6 Fast Freie Elektronen:

6.1 Periodisches Potenzial

6.1.1 Probleme des Modells freier
Elektronen

Im Modell der freien Elektronen werden Wech-
selwirkungen zwischen Valenzelektronen und
Atomrimpfen vollstdndig vernachléssigt. Dies
ist auch in den meisten Féllen eine gute Né-
herung. Sie hat allerdings auch ihre Grenzen.
Die wichtigsten Diskrepanzen zwischen der N&-
herung der freien Elektronen und der experimen-
tellen Wirklichkeit sind:
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Abbildung 6.1: Gréfkenordnung der Ladungstra-
gerdichten in unterschiedlichen
Festkorpern.

o Elektrische Leitfahigkeit. Experimentell
beobachtet man vor allem drei Klassen von Ma-
terialien, die sich qualitativ unterscheiden: Me-
talle, Halbleiter, und Isolatoren. Bei Isolato-
ren ist die elektrische Leitfdhigkeit sehr klein,
der spezifische Widerstand betrégt typischerwei-
se mehr als 10'2 Qm. Die unterschiedliche Leitfi-
higkeit verschiedener Materialien kann direkt auf
die Ladungstriagerdichte zuriickgefiihrt werden.

Bandstrukturen

Diese variiert zwischen Isolatoren und Metallen
um mehr als 10 Grékenordnungen. Das Modell
der freien Elektronen sagt voraus, dass die Zu-
standsdichte mit der Wurzel aus der Energie zu-
nimmt,
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Dies gibt keinen Hinweis darauf, dass die Zahl
der Elektronen in einem Material 10 Gréfenord-
nungen hoher liegt, als in einem anderen. Das
Modell setzt voraus, dass ein Teil der Elektro-
nen frei ist, andere aber gebunden, aber es macht
keine Aussage, welche frei und welche gebunden
sind.
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Abbildung 6.2: Qualitative Temperaturabhén-
gigkeit der Leitfdhigkeit von
Metallen und Halbleitern.

e Temperaturabhingigkeit der Leitfihig-
keit. Halbleiter verhalten sich am absoluten
Nullpunkt wie Isolatoren, doch ihre Leitféhig-
keit nimmt mit steigender Temperatur zu, wie
qualitativ in Abb. gezeigt. Bei Metallen ist
die Leitfahigkeit bei allen Temperaturen hoch,
nimmt aber mit steigender Temperatur ab. Of-
fenbar ist die Sommerfeld’sche Theorie nur auf
Metalle anwendbar.

e Dotierung: Der Einbau von Fremdatomen
kann die Leitfadhigkeit eines Materials drastisch
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6 Fast Freie Elektronen: Bandstrukturen

verdndern. Nach dem Modell der freien Elektro-
nen sollten Gitterfehler die Leitfahigkeit reduzie-
ren. In Halbleitern (— Kap. [7)) kénnen sie aber
die Leitfahigkeit um viele Gréfenordnungen er-

hohen.

log (Magnetfeld)

Hall-Widerstand

Abbildung 6.3: Magnetfeldabhéngigkeit des
Hall-Widerstandes in Alumini-
um.

e Hall-Widerstand: Geméaft dem Modell der
freien Elektronen sollte der Hall-Koeffizient
Ry = —1/ne sein, unabhéngig von Temperatur,
Magnetfeld etc. In vielen Metallen findet man
jedoch Abweichungen, insbesondere Variationen
als Funktion von Temperatur und Magnetfeld-
stiarke, wie in Abb. gezeigt. Teilweise un-
terscheiden sich berechnete und experimentelle
Werte um Faktoren im Bereich 1-10.

Gesetz:
ist nur bei

° Wiedemann-Franz Das
Wiedemann-Franz Gesetz sehr
tiefen (F1K) und hohen Temperaturen (Raum-
temperatur) exakt erfiillt. Dazwischen héngt
das Verhéltnis A/oT von der Temperatur ab.

e Anisotropie: Die elektrische Leitfahigkeit ist
in einigen Metallen von der Richtung abhingig.
Dies ist im Rahmen des Modell freier Elektronen
nicht erkldrbar, da dort keine bevorzugten Rich-
tungen existieren: Die Fermikugel ist isotrop.

e Wiarmekapazitat: Die Warmekapazitiat von
Metallen bei tiefen Temperaturen weicht von der
linearen Temperaturabhéngigkeit ab, insbeson-
dere fiir Ubergangsmetalle und etwas weniger fiir
Edelmetalle.

6.1.2 Storung durch Kerngitter

Alle diese Unterschiede konnen letztlich auf die
Wechselwirkung der Elektronen mit dem periodi-
schen Potenzial U (7) erklért werden, welches die
Atomriimpfe (Kerne plus stark gebundene Elek-
tronen) erzeugen. Diese bricht die vollstandige
Translationssymmetrie, so dass der Impuls keine
Erhaltungsgrofie mehr ist.

Wie {iblich beschrianken wir uns auf ideale Kri-
stalle. Hier ist das effektive Potenzial periodisch,

U@+ T) = U(P),

wenn T ein Vektor des Gitters ist.

Wir diskutieren den Effekt dieses Potenzials in
storungstheoretischer Naherung und machen die
tiblichen idealisierenden Annahmen (keine Kri-
stallfehler, Fremdatome etc.). Wir verwenden
weiterhin die Ndherung, dass die Elektronen un-
abhéngig voneinander betrachtet werden kon-
nen, d.h. wir berechnen nur Zustandsfunktionen
und Energien fiir einzelne Elektronen. Die Wech-
selwirkung mit den {ibrigen Elektronen erfolgt
nur {iber ein effektives Potenzial.

kinetische
Energie dominiert

potenzielle
Energie dominiert
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Abbildung 6.4: Freie, gestérte und lokalisierte
Elektronen.

Durch die Berticksichtigung des periodischen Po-
tenzials schlagen wir eine Briicke zwischen zwei
Extremen: Das eine Extrem ist das System frei-
er Elektronen. Hier ist der Hamiltonoperator ei-
ne Funktion des Impulsoperators und die Ei-
genfunktionen des Hamiltonoperators dement-
sprechend die Eigenfunktionen des Impulsopera-
tors. Das andere Extrem ist dasjenige isolierter
Atome. Hier dominiert die potenzielle Energie
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6 Fast Freie Elektronen: Bandstrukturen

iiber die kinetische und die Eigenfunktionen des
Hamiltonoperators sind deshalb lokalisiert. Ein
wirklicher Kristall befindet sich zwischen diesen
beiden Extremen: Die kinetische Energie fordert
die Delokalisierung, die potenzielle Energie der
Atomriimpfe eine Lokalisierung. Da die beiden
Operatoren fiir Potenzial (d.h. der Ortsopera-
tor) und kinetische Energie (d.h. Impulsopera-
tor) nicht miteinander vertauschen, [Hgn, V] #
0, sind die Eigenfunktionen weder durch diejeni-
gen des freien Elektrons, noch durch diejenigen
der vollstéandig gebundenen Elektronen gegeben.

Die wirkliche Situation liegt also zwischen die-
sen beiden Extremen. Man néhert sich dieser Si-
tuation entweder vom Modell der freien Elek-
tronen, was in diesem Kapitel geschehen soll,
oder von der Seite der lokalisierten Elektronen,
was z.B. bei der “starken Lokalisierung” gemacht
wird, also bei Systemen mit relativ stark gebun-
denen Elektronen. Geht man von dieser Seite
aus, so kann man die Zusténde des Bandes durch
Linearkombination aus Atomorbitalen erzeugen
(LCAO-Methode), dhnlich wie in Kap. fiir
Molekiilorbitale diskutiert.

6.1.3 Pseudopotenzial

Die freien Elektronen werden durch ebene Wellen
e beschrieben. Wir untersuchen hier zunéchst
den Effekt einer kleinen Stérung auf diese Eigen-
funktionen. Es mag zunéchst erstaunlich schei-
nen, dass man die Coulomb-Wechselwirkung als
eine kleine Storung betrachten kann. Dazu tra-
gen primér zwei Griinde bei:
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Abbildung 6.5: Effektives periodisches Potenzial
fiir die Elektronen.

e Die anziehende Coulomb-Wechselwirkung ist
am stérksten in der Nédhe der Kerne. Sie wird
aber weitgehend kompensiert durch die ab-
stokende Pauli-Wechselwirkung: Aufgrund des

Pauli-Prinzips diirfen sich die Leitungselektro-
nen nicht in der Ndhe der Kerne aufhalten, wo
die gebundenen Elektronen aus den vollstandig
besetzten tieferen Schalen sich aufhalten.

e Die freien Elektronen schirmen die Ladung der
positiv geladenen Atomriimpfe von einander ab,
wie in Kapitel diskutiert. Die Abschirmung
fithrt dazu, dass das effektive Potenzial eine sehr
viel kiirzere Reichweite besitzt.

6.1.4 Punktférmige Storung

Es existieren viele unterschiedliche Modelle fiir
den Einfluss des periodischen Potenzials auf die
Elektronen. Ausgangspunkt ist das freie Elektro-
nengas, d.h. die Zustandsfunktionen ¥ = e
sind ebene Wellen und der ungestorte Hamilton-
operator entspricht der kinetischen Energie frei-
er Elektronen. Je nach Zusammenhang sind be-
stimmte Modelle einfacher oder niitzlicher.

An dieser Stelle verwenden wir ein Potenzial,
welches zwar die korrekte Periodizitat aufweist,
aber eine mathematisch einfache Struktur (an-
stelle einer physikalisch sinnvollen Form): Wir
ndhern die potenzielle Energie durch die Wech-
selwirkung mit den Kernen durch eine Summe
von Delta-Funktionen am Ort der Kerne an:

V = —ze? Zé(x — sa).

Die Nédherung durch die Delta-Funktion kann als
Extremfall der Abschirmung betrachtet werden.
z ist die effektive Ladung das Atomrumpfs und
a der Gitter-Abstand.

