
4 Zeitaufgelöste NMR

In diesem Kapitel sollen die grundlegendsten Expe-

rimente der magnetischen Resonanz diskutiert wer-

den.

4.1 FID und Spektrum

4.1.1 Motivation und Vorgehen

Allgemein wird in der magnetischen Resonanz

“zeitaufgelöst” gemessen: dabei legt man am zu

messenden System eine kurze, intensive Störung an

und beobachtet anschließend seine freie Evolution

unter dem Einfluss des ungestörten Hamiltonopera-

tors. Dies ist im Gegensatz zu den meisten übrigen

Spektroskopien, wo man ein schwaches Störfeld mit

harmonischer Zeitabhängigkeit anlegt und die Ab-

sorption oder Dispersion dieses Feldes im Medium

als Funktion der Frequenz (oder eines anderen Para-

meters) misst. Diese Art des Experimentes wird mit

den Adjektiven

• frequenzaufgelöst

• “slow passage”

• cw (=continuous wave)

bezeichnet. Das frequenzaufgelöste Signal kann aus

dem einfachsten zeitaufgelösten Signal über Fourier-

Transformation erhalten werden, wie wir im folgen-

den Kapitel zeigen werden. Die zeitaufgelösten Mes-

sungen bieten jedoch gegenüber den frequenzaufge-

lösten Messungen eine Reihe von Vorteilen, welche

dazu geführt haben, dass heute in der NMR nur mehr

aussschließlich zeitaufgelöst gemessen wird, in der

ESR teilweise, und in zunehmendem Maße auch in

anderen Spektroskpien. Zu diesen Vorteilen gehören

• höhere Empfindlichkeit

• höherer Informationsgehalt (z.B. Relaxations-

zeiten)

• Möglichkeit für mehrdimensionale Experimen-

te.

Während es immer möglich ist, aus einem zeitauf-

gelösten Experiment ein Spektrum zu erhalten, das

die gleichen Informationen enthält wie das cw-

Spektrum, ist die Umkehrung i.A. nicht möglich.

System im 
Gleichgewicht

Puls-Anregung

Systemantwort

Frequenz

F

Abbildung 4.1: Prinzip eines zeitaufgelösten Experi-

mentes.

Wir betrachten als erstes das Experiment, welches

das konventionelle (cw) Experiment ersetzt. Dafür

legt man an des System im Gleichgewicht einen ein-

zelnen RF Puls an, misst das daraus resultierende

Signal und erhält das Spektrum als dessen Fourier-

transformierte.

4.1.2 Gleichgewichtszustand

Der einfachste Fall ergibt sich, wenn das Spinsystem

aus einer einzelnen Spinspezies I besteht. Der Ha-

miltonoperator kann dann direkt diagonal geschrie-

ben werden, indem wir die z- Achse parallel zum äu-

ßeren Magnetfeld wählen. Im Laborsystem lautet er

dann

H
L = −h̄ω0Iz .
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Abbildung 4.2: Spinsystem im thermischen Gleich-

gewicht in einem statischen Magnet-

feld. Links: quantenmechanisch ist

der Zustand durch eine (geringe) Po-

pulationsdifferenz zwischen den bei-

den stationären Zuständen charakte-

risiert. Rechts: Dies entspricht einer

Magnetisierung parallel zum äuße-

ren Magnetfeld.

Zu Beginn des Experimentes ist das System im ther-

mischen Gleichgewicht, d.h. der Dichteopertor ist

ρeq =
e−H /kBT

Sp{e−H /kBT}
.

In der NMR gilt allgemein die Hochtemperaturnähe-

rung

∆E � kBT ,

so dass die Exponentialfunktion entwickelt werden

kann als

ρeq ≈ 1

2I +1
(1− H L

kBT
) .

Wir können somit in guter Näherung schreiben

ρeq ≈ 1

2I +1
(1+

h̄ω0

kBT
Iz) .

4.1.3 Gepulste Anregung

Für diese Berechnung des Gleichgewichtsdichteope-

rators mussten wir das Laborsystem verwenden, da

das rotierende Koordinatensystem kein Intertialsy-

stem darstellt. Die nun folgenden Rechnungen wer-

den jedoch wiederum im rotierenden Koordinaten-

system durchgeführt.

Abbildung 4.3: RF Einstrahlung im rotierenden Ko-

ordinatensystem. Dadurch kann z.B.

die Magnetisierung von der z- zur y-

Achse gedreht werden.

