-Richtung vor-
liegt. Dies entspricht jedoch nicht der Beobachtung:
im oben genannten System ist keine Richtung (außer
der z-Richtung) bevorzugt, die transversale Magne-
tisierung verschwindet.

Dieser Widerspruch zeigt, dass unsere Beschreibung
des Zustandes mit obiger Funktion falsch ist. Kor-
rekterweise müsste man für jeden einzelnen Spin die
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entsprechende Komponente ausrechnen und die Re-
sultate addieren:

hIxi = Â
i
hIx,ii

=
1
2



2
✓

1
0

◆

·
✓

0 1
1 0

◆✓

1
0

◆

+

✓

0
1

◆

·
✓

0 1
1 0

◆✓

0
1

◆�

=
1
2



2
✓

1
0

◆

·
✓

0
1

◆

+

✓

0
1

◆

·
✓

1
0

◆�

= 0.

Der Schrödinger-Formalismus der Quantenmecha-
nik erlaubt es nicht, direkt Ensembles von gleich-
artigen Quantensystemen zu behandeln. Die mei-
sten Experimente werden aber an Ensembles von
näherungsweise identischen Systemen durchgeführt.
Man ist dann gezwungen, für jeden einzelnen Spin
die Rechnung separat durchzuführen. Dies ist bei 3
Spins möglich, nicht aber bei 1023. Man muss für
diese Fälle deshalb einen anderen Formalismus ver-
wenden.

3.4.5 Definition des Dichteoperators

Ein geeigneter Formalismus [9] verwendet den
Dichteoperator. Er kann definiert werden mit Hilfe
der bra-ket Schreibweise

r = |YihY| .

Für einen einzelnen Spin im Zustand

|Yi = a| "i + b| #i

wird der Dichteoperator

r = (a| "i + b| #i)(a⇤h" | + b⇤h# |) .

In der Basis | "i, | #i wird z.B. das Matrixelement
r""

r"" = h" |r| "i
= h" |(a| "i + b| #i)(a⇤h" | + b⇤h# |)| "i
= (ah" | "i + bh" | #i)(a⇤h" | "i + b⇤h" | #i)
= |a|2 ,

wobei die Orthonormalität der Zustände benutzt
wurde, h" | #i = h# | "i = 0. Analog erhalten wir

r## = h# |r| #i ... = |b|2

r"# = h" |r| #i
= h" |(a| "i + b| #i)(a⇤h" | + b⇤h# |)| #i
= ab⇤

r#" = h# |r| "i = a⇤b ,

oder in Matrixschreibweise

r =

✓

|a|2 ab⇤

a⇤b |b|2
◆

.

Allgemein sind die Elemente des Dichteoperators ei-
nes reinen Zustandes gegeben durch

ri j = cic⇤
j ,

wobei ci die Entwicklungskoeffizienten darstellen.
Daraus folgt auch

ri j = r

⇤
ji ,

d.h. es handelt sich um einen hermiteschen (=selbst-
adjungierten) Operator.

3.4.6 Eigenschaften, Beispiele

Ein einzelner Spin im " Zustand wird demnach
durch den Dichteoperator

r" =

✓

1 0
0 0

◆

beschrieben, und einer im # Zustand durch

r# =

✓

0 0
0 1

◆

.

Für ein Einzelsystem besteht somit eine 1:1 Bezie-
hung zwischen der Zustandsfunktion und dem Dich-
teoperator.

Superpositionszustände (=Überlagerungszustände)
zeichnen sich dadurch aus, dass die zugehörigen
Dichteoperatoren nicht nur Diagonalelemente ent-
halten, sondern auch Außerdiagonalelemente.
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1
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1

Abbildung 3.23: Beschreibung einer Spinpolarisati-
on || x und || y.

Wir betrachten als Beispiel den Zustand

Ya =
1p
2
(| "i+ | #i) =

1p
2

✓

1
1

◆

,

welcher ein Eigenzustand des Spinoperators Ix ist.
Der entsprechende Dichteoperator ist

ra =

✓

|a|2 ab⇤

ba⇤ |b|2
◆

=
1
2

✓

1 1
1 1

◆

.

Gemäß der Definition sind die Diagonalelemente
rii = |ci|2 die Besetzungswahrscheinlichkeiten für
die entsprechenden Zustände. Die Summe

Sp(r) = Â
i

rii = 1

muss deshalb 1 ergeben - dies entspricht der Normie-
rung der quantenmechanischen Zustände.

Die Dichtematrix

ra =
1
2

1+ Ix

entspricht physikalisch einem Spin, der in x-
Richtung orientiert ist. Analog erhält man für den in
y-Richtung polarisierten Spin, also einem Zustand

Yb =
1p
2
(| "i+ i| #i)

den Dichteoperator

rb =
1
2

✓

1 �i
i 1

◆

=
1
2

1+ Iy.

3.4.7 Dichteoperator für Ensembles

Der wichtigste Unterschied zwischen dem Dichte-
operator und einer Zustandsfunktion besteht darin,
dass der Dichteoperator eines Ensembles einfach
durch die Summe der Dichteoperatoren der einzel-
nen Teilsysteme gegeben ist,

rEnsemble =
1
N

N

Â
i=1

ri .

Für das aus drei Spins bestehende Ensemble in un-
serem Beispiel wird der Dichteoperator

r =
1
3

3

Â
i=1

ri

=
1
3

✓

1 0
0 0

◆

+

✓

1 0
0 0

◆

+

✓

0 0
0 1

◆�

=
1
3

✓

2 0
0 1

◆

.