[Potenzial:
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Abbildung 6.6: Links: vereinfachtes periodisches
Potenzial. Rechts: Addition der
Beitriage in der komplexen Ebe-
ne.
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6 Fast Freie Elektronen: Bandstrukturen

Dieser Potenzial-Term muss im Hamiltonopera-
tor zur kinetischen Energie der freien Elektronen
addiert werden. Der Erwartungswert des ent-
sprechenden Operator fiir die Zustandsfunktio-
nen der freien Elektronen ist
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d.h. eine unendliche Reihe, wobei der Betrag je-
der Zahl eins ist, wihrend die Phase um (k—k")a
zunimmt. In der komplexen Zahlenebene bewegt
man sich offenbar auf einem Polygon. Die Sum-
me verschwindet deshalb immer, aufer wenn die-
se Phase (d.h. der Winkel zwischen den Vektoren
in der komplexen Ebene) gleich null ist, d.h. fiir
K —k= Qn—ﬂ
a

In diesem Fall haben alle Beitrdge die gleiche
Phase und addieren sich, d.h. es findet eine kon-
struktive Interferenz statt. Dies entspricht offen-
bar dem Fall, dass die beiden Wellenvektoren
sich um einen Vektor des reziproken Gitters un-
terscheiden. Formell ist diese Rechnung analog
zur Beugung an einem optischen Gitter.

Ein nicht verschwindender Beitrag ergibt sich so-
mit zunéchst fir den Fall £’ = k (n = 0), d.h. fir
die Diagonalelemente. Dieser Beitrag ist fiir alle
Zustande identisch und stellt lediglich eine Ver-
schiebung des Energie-Nullpunktes dar. Er kann
direkt dem konstanten Teil des Potenzials zuge-
ordnet werden. Da er keinen Einfluss auf die Zu-
stdnde oder die Dynamik des Systems hat, wer-
den wir ihn von jetzt an vernachléssigen.

6.1.5 Aufierdiagonalterme im
Hamiltonoperator

Fir K’ # k, d.h. fiir Aukerdiagonalelemente, er-
gibt sich offenbar genau dann ein endlicher Wert,
wenn die Bragg-Bedingung erfiillt ist, d.h. wenn
die Differenz k — k' der Wellenvektoren einem
Vektor des reziproken Gitter entspricht. Somit

reflektiert das periodische Potenzial die Elektro-
nenwellen genauso wie Rontgenwellen. Wir kon-
nen dies wiederum als ein Resultat der Impulser-
haltung betrachten.

Da es sich hier um ein Auferdiagonalelement
handelt, folgt aus der Stérungsrechnung, dass es
nur dann einen wesentlichen Beitrag ergibt, wenn
die beiden Zustdnde, welche aneinander gekop-
pelt werden, in ihrer Energie nicht stark unter-

schiedlich sind.

k-k’ =
Energien der beiden AE
Zustande sind gleich
B R
I I
-2 - 0 g 2 k
a a a a

Abbildung 6.7: Bedingung fiir die Kopplung von
Bloch-Funktionen.

Diese Bedingung ist z.B. nicht erfiillt, wenn k =
0,k = 27 /a. Die Diagonalelemente des Hamil-
tonoperators enthalten die kinetische Energie,
h%k%/2m, die Auferdiagonalelemente fiir nicht
normierte Zustande sind

(1|V]ei?ra) = —26221:—Nze2,
S

mit NV als Zahl der Atome. Somit lautet der Ha-
miltonoperator fiir diese beiden Zusténde

0 cze?
H = 2 27?2 )
cze

a’m

wobei ¢ eine noch zu bestimmende Konstante
darstellt, welche auch die Normierung der Zu-
stande beriicksichtigt. Nach Voraussetzung des
Storungsansatzes sind die Aufserdiagonalelemen-
te klein, cze? < Hao. Die Energien und Zustéan-
de entsprechen somit weitgehend denjenigen der
freien Elektronen.
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6 Fast Freie Elektronen: Bandstrukturen

Die Situation ist anders fiir k = 7 /a, k' = —7/a,
also am Rand der ersten Brillouin-Zone. Hier
wird das Auflerdiagonalelement

= e Z<e:|:i7rs |€$i7rs>
s

= —NzeQ,

<€:|:i7r% ’V|e$i7r%>

also gleich grof wie beim ersten Fall, wobei das
Vorzeichen des Wellenvektors keine Rolle spielt.
Der Unterschied liegt bei den Diagonalelemen-
ten des Hamiltonoperators: in diesem Fall sind
beide gleich, Hi1 = Hoo = 72/2ma?. Dies ist
ein Fall von entarteter Storungsrechnung und die
Zusténde mit den Wellenzahlen k = £7/a wer-
den vollstandig gemischt.

6.1.6 Gekoppelte Zustinde

Wir suchen nun nach den Eigenfunktionen des
Hamiltonoperators im periodischen Potenzial.
Dafiir betrachten wir jeweils ein Paar von gekop-
pelten Zustdanden am Rand der ersten Brillouin-
zone, e™/¢ Durch Symmetrisierung erhalten
wir die Linearkombinationen

\I/+ = l(eiﬂ'l/a + efiﬂ’x/a) _ COSE
2 a
v_ = _%(eiwfc/a _ e—iTr:c/a) — sin H(GI)
a

d.h. zwei harmonische Wellen, deren Wellenlén-
ge zwei Gitterperioden betragen. Sie haben die
gleiche Amplitude und die gleiche rdumliche Fre-
quenz, sind aber um eine viertel Wellenldnge,
d.h. eine halbe Gitterperiode gegeneinander ver-
schoben.

Die Aufenthaltswahrscheinlichkeit, d.h. die Elek-
tronendichte der beiden Wellen ist proportional
zum Quadrat. Wie in Abb. gezeigt, ist die
Wellenlénge der Elektronendichte deshalb gleich
einer Gitterperiode, sodass die Elektronendichte
dieser Wellen in jeder Einheitszelle gleich ist. W
hat ihre maximale Elektronendichte am Ort der
Kerne, bei W_ verschwindet sie dort. Da W die
maximale Aufenthaltswahrscheinlichkeit in der

VA VAVAVAVE
v AN AN A\ A\ A\

LAAAA

Potenzial

Qo

o
Ort
Abbildung 6.8: Ladungsdichteverteilung im di-

rekten Raum fiir Zustande an der
Bandkante.

Nahe des Potenzialminimums hat, ist seine Ener-
gie niedriger als bei W_.

Mit diesen Funktionen wird die potenzielle Ener-
gie

(U, |V, = —zezzs:(cosiré(m — sa)
cos %)
= —z Zcos2 (ms) = —Nze?.
(T_|VIT_) = zé? E:Ssin2 (rs) =0
WV = (V) =0,

Die Auferdiagonalelemente verschwinden, es
handelt sich also tatsdchlich um die Eigenfunk-
tionen des gestorten Hamiltonoperators.

Wir sehen also

e Die Eigenfunktionen des Hamiltonopera-
tors sind nicht mehr laufende Wellen, son-
dern die stehenden Wellen cos(mwx/a) und
sin(rz/a). Die Periode der beiden Zustén-
de betriagt zwei Gitterperioden; sie sind zu
einander um eine halbe Gitterperiode ver-
schoben.

e Jhre Energie unterscheidet sich um die Cou-
lombenergie des Elektrons im periodischen
Potenzial. Man beachte, dass die obige
Rechnung mit nicht normierten Wellenfunk-
tionen durchgefiihrt wurde; sie liefert des-
halb nicht den genauen Wert der Energie.
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Dies war eine Rechnung spezifisch fiir die Zu-
stande am Rand der Brillouin-Zone und fiir eine
Karikatur eines Potenzials. Bevor wir weiterfah-
ren, suchen wir nach den allgemeinen Losungen
fiir die Eigenfunktionen.

u, (x)

Rely, [x)]

Abbildung 6.9: Blochfunktion und ihre Bestand-

teile.

6.2 Eigenfunktionen im
periodischen Potenzial

6.2.1 Das Bloch’sche Theorem

Unter Bertiicksichtigung des periodischen Poten-
zials U(F) = U(7+ T) sind die Eigenfunktio-
nen nicht mehr die harmonischen ebenen Wellen.
Die allgemeine Form, welche diese besitzen, wird
durch ein Theorem von Felix Bloc bestimmt,
das er in seiner Doktorarbeit fand: Die Zustands-
funktion W(7) kann als Produkt
V() = ug (e’

geschrieben werden, wobei uz(7) die gleiche Pe-
riodizitat hat wie das Potenazial,

up(r+1T) = ug(7),

und T einen Gittervektor darstellt. Diese wird
mit einer ebenen Welle ¢ multipliziert.

Abb. zeigt ein Beispiel einer Blochfunktion:
oben die ebene Welle, in der Mitte die periodi-
sche Funktion, und unten das Produkt.

Die Funktion u(7), welche die ebene Welle mo-

duliert, stellt die Korrektur gegeniiber den freien

'Felix Bloch (1905-1983); Nobelpreis 1952
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Elektronen dar, wo diese Funktion als konstant
angenommen wurde. Sie stellt die Losung einer
Schrodingergleichung fiir eine primitive Einheits-
zelle dar. Wie bei Atomen existiert eine unend-
liche Reihe solcher Losungen, welche mit einem
Index bezeichnet werden kann, der in der Folge
ein elektronisches Band kennzeichnen wird.

Der Wellenvektor & der ebenen Welle kann im-
mer so gewahlt werden, dass er in der ersten
Brillouin-Zone liegt, dass also die Wellenlédnge A
grofer ist als zwei Gitterkonstanten, A > 2a. Um
dies zu zeigen, nehmen wir zunéchst an, dass er
auféerhalb der ersten Brillouin-Zone liegt, so dass
k= k‘l + G mit kl einem Vektor in der ersten
Brillouin-Zone und G einem Vektor des rezipro-
ken Gitters. Dann ist

R T _ GG ik T
Laut 1) ist aber ¢i¢'T = 1 wenn T einen Vek-
tor des direkten Gitters darstellt. Der erste Fak-
tor hat somit die Periodizitdt des Gitters und

kann mit uz () zusammengefasst werden.

Eine dquivalente Formulierung des Bloch’schen
Theorems ist

(7 +T) = e (),

d.h. bei einer Translation um einen Gittervektor
andert sich der Zustand nur um einen Faktor mit
Betrag eins.

6.2.2 Beweis des Bloch’schen
Theorems

Fiir den Beweis des Theorems verwenden wir den
Translationsoperator T'. Er verschiebt die Koor-
dinaten eines Argumentes um den entsprechen-

den Vektor
TV (F) = U (F+T).

Da das System periodisch ist, muss auch der Ha-
miltonoperator unter einer Verschiebung des Ko-
ordinatensystems um eine Gitterperiode invari-
ant sein:

H(7+T) = H(F).

Somit ist

E( +f)

v
AT (),

\_/

d.h. der Hamiltonoperator H vertauscht mit
dem Translationsoperator T. Daraus folgt, dass
die Eigenzustinde des Hamiltonoperators gleich-
zeitig Eigenzustdnde des Translationsoperators

sind, d.h.