Für die Berechnung des Signals nehmen wir an, dass

das System mit resonanter RF Einstrahlung ange-

regt wird, welche im rotierenden Koordinatensystem

parallel zur x-Achse anliegt. Der relevante Hamil-

tonoperator (im rotierenden Koordinatensystem) ist

dann

HP = −ω1Ix .

Die Veränderung des Spinsystems durch den Puls

kann damit geschrieben werden als

ρ(τ) = e−iHPτρ(0)e+iHPτ

= eiτω1Ixρ(0)e−iτω1Ix

=
1

2I +1
[1+ h̄ω0

kBT
(Iz cos(ω1τ)

+Iy sin(ω1τ))].

Maximale transversale Magnetisierung erhält man

für ω1τ = π/2; man spricht dann von einem idea-

len 90-Grad Puls. Dieser dreht die Magnetisierung

von der z-Achse zur y-Achse:

ρ(0+) =
1

2I +1
[1+ h̄ω0

kBT
Iy].

Dieser Anfangs - Dichteoperator entwickelt sich un-

ter dem Einfluss des Hamiltonoperators

ρ(t) = e−iH tρ(0)e+iH t

=
1

2I +1
(1+ h̄ω0

kBT
eiω0tIz Iye−iω0tIz)

=
1

2I +1
[1+ h̄ω0

kBT
(Iy cosω0t

+ Ix sinω0t)].
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4 Zeitaufgelöste NMR

Wird zusätzlich die Relaxation berücksichtigt, so er-
hält man den Ausdruck

ρ(t) =
1

2I +1
[1 +

+
h̄ω0

kBT
(Iy cosω0t + Ix sinω0t)e−t/T2

+
h̄ω0

kBT
Iz(1− e−t/T1)] (4.1)

Die transversale Relaxation dämpft die präzedieren-
de Magnetisierung, während die longitudinale Ma-
gnetisierung neu aufgebaut wird.

4.1.4 Detektion

Abbildung 4.4: Detektion über das Faraday’sche
Induktionsgesetz.

Die anschließende Detektion misst die zeitliche Ab-
leitung einer Magnetisierungskomponente, indem
die Spannung aufgrund der magnetischen Fluss-
änderung detektiert wird. Da wir die Spule in x-
Richtung gewählt haben, ist die zeitliche Änderung
des magnetischen Flusses durch die Spule proportio-
nal zu

s(t) ∝ d
dt

Φ(t) ∝ d
dt
�Fx� .

Hier steht

Fx = ∑
i

Ii
x

für die Summe über alle Spins.

Da die zeitliche Änderung der Magnetisierung im
Laborsystem im Wesentlichen durch die Larmorprä-
zession gegeben ist, wird das Signal somit

s(t) ∝ d
dt
�Fx� ≈ ω0�Fy� = ω0 ∑

i
�Ii

y� .

Für einen Spin ist die Messgröße somit gerade �Iy�
und das Signal wird

s(t) = ω0Sp{ρ(t)Iy} ,

wobei wir alle Proportionalitätskonstanten, wie z.B.
die Induktivität der Spule zu eins gesetzt haben. Das
Signal ist somit direkt proportional zur transversalen
Magnetisierung.

4.1.5 Signal

Da

Sp{IxIy}= Sp{IzIy}= Sp{1Iy}= 0

und

Sp{IyIy} =
1
3

I(I +1)(2I +1)

gilt, und somit für einen Spin I = 1/2

Sp{IxIx}= Sp{IyIy}= Sp{IzIz}= 1/2 ,

können wir das Signal als

s(t) =
h̄ω2

0
2kBT

cos(ω0t)e−t/T2

schreiben, wobei einige Normierungsfaktoren nicht
berücksichtigt wurden.

Wir erhalten also eine gedämpfte Oszillation, den
bereits erwähnten FID. Das Spektrum kann daraus
durch Fouriertransformation berechnet werden (sie-
he unten).

Ein wesentlicher Aspekt, der sich aus der Berech-
nung ergibt, ist, dass das Signal proportional zu
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4 Zeitaufgelöste NMR

ω2

0
ist. Ein Faktor ω0 stammt von der Populations-

differenz im thermischen Gleichgewicht, die in der

Hochtemperaturnäherung proportional zu ω0 ist. Der

zweite Faktor stammt von der Detektionsempfind-

lichkeit, da das Signal proportional zur zeitlichen

Änderung des magnetischen Flusses und damit zur

Präzessionsfrequenz ist.

Abbildung 4.5: Unterschiedliche Feldstärken für die

NMR und die entsprechenden Emp-

findlichkeiten und Messzeiten.

