4 Zeitaufgeloste NMR

In diesem Kapitel sollen die grundlegendsten Expe-
rimente der magnetischen Resonanz diskutiert wer-
den.

4.1 FID und Spektrum

4.1.1 Motivation und Vorgehen

Allgemein wird in der magnetischen Resonanz
“zeitaufgelost” gemessen: dabei legt man am zu
messenden System eine kurze, intensive Stérung an
und beobachtet anschlieBend seine freie Evolution
unter dem Einfluss des ungestorten Hamiltonopera-
tors. Dies ist im Gegensatz zu den meisten iibrigen
Spektroskopien, wo man ein schwaches Storfeld mit
harmonischer Zeitabhingigkeit anlegt und die Ab-
sorption oder Dispersion dieses Feldes im Medium
als Funktion der Frequenz (oder eines anderen Para-
meters) misst. Diese Art des Experimentes wird mit
den Adjektiven

* frequenzaufgeldst
* “slow passage”
¢ cw (=continuous wave)

bezeichnet. Das frequenzaufgeloste Signal kann aus
dem einfachsten zeitaufgelosten Signal iiber Fourier-
Transformation erhalten werden, wie wir im folgen-
den Kapitel zeigen werden. Die zeitaufgelosten Mes-
sungen bieten jedoch gegeniiber den frequenzaufge-
losten Messungen eine Reihe von Vorteilen, welche
dazu gefiihrt haben, dass heute in der NMR nur mehr
aussschlieBlich zeitaufgelost gemessen wird, in der
ESR teilweise, und in zunehmendem Maf3e auch in
anderen Spektroskpien. Zu diesen Vorteilen gehoren

* hohere Empfindlichkeit

* hoherer Informationsgehalt (z.B. Relaxations-
zeiten)

* Moglichkeit fiir mehrdimensionale Experimen-
te.

Wihrend es immer moglich ist, aus einem zeitauf-
gelosten Experiment ein Spektrum zu erhalten, das
die gleichen Informationen enthdlt wie das cw-
Spektrum, ist die Umkehrung i.A. nicht moglich.

Puls-Anregung

System im Systemantwort
Gleichgewicht
AW NINER

Frequenz

Abbildung 4.1: Prinzip eines zeitaufgelosten Experi-
mentes.

Wir betrachten als erstes das Experiment, welches
das konventionelle (cw) Experiment ersetzt. Dafiir
legt man an des System im Gleichgewicht einen ein-
zelnen RF Puls an, misst das daraus resultierende
Signal und erhilt das Spektrum als dessen Fourier-
transformierte.

4.1.2 Gleichgewichtszustand

Der einfachste Fall ergibt sich, wenn das Spinsystem
aus einer einzelnen Spinspezies I besteht. Der Ha-
miltonoperator kann dann direkt diagonal geschrie-
ben werden, indem wir die z- Achse parallel zum du-
Beren Magnetfeld wihlen. Im Laborsystem lautet er
dann

A = —hayl, .
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4 Zeitautgeloste NMR

Quantenmechanisch Klassisch

Abbildung 4.2: Spinsystem im thermischen Gleich-
gewicht in einem statischen Magnet-
feld. Links: quantenmechanisch ist
der Zustand durch eine (geringe) Po-
pulationsdifferenz zwischen den bei-
den stationédren Zustidnden charakte-
risiert. Rechts: Dies entspricht einer
Magnetisierung parallel zum &dufe-
ren Magnetfeld.

Zu Beginn des Experimentes ist das System im ther-
mischen Gleichgewicht, d.h. der Dichteopertor ist

o [ksT

Peq = Sple A /ksT )"

In der NMR gilt allgemein die Hochtemperaturnihe-
rung

AE > kgT ,

so dass die Exponentialfunktion entwickelt werden
kann als

%L
kT

L
20+ 1

Peg ~ (1— ).

Wir konnen somit in guter Nidherung schreiben

1
21 +1

hay

1 —
( +kBT

Peg = L).

4.1.3 Gepulste Anregung

Fiir diese Berechnung des Gleichgewichtsdichteope-
rators mussten wir das Laborsystem verwenden, da
das rotierende Koordinatensystem kein Intertialsy-
stem darstellt. Die nun folgenden Rechnungen wer-
den jedoch wiederum im rotierenden Koordinaten-
system durchgefiihrt.

hv

X

Abbildung 4.3: RF Einstrahlung im rotierenden Ko-
ordinatensystem. Dadurch kann z.B.
die Magnetisierung von der z- zur y-
Achse gedreht werden.

