3 Dynamik von Spinsystemen

3.1 Evolution der Spins im
Magnetfeld

3.1.1 Drehimpuls und Drehmoment

Wenn wir die Bewegung eines Spins im Magnetfeld
betrachten, so miissen wir zunichst den Einfluss des
Magnetfeldes auf den assoziierten magnetischen Di-
pol berechnen.

B
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Abbildung 3.1: Das Drehmoment T wirkt auf den
Drehimpuls I, welcher an einen ma-

gnetischen Dipol gekoppelt ist, der
sich im Magnetfeld B befindet.

Die Energie des Dipols ist kleiner, wenn er paral-
lel zum Feld orientiert und groBer bei antiparalleler
Orientierung. Deshalb wirkt auf den Dipol ein Dreh-
moment

T=JixB.

Wir verwenden jetzt die Proportionalitidt zwischen
dem Drehimpuls L und dem magnetischen Moment

A =7L,
T=yLxB=—yBxL.

Das Drehmoment (engl.: Torque) ist bekanntlich de-

finiert als die zeitliche Ableitung des Drehimpulses,

dL

T=—.
dt

Damit erhalten wir die Bewegungsgleichung fiir den
Drehimpuls bzw. den Spin I = L/ in einem &uBeren

Magnetfeld:

d =3 = - —
—nhl = —yB X hl = @y x hl.
dr Yb X g, X

2 dM/dt
M

Abbildung 3.2: Evolution des Spin- / Magnetisie-
rungsvektors im Magnetfeld.

Offenbar ist die zeitliche Ableitung des Spins zu je-
der Zeit senkrecht zum Spinvektor selber und zur
Richtung des Magnetfeldes. Er fithrt deshalb ei-
ne Prizessionsbewegung um das Magnetfeld durch.
Diese Bewegung eines Drehimpulses in einem Ma-
gnetfeld wird als Larmorprizession bezeichnet und
die GroBie

(TJL = —’}/E

als Larmorfrequenz. Der Vektor @ ist nach dieser
Definition entgegen dem Feld B ausgerichtet. Wir
werden jedoch im Folgenden meistens das Vorzei-
chen nicht beachten und @ ||B setzen und damit der
gingigen Konvention folgen.

In einem Experiment beobachtet man meistens nicht
einen einzelnen Dipol, sondern immer ein Ensemble
von Dipolen. Man mittelt dabei iiber die in der Probe
enthaltenen Dipole, wobei die relevante Grofle die
bereits eingefiihrte Magnetisierung ist:

(3.1
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3 Dynamik von Spinsystemen

Die Bewegungsgleichung fiir die Magnetisierung
kann direkt aus der Bewegungsgleichung fiir die Di-
pole tibernommen werden. Ausgehend von

df_@

"
ersetzt man auf beiden Seiten den Drehimpuls durch
den magnetischen Dipol [i = yAl, wobei das gyro-
magnetische Verhiltnis eliminiert werden kann, und
erhilt

—

x T

dt

AnschlieBend fiihrt man wiederum auf beiden Seiten
die Mittelung iiber das Volumen gemil3 Gleichung
(3.1) durch und erhélt die identische Gleichung fiir
die Magnetisierung:

Z(Y)LX‘l_i.

—

aM

dt

Wir werden diese Identitét fiir die Bewegungsglei-
chungen von Drehimpuls, Spin, Dipol und Magne-
tisierung im Folgenden verwenden und jeweils ein-
fach von der GroBe sprechen, welche fiir das vorlie-
gende Problem am besten geeignet scheint.

=@ xM. (3.2)

3.1.2 Larmorprizession

Fiir den iiblichen Fall, dass das Magnetfeld paral-
lel zur z-Achse ausgerichtet ist, B = (0,0,By), wird
@r = (0,0,.). Damit kann man die Bewegungs-
gleichung in Komponentenform schreiben als

d M, 0 M,
a7 M, = 0 x| M,
Mz oy, Mz
_(ULMy
= oM,
0

Die zwei gekoppelten Bewegungsgleichungen fiir
die transversalen Komponenten besitzen die allge-
meine Losung

M,,(0) cos(wyt — @)
M,,(0)sin(opt — @),

wobei die Parameter Amplitude M., und Phase ¢
durch die Anfangsbedingungen bestimmt werden.
Die z-Komponente ist konstant,

Mz(t) = Mz(o) .

Abbildung 3.3: Larmorprizession der Magnetisie-
rung.

Dies bedeutet, dass der Spin in eine Prizessionsbe-
wegung um die Richtung des Magnetfeldes gezwun-
gen wird. Dies mag zunichst wenig intuitiv erschei-
nen, man hitte vielleicht eher eine Bewegung des
Dipols in Richtung des Feldes erwartet, wie bei einer
Magnetnadel. Der Unterschied ist darauf zuriickzu-
fiihren, dass das magnetische Moment des Elektrons
oder Kerns an einen Drehimpuls gekoppelt ist. Bei
Drehimpulsen ist bekannt, dass sie einer Kraft seit-
lich ausweichen. Dies fiihrt z.B. zur Prizessionsbe-
wegung eines Kreisels um die Vertikale, wenn sei-
ne Rotationsachse im Schwerefeld nicht senkrecht
steht.

In Anlehnung an die Theorie der Schwingungen und
Wellen wird diese Gleichung auch kompakter ge-
schrieben, mit Hilfe der komplexen Schreibweise

My = M, +iM, .

Fiir diese GroBen erhalten wir die Bewegungsglei-
chungen

d d. . .
== E(MxilMy) =ty (—M,+iM,)
=i M.
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3 Dynamik von Spinsystemen

Somit sind die zirkularen Komponenten M. Eigen-
funktionen der Bewegung. Ihre zeitliche Entwick-
lung kann geschrieben werden als

M. (t) = My (0) ™!

Diese Linearkombinationen entsprechen einer Ma-
gnetisierung, welche im Uhrzeigersinn, resp. gegen
den Uhrzeigersinn um die z-Achse rotiert.

3.1.3 Radiofrequenzfeld

Ubergiinge zwischen Spinzustinden koénnen spon-
tan oder induziert stattfinden. Die spontane Emissi-
on durch die Kopplung an das Strahlungsfeld ist je-
doch im Radiofrequenz (RF)-Bereich extrem gering:
Die Zeit, bis ein Spinsystem durch spontane Emissi-
on ins Gleichgewicht gelangt, ist ldnger als das Al-
ter des Universums! Spontane Emission braucht des-
halb in der Praxis nicht beriicksichtigt werden.

Um induzierte Ubergiinge anzuregen, muss ein ma-
gnetisches Wechselfeld angelegt werden, dessen
Frequenz @ in der Nédhe der Larmorfrequenz wy
liegt.

Abbildung 3.4: Radiofrequenzfeld senkrecht zum
statischen Magnetfeld.

Man verwendet dafiir eine Spule, welche senkrecht
zum statischen Magnetfeld orientiert ist und legt eine
Wechselspannung mit der entsprechenden Frequenz
o an. Der resultierende Wechselstrom erzeugt einen
Beitrag zum duBleren Magnetfeld, der mit der Fre-
quenz  oszilliert. Wir wéhlen die x-Achse in Rich-
tung der Spulenachse, so dass das RF-Feld geschrie-
ben werden kann als

1
0
0

B (t) = 2B cos(mt)

Wir werden dieses zusitzliche Magnetfeld jedoch
nicht unmittelbar in die Bewegungsgleichung ein-
fiihren, da diese damit zeitabhéngig wiirde und ana-
lytisch nicht 16sbar wire.

Z

Abbildung 3.5: Ein linear polarisiertes RF-Feld
kann als Summe von 2 zirku-
lar polarisierten Feldern beschrieben
werden.

Dieses linear polarisierte RF-Feld kann auch ge-
schrieben werden als die Superposition von zwei ro-
tierenden RF-Feldern:

cos ot cos ot
B\ (t) = By sinwt | + | —sinwt
0 0

Die beiden Komponenten stellen entgegengesetzt ro-
tierende Felder gleicher Amplitude dar. Es zeigt sich,
dass in der Praxis nur eine dieser beiden Komponen-
ten beriicksichtigt werden muss, und zwar diejenige,
welche sich in der gleichen Richtung bewegt wie die
Spins im Magnetfeld.

3.1.4 Rotierendes Koordinatensystem

Diese Unterscheidung zwischen der wesentlichen
und der unwesentlichen Komponente kann man ein-
facher verstehen, wenn man sich in ein Koordinaten-
system setzt, welches sich mit der rotierenden Kom-
ponente des RF-Feldes um die z-Achse dreht.

Der Ubergang in dieses Koordinatensystem ist durch
die Transformation

X coswt sinwt O X
y = —sinwt coswt 0 y
Z 0 0 1 z
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3 Dynamik von Spinsystemen
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Abbildung 3.6: Rotierendes Koordinatensystem re-

lativ zum Laborsystem.

definiert. In Vektorschreibweise kann dies auch ge-
schrieben werden als
R(r)

—r

7

—

r,

wobei R(¢) die zeitabhiingige Transformationsmatrix
darstellt.

Damit werden die zirkularen Komponenten der Ma-
gnetisierung wie folgt transformiert:

M, (1) = ML(0) ™)

Die zirkularen Komponenten verhalten sich unter
dieser Transformation wesentlich einfacher, da sie
Eigenfunktionen der Rotation darstellen:

ML (1) = ME(0) e¥ilor—ol

Offenbar ist die Rotationsgeschwindigkeit dieser zir-
kularen Komponenten geringer geworden. Im reso-
nanten Fall, d.h. wenn w; = ®, verschwindet die
Zeitabhingigkeit, M, (1) = M’.(0). Dies entspricht
dem Fall, dass die Rotationsgeschwindigkeit des Ko-
ordinatensystems gleich der Rotationsgeschwindig-
keit des Spins ist.

3.1.5 RF-Feld im rotierenden
Koordinatensystem

Die Transformation wird einfach fiir die zirkular

polarisierten Komponenten. Diejenige Komponente,

welche im Laborsystem gegen den Uhrzeigersinn ro-

tiert

cos(wr)

sin(t)
0

ergibt im rotierenden Koordinatensystem
(z)

cos?(ot) + sin*(wt)

By | —sin(t)cos(wr)+ sin(wr)cos(wt)
0
1
=B| O
0

Sie ist somit zeitunabhingig. Fiir die entgegenge-
setzte Komponente jedoch wird

(r)

cos?(wt) — sin®(wr)

By | —sin(@t)cos(wt) — sin(wt) cos(wr)
0
cos(2at)
=B | —sin(2wr)
0

Insgesant ist also das RF-Feld im rotierenden Koor-
dinatensystem

1 cos(20t)
Bit)=B, || 0 |+ | —sin2or)
0 0
Z

Abbildung 3.7: Komponenten der RF Feldes im ro-
tierenden Koordinatensystem.

Wihrend die beiden zirkularen Komponenten im La-
borsystem gleichwertig sind, wird durch den Uber-
gang ins rotierende Koordinatensystem die eine
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3 Dynamik von Spinsystemen

Komponente statisch, wihrend die andere mit der
doppelten Geschwindigkeit rotiert, wie in Abb. 3.7
dargestellt. Die Unterscheidung liegt in der Rotati-
onsrichtung beim Ubergang ins rotierende Koordi-
natensystem.

Wie man durch zeitabhidngige Storungsrechnung
zeigen kann, wird die zeitliche Entwicklung des Sy-
stems durch diejenige Komponente dominiert, wel-
che im rotierenden Koordinatensystem statisch, also
nicht zeitabhingig ist. Wir werden die gegenldufige
Komponente, welche im rotierenden Koordinatensy-
stem mit 2@ oszilliert, deshalb nicht mehr weiter be-
riicksichtigen. Diese Niherung wird auch in ande-
ren Zusammenhéngen verwendet und meist mit dem
englischen Ausdruck “rotating wave approximation”
bezeichnet.