Diese Proportionalität ist ein wesentlicher Grund für

den Trend zu höheren Feldern in der NMR: gegen-

über den vor 30 Jahren üblichen Resonanzfrequen-

zen von 60 MHz hat sich inzwischen die Feldstär-

ke verzehnfacht; die Empfindlichkeit ist damit um

einen Faktor 100 gestiegen. Um diesen Empfindlich-

keitsgewinn durch eine Verlängerung der Messzeit

zu kompensieren müsste man mindestens um einen

Faktor 10000 mal länger messen!

4.1.6 Berechnung des Spektrums

In diesem einfachen Beispiel kann die Fouriertrans-

formation analytisch durchgeführt werden und man

erhält den Ausdruck

s(ω) =
�

1

2π
h̄ω2

0

4kBT
T2

1+(ω−ω0)2T 2

2

=
�

1

2π
h̄ω2

0

4kBT
1/T2

1/T 2

2
+(ω−ω0)2

,

der eine Lorentzlinie beschreibt. Sie ist zentriert an

der Frequenz ω0, und ihre Breite ist gegeben durch

die Zerfallszeit T2.

Diese Resonanzlinie entspricht gerade der Linien-

form, die wir als stationäre Lösung der Blochglei-

chungen im Grenzfall eines schwachen Feldes er-

halten hatten. Es gilt allgemein, dass die Fourier-

transformierte des FID’s das Spektrum des entspre-

chenden cw-Experimentes ergibt (sofern keine Sät-

tigungseffekte auftreten).

Abbildung 4.6: Signal aus 3 Frequenzkomponenten.

Besteht das Spinsystem aus mehreren Spins, welche

nicht aneinander gekoppelt sind, so erhält man als

Signal eine Summe aus zerfallenden Exponential-

funktionen. Im FID sind diese Beiträge schwierig zu

unterscheiden. Es ist deshalb meist nützlich, sie zu

Fourier-transformieren. Im resultierenden Spektrum

ist die Trennung wieder relativ einfach ersichtlich.

Abbildung 4.7: Frequenz und Amplitude in einem

Spektrum mit mehreren Linien.

Ein völlig analoges Verhalten erhält man, wenn man

verschiedene Übergänge in einem einzelnen Spinsy-

stem diskutiert, wie z.B. bei einem Quadrupolspin.

Da das Signal durch die Spur des Produktes

sFID(t) = Sp{ρA} = ∑
i, j

ρi jA ji = ∑
i, j

ρ∗
jiA ji
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4 Zeitaufgelöste NMR

bestimmt wird, können wir einzelne Signalbeiträge
aus den Matrixelementen von Dichteoperator ρ und
Observablen A bestimmen. Im typischen Fall dass
diese identisch sind,

ρ(0) = A = Iy ,

erhalten wir einzelne Resonanzlinien im Spektrum
direkt aus den Matrixelementen von Iy, wobei diese
in der Eigenbasis des Hamiltonoperators ausgewer-
tet werden müssen. Wenn wir das Signal zerlegen in
einzelne Komponenten

sFID(t) = ∑
i, j

ai jeiωi jt ,

so ergeben sich daraus im Spektrum die Amplituden
ai j und Frequenzen ωi j, welche zu einem Übergang
i ↔ j zwischen stationären Zuständen i und j gehö-
ren. Frequenz ωi j und Amplitude ai j sind gegeben
durch

ωi j =
Ei −E j

h̄
, ai j ∝ |(Iy)i, j |

2 .

Hier ist (Iy)i, j das Matrixelement (i, j) von Iy in der
Eigenbasis des Hamiltonoperators.

4.2 Echos

Die bisher betrachteten Experimente, bei denen ein
Signal nach einem einzelnen Radiofrequenzpuls auf-
genommen und Fourier-transformiert wird, ergeben
Informationen, welche weitgehend mit den konven-
tionell (CW = continuous wave = Dauerstrichmes-
sung) aufgenommenen Spektren äquivalent sind. Es
zeigt sich jedoch, dass es in vielen Fällen nützlich
ist, das System nicht nur mit einem einzelnen, son-
dern mit einer Reihe von Radiofrequenzpulsen an-
zuregen. Man gewinnt dadurch z.B. mehr Informa-
tion oder höhere Auflösung. Wir beginnen mit dem
einfachsten und ältesten Mehrpulsexperiment, dem
Hahn-Echo.

Es wurde 1950 von Erwin Hahn beschrieben: E.L.
Hahn, ’Spin echoes’, Phys. Rev. 80, 580-594 (1950).

Abbildung 4.8: Erwin Hahn

Abbildung 4.9: Hahn’s Original Echo.