[ (7) = o(T)Wi(),

mit c als Eigenwert. Diese Gleichung muss fiir be-
liebige Translationen des Gitters gelten. Werden
mehrere Translationen hintereinander durchge-
fiihrt, werden die entsprechenden Eigenwerte
multipliziert:

Die zweite Gleichung erhélt man aus der Grup-
peneigenschaft des Translationsgitters: die Sum-
me von zwei Gittervektoren ergibt wieder einen
Gittervektor.

Die Bedingung, dass der Eigenwert einer belie-
bigen Summe von zwei Gittervektoren dem Pro-
dukt der einzelnen Eigenwerte entspricht, kann
nur erfiillt werden wenn der einzelne Eigenwert
den Betrag 1 aufweist, d.h.

c(f) = ()
oder
U (F+T) = e Du (),
d.h. der Eigenwert hat die Form ¢*(T) und die

Wellenfunktion kann bei einer Verschiebung um
einen Gittervektor nur die Phase dndern.
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6.2.3 Der Phasenfaktor

Wenn wir den Gittervektor als Linearkombinati-
on von primitiven Translationen schreiben

’1: = n1dy + nods + n3ds
wird der entsprechende Phasenfaktor

(1) — ginip(ar) ginzp(az) yinsp(as)

eie(az)

ai

aj

>

i) ivlar)

Abbildung 6.10: Eigenwert des Verschiebungs-
operators T in 2D.

Mit der Schreibweise ¢(a;) = 2mz; (fiir geeignete
x;) wird daraus

6iap(T) _ ei27r(n1x1+n2x2+n3:c3)
[ n T
= exp |27 | no . To
L ng xs3
[ niay x127r/a1
= exp |1 | n2ao X927 [ay
L naas .%'3271’/0,3
— kT

mit dem Wellenvektor
k= 30151 + 1‘252 + 30353

und den Basisvektoren gk des reziproken Git-
ters. Dies entspricht gerade der zweiten Form des
Bloch’schen Theorems.

TU(F) = Up(F+ T) = e TU(F).

Blochfunktionen verallgemeinern die ebenen
Wellen der freien Elektronen auf das periodi-
sche Potenzial. Sie enthalten einen Wellenvek-
tor, der aber nicht mehr direkt den Impuls der

Elektronen beschreibt. Er bildet weiterhin eine
gute Naherung dafiir, solange der Einfluss des
Gitters schwach ist, also fiir schwache Kopplung
und Wellenvektoren weit von der Grenze der
Brillouin-Zone. Die Einelektronenzustéinde sind
aber nicht mehr Eigenzustéinde des Impulsope-
rators. Die Anwendung des Impulsoperators auf
einen Bloch-Zustand ergibt

h

7

h

6\1113(7_’) = ;ﬁ (eiE'FuE(F))

X ikl
= hkW () + e =V (7).

Dieser Zustand unterscheidet sich im Allgemei-
nen nicht nur durch einen konstanten Faktor von
Wi (7).

6.2.4 Schrodingergleichung in 1D

Wir 16sen nun die Schréodingergleichung fiir un-
abhéngige Elektronen in einem periodischen Po-
tenzial in einer Dimension. Dafiir schreiben wir
das Potenzial der Atomriimpfe als

[e.e]
U)= > Uge™
G=—0

wobei G einen reziproken Gittervektor darstellt.
Die Koeflizienten Ug der Fourier-Reihe nehmen
fiir ein Coulomb-Potenzial mit |G|~2 ab, fiir ein
abgeschirmtes Coulombpotenzial (— Kap.
entsprechend schneller. Damit das Potenzial reell
wird, muss gelten

U) = Y Ug (9 4707

G>0

= 2 Z Ug cos(Gx),
G>0

wobei zusédtzlich angenommen wurde, dass ein
Symmetriezentrum existiert, U(x) = U(—x) und
der Ursprung der Energieachse so gewéhlt wur-
de, dass Uy = 0. Die Schrédingergleichung wird
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damit zu
2
HU(z) = (;n + U(m)) U(z)
P’ :
— <2m +) UGe’G’”> U(z)
G
— EV(a). (6.2)

Meist ist es mathematisch angenehmer, das Po-
tenzial komplex zu schreiben.

6.2.5 Losungsansatz

Wir fordern wie iiblich periodische Randbedin-
gungen, sodass ¥(x) als Summe iiber harmoni-
sche Wellen geschrieben werden kann:

U(z) = C(K)eX", (6.3)
K

wobei die Summe iiber alle Wellenzahlen K lauft,

welche die periodische Randbedingung erfiillen.

Aufgrund des Bloch’schen Theorems muss fiir al-

le K gelten

K=k+G,

wobei G einen Vektor des reziproken Gitters dar-
stellt und &k in der ersten Brillouin-Zone liegt.
Dass mit diesem Ansatz das Bloch’sche Theorem
erfiillt ist, sieht man aus der Umformung

Ti(z) = Y Clk+G)ertor
G

— eik:v Z C(k? + G)eiGac
G

= kTy(x).

Da ug(z) aus einer Fourier-Reihe besteht, in der
alle Glieder die Periodizitdt des Potenzials ha-
ben, hat die Funktion selber auch diese Periodi-
zitat.

Wir setzen die Fourier-Entwicklung in die
Schrédingergleichung ein. Fiir die kineti-
sche Energie erhalten wir

2 2 2
p _ o
2m\11(:z:) - 2m0332\p(x)
h2
- K K2 iKx
o SR

und fiir die potenzielle Energie
Uz)W(z) =Y Y U C(K)e™ .
G K

Die Schrodingergleichung wird damit

h? ,
e K K2 iKx
2m;0< JK?e

+3 N UC(K)eFHDr = 3" C(K)e™
G K K

Wir konnen diese Gleichung fiir jede Fourier-
Komponente einzeln 16sen, wenn wir beriicksich-
tigen, dass die Summe iiber K auch die Werte
bei K + G enthalt. Fiir die Komponente propor-
tional zu e’X* erhalten wir

hQ

S CEK? + §G: UcC(K - G) = EC(K).

Als Abkiirzung schreiben wir fiir die kinetische
Energie

h2K2

A
K 2m

und erhalten damit die Eigenwertgleichung

Ak —E)C(K)+> UgC(K —G) =0. (6.4)
G

Offenbar werden in der Basis der ebenen Wellen
diejenigen Zustande gekoppelt, welche sich durch
einen Vektor des inversen Gitters unterscheiden.

6.2.6 Losung

Wie bereits erwdhnt nehmen die Koeffizienten
U mit G2 ab, sodass die Summe relativ rasch
konvergiert. Damit haben wir die Schrodinger-
gleichung in eine algebraische Gleichung fiir die
Entwicklungskoeffizienten C'(K') und die Energie
& umgeformt. Die potenzielle Energie koppelt of-
fenbar jeweils Zusténde, deren Wellenvektor sich
um einen Vektor G des reziproken Gitters un-
terscheidet. Dies entspricht praktisch der Bragg-
Bedingung fiir die Streuung von Photonen.
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Wir bestimmen nun die Losung in verschie-
denen Naherungsschritten. Zunéchst betrachten
wir den Fall dass das Potenzial verschwindet,
Ug = 0. Dann wird die Energie zur kinetischen
Energie

o

E=—(k+G)?

5 (k+G)
und wir erhalten die gleichen Losungen wie im
Kapitel 5) freie Elektronen.

Als néchsten Naherungsschritt betrachten wir
den Fall, dass das Potenzial nur einen Term ent-
halt:

U(z) = Ug ('“" + e7¢7).

Dies entspricht einem harmonischen Potenzial.
In Gleichung reduziert sich dann die Sum-
me auf einen Term. Wie bereits diskutiert, wer-
den durch das periodische Potenzial ebene Wel-
len gekoppelt, deren Wellenvektor sich um G un-
terscheidet. Es ist deshalb sinnvoll, nur diese Zu-
stéande zu betrachten.

Fiir diese Zustidnde muss eine Eigenwertglei-
chung in der Basis der Koeffizienten C(K) gel-
ten, mit K =k + G:

& C(k - 2G)
Ua Neeg—€ Ug Ok - @)
Us M—-€ Ug . C(k) =0
Us Mua-€& Ug Clk+G)
f I3

a6 - C(k+2G)

Die Diagonalelemente enthalten die kinetische
Energie der Elektronen, die Elemente in der er-
sten Nebendiagonalen den Kopplungsterm, d.h.
die potenzielle Energie. Da wir annehmen, dass
die Aufierdiagonalelemente klein sind, ist ihr Ein-
fluss klein, aufer wenn die zwei Diagonalelemen-
te praktisch gleich sind. Dies kann offenbar nur
dann auftreten wenn |k + G| = |k, also am
Rand der Brillouin-Zone - wir erhalten wieder
dir Bragg-Bedingung.

Die verschiedenen Losungen definieren die unter-
schiedlichen Energiebdnder. Diese Losungen zei-
gen auch den direkten Zusammenhang mit dem
frither behandelten Problem der kovalenten Bin-
dung.

6.2.7 Zonenrand

Eine Naherungslosung fiir den Fall eines endli-
chen Potenzials lédsst sich finden, wenn das Po-
tenzial klein ist im Vergleich zur kinetischen
Energie des Elektrons an der Zonengrenze, d.h.
bei k = G/2: U < A, mit

ﬁ2k2
Ty
als kinetische Energie der freien Elektronen.
Die Diagonalelemente der Koeffizientenmatrix
fir k = G/2(...,-3,-1, 1, 3, ...) werden dann
proportional zu...9,1,1,9, ..., sodass die Au-
ferdiagonalelemente U nur die beiden mittleren
Elemente effizient koppeln, ndmlich die zu den
Wellenvektoren k& = +G/2 an der Zonengren-
ze gehorenden Zustédnde. Wir betrachten deshalb
nur noch diese beiden Zusténde.

Die beiden relevanten Gleichungen sind dann

o | Q)

M =E)C(5)+UC(—

—

(M~ E)C(- ) + U O

Do Qo QY
N—
Il
o

S~—
|
e

Fiir eine Losung muss die Determinante ver-
schwinden. An der Zonengrenze gilt A\ =
Ak—g = A und die Bedingung fiir das Verschwin-
den der Determinante ist

A=&E)?2=U%
Die Energien werden damit

21.2
c=rzvu="F v
2m

Sie sind also um 2U aufgespalten.