Die Diagonalelemente stellen direkt die Populatio-
nen der entsprechenden Zustände dar. Für das vor-
liegende Ensemble finden wir somit 2/3 der Spins
im " Zustand, 1/3 im # Zustand.

Die Nebendiagonalelemente verschwinden in unse-
rem Beispiel. Ist dies nicht der Fall, dann liegt ei-
ne phasenkohärente Überlagerung von Zuständen
vor. Diese Superpositionszustände werden oft ein-
fach als "Kohärenz" bezeichnet. Diese Sprechweise
sieht man ein, indem man die Phasen j der Zustände
explizit ausschreibt

Y = |a|eij1 | "i + |b|eij2 | #i

und damit den Dichteoperator

r =

✓

|a|2 |a||b|ei(j1�j2)

|a||b|e�i(j1�j2) |b|2
◆

berechnet. In einem inkohärenten Gemisch, bei dem
die Phasen also keine feste Beziehung zueinander
aufweisen, verschwinden die Außerdiagonalelemen-
te. Diese Betrachtung zeigt auch, dass

• die Diagonalelemente (=Besetzungswahr-
scheinlichkeiten) unabhängig von Phasenfakto-
ren sind
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• die Außerdiagonalelemente nur Differenzen
zwischen den Phasen enthalten. Im Gegen-
satz zu Zustandsfunktionen, bei denen Zustän-
de Y0 = eif Y mit beliebigen globalen Phasen f

identische physikalische Zustände bezeichnen,
sind somit Dichteoperatoren eindeutig, d.h. je-
der physikalische Zustand wird durch genau
einen Dichteoperator beschrieben.

Der Dichteoperator des Systems beschreibt einen ge-
mittelten Spin. Man kann ihn verwenden, um die
Zeitabhängigkeit der Mittelwerte zu berechnen. Das
bringt den großen Vorteil, dass wir für die Berech-
nung der Zeitentwicklung des Systems nicht zuerst
die Zeitentwicklung jedes einzelnen Atoms berech-
nen müssen, sondern direkt die Zeitentwicklung des
Mittelwertes berechnen können. Voraussetzung da-
für ist allerdings, dass die verschiedenen Atome gut
voneinander isoliert sind und die gleiche Umgebung
sehen. Die wichtigsten Abweichungen sind Relaxa-
tionseffekte und Inhomogenitäten.

Relaxation kommt durch die Wechselwirkung zwi-
schen den einzelnen Teilsystemen zustande, sowie
durch die Wechselwirkung mit der Umgebung. Die-
se geschieht vor allem über magnetische Felder
und/oder über die translatorischen Freiheitsgrade.

3.4.8 Basisoperatoren für den
Dichteoperator

Wie jeder quantenmechanische Operator kann auch
der Dichteoperator in einem geeigneten Satz von
Basisoperatoren aufgespannt werden. Im Fall eines
Spin-1/2 Systems sind sinnvolle Basisoperatoren z.
B. die Spin-Operatoren Ix, Iy, Iz, zusammen mit dem
Einheitsoperator 1. Wir schreiben die Entwicklungs-
koeffizienten als u,v, und w, so dass der Dichteope-
rator folgende Form erhält:

r

0 = a1 + uIx + vIy + wIz .

Die Entwicklungskoeffizienten u,v und w sind pro-
portional zu den Erwartungswerten der 3 kartesi-
schen Komponenten des Spinvektors für den ent-
sprechenden Zustand.

Die Diagonalelemente des Dichteoperators stellen
Populationswahrscheinlichkeiten dar, z.B. r11 die

Wahrscheinlichkeit, dass sich der Spin im Grund-
zustand befindet. Die Summe der Diagonalelemente
muss deshalb immer gleich 1 sein,

Â
i

r

0
ii = Sp(r 0) = Â

i
pi = 1 ,

da sich jedes System in irgendeinem Zustand befin-
den muss. Dies ist identisch mit der Normierungsbe-
dingung für die Zustandsfunktion, |Y|2 = Âi |ci|2 =
1.

Damit ist der Koeffizient a der Einheitsmatrix fest-
gelegt als

a =
1

Sp(1)
=

1
2I +1

=
1
2

für einen Spin I = 1/2, und der Dichteoperator wird

r

0 =
1
2

1 + uIx + vIy + wIz

=
1
2

✓

1+w u� iv
u+ iv 1�w

◆

.

Der Einheitsoperator 1 vertauscht mit dem Hamil-
tonoperator und ist somit zeitunabhängig. Außerdem
trägt er zu keiner beobachtbaren Größe bei. Im Sin-
ne einer Abkürzung ist es deshalb üblich, diesen Teil
des Dichteoperators wegzulassen und den reduzier-
ten Dichteoperator

r = uIx + vIy + wIz

zu betrachten, dessen Spur verschwindet.

Als Beispiel betrachten wir unser Standardensem-
ble:

r =

✓

2/3 0
0 1/3

◆

�
✓

1/2 0
0 1/2

◆

=

✓

1/6 0
0 �1/6

◆

=
1
3

Iz .