4.2.1 Das Hahn-Echo

Ein FID wird niemals durch einen einzelnen Spin er-
zeugt. Statt dessen beobachtet man immer ein En-
semble. Das beobachtete Signal stammt von einem
Ensemble von Spins, welches durch einen Dichte-
operator beschrieben wird. Weil nicht alle Spins ge-
nau das gleiche Magnetfeld spüren, präzedieren die
zugehörigen Magnetisierungsvektoren nicht gleich
schnell, und der FID zerfällt. Dieser Zerfall kann
mit Hilfe eines Radiofrequenzpulses rückgängig ge-
macht werden – die Spins werden „refokussiert“.

R
F

Zeit

π/2 π

Abbildung 4.10: Pulssequenz für das Hahn-Echo
Experiment.

Das Experiment beginnt mit einem (idealen) 90-
Grad Puls, welcher die Gleichgewichtsmagnetisie-
rung von der z- zur x- Achse des rotierenden Koordi-
natensystems dreht. Der resultierende Zustand wird
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4 Zeitaufgelöste NMR

durch den Dichteoperator

ρ(0) = ∑
i

I(i)y

beschrieben (wir haben hier die üblichen Vorfak-
toren weggelassen). Anschließend präzedieren die
Mitglieder des Ensembles mit ihrer individuellen
Resonanzfrequenz ∆ω(i)

0 . Die entsprechende Zeit-
entwicklung des Dichteoperators ist demnach

ρ(t) = ∑
i
(cos(∆ω(i)

0 t)I(i)y

+ sin(∆ω(i)
0 t)I(i)x )e−t/T2 .

Wenn wir die y-Magnetisierung messen, erhalten wir
somit ein Signal

stot = ∑
i
�I(i)y �(t) = 1

2 ∑
i

cos(∆ω(i)
0 t)e−t/T2 .

Die Resonanzfrequenzen ∆ω(i)
0 der einzelnen Spins

sind nicht exakt identisch, da verschiedene Wechsel-
wirkungen einen Unterschied hervorrufen können.
Im aktuellen Zusammenhang betrachten wir dazu le-
diglich ein inhomogenes Magnetfeld, welches eine
entsprechende Verteilung der Larmorfrequenzen er-
zeugt. Man erhält somit einen „Spinfächer“, dessen
Breite durch das Produkt aus der Zeit t und der Breite
der Verteilung der Resonanzfrequenzen ∆ω(i)

0 gege-
ben ist. Ist dieses Produkt groß gegen eins, so sind
die Phasen ∆ω(i)

0 t in der xy Ebene gleichmäßig ver-
teilt, der Mittelwert der Magnetisierung verschwin-
det.

In Abb. 4.10 ist der Zerfall der transversalen Ma-
gnetisierung gezeigt; der Zerfall der Magnetisierung
nach dem ersten Puls ist durch die Breite der Vertei-
lung der Resonanzfrequenzen im inhomogenen Feld
bestimmt.

Die Dephasierung der Spins kann mit dem Ausein-
anderfliegen von Gasmolekülen verglichen werden,
wenn ein Gefäß mit komprimiertem Gas geöffnet
wird. Es ist in beiden Fällen prinzipiell denkbar,
aber sehr unwahrscheinlich, dass die Moleküle, resp.
Spins wieder in den Ausgangspunkt zurückkehren.

Abbildung 4.11: Maxwell’s Dämon und bewegte
Moleküle

Wie von Maxwell porträtiert, wäre dies auch mög-
lich, wenn ein Dämon, welcher die einzelnen Mo-
leküle (Spins) beobachtet, deren Geschwindigkeiten
(Präzessionsfrequenzen) alle gleichzeitig invertieren
würde.

4.2.2 Refokussierung

Im Gegensatz zu einem molekularen Gas, wo kein
Maxwell-Dämon existiert, welcher die Bewegung
der Moleküle umdrehen kann, ist es im Falle ei-
nes Spinsystems möglich, die Phasen aller Spins zu
invertieren, von e−i∆ω(i)t zu ei∆ω(i)t . Dazu muss die
gesamte Magnetisierung mit einem RF Puls in y-
Richtung um π rotiert werden. Ein solcher Puls in-
vertiert Ix und Iz, lässt aber Iy invariant:




Ix
Iy
Iz



 e−iπIy

→




−Ix
Iy
−Iz



 .