Wenn wir nicht nur die Zustédnde direkt an der
Zonengrenze betrachten, sondern in der Nahe,
erhalten wir aus der Eigenwertgleichung

(M —E)C(K) + U C(k —
M —E)C(k—G)+UC

RO
SN— N—
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Die Sékulargleichung wird dann

M = E)Ah—g — &) = U?
= & EM\k—c + M) + MeAi—g — U?.

Diese Gleichung hat die beiden Losungen

g:)\k—G+>\ki

1
5 5\/()%_0 — )2 +4U2.

weites| Band/x

<
<
\SO
eS

erstes|Band

la k

Abbildung 6.11: Bandaufspaltung an der Zonen-
grenze.

An der Zonengrenze, wo Ap_g = Mg, wird die
Energie der Eigenzusténde um den Betrag U der
potenziellen Energie nach unten, respektive nach
oben verschoben - die Aufspaltung betrégt somit
2U. Weiter von der Zonengrenze entfernt ndhern
sich die Energien quadratisch mit dem Abstand
den ungestorten Zustdnden an. In der Nahe der
Zonengrenze kann man die Ndherung

h2 (6k)?

2
2 (1422
* 2m ( U)

E(x)=&

benutzen, mit
1

ok =k — §G

fiir die Differenz zwischen dem Wellenvektor und
der Zonengrenze. &1 stellt die Energie an der Zo-
nengrenze dar. Sie variieren somit quadratisch
mit dem Abstand von der Zonengrenze.

6.2.8 Zustinde und Energiefliche

Im Rahmen der hier diskutierten harmonischen
Néaherung werden somit nur die Zustidnde am
Rand der ersten Brillouin-Zone aufgespalten,
und es entsteht eine Liicke zwischen dem nied-
rigsten und dem zweitniedrigsten Band, wie in
Abb. [6.11] gezeigt. Berticksichtigt man im Poten-
zial auch die hoheren Harmonischen, so werden
die hoheren Bander ebenfalls aufgespalten.

- C(k—G)

N\

Band 1

SN

Band 2|~ C(k)
s

G/2 k

Abbildung 6.12: Koeffizienten der Zustdnde am
Zonenrand.

Wie stark die Zustdnde gemischt werden, ldsst
sich quantifizieren, indem man das Verhéltnis der
beiden Koeffizienten

C(k—G)
Clk) '

respektive das Inverse davon in den Eigenzustéan-
den bestimmt. Bei vollstandiger Mischung ist das
Verhéltnis 1, bei verschwindender Kopplung geht
es gegen Null, respektive oo. Abb. [6.12] zeigt
dies in grafischer Form: Am Zonenrand entspre-
chen die Eigenzustdnde gerade der symmetri-
schen, resp. antisymmetrischen Linearkombina-
tion der freien Elektronenzustinde; weiter vom
Zonenrand entfernt ist nur noch einer der Koef-
fizienten wesentlich von Null verschieden.

Ein wichtiges Resultat ist, dass aufgrund der
Aufspaltung an der Zonengrenze die Energie ei-
ne horizontale Tangente aufweist, also in erster
Ordnung unabhéngig ist von der Wellenzahl.

Dies fiihrt in drei Dimensionen dazu, dass die
Oberfliche konstanter Energie, z.B. die Fermi-
Oberfliche, am Zonenrand deformiert wird und
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senkrecht zum
v Zonenrand

Abbildung 6.13: Dreidimensionale  Fermifldche

am Zonenrand.

senkrecht darauf auftrifft. In Abb. [6.13stellt die
gestreifte gekriimmte Oberflache die Fermiober-
fliche dar, wahrend der Wiirfel den Rand der er-
sten Brillouin-Zone markiert. Dies ist ein wesent-
licher Unterschied gegeniiber dem Modell freier
Elektronen, wo die Energie als Funktion des Wel-
lenvektors isotrop und die Fermioberflache somit
eine Kugeloberflache ist.

6.2.9 Abschitzung der Bandliicke

Durch die Aufspaltung der Zustdnde am Zonen-
rand &dndert sich der Charakter der Zusténde
qualitativ. Wahrend die ebenen Wellen, welche
fiir freie Elektronen eine gute Naherung darstel-
len, eine konstante Elektronendichte aufweisen,
ist die Dichte der gekoppelten Zustiande Uy (—
Gl moduliert, wie in Abb. gezeigt. Die
Zustdnde am Zonenrand unterscheiden sich da-
bei um eine Verschiebung um eine halbe Peri-
ode. Beim energetisch niedrigeren Zustand ist
die Elektronendichte am Ort des Kerns lokali-
siert, beim energetisch hoher liegenden Zustand
zwischen den Kernen. Man bezeichnet deshalb
diese Zustiande auch als “s-artig” und “p-artig”,
was aus der Analogie zu molekularen Bindungen
hervorgeht, wo die Bindungen durch s- und p-
Orbitale gebildet werden. Da sich die Zustdnde
weiter von der Zonengrenze entfernt den unge-
storten Zustédnden annahern, wird dort diese Un-
terscheidung in s- und p-artige Zustande weniger
eindeutig.

Aus dieser Betrachtung kann man auch die Brei-

te der Bandliicke abschétzen. Der Wellenvektor
ist fir die beiden Zustéinde Wy der gleiche; so-
mit haben die beiden Zustéinde den gleichen Im-
puls und die gleiche kinetische Energie. Sie un-
terscheiden sich jedoch beziiglich ihrer potenzi-
ellen Energie. Diese kann man z.B. relativ leicht
berechnen fiir das vereinfachte Potenzial

2
U(x) = —Ug cos ;ﬂx.

Die Bandliicke &; entspricht dann dem Unter-
schied zwischen den Energien von ¥ und ¥_:

& = [ U@ (- 1wi) ao
20, [ 2w
= ——= COS —T -
a 0 a
(sm2 Wx — cos —x) dzx
20, 2
= T cog? Lacd:)[; =Uy,
a a

Die Aufspaltung entspricht somit gerade dem
Potenzial.
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6.3 Bander

6.3.1 Dispersionsrelation und
Brillouin-Zone

Bei der Diskussion der Phononen hatten wir ge-
sehen, dass physikalisch die Wellenvektoren au-
Rerhalb der ersten Brillouin-Zone keine Bedeu-
tung haben. Bei den Elektronen ist die Situation
anders, da diese eine kontinuierliche Verteilung
bilden, also nicht nur auf den Gitterplédtzen de-
finiert sind. Trotzdem spielt auch hier der Rand
der Brillouinzone eine wichtige Rolle, u.A. weil
hier das periodische Potenzial zu einer Mischung
der Zustdnde und dadurch zu einer Diskontinui-
tdt und einer Liicke auf der Energieachse, also
zu einem ‘“verbotenen” Bereich von Energien, in
dem keine Zustidnde existieren.

Aus diesen Griinden stellt man héufig die Zu-
standsfunktionen in der ersten Brillouinzone dar,
indem man als Argument den ‘reduzierten’” Wel-
lenvektor k benutzt, anstelle des vollen Wellen-
vektors K = k + G. Alle Zustinde fallen dann in
die erste Brillouin-Zone und der reziproke Git-
tervektor G wird zu einem Index des Zustan-
des, in Analogie zu den diskreten Zusténden
eines Atoms. Die elektronischen Zustinde wer-
den dann nicht mehr nur durch die Quantenzahl
E, sondern zusétzlich durch den Bandindex G
beschrieben. Innerhalb eines Bandes gibt es ei-
ne quasi-kontinuierliche Verteilung der Energien,
aber zwischen den Béndern existiert eine Liicke.

Im Rahmen der ersten Definition der Blochfunk-
tionen kann man diese Neuformulierung leicht
begriinden. Ein Zustand zu einem Wellenvektor
k + G kann demnach geschrieben werden als

Vgl = upa

mit

d.h. wir kénnen die Anderung des Zustandes
durch den reziproken Gittervektor G entweder
in der Gitter—periqdischen Funktion w oder im
ebene-Welle Teil ¥ beriicksichtigen. Ohne Ver-
lust der Allgemeinheit konnen wir fordern, dass
der Definitionsbereich der Zustandsfunktion auf
die erste Brillouin-Zone beschrénkt sein soll. Fiir
jeden reziproken Gittervektor G erhalten wir
dann eine Dispersionsrelation. Ein Teil der Zu-
standsfunktion wird dann in der Form wu(r) ge-
schrieben, welche die Periodizitdt des Gitters
aufweist.

E
Qo (*)
-
0 P K=k+G
a
Abbildung 6.14: Faltung eines Bandes; links
Dispersionsrelation; rechts:

u(r) im direkten Raum.

Als Beispiel zeigt Abbildung die Funktion
U — ei37rac/4a — U(T‘)eikr.

Mit den Substitutionen & — k— G fiir Werte von
k> G/2und k — —k [ wird

u(r) = e,

wie rechts in der Abbildung gezeigt. Der Teil der
Parabel fiir £ > G/2 = 7/a wird an diesem Wert
der k-Achse gespiegelt. Die Dispersionsrelation
beriicksichtigt hier noch nicht die Aufspaltung
auf Grund des periodischen Potenzials.

6.3.2 Zonenschemata

Die elektronischen Zustdnde werden durch die
Aufspaltung an der Zonengrenze in unterschied-
liche Bénder aufgeteilt. Beim reduzierten Zonen-
schema bleibt der Vektor k innerhalb der ersten

2giiltig fiir Systeme mit Zeit-Umkehr Symmetrie

175



6 Fast Freie Elektronen: Bandstrukturen

erweitertes
Zonenschema

/

/

reduziertes’Zonenschema

perig onenschema

NN
/NN

k

o

Abbildung 6.15: Unterschiedliche Zonenschema-
ta: Energie vs. Wellenzahl.

Brillouinzone und die Anderung durch den Git-
tervektor erzeugt hoher gelegene Zusténde, die
zum gleichen Wellenvektor gehdren (— Abb.[6.15
Mitte) und mit einem Index n bezeichnet wer-
den kénnen. Die zweite (dquivalente) Moglich-
keit entspricht der Erweiterung des Zonensche-
mas. Dabei wird fiir jeden k-Vektor genau ein
elektronischer Zustand definiert (— Abb. [6.15
oben).

Manchmal ist es niitzlich, das reduzierte Zo-
nenschema mit allen Bandern wieder zu erwei-
tern, indem man die Bénder periodisch fortfiihrt,
E(k + G) = (k). Damit erhilt man das so ge-
nannte periodische Zonenschema (— Abb. [6.15
unten).

Abbildung 6.16: 3D Fermioberfliche im redu-
zierten und im periodischen Zo-
nenschema.