Dieses Resultat kann direkt interpretiert werden: Das
Spin-Ensemble ist insgesamt parallel zur z-Achse
polarisiert, wobei die Polarisation 1/3 beträgt, d.h.
der Überschuss in +z Richtung ist einer von drei
Spins. Die Erwartungswerte für die transversalen
Komponenten verschwinden,

hIxi = tr{rIx} = hIyi = 0.
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Die Diagonalelemente des reduzierten Dichteopera-
tors können kleiner, gleich Null (für w = 0) oder grö-
ßer als Null sein. Sie stellen somit nicht Populatio-
nen dar. In Experimenten misst man aber meist nicht
Populationen, sondern Populationsdifferenzen, und
diese sind die gleichen bei r und r

0.

3.5 Rechnen mit dem
Dichteoperator

3.5.1 Bewegungsgleichung

Ausgangspunkt für die Zeitentwicklung des Dichte-
operators ist die Schrödingergleichung für die Zu-
standsfunktion,

d
dt

Y = �iH Y ,

wobei hier (wie meistens) Einheiten mit h̄ = 1 ver-
wendet werden. In bra-ket Schreibweise entspricht
dies

d
dt

|Yi = �iH |Yi ,
d
dt

hY| = ihY|H .

Für einen zeitunabhängigen Hamiltonoperator H
lautet die Lösung

Y(t) = e�iH tY(0).

Durch einsetzen und anwenden der Kettenregel er-
halten wir die Bewegungsgleichung für den Dichte-
operator:

dr

dt
=

d
dt

(|YihY|)

= �iH |YihY| + |YihY|iH
= �i[H ,r] . (3.7)

Da diese Gleichung linear ist, gilt sie nicht nur für
ein Einzelsystem, sondern genauso für den Dichte-
operator eines Ensembles, falls der Hamiltonopera-
tor für alle Einzelsysteme der gleiche ist. Die Glei-
chung wird als Liouville-Gleichung bezeichnet, da
sie der Liouville-Gleichung der klassischen Physik
entspricht, aber auch als Liouville-Schrödinger Glei-
chung oder Schrödinger-Gleichung oder von Neu-
mann Gleichung.

3.5.2 Zeitentwicklung

Die Lösung eerhält man durch Einsetzen der Lösung
der Schrödingergleichung für die Zustandsfunktion
Y:

r(t) = |Y(t)ihY(t)|
= e�iH t |Y(0)ihY(0)|eiH t

= e�iH t
r(0)eiH t .

Die Exponentialfunktion eiH t des Hamiltonopera-
tors kann man über die Taylorreihe berechnen:

eiH t = 1 + iH t +
1
2!

(iH t)2 + ... .

Diese Schreibweise ist für konkrete Rechnungen
dann besonders brauchbar, wenn man für den Opera-
tor die Exponentialdarstellung leicht angeben kann.
Dies ist für Diagonalmatrizen der Fall, denn für sie
gilt

D =

0

B

@

d1 0 · · ·
0 d2 · · ·
...

...
. . .

1

C

A

D2 =

0

B

@

d2
1 0 · · ·

0 d2
2 · · ·

...
...

. . .

1

C

A

eD =

0

B

@

ed1 0 · · ·
0 ed2 · · ·
...

...
. . .

1

C

A

.

Die Berechnung ist daher am einfachsten in der Ei-
genbasis des Hamiltonoperators, wo

eiH t = exp

0

B

@

i

0

B

@

E1
E2

. . .

1

C

A

t

1

C

A

=

0

B

@

eiH11t

eiH22t

. . .

1

C

A

.

Das kann man kompakt schreiben als

(e�iH t)m,n = e�iEmt
dm,n .
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Wenn wir den Dichteoperator in der gleichen Ba-
sis schreiben, können wir damit die Lösung der
Liouville-Gleichung als

rm,n(t) = Â
j
Â
k

⇣

e�iH t
⌘

m j
r jk(0)

⇣

e�iH t
⌘

kn

= Â
j
Â
k

e�iEmt
dm, jr jk(0)eiEnt

dk,n

= e�iEmt
rm,n(0)eiEnt

= rm,n(0)e�i(Em�En)t

schreiben. Die Entwicklungsfrequenzen

wm,n = Em �En

der Matrixelemente sind also durch die Energieun-
terschiede zwischen den Niveaus bestimmt.

3.5.3 Signal

Der Erwartungswert einer Observablen A für den
Zustand, welcher durch den Dichteoperator r be-
schrieben wird, kann ebenfalls aus der Definition des
Dichteoperators hergeleitet werden. Man findet

hAi = hY|A|Yi = Â
i j

c⇤
i c jAi j = Â

i j
r jiAi j

= Â
j
(rA) j j = Sp(rA) = Sp(Ar) .

Für die Berechnung von Erwartungswerten ist es
wichtig, dass die Spur eines Operators unter zykli-
schen Vertauschungen invariant bleibt,

Sp{ABC} = Sp{BCA} = Sp{CAB} ,

wie man explizit an

Sp{ABC} = Â
j
(ABC) j j = Â

j
Â
k

Â
l

A jkBklCl j

= Â
j
Â
k

Â
l

Cl jA jkBkl = Â
l
(CAB)ll = Sp{CAB}

= Â
j
Â
k

Â
l

BklCl jA jk = Â
k

(BCA)kk = Sp{BCA}

sieht. Daraus folgt zum Beispiel

Sp{r(t)A} = Sp{e�iH t
r(0)eiH t A}

= Sp{r(0)eiH t Ae�iH t} = Sp{r(0)A(t)}

mit

A(t) = eiH t Ae�iH t .