Wird zu einer Zeit T nach dem Anregungspuls ein
solcher Refokussierungspuls auf das System ange-
legt, so wird der Zustand des Systems danach

ρ(T+) = ∑
i
[cos(∆ω(i)

0 T )I(i)y

+sin(∆ω(i)
0 T ) I(i)x ]e−T/T2 .

Der Zustand nach dem Puls ist somit der gleiche wie
vor dem Puls, außer dass die Phase aller Spins inver-
tiert wurde, ∆ω0T → −∆ω0T . Dies kann auch als
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Zeitumkehr T →−T interpretiert werden. Die Pha-
se ist gleichzeitig der Winkel der Spins gegenüber
der y-Achse; dieser Winkel nimmt linear mit der Zeit
zu, mit der Steigung ∆ω(i)

0 . Die Inversion der Phase,
ϕ →−ϕ , entspricht einer Spiegelung an der Zeitach-
se (ϕ = 0).

Abbildung 4.12: Inversion der Phasen durch den
Refokussierungspuls. Für zwei der
Spins ist exemplarisch dargestellt,
wie sie mit unterschiedlicher Fre-
quenz präzedieren und deshalb un-
terschiedliche Phasen erhalten.

Nach dem Puls läuft die Evolution der Spins wieder
wie vor dem Puls, d.h. die Phase wächst gemäß

ρ(T + t) = ∑
i
[cos(∆ω(i)

0 (t −T ))I(i)y

−sin(∆ω(i)
0 (t −T )) I(i)x ]e−(T+t)/T2 .

Die Zeit t misst hier die Dauer der freien Präzession
nach dem Refokussierungspuls.

Wenn diese gleich lang wird wie die Dauer zwi-
schen Anregung und Refokussierungspuls, t = T ,
verschwinden alle Phasen ∆ω(i)

0 (t − T ), da sich die
negativen Werte aus der ersten Präzessionszeit gera-
de gegenüber den positiven aus der zweiten Periode
aufheben, unabhängig von der Frequenz der einzel-
nen Spins. Damit ist die destruktive Interferenz auf-
gehoben, es entsteht “spontan” ein Signal, ein Echo.

Abbildung 4.13: Bildung des Echos: Zur Zeit des
Echos sind alle Phasen identisch
(=0).

Dieses ist gegenüber dem ursprünglichen Signal le-
diglich um die Dämpfung e−2T/T2 reduziert. Diese
Dämpfung ist für alle Spins vorhanden, auch in ei-
nem homogenen Feld, und wird deshalb als homo-
gener Beitrag zur Relaxation, respektive zur Linien-
breite bezeichnet.

4.2.3 Propagator

Als Alternative zu dieser „direkten“ Beschrei-
bung soll hier auch eine Operatoren-Schreibweise
diskutiert werden. Diese ist mathematisch etwas
anspruchsvoller, dafür eleganter, und sie lässt
sich leichter verallgemeinern. Wir schreiben da-
für die Bewegungsgleichung der Dichtematrix (die
Liouville-von-Neumann-Gleichung) als

d
dt

ρ(t) = −i[H ,ρ(t)] .

Sie wird für einen nicht explizit von der Zeit abhän-
gigen Hamiltonoperator H gelöst durch

ρ(t) = e−iH tρ(0)eiH t = U(t)ρ(0)U−1(t) .

Der Operator U(t) = e−iH t , der den Dichteoperator
ρ in der Zeit entwickelt, wird Propagator genannt.

Um die Liouville-von-Neumann-Gleichung auszu-
werten, wählen wir folgende Vorgehensweise:
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1. Als Anfangszustand betrachten wir entweder
ρ(0) = Ix oder Iy, d.h. wir haben vorher einen
(idealen) 90° Puls auf die Gleichgewichtsma-
gnetisierung (Hochtemperaturnäherung!) wir-
ken lassen.

2. Wir zerlegen die Zeitentwicklung in Intervalle,
in denen der Hamiltonoperator im rotierenden
Koordinatensystem jeweils konstant ist.

3. Wir nähern die Hochfrequenzpulse durch δ -
Funktionen, d.h. wir vernachlässigen die an-
sonsten zu berücksichtigende Zeitentwicklung
während des Pulses. Die entsprechenden Propa-
gatoren sind somit eiφ Ix , resp. eiφ Iy , wobei φ den
Flipwinkel und x,y die Phase des Pulses darstel-
len.