Fiir die Berechnung des Signals nehmen wir an, dass
das System mit resonanter RF Einstrahlung ange-
regt wird, welche im rotierenden Koordinatensystem
parallel zur x-Achse anliegt. Der relevante Hamil-
tonoperator (im rotierenden Koordinatensystem) ist
dann

o

- 1.

Die Verdnderung des Spinsystems durch den Puls
kann damit geschrieben werden als

e—iﬁ,’furp (O)e—&-iiﬁ:r
eirwllxp (O)e—irwllX
1 hay
1+ =
21+1 1+ kgT
+1,sin(w; 7))].

p(7)

(I;cos(@; T)

Maximale transversale Magnetisierung erhélt man
fir @;7 = 7/2; man spricht dann von einem idea-
len 90-Grad Puls. Dieser dreht die Magnetisierung
von der z-Achse zur y-Achse:

hax
L.
2[+1 J

1+—I,
[+kBT)

p(0+) =

Dieser Anfangs - Dichteoperator entwickelt sich un-
ter dem Einfluss des Hamiltonoperators

e—i._%”tp(o) +iAt
1

—(1
2]—|—1( T

1 hay
o I :
1T iy reos@

+ I sin ot )].

p(1)
ha)() zwotll e—t(uotl
kgT

)
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4 Zeitautgeloste NMR

Wird zusitzlich die Relaxation beriicksichtigt, so er-
hilt man den Ausdruck

1
B

PO = 5

hi
-i——wo (Iycos ant + I sin wpt)e /T
kgT

haw

kBT Z(l - e_t/Tl )]

+ 4.1)

Die transversale Relaxation dimpft die priazedieren-
de Magnetisierung, wihrend die longitudinale Ma-
gnetisierung neu aufgebaut wird.

4.1.4 Detektion

prazedierende Spins =
rotierende Magnetisierung

Flussiinderung
erzeugt in der
Drahtspule eine
Spannung

Spannung
Zeit

Abbildung 4.4: Detektion iiber das Faraday’sche
Induktionsgesetz.

Die anschlieende Detektion misst die zeitliche Ab-
leitung einer Magnetisierungskomponente, indem
die Spannung aufgrund der magnetischen Fluss-
dnderung detektiert wird. Da wir die Spule in x-
Richtung gewihlt haben, ist die zeitliche Anderung
des magnetischen Flusses durch die Spule proportio-
nal zu

Hier steht
F=Y1I
i

fiir die Summe iiber alle Spins.

Da die zeitliche Anderung der Magnetisierung im
Laborsystem im Wesentlichen durch die Larmorpra-
zession gegeben ist, wird das Signal somit

(1) o< SR ~ () = oy L{I).

Fiir einen Spin ist die MessgroBe somit gerade (/)
und das Signal wird

(1) = wSp{p(t)1},
wobei wir alle Proportionalititskonstanten, wie z.B.
die Induktivitdt der Spule zu eins gesetzt haben. Das

Signal ist somit direkt proportional zur transversalen
Magnetisierung.

4.1.5 Signal
Da
Sp{ldy} = Sp{LLy} = Sp{1L,} = 0
und
Splhiy} = 310+ 1)@+ 1)
gilt, und somit fiir einen Spin / = 1/2
Sp{LL} = Sp{L1,} = Sp{L.L.} =1/2,
konnen wir das Signal als

2
hay

— —t/T»
2kgT

s(t)

cos(ayt)e

schreiben, wobei einige Normierungsfaktoren nicht
beriicksichtigt wurden.

Wir erhalten also eine geddmpfte Oszillation, den
bereits erwiahnten FID. Das Spektrum kann daraus
durch Fouriertransformation berechnet werden (sie-
he unten).

Ein wesentlicher Aspekt, der sich aus der Berech-
nung ergibt, ist, dass das Signal proportional zu




4 Zeitautgeloste NMR

a)g ist. Ein Faktor @y stammt von der Populations-
differenz im thermischen Gleichgewicht, die in der
Hochtemperaturndherung proportional zu @y ist. Der
zweite Faktor stammt von der Detektionsempfind-
lichkeit, da das Signal proportional zur zeitlichen
Anderung des magnetischen Flusses und damit zur
Prizessionsfrequenz ist.

W

w, =60 MHz
Messzeit = 3h

B,=14T
s=1

B,=14T
s=100

w, =600 MHz
Messzeit=1s

Abbildung 4.5: Unterschiedliche Feldstirken fiir die
NMR und die entsprechenden Emp-
findlichkeiten und Messzeiten.