Diese Umformung entspricht dem Übergang vom
Schrödingerbild zum Heisenbergbild: Im Schrödin-
gerbild ist der Zustand zeitabhängig, während die
Observable invariant ist, im Heisenbergbild ent-
wickelt sich die Observable. Für diese läuft die Zeit-
entwicklung umgekehrt als für den Dichteoperator.

3.5.4 Evolution eines Spins I =1
2

Als einfaches Beispiel betrachten wir einige Opera-
tionen an einem Spin I = 1/2. Für ein System, wel-
ches durch den Dichteoperator

r = uIx + vIy + wIz

beschrieben wird, erzeugt der Hamiltonoperator

H = �w0Iz

die folgende Bewegungsgleichung:

d
dt

r = �i[H ,r] = w0i[Iz,uIx + vIy + wIz]

= w0(�uIy + vIx) .

Diese Gleichung kann offenbar auch als Bewegungs-
gleichung für die Komponenten geschrieben wer-
den:

d
dt

0

@

u
v
w

1

A = w0

0

@

v
�u
0

1

A

=

0

@

0
0

�w0

1

A⇥

0

@

u
v
w

1

A ,

in exakter Analogie zur klassischen Rechnung. Die
Lösung lautet somit

u(t) = mxy cos(w0t +j)

v(t) = �mxy sin(w0t +j)

w(t) = w(0)
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und beschreibt die Larmor-Präzession, analog zur
klassischen Rechnung in Kapitel 3.1.2.

In gleicher Weise kann der Effekt eines RF-Pulses
berechnet werden. Bei resonanter Einstrahlung be-
trägt der Hamiltonoperator im rotierenden Koordi-
natensystem

HP = �w1Ix .

Ist das System zu Beginn entlang dem statischen
Magnetfeld orientiert, d.h. u(0) = v(0) = 0, w(0) =
1, so entwickelt es sich wie

u(t) = 0
v(t) = sin(w1t)

w(t) = cos(w1t) .

Abbildung 3.24: Evolution eines Spins während ei-
nes RF Pulses.

Nach einer Zeit

t
p/2 =

p

2w1

ist somit die Magnetisierung von der z� zur
y�Achse gedreht, nach der doppelten Zeit zur �z
Achse, und nach einer Zeit 2p/w1 hat sie eine
volle Drehung durchgeführt und befindet sich wie-
der entlang der z�Achse. Dies entspricht der Rabi-
Oszillation, die bereits in Kapitel 3.1 beschrieben
wurde.

3.5.5 Operatorform

Es ist instruktiv, das Ganze nochmals in Matrizen-
schreibweise zu betrachten. Der Hamiltonoperator
ist

H = �w0Iz = �w0

✓

1/2
�1/2

◆

.

Dieser Operator ist spurlos, d.h. die Energie wird im
Mittel nicht verschoben. Der Operator

U(t) = e�iH t =

✓

eiw0t/2

e�iw0t/2

◆

,

der den Dichteoperator in der Zeit entwickelt, wird
Propagator genannt. Er beschreibt die Zeitentwick-
lung des Systems unabhängig vom Anfangszustand.

Für einen konkreten Fall müssen wir die Anfangs-
bedingung festlegen. Wir nehmen hier an, dass mit
Hilfe eines RF Pulses transversale Magnetisierung
erzeugt wurde und die Anfangsbedingung sei

r(0) = Ix .

Damit ist

r(t) = U(t)r(0)U�1(t)

=
1
2

 

ei w0t
2 0

0 e�i w0t
2

!

✓

0 1
1 0

◆

·
 

e�i w0t
2 0

0 ei w0t
2

!

=
1
2

 

ei w0t
2 0

0 e�i w0t
2

! 

0 ei w0t
2

e�i w0t
2 0

!

=
1
2

✓

0 eiw0t

e�iw0t 0

◆

oder

r(t) =
1
2

cos(w0t)
✓

0 1
1 0

◆

� i
2

sin(w0t)
✓

0 �1
1 0

◆

= Ix cos(w0t) � Iy sin(w0t) ,

in Übereinstimmung dem Resultat der klassischen
Rechnung in Kapitel 3.1.2.

3.5.6 Dichteoperator im Gleichgewicht

Zu Beginn der meisten Experimente befindet sich
das System im thermischen Gleichgewicht. Wir be-
nötigen deshalb den entsprechenden Dichteoperator.
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Der einfachste Fall ergibt sich, wenn das Spinsystem
aus einem Ensemble von identischen Spins I = 1/2
besteht. Der Hamiltonoperator kann dann direkt dia-
gonal geschrieben werden, indem wir die z-Achse
parallel zum äußeren Magnetfeld wählen. Im Labor-
system lautet er dann

H = �h̄w0Iz .

Hier haben wir (ausnahmsweise) die Planck’sche
Konstante explizit verwendet. Im Gleichgewichtszu-
stand wird das System durch einen Dichteoperator
beschrieben, welcher durch den Ausdruck

req =
e�H /kBT

Sp
�

e�H /kBT
 

gegeben ist. Hierbei handelt es sich um die Verall-
gemeinerung des Boltzmannfaktors, der die Beset-
zungswahrscheinlichkeit

pi =
1
Z

e�Ei/kBT

des i-ten Niveaus unseres Spinsystems angibt. Hier
ist der Normierungsfaktor

Z = Â
i

e�Ei/kBT = Sp
n

e�H /kBT
o

die aus der statistischen Mechanik bekannte Zu-
standssumme.