Dieses enthélt die gleiche Information wie das
reduzierte Schema. Es kann aber niitzlich sein,

wenn man mogliche Elektronenbahnen verfolgen
mochte, welche aus der ersten Brillouinzone hin-
ausfiihren. In Abb. [6.16] ist die Fermioberfliche
fiir ein einfaches kubisches Gitter gezeigt — links
im reduzierten Zonenschema, rechts ein Teil des
periodischen Zonenschemas. Wie man auf der
linken Seite erkennen kann, gibt es geschlosse-
ne Kurven (im reziproken Raum), bei denen die
Zustédnde innerhalb der Kurve besetzt sind. Auf
der rechten Seite erkennt man leichter, dass ge-
schlossene Kurven auch freie Zustéande einschlie-
fen koénnen.

6.3.3 Drei Dimensionen

Die obige Diskussion beschrankte sich aus Griin-
den der Ubersichtlichkeit auf eindimensionale
Modelle. Die Resultate bleiben in drei Dimen-
sionen giiltig, so lange k-Vektoren in einer be-
stimmten Richtung verglichen werden.

Die Energie des Systems héngt dann von den drei
Komponenten k;, k, und k. ab; fiir verschwin-
dendes Potenzial erhalt man
2

E(k+G) = ;—m((kﬁGx)2+(ky+Gy)2+(k:Z+Gz)2).
Tabelle zeigt die Energie fiir verschiedene
Richtungen und unterschiedliche Werte von G
in Einheiten von h%/2m fiir ein kubisches Gitter
und verschwindendes Potenzial (also freie Elek-
tronen). In diesem Fall spielt die Richtung keine
Rolle, lediglich der Betrag des k-Vektors.

Abbildung zeigt diese Dispersionsrelationen
entlang ausgewéhlter Richtungen im dreidimen-
sionalen k-Raum, immer noch fiir freie Elektro-
nen. Die verschiedenen Richtungen werden mei-
stens auf einer Achse zusammengefasst. Je nach
der Anzahl Elektronen pro Einheitszelle sind Zu-
stinde von einem Ast oder in mehreren Asten
besetzt. Dabei ist zu beachten, dass die ausge-
wahlten Richtungen eine relativ hohe Symmetrie
aufweisen, sodass diese Aste teilweise mehrfach
entartet sind.

Aus dieser Figur wird ein wesentlicher Unter-
schied zum eindimensionalen Fall deutlich: in ei-
ner Dimension besitzt jeder Ast fiir einen Betrag
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| # | Ga/2m | £(000) | £(k,00) | E(0k,0) |
1| 000 0 k2 k:
2 | +100 | (27/a)? (kp & 27/a)? k2 + (27 /a)’
310410 | (2n/a)? k2 + (27/a)? (ky + 27/a)?
4 100+1 | (2r/a)? k2 + (27/a)? k2 + (2m/a)
5 110 | 2(2n/a)? | (ke +27/a)® + (27/a)® | (k, & 27/a)” + (27/a)’

Tabelle 6.1: Energie verschiedener Biander in einem kubischen Gitter mit verschwindendem Poten-

zial, in Einheiten von A2/2m.

Urfgc itter 5 v/

\ N
A\ /T\\? :

g 5
8 [N & &
22 3 ¢ %
8 A 4 W
P A
1k s 2—_ Fermi-
= 7 +— Energien
7
O X W L r KX
(000)  (100) (111 (000) (110)(100)

Abbildung 6.17: Dreidimensionale Bandstruktur
flir fece-Gitter.

des k-Vektors nur eine Losung, welche monoton
mit der Wellenzahl wiichst. Bei gefalteten Asten
kann diese monotone Zunahme auch in Richtung
abnehmender Wellenzahlen laufen. In drei Di-
mensionen existieren jedoch meist mehrere Lo-
sungen fiir Wellenvektoren in unterschiedlichen
Richtungen, die jeweils unterschiedliche Disper-
sion zeigen. Dadurch iiberlappen sich die Aste
auf der Energieachse und es kénnen auch mehre-
re teilweise besetzt sein.

6.3.4 Fermioberflache

Die Fermi-Energie bleibt auch in diesem Fall die
Energie, welche bei T' = 0 die besetzen von den
leeren Zusténden trennt. Fiir jedes teilweise ge-
fiillte Band existiert dann, in Abhéngigkeit von
der Richtung ein maximaler k-Wert fiir die be-
setzten Zustdnde. Diese ergeben eine Flache im

k-Raum, die Fermiflache. Sind mehrere Bénder
teilweise gefiillt, so tragen sie alle zur Fermiflache
bei.

Nur wenige Menschen wiirden ein Metall als
“einen Festkorper mit einer Fermi-Fléche” de-
finieren. Trotzdem kann das die zutreffendste
Definition eines Metalls sein, die man heute
geben kann: Sie bezeichnet einen wesentlichen
Fortschritt im Verstdndnis des Verhaltens der

Metalle ... A.R. Mackintosh

Qo @ Q

Fermi Kugel

Q Qo Q

Abbildung 6.18: Die Fermifliche in 2D ist fiir
freie Elektronen ein Kreis. In
diesem Beispiel schneidet sie die
2., 3. und 4. Brillouinzone.

Abb. zeigt zur Illustration ein Beispiel in
zwei Dimensionen. Hier ist die Fermioberfliche
fiir freie Elektronen ein Kreis. Je nach Elektro-
nendichte und Kristallstruktur fallt dieser Kreis
in unterschiedliche Brillouinzonen. In diesem
Beispiel schneidet er die zweite, dritte und vierte
Brillouin-Zone.
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6.3.5 Darstellung hoherer BZ

Abbildung 6.19: Oberflachen der 1.-3. Brillouin-
Zonen in 3D fiir das bee und das
fce Gitter.

Die (n + 1)-te Brillouin-Zone ist die Menge aller
Punkte, die nicht in der (n — 1)-ten Zone liegen
und aus der n-ten Zone heraus durch Queren ei-
ner einzigen Bragg-Ebene zugénglich sind (gilt
fir n > 2). Fur die n = 1-ste Brillouin- Zone
gilt dabei, dass alle Punkte erreicht werden miis-
sen, ohne eine Ebene zu kreuzen. Die n = 2-te
Brillouin-Zone erreicht man aus der Ersten durch
Queren einer Bragg-Ebene. Abb. zeigt die
Oberflachen der ersten drei Brillouin-Zonen fiir
das bee und das fee Gitter.

Da jede BZ das gleiche Volumen aufweist wie die
erste, ist es moglich, die hoheren BZ in der 1. BZ
darzustellen.

3

oe
>
w

S,
2 ;

3. Zone k=kK+G

1. Zone 2. Zone

Abbildung 6.20: Verschiebung der héheren BZ in
die 1. BZ.

Abb. zeigt das Prinzip fiir ein quadratisches
Gitter in 2 Dimensionen. Die 2. BZ wird dabei
in 4 Dreiecke geteilt, welche jeweils um eine Pe-
riode in die 1. BZ verschoben werden. Bei der 3.
BZ sind es 8 Dreiecke. Im rechten Teilbild ist die
Fermiflache (fiir freie Elektronen) eingezeichnet.

Fiir den gewéhlten Radius (d.h. die entsprechen-
de Elektronendichte) schneidet sie mehrere BZ.
Die 1. BZ ist vollstédndig innerhalb der Fermiku-
gel, die 2. und 3. werden geschnitten.

Abbildung 6.21: Fermi-Fliche fiir freie Elektro-
nen im reduzierten Zonensche-
ma.

Abb. stellt die gleiche Fermifliche fiir freie
Elektronen im reduzierten Zonenschema dar. Die
besetzten Zustande sind jeweils grau markiert.

6.3.6 Zonenrand-Effekte

Wie in Kapitel diskutiert, fiihrt das peri-
odische Potenzial dazu, dass am Zonenrand eine
Bandliicke entsteht. Die Dispersionsrelation w(k)
zeigt am Zonenrand jeweils eine horizontale Tan-
gente, dw/dt = 0.

1€

Zonengrenze

Zonengrenze

\RQ andllicke
-2 _IL 0 il
a Q a a k
27
G=—
a

Abbildung 6.22: Bandliicke und Verbiegung der

Bander am Zonenrand.

Abb. zeigt den entsprechenden Effekt in ei-
ner Dimension. In diesem Kapitel wurde nur die
Liicke bei G = 7/a explizit diskutiert. Bertick-
sichtig man aber hohere Terme in der Fourier-
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Entwicklung des Potenzials, so findet man auch
die Liicken bei G = 27/a, G = 37 /a etc.

freie Elektronen

quasi-freie Elektronen

Oe Qe %K-

N
~

Zonenrand-
Zonenrand~

Abbildung 6.23: Die Kopplung ans Gitter fiihrt
zu einem rechten Winkel zwi-
schen Fermifliche und Zonen-
rand.

Abb. [6.23 illustriert dies fiir 2 Dimensionen: die
Fermioberfliche wird so verbogen, dass sie je-
weils senkrecht auf die Bragg-Ebenen trifft. Abb.
[6.13 zeigt denselben Effekt in 3D, wobei nur die
1. BZ dargestellt ist.

2.BzZ Fermi-Flache 2.BZ
freie Elektronen  Kristallelektronen
N\ 3.82
L z 2.82 @
NS A

3.BZ 1 o {5‘ ¢ 3.BZ

. \ L .

L__ erweitertes Zonenschema M;

Abbildung 6.24: Effekt des periodischen Poten-
zials auf eine Fermiflache, wel-
che die 2., 3. und 4. BZ schnei-
det.

Abb. zeigt den Effekt fiir eine Fermiflache,
welche die 2., 3. und 4. BZ schneidet. Im Zentrum
ist der Effekt im erweiterten Zonenschema dar-
gestellt, aufsen im reduzierten Schema - links fiir
freie Elektronen, rechts unter Beriicksichtigung
des periodischen Potenzials. Auch hier wird die
Fermifliche durch das periodische Potenzial je-

weils verbogen, so dass sie auch auf die Rédnder
der hoheren BZ senkrecht auftrifft.

6.3.7 Messung

Fiir die experimentelle Bestimmung von Fermi-
Flachen wurde eine Reihe von Methoden ent-
wickelt: Magnetwiderstand, anomaler Skineffekt,
Zyklotronresonanz, magneto-akustische Effekte,
Shubnikov-de Haas-Effekt, de Haas-van Alphén-
Effekt, optische Reflektivitat, Ultraschallabsorp-
tion und weitere. Zu den wichtigsten Methoden
gehort die Photoemissionsspektroskopie, welche
die Messung von besetzten Bandern ermdoglicht.