Diese Proportionalitit ist ein wesentlicher Grund fiir
den Trend zu hoheren Feldern in der NMR: gegen-
iber den vor 30 Jahren iiblichen Resonanzfrequen-
zen von 60 MHz hat sich inzwischen die Feldstir-
ke verzehnfacht; die Empfindlichkeit ist damit um
einen Faktor 100 gestiegen. Um diesen Empfindlich-
keitsgewinn durch eine Verlingerung der Messzeit
zu kompensieren miisste man mindestens um einen
Faktor 10000 mal langer messen!

4.1.6 Berechnung des Spektrums

In diesem einfachen Beispiel kann die Fouriertrans-
formation analytisch durchgefiihrt werden und man
erhilt den Ausdruck

_ Lhwg 53
S(w) =V 27 3ksT T+ (0— ) 212
_ 1 hog 1T

27 4kpT 1/TF +(w—ap)?

der eine Lorentzlinie beschreibt. Sie ist zentriert an
der Frequenz @y, und ihre Breite ist gegeben durch
die Zerfallszeit 1.

Diese Resonanzlinie entspricht gerade der Linien-
form, die wir als stationdre Losung der Blochglei-
chungen im Grenzfall eines schwachen Feldes er-
halten hatten. Es gilt allgemein, dass die Fourier-
transformierte des FID’s das Spektrum des entspre-
chenden cw-Experimentes ergibt (sofern keine Sét-
tigungseffekte auftreten).

A=2,v=03

Sij(t) = ‘%j eioyT
A=3,v=07

VA A A A=1,v=10

Zeit

Summe

2

Frequenz

Abbildung 4.6: Signal aus 3 Frequenzkomponenten.

Besteht das Spinsystem aus mehreren Spins, welche
nicht aneinander gekoppelt sind, so erhilt man als
Signal eine Summe aus zerfallenden Exponential-
funktionen. Im FID sind diese Beitrige schwierig zu
unterscheiden. Es ist deshalb meist niitzlich, sie zu
Fourier-transformieren. Im resultierenden Spektrum
ist die Trennung wieder relativ einfach ersichtlich.

Ei

Wj5 A Ajk
E, ij

w jk
E Frequenz

k

Abbildung 4.7: Frequenz und Amplitude in einem
Spektrum mit mehreren Linien.

Ein vollig analoges Verhalten erhélt man, wenn man
verschiedene Uberginge in einem einzelnen Spinsy-
stem diskutiert, wie z.B. bei einem Quadrupolspin.
Da das Signal durch die Spur des Produktes

se(t) = Sp{pA} =Y pijAji = Y piAiji
iy iy
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4 Zeitautgeloste NMR

bestimmt wird, konnen wir einzelne Signalbeitriage
aus den Matrixelementen von Dichteoperator p und
Observablen A bestimmen. Im typischen Fall dass
diese identisch sind,

p(0)=A=1,

erhalten wir einzelne Resonanzlinien im Spektrum
direkt aus den Matrixelementen von /,, wobei diese
in der Eigenbasis des Hamiltonoperators ausgewer-
tet werden miissen. Wenn wir das Signal zerlegen in
einzelne Komponenten

seip(t) = Zaijeiwijt ;
i,J

so ergeben sich daraus im Spektrum die Amplituden
a;; und Frequenzen @;;, welche zu einem Ubergang
i +» j zwischen stationdren Zustinden i und j geho-
ren. Frequenz @;; und Amplitude a;; sind gegeben
durch

E —E,
n

w;j = y Qi < |(Iy)i,j|2

Hier ist (Iy), ; das Matrixelement (i, j) von /y in der
Eigenbasis des Hamiltonoperators.

4.2 Echos

Die bisher betrachteten Experimente, bei denen ein
Signal nach einem einzelnen Radiofrequenzpuls auf-
genommen und Fourier-transformiert wird, ergeben
Informationen, welche weitgehend mit den konven-
tionell (CW = continuous wave = Dauerstrichmes-
sung) aufgenommenen Spektren dquivalent sind. Es
zeigt sich jedoch, dass es in vielen Fillen niitzlich
ist, das System nicht nur mit einem einzelnen, son-
dern mit einer Reihe von Radiofrequenzpulsen an-
zuregen. Man gewinnt dadurch z.B. mehr Informa-
tion oder hohere Auflosung. Wir beginnen mit dem
einfachsten und iltesten Mehrpulsexperiment, dem
Hahn-Echo.