In der Kernspinresonanz sind die Energien hn = h̄w

(d.h. der Zähler in den Exponenten) normalerweise
deutlich kleiner als die thermischen Energien kBT .
Dies gilt zum mindesten so lange wie

T >
h1GHz

kB
⇡ 50mK

gilt, also für die große Mehrheit der NMR Experi-
mente. Deshalb gilt allgemein die Hochtemperatur-
näherung

DE = h̄w0 ⌧ kBT ,

so dass die Exponentialfunktion entwickelt werden
kann als

req =
1�H /kBT

Z
.

Damit können wir auch die Zustandssumme berech-
nen, denn in guter Näherung gilt

Z ⇡ Sp{1�H /kBT} = Sp{1} = 2I +1 .

Wir können somit schreiben

req =
1

2I +1

✓

1+
h̄w0

kBT
Iz

◆

.

Da die Einheitsmatrix mit jedem Operator kommu-
tiert und somit zur Zeitentwicklung nichts beiträgt,
lässt man den ersten Term meist weg und rechnet,
wie oben schon diskutiert, mit der reduzierten Dich-
tematrix weiter. Die explizite Form des Vorfaktors,
d.h.

1
2I +1

h̄w0

kBT

braucht man fast nie (Ausnahmen: z.B. Empfindlich-
keits-Berechnungen, heteronukleare Kreuzpolarisa-
tionsexperimente), weshalb man ihn ebenfalls meist
weglässt. Es reicht dann, als anfänglichen Dichte-
operator den Ausdruck

r(0) µ Iz

zu betrachten.

3.5.7 Der Pulspropagator

Zeit

Abbildung 3.25: Puls-Anregung aus dem
Gleichgewicht.

Als nächstes regen wir das System an, indem wir
einen Radiofrequenzpuls anlegen. Für die gerade
durchgeführte Berechnung des Gleichgewichtsdich-
teoperators haben wir das Laborsystem verwendet.
Die nun folgenden Rechnungen werden jedoch wie-
derum im rotierenden Koordinatensystem durchge-
führt. Bei resonanter RF-Einstrahlung können wir
den Hamiltonoperator schreiben als

HP = w1Ix =
w1

2

✓

0 1
1 0

◆

.
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Um den Hamiltonoperator zu diagonalisieren, müs-
sen wir ihn in einer Basis ausdrücken, in welcher
er diagonal wird. Das heisst, wir müssen das Eigen-
wertproblem lösen. Im Hinblick auf einige der später
folgenden Beispiele wollen wir das anhand des hier
vorliegenden, sehr einfachen Falles diskutieren. Die
Eigenwerte einer 2x2 Matrix sind bekanntlich gege-
ben durch die Säkulargleichung det(HP � l1) = 0,
d.h.

l± = ±w1

2
.

Die Eigenvektoren x erhält man entweder aus der Ei-
genwertgleichung oder geometrisch: Sie müssen den
Zuständen " , resp. # zum effektiven Feld entspre-
chen. Für den Eigenwert l+ = +w1/2 liefert

(HP �l1)x+ = 0

! w1

2

✓

�1 1
1 �1

◆✓

x+1
x+2

◆

=

✓

0
0

◆

die Bedingung x+1 = +x+2. Analog ergibt sich für
l� die Bedingung x�1 = �x�2. Die normierten Ei-
genvektoren

x+ =
1p
2

✓

1
1

◆

, x� =
1p
2

✓

1
�1

◆

entsprechen also tatsächlich symmetrischen und an-
tisymmetrischen Überlagerungszuständen.

3.5.8 Transformation auf Diagonalform

Wir können Eigenwerte und Eigenvektoren in Ma-
trixform schreiben. Für unser einfaches 2⇥2 Pro-
blem lauten sie

L =

✓

l+

l�

◆

, T =

✓

x+1 x�1
x+2 x�2

◆

.

L ist somit eine Diagonalmatrix, welche auf der Dia-
gonalen die Eigenwerte enthält, und T enthält die
Eigenvektoren als Spalten. Kennt man die Eigenvek-
toren einer beliebigen (diagonalisierbare) Matrix M,
kann man sie somit auf Diagonalform transformie-
ren. Dafür schreibt man das Eigenwertproblem als

MT = T L ! L = T �1MT .

Im Fall des Hamiltonoperators HP kann man da-
mit nicht nur den Hamiltonoperator diagonalisie-
ren, sondern auch direkt den zugehörigen Propagator
e�iH t berechnen. Dazu betrachten wir die Glieder
der Exponentialentwicklung von eM, d.h.

M = T LT �1

M2 = T LT �1T LT �1 = T L2T �1

M3 = T LT �1T L2T �1 = T L3T �1

....

eM = TeLT �1 .

Um die Matrixdarstellung eines Propagators anzuge-
ben, benötigen wir noch die Inverse der Matrix der
Eigenvektoren. Dabei handelt es sich um eine uni-
täre Matrix, d.h. T �1 = T †. Speziell für den Fall des
Puls-Propagators gilt T = T † = T �1. Wir verifizie-
ren diese Beziehung, indem wir T 2 berechnen:

T T =
1p
2

✓

1 1
1 �1

◆

1p
2

✓

1 1
1 �1

◆

=

✓

1 0
0 1

◆

.

