
6 Fast Freie Elektronen: Bandstrukturen

6.1 Periodisches Potenzial

6.1.1 Probleme des Modells freier
Elektronen

Im Modell der freien Elektronen werden Wech-
selwirkungen zwischen Valenzelektronen und
Atomrümpfen vollständig vernachlässigt. Dies
ist auch in den meisten Fällen eine gute Nä-
herung. Sie hat allerdings auch ihre Grenzen.
Die wichtigsten Diskrepanzen zwischen der Nä-
herung der freien Elektronen und der experimen-
tellen Wirklichkeit sind:
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Abbildung 6.1: Größenordnung der Ladungsträ-
gerdichten in unterschiedlichen
Festkörpern.

• Elektrische Leitfähigkeit. Experimentell
beobachtet man vor allem drei Klassen von Ma-
terialien, die sich qualitativ unterscheiden: Me-
talle, Halbleiter, und Isolatoren. Bei Isolato-
ren ist die elektrische Leitfähigkeit sehr klein,
der spezifische Widerstand beträgt typischerwei-
se mehr als 10

12
⌦m. Die unterschiedliche Leitfä-

higkeit verschiedener Materialien kann direkt auf
die Ladungsträgerdichte zurückgeführt werden.

Diese variiert zwischen Isolatoren und Metallen
um mehr als 10 Größenordnungen. Das Modell
der freien Elektronen sagt voraus, dass die Zu-
standsdichte mit der Wurzel aus der Energie zu-
nimmt,

dN(E)

dE
=

p
2V m3/2

⇡2~3

p

E .

Dies gibt keinen Hinweis darauf, dass die Zahl
der Elektronen in einem Material 10 Größenord-
nungen höher liegt, als in einem anderen. Das
Modell setzt voraus, dass ein Teil der Elektro-
nen frei ist, andere aber gebunden, aber es macht
keine Aussage, welche frei und welche gebunden
sind.
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Abbildung 6.2: Qualitative Temperaturabhän-
gigkeit der Leitfähigkeit von
Metallen und Halbleitern.

• Temperaturabhängigkeit der Leitfähig-

keit. Halbleiter verhalten sich am absoluten
Nullpunkt wie Isolatoren, doch ihre Leitfähig-
keit nimmt mit steigender Temperatur zu, wie
qualitativ in Abb. 6.2 gezeigt. Bei Metallen ist
die Leitfähigkeit bei allen Temperaturen hoch,
nimmt aber mit steigender Temperatur ab. Of-
fenbar ist die Sommerfeld’sche Theorie nur auf
Metalle anwendbar.

• Dotierung: Der Einbau von Fremdatomen
kann die Leitfähigkeit eines Materials drastisch
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6 Fast Freie Elektronen: Bandstrukturen

verändern. Nach dem Modell der freien Elektro-
nen sollten Gitterfehler die Leitfähigkeit reduzie-
ren. In Halbleitern (! Kap. 7) können sie aber
die Leitfähigkeit um viele Größenordnungen er-
höhen.
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Abbildung 6.3: Magnetfeldabhängigkeit des
Hall-Widerstandes in Alumini-
um.

• Hall-Widerstand: Gemäß dem Modell der
freien Elektronen sollte der Hall-Koeffizient
RH = �1/ne sein, unabhängig von Temperatur,
Magnetfeld etc. In vielen Metallen findet man
jedoch Abweichungen, insbesondere Variationen
als Funktion von Temperatur und Magnetfeld-
stärke, wie in Abb. 6.3 gezeigt. Teilweise un-
terscheiden sich berechnete und experimentelle
Werte um Faktoren im Bereich 1-10.

• Wiedemann-Franz Gesetz: Das
Wiedemann-Franz Gesetz ist nur bei sehr
tiefen (/1K) und hohen Temperaturen (Raum-
temperatur) exakt erfüllt. Dazwischen hängt
das Verhältnis �/�T von der Temperatur ab.