Es wurde 1950 von Erwin Hahn beschrieben: E.L.
Hahn, *Spin echoes’, Phys. Rev. 80, 580-594 (1950).

Abbildung 4.9: Hahn’s Original Echo.

4.2.1 Das Hahn-Echo

Ein FID wird niemals durch einen einzelnen Spin er-
zeugt. Statt dessen beobachtet man immer ein En-
semble. Das beobachtete Signal stammt von einem
Ensemble von Spins, welches durch einen Dichte-
operator beschrieben wird. Weil nicht alle Spins ge-
nau das gleiche Magnetfeld spiiren, prizedieren die
zugehorigen Magnetisierungsvektoren nicht gleich
schnell, und der FID zerfillt. Dieser Zerfall kann
mit Hilfe eines Radiofrequenzpulses riickgédngig ge-
macht werden — die Spins werden ,,refokussiert®.

/2

Abbildung 4.10: Pulssequenz fiir das Hahn-Echo
Experiment.

n

<
=<

’

Zeit

Das Experiment beginnt mit einem (idealen) 90-
Grad Puls, welcher die Gleichgewichtsmagnetisie-
rung von der z- zur x- Achse des rotierenden Koordi-
natensystems dreht. Der resultierende Zustand wird
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4 Zeitautgeloste NMR

durch den Dichteoperator
)= Y4
p Z y
i

beschrieben (wir haben hier die iiblichen Vorfak-
toren weggelassen). Anschlieend prizedieren die
Mitglieder des Ensembles mit ihrer individuellen
Resonanzfrequenz Awé’). Die entsprechende Zeit-
entwicklung des Dichteoperators ist demnach

_ 10

Z(cos(Awéi) t)

i

+ sin(Ao{') 1) e /T

p(t)

Wenn wir die y-Magnetisierung messen, erhalten wir
somit ein Signal

(i)

w,'t) e/

Stot = Z<Iy(i)

1

V(1) = %ZCOS(A

Die Resonanzfrequenzen Aa)(gi) der einzelnen Spins
sind nicht exakt identisch, da verschiedene Wechsel-
wirkungen einen Unterschied hervorrufen kdnnen.
Im aktuellen Zusammenhang betrachten wir dazu le-
diglich ein inhomogenes Magnetfeld, welches eine
entsprechende Verteilung der Larmorfrequenzen er-
zeugt. Man erhilt somit einen ,,Spinficher®, dessen
Breite durch das Produkt aus der Zeit ¢ und der Breite
der Verteilung der Resonanzfrequenzen Aa)él) gege-
ben ist. Ist dieses Produkt grof} gegen eins, so sind
die Phasen Aa)éi)t in der xy Ebene gleichmifig ver-
teilt, der Mittelwert der Magnetisierung verschwin-
det.

In Abb. ist der Zerfall der transversalen Ma-
gnetisierung gezeigt; der Zerfall der Magnetisierung
nach dem ersten Puls ist durch die Breite der Vertei-
lung der Resonanzfrequenzen im inhomogenen Feld
bestimmt.

Die Dephasierung der Spins kann mit dem Ausein-
anderfliegen von Gasmolekiilen verglichen werden,
wenn ein Gefdl mit komprimiertem Gas geoffnet
wird. Es ist in beiden Féllen prinzipiell denkbar,
aber sehr unwahrscheinlich, dass die Molekiile, resp.
Spins wieder in den Ausgangspunkt zuriickkehren.

e

B

o

‘/
! Ve

g

e
Y

Abbildung 4.11: Maxwell’s Ddmon und bewegte
Molekiile

Wie von Maxwell portritiert, wére dies auch mog-
lich, wenn ein Ddmon, welcher die einzelnen Mo-
lekiile (Spins) beobachtet, deren Geschwindigkeiten
(Prazessionsfrequenzen) alle gleichzeitig invertieren
wiirde.

4.2.2 Refokussierung

Im Gegensatz zu einem molekularen Gas, wo kein
Maxwell-Ddmon existiert, welcher die Bewegung
der Molekiile umdrehen kann, ist es im Falle ei-
nes Spinsystems moglich, die Phasen aller Spins zu
invertieren, von e~ b0t 4y b0t Dyazy muss die
gesamte Magnetisierung mit einem RF Puls in y-
Richtung um 7 rotiert werden. Ein solcher Puls in-

vertiert I, und I, ldsst aber I, invariant:

IX e—inl, _Ix
I . L
Iz _Iz

Wird zu einer Zeit T nach dem Anregungspuls ein
solcher Refokussierungspuls auf das System ange-
legt, so wird der Zustand des Systems danach