Damit finden wir für unser Beispiel

e�iHPt = e�iw1Ixt

=
1
2

✓

1 1
1 �1

◆✓

e�iw1t/2 0
0 e+iw1t/2

◆

·
✓

1 1
1 �1

◆

=

✓

cos w1t
2 �isin w1t

2
�isin w1t

2 cos w1t
2

◆

= cos
w1t
2

1 � 2isin
w1t
2

Ix . (3.8)

Mit dieser Technik können wir, falls erforderlich,
auch kompliziertere Hamiltonoperatoren diagonali-
sieren, d.h. deren Energieeigenwerte berechnen so-
wie die Zeitentwicklung von Spinsystemen unter der
Wirkung verschiedener Wechselwirkungen betrach-
ten.
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3.5.9 Rotationen durch RF Pulse

Gleichung (3.8) erlaubt die Berechnung des Zu-
stands des Systems nach dem RF Puls:

e�iHPt IzeiHPt = cos2 w1t
2

Iz + 4sin2 w1t
2

Ix Iz Ix

+2isin
w1t
2

cos
w1t
2

[Iz, Ix].

Mi elementarer Trigonometrie kann man dies umfor-
men zu

e�iHPt IzeiHPt = Iz cos(w1t) + Iy sin(w1t) .

Für einen ‘harten’ Puls, d.h. einen Puls, bei dem
wir während des Pulses nur die Wechselwirkung mit
dem RF Feld betrachten, lautet der Pulspropagator
allgemein

P
a

= e�iH
a

t = e�ijI
a .

Offenbar ist er nicht explizit abhängig von der Länge
des Pulses. Es ist damit nicht notwendig, die Stärke
des RF Feldes anzugeben, oder seine Dauer, sondern
lediglich die Rotationsachse (a) und den Flipwinkel
(f ). Man schreibt diese z.B. in der Form (90�)x oder
(p

2 )�y bzw. X90� oder (�Y )
p/2.

Rotation um x Rotation um y Rotation um z

Abbildung 3.26: Rotationen durch RF Pulse.

Abb. 3.26 zeigt, wie unterschiedliche Pulse die Spins
um die entsprechenden Achsen drehen. Dies stimmt
überein mit dem Resultat der klassischen Rechnung
in Kap. 3.1.8.

3.5.10 Exponentialoperatoren

Die Bewegungsgleichung der Dichtematrix (3.7),
die Liouville-von-Neumann-Gleichung, lautet:

d
dt

r(t) = �i[H (t),r(t)] .

Sie wird für einen nicht explizit von der Zeit abhän-
gigen Hamiltonoperator H gelöst durch

r(t) = e�iH t
r(0)eiH t = U(t)r(0)U�1(t) .

Der Operator U(t) = e�iH t , der den Dichteoperator
r in der Zeit entwickelt, wird Propagator genannt.

Zur Vereinfachung der Propagatoren benutzen wir
Relationen wie z.B.

• Einschieben des Einheitsoperators 1 = e�AeA

• Vertauschungsrelationen

Wenn zwei Operatoren oder Matrizen A und B ver-
tauschen, d.h. [A,B] = 0, dann gilt

a) [eA,B] = [eB,A] = [eA,eB] = 0, weil jeder Term in

eA = 1+A+
1
2!

A2 +
1
3!

A3 + ...

mit B kommutiert. Nützlich ist auch

b)[eA,A] = 0 gilt natürlich für jeden Operator

• die Exponentialrelation

B�1eAB = eB�1AB .

Hier muss B invertierbar sein, A ist beliebig.

Beweis: Mit

(B�1AB)N = B�1ABB�1AB ...B�1AB

= B�1ANB

gilt

eB�1AB =
•

Â
N=0

(B�1AB)N

N!
=

•

Â
N=0

B�1 AN

N!
B

= B�1
•

Â
N=0

AN

N!
B = B�1eAB .

3.6 Mehrere Spins

3.6.1 Matrixdarstellung von Operatoren

Um Rechnungen für Systeme aus mehr als einem
Spin durchführen zu können, müssen wir die Ma-
trixdarstellungen der relevanten Spinoperatoren be-
rechnen. Wir diskutieren zunächst die direkte Me-
thode, d.h. die Berechnung der Matrixelemente für
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die sogenannte Produktbasis. Für zwei Spins A = 1/2,
X = 1/2 sind dies die Produktzustände aa , ab , ba ,
bb .

Für die z-Komponenten der Operatoren erhalten wir
die Darstellungen

Az =
1
2

0

B

B

@

1
1

�1
�1

1

C

C

A

Xz =
1
2

0

B

B

@

1
�1

1
�1

1

C

C

A

Fz = Az + Xz =

0

B

B

@

1
0

0
�1

1

C

C

A

Für die Berechnung der Matrixelemente der trans-
versalen Komponenten verwenden wir z.B.

Ax|a .i =
1
2
|b .i , Ax|b .i =

1
2
|a .i

Xx| .ai =
1
2
| .b i , Xx| .b i =

1
2
| .ai,

wobei . = (a,b ). In der üblichen Basis (aa , ab ,
ba , bb ) erhalten wir somit

Ax =
1
2

0

B

B

@

1
1

1
1

1

C

C

A

Xx =
1
2

0

B

B

@

1
1

1
1

1

C

C

A

und

Fx = Ax +Xx =
1
2

0

B

B

@

1 1
1 1
1 1

1 1

1

C

C

A

.

Analog erhält man die y-Komponente

Fy = Ay +Xy =
1
2

0

B

B

@

�i �i
i �i
i �i

i i

1

C

C

A

.