• Anisotropie: Die elektrische Leitfähigkeit ist
in einigen Metallen von der Richtung abhängig.
Dies ist im Rahmen des Modell freier Elektronen
nicht erklärbar, da dort keine bevorzugten Rich-
tungen existieren: Die Fermikugel ist isotrop.

• Wärmekapazität: Die Wärmekapazität von
Metallen bei tiefen Temperaturen weicht von der
linearen Temperaturabhängigkeit ab, insbeson-
dere für Übergangsmetalle und etwas weniger für
Edelmetalle.

6.1.2 Störung durch Kerngitter

Alle diese Unterschiede können letztlich auf die
Wechselwirkung der Elektronen mit dem periodi-
schen Potenzial U(~r) erklärt werden, welches die
Atomrümpfe (Kerne plus stark gebundene Elek-
tronen) erzeugen. Diese bricht die vollständige
Translationssymmetrie, so dass der Impuls keine
Erhaltungsgröße mehr ist.

Wie üblich beschränken wir uns auf ideale Kri-
stalle. Hier ist das effektive Potenzial periodisch,

U(~r + ~T ) = U(~r),

wenn ~T ein Vektor des Gitters ist.

Wir diskutieren den Effekt dieses Potenzials in
störungstheoretischer Näherung und machen die
üblichen idealisierenden Annahmen (keine Kri-
stallfehler, Fremdatome etc.). Wir verwenden
weiterhin die Näherung, dass die Elektronen un-
abhängig voneinander betrachtet werden kön-
nen, d.h. wir berechnen nur Zustandsfunktionen
und Energien für einzelne Elektronen. Die Wech-
selwirkung mit den übrigen Elektronen erfolgt
nur über ein effektives Potenzial.

lokalisierte 
Elektronen

kinetische 
Energie dominiert

potenzielle 
Energie dominiert

quasi-freie 
Elektronen

eikx

freie Elektronen

H =
p2

2m

1Abbildung 6.4: Freie, gestörte und lokalisierte
Elektronen.

Durch die Berücksichtigung des periodischen Po-
tenzials schlagen wir eine Brücke zwischen zwei
Extremen: Das eine Extrem ist das System frei-
er Elektronen. Hier ist der Hamiltonoperator ei-
ne Funktion des Impulsoperators und die Ei-
genfunktionen des Hamiltonoperators dement-
sprechend die Eigenfunktionen des Impulsopera-
tors. Das andere Extrem ist dasjenige isolierter
Atome. Hier dominiert die potenzielle Energie
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6 Fast Freie Elektronen: Bandstrukturen

über die kinetische und die Eigenfunktionen des
Hamiltonoperators sind deshalb lokalisiert. Ein
wirklicher Kristall befindet sich zwischen diesen
beiden Extremen: Die kinetische Energie fördert
die Delokalisierung, die potenzielle Energie der
Atomrümpfe eine Lokalisierung. Da die beiden
Operatoren für Potenzial (d.h. der Ortsopera-
tor) und kinetische Energie (d.h. Impulsopera-
tor) nicht miteinander vertauschen, [Hkin, V ] 6=

0, sind die Eigenfunktionen weder durch diejeni-
gen des freien Elektrons, noch durch diejenigen
der vollständig gebundenen Elektronen gegeben.

Die wirkliche Situation liegt also zwischen die-
sen beiden Extremen. Man nähert sich dieser Si-
tuation entweder vom Modell der freien Elek-
tronen, was in diesem Kapitel geschehen soll,
oder von der Seite der lokalisierten Elektronen,
was z.B. bei der “starken Lokalisierung” gemacht
wird, also bei Systemen mit relativ stark gebun-
denen Elektronen. Geht man von dieser Seite
aus, so kann man die Zustände des Bandes durch
Linearkombination aus Atomorbitalen erzeugen
(LCAO-Methode), ähnlich wie in Kap. 3.1.6 für
Molekülorbitale diskutiert.

6.1.3 Pseudopotenzial

Die freien Elektronen werden durch ebene Wellen
ei
~k·~r beschrieben. Wir untersuchen hier zunächst

den Effekt einer kleinen Störung auf diese Eigen-
funktionen. Es mag zunächst erstaunlich schei-
nen, dass man die Coulomb-Wechselwirkung als
eine kleine Störung betrachten kann. Dazu tra-
gen primär zwei Gründe bei:

Pauli

Coulomb

Abbildung 6.5: Effektives periodisches Potenzial
für die Elektronen.