3.1.6 Transformation der
Bewegungsgleichung

Die Bewegungsgleichung muss entsprechend ange-
passt werden. Wir berechnen zunéchst die zeitliche
Ableitung fiir die zirkularen Komponenten

d d

dt dt
= +i(oop — )M, (t).

ML (1) = —-M(0)e ()

Somit wird die Prizessionsgeschwindigkeit der Ma-
gnetisierung im rotierenden Koordinatensystem um
die Radiofrequenz reduziert. Dies ist natiirlich auch
das, was wir aufgrund der Koordinatentransformati-
on erwarten.

Da die Rotation (=Larmorprizession) um die z-
Achse durch das Magnetfeld bewirkt wird, scheint
es, als sei das Magnetfeld kleiner geworden. Das
effektive Magnetfeld im rotierenden Koordinatensy-
stem betridgt noch

B, = By— 2
0o — D0o— —
Y

d.h. es ist um den Betrag /7y kleiner geworden.
Dieser Effekt, dass eine Rotation durch ein virtuel-
les Magnetfeld beschrieben werden kann, resp. ein
Magnetfeld eine Rotation erzeugt, wird als gyroma-
gnetischer Effekt bezeichnet. Er fiihrt z.B. dazu, dass

man durch schnelle Rotation eines Eisenstiicks darin
eine Magnetisierung erzeugen kann.

In vielen Fillen ist es einfacher, die Feldstiarke nicht
mehr in Tesla, sondern in Frequenzeinheiten zu mes-
sen. Die z-Komponente des Magnetfeldes betrigt im
rotierenden Koordinatensystem nicht mehr @, son-
dern

A = 0, — ®

und kann somit positiv, negativ oder null sein.

3.1.7 Bewegungsgleichung mit RF-Feld

Unter Beriicksichtigung des Radiofrequenzfeldes
wird das gesamte Feld im rotierenden Koordinaten-
system in Frequenzeinheiten

]
Opff = 0 ) (3.3)
Aw
wobei @ = —YB; die Stirke des Radiofrequenzfel-

des darstellt, welches im rotierenden Koordinatensy-
stem statisch erscheint.

),

my

X

Abbildung 3.8: Effektives Feld im rotierenden Koor-
dinatensystem.

Der Feldvektor liegt somit in der xz-Ebene unter ei-
nem Winkel

(0]

0 = tan”!
Aw

von der z-Achse. Die Stirke dieses Feldes ist

Weff = \/Aa)2+a)12.
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3 Dynamik von Spinsystemen

Fiir dieses zeitunabhingige effektive Magnetfeld
lasst sich die Dynamik analytisch 16sen. Die Bewe-
gungsgleichung fiir die Magnetisierung M ist wie-
derum (3.2), wobei @, durch das effektive Magnet-
feld @, ¢ s ersetzt werden muss:

dM—(?) XM
dar et

—

Fiir das vorliegende effektive Feld (3.3) entspricht
dies in Komponenten-Schreibweise

dM,
= —AoM,
dt Y
am
sz = AoM, — oM, (3.4)
M, o M.
dt 1

oder, in Matrixschreibweise,

M
d X
E My
MZ
0 —-Aow O M,
= Aw® 0 — M,
0 ()] 0 M,

Hier handelt es sich wieder um eine Bewegungsglei-
chung fiir eine Prizession, wobei die Rotationsachse
um den Winkel 6 von der z-Achse in die xz-Ebene
gedreht wurde.

3.1.8 Losung der Bewegungsgleichung

Die allgemeine Losung lautet somit

sin @
M(t) = a 0

cos 0O
cos 0

+ b 0 cos(@ert + @)
—sin6
0

+ b 1 sin(a)gfft—k(p),
0

wobei die Amplituden a und b sowie die Phase ¢
durch die Anfangsbedingungen bestimmt werden.
Der erste Vektor stellt die Komponente in Richtung
des effektiven Feldes dar, die zweite und dritte Kom-
ponente stehen senkrecht dazu und beschreiben eine
Komponente, die um das effektive Feld rotiert.

Diese Losung basiert auf Bewegungsgleichungen,
welche nur eine der beiden rotierenden Komponen-
ten des Magnetfeldes beriicksichtigen.

1

M, N&herung

exakt

Zeit

Abbildung 3.9: Vergleich der exakten Losung der
Bewegungsgleichung mit der Néhe-
rungslosung im rotierenden Koor-
dinatensystem. Die Parameter sind
so gewihlt, dass die Abweichungen
sichtbar werden; unter realistischen
Bedingungen sind die Unterschiede
kaum sichtbar.

Man macht dadurch einen kleinen Fehler, der aber
auf die Langzeitentwicklung des Systems nur einen
geringen Einfluss hat. Abb. 3.9 zeigt die zeitliche
Entwicklung der Magnetisierung. Einmal wurden
dafiir direkt die zeitabhiingigen Bewegungsgleichun-
gen numerisch integriert. Fiir die Abbildung wurden
dabei Parameter verwendet, welche den Unterschied
gegeniiber einer realistischen Situation stark vergro-
Bern. Das zweite Mal wurde die Nidherungsform be-
nutzt, welche die gegenldufige zirkulare Komponen-
te nicht beriicksichtigt.

Es gibt zwei Unterschiede zwischen der exakten und
der gendherten Form: die geniherte Form enthilt
keine Anteile, die mit der doppelten Larmorfrequenz
oszillieren und die niedrige Frequenz ist gegeniiber
Aw leicht verschoben. Beide Effekte sind bei reali-
stischen Parametern sehr viel kleiner als hier gezeigt.
Die Verschiebung der Resonanzfrequenz, die qua-
dratisch vom Frequenzverhéltnis abhingt, ist jedoch
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3 Dynamik von Spinsystemen

unter geeigneten Bedingungen messbar und wird als
Bloch-Siegert-Verschiebung bezeichnet. Im Folgen-
den soll jedoch immer die Nidherung verwendet wer-
den und diese geringen Abweichungen werden nicht
weiter behandelt.

3.1.9 Spezialfiille

Es lohnt sich, einige Spezialfille zu betrachten.
Die Larmorprizession im rotierenden Koordinaten-
system geschieht immer um das effektive Feld @, sy,
welches durch die Vektorsumme des RF-Feldes
mit dem Verstimmungsfeld Aw in z-Richtung gebil-
det wird. Verschwindet eine dieser beiden Kompo-
nenten, so geschieht die Prizession um die andere
Koordinatenachse.

a) Aw#0 b) Aw #0

wl#O

freie Prazession resonante Anregung

Abbildung 3.10: Losung der Bewegungsgleichung:
Prizessionsbewegung des Spins fiir
den Fall der freien Prézession
(links), der resonanten Anregung
(rechts) und den allgemeinen Fall
(Mitte).

Den einfachsten Fall erhalten wir, wenn das RF Feld
verschwindet, also bei der freien Prizession (Bild
3.10 a). Der andere Extremfall ist derjenige der re-
sonanten Einstrahlung, A®w = 0, mit einer entlang
der x-Achse orientierten Spule. In diesem Fall ge-
schieht die Prizession um die x-Achse (Bild 3.10 ¢).
Die Prizessionsgeschwindigkeit ist in diesem Fall
;. Die Magnetisierung wird mit der Kreisfrequenz
; zwischen den Zustinden 1 und | ausgetauscht.
Dieser Prozess wurde zuerst von Rabi in Molekular-
strahlen beobachtet [20]. @; wird deshalb als Rabi-
Frequenz bezeichnet. Die Form des Kegels ist ab-
hingig von den Anfangsbedingungen.

3.1.10 Resonante Anregung

Bei den meisten Experimenten ist das System zu Be-
ginn im thermischen Gleichgewicht. Es besteht dann
eine Magnetisierung mit Betrag M, welche parallel
zum Magnetfeld ausgerichtet ist,

0
0
1

0= M(0) =M,

Wird dieser Zustand mit einem resonanten RF-Feld
angeregt, so beginnt die Magnetisierung um das ef-
fektive Feld zu préazedieren. Die Bewegung erfolgt
somit auf einem GroBkreis der Kugel mit Radius M.
Der einfachste Fall entspricht der Einstrahlung eines
RF-Feldes entlang der x-Achse. Im rotierenden Sy-
stem vereinfachen sich die Bewegungsgleichungen
(3.4) dann zu

M,
dt
M,
dt
M.

dt

0

—(»()1MZ

(DlMy,

was eine einfache Rotationsbewegung (Rabi-
Prézession) in der yz-Ebene beschreibt:

M (t) = 0
My(l‘) = —M sin(colt)
M. (1) = Mycos(mt).

Strahlt man nur fiir eine zeitlich begrenzte Dauer
tpuis €in, dann kann man den Drehwinkel ¢ = @tp,s
einstellen, den der Magnetisierungsvektor nach dem
Puls mit der z-Achse einschlief3t:

¢© = Witpy;s = _YBltPuls~

Man kann z.B. ¢ = /2, d.h. eine Pulsldnge tp,;; =
7/(2w;) wihlen und so die Magnetisierung in die
y-Richtung des rotierenden Systems drehen. Mit ei-
nem solchen 7 /2- oder 90°-Puls kann man also eine
transversale Magnetisierung (d.h. M L B) erzeugen.
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Wihlt man die Pulsdauer doppelt so lang, d.h.
strahlt man einen 7-Puls ein, dann kann man die z-
Magnetisierung invertieren. Diese Magnetisierungs-
zustinde, also z.B. M||y und M|| — z, sind nach Ab-
schalten des RF-Feldes im rotierenden System (und
M]|| — z sogar im Laborsystem) zeitlich stabil, solan-
ge wir keine Relaxationseffekte (— Kap. 3.2) be-
trachten.

Abbildung 3.11: Bewegung des Magnetisierungs-
vektors im Laborsystem.

Betrachtet man die z.B. zu einem 7-Puls korrespon-
dierende Bewegung der Magnetisierung im Labor-
system, so muss diese Priazessionsbewegung um das
effektive Feld der Larmorprézession iiberlagert wer-
den. Die resultierende Bewegung kann, vom Labor-
system aus betrachtet, als Spirale auf der Einheitsku-
gel dargestellt werden, wie in Abb. 3.11 gezeigt.

3.2 Relaxation

3.2.1 Phéinomenologie

Es ist physikalisch unplausibel, dass die Prizessions-
bewegung der Spins um das dullere Magnetfeld be-
liebig lange weiterlduft.

Wir wissen auch experimentell, dass in einem Mate-
rial, das sich ldngere Zeit in einem Magnetfeld befin-
det, eine Magnetisierung entsteht, die parallel zum
Feld ausgerichtet ist. Dies wird von unserem bis-
herigen Modell nicht richtig vorausgesagt. Um ein
realistischeres Modell zu erhalten, miissen wir zu-
sitzliche Mechanismen betrachten, welche die Ma-
gnetisierung in Richtung auf die Gleichgewichtslage
M ||B treiben. Analog dauert es eine gewisse Zeit bis

Bo
B(t)
Mo
ﬂ \
Zeit

Abbildung 3.12: Aufbau und Zerfall der Magnetisie-
rung beim Ein- und Ausschalten ei-
nes Magnetfeldes.

eine urspriinglich vorhandene Kernmagnetisierung,
nach Entnahme der Probe aus einem Magnetfeld, ab-
geklungen ist, wie in Abb. 3.12 skizziert. Man fasst
diese Phidnomene unter dem Namen Relaxation zu-
sammen.