4.2.4 Das Hahn-Echo

Das Experiment eignet sich zur Refokussierung von
Wechselwirkungen, die linear in Iz sind. Beispiele
hierfür sind die chemische Verschiebung, die hetero-
nukleare Dipol-Dipolwechselwirkung, sowie Inho-
mogenitäten des äusseren Magnetfeldes. Der Hamil-
tonoperator ist H = −∆ω0Iz. Wir bestimmen den
Propagator nach der Zeit t = 2T

ρ(t) = e−iH tρ(0)eiH t

ρ(2T ) = U(2T )ρ(0)U−1(2T )

und betrachten die Pulssequenz (90◦)x − T −
(180◦)±x −T - sozusagen von rechts nach links

U(2T ) = ei∆ω0IzT e−iπIxei∆ω0IzT .

Wir fügen dahinter den Einheitsoperator eiπIxe−iπIx

an:

U(2T ) = e−i∆ω0IzT e−iπIxei∆ω0IzT eiπIxe−iπIx

und vereinfachen die 3 mittleren Terme

e−iπIxei∆ω0IzT eiπIx = e−i∆ω0IzT .

Dieser ist der inverse Propagator des ersten Terms
und der gesamte Propagator wird

U(2T ) = e−iπIx

und somit unabhängig von ∆ω0Iz.

Die anfängliche Dichtematrix nach einem 90◦ Puls
beliebiger Phase kann als Überlagerung von Ix und
Iy geschrieben werden. Wir betrachten die Fälle ge-
trennt.

a) ρ(0) = Ix

ρ(2T ) = e−iπIx IxeiπIx = Ix.

Dies entspricht einer Rotation von Ix um die x-
Achse. Insgesamt ist also

ρ(2T ) = ρ(0) .

b) ρ(0) = Iy

ρ(2T ) = e−iπIx IyeiπIx = −Iy.

Dies entspricht einer Drehung von Iy um +180◦. Da-
mit ist

ρ(2T ) = −ρ(0) .

Wir hätten das selbe Ergebnis erhalten, wenn wir ei-
ne Drehung um -180◦ ausgeführt hätten, d.h. bei In-
version der Phase des zweiten Pulses.

Den Schritt

e−iπIxe−i∆ω0IzT eiπIx = ei∆ω0IzT

kann man übrigens so interpretieren, dass das Vor-
zeichen des Hamiltonoperators invertiert wird,

H̃z = −Hz .

Im Mittel hebt sich dann die Wirkung der Operatoren
Hz und −Hz weg. Deshalb tritt zum Zeitpunkt des
Echos wieder die volle Anfangsmagnetisierung auf.
Wenn wir anstelle des Hamiltonoperators den Propa-
gator U(t) = e−iH t betrachten, können wir die Vor-
zeichenumkehr mit

e−i(−H )t = e−iH (−t)
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auch als eine Zeitumkehr deuten.

Diese Argumente gelten natürlich nur für die sy-

stematische Zeitentwicklung unter der Wirkung von

Hz. Andere Einflüsse haben wir bis jetzt nicht be-

trachtet. Stochastische Prozesse, etwa molekulare

Bewegungsvorgänge in den zu untersuchenden Pro-

ben sind natürlich irreversibel. Es ist der damit ver-

knüpfte Abfall des Hahn-Echos für den man sich

dann eigentlich interessiert, um etwas über solche

Bewegungsvorgänge zu erfahren. Der Vorteil des

Hahn’schen Spin-Echos liegt nun gerade darin, dass

man sich um die trivialen Dephasierungen (wen in-

teressiert schon eine etwaige Inhomogenität des Ma-

gnetfeldes) nicht zu kümmern braucht.

4.2.5 Das stimulierte Echo

Es gibt viele weitere Echo-Experimente, in denen

unterschiedliche Wechselwirkungen ”refokussiert”

werden. Die direkteste Erweiterung des Hahn-Echos

ist das stimulierte Echo, welches aus drei π/2-

Pulsen besteht. Man kann es sich so vorstellen, dass

dabei der π-Puls des Hahn-Echos in zwei π/2-Pulse

aufgeteilt wird.

Abbildung 4.14: Stimuliertes Echo.

Das System entwickelt sich zu Beginn gleich wie

beim Hahn-Echo:

ρ(τ) = ∑
i
(cos(∆ω(i)

0
τ)I(i)y − sin(∆ω(i)

0
τ)I(i)x ) .

Der zweite π/2-Puls dreht die y−Komponente zur z-

Achse, lässt jedoch die x-Komponente unverändert:

ρ(τ+) = ∑
i
(cos(∆ω(i)

0
τ)I(i)z − sin(∆ω(i)

0
τ)I(i)x ) .

Während der darauffolgenden Zeit zerfällt die x-

Komponente, während die z-Komponente mit dem

Hamiltonoperator vertauscht und somit zeitlich kon-

stant ist:

ρ(τ,τm) = ∑
i

cos(∆ω(i)
0

τ)I(i)z .