• Die anziehende Coulomb-Wechselwirkung ist
am stärksten in der Nähe der Kerne. Sie wird
aber weitgehend kompensiert durch die ab-
stoßende Pauli-Wechselwirkung: Aufgrund des

Pauli-Prinzips dürfen sich die Leitungselektro-
nen nicht in der Nähe der Kerne aufhalten, wo
die gebundenen Elektronen aus den vollständig
besetzten tieferen Schalen sich aufhalten.

• Die freien Elektronen schirmen die Ladung der
positiv geladenen Atomrümpfe von einander ab,
wie in Kapitel 5.6.1 diskutiert. Die Abschirmung
führt dazu, dass das effektive Potenzial eine sehr
viel kürzere Reichweite besitzt.

6.1.4 Punktförmige Störung

Es existieren viele unterschiedliche Modelle für
den Einfluss des periodischen Potenzials auf die
Elektronen. Ausgangspunkt ist das freie Elektro-
nengas, d.h. die Zustandsfunktionen  = eikx

sind ebene Wellen und der ungestörte Hamilton-
operator entspricht der kinetischen Energie frei-
er Elektronen. Je nach Zusammenhang sind be-
stimmte Modelle einfacher oder nützlicher.

An dieser Stelle verwenden wir ein Potenzial,
welches zwar die korrekte Periodizität aufweist,
aber eine mathematisch einfache Struktur (an-
stelle einer physikalisch sinnvollen Form): Wir
nähern die potenzielle Energie durch die Wech-
selwirkung mit den Kernen durch eine Summe
von Delta-Funktionen am Ort der Kerne an:

V = �ze2
X

s

�(x � sa).

Die Näherung durch die Delta-Funktion kann als
Extremfall der Abschirmung betrachtet werden.
z ist die effektive Ladung das Atomrumpfs und
a der Gitter-Abstand.

Potenzial:

Ort

a
Re

Im

Abbildung 6.6: Links: vereinfachtes periodisches
Potenzial. Rechts: Addition der
Beiträge in der komplexen Ebe-
ne.
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Dieser Potenzial-Term muss im Hamiltonopera-
tor zur kinetischen Energie der freien Elektronen
addiert werden. Der Erwartungswert des ent-
sprechenden Operator für die Zustandsfunktio-
nen der freien Elektronen ist

heik
0
x
|V |eikxi = �ze2

X

s2Z
e�ik

0
saeiksa

= �ze2
X

s2Z
ei(k�k

0)sa,

d.h. eine unendliche Reihe, wobei der Betrag je-
der Zahl eins ist, während die Phase um (k�k’)a
zunimmt. In der komplexen Zahlenebene bewegt
man sich offenbar auf einem Polygon. Die Sum-
me verschwindet deshalb immer, außer wenn die-
se Phase (d.h. der Winkel zwischen den Vektoren
in der komplexen Ebene) gleich null ist, d.h. für

k0
� k =

2n⇡

a
.

In diesem Fall haben alle Beiträge die gleiche
Phase und addieren sich, d.h. es findet eine kon-
struktive Interferenz statt. Dies entspricht offen-
bar dem Fall, dass die beiden Wellenvektoren
sich um einen Vektor des reziproken Gitters un-
terscheiden. Formell ist diese Rechnung analog
zur Beugung an einem optischen Gitter.

Ein nicht verschwindender Beitrag ergibt sich so-
mit zunächst für den Fall k’ = k (n = 0), d.h. für
die Diagonalelemente. Dieser Beitrag ist für alle
Zustände identisch und stellt lediglich eine Ver-
schiebung des Energie-Nullpunktes dar. Er kann
direkt dem konstanten Teil des Potenzials zuge-
ordnet werden. Da er keinen Einfluss auf die Zu-
stände oder die Dynamik des Systems hat, wer-
den wir ihn von jetzt an vernachlässigen.