Eine Untersuchung der Relaxation ist aus zwei
Griinden wichtig: Zum einen ist sie notwendig,
um die beobachtete Spindynamik zu verstehen und
die Durchfithrung von Experimenten zu optimieren.
Zum anderen liefert die Messung von Relaxations-
raten oft interessante Informationen iiber die Um-
gebung des Systems, insbesondere iiber molekula-
re Bewegungsprozesse. In der bildgebenden NMR
(MRI) werden Relaxationsprozesse als Kontrastme-
chanismen verwendet, z.B. um Tumore zu erkennen.

3.2.2 Longitudinale Relaxation

Es ist sinnvoll, bei der Betrachtung der Relaxation
die Komponenten der Magnetisierung parallel und
senkrecht zum Magnetfeld getrennt zu diskutieren.
Ein wesentlicher Unterschied zwischen den beiden
liegt in der Tatsache, dass die Energie des Systems
von der z-Komponente, also der Komponente par-
allel zum Magnetfeld, abhingt, aber nicht von den
Komponenten senkrecht dazu. Eine Anderung der
Komponente parallel zum Feld beinhaltet deshalb
einen Austausch von Energie zwischen dem System
und seiner Umgebung.

Abb. 3.13 zeigt schematisch die mikroskopischen
Prozesse, welche bei der longitudinalen Relaxati-
on ablaufen: In einem Ensemble von Spins, wel-
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I

4

Abbildung 3.13: Relaxation der Populationen.

ches sich nicht im thermischen Gleichgewicht befin-
det, dndern einzelne Spins ihre Orientierung, bis der
Gleichgewichtszustand erreicht ist.

Makroskopisch betrifft dies die Komponente der
Magnetisierung parallel zum Magnetfeld, welche
durch die Larmorprizession nicht beeinflusst wird.
Im Gleichgewicht ist ihr Betrag ist proportional zur
Stirke des Feldes,

0
My=My=| 0 |; My = cBy,
My

wobei wir die libliche Orientierung des B-Feldes vor-
ausgesetzt haben. Die Proportionalitdtskonstante ¢
ist nach Curie gegeben durch die Temperatur 7', die
Dipolstirke p und die Dichte N der magnetischen
Dipole:

u? I(I+1)

3kgT 3kgT
Diese Form kann leicht aus dem Boltzmann Gesetz,

d.h. aus der Maximierung der freien Energie herge-
leitet werden.

c=N = N (yh)?

Zeit
Abbildung 3.14: Zeitabhingigkeit der longitudina-

len Magnetisierung.

In einfachen Fillen findet man, dass die Magneti-
sierung exponentiell auf den Gleichgewichtswert zu-

strebt, wie in Abb. 3.14 dargestellt
M, (t) = Mo+ (M,(0) — My)e /™.

Hier ist My der Gleichgewichtswert der Magneti-
sierung und 77 die Zeitkonstante, mit der das Sy-
stem diesem Gleichgewicht zustrebt. Die exponen-
tielle Zeitabhiingigkeit ist zunéchst ein experimen-
teller Befund. Fiir einen Spin 1/2 kann man sie auch
herleiten, wenn man annimmt, dass die Umgebung
einer Rauschquelle ohne Gedichtnis entspricht. Dies
ist in den meisten Féllen eine sehr gute Niherung.

Die Zeitkonstante 77 wird als longitudinale Relaxa-
tionszeit oder Spin-Gitter Relaxationszeit bezeich-
net. Der letztere Name bezieht sich darauf, dass bei
diesem Relaxationsprozess Energie zwischen dem
Spinsystem und der Umgebung ausgetauscht wird,
welche aus historischen Griinden als Gitter bezeich-
net wird.

3.2.3 Dynamik im Gleichgewicht

Die zugrunde liegende Physik wollen wir nun fiir
den einfachen Fall eines Spin-1/2 Systems etwas ge-
nauer betrachten. Hier es gibt zwei Energieniveaus
&y = Fhom, die wir mit "+" und "-" kennzeich-
nen. Hierbei ist m die magnetische Quantenzahl mit
|ml=1/2. Die Niveaus sind mit N, (unteres Niveau)
bzw. N_ (oberes Niveau) magnetischen Momenten

des Betrags

p=yL=yhl

besetzt. Fiir die z-Komponente der Magnetisierung
gilt also
—N_

N,
M, =yh————
c= Y

Wenn Ubergiinge zwischen diesen beiden Zustinden
stattfinden, ist es sinnvoll, eine Bilanzgleichung zu
formulieren. Die beiden Populationen dndern sich
auf Grund von Ubergiingen um

dN., dN_
7 + 1 + Wt dt
dN_
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m=-1/2 E. = +h/2

W W,

m=+1/2 E+ =-h/2
Abbildung 3.15: Ubergiinge zwischen den beiden
Spinzustéinden.

Hierbei bezeichnen W; und W, die Raten, d.h.
die Ubergangswahrscheinlichkeit pro Zeiteinheit,
zwischen den beiden Zustinden. Im thermischen

Gleichgewicht dndern sich die Besetzungszahlen
nicht, d.h.

dN;  dN_ imGleichgewicht

= 0.
dt dt

3.2.4 Detailliertes Gleichgewicht

Diese Bedingung liefert das so genannte Prinzip vom
detaillierten Gleichgewicht (detailed balance) fiir die
durch die Null gekennzeichneten Gleichgewichtsbe-
setzungen N : Aus der Gleichung

dN. — N_W, N, Wi im Gleichgewicht
dt
folgt
N W,
NO Wy

Die Besetzungswahrscheinlichkeiten sind proportio-
nal zu den entsprechenden Boltzmann-Faktoren, die
wir fiir kleine Argumente, d.h. in der Hochtempera-
turndherung, entwickeln kdnnen

NY e G/keT 1 — & [kgT 1+ hop/2ksT
NO e /T T 1—& JkgT — 1—hayp/2kgT

_1+a_@
_l—a_WT'

Hier haben wir die dimensionslose GroBle a =
liwy,/2kpT definiert, welche dem halben Verhiltnis

zwischen magnetischer und thermischer Energie ent-
spricht. Wir konnen nun die Besetzungszahldiffe-
renz im Gleichgewicht Nﬂ —N° = no mit dem Fak-
tor a und der Gesamtzahl der Spins

N +N_=N=N)+N°
in Verbindung setzen. Denn aus

Nﬂ)r 1+a
N

l—a
folgt

N2(1—a) = N°(1 +a)
oder

NY —N® =g = a(N? +N°) =aN.

In der NMR sind die typischen relativen Besetzungs-
zahldifferenzen

_ NY—-N°

no
TN

N

a < 1,

d.h. sehr klein. Dies rechtfertigt die obige, linea-
re Entwicklung der Exponentialfunktion. Fiir @, =
27600 MHz (der Larmorfrequenz von Protonen in
einem Feld von 14 T) und 7" = 300 K (dies entspricht
einer Frequenz von @y = kgT /h = 30000 GHz) ist
la| = 5-107°. Das bedeutet, dass typischerweise nur
ca. ein Hunderttausendstel aller Spins in der Gesamt-
Kernspin-Magnetisierung sichtbar werden.

Die Addition der Bilanzgleichungen (3.5) liefert
d

Ni+N_)=0
dt( ++ ) )

d.h. die Gesamtzahl der Spins ist konstant, wie es
sein sollte. Die Differenz ergibt

d

dt(N+—Nf)

2(N-W, — N, W)
2Wo[N-(14a) =N, (1—a)],

wobei W, die mittlere Rate darstellt, W, = (W¢ +
W;)/2. Mit der Abkiirzung n = N, — N_ erhilt man

d
—n
dt

(1) = 2Wo[-n(r)+aN).
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Durch Multiplikation dieser Gleichung mit 7 /2 fin-
det man schlieBlich

d. —— My—M,

dt e T ’
wobei My die Gleichgewichtsmagnetisierung
bezeichnet. Offenbar gilt fiir die Spin-Gitter-

Relaxationszeit 1 /7 = 2W.

Die Differential-Gleichungen werden durch den ex-
ponentiellen Ansatz

n(t) = Ae Wl L B,

bzw. den entsprechenden Ausdruck fiir die Magne-
tisierung geldst, wobei die Konstanten A und B aus
den Anfangsbedingungen zu bestimmen sind.

Die Raten W;; und damit die Spin-Gitter-
Relaxationszeit 7 werden durch eine zeitabhéngige
Wechselwirkung V(7) zwischen System und Umge-
bung vermittelt. Fiir solche Prozesse kann man die
Zahl der Uberginge von Zustand a nach b aus der
zeitabhingigen Storungstheorie herleiten (Fermi’s
Goldene Regel)

21

Poy = =1 (BIV]a)  6(6,— 6~ 1o).

Hier bezeichnet V die Stérung und die Deltafunk-
tion zeigt an, dass die Storung eine Frequenzkom-
ponente bei der Ubergangsenergie enthalten muss.
Die relevanten Prozesse, welche die Ubergiinge trei-
ben, sind meist Bewegungsprozesse von Atomen
oder Molekiilen, oder von magnetischen Verunreini-
gungen. "Spontane” Ubergiinge, d.h. Ubergiinge auf
Grund der Kopplung an die Vakuum-Fluktuationen
des elektromagnetischen Feldes, spielen bei der ma-
gnetischen Resonanz praktisch keine Rolle, da die
entsprechenden Raten sehr gering sind.

3.2.5 Transversale Komponenten

Die transversalen Komponenten wiirden aufgrund
der Larmorprézession dauerhaft um das Magnetfeld
rotieren. Experimentell findet man, dass diese Rota-
tionsbewegung geddmpft ist, d.h. die transversalen

Komponenten zerfallen, wobei der Zerfall in einfa-
chen Fillen wiederum exponentiell ablduft. Anstel-
le der oben angegeben Losung fiir die transversalen
Komponenten findet man deshalb ein Verhalten, das
als Rotation mit zerfallender Amplitude beschrieben
werden kann:

M, (0) cos(Awt — @) e/
Mxy(O) sin(Awr — @) e /T2

Die Zeitkonstante 7> wird hierbei als transversale
Relaxationszeit bezeichnet. Der Name Spin-Spin-
Relaxationszeit, welcher ebenfalls gebrduchlich ist,
kann in diesem Zusammenhang hochstens so moti-
viert werden, dass dafiir keine Kopplung ans Gitter
notig ist.

M, oc e/

N
&

Abbildung 3.16: Evolution der transversalen Ma-
gnetisierung (links) und der x-
Komponente (rechts).

Die aus der transversalen Relaxation resultierende
Bewegung des Vektors der Gesamtmagnetisierung
ist offenbar eine Spirale, resp. fiir die einzelnen
Komponenten eine gedimpfte Oszillation. Die trans-
versale Relaxation kann wiederum in den Bewe-
gungsgleichungen durch einen Zusatzterm beriick-
sichtigt werden. Die entsprechenden Gleichungen
lauten dann im rotierenden Koordinatensystem (aber
immer noch ohne RF-Feld)

i = AoM iM
" R
d 1

— = AoM,— —M,.
dr O M T Y

Solange wir das RF Feld nicht beriicksichtigen, sind
die transversalen Komponenten unabhéngig von der
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longitudinalen Komponente. Wir konnen damit die
Evolution des Systems direkt aus der Evolution der
einzelnen Komponenten zusammensetzen.

Abbildung 3.17: Evolution der Magnetisierung un-
ter Beriicksichtigung von Larmor-
préizession und Relaxation.

Wie in Abb. 3.17 gezeigt, entspricht die dreidimen-
sionale Losung der Bewegungsgleichung einer spi-
ralformigen Bewegung in Richtung auf die Gleich-
gewichtsmagnetisierung My, welche parallel zur z-
Achse ausgerichtet ist.