Der dritte π/2-Puls erzeugt daraus wieder transver-

sale Magnetisierung

ρ(τ,τm,0) = ∑
i

cos(∆ω(i)
0

τ)I(i)y ) .

Wir schreiben diesen Zustand als eine Summe

ρ(τ,τm,0) =
1

2
∑i[cos(∆ω(i)

0
τ)I(i)y + sin(∆ω(i)

0
τ)I(i)x

+cos(∆ω(i)
0

τ)I(i)y )− sin(∆ω(i)
0

τ)I(i)x ] .

Der erste Term entspricht exakt dem Term, den wir

beim Hahn-Echo gefunden hatten; er entwickelt sich

zu einem Echo, welches zur Zeit τ nach dem dritten

Puls erscheint. Die Dauer vom dritten Pulse bis zum

Echo ist somit gleich dem Abstand zwischen dem

ersten und dem zweiten Puls und uabhängig von τm.

Dieses Echo wird als stimuliertes Echo bezeichnet.

Der zweite Term hat die umgekehrte Phase; in die-

sem Term sind die Phasen gleich wie wenn die Zeit-

entwicklung des Systems während der Zeit zwischen

den beiden Pulsen angehalten worden wäre und die

Dephasierung jetzt weiter läuft. Im Mittel über das

Ensemble verschwindet er deshalb.

In dieser Betrachtungsweise erscheint das stimulier-

te Echo praktisch die gleiche Information zu liefern

wie das Hahn Echo (abgesehen vom Faktor 1/2). Der

wesentliche Unterschied wird erst ersichtlich, wenn

man zusätzlich die Relaxation berücksichtigt: Das

Echo-Signal wird in diesem Fall nicht mit e−2T/T2

gedämpft, sondern mit

sE ∝ e−2τ/T2 e−τM/T1 .

Während der Zeit zwischen den Pulsen wird die In-

formation in der Form longitudinaler Magnetisie-

rung gespeichert, welche mit der Zeitkonstanten T1

zerfällt. Da in vielen Systemen T1 � T2 ist, er-

möglicht dieses Experimente deshalb häufig längere

Messungen. Es wird insbesondere zur Untersuchung

langsamer Bewegungsprozesse verwendet.
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4.3 Messung von Relaxationszeiten

Zu den wichtigsten Anwendungen von Mehrpuls-
Expermenten gehört die Bestimmung von Relaxati-
onszeiten. Wir beginnen mit der Messung der trans-
versalen Relaxationszeit T2.

4.3.1 T2 Messung : Hahn-Echo

Im einfachsten Fall reicht es, zur Messung einen
90◦ Puls zu verwenden, welcher die anfängliche z-
Magnetisierung in die xy-Ebene klappt. Benutzen
wir dazu einen y-Puls, dann zeigt der Vektor der Ge-
samtmagnetisierung zunächst in die x-Richtung des
rotierenden Systems. Wie in Kapitel 3 diskutiert, zer-
fällt die transversale Magnetisierung mit einer Zeit-
konstante T2:

Mx(t) = Mxy(0) cos(∆ω0t −ϕ)e−t/T2 .

Diese Zeitkonstante können wir daher im einfach-
sten Fall messen, indem wir die Spannung aufzeich-
nen, welche die Gesamtmagnetisierung in einer Spu-
le induziert (siehe Kapitel 4.1).

Da die Experimente praktisch immer in nicht perfekt
homogenen Magnetfeldern durchgeführt werden, er-
hält man dadurch eine zusätzliche Dephasierung, für
die man sich in vielen Fällen nicht interessiert. Sol-
che "trivialen", zeitunabhängigen Inhomogenitäten
lassen sich mit Echo-Experimenten wieder "refokus-
sieren" (siehe Kapitel 4.2.1, Hahn-Echo). Wie dort
gezeigt wurde, ist die Amplitude des Echo-Signals
∝ e−2T/T2 , unabhängig von der Larmorfrequenz, und
damit unabhängig von Inhomogenitäten des Magnet-
feldes.

Man kann demenstprechend den Wert von T2 bestim-
men, indem man eine Reihe von Hahn-Echo Expe-
rimenten durchführt, in denen der Pulsabstand sy-
stematisch inkrementiert wird. In Abb. 4.15 sind als
Beispiel Messdaten von Protonen in H2O gezeigt.
Aus den Daten wurde der Wert von T2 zu 0,404 s be-
stimmt, indem die Signale an die Funktion s(2T ) =
ae−2T/T2 angefittet wurde.
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Abbildung 4.15: Beispiel einer T2-Messung der Pro-
tonen in Wasser. Der Zerfall des
Signals ist durch T2-Relaxation
bestimmt.