6.1.5 Außerdiagonalterme im
Hamiltonoperator

Für k’ 6= k, d.h. für Außerdiagonalelemente, er-
gibt sich offenbar genau dann ein endlicher Wert,
wenn die Bragg-Bedingung erfüllt ist, d.h. wenn
die Differenz k � k

0 der Wellenvektoren einem
Vektor des reziproken Gitter entspricht. Somit

reflektiert das periodische Potenzial die Elektro-
nenwellen genauso wie Röntgenwellen. Wir kön-
nen dies wiederum als ein Resultat der Impulser-
haltung betrachten.

Da es sich hier um ein Außerdiagonalelement
handelt, folgt aus der Störungsrechnung, dass es
nur dann einen wesentlichen Beitrag ergibt, wenn
die beiden Zustände, welche aneinander gekop-
pelt werden, in ihrer Energie nicht stark unter-
schiedlich sind.

k

k-k’ = 2π
a

-2π
a

-π 
a

π 
a

2π
a

0

ΔEEnergien der beiden 
Zustände sind gleich

Abbildung 6.7: Bedingung für die Kopplung von
Bloch-Funktionen.

Diese Bedingung ist z.B. nicht erfüllt, wenn k =

0, k’ = 2⇡/a. Die Diagonalelemente des Hamil-
tonoperators enthalten die kinetische Energie,
~2k2/2m, die Außerdiagonalelemente für nicht
normierte Zustände sind

h1|V |ei2⇡
x
a i = �ze2

X

s

1 = �Nze2,

mit N als Zahl der Atome. Somit lautet der Ha-
miltonoperator für diese beiden Zustände

H =

✓
0 cze2

cze2 2⇡2

a2m

◆
,

wobei c eine noch zu bestimmende Konstante
darstellt, welche auch die Normierung der Zu-
stände berücksichtigt. Nach Voraussetzung des
Störungsansatzes sind die Außerdiagonalelemen-
te klein, cze2

⌧ H22. Die Energien und Zustän-
de entsprechen somit weitgehend denjenigen der
freien Elektronen.
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Die Situation ist anders für k = ⇡/a, k0
= �⇡/a,

also am Rand der ersten Brillouin-Zone. Hier
wird das Außerdiagonalelement

he±i⇡
x
a |V |e⌥i⇡

x
a i = �ze2

X

s

he±i⇡s
|e⌥i⇡s

i

= �Nze2,

also gleich groß wie beim ersten Fall, wobei das
Vorzeichen des Wellenvektors keine Rolle spielt.
Der Unterschied liegt bei den Diagonalelemen-
ten des Hamiltonoperators: in diesem Fall sind
beide gleich, H11 = H22 = ⇡2/2ma2. Dies ist
ein Fall von entarteter Störungsrechnung und die
Zustände mit den Wellenzahlen k = ±⇡/a wer-
den vollständig gemischt.

6.1.6 Gekoppelte Zustände

Wir suchen nun nach den Eigenfunktionen des
Hamiltonoperators im periodischen Potenzial.
Dafür betrachten wir jeweils ein Paar von gekop-
pelten Zuständen am Rand der ersten Brillouin-
zone, e±i⇡x/a. Durch Symmetrisierung erhalten
wir die Linearkombinationen

 + =
1

2
(ei⇡x/a + e�i⇡x/a

) = cos
x⇡

a

 � = �
i

2
(ei⇡x/a � e�i⇡x/a

) = sin
x⇡

a
,(6.1)

d.h. zwei harmonische Wellen, deren Wellenlän-
ge zwei Gitterperioden betragen. Sie haben die
gleiche Amplitude und die gleiche räumliche Fre-
quenz, sind aber um eine viertel Wellenlänge,
d.h. eine halbe Gitterperiode gegeneinander ver-
schoben.