Wenn wir jetzt auch das RF-Feld beriicksichtigen,
erhalten wir die vollstindigen Bewegungsgleichun-
gen fiir die Magnetisierung

al ] 1
M; ! My
—1/T2 —ACO() Mx
Ay —1/T2 — My
(O]} _1/T1 M,

Diese Gleichungen werden als Bloch-Gleichungen
bezeichnet, nach Felix Bloch, einem der Entdecker
der NMR, der sie zuerst verwendete, um die Ex-
perimente zu erkldren [1]. Sie werden inzwischen
nicht nur in der magnetischen Resonanz verwen-
det, da Feynman, Vernon und Helwarth gezeigt ha-
ben, dass ein beliebiges quantenmechanisches Zwei-
niveausystem sich wie ein Spin-1/2 verhalt und des-
halb durch die Blochgleichungen beschrieben wer-
den kann [10].

3.3 Stationire Losung der
Bloch-Gleichungen

Die stationdren Losungen der Bloch-Gleichungen
konnen relativ einfach gefunden werden, z.B. indem
man jeweils eine Gleichung

d
—M, =
dt

—Awg M, — YI"ZMX =0
nach einer Variablen auflost, z. B.
M, = —AwyT, My,
und damit M, in der zweiten Zeile eliminiert.

Als Resultat erhélt man die folgende stationdre Lo-
sung:

M, Ao,
My
M, -1 2 270 @ /T
M, ;22+Aa)0+a)172 %JFA(D%
Rl 2

Wir betrachten nun zunichst die Komponenten ein-
zeln. Es zeigt sich dabei, dass die Relaxationszei-
ten die Form und Amplitude der Resonanzlinien als
Funktion der Frequenz bestimmen. Dies bietet prin-
zipiell die Mdoglichkeit, 71 und 7> auch in einem
CW-Experiment, also ohne die Einstrahlung von RF-
Pulsen zu bestimmen.

3.3.1 Longitudinale Magnetisierung
Die z-Komponente wird

1 2
7 + Ay

M, 3T

077 2
T—224—A(x)()—|r(1)1 T

(1

Wir betrachten folgende Grenzfille:

CO%T] T
1+ A}T? + @

3.6)
i TZ)

¢ verschwindende RF-Feldstirke, w; — 0,

MZ°° :M07

d.h. wir erhalten den ungestorten Fall (System im
Gleichgewicht) zuriick.
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* grofle RF-Feldstiarke, @; — oo: in diesem Fall
konnen wir bei den Termen im Nenner die bei-
den, die nicht von der RF Feldstérke abhingen,
vernachlédssigen und erhalten

My =Mo(1-1) =0,

d.h. die longitudinale Magnetisierung verschwindet
weil beide Zustinde gleich stark bevolkert sind. Man
bezeichnet dies als Sattigung.

Verstimmungsabhéngigkeit:

Awo

Abbildung 3.18: Verstsimmungsabhingigkeit  der
longitudinalen Magnetisierung fiir
unterschiedlich starke Einstrah-
lung.

Die z-Magnetisierung wird minimal fiir resonante
Einstrahlung, d.h. Aw = 0. Der Wert der verblei-
benden Magnetisierung hingt ab von der Stérke der
RF-Einstrahlung, d.h. von ;. Abb. 3.18 zeigt die
Abhingigkeit von der Resonanzverstimmung Ay
fiir die folgenden Parameter: 7, = 1,71 = 1,0, =
1.0 und 3.0. Die Verstimmungsabhingigkeit dieser
Funktion gibt uns somit die Form der Absorptionsli-
nie. Man erkennt leicht, dass die Funktion ihr Mini-
mum erreicht, wenn die Verstimmung verschwindet,
Awg = 0.

Die Breite der Resonanzlinie kann aus der obigen
Form bestimmt werden: Die Abweichung von 1
nimmt auf die Héilfte ab, wenn AngZZ gleich grof3
wird wie die beiden andern Terme. Dies bedeu-
tet, dass fiir niedrige RF-Leistung, a)lzT 11 < 1 die

Halbwertsbreite gerade durch die transversale Rela-
xationszeit gegeben ist, Aw;/, = 1/T,. Fiir hohere
Leistungen erhilt man eine Leistungsverbreiterung:

T,
+w? L.
T2

Awyjy = 7

3.3.2 Absorbierte Leistung

Die Energiedichte der Magnetisierung ist gegeben
durch

& Lo
8 — _M-B = —M_By.

Somit ist die z-Komponente der Magnetisierung ein
MaS fiir die Energiedichte des Systems.

Wie in Kapitel 3.2.2 diskutiert, zerféllt die Differenz
M, — My mit der Zeitkonstante 77, indem sie Energie
mit dem Gitter austauscht. Im stationédren Fall muss
die Energiedichte konstant sein und das Spinsystem
gleich viel Energie vom RF Feld aufnehmen, wie es
an das Gitter abgibt. Somit ist die absorbierte Lei-
stung pro Volumen

P d Sy Mo—M;

\% dt 'V T
_ BoMj 0T
T <1+Aw§T22+a)12T1T2>’

wobei fiir M, der stationdre Wert (3.6) eingesetzt
wurde. Der Term in Klammern verschwindet fiir
kleine RF Leistungen (@; < T173) oder grof3e Ver-
stimmungen Awg > T22, d.h. es wird dann keine
Energie mehr absorbiert. Der Maximalbetrag fiir
grofBe Leistungen

Ol Ty > 1, A&} T3

ist offenbar
P max BOMO
v T,

Unter diesen Bedingungen verschwindet M,, d.h.
beide Spinzustinde sind gleich besetzt. Da eine wei-
tere Erhohung der eingestrahlten Leistung nicht zu
einer hoheren Absorption fiihrt, sagt man, das Sy-
stem sei vollstandig gesittigt.
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3.3.3 Absorption und Dispersion

Die transversalen Komponenten der Magnetisierung
beschreiben Absorption und Dispersion des Medi-
ums. Thr Einfluss auf das detektierte Signal kann di-
rekt aus dem Faraday’schen Induktionsgesetz herge-
leitet werden. Demnach ist die Spannung iiber einer
Leiterschlaufe
dd d =
V() = T /SpuledeA,

wobei ® den magnetischen Fluss durch die Schleife
darstellt, B die Flussdichte und 7 die Flichennormale
auf die Ebene der Leiterschleife.

Im vorliegenden Fall ist die Schleife gegeben durch
die Windungen der RF Spule. Die transversalen
Komponenten der Magnetisierung liefern einen Bei-
trag zur magnetischen Induktion

B = puo(H+M).
Der Fluss durch die Spule wird bestimmt durch die
x-Komponente, d.h.

By = po(He+M,).

Da H, nicht zeitabhingig ist, verschwindet sein Bei-
trag. Der Beitrag der Magnetisierung zur Spannung
ist proportional zu
M, Iy
“Tar T T
Da diese Messung im Laborsystem durchgefiihrt
wird, miissen die Magnetisierungskomponenten im
Laborsystem eingesetzt werden, wihrend die oben
berechneten stationdren Losungen der Blochglei-
chung sich auf das rotierende Koordinatensystem be-
ziehen. Die Transformation ins Laborsystem ergibt,
dass beide transversalen Komponenten der statio-
niren Losung zum Signal beitragen:

V(1)

V() o —wyMy
— o [Myo, cos(@t) + Mo sin(@r)] .

Normalerweise fiihrt man einen phasenempfindli-
chen Nachweis durch, d.h. man misst die Kompo-
nenten o cos(®t) und o< sin(@t) separat. Damit er-
hilt man die sog. Quadraturkomponenten M,., und
M., welche den stationdren Werten im rotierenden
Koordinatensystem entsprechen.

3.3.4 Transversale Komponenten

Die transversale Magnetisierung kann (jetzt wie-
der im rotierenden Koordinatensystem) geschrieben
werden als

My
1+ A3 T} + 0T T

Awyw, T}
o T,

(o)

In dieser Darstellung sind alle Terme (abgesehen
vom Vorfaktor My) dimensionslos. Fiir gro3e Ver-
stimmung A® — £oo geht der Gleichgewichtswert
— 0, da dann der Verstimmungsterm im Nenner
dominiert. Allerdings fillt die x-Komponente mit
1/Aax ab, die y-Komponente mit 1/Awg.

Am stédrksten unterscheiden sich die beiden Terme in
ihrem Verhalten in der Nihe der Resonanz (Awy =
0): Die x-Komponente, welche im Zihler proportio-
nal zu Aawy ist, weist auf der Resonanz einen Null-
durchgang auf, wihrend die y-Komponente hier ihr
Maximum erreicht.

3 0 3

Verstimmung AwgT>

Abbildung 3.19: Stationdre Werte der Magnetisie-
rung als Funktion der Verstim-
mung.

Die beiden Kurven zeigen offenbar qualitativ das
gleiche Verhalten wie im Falle des klassischen har-
monischen Oszillators. Fiir kleine Intensititen,

gt

resultiert das bekannte Lorentzprofil mit der Brei-
te 1/7». Der dritte Term im Nenner beschreibt den

T
—— A(Dgl
VAP T
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Effekt einer Leistungsverbreiterung, also einer Ver-
breiterung der Resonanzlinie bei hohen Leistungen.
Abb. 3.19 zeigt die Abhingigkeit aller drei Kompo-
nenten der Magnetisierung von der normierten Ver-
stimmung 0 = AwyT».

3.4 Grundlagen der
quantenmechanischen
Beschreibung

Bisher haben wir alle Wechselwirkungen klassisch
beschrieben, wobei wir die Tatsache, dass die un-
tersuchten Systeme in Wirklichkeit stationidre Zu-
stinde besitzen, als zusdtzliche ad-hoc Annahme
beriicksichtigt haben. Um wirklich Signale berech-
nen zu konnen, ist es jedoch notwendig, zu einer
echt quantenmechanischen Beschreibung iiberzuge-
hen. Dies ist gliicklicherweise fiir Spinsysteme be-
sonders einfach: Sie konnen exakt in einem endlich-
dimensionalen Hilbertraum beschrieben werden, im
Gegensatz zu allen Systemen mit rdumlichen Frei-
heitsgraden, welche prinzipiell immer unendlich vie-
le Zusténde besitzen.

3.4.1 Vorgehen

Wie bei anderen spektroskopischen Experimenten
wird auch in der NMR oder ESR ein Spektrum da-
durch bestimmt, dass unterschiedliche Frequenzen
der elektromagnetischen Strahlung unterschiedlich
stark absorbiert werden.

"7 AE
>

Lage der Resonanzlinien wird
durch Absténde zwischen
Energieniveaus bestimmt

hv

Abbildung 3.20: Resonanzbedingung und Absorpti-
onslinie.

Fiir ein gegebenes quantenmechanisches System
hingt die Stirke einer Absorption davon ab, ob die
Resonanzbedingung A& = hv erfiillt ist, wie grof3
die Populationsdifferenz zwischen den entsprechen-
den Zustinden ist, und wie stark die Ubergangsma-
trixelemente fiir den entsprechenden Ubergang sind.
Neben der Lage und Hohe der Resonanzlinien inter-
essiert auch die Breite, welche durch Relaxations-
prozesse bestimmt wird.

* Spinsystem
* Quantenmechanischer
Wechsel- Formalismus
wirkungen Bla

B

a

c

7
¢ =

Spektrum: Frequenzen,
Amplituden, Phasen,
Lfpienbreiten

Abbildung 3.21: Berechnung des Spektrums aus den
Parametern des Spinsystems.