Diese Methode wird aber offensichtlich für komple-
xere Spinsysteme mühsam. Bei 10 Spins 1/2 z.B. ha-
ben wir Matrixdarstellungen von 1024 x 1024, d.h.
wir müssten mehr als eine Million Matrixelemente
berechnen, von denen allerdings viele verschwinden.

3.6.2 Direktes Produkt

In der Produktbasis kann man die Matrixdarstellun-
gen direkt aus der Darstellung in der Einzelspinba-
sis erhalten. Um einen Operator A

a

X
b

in der Pro-
duktbasis zu schreiben, braucht man nur das direkte
Produkt A

a

⌦X
b

zu berechnen. Das direkte Produkt
zweier Matrizen ist definiert als

A
a

⌦X
b

=

0

B

B

B

B

@

(A
a

)11(X
b

) (A
a

)12(X
b

) · · · (A
a

)1n(X
b

)

(A
a

)21(X
b

)
. . .

...
...

. . .
...

(A
a

)n1(X
b

) · · · · · · (A
a

)nn(X
b

)

1

C

C

C

C

A

.

Als Beispiel berechnen wir für zwei Spins 1/2

Az ⌦Xz =

✓

(Az)11(Xz) (Az)12(Xz)
(Az)21(Xz) (Az)22(Xz)

◆

=
1
4

0

B

B

@

1
✓

1
�1

◆

0
✓

1
�1

◆

0
✓

1
�1

◆

1
✓

1
�1

◆

1

C

C

A

=
1
4

0

B

B

@

1
�1

�1
1

1

C

C

A

.

Das Vorgehen kann natürlich auch auf mehr als 2
Spins erweitert werden.

Allerdings stösst man auch damit an Grenzen, wenn
die Spinsysteme zu groß werden. Viele Rechnungen
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kann man aber auch ganz ohne Matrixdarstellungen
durchführen, insbesondere die Berechnung von Er-
wartungswerten, bei denen am Ende jeweils nur ei-
ne Zahl hAi = Sp[rA] benötigt wird. Beispiele dafür
werden im Kapitel 4 gezeigt.

3.6.3 Dipol-Dipol Hamiltonoperator

Der vollständige quantenmechanische Ausdruck für
die Dipol-Dipol Wechselwirkung kann über das Kor-
respondenzprinzip aus dem klassischen Ausdruck

Edd =
µ0

4p

1
r3

12



~
µ1 ·~µ2 � 3

r2
12

(~µ1 ·~r12)(~µ2 ·~r12)

�

hergeleitet werden. Die quantenmechanische Form
erhält man gemäss Korrespondenzprinzip durch die
Substitution

~
µ1 ! g1h̄~I1 , ~

µ2 ! g2h̄~I2 .

Der erste Term (das Skalarprodukt der beiden Di-
pole / Spins) ist offenbar unabhängig von der Wahl
des Koordinatensystems. Seine quantenmechanische
Form ist

~I1 ·~I2 = I1xI2x + I1yI2y + I1zI2z

= I1zI2z +
1
2
(I1+I2� + I1�I2+) .

Da für den zweiten Term zunächst auf die Verbin-
dungsachse zwischen den beiden Spins projiziert
wird, spielt hier das Koordinatensystem eine Rolle.

x y

z
�

�

Abbildung 3.27: Koordinatensystem für die Berech-
nung des Dipol-Dipol Operators.

Wir wählen wie üblich ein Koordinatensystem, des-
sen z-Achse parallel zum äußeren Magnetfeld liegt.
Der Verbindungsvektor zwischen den beiden Kernen

soll einen Winkel q zur z-Achse aufweisen. Damit
wird

~r12 = r12

0

@

sinq cosj

sinq sinj

cosq

1

A

und

(~µ1 ·~r12) =

g1h̄r12(I1x sinq cosj + I1y sinq sinj + I1z cosq) .

Für die explizite Berechnung des Hamiltonoperators
definieren wir die Kopplungskonstante

wd =
µ0

4p

g1g2h̄2

r3
12

.

Außerdem schreiben wir die transversalen Operato-
ren in der Form

I1x cosj =
1
4
(I1+ + I1�)(eij + e�ij)

I1y sinj =
1
4
(�I1+ + I1�)(eij � e�ij).

Daraus erhalten wir

I1x cosj + I1y sinj =
1
2
(I1+e�ij + I1�eij) .

Damit wird der Dipoloperator

Hdd = wd{(1�3cos2
q) ·

·[I1zI2z � 1
4
(I1+I2� + I1�I2+)]

�3
2

sinq cosq [(I1zI2+ + I1+I2z)e�ij

+(I1zI2� + I1�I2z)eij ]

�3
4

sin2
q [I1+I2+e�2ij + I1�I2�e2ij ]} .

Die einzelnen Terme werden gerne mit den Buch-
staben des Alphabets bezeichnet: die erste Zeile ent-
spricht dem A� und B�Term des "Dipolalphabets",
die zweite dem C� und D�Term und die dritte dem
E� und F�Term.