1

p(T+)

= Y [cos (Aa)(gi) T)

]

+sin(Ao('T) 1)) e T/,

Der Zustand nach dem Puls ist somit der gleiche wie
vor dem Puls, aufler dass die Phase aller Spins inver-
tiert wurde, AwyT — —AayT. Dies kann auch als
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4 Zeitautgeloste NMR

Zeitumkehr T — —T interpretiert werden. Die Pha-
se ist gleichzeitig der Winkel der Spins gegeniiber
der y-Achse; dieser Winkel nimmt linear mit der Zeit
zu, mit der Steigung Aa)él). Die Inversion der Phase,
¢ — — @, entspricht einer Spiegelung an der Zeitach-

se (9 =0).

/2

o [ Iiﬁ;fli:m.

Phase
¥

Abbildung 4.12: Inversion der Phasen durch den
Refokussierungspuls. Fiir zwei der
Spins ist exemplarisch dargestellt,
wie sie mit unterschiedlicher Fre-
quenz prizedieren und deshalb un-
terschiedliche Phasen erhalten.

Nach dem Puls lduft die Evolution der Spins wieder
wie vor dem Puls, d.h. die Phase wichst gemaf

Z[COS(A(Déi) (r— T))Iy(i)

i

p(T +1)

—sin(Aa (t = T)) 1 ]e~T+/ T,

Die Zeit ¢ misst hier die Dauer der freien Prizession
nach dem Refokussierungspuls.

Wenn diese gleich lang wird wie die Dauer zwi-
schen Anregung und Refokussierungspuls, ¢ = T,
verschwinden alle Phasen Aa)(()i) (t—T), da sich die
negativen Werte aus der ersten Prizessionszeit gera-
de gegeniiber den positiven aus der zweiten Periode
aufheben, unabhingig von der Frequenz der einzel-
nen Spins. Damit ist die destruktive Interferenz auf-
gehoben, es entsteht “spontan” ein Signal, ein Echo.

Signale der
einzelnen Spins

Gesamtsignal

MMMM.
{i

\UA/\MM
v uw

Abbildung 4.13: Bildung des Echos: Zur Zeit des
Echos sind alle Phasen identisch

(=0).

Dieses ist gegeniiber dem urspriinglichen Signal le-
diglich um die Dimpfung e 2’/"> reduziert. Diese
Dampfung ist fiir alle Spins vorhanden, auch in ei-
nem homogenen Feld, und wird deshalb als homo-
gener Beitrag zur Relaxation, respektive zur Linien-
breite bezeichnet.

4.2.3 Propagator

Als Alternative zu dieser ,.direkten“ Beschrei-
bung soll hier auch eine Operatoren-Schreibweise
diskutiert werden. Diese ist mathematisch etwas
anspruchsvoller, dafiir eleganter, und sie ldsst
sich leichter verallgemeinern. Wir schreiben da-
fiir die Bewegungsgleichung der Dichtematrix (die
Liouville-von-Neumann-Gleichung) als

d

dtp()

—i[A,p(1)].

Sie wird fiir einen nicht explizit von der Zeit abhin-
gigen Hamiltonoperator .77 gelost durch

7i,%"tp (O)ei%"t

pt) = e — Up(OU ().

Der Operator U(t) = e~*”*", der den Dichteoperator

p in der Zeit entwickelt, wird Propagator genannt.

Um die Liouville-von-Neumann-Gleichung auszu-
werten, wihlen wir folgende Vorgehensweise:
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1. Als Anfangszustand betrachten wir entweder
p(0) = I oder I, d.h. wir haben vorher einen
(idealen) 90° Puls auf die Gleichgewichtsma-
gnetisierung (Hochtemperaturniherung!) wir-
ken lassen.

Wir zerlegen die Zeitentwicklung in Intervalle,
in denen der Hamiltonoperator im rotierenden
Koordinatensystem jeweils konstant ist.

. Wir ndhern die Hochfrequenzpulse durch §-
Funktionen, d.h. wir vernachldssigen die an-
sonsten zu beriicksichtigende Zeitentwicklung
wihrend des Pulses. Die entsprechenden Propa-
gatoren sind somit e/, resp. e/, wobei ¢ den
Flipwinkel und x, y die Phase des Pulses darstel-
len.