Zu jedem gemessenen Spektrum mochte man die zu-
gehorigen Parameter des mikroskopischen Systems
bestimmen konnen. Wihrend dies fiir gelibte Spek-
troskopiker in vielen Féllen moglich ist, gibt es kein
systematisches Vorgehen dazu. Ein solches existiert
nur fiir den umgekehrten Weg, d.h. fiir die Berech-
nung des Spektrums aus den bekannten Parametern
des Spinsystems.

Dazu muss man zunéchst den Hamiltonoperator auf-
stellen und diagonalisieren. Aus den Eigenwerten,
d.h. den Energien, erhilt man die Resonanzfrequen-
zen als Differenzen zwischen den Energien der be-
teiligten Zustidnde. Fiir die Berechnung der Amplitu-
den muss der transversale Spinoperator (z.B. 1) in
die Eigenbasis transformiert werden. Die Quadrate
der Matrixelemente dieses Operators bestimmen in
einfachen Fillen die Amplituden. Die Linienbreiten
erhdlt man aus dem Relaxationsverhalten, welches
zuvor nur kurz phinomenologisch diskutiert wurde.

Fiir die Berechnung des Spektrums verfolgen wir
hier direkt das Experiment, d.h. wir berechnen das
erwartete Signal, indem wir den Zustand des Sy-
stems und die Observable bestimmen, mit der die

62



3 Dynamik von Spinsystemen

Praparation freie Evolution

p(0)
/ o), Ik/1y/ 1,

, Messung

Zeit

Signal

Abbildung 3.22: Schema zur Berechnung des Spek-
trums.

Messung durchgefiihrt wird. Wir diskutieren hier le-
diglich zeitaufgeloste Experimente, d.h. Experimen-
te, bei denen ein Spinsystem durch einen RF-Puls
angeregt wird und wihrend der anschlieenden frei-
en Evolution das Signal als Funktion der Zeit gemes-
sen wird (— Abb. 3.22). Das Spektrum erhélt man
anschlieBend durch Fourier-Transformation. Dies ist
ein wesentlicher Unterschied zu praktisch allen iib-
rigen spektroskopischen Methoden, bei denen meist
die so genannte CW (= continuous wave) oder fre-
quenzaufgeldste Methode verwendet wird: In diesen
Fillen wird das System durch eine monochromati-
sche Strahlungsquelle angeregt und die Absorption
oder Dispersion fiir diese Strahlung gemessen, wenn
die Frequenz langsam variiert wird. Die zeitaufgelo-
ste Methode ist demgegeniiber deutlich flexibler und
leistungsfihiger. Sie kann so eingestellt werden, dass
sie die gleichen Informationen liefert wie die fre-
quenzaufgeldste Messung, allerdings in wesentlich
kiirzerer Zeit. Sie kann aber auch dazu genutzt wer-
den, um Informationen zu erhalten, welche tiber die
CW-Methode nicht zuginglich sind, wie z.B. bei der
mehrdimensionalen Spektroskopie (— Kap. 5).

3.4.2 Spin-Zustinde

Die quantenmechanische Beschreibung der NMR ist
deshalb besonders einfach, weil wir es fiir alle prak-
tischen Belange mit einem endlich dimensionalen
Hilbertraum zu tun haben. Im einfachsten Fall eines
Spin-1/2-Systems wird dieser durch 2 Basiszustéin-

de aufgespannt, die wir je nach Kontext mit

) o) )
) B) )

bezeichnen werden. Wir wollen dabei immer ortho-
normierte Basiszustinde wihlen, um damit beliebige
Uberlagerungszustinde

+

oder

D=9 —

oder I I

W) =ci1| 1) +c2l |)

beziehungsweise den adjungierten Zustand

(Wl =T+l |

mit den komplexen Koeffizienten c¢; und ¢, darzu-
stellen. Diese geben Wahrscheinlichkeitsamplituden
an, sodass

e +eal? = 1

gilt. Oft ist es zweckmissig, die Zustandsfunktionen
als Vektoren auszudriicken,

w v —a( ) re

Die Adjungierte ist

0
1

1
2

(P =¥ = (c],c3).

Fiir Spins 7 > 1/2 schreibt man die Spin-Zustinde
oft explizit mit Hilfe der Spinquantenzahl / und der
magnetischen Quantenzahl m, d.h. des Eigenwertes
von I, als |¥;,,) = |I,m). Es gilt

P|1,m)
L1, m)

I(I+1)|1,m)

m|l,m),

d.h. die |I,m) sind simultan Eigenfunktionen von P
und 1,. Diese Operatoren konnen somit gleichzeitig
scharf gemessen werden. Dies kann man durch den
Kommutator

A

[I aiz] =0

ausdriicken. Im Folgenden, werden die Operatoren
nicht mehr gesondert durch ein * gekennzeichnet.

63



3 Dynamik von Spinsystemen

3.4.3 Spin-Operatoren

Wie fiir andere Drehimpulse gelten auch fiir den
Spin die Vertauschungsregeln

L, L)) =il

und cycl. Es kann somit immer nur eine Komponen-
te des Spins einen dispersionsfreien Wert annehmen.
Wie wir das gerade getan haben, wéhlt man dafiir im
Allgemeinen die z-Komponente und schreibt fiir den
Eigenwert des I,-Operators m. Somit gilt, dass m die
Werte von —/ bis 4/ annehmen kann.

Fiir einen Spin 1/2 sind die Matrixdarstellungen der
einzelnen Operatoren

= ()

In vielen Féllen ist es auch niitzlich, die Operatoren

. 0 1
I+:Ix+lly = < 00 >

I =1I—il,= <(1) 8 )

zu verwenden. Offenbar ist

1
Ix: §(I+ +If)

und

i
Iyzf

(L4 L)

Gelegentlich werden diese Operatoren auch anders
normiert, z.B.

1
V2
Spin-Operatoren fiir Spins / > 1/2 konnen mit Hilfe
der Formeln

L=—(I+1).

(Yrmst [ [Yrm)
(Prm[l-[Prm) =
<‘Pl,m‘lz’lpl,m>

Il
3

berechnet werden. Alle {ibrigen Matrixelemente ver-
schwinden.

Als einfaches Beispiel berechnen wir explizit die
Matrixelemente des Leiteroperators I, fiir einen

Spin 1/2:
(+311+] - 2>>
1
2)

_ (Gl
’+‘<< Do+ Dy d -

—all |+ 3)
(01
- \0 0 /"
3.4.4 Beschreibung eines Ensembles

In vielen Experimenten, die in diesem Zusammen-
hang interessieren, besteht das physikalische System
aus einem Ensemble von Atomen, welches nicht mit
Hilfe einer Wellenfunktion oder Zustandsfunktion
beschrieben werden kann. Als einfaches Beispiel be-
trachten wir drei Spins, von denen sich zwei im Zu-
stand 1 und einer im Zustand | befinden. Man konnte
versucht sein, diesen Zustand mit der Funktion
1
—=@N+1) =

5(1)
V5 V51
zu beschreiben. Um zu tiberpriifen, ob dies sinnvoll

ist, berechnen wir die x-Komponente des Spins fiir
diesen Zustand:

W) =

(L) = (YIL¥)

-5l

- 10(2+2)

(1))

Das Resultat dieser Rechnung ist somit, dass in die-
sem System eine Magnetisierung in x-Richtung vor-
liegt. Dies entspricht jedoch nicht der Beobachtung:
im oben genannten System ist keine Richtung (aufler
der z-Richtung) bevorzugt, die transversale Magne-
tisierung verschwindet.

Dieser Widerspruch zeigt, dass unsere Beschreibung
des Zustandes mit obiger Funktion falsch ist. Kor-
rekterweise miisste man fiir jeden einzelnen Spin die
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entsprechende Komponente ausrechnen und die Re-
sultate addieren:

(L)

Der Schrodinger-Formalismus der Quantenmecha-
nik erlaubt es nicht, direkt Ensembles von gleich-
artigen Quantensystemen zu behandeln. Die mei-
sten Experimente werden aber an Ensembles von
niherungsweise identischen Systemen durchgefiihrt.
Man ist dann gezwungen, fiir jeden einzelnen Spin
die Rechnung separat durchzufiihren. Dies ist bei 3
Spins maoglich, nicht aber bei 10?3. Man muss fiir
diese Fille deshalb einen anderen Formalismus ver-
wenden.

3.4.5 Definition des Dichteoperators

Ein geeigneter Formalismus [9] verwendet den
Dichteoperator. Er kann definiert werden mit Hilfe
der bra-ket Schreibweise

p = [¥)(¥.
Fiir einen einzelnen Spin im Zustand
¥) = al ) + ] 1)
wird der Dichteoperator
p = (al 1) + b 1)@ T+ b))

In der Basis | 1),
Pt

1) wird z.B. das Matrixelement

el 1)
T(al 1) + bl (@ (T [+ (L)1)
a(t[ 1) + b [1))(a (T 1) + (T [1)

i

Pt {
{
(

a

wobei die Orthonormalitit der Zustinde benutzt
wurde, (T]]) = (I | 1) = 0. Analog erhalten wir

p = (LlplL)... = |p]?

pry = (Tlpld)
= (Tlal 1) +b[1)(a (T + b LN
= ab*

pir = {lp[1) =d'b,

oder in Matrixschreibweise

p=( ).

Allgemein sind die Elemente des Dichteoperators ei-
nes reinen Zustandes gegeben durch

la*  ab*
a‘b |b|?

*
pij = cic;,

wobei ¢; die Entwicklungskoeffizienten darstellen.
Daraus folgt auch

_ *
Pij = Pji;

d.h. es handelt sich um einen hermiteschen (=selbst-
adjungierten) Operator.

3.4.6 Eigenschaften, Beispiele

Ein einzelner Spin im 1 Zustand wird demnach
durch den Dichteoperator

-(49)

beschrieben, und einer im | Zustand durch

(00,

Fiir ein Einzelsystem besteht somit eine 1:1 Bezie-
hung zwischen der Zustandsfunktion und dem Dich-
teoperator.

10
0 0

00
0 1

Superpositionszustinde (=Uberlagerungszustinde)
zeichnen sich dadurch aus, dass die zugehorigen
Dichteoperatoren nicht nur Diagonalelemente ent-
halten, sondern auch Auflerdiagonalelemente.
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Abbildung 3.23: Beschreibung einer Spinpolarisati-
onll xund Il y.

Wir betrachten als Beispiel den Zustand
1 1
¥u= —(1+1) = —

A= 5 (0)

welcher ein Eigenzustand des Spinoperators I, ist.
Der entsprechende Dichteoperator ist

o= (2854

Gemil der Definition sind die Diagonalelemente
pii = |ci|* die Besetzungswahrscheinlichkeiten fiir
die entsprechenden Zustidnde. Die Summe

1
1

1
2

la]> ab*
ba* |b|?

1
1

1
1

Sp(p) = Zpiz’ =1

muss deshalb 1 ergeben - dies entspricht der Normie-
rung der quantenmechanischen Zustédnde.

Die Dichtematrix

1
Pa = El‘i‘[x

entspricht physikalisch einem Spin, der in x-

Richtung orientiert ist. Analog erhélt man fiir den in
y-Richtung polarisierten Spin, also einem Zustand

%:émwm»

den Dichteoperator

(

1

PbIE

1
i

—1i

1

)

3.4.7 Dichteoperator fiir Ensembles

Der wichtigste Unterschied zwischen dem Dichte-
operator und einer Zustandsfunktion besteht darin,
dass der Dichteoperator eines Ensembles einfach
durch die Summe der Dichteoperatoren der einzel-
nen Teilsysteme gegeben ist,

1 N
PEnsemble = N 1:21 Pi.

Fiir das aus drei Spins bestehende Ensemble in un-
serem Beispiel wird der Dichteoperator

PZ;;Pi
=30 o) (o 0)r (o))
172 0

S0
Die Diagonalelemente stellen direkt die Populatio-
nen der entsprechenden Zustinde dar. Fiir das vor-
liegende Ensemble finden wir somit 2/3 der Spins

im 1 Zustand, 1/3 im | Zustand.