Photonenquelle Energie-Analysator

Elektronen-
Detektor

Abbildung 6.25: Prinzip der Photoelektronen-
spektroskopie.

Dafiir verwendet man den Photoeffekt: Wie in
Abb. gezeigt, wird dafiir kurzwelliges Licht
auf die Probe eingestrahlt und die Energie der
emittierten Elektronen wird mit Hilfe eines hoch-
auflosenden Spektrometers gemessen. Die Rich-
tung, in der der Analysator / Detektor platziert
wird, bestimmt die Richtung des Impulses, also
des Wellenvektors. Je nach Art der verwendeten
Photonen spricht man von UVPS (fuw < 100eV),
SXPS (hw > 100eV), XPS (hw > 1000eV). Da-
mit misst man Elektronen in unterschiedlich tie-
fen Schalen.

Wie in Abb. gezeigt, wird bei der Absorp-
tion eines Photons die Energie eines Elektrons
jeweils um die Photonenenergie Aw erhoht. Ist
diese Energie hoch genug, so kann das Elektron
das Metall verlassen. Die Uberschussenergie

Ekin = hw — Eping — W

wird in kinetische Energie umgewandelt. Hier
stellt &ping die Bindungsenergie beziiglich der
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Abbildung 6.26: Prinzip der Photoelektronen-
Spektroskopie.

Fermiflache und W die Austrittsarbeit dar. Da
der Ausgangszustand besetzt sein muss, tragen
hierzu nur die Zustdnde unterhalb der Fermi-
energie Ep bei.

Die gemessene Verteilung der Energie der Pho-
toelektronen ergibt deshalb direkt die Band-
struktur, respektive die Zustandsdichte D(&) als
Funktion der Energie.

2
o Cu
Fermi-Niveau

0 0
—-2I 2k
S 2
9,
S at 7
@
c
el -6

8 8k

|

Zustandsdichte (willk. Einh.) © r X K

Wellenvektor

Abbildung 6.27: Bandstruktur von Kupfer.

Abb. zeigt als Beispiel die Zustandsdichte
von Kupfer (auf der linken Seite), zusammen mit
einem Vergleich der gemessenen und berechne-
ten Bénder (rechts). Kupfer hat die Konfigura-
tion [Ar]3d!%4s!. Die fiinf d-Bénder sind relativ
“flach”, d.h. sie zeigen deutliche Abweichungen
vom Verhalten freier Elektronen.

Weitere Messmethoden werden in Kapitel [7 und

[8] diskutiert.

6.3.8 Zustandsdichte und Bandliicke

Viele Experimente zur Messung der Fermifla-
che nutzen externe elektrische oder magnetische
Felder. Dabei nutzt man die Tatsache, dass die
Geschwindigkeit der Elektronen von der Kriim-
mung der Fermi-Flache abhangt.

ViE(k) = ——

Hier ist k| die Komponente von k, die senkrecht
auf der Flache konstanter Energie steht. vg it
somit senkrecht zur Fermiflache orientiert. Von
vg abhéngige Grofen kann man daher benutzen,
um die Fermi-Flache zu rekonstruieren.

DIiskrft Kontinuierlich
1.BZ 2.BZ F+d'E konstant
Wegen der ;
Réndbedingungen §ind:
die k-Werte diskret :
N
Q
2
[0]
c
i
‘F konstant

Abbildung 6.28: Links: diskrete Zustandsdichte
in 1D. Rechts: Kontinuierliche
Zustandsdichte in 3D.

Fiir die Bestimmung der Zustandsdichte nutzen
wir, dass die k-Werte fiir periodische Randbe-
dingungen diskret sind (— Abb. [6.28 links). Wir
betrachten einen linearen Kristall mit der Git-
terkonstante a, der aus N Einheitszellen besteht.
Dann sind die moglichen k-Werte

27
L

47
T

Nm  Nm

k=0,£+ L,k ==
) 29 L Na

S+ =
a
Somit gibt es N verschiedene k-Werte innerhalb
der 1. BZ und jede primitive Einheitszelle tragt
mit einem unabhéngigen k-Wert und 2 Zustén-
den (Spin!) zu jedem Energieband bei.
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Im kontinuierlichen Fall in 3D (— Abb. [6.28
rechts) kann die Anzahl der Zustéande im Ener-
giebereich zwischen £ und &€ + d€ als

2V E+dE 3
=T / 3k
(2m)° Je

geschrieben werden. Hier stellt D(E) = 22:;3 die
Zustandsdichte im £-Raum dar und das Integral
lduft tiber das gesamte Volumen zwischen den

beiden Flachen Eund £ + dE.
Gemafs Gleichung (6.5) und Abb. [6.28 kann das

Volumenelement dk3 geschrieben werden als

D(E)dE =

dk?® = dgﬁ.
hvg

Hier stellt dSg ein Flachenelement auf der Ener-
giefliche & dar. Damit wird

2V dSg
S dE / ==,
(27’() h E=const Vg

Die Zustandsdichte ist also indirekt proportional
zur Gruppengeschwindigkeit, wie bereits bei den

Phononen.
0 k 0 D(E)

Abbildung 6.29: Dispersion und Zustandsdichte
fiir freie Elektronen.

D()dE =

Im Modell freier Elektronen nimmt die Zustands-
dichte mit der Wurzel aus der Energie zu. Dies
ist im periodischen Potenzial offenbar nicht mehr
der Fall.

An der Zonengrenze werden die beiden Bénder
aufgespalten, es entsteht ein Bereich der Ener-
gieachse, welcher keine Zustdnde enthélt. Man
spricht von einer Energieliicke oder Bandliicke
(engl. band gap). Im einfachsten Fall enthélt je-
des der beiden Bénder 2N Zustdnde, wobei N

andliicke

_—

0 kg D(E)

Abbildung 6.30: Dispersion und Zustandsdichte
fir Elektronen in Bandern.

E
n=2
2N Zustande
n=1
0 m/a k

Abbildung 6.31: In einem Band finden maximal
2N Elektronen Platz.

die Anzahl Atome pro Einheitszelle darstellt und
der Faktor 2 von der Spin-Entartung herriihrt.

Falls pro Einheitszelle ein Atom jeweils ein Elek-
tron in dieses Band abgibt, so ist es genau halb
gefiillt (n = 1 in Abb. [6.31). In diesem Bereich
ist die Ndherung freier Elektronen recht gut, weil
die Fermioberflache relativ weit vom Zonenrand
entfernt ist. Wie wir im Kapitel 5 gesehen ha-
ben, verhalten sie sich dann am ehesten wie freie
Elektronen.

6.3.9 Fermiflachen von Alkalimetallen

Alkalimetalle sind einwertig, d.h. es ist pro Atom
1 freies Elektron vorhanden. Damit kann der Ra-
dius der Fermiflache im Modell freier Elektronen
berechnet werden. Das Volumen der Fermikugel
betrégt 47rk3°€7 /3 und das Volumen pro Zustand
im k-Raum

(5) =~ (%)
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mit N als Zahl der Einheitszellen im Kristall mit
Volumen V. Die Zahl der Zustande in der Fer-
mikugel ist somit

_ 4Ark} Na®
3 (2m)°

3.3
kva
672

Hier ist NV die Zahl der Einheitszellen. Jede Ein-
heitszelle (bee Struktur) enthélt 2 Atome, welche
jeweils 1 Elektron beitragen. Die Zahl der Spin-
Zusténde ist doppelt so grof, so dass wir die An-
zahl Zustédnde gleich der Anzahl Atome setzen
kénnen. Damit wird der Fermi-Radius

672 3/ 3 2 2
kp = f’/ig 32 %0,62—71-.
a A7 a a

Diesen Wert kann man vergleichen mit dem Ab-
stand zur Zonengrenze, z.B. zum N-Punkt bei
(1/2,1/2,0): Hier ist der Abstand vom Zentrum
der Brillouin-Zone

T 12 P
TN =/~ +-2 ~0,71°5 > kp.
4 4 a a

Somit liegt die Fermikugel vollstdndig innerhalb
der ersten BZ.

£k) Li K
III . 7 a
// /‘ o i .
()
\\\\-
N K Na

e O

Abbildung 6.32: Fermiflichen der Alkaliatome.

Obwohl die Bandstruktur der Alkali-Metalle eine
ausgepragte Bandliicke am Rand der Brillouin-
Zonen hat, sind die Biander bei kr = 0.877 TN
nicht von den Béndern freier Elektronen zu un-
terscheiden. Deshalb verhalten sie sich praktisch
wie ein freies Elektronengas, ihre Fermifldchen
sind praktisch kugelférmig, wie in Abb. ge-
zeigt.

6.3.10 Einwertige Edelmetalle

Die einwertigen Edelmetalle Cu, Ag und Au kri-
stallisieren in einer kubisch flachenzentrierten
Struktur (fcc). Dadurch reichen ihre Fermiflé-
chen ndher an den Rand der Brillouin-Zone als
im Fall der Alkaliatome.

/X_x X K
K Cu
L
|
X T K
X K
K Ag
L
X E K
K
K Au
L
X r

Abbildung 6.33: Fermifldchen der einwertigen
Edelmetalle mit fce-Struktur.

Fir freie Elektronen in einem fcc Gitter ist
kr ~0,903TL.

In <111>-Richtung liegt die Fermifliche somit
sehr nahe am Zonenrand, was zu einer merkli-
chen Kriimmung fithrt, wie in Abb. gezeigt.

6.3.11 Metalle und Isolatoren

Abb. zeigt schematisch den Einfluss der
Bandliicke auf die Beweglichkeit der Elektronen.
Die obere Zeile stellt die Situation der freien
Elektronen (— Kap. [5) dar: ein Feld verschiebt
die Fermikugel im k-Raum, die Elektronen er-
halten einen endlichen Impuls, es fliefft Strom.
Existiert dagegen eine Bandliicke, konnen die
Elektronen nicht in unbesetzte Zustidnde wech-
seln und es fliefst kein Strom. Dies gilt allgemein
fiir vollstéandig besetzte Bénder: der Gesamtim-
puls der Elektronen verschwindet, >, EZ =0.
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AN

Abbildung 6.34: Einfluss der Bandliicke auf die
Beweglichkeit der Elektronen.
Die obere Reihe beschreibt
freie Elektronen, die untere ein
gefiilltes Band unterhalb der
Bandliicke.