4.2.4 Das Hahn-Echo

Das Experiment eignet sich zur Refokussierung von
Wechselwirkungen, die linear in I, sind. Beispiele
hierfiir sind die chemische Verschiebung, die hetero-
nukleare Dipol-Dipolwechselwirkung, sowie Inho-
mogenititen des dusseren Magnetfeldes. Der Hamil-
tonoperator ist 5 = —Awmyl,. Wir bestimmen den
Propagator nach der Zeit t = 2T

efijftp(o)ei{%”t
UQ2T)p(0)U ' (2T)

und betrachten die Pulssequenz (90°), — T —
(180°) 1, — T - sozusagen von rechts nach links

UQT) = GANLT =il AT

Wir fiigen dahinter den Einheitsoperator e'e =/

an:

U(ZT) _ e*lAw()IzTe*m'IxelAﬂ)oIzTelﬂlxe*lﬁlx

und vereinfachen die 3 mittleren Terme

—inly AT il —iAan.T

e = e

Dieser ist der inverse Propagator des ersten Terms
und der gesamte Propagator wird

UQ2T) = e '™

und somit unabhingig von Aayl,.

Die anfingliche Dichtematrix nach einem 90° Puls
beliebiger Phase kann als Uberlagerung von I, und
I, geschrieben werden. Wir betrachten die Fille ge-
trennt.

a)p(0) =1,

p(2T) = e ™[ ™ = ..

Dies entspricht einer Rotation von I, um die x-
Achse. Insgesamt ist also

p(2T) = p(0).

b) p(0) =1

p(2T) = e ™™ = .
Dies entspricht einer Drehung von 7, um +180°. Da-
mit ist

p(2T) = —p(0).

Wir hitten das selbe Ergebnis erhalten, wenn wir ei-
ne Drehung um -180° ausgefiihrt hitten, d.h. bei In-
version der Phase des zweiten Pulses.

Den Schritt

—intly ,—iA LT ity iAwyL.T

e =e
kann man {iibrigens so interpretieren, dass das Vor-
zeichen des Hamiltonoperators invertiert wird,

T = — ..

Im Mittel hebt sich dann die Wirkung der Operatoren
6, und — 77, weg. Deshalb tritt zum Zeitpunkt des
Echos wieder die volle Anfangsmagnetisierung auf.
Wenn wir anstelle des Hamiltonoperators den Propa-
gator U(t) = e~ betrachten, konnen wir die Vor-
zeichenumkehr mit

—i(=) —iA(—t)

= e
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auch als eine Zeitumkehr deuten.

Diese Argumente gelten natiirlich nur fiir die sy-
stematische Zeitentwicklung unter der Wirkung von
J7,. Andere Einfliisse haben wir bis jetzt nicht be-
trachtet. Stochastische Prozesse, etwa molekulare
Bewegungsvorginge in den zu untersuchenden Pro-
ben sind natiirlich irreversibel. Es ist der damit ver-
kniipfte Abfall des Hahn-Echos fiir den man sich
dann eigentlich interessiert, um etwas iiber solche
Bewegungsvorginge zu erfahren. Der Vorteil des
Hahn’schen Spin-Echos liegt nun gerade darin, dass
man sich um die trivialen Dephasierungen (wen in-
teressiert schon eine etwaige Inhomogenitét des Ma-
gnetfeldes) nicht zu kiitmmern braucht.

4.2.5 Das stimulierte Echo

Es gibt viele weitere Echo-Experimente, in denen
unterschiedliche Wechselwirkungen “refokussiert”
werden. Die direkteste Erweiterung des Hahn-Echos
ist das stimulierte Echo, welches aus drei 7/2-
Pulsen besteht. Man kann es sich so vorstellen, dass
dabei der 7-Puls des Hahn-Echos in zwei 7/2-Pulse
aufgeteilt wird.

/2 /2

MK T

Abbildung 4.14: Stimuliertes Echo.

Das System entwickelt sich zu Beginn gleich wie
beim Hahn-Echo:

p(z) = Y(cos(aay )" — sin(Aay’ 7))

i

Der zweite 7r/2-Puls dreht die y—Komponente zur z-
Achse, ldsst jedoch die x-Komponente unverédndert:

p(e+) = ¥ (cos(aa)’ D)l — sin(aa o)1),

1

Wihrend der darauffolgenden Zeit zerfillt die x-
Komponente, wihrend die z-Komponente mit dem

Hamiltonoperator vertauscht und somit zeitlich kon-
stant ist:

p(T,Tn) = Zcos(Aa)éi) .