0 1

Die Nebendiagonalelemente verschwinden in unse-
rem Beispiel. Ist dies nicht der Fall, dann liegt ei-
ne phasenkohirente Uberlagerung von Zustinden
vor. Diese Superpositionszustinde werden oft ein-
fach als "Kohirenz" bezeichnet. Diese Sprechweise
sieht man ein, indem man die Phasen ¢ der Zustinde
explizit ausschreibt

W = [ale'®| 1) + [ple'®| )

und damit den Dichteoperator

o~ |

berechnet. In einem inkohirenten Gemisch, bei dem
die Phasen also keine feste Beziehung zueinander
aufweisen, verschwinden die AuBlerdiagonalelemen-
te. Diese Betrachtung zeigt auch, dass

lal®
|a”b|e—i(wl—<pz)

|a||b|e(91—92)
6|

e die Diagonalelemente (=Besetzungswahr-
scheinlichkeiten) unabhingig von Phasenfakto-
ren sind
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e die AuBerdiagonalelemente nur Differenzen
zwischen den Phasen enthalten. Im Gegen-
satz zu Zustandsfunktionen, bei denen Zustidn-
de ¥’ = ¢"¥ mit beliebigen globalen Phasen ¢
identische physikalische Zustinde bezeichnen,
sind somit Dichteoperatoren eindeutig, d.h. je-
der physikalische Zustand wird durch genau
einen Dichteoperator beschrieben.

Der Dichteoperator des Systems beschreibt einen ge-
mittelten Spin. Man kann ihn verwenden, um die
Zeitabhingigkeit der Mittelwerte zu berechnen. Das
bringt den groen Vorteil, dass wir fiir die Berech-
nung der Zeitentwicklung des Systems nicht zuerst
die Zeitentwicklung jedes einzelnen Atoms berech-
nen miissen, sondern direkt die Zeitentwicklung des
Mittelwertes berechnen konnen. Voraussetzung da-
fiir ist allerdings, dass die verschiedenen Atome gut
voneinander isoliert sind und die gleiche Umgebung
sehen. Die wichtigsten Abweichungen sind Relaxa-
tionseffekte und Inhomogenititen.

Relaxation kommt durch die Wechselwirkung zwi-
schen den einzelnen Teilsystemen zustande, sowie
durch die Wechselwirkung mit der Umgebung. Die-
se geschieht vor allem iiber magnetische Felder
und/oder tiber die translatorischen Freiheitsgrade.

3.4.8 Basisoperatoren fiir den
Dichteoperator

Wie jeder quantenmechanische Operator kann auch
der Dichteoperator in einem geeigneten Satz von
Basisoperatoren aufgespannt werden. Im Fall eines
Spin-1/2 Systems sind sinnvolle Basisoperatoren z.
B. die Spin-Operatoren I, I, I, zusammen mit dem
Einheitsoperator 1. Wir schreiben die Entwicklungs-
koeffizienten als u,v, und w, so dass der Dichteope-
rator folgende Form erhilt:

p' =al +ul, + vl + wl,.

Die Entwicklungskoeffizienten u,v und w sind pro-
portional zu den Erwartungswerten der 3 kartesi-
schen Komponenten des Spinvektors fiir den ent-
sprechenden Zustand.

Die Diagonalelemente des Dichteoperators stellen
Populationswahrscheinlichkeiten dar, z.B. p;; die

Wahrscheinlichkeit, dass sich der Spin im Grund-
zustand befindet. Die Summe der Diagonalelemente
muss deshalb immer gleich 1 sein,

Zpi/i = Sp(p') = Zpi =1,

da sich jedes System in irgendeinem Zustand befin-
den muss. Dies ist identisch mit der Normierungsbe-
dingung fiir die Zustandsfunktion, |¥|? = ¥, |ci|* =
1.

Damit ist der Koeffizient a der Einheitsmatrix fest-
gelegt als

1

1 1

Sp(1) ~ 2I+1 2

fiir einen Spin I = 1/2, und der Dichteoperator wird

1
El—l—ulx—i—vly—f—wlz

( )

2
Der Einheitsoperator 1 vertauscht mit dem Hamil-
tonoperator und ist somit zeitunabhingig. Auflerdem
tragt er zu keiner beobachtbaren Grofie bei. Im Sin-
ne einer Abkiirzung ist es deshalb iiblich, diesen Teil
des Dichteoperators wegzulassen und den reduzier-
ten Dichteoperator

14w u—iv
ut+iv 1—w

p = uly +vI, + wi,

zu betrachten, dessen Spur verschwindet.

Als Beispiel betrachten wir unser Standardensem-

ble:
()05 )
()

Dieses Resultat kann direkt interpretiert werden: Das
Spin-Ensemble ist insgesamt parallel zur z-Achse
polarisiert, wobei die Polarisation 1/3 betrégt, d.h.
der Uberschuss in +z Richtung ist einer von drei
Spins. Die Erwartungswerte fiir die transversalen
Komponenten verschwinden,

() =tr{pL} = (I,) = 0.
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Die Diagonalelemente des reduzierten Dichteopera-
tors konnen kleiner, gleich Null (fiir w = 0) oder gro-
Ber als Null sein. Sie stellen somit nicht Populatio-
nen dar. In Experimenten misst man aber meist nicht
Populationen, sondern Populationsdifferenzen, und
diese sind die gleichen bei p und p’.

3.5 Rechnen mit dem
Dichteoperator

3.5.1 Bewegungsgleichung

Ausgangspunkt fiir die Zeitentwicklung des Dichte-
operators ist die Schrodingergleichung fiir die Zu-
standsfunktion,

d

—¥ = —iY,

dt

wobei hier (wie meistens) Einheiten mit 7z = 1 ver-
wendet werden. In bra-ket Schreibweise entspricht
dies

d
— (VY| = i(W|o7.
S| =B

d

—|¥) = —-i|¥) ,

) = —i|¥)
Fiir einen zeitunabhidngigen Hamiltonoperator .77
lautet die Losung

W(r) = e 19(0).

Durch einsetzen und anwenden der Kettenregel er-
halten wir die Bewegungsgleichung fiir den Dichte-
operator:

dp d
= = (e
= —i|Y) Y|+ |¥)(V|ir#
= —i[A,p]. 3.7)

Da diese Gleichung linear ist, gilt sie nicht nur fiir
ein Einzelsystem, sondern genauso fiir den Dichte-
operator eines Ensembles, falls der Hamiltonopera-
tor fiir alle Einzelsysteme der gleiche ist. Die Glei-
chung wird als Liouville-Gleichung bezeichnet, da
sie der Liouville-Gleichung der klassischen Physik
entspricht, aber auch als Liouville-Schrodinger Glei-
chung oder Schrodinger-Gleichung oder von Neu-
mann Gleichung.

3.5.2 Zeitentwicklung

Die Losung eerhilt man durch Einsetzen der Losung
der Schrodingergleichung fiir die Zustandsfunktion
W

() (¥(2)]
671.';/&‘\}’(0)) <\P(0)‘ei,%”t
efi,%”tp (O)ei,%”t )

p(t)

Die Exponentialfunktion ¢”*? des Hamiltonopera-
tors kann man iiber die Taylorreihe berechnen:

L 1
=14 i + E(i%t)z + ...
Diese Schreibweise ist fiir konkrete Rechnungen
dann besonders brauchbar, wenn man fiir den Opera-
tor die Exponentialdarstellung leicht angeben kann.
Dies ist fiir Diagonalmatrizen der Fall, denn fiir sie
gilt

d 0
D=| 0 &

d 0
pP=| 0 &

e 0
&L = 0 -

Die Berechnung ist daher am einfachsten in der Ei-
genbasis des Hamiltonoperators, wo

&

exp | i &

el}fi 1t
ei%ﬁzzl

Das kann man kompakt schreiben als

(efit%"t)m’n _ efié"mt 5m,n )
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Wenn wir den Dichteoperator in der gleichen Ba-
sis schreiben, konnen wir damit die Losung der
Liouville-Gleichung als

ZZ( t/ft) (0) (efi.%"t>
LXe M Enpn0)¢ b

—i&yt ( ) it

P,
pm.n( e~ {En=bu)

Ponn(t)

kn

schreiben. Die Entwicklungsfrequenzen
Oppn = éam - (gon

der Matrixelemente sind also durch die Energieun-
terschiede zwischen den Niveaus bestimmt.

3.5.3 Signal

Der Erwartungswert einer Observablen A fiir den
Zustand, welcher durch den Dichteoperator p be-
schrieben wird, kann ebenfalls aus der Definition des
Dichteoperators hergeleitet werden. Man findet

ZC C] ij — ijiAij
ij

Y (pA);; = Sp(pA) = Sp(Ap).

J

(4) (WA|Y) =

Fiir die Berechnung von Erwartungswerten ist es
wichtig, dass die Spur eines Operators unter zykli-
schen Vertauschungen invariant bleibt,

Sp{ABC} = Sp{BCA} = Sp{CAB} ,
wie man explizit an

Sp{ABC} = Y (ABC);; = } .} Y AuBuCi;
J j ko1
=) ) CijAjBu = } (CAB); = Sp{CAB}
j k1 l
=Y Y Y BuCijAju = Y (BCA)u = Sp{BCA}
j k1 k

sieht. Daraus folgt zum Beispiel

Sp{p(1)A} = Sp{e”""p(0) " A}

= Sp{p(0)e”"Ae™"} = Sp{p(0)A(r)}
mit

A(l,) — ei:”l‘AefL%ﬂt.

Diese Umformung entspricht dem Ubergang vom
Schrodingerbild zum Heisenbergbild: Im Schrodin-
gerbild ist der Zustand zeitabhingig, wihrend die
Observable invariant ist, im Heisenbergbild ent-
wickelt sich die Observable. Fiir diese lauft die Zeit-
entwicklung umgekehrt als fiir den Dichteoperator.

3.5.4 Evolution eines Spins / =5

Als einfaches Beispiel betrachten wir einige Opera-
tionen an einem Spin / = 1/2. Fiir ein System, wel-
ches durch den Dichteoperator

p =ul,+vl +wl

beschrieben wird, erzeugt der Hamiltonoperator
H = —apl;

die folgende Bewegungsgleichung:

d

P —ilA,p]

wo(—uly +vI).

= wyi[l,uly + vI, + wl]

Diese Gleichung kann offenbar auch als Bewegungs-
gleichung fiir die Komponenten geschrieben wer-
den:

d %
R — (00 —u
dt 0
0 u
= 0 x| v |,

in exakter Analogie zur klassischen Rechnung. Die
Losung lautet somit

u(t) My cOS( ot + @)
v(t) = —myysin(wor + @)
w(r) = w(0)
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und beschreibt die Larmor-Prizession, analog zur
klassischen Rechnung in Kapitel 3.1.2.

In gleicher Weise kann der Effekt eines RF-Pulses
berechnet werden. Bei resonanter Einstrahlung be-
trigt der Hamiltonoperator im rotierenden Koordi-
natensystem

jﬁ) = —(1)1]x.

Ist das System zu Beginn entlang dem statischen
Magnetfeld orientiert, d.h. u(0) = v(0) =0, w(0) =
1, so entwickelt es sich wie

ut) = 0
v(t) = sin(oit)
w(t) = cos(wit).

plwt=mw2)

Abbildung 3.24: Evolution eines Spins wihrend ei-
nes RF Pulses.