Die Energie eines Systems ist unabhängig vom Ko-
ordinatensystem; sie ist deshalb ein Skalar, ändert
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sich also nicht bei einer Rotation des Koordina-
tensystems. Der Hamiltonoperator enthält jedoch
Raum- wie auch Spinkoordinaten: q , j beziehen
sich auf die räumlichen Freiheitsgrade, die Spin-
operatoren Iz, I+, I� auf die Spin-Freiheitsgrade. Be-
trachtet man die beiden Freiheitsgrade unabhängig
voneinander, so transformieren sie unter Rotationen
wie irreduzible Tensoren zweiter Stufe; dies gilt so-
wohl für den Spinteil wie auch für den Raumteil. Die
Transformationseigenschaften der beiden Teile sind
jeweils entgegengesetzt; wenn beide gleich transfor-
miert werden, bleibt das Produkt somit invariant.

3.6.4 Dipolkopplung zwischen identischen
Spins im starken Magnetfeld

In Abwesenheit eines Magnetfeldes oder für ein
Magnetfeld parallel zur Verbindungsachse der Ker-
ne (q = 0) verschwinden die Terme C,D,E,F des
Dipol-Alphabets. Die Matrixdarstellung wird dann
für zwei Spins I1 = 1/2, I2 = 1/2:

Hdd = �2wd [I1zI2z � 1
4
(I1+I2� + I1�I2+)]

= �wd

2

0

B

B

@

1
�1 �1
�1 �1

1

1

C

C

A

.

Bei anderen Orientierungen treten auch die übri-
gen Terme des "Dipolalphabets" auf. Sie sind jedoch
nicht säkular, d.h. sie vertauschen nicht mit dem do-
minanten Beitrag zum Hamiltonoperator, dem Zee-
manterm. Mit Hilfe von Störungsrechnung kann man
zeigen, dass ihr Beitrag zur Gesamtenergie der Zu-
stände von der Größenordnung

DE

h̄
⇡

w

2
d

w0
⇡ 1010

3 ·109 s�1 ⇡ 3s�1

und damit sehr viel kleiner als der Beitrag der er-
sten Ordnung (⇡ 105s�1) ist. Physikalisch kann man
sich das so vorstellen, dass die Spins um das Ma-
gnetfeld rotieren und für die Wechselwirkung des-
halb nur der zeitliche Mittelwert, d.h. die Projek-
tion auf die z-Achse, eine Rolle spielt. Die Terme
C,D,E,F müssen aus diesem Grund für die Berech-
nung der Zeitentwicklung oder des Spektrums nicht

berücksichtigt werden. Sie sind jedoch entscheidend
für die Relaxation. Die Kopplungskonstante für die
säkularen Terme A und B skaliert mit dem Winkel
q zwischen Verbindungsachse und Magnetfeld wie
(1�3cos2

q)/2.

3.6.5 Energien und Eigenzustände

Für diesen Fall findet man relativ leicht die Eigen-
zustände, wenn man symmetrieangepasste Zustände
verwendet: Da die Wechselwirkung symmetrisch ist,
verwenden wir die Zustände, welche unter Vertau-
schen der Koordinaten Eigenzustände sind. Für zwei
Spins I1 = 1/2, I2 = 1/2 sind diese

|aai, 1p
2
(|ab i+ |bai),

1p
2
(|ab i� |bai), |bb i,

wie man leicht durch explizite Berechnung nachprü-
fen kann. Für die symmetrische Linearkombination
erhalten wir z.B.
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Wir können offenbar die Produktzustände in symme-
trieangepasste Zustände transformieren, wenn wir
sie mit der Matrix

T =
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(deren Spalten aus den Eigenvektoren bestehen)
multiplizieren. Der Hamiltonoperator muss dement-
sprechend in diese Basis transformiert werden, in-
dem wir ihn von links und rechts multiplizieren:

H s
dd = T �1HddT
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3.6.6 Frequenzen und Amplituden

Abbildung 3.28: Verschiebung der Zustände durch
die dd-Wechselwirkung.

Die Eigenwerte sind

wd

2
(2,0,�1,�1) .

Wie in Abb. 3.28 gezeigt, reduziert die Kopplung
die Energie der zwei Zustände mit parallelem Spin,
der Zustand mit symmetrischer Linearkombination

wird um den doppelten Betrag angehoben, und der
Singulett-Zustand, der durch die antisymmetrische
Linearkombination gebildet wird, wird durch die Di-
polkopplung nicht verschoben.

Da es sich um zwei identische Spins handelt, können
sie nur identisch angeregt werden. Der Anfangsdich-
teoperator nach einem idealen p/2 Puls lautet somit

r(0) = Ax +Xx = Fx .

Der Operator hat in der Eigenbasis des Hamiltonope-
rators somit die Matrixdarstellung

T �1FxT =
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Abbildung 3.29: Erlaubte Übergänge in einem
Dipol-gekoppelten Spin-Paar.

Das Spektrum enthält somit zwei Linien. Diese ent-
sprechen Übergängen von |aai zum Zustand der
symmetrischen Linearkombination, resp. von die-
sem zum |bb i Zustand. Diese drei Zustände bil-
den ein Spin-Triplett, d.h. der Gesamtspin beträgt
I = 1. Alle Übergänge finden innerhalb dieses Mul-
tipletts statt. Da die beiden Spins gleich stark an das
externe Feld koppeln, ist ihr Gesamtspin eine gu-
te Quantenzahl (d.h. sie bleibt erhalten). Der vier-
te Zustand, die antisymmetrische Linearkombinati-
on, entspricht dem Spin-Singulett mit I = 0. Da der
Spin verschwindet, ist auch das Dipolmoment =0,
d.h. dieser Zustand koppelt weder an das statische
Magnetfeld noch an ein RF-Feld.
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