Der dritte 7r/2-Puls erzeugt daraus wieder transver-
sale Magnetisierung

p(7,%,0) = Y cos(aa D)1").
i
Wir schreiben diesen Zustand als eine Summe

p(Ta (0 0) -
) Yilcos(Aa) )1 + sin(Aay )1
+ cos(Aa)éi) ’L’)I}(,i)) — sin(Aa)éi) ’L’)I)Ei)]

Der erste Term entspricht exakt dem Term, den wir
beim Hahn-Echo gefunden hatten; er entwickelt sich
zu einem Echo, welches zur Zeit T nach dem dritten
Puls erscheint. Die Dauer vom dritten Pulse bis zum
Echo ist somit gleich dem Abstand zwischen dem
ersten und dem zweiten Puls und uabhingig von 1,,.
Dieses Echo wird als stimuliertes Echo bezeichnet.
Der zweite Term hat die umgekehrte Phase; in die-
sem Term sind die Phasen gleich wie wenn die Zeit-
entwicklung des Systems wihrend der Zeit zwischen
den beiden Pulsen angehalten worden wire und die
Dephasierung jetzt weiter lauft. Im Mittel iiber das
Ensemble verschwindet er deshalb.

In dieser Betrachtungsweise erscheint das stimulier-
te Echo praktisch die gleiche Information zu liefern
wie das Hahn Echo (abgesehen vom Faktor 1/2). Der
wesentliche Unterschied wird erst ersichtlich, wenn
man zusitzlich die Relaxation beriicksichtigt: Das
Echo-Signal wird in diesem Fall nicht mit e 2/
gedampft, sondern mit
Sp o 8727:/T2 eer/Tl.

Wihrend der Zeit zwischen den Pulsen wird die In-
formation in der Form longitudinaler Magnetisie-
rung gespeichert, welche mit der Zeitkonstanten 7}
zerféllt. Da in vielen Systemen T > T, ist, er-
moglicht dieses Experimente deshalb hiufig langere
Messungen. Es wird insbesondere zur Untersuchung
langsamer Bewegungsprozesse verwendet.
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4.3 Messung von Relaxationszeiten

Zu den wichtigsten Anwendungen von Mehrpuls-
Expermenten gehort die Bestimmung von Relaxati-
onszeiten. Wir beginnen mit der Messung der trans-
versalen Relaxationszeit 7.

4.3.1 T, Messung : Hahn-Echo

Im einfachsten Fall reicht es, zur Messung einen
90° Puls zu verwenden, welcher die anfingliche z-
Magnetisierung in die xy-Ebene klappt. Benutzen
wir dazu einen y-Puls, dann zeigt der Vektor der Ge-
samtmagnetisierung zunéchst in die x-Richtung des
rotierenden Systems. Wie in Kapitel 3 diskutiert, zer-
fillt die transversale Magnetisierung mit einer Zeit-
konstante 75:

M,(1) = My, (0) cos(Aaxt — @) e/

Diese Zeitkonstante konnen wir daher im einfach-
sten Fall messen, indem wir die Spannung aufzeich-
nen, welche die Gesamtmagnetisierung in einer Spu-
le induziert (siehe Kapitel 4.T).

Da die Experimente praktisch immer in nicht perfekt
homogenen Magnetfeldern durchgefiihrt werden, er-
hilt man dadurch eine zusétzliche Dephasierung, fiir
die man sich in vielen Fillen nicht interessiert. Sol-
che "trivialen", zeitunabhéngigen Inhomogenititen
lassen sich mit Echo-Experimenten wieder "refokus-
sieren" (siehe Kapitel Hahn-Echo). Wie dort
gezeigt wurde, ist die Amplitude des Echo-Signals
e 2T/ unabhingig von der Larmorfrequenz, und
damit unabhiingig von Inhomogenitédten des Magnet-
feldes.

Man kann demenstprechend den Wert von 7, bestim-
men, indem man eine Reihe von Hahn-Echo Expe-
rimenten durchfiihrt, in denen der Pulsabstand sy-
stematisch inkrementiert wird. In Abb. sind als
Beispiel Messdaten von Protonen in H,O gezeigt.
Aus den Daten wurde der Wert von 75> zu 0,404 s be-
stimmt, indem die Signale an die Funktion s(27') =
ae 2T/T angefittet wurde.

/2 T
—
A
© Wasser
[
2
wv
T.=0,404s
-
0 1 2

Zeit /s

Abbildung 4.15: Beispiel einer T>-Messung der Pro-
tonen in Wasser. Der Zerfall des
Signals ist durch T7;-Relaxation
bestimmt.