Die Aufenthaltswahrscheinlichkeit, d.h. die Elek-
tronendichte der beiden Wellen ist proportional
zum Quadrat. Wie in Abb. 6.8 gezeigt, ist die
Wellenlänge der Elektronendichte deshalb gleich
einer Gitterperiode, sodass die Elektronendichte
dieser Wellen in jeder Einheitszelle gleich ist.  +

hat ihre maximale Elektronendichte am Ort der
Kerne, bei  � verschwindet sie dort. Da  + die
maximale Aufenthaltswahrscheinlichkeit in der

a

| �|
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| +|
2

P
ot
en
zi
al

Ort

Abbildung 6.8: Ladungsdichteverteilung im di-
rekten Raum für Zustände an der
Bandkante.

Nähe des Potenzialminimums hat, ist seine Ener-
gie niedriger als bei  �.

Mit diesen Funktionen wird die potenzielle Ener-
gie

h +|V | +i = �ze2
X

s

hcos
x⇡

a
�(x � sa)

cos
x⇡

a
i

= �ze2
X

s

cos
2
(⇡s) = �Nze2.

h �|V | �i = ze2
X

s

sin
2
(⇡s) = 0

h �|V | +i = h +|V | �i = 0.

Die Außerdiagonalelemente verschwinden, es
handelt sich also tatsächlich um die Eigenfunk-
tionen des gestörten Hamiltonoperators.

Wir sehen also

• Die Eigenfunktionen des Hamiltonopera-
tors sind nicht mehr laufende Wellen, son-
dern die stehenden Wellen cos(⇡x/a) und
sin(⇡x/a). Die Periode der beiden Zustän-
de beträgt zwei Gitterperioden; sie sind zu
einander um eine halbe Gitterperiode ver-
schoben.

• Ihre Energie unterscheidet sich um die Cou-
lombenergie des Elektrons im periodischen
Potenzial. Man beachte, dass die obige
Rechnung mit nicht normierten Wellenfunk-
tionen durchgeführt wurde; sie liefert des-
halb nicht den genauen Wert der Energie.
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Dies war eine Rechnung spezifisch für die Zu-
stände am Rand der Brillouin-Zone und für eine
Karikatur eines Potenzials. Bevor wir weiterfah-
ren, suchen wir nach den allgemeinen Lösungen
für die Eigenfunktionen.

a

 �k(~r) = u�k(~r)ei�k·�r

Abbildung 6.9: Blochfunktion und ihre Bestand-
teile.

6.2 Eigenfunktionen im
periodischen Potenzial

6.2.1 Das Bloch’sche Theorem

Unter Berücksichtigung des periodischen Poten-
zials U(~r) = U(~r + ~T ) sind die Eigenfunktio-
nen nicht mehr die harmonischen ebenen Wellen.
Die allgemeine Form, welche diese besitzen, wird
durch ein Theorem von Felix Bloch1 bestimmt,
das er in seiner Doktorarbeit fand: Die Zustands-
funktion  ~k

(~r) kann als Produkt

 ~k
(~r) = u~k(~r)e

i~k·~r

geschrieben werden, wobei u~k(~r) die gleiche Pe-
riodizität hat wie das Potenzial,

u~k(~r + ~T ) = u~k(~r),

und ~T einen Gittervektor darstellt. Diese wird
mit einer ebenen Welle ei

~k·~r multipliziert.

Abb. 6.9 zeigt ein Beispiel einer Blochfunktion:
oben die ebene Welle, in der Mitte die periodi-
sche Funktion, und unten das Produkt.

Die Funktion u~k(~r), welche die ebene Welle mo-
duliert, stellt die Korrektur gegenüber den freien

1Felix Bloch (1905-1983); Nobelpreis 1952
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Elektronen dar, wo diese Funktion als konstant
angenommen wurde. Sie stellt die Lösung einer
Schrödingergleichung für eine primitive Einheits-
zelle dar. Wie bei Atomen existiert eine unend-
liche Reihe solcher Lösungen, welche mit einem
Index bezeichnet werden kann, der in der Folge
ein elektronisches Band kennzeichnen wird.