4.3.2 Carr-Purcell & Meiboom-Gill

In der oben diskutierten Version des Experimentes
muss für jeden Wert der Zeit T ein separates Experi-
ment durchgeführt werden. Es ist jedoch auch mög-
lich, alle Werte in einem einzelnen Experiment zu
messen. Dazu legt man nach dem ersten Echo einen
weiteren 180-Grad Puls an, welcher die Magnetisie-
rung erneut refokussiert. Dieses Vorgehen kann im
Prinzip beliebig oft wiederholt werden, bis das Si-
gnal vollständig zerfallen ist. Diese Vereinfachung
wurde zuerst von Carr und Purcell verwendet (H.Y.
Carr and E.M. Purcell, ‘Effect of diffusion on free
precession in nculear magnetic resonance experi-
ments’, Phys. Rev. 94, 630–638 (1954).). Eine wei-
tere Verbesserung wurde von Meiboom und Gill ein-
geführt (S. Meiboom and D. Gill, Rev. Sci. Instr., 29,
688–691 (1958).). Details zu dieser Methode werden
im Rahmen des FP (Versuch 49) untersucht.

Neben der Verkürzung der Messzeit bietet die
CPMG Methode auch die Möglichkeit, den stö-
renden Einfluss von Diffusionsprozessen zu unter-
drücken: Bewegen sich die Spins (z.B. in einer Flüs-
sigkeit), so funktioniert die Refokussierung nicht
mehr richtig. Da beim CPMG Experiment die Ab-
stände zwischen den Pulsen kürzer sind, ist der Ein-
fluss der Diffusion geringer.
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Abbildung 4.16: Mehrfachechos mit Carr-Purcell-
Meiboom-Gill Methode.

4.3.3 T1-Messung

Um die Spin-Gitter-Relaxationszeit (T1) zu mes-
sen, muss man zunächst Nichtgleichwichtsmagneti-
sierung Mz �= M0 erzeugen. Die Abweichung vom
Gleichgewicht wird maximal, wenn man zu Beginn
des Experimentes mit einem π-Puls die Gleichge-
wichtsmagnetisierung M0 invertiert. Im Laufe der
Zeit wird sich die longitudinale Magnetisierung, d.h.
Mz(t), immer stärker an M0 annähern. Um den mo-
mentanen Wert von Mz(t) zu ermitteln, legt man
einen 2. RF-Puls an, der die Magnetisierung im ro-
tierenden System um 90◦ dreht. Dieser π/2-Puls
klappt somit die Magnetisierung Mz(t) von der z-
Achse in die xy- Ebene, wo sie nachgewiesen werden
kann.

Umittelbar nach dem Inversionspuls beträgt die Ma-
gnetisierung des Systems

�M(0) =




0
0

−M0



 .

Danach nähert es sich wieder dem Gleichgewicht,
wobei der Aufbau der z-Magnetisierung wie

Mz(t) = M0(1−2e−t/T1)

läuft. Die z-Magnetisierung ist nicht direkt messbar.
Sie muss deshalb mit einem Auslesepuls in beob-

achtbare transversale Magnetisierung umgewandelt
werden. Dieser erzeugt daraus

�M(t+) =




M0(1−2e−t/T1)

0
0



 .

Messen wir die x-Komponente des Signals, so erhal-
ten wir somit

s(t) = M0(1−2e−t/T1).

Um T1 zu bestimmen führt man deshalb Messungen
mit unterschiedlichem Pulsabstand t durch und passt
die Parameter M0 und T1 and die Messdaten an.
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Abbildung 4.17: Beispiel für eine T1-Messung.

Abb. 4.17 zeigt als Beispiel gemessene Daten einer
Wasserprobe, zusammen mit der gefitteten Funktion
für eine Relaxationszeit von T1 =1,09 s.

Die Messung der longitudinalen Relaxationszeit
wird normalerweise vor anderen Messungen durch-
geführt, da sie z.B. angibt, wie rasch Messungen
wiederholt werden können: für die meisten Experi-
mente muss man eine Wartezeit von ≥ 3T1 abwarten,
damit das System wieder nahe zum Gleichgewicht
gelangt. Außerdem werden Messungen der lonitudi-
nalen Relaxationszeit häufig verwendet, um Bewe-
gungsprozesse im Material zu untersuchen.
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