4.3.2 Carr-Purcell & Meiboom-Gill

In der oben diskutierten Version des Experimentes
muss fiir jeden Wert der Zeit T ein separates Experi-
ment durchgefiihrt werden. Es ist jedoch auch mog-
lich, alle Werte in einem einzelnen Experiment zu
messen. Dazu legt man nach dem ersten Echo einen
weiteren 180-Grad Puls an, welcher die Magnetisie-
rung erneut refokussiert. Dieses Vorgehen kann im
Prinzip beliebig oft wiederholt werden, bis das Si-
gnal vollstindig zerfallen ist. Diese Vereinfachung
wurde zuerst von Carr und Purcell verwendet (H.Y.
Carr and E.M. Purcell, ‘Effect of diffusion on free
precession in nculear magnetic resonance experi-
ments’, Phys. Rev. 94, 630-638 (1954).). Eine wei-
tere Verbesserung wurde von Meiboom und Gill ein-
gefiihrt (S. Meiboom and D. Gill, Rev. Sci. Instr., 29,
688-691 (1958).). Details zu dieser Methode werden
im Rahmen des FP (Versuch 49) untersucht.

Neben der Verkiirzung der Messzeit bietet die
CPMG Methode auch die Moglichkeit, den sto-
renden Einfluss von Diffusionsprozessen zu unter-
driicken: Bewegen sich die Spins (z.B. in einer Fliis-
sigkeit), so funktioniert die Refokussierung nicht
mehr richtig. Da beim CPMG Experiment die Ab-
stinde zwischen den Pulsen kiirzer sind, ist der Ein-
fluss der Diffusion geringer.

87



4 Zeitautgeloste NMR
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Carr-Purcell-Meiboom-Gill
{90°)y- [ - (180°) -t - Echo -],

Abbildung 4.16: Mehrfachechos mit Carr-Purcell-
Meiboom-Gill Methode.

4.3.3 T|-Messung

Um die Spin-Gitter-Relaxationszeit (77) zu mes-
sen, muss man zunichst Nichtgleichwichtsmagneti-
sierung M, # My erzeugen. Die Abweichung vom
Gleichgewicht wird maximal, wenn man zu Beginn
des Experimentes mit einem 7z-Puls die Gleichge-
wichtsmagnetisierung My invertiert. Im Laufe der
Zeit wird sich die longitudinale Magnetisierung, d.h.
M, (1), immer stirker an My anndhern. Um den mo-
mentanen Wert von M. (¢) zu ermitteln, legt man
einen 2. RF-Puls an, der die Magnetisierung im ro-
tierenden System um 90° dreht. Dieser 7/2-Puls
klappt somit die Magnetisierung M,(¢) von der z-
Achse in die xy- Ebene, wo sie nachgewiesen werden
kann.

Umittelbar nach dem Inversionspuls betrigt die Ma-
gnetisierung des Systems

Danach nihert es sich wieder dem Gleichgewicht,
wobei der Aufbau der z-Magnetisierung wie

M,(t) = My(1—2¢7"/Th)

lauft. Die z-Magnetisierung ist nicht direkt messbar.
Sie muss deshalb mit einem Auslesepuls in beob-

achtbare transversale Magnetisierung umgewandelt
werden. Dieser erzeugt daraus

Mo(1 —2¢71/Ti)
0
0

M(t+)

Messen wir die x-Komponente des Signals, so erhal-
ten wir somit

s(t) = My(1 —2¢7"/T).
Um T} zu bestimmen fiithrt man deshalb Messungen
mit unterschiedlichem Pulsabstand ¢ durch und passt

die Parameter My und 77 and die Messdaten an.

Mo
©
c
2 Zeit/ s
v T T T T T
1 2 3 4 5
M,(t) = My(1 —2e~¥/T)
‘MO

Abbildung 4.17: Beispiel fiir eine T{-Messung.

Abb. zeigt als Beispiel gemessene Daten einer
Wasserprobe, zusammen mit der gefitteten Funktion
fiir eine Relaxationszeit von 77 =1,09 s.

Die Messung der longitudinalen Relaxationszeit
wird normalerweise vor anderen Messungen durch-
gefiihrt, da sie z.B. angibt, wie rasch Messungen
wiederholt werden konnen: fiir die meisten Experi-
mente muss man eine Wartezeit von > 3 7] abwarten,
damit das System wieder nahe zum Gleichgewicht
gelangt. AuBBerdem werden Messungen der lonitudi-
nalen Relaxationszeit hiufig verwendet, um Bewe-
gungsprozesse im Material zu untersuchen.
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