Der Wellenvektor ~k der ebenen Welle kann im-
mer so gewählt werden, dass er in der ersten
Brillouin-Zone liegt, dass also die Wellenlänge �
größer ist als zwei Gitterkonstanten, � > 2a. Um
dies zu zeigen, nehmen wir zunächst an, dass er
außerhalb der ersten Brillouin-Zone liegt, so dass
~k = ~k1 + ~G, mit ~k1 einem Vektor in der ersten
Brillouin-Zone und ~G einem Vektor des rezipro-
ken Gitters. Dann ist

ei
~k·~r

= ei
~G·~rei

~k1·~r.

Laut (2.6) ist aber ei
~G·~T

= 1 wenn ~T einen Vek-
tor des direkten Gitters darstellt. Der erste Fak-
tor hat somit die Periodizität des Gitters und
kann mit u~k(~r) zusammengefasst werden.

Eine äquivalente Formulierung des Bloch’schen
Theorems ist

 ~k
(~r + ~T ) = ei

~k·~T
 ~k

(~r),

d.h. bei einer Translation um einen Gittervektor
ändert sich der Zustand nur um einen Faktor mit
Betrag eins.

6.2.2 Beweis des Bloch’schen
Theorems

Für den Beweis des Theorems verwenden wir den
Translationsoperator T̂ . Er verschiebt die Koor-
dinaten eines Argumentes um den entsprechen-
den Vektor

T̂  ~k
(~r) =  ~k

(~r + ~T ).

Da das System periodisch ist, muss auch der Ha-
miltonoperator unter einer Verschiebung des Ko-
ordinatensystems um eine Gitterperiode invari-
ant sein:

H(~r + ~T ) = H(~r).

Somit ist

T̂
�
H(~r) ~k

(~r)
�

= H(~r + ~T ) ~k
(~r + ~T )

= H(~r) ~k
(~r + ~T )

= H(~r)T̂ ~k
(~r),

d.h. der Hamiltonoperator H vertauscht mit
dem Translationsoperator T̂ . Daraus folgt, dass
die Eigenzustände des Hamiltonoperators gleich-
zeitig Eigenzustände des Translationsoperators
sind, d.h.

T̂  ~k
(~r) = c(~T ) ~k

(~r),

mit c als Eigenwert. Diese Gleichung muss für be-
liebige Translationen des Gitters gelten. Werden
mehrere Translationen hintereinander durchge-
führt, werden die entsprechenden Eigenwerte
multipliziert:

T̂1 T̂2 ~k
(~r) = c(~T1)c(~T2) ~k

(~r)

= c(~T1 + ~T2) ~k
(~r).

Die zweite Gleichung erhält man aus der Grup-
peneigenschaft des Translationsgitters: die Sum-
me von zwei Gittervektoren ergibt wieder einen
Gittervektor.

Die Bedingung, dass der Eigenwert einer belie-
bigen Summe von zwei Gittervektoren dem Pro-
dukt der einzelnen Eigenwerte entspricht, kann
nur erfüllt werden wenn der einzelne Eigenwert
den Betrag 1 aufweist, d.h.

c(~T ) = ei'(T )

oder

 ~k
(~r + ~T ) = ei'(T )

 ~k
(~r),

d.h. der Eigenwert hat die Form ei'(T ) und die
Wellenfunktion kann bei einer Verschiebung um
einen Gittervektor nur die Phase ändern.
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6.2.3 Der Phasenfaktor

Wenn wir den Gittervektor als Linearkombinati-
on von primitiven Translationen schreiben

~T = n1~a1 + n2~a2 + n3~a3

wird der entsprechende Phasenfaktor

ei'(T )
= ein1'(a1)ein2'(a2)ein3'(a3).

ei�(T )

ei�(a2)a2

ei�(a1) ei�(a1)

a1 a1

Abbildung 6.10: Eigenwert des Verschiebungs-
operators ~T in 2D.