Nach einer Zeit
T

tn/z = 20,

ist somit die Magnetisierung von der z— zur
y—Achse gedreht, nach der doppelten Zeit zur —z
Achse, und nach einer Zeit 27w/, hat sie eine
volle Drehung durchgefiihrt und befindet sich wie-
der entlang der z—Achse. Dies entspricht der Rabi-

Oszillation, die bereits in Kapitel 3.1 beschrieben
wurde.

3.5.5 Operatorform

Es ist instruktiv, das Ganze nochmals in Matrizen-
schreibweise zu betrachten. Der Hamiltonoperator
ist

> o=,

Dieser Operator ist spurlos, d.h. die Energie wird im
Mittel nicht verschoben. Der Operator

.y el@t/2
v = = (7 ).

der den Dichteoperator in der Zeit entwickelt, wird
Propagator genannt. Er beschreibt die Zeitentwick-
lung des Systems unabhingig vom Anfangszustand.

Fiir einen konkreten Fall miissen wir die Anfangs-
bedingung festlegen. Wir nehmen hier an, dass mit
Hilfe eines RF Pulses transversale Magnetisierung
erzeugt wurde und die Anfangsbedingung sei

p(0) = L.
Damit ist
p()y = U@pOU (1)
N A S 0 1
) 0 e i¥ 1 0
. i 0
0 eiw.%
_ 1 eiw.% 0 0 eiw.%t
- 2 0 e_iont e_inTt 0
1 (——
T2\ ettt
oder
1 0 1
p(t) - 2COS(COOZ)<1 0)
i . 0 —1
—3 s1n((uoz‘)(1 0 >

I, cos(wyt) — I sin(wot)

in Ubereinstimmung dem Resultat der klassischen
Rechnung in Kapitel 3.1.2.

3.5.6 Dichteoperator im Gleichgewicht

Zu Beginn der meisten Experimente befindet sich
das System im thermischen Gleichgewicht. Wir be-
notigen deshalb den entsprechenden Dichteoperator.
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Der einfachste Fall ergibt sich, wenn das Spinsystem
aus einem Ensemble von identischen Spins I = 1/2
besteht. Der Hamiltonoperator kann dann direkt dia-
gonal geschrieben werden, indem wir die z-Achse
parallel zum dufleren Magnetfeld wihlen. Im Labor-
system lautet er dann

H = —hayl,.

Hier haben wir (ausnahmsweise) die Planck’sche
Konstante explizit verwendet. Im Gleichgewichtszu-
stand wird das System durch einen Dichteoperator
beschrieben, welcher durch den Ausdruck

o~ /ksT
Peq = Sp{e,jf/kBT}

gegeben ist. Hierbei handelt es sich um die Verall-
gemeinerung des Boltzmannfaktors, der die Beset-
zungswahrscheinlichkeit

1 6/t

e

pi:Z

des i-ten Niveaus unseres Spinsystems angibt. Hier
ist der Normierungsfaktor

7 — Ze—g;/kBT _ Sp{e—jf/kgT}
i

die aus der statistischen Mechanik bekannte Zu-
standssumme.

In der Kernspinresonanz sind die Energien 7v = i@
(d.h. der Zahler in den Exponenten) normalerweise
deutlich kleiner als die thermischen Energien kT .
Dies gilt zum mindesten so lange wie

1
T>h GHZN
kg

50mK

~

gilt, also fiir die groBe Mehrheit der NMR Experi-
mente. Deshalb gilt allgemein die Hochtemperatur-
ndherung

A& = hay < kT ,

so dass die Exponentialfunktion entwickelt werden
kann als

| — A [ksT
Peqg = -z

Damit konnen wir auch die Zustandssumme berech-
nen, denn in guter Ndherung gilt

Z~ Sp{1—/kgT} = Sp{1} = 2I+1.
Wir konnen somit schreiben

! h
<1+ wolz>.

A1\ kT
Da die Einheitsmatrix mit jedem Operator kommu-
tiert und somit zur Zeitentwicklung nichts beitrégt,
lasst man den ersten Term meist weg und rechnet,
wie oben schon diskutiert, mit der reduzierten Dich-
tematrix weiter. Die explizite Form des Vorfaktors,
d.h.

Peq

1 hwy

2141 kgT

braucht man fast nie (Ausnahmen: z.B. Empfindlich-
keits-Berechnungen, heteronukleare Kreuzpolarisa-
tionsexperimente), weshalb man ihn ebenfalls meist
wegldsst. Es reicht dann, als anfdnglichen Dichte-
operator den Ausdruck

p(0) o< I

zu betrachten.

3.5.7 Der Pulspropagator

Hp = wily
p(0) o I
Zeit
Abbildung 3.25: Puls-Anregung aus dem

Gleichgewicht.

Als nidchstes regen wir das System an, indem wir
einen Radiofrequenzpuls anlegen. Fiir die gerade
durchgefiihrte Berechnung des Gleichgewichtsdich-
teoperators haben wir das Laborsystem verwendet.
Die nun folgenden Rechnungen werden jedoch wie-
derum im rotierenden Koordinatensystem durchge-
fiihrt. Bei resonanter RF-Einstrahlung konnen wir
den Hamiltonoperator schreiben als

(Vo)

)]
%:(Ollx:f 1 0

2
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Um den Hamiltonoperator zu diagonalisieren, miis-
sen wir ihn in einer Basis ausdriicken, in welcher
er diagonal wird. Das heisst, wir miissen das Eigen-
wertproblem l6sen. Im Hinblick auf einige der spiter
folgenden Beispiele wollen wir das anhand des hier
vorliegenden, sehr einfachen Falles diskutieren. Die
Eigenwerte einer 2x2 Matrix sind bekanntlich gege-
ben durch die Sdkulargleichung det(7p — A1) =0,
d.h.

(0]
Ay =+—.
- 2
Die Eigenvektoren & erhilt man entweder aus der Ei-
genwertgleichung oder geometrisch: Sie miissen den

Zustianden T , resp. | zum effektiven Feld entspre-
chen. Fiir den Eigenwert A, = +; /2 liefert

(Ao~ AE, =0
o [ —1 1 Ea) [0
2 1 —1 §+2 B 0
die Bedingung &, = +&.,. Analog ergibt sich fiir
A_ die Bedingung £_; = —&_,. Die normierten Ei-
genvektoren

1 1

s e=5()

entsprechen also tatsdchlich symmetrischen und an-
tisymmetrischen Uberlagerungszustinden.

1
1

1

& = B

3.5.8 Transformation auf Diagonalform

Wir konnen Eigenwerte und Eigenvektoren in Ma-
trixform schreiben. Fiir unser einfaches 2x2 Pro-
blem lauten sie

&1 & )

a=(M ) r=(a 8

A ist somit eine Diagonalmatrix, welche auf der Dia-
gonalen die Eigenwerte enthilt, und 7 enthélt die
Eigenvektoren als Spalten. Kennt man die Eigenvek-
toren einer beliebigen (diagonalisierbare) Matrix M,
kann man sie somit auf Diagonalform transformie-
ren. Dafiir schreibt man das Eigenwertproblem als

MT =TA — A=T"'MT.

Im Fall des Hamiltonoperators .7#p kann man da-
mit nicht nur den Hamiltonoperator diagonalisie-
ren, sondern auch direkt den zugehorigen Propagator
e ! berechnen. Dazu betrachten wir die Glieder
der Exponentialentwicklung von e¥, d.h.

M = TAT!
M?> = TAT 'TAT '=TAT!
M?> = TAT 'TA*’T'=TAT!
M = TAT!.

Um die Matrixdarstellung eines Propagators anzuge-
ben, bendtigen wir noch die Inverse der Matrix der
Eigenvektoren. Dabei handelt es sich um eine uni-
tire Matrix, d.h. 7' = TT. Speziell fiir den Fall des
Puls-Propagators gilt T = 77 = T~!. Wir verifizie-
ren diese Beziehung, indem wir 72 berechnen:

ppoo (1 Ty L 1
o2\ -1 )21 -1
- 1 0
N 01 )"
Damit finden wir fiir unser Beispiel
efi%j)t — eficollxt
1 1 1 e—iwlt/2 0
— o201 -1 0 etiou?
(1 1
1 -1
B cos 9t —isin %!
- —isin%’  cos Yt

gt gt
cosT1 1-— 2isin711x. (3.8)

Mit dieser Technik konnen wir, falls erforderlich,
auch kompliziertere Hamiltonoperatoren diagonali-
sieren, d.h. deren Energieeigenwerte berechnen so-
wie die Zeitentwicklung von Spinsystemen unter der
Wirkung verschiedener Wechselwirkungen betrach-
ten.
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3.5.9 Rotationen durch RF Pulse

Gleichung (3.8) erlaubt die Berechnung des Zu-
stands des Systems nach dem RF Puls:

. . wt
e_l%tlzel%t = COS2 TIIZ + 4sin TIXIZ I
ot !
+2isin 7 COS —(—— ) [Izalx] .

Mi elementarer Trigonometrie kann man dies umfor-
men zu

e LM = [ cos(ant) + Lysin (og1).

Fiir einen ‘harten’ Puls, d.h. einen Puls, bei dem
wir wihrend des Pulses nur die Wechselwirkung mit
dem RF Feld betrachten, lautet der Pulspropagator
allgemein
Py = ¢ Wl = o0l

Offenbar ist er nicht explizit abhéingig von der Linge
des Pulses. Es ist damit nicht notwendig, die Stérke
des RF Feldes anzugeben, oder seine Dauer, sondern
lediglich die Rotationsachse (¢¢) und den Flipwinkel
(¢). Man schreibt diese z.B. in der Form (90°), oder
(%)—y bzw. Xop- oder (=Y )z .

Rotation um x Rotation um z

Rotation um y

Abbildung 3.26: Rotationen durch RF Pulse.

Abb. 3.26 zeigt, wie unterschiedliche Pulse die Spins
um die entsprechenden Achsen drehen. Dies stimmt
iiberein mit dem Resultat der klassischen Rechnung
in Kap. 3.1.8.

3.5.10 Exponentialoperatoren

Die Bewegungsgleichung der Dichtematrix (3.7),
die Liouville-von-Neumann-Gleichung, lautet:

%p@ = —il(1),p(1)].

Sie wird fiir einen nicht explizit von der Zeit abhén-
gigen Hamiltonoperator ¢ gelost durch

p(t) = e p(0)e”" = U(1)p(0)U'(r).

Der Operator U(t) = e~*”*", der den Dichteoperator
p in der Zeit entwickelt, wird Propagator genannt.

Zur Vereinfachung der Propagatoren benutzen wir
Relationen wie z.B.

* Einschieben des Einheitsoperators 1 = e~4¢4

* Vertauschungsrelationen

Wenn zwei Operatoren oder Matrizen A und B ver-
tauschen, d.h. [A, B] = 0, dann gilt

a) [¢*,B] = [eP,A] = [¢}, €P]
=1+A+ 1A2+31‘A3+

mit B kommutiert. Niitzlich ist auch

b)le?,A]

* die Exponentialrelation

B l¢"B =

Hier muss B invertierbar sein, A ist beliebig.

=0, weil jeder Term in

= 0 gilt natiirlich fiir jeden Operator

B~ 'AB

Beweis: Mit
(B'AB)N = B 'ABB'AB..B"'AB
B 'AVB
gilt
oo —1
. AB
eB'AB Z ( Z B_

N=0

B! Z —‘B — B '¢*B.
= N

3.6 Mehrere Spins

3.6.1 Matrixdarstellung von Operatoren

Um Rechnungen fiir Systeme aus mehr als einem
Spin durchfiihren zu kénnen, miissen wir die Ma-
trixdarstellungen der relevanten Spinoperatoren be-
rechnen. Wir diskutieren zunichst die direkte Me-
thode, d.h. die Berechnung der Matrixelemente fiir
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die sogenannte Produktbasis. Fiir zwei Spins A = 1/2,
X = 1/2 sind dies die Produktzustinde o, af, fa,

BB .