Umfasst die Einheitszelle ein zweiwertiges oder
zwel einwertige Atome, so ist das erste Band ge-
nau gefiillt. Die Fermi-Energie fallt dann gera-
de in eine Energieliicke. In einem solchen Fall
gilt die Theorie der Leitfahigkeit, welche fiir die
freien Elektronen diskutiert wurde, nicht mehr.
Dort hatten wir gesehen, dass das externe Feld
zu einer Anderung des Elektronenimpulses fiihrt.
Dies ist aber nur moglich wenn entsprechende
unbesetzte Impulszustdnde zur Verfiigung ste-
hen. In der Energieliicke ist dies nicht maoglich.

|
I
o

Halbmetall

Energie £

&

Metall Isolator Halbleiter

Abbildung 6.35: Bandliicke und Besetzung fiir
Metall, Isolator, Halbleiter und
Halbmetall.

Daraus folgt die qualitative Unterscheidung der
Materialien in Metalle und Isolatoren: Bei Me-

tallen ist die Fermioberfliche etwa in der Mit-
te des Bandes. Die Elektronen in der Nahe der
Fermioberfliache sind in diesem Fall weit von der
Zonengrenzen entfernt und spiiren deshalb den
Einfluss des periodischen Potenzials kaum. Ein
elektrisches Feld kann damit relativ ungestort die
Fermikugel verschieben und es fliefst ein Strom.

Anders die Situation bei einem Isolator: Hier ist
die Fermioberfliche zwischen zwei Béndern. Die
Elektronen spiiren deshalb das periodische Po-
tenzial maximal, sie werden aufgrund der Bragg
Bedingung daran reflektiert. Das Modell frei-
er Elektronen ist hier deshalb nicht anwendbar.
Dies kann man auch so verstehen, dass in der
Néahe der Fermioberflache keine Impulszusténde
verfiighar sind, so dass duftere Felder den Impuls
der Elektronen nicht verandern koénnen.

6.3.12 Halbleiter und Halbmetalle

Bei Halbleitern befindet sich die Fermienergie
ebenfalls in der Mitte zwischen zwei Béandern.
Halbleiter unterscheiden sich von Isolatoren da-
durch, dass der Abstand zwischen den Béndern
relativ klein ist, so dass freie Ladungstréiger ei-
nerseits durch thermische Anregung, anderer-
seits durch Verunreinigungen in der Néhe der
Bandkante erzeugt werden kénnen. Diese Mog-
lichkeiten werden im néchsten Kapitel noch dis-
kutiert. Im Fall eines Halbmetalls tberlappen
sich zwei Bénder in der Nihe der Fermikante.
Dadurch sind freie Ladungstréiger vorhanden, die
Zustandsdichte ist jedoch relativ klein und da-
durch die Leitfahigkeit gering.

Aus dem Gesagten folgt, dass ein Isolator oder
ein Halbleiter, also Materialien bei denen die Fer-
mienergie in eine Bandliicke fallt, immer eine ge-
rade Anzahl Elektronen in der primitiven Ele-
mentarzelle haben muss. Dies ist aber keine hin-
reichende Bedingung, da unterschiedliche Bén-
der nicht immer durch eine Energieliicke vonein-
ander getrennt sind.

Uberlappen mehrere Binder, so kénnen sie teil-
weise gefiillt sein und das Material kann elektri-
schen Strom leiten.
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Zustandsdichte D(E)

Energie [eV]

Abbildung 6.36: Uberlappende Binder.

6.4 Dynamik

6.4.1 Bewegungsgleichungen

Fiir die Bewegung der Elektronen in den Béan-
dern verwendet man das gleiche Modell wie in
Kapitel 5. Der wesentliche Unterschied liegt dar-
in, dass die Geschwindigkeit der Elektronen nicht
mehr einfach als hk /m geschrieben werden kann,
sondern als

a7 10E(k)

=2 =20

dt ~ h Ok

Epv
() ik

m\k

Abbildung 6.37: Energie und Geschwindigkeit
als Funktion der Wellenzahl.

Daraus folgt, dass die Geschwindigkeit nicht mo-
noton mit der Wellenzahl zunimmt. Wie in Abb.
[6.37 gezeigt, nimmt sie zunéchst zu, erreicht etwa
auf halbem Weg zum Rand der Brillouin-Zone
ein Maximum und nimmt dann wieder ab. Am
Rand der ersten Brillouin-Zone, wo die Dispersi-
onskurve £(k) horizontal wird, verschwindet die

Geschwindigkeit. Fiir negative k-Werte in der er-
sten Brillouin-Zone sind die Geschwindigkeiten
negativ. Da sich die Bénder periodisch fortset-
zen, ist auch die Geschwindigkeit periodisch mit

k.

Als Bewegungsgleichung fiir die Dynamik der
Elektronen gilt auch hier

(6.6)

mit der Kraft F. Im Folgenden soll das magne-
tische Feld verschwinden. Somit fiihrt ein kon-
stantes elektrisches Feld zu einer Verschiebung
der Fermikugel, sofern die entsprechenden Zu-
stdnde zur Verfligung stehen und keine Streuung
stattfindet. Im Gegensatz zu den freien Elektro-
nen werden hier die Elektronen nicht mehr im-
mer schneller, sie konnen auch wieder langsamer
werden. Dieser Effekt ergibt sich, wenn man die
Bewegungsgleichung (fiir 1D) in der Form

10 (0E(k)\ 10 (0E(k)\ Ok
hot\ 0k ) hok\ Ok ) ot
_ 1 0?E (k) i
R\ Ok?
schreibt. Setzt man die Bewegungsgleichung

ein, so wird daraus

.1 [0%E(k)

YT R < ok ) F
Die entspricht der Newton’schen Bewegungsglei-
chung

m'o=F

wenn man eine effektive Masse m* definiert als

L1 (9%8(k)

m*  h2\ O0k% )’

Die inverse Masse ist somit proportional zur
Krimmung des Bandes.

Abb. [6.38 zeigt den Verlauf der effektiven Mas-
se in der ersten BZ. Sie bleibt relativ konstant
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Abbildung 6.38: Dispersion und effektive Masse
in der ersten BZ.

im Zentrum der BZ, wo die Dispersion durch ei-
ne Parabel angendhert werden kann. Fiir grofe-
re Wellenzahlen steigt sie an und divergiert an
den Wendepunkten von £(k). Bei noch grofe-
ren Wellenzahlen ist die Kriimmung und damit
die effektive Masse negativ. In diesem Bereich
erzeugt somit eine Kraft eine Beschleunigung in
entgegengesetzter Richtung.

Bewegungen der Elektronen finden nur inner-
halb eines Bandes statt. Uberginge zwischen den
Béandern sind im Rahmen dieses Modells ausge-
schlossen. In Wirklichkeit kénnen diese auftre-
ten wenn Béander iiberlappen oder wenn Pho-
tonen die notige Energie zur Verfiigung stellen.
Interband-Ubergéinge von oben nach unten tre-
ten auch spontan auf. Durch elektrische Felder
konnen solche Uberginge nur angeregt werden,
wenn die Spannung sehr hoch ist und die Leitfa-
higkeit sehr gering. Man spricht dann von elek-
trischem Durchbruch.

6.4.2 Bloch-Oszillationen

Die Bandstruktur kann zu einigen Effekten fiih-
ren, die nicht direkt intuitiv erscheinen. Dazu
gehoren die Bloch-Oszillationen. Im klassischen
Modell erwartet man, dass ein elektrisches Feld

die Elektronen kontinuierlich beschleunigt, so-
fern sie keine Streuung erfahren. Im periodischen
Potenzial ist dies nicht der Fall, sondern die Elek-
tronen fiihren eine Oszillationsbewegung aus.

£(k) E (k) \?
,z/"z k= o @ 7T 0 7

Abbildung 6.39: Bloch-Oszillationen.

Abb.[6.39 zeigt, wie diese zustande kommen. Das
elektrische Feld fiihrt zu einer Zunahme des Im-
pulses, und damit zu einer Zunahme der Wel-
lenzahl (siehe Kap. [5.4). Ohne periodisches Po-
tenzial wiirde dies zu einer kontinuierlichen Be-
schleunigung fiithren (linke und mittlere Figur in
Abb. . In der Gegenwart des periodischen
Potenzials erhalten wir am Zonenrand eine Auf-
spaltung zwischen den Béandern. Dadurch kann
das Elektron nicht ins nichste Band “springen”,
sondern es erscheint auf der gegeniiberliegenden
Seite des reduzierten Zonenschemas wieder, wo
seine Geschwindigkeit negativ ist. Dieser Effekt
kann auch als Reflexion am Gitter aufgefasst
werden, welche dann auftritt, wenn die Wellen-
lénge der Zustandsfunktion gerade der doppelten
Periode des Gitters entspricht.

Xo [

Auslenkung x

0 Ty = 1 Zeit t

= eFa

Abbildung 6.40: Auslenkung eines Elektrons als
Funktion der Zeit wahrend ei-
ner Bloch-Oszillation.
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Die Zeit Tp, welche das Elektron benétigt, um
einen Zyklus zu durchlaufen, ist gegeben durch

2% = %eETB.
Dies kann man auch ausdriicken als die Frequenz
wp des Bloch-Oszillators:

_ 2m  eFa

wp = T~ h
Bei einer Feldstirke von £ = 10° V/m und ei-
ner Periode von a = 107!° m erhalten wir ei-
ne Blochfrequenz von wp = 1,5 - 10171 (=~ 24
GHz) und damit einer Periode von Tp = 4.2
ps. Eine solche Ostzillation ist sehr schwierig zu
beobachten, da die Elektronen meistens streuen
bevor ein vollstandiger Zyklus durchlaufen ist.
Verwendet man jedoch eine grofsere Periode, z.B.
a = 107% m, so erhoht sich die Frequenz um zwei
Grofenordnungen, was die Beobachtung erleich-
tert. Solche Perioden erhélt man in kiinstlichen
Schichtstrukturen aus Halbleitermaterialien.