Mit der Schreibweise '(ai) = 2⇡xi (für geeignete
xi) wird daraus

ei'(T )
= ei2⇡(n1x1+n2x2+n3x3)

= exp

2

4i2⇡

0

@
n1

n2

n3

1

A ·

0

@
x1

x2

x3

1

A

3

5

= exp

2

4i

0

@
n1a1

n2a2

n3a3

1

A ·

0

@
x12⇡/a1

x22⇡/a2

x32⇡/a3

1

A

3

5

= ei
~k·~T

mit dem Wellenvektor

~k = x1
~b1 + x2

~b2 + x3
~b3

und den Basisvektoren ~bk des reziproken Git-
ters. Dies entspricht gerade der zweiten Form des
Bloch’schen Theorems.

T̂  ~k
(~r) =  ~k

(~r + ~T ) = ei
~k·~T
 ~k

(~r).

Blochfunktionen verallgemeinern die ebenen
Wellen der freien Elektronen auf das periodi-
sche Potenzial. Sie enthalten einen Wellenvek-
tor, der aber nicht mehr direkt den Impuls der

Elektronen beschreibt. Er bildet weiterhin eine
gute Näherung dafür, solange der Einfluss des
Gitters schwach ist, also für schwache Kopplung
und Wellenvektoren weit von der Grenze der
Brillouin-Zone. Die Einelektronenzustände sind
aber nicht mehr Eigenzustände des Impulsope-
rators. Die Anwendung des Impulsoperators auf
einen Bloch-Zustand ergibt

~
i
~r ~k

(~r) =
~
i
~r
⇣
ei
~k·~ru~k(~r)

⌘

= ~~k ~k
(~r) + ei

~k·~r ~
i
~ru~k(~r).

Dieser Zustand unterscheidet sich im Allgemei-
nen nicht nur durch einen konstanten Faktor von
 ~k

(~r).

6.2.4 Schrödingergleichung in 1D

Wir lösen nun die Schrödingergleichung für un-
abhängige Elektronen in einem periodischen Po-
tenzial in einer Dimension. Dafür schreiben wir
das Potenzial der Atomrümpfe als

U(x) =

1X

G=�1
UGeiGx

wobei G einen reziproken Gittervektor darstellt.
Die Koeffizienten UG der Fourier-Reihe nehmen
für ein Coulomb-Potenzial mit |G|

�2 ab, für ein
abgeschirmtes Coulombpotenzial (! Kap. 5.6.1)
entsprechend schneller. Damit das Potenzial reell
wird, muss gelten

U(x) =

X

G>0

UG

�
eiGx

+ e�iGx
�

= 2

X

G>0

UG cos(Gx),

wobei zusätzlich angenommen wurde, dass ein
Symmetriezentrum existiert, U(x) = U(�x) und
der Ursprung der Energieachse so gewählt wur-
de, dass U0 = 0. Die Schrödingergleichung wird
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damit zu

H (x) =

✓
p2

2m
+ U(x)

◆
 (x)

=

 
p2

2m
+

X

G

UGeiGx

!
 (x)

= E  (x). (6.2)

Meist ist es mathematisch angenehmer, das Po-
tenzial komplex zu schreiben.

6.2.5 Lösungsansatz

Wir fordern wie üblich periodische Randbedin-
gungen, sodass  (x) als Summe über harmoni-
sche Wellen geschrieben werden kann:

 (x) =

X

K

C(K)eiKx, (6.3)

wobei die Summe über alle Wellenzahlen K läuft,
welche die periodische Randbedingung erfüllen.
Aufgrund des Bloch’schen Theorems muss für al-
le K gelten

K = k + G,

wobei G einen Vektor des reziproken Gitters dar-
stellt und k in der ersten Brillouin-Zone liegt.
Dass mit diesem Ansatz das Bloch’sche Theorem
erfüllt ist, sieht man aus der Umformung

 k(x) =

X

G

C(k + G)ei(k+G)x

= eikx
X

G

C(k + G)eiGx

= eikxuk(x).

Da uk(x) aus einer Fourier-Reihe besteht, in der
alle Glieder die Periodizität des Potenzials ha-
ben, hat die Funktion selber auch diese Periodi-
zität.
Wir setzen die Fourier-Entwicklung (6.3) in die
Schrödingergleichung (6.2) ein. Für die kineti-
sche Energie erhalten wir

p2

2m
 (x) = �

~2

2m

@2

@x2
 (x)

=
~2

2m

X

K

C(K)K2eiKx

und für die potenzielle Energie

U(x) (x) =

X

G

X

K

UGeiGxC(K)eiKx.