Fiir die z-Komponenten der Operatoren erhalten wir
die Darstellungen

1
1 1
AZ_E 1
—1
1
1 —1
XZ_E 1
—1
1
0
F,=A+X = 0

—1

Fiir die Berechnung der Matrixelemente der trans-
versalen Komponenten verwenden wir z.B.

1 1
Ada) = =|B.) , AJB.) = -|a.
o) = 5182) . AdB) = 5le)
1 1
Xl = —|. s X, = A5l ’
@)= 51B) . X|.B)=5].a)
wobei . = (o, ). In der tiblichen Basis (ac, af,

Ba, BB) erhalten wir somit

1
1 1
Ax_i |
1
1
1 1
Xx_i |
1
und
1 1
1 1
FF=A+X, = = ) |
1 1

Analog erhilt man die y-Komponente

R,

Diese Methode wird aber offensichtlich fiir komple-
xere Spinsysteme mithsam. Bei 10 Spins 1/2 z.B. ha-
ben wir Matrixdarstellungen von 1024 x 1024, d.h.
wir miissten mehr als eine Million Matrixelemente
berechnen, von denen allerdings viele verschwinden.

3.6.2 Direktes Produkt

In der Produktbasis kann man die Matrixdarstellun-
gen direkt aus der Darstellung in der Einzelspinba-
sis erhalten. Um einen Operator Ay X in der Pro-
duktbasis zu schreiben, braucht man nur das direkte
Produkt Ay ® Xg zu berechnen. Das direkte Produkt
zweier Matrizen ist definiert als

Ag ®Xl3 =
(Aa)11(Xp)  (Aa)12(Xp) (Aa)1n(Xp)
(Aa)21(Xp) ' :
(At (Xp) (A)on (Xp)
Als Beispiel berechnen wir fiir zwei Spins 1/2
_ (Az)ll (Xz) (Az)l2(Xz)
A% = < (A2 (%) (A)n(X.) )

[um—

[u—

Das Vorgehen kann natiirlich auch auf mehr als 2
Spins erweitert werden.

Allerdings stosst man auch damit an Grenzen, wenn
die Spinsysteme zu grof3 werden. Viele Rechnungen
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kann man aber auch ganz ohne Matrixdarstellungen
durchfiihren, insbesondere die Berechnung von Er-
wartungswerten, bei denen am Ende jeweils nur ei-
ne Zahl (A) = Sp[pA] benéstigt wird. Beispiele dafiir
werden im Kapitel 4 gezeigt.

3.6.3 Dipol-Dipol Hamiltonoperator

Der vollstindige quantenmechanische Ausdruck fiir
die Dipol-Dipol Wechselwirkung kann iiber das Kor-
respondenzprinzip aus dem klassischen Ausdruck

1

3
4r 1>

L 3. L . L
Eig = fiy - fip — — (i - Fi2) (H2 - 712)

"2

hergeleitet werden. Die quantenmechanische Form
erhilt man gemiss Korrespondenzprinzip durch die
Substitution

[ — nhly, [y — phb.

Der erste Term (das Skalarprodukt der beiden Di-
pole / Spins) ist offenbar unabhiingig von der Wahl
des Koordinatensystems. Seine quantenmechanische
Form ist

71 72 LDy +11y12y +IIZIZZ

1
I, + 5(11+12— +1-hy).
Da fiir den zweiten Term zunichst auf die Verbin-

dungsachse zwischen den beiden Spins projiziert
wird, spielt hier das Koordinatensystem eine Rolle.

Abbildung 3.27: Koordinatensystem fiir die Berech-
nung des Dipol-Dipol Operators.

Wir wihlen wie iiblich ein Koordinatensystem, des-
sen z-Achse parallel zum duBleren Magnetfeld liegt.
Der Verbindungsvektor zwischen den beiden Kernen

soll einen Winkel 6 zur z-Achse aufweisen. Damit
wird

sin @ cos @
7]2 =T12 sin@sin(p
cos 6
und
(f1-712) =

Yihri2(Iixsin @ cos @ + 11, sinOsin @ +1j;cos ) .

Fiir die explizite Berechnung des Hamiltonoperators
definieren wir die Kopplungskonstante

2
o, = Honnh™

d — 3
4w 1y

AuBerdem schreiben wir die transversalen Operato-
ren in der Form

1 . .
I, cos @ 1(11++117)(€“P+€_”P)

1 . .
Iysing Z(_IlJr +5h-)(e? —e ).

Daraus erhalten wir
1 . ‘
Lixcos@ + I}, sing = E(IHEW +1;_¢'%).
Damit wird der Dipoloperator

WAy a)d{(l—300529)-

1
[l — 1(11+12— +1_by)

3 .
5 sin@cos O [(11.1r+ + 1 h)e ?
+(IIZIZ— +Il—12z)ei¢]

3 . .
_Z Sin2 0 [114_12_,_672“0 +11_12_62”P]} .

Die einzelnen Terme werden gerne mit den Buch-
staben des Alphabets bezeichnet: die erste Zeile ent-
spricht dem A— und B—Term des "Dipolalphabets”,
die zweite dem C— und D—Term und die dritte dem
E— und F—Term.

Die Energie eines Systems ist unabhiingig vom Ko-
ordinatensystem; sie ist deshalb ein Skalar, dndert
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sich also nicht bei einer Rotation des Koordina-
tensystems. Der Hamiltonoperator enthélt jedoch
Raum- wie auch Spinkoordinaten: 6, ¢ beziehen
sich auf die rdumlichen Freiheitsgrade, die Spin-
operatoren I, I, I_ auf die Spin-Freiheitsgrade. Be-
trachtet man die beiden Freiheitsgrade unabhingig
voneinander, so transformieren sie unter Rotationen
wie irreduzible Tensoren zweiter Stufe; dies gilt so-
wohl fiir den Spinteil wie auch fiir den Raumteil. Die
Transformationseigenschaften der beiden Teile sind
jeweils entgegengesetzt; wenn beide gleich transfor-
miert werden, bleibt das Produkt somit invariant.

3.6.4 Dipolkopplung zwischen identischen
Spins im starken Magnetfeld

In Abwesenheit eines Magnetfeldes oder fiir ein
Magnetfeld parallel zur Verbindungsachse der Ker-
ne (0 = 0) verschwinden die Terme C,D,E,F des
Dipol-Alphabets. Die Matrixdarstellung wird dann
fiir zwei Spins I; = 1/2, L, = 1/2:

1
Haa = =201, — 1(11+12— +1_5)]
1

-1
-1

-1
—1

Wy
2
1

Bei anderen Orientierungen treten auch die ibri-
gen Terme des "Dipolalphabets” auf. Sie sind jedoch
nicht sdkular, d.h. sie vertauschen nicht mit dem do-
minanten Beitrag zum Hamiltonoperator, dem Zee-
manterm. Mit Hilfe von Storungsrechnung kann man
zeigen, dass ihr Beitrag zur Gesamtenergie der Zu-

stande von der Groflenordnung
T owy  3-10°

3!

und damit sehr viel kleiner als der Beitrag der er-
sten Ordnung (=~ 10°s~!) ist. Physikalisch kann man
sich das so vorstellen, dass die Spins um das Ma-
gnetfeld rotieren und fiir die Wechselwirkung des-
halb nur der zeitliche Mittelwert, d.h. die Projek-
tion auf die z-Achse, eine Rolle spielt. Die Terme
C,D,E, F miissen aus diesem Grund fiir die Berech-
nung der Zeitentwicklung oder des Spektrums nicht

beriicksichtigt werden. Sie sind jedoch entscheidend
fiir die Relaxation. Die Kopplungskonstante fiir die
sdkularen Terme A und B skaliert mit dem Winkel
0 zwischen Verbindungsachse und Magnetfeld wie
(1—3cos?0)/2.

3.6.5 Energien und Eigenzustinde

Fiir diesen Fall findet man relativ leicht die Eigen-
zustdnde, wenn man symmetrieangepasste Zustinde
verwendet: Da die Wechselwirkung symmetrisch ist,
verwenden wir die Zustinde, welche unter Vertau-
schen der Koordinaten Eigenzustinde sind. Fiir zwei
Spins I} = 1/2, I, = 1/2 sind diese

aa), - (ap) + Ba0)

1
—(|ap)—|pA)), R
\/5(\ B)—I1Be)), [BB)

wie man leicht durch explizite Berechnung nachprii-

fen kann. Fiir die symmetrische Linearkombination
erhalten wir z.B.

1 0
. w 1 -1 11
%dé"‘ - _7 —1 =1 ﬁ 1
1 0
0
B y 1 -2 .
0

Wir konnen offenbar die Produktzusténde in symme-
trieangepasste Zustidnde transformieren, wenn wir
sie mit der Matrix

1

Sl
S

S

1

(deren Spalten aus den Eigenvektoren bestehen)
multiplizieren. Der Hamiltonoperator muss dement-
sprechend in diese Basis transformiert werden, in-
dem wir ihn von links und rechts multiplizieren:

Hig =T AT
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1
U
_ W V2 V2
) 1 1
V2 V2
1
1 1
A
o Z
- -l Vi TV
1 1
1
U
_ Y V2 V2
2 1 1
V2 2
1
1
=2
V2
1
1
_ % —2
2 0
1

3.6.6 Frequenzen und Amplituden

(Dd=0 md>0
BB
N pp
— L3 + O
o Bo _l_aﬁ Bot
Qo
T\ ool

Abbildung 3.28: Verschiebung der Zustinde durch
die dd-Wechselwirkung.

Die Eigenwerte sind
,
“42.0,-1,-1).

Wie in Abb. 3.28 gezeigt, reduziert die Kopplung

die Energie der zwei Zustdnde mit parallelem Spin,
der Zustand mit symmetrischer Linearkombination

wird um den doppelten Betrag angehoben, und der
Singulett-Zustand, der durch die antisymmetrische
Linearkombination gebildet wird, wird durch die Di-
polkopplung nicht verschoben.

Da es sich um zwei identische Spins handelt, konnen
sie nur identisch angeregt werden. Der Anfangsdich-
teoperator nach einem idealen 7 /2 Puls lautet somit

p(0) = A+ X, = F.

Der Operator hat in der Eigenbasis des Hamiltonope-
rators somit die Matrixdarstellung

1

2
T-'FT = \zf I I

PP
W

Off — POt —

oo

Abbildung 3.29: Erlaubte Ubergiinge in einem
Dipol-gekoppelten Spin-Paar.

Das Spektrum enthilt somit zwei Linien. Diese ent-
sprechen Ubergiingen von |oet) zum Zustand der
symmetrischen Linearkombination, resp. von die-
sem zum |Bf) Zustand. Diese drei Zustinde bil-
den ein Spin-Triplett, d.h. der Gesamtspin betrigt
I = 1. Alle Ubergiinge finden innerhalb dieses Mul-
tipletts statt. Da die beiden Spins gleich stark an das
externe Feld koppeln, ist ihr Gesamtspin eine gu-
te Quantenzahl (d.h. sie bleibt erhalten). Der vier-
te Zustand, die antisymmetrische Linearkombinati-
on, entspricht dem Spin-Singulett mit / = 0. Da der
Spin verschwindet, ist auch das Dipolmoment =0,
d.h. dieser Zustand koppelt weder an das statische
Magnetfeld noch an ein RF-Feld.
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