186



	Einführung
	Organisatorisches
	Themenübersicht
	Phänomenologie
	Mikroskopische Grundlagen
	Ziele und Interessen
	Kondensierte Materie
	Entwicklung
	Methodik
	Inhalt

	Festkörperphysik in Dortmund
	Spektroskopische Methoden
	Forschungsthemen


	Symmetrie und Struktur
	Ordnung in Festkörpern
	Atomtheorie
	Langreichweitige Ordnung
	Flüssigkristalle
	Translationssymmetrie
	Einheitszelle und Basis
	Die Wigner-Seitz Konstruktion
	Punktsymmetrie-Operationen
	Gruppen
	Hermann-Maugin Notation

	Symmetrie und Gitter
	Primitive und nichtprimitive Gitter
	Punktsymmetrieklassen
	Kristallsysteme
	Bravais-Gitter
	Raumgruppen

	Strukturen
	Netzebenen und Miller Indizes
	Dichteste Kugelpackung
	Kubische Strukturen
	Quasikristalle
	Defekte

	Strukturbestimmung
	Feld-Ionen Mikroskopie
	Elektronenmikroskopie
	Rastersonden Mikroskopie
	Röntgenbeugung
	Beugung von Materiewellen
	Neutronenbeugung

	Das reziproke Gitter
	Periodizität der Elektronendichte
	Definition des reziproken Gitters
	Beispiele
	Gitterelemente
	Reziproke Gittervektoren und Ebenenscharen
	Brillouin-Zonen

	Strukturbestimmung mit Beugungsmethoden
	Streuung an kontinuierlichen Medien
	Bragg-Bedingung
	Röntgenstrahlung
	Ewald-Konstruktion
	Beugung an Pulvern
	Einkristall-Verfahren
	Laue-Bedingung

	Berechnung der gestreuten Intensität
	Streuamplitude und Strukturfaktor
	Atomare Beiträge
	Beispielrechnung
	Symmetriebedingte Auslöschung
	Atomformfaktor
	Das Phasenproblem
	Reelle und Komplexe Streuamplituden
	Thermische Bewegung
	Debye-Waller Faktor


	Bindungen im Festkörper
	Grundlagen
	Wechselwirkung und Bindungsenergie
	Bindungstypen
	Bindungsenergien: Übersicht
	Das Wasserstoffmolekül
	Energie
	Molekülorbitale

	Paarwechselwirkungen
	Kovalente Bindung
	Kovalente Bindungen in Festkörpern
	Hybridorbitale
	Polare Bindungen
	Ionenpaare
	Pauli-Prinzip und Austauschwechselwirkung
	Van der Waals Bindung
	Gekoppeltes System
	Lennard-Jones Potenzial
	Metallische Bindung
	Kombinierte Bindungen
	Wasserstoffbrücken

	Gitterenergie
	Van der Waals
	Gleichgewichtsabstand
	Ionische Bindung
	Berechnung der Madelung-Konstanten
	Effizientere Algorithmen
	Metalle


	Gitterschwingungen und Phononen
	Grundlagen
	Gleichgewichtsumgebung
	Die eindimensionale Kette
	Normalkoordinaten und Dispersionsrelation
	Brillouin-Zone
	Gruppengeschwindigkeit und Phasengeschwindigkeit
	Transversalschwingungen

	Kontinuumsmechanik
	Spannung und Dehnung
	Elastische Konstanten
	Scherung
	Unelastisches Verhalten
	Dehnungstensor
	Spannungstensor
	Wellenausbreitung in einem anisotropen Kontinuum
	Abbildung von Schallwellen
	Seismische Wellen

	Diskrete Systeme in 3D
	Richtungsabhängigkeit
	Zweiatomige Basis
	Große Wellenlängen
	Optischer Ast
	Verhalten am Zonenrand
	Reale Dispersionskurven
	Absorptionsmessung
	Inelastische Lichtstreuung
	Inelastische Röntgen-Streuung
	Phononenspektroskopie mit thermischen Neutronen

	Phononen und spezifische Wärme
	Spezifische Wärme
	Phononen
	Energie pro Gitterschwingung
	Zustandsdichte
	Zustandsdichte in 3D
	Debye-Modell
	Debye-Temperatur
	Spezifische Wärme im Debye-Modell
	Das T3 Gesetz
	Vereinfachtes Modell
	Das Einstein-Modell
	Reale Zustandsdichten
	Beispiele und Diskussion

	Anharmonische Effekte
	Potenzial
	Wärmeausdehnung

	Wärmeleitung
	Grundlagen
	Wärmeleitfähigkeit
	Stöße von Phononen
	Freie Weglänge
	Wärmeleitkoeffizient
	Isotopeneffekte


	Freie Elektronen
	Klassische Beschreibung
	Metalle und ihre Eigenschaften
	Das Drude-Modell
	Ergebnisse
	Grenzen des Drude-Modells

	Das quantenmechanische Modell
	Das Sommerfeld-Modell
	Das Teilchen im Potenzialtopf
	Drei Raumdimensionen
	Fermi-Kugel
	Fermi-Energie
	Zustandsdichte

	Thermodynamik des Elektronengases
	Besetzungswahrscheinlichkeit
	Die Fermi-Dirac Verteilung
	Eigenschaften der Fermi-Dirac Verteilung
	Die thermische Energie des Elektronengases
	Spezifische Wärme
	Vergleich Elektronen / Phononen
	Effektive Masse

	Elektrische Leitfähigkeit
	Beschleunigung
	Stöße
	Widerstand
	Streuung an Phononen
	Temperaturabhängigkeit
	Der Hall-Effekt
	Hall-Konstante
	Der Quanten-Hall-Effekt

	Wärmeleitung in Metallen
	Ansatz
	Temperaturabhängigkeit
	Vergleich elektrische / thermische Leitfähigkeit
	Thermoelektrische Effekte

	Kollektive Phänomene
	Abgeschirmte Coulomb-Wechselwirkung
	Metall-Isolator Übergang
	Quantisierte elektronische Anregungszustände
	Messung der Plasmafrequenz
	Elektromagnetische Wellen in Metallen

	Elektron-Phonon Wechselwirkung
	Grundlagen
	Polaronen
	Cooper Paare


	Fast Freie Elektronen: Bandstrukturen
	Periodisches Potenzial
	Probleme des Modells freier Elektronen
	Störung durch Kerngitter
	Pseudopotenzial
	Punktförmige Störung
	Außerdiagonalterme im Hamiltonoperator
	Gekoppelte Zustände

	Eigenfunktionen im periodischen Potenzial
	Das Bloch'sche Theorem
	Beweis des Bloch'schen Theorems
	Der Phasenfaktor
	Schrödingergleichung in 1D
	Lösungsansatz
	Lösung
	Zonenrand
	Zustände und Energiefläche
	Abschätzung der Bandlücke

	Bänder
	Dispersionsrelation und Brillouin-Zone
	Zonenschemata
	Drei Dimensionen
	Fermioberfläche
	Darstellung höherer BZ
	Zonenrand-Effekte
	Messung
	Zustandsdichte und Bandlücke
	Fermiflächen von Alkalimetallen
	Einwertige Edelmetalle
	Metalle und Isolatoren
	Halbleiter und Halbmetalle

	Dynamik
	Bewegungsgleichungen
	Bloch-Oszillationen


	Halbleiter
	Phänomenologie
	Einführung
	Klassifizierung
	Thermische Anregung
	Dotierung
	Absorption von Licht
	Lichtemission

	Ladungsträger
	Elektronen und Löcher
	Eigenschaften der Löcher
	Effektive Masse und Bandkrümmung
	3D: Halbklassische Bewegungsgleichung
	Effektive Massen in Halbleitern
	Dynamik am Zonenrand
	Leichte und schwere Elektronen
	Form der Fermi-Oberfläche / Zyklotronresonanz
	Beispiele
	Zustandsdichte im Magnetfeld

	Leitfähigkeit
	Zustandsdichte
	Ladungsträgerdichte
	Temperaturabhängigkeit
	Beweglichkeit
	Dotierung
	Donatorzustände
	P-Dotierung
	Exzitonen
	Thermische Anregung
	Ladungsträger-Gleichgewicht

	Halbleiter-Bauelemente
	n-p Übergang
	Diode
	Diodenkennlinie
	Thermoelektrische Effekte


	Magnetismus
	Diamagnetismus und Paramagnetismus
	Phänomenologie
	Diamagnetismus
	Atomare magnetische Momente
	Hund'sche Regeln
	Übergangsmetall-Atome
	Seltene Erden
	Einfluss des Kristallfeldes

	Thermodynamik
	Statistik im Magnetfeld
	Klassischer Grenzfall
	Freies Elektronengas
	Zusammenfassung und Überblick
	Magnetische Kühlung

	Bahn-Quantisierung in einem Magnetfeld
	Kreisbahnen
	Quantisierung des Flusses
	Landau-Zustände
	Entartung
	Besetzung und Gesamtenergie
	De Haas - van Alphén Effekt
	Messung von Fermiflächen
	Quanten-Hall Effekt

	Ferromagnetismus
	Magnetische Ordnung
	Austausch-Wechselwirkung
	Molekularfeld-Näherung
	Phasenübergang
	Temperaturabhängigkeit
	Magnetonenzahl
	Angeregte Zustände
	Spinwellen
	Beispiele
	Thermische Anregung von Magnonen

	Antiferromagnetismus und Ferrimagnetismus
	Antiferromagnetische Kopplung
	Antiferromagnetische Ordnung
	Beispiel: MnO
	Ferrimagnetismus
	Suszeptibilität
	Temperaturabhängigkeit für T>Tc
	Der antiferromagnetische Zustand
	Messung mit Kernspinresonanz
	Helikale Spinordnung

	Magnetische Domänen
	Phänomenologie
	Magnetische Feldenergie
	Domänenwände
	Anisotropie
	Dicke der Blochwände
	Domänen im Magnetfeld
	Hysterese
	Magnetische Nanostrukturen
	Biomagnetismus
	Magnetostriktion


	Supraleitung
	Phänomenologie
	Entdeckung
	Leitfähigkeit
	Diamagnetismus
	Kritische Temperatur und kritisches Feld
	Typ II Supraleiter
	Thermodynamik
	Energielücke
	Isotopeneffekt
	Historische Entwicklung

	Theoretische Ansätze (phänomenologisch)
	Stabilisierungsenergie
	Modell der 2 Flüssigkeiten
	London-Gleichung
	Eindringtiefe
	Pippard'sche Kohärenzlänge
	Shubnikov-Phase
	Ginsburg-Landau Ordnungsparameter
	GL-Kohärenzlänge
	Fluss-Quantisierung

	Skizze der BCS-Theorie
	Elektron-Phonon Streuung
	Cooper Paare
	BCS-Grundzustand
	Energielücke
	Die wichtigsten Resultate

	Resultate und Anwendungen
	Leitfähigkeit
	Tunnel-Kontakte
	Josephson-Kontakte
	DC Josephson Effekt
	AC Josephson Effekt
	Magnetfeld
	SQUID


	Literaturverzeichnis