Die Schrödingergleichung wird damit

~2

2m

X

K

C(K)K2eiKx

+

X

G

X

K

UGC(K)ei(K+G)x
= E

X

K

C(K)eiKx.

Wir können diese Gleichung für jede Fourier-
Komponente einzeln lösen, wenn wir berücksich-
tigen, dass die Summe über K auch die Werte
bei K ± G enthält. Für die Komponente propor-
tional zu eiKx erhalten wir

~2

2m
C(K)K2

+

X

G

UGC(K � G) = EC(K).

Als Abkürzung schreiben wir für die kinetische
Energie

�K =
~2K2

2m

und erhalten damit die Eigenwertgleichung

(�K � E)C(K)+

X

G

UGC(K �G) = 0. (6.4)

Offenbar werden in der Basis der ebenen Wellen
diejenigen Zustände gekoppelt, welche sich durch
einen Vektor des inversen Gitters unterscheiden.

6.2.6 Lösung

Wie bereits erwähnt nehmen die Koeffizienten
UG mit G�2 ab, sodass die Summe relativ rasch
konvergiert. Damit haben wir die Schrödinger-
gleichung in eine algebraische Gleichung für die
Entwicklungskoeffizienten C(K) und die Energie
E umgeformt. Die potenzielle Energie koppelt of-
fenbar jeweils Zustände, deren Wellenvektor sich
um einen Vektor G des reziproken Gitters un-
terscheidet. Dies entspricht praktisch der Bragg-
Bedingung für die Streuung von Photonen.
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Wir bestimmen nun die Lösung in verschie-
denen Näherungsschritten. Zunächst betrachten
wir den Fall dass das Potenzial verschwindet,
UG = 0. Dann wird die Energie zur kinetischen
Energie

E =
~2

2m
(~k + ~G)

2

und wir erhalten die gleichen Lösungen wie im
Kapitel 5) freie Elektronen.

Als nächsten Näherungsschritt betrachten wir
den Fall, dass das Potenzial nur einen Term ent-
hält:

U(x) = UG

�
eiGx

+ e�iGx
�
.

Dies entspricht einem harmonischen Potenzial.
In Gleichung (6.4) reduziert sich dann die Sum-
me auf einen Term. Wie bereits diskutiert, wer-
den durch das periodische Potenzial ebene Wel-
len gekoppelt, deren Wellenvektor sich um G un-
terscheidet. Es ist deshalb sinnvoll, nur diese Zu-
stände zu betrachten.

Für diese Zustände muss eine Eigenwertglei-
chung in der Basis der Koeffizienten C(K) gel-
ten, mit ~K = ~k + ~G:

0

����@

��k�2�G � E U� �G

U�G ��k� �G � E U� �G

U�G ��k � E U� �G
U�G ��k+�G � E U� �G

U�G ��k+2�G � E

1

����A
·

0

����@

C(k � 2G)

C(k � G)

C(k)

C(k + G)

C(k + 2G)

1

����A
= 0

1

Die Diagonalelemente enthalten die kinetische
Energie der Elektronen, die Elemente in der er-
sten Nebendiagonalen den Kopplungsterm, d.h.
die potenzielle Energie. Da wir annehmen, dass
die Außerdiagonalelemente klein sind, ist ihr Ein-
fluss klein, außer wenn die zwei Diagonalelemen-
te praktisch gleich sind. Dies kann offenbar nur
dann auftreten wenn |~k + ~G| = |~k|, also am
Rand der Brillouin-Zone - wir erhalten wieder
dir Bragg-Bedingung.

Die verschiedenen Lösungen definieren die unter-
schiedlichen Energiebänder. Diese Lösungen zei-
gen auch den direkten Zusammenhang mit dem
früher behandelten Problem der kovalenten Bin-
dung.

6.2.7 Zonenrand

Eine Näherungslösung für den Fall eines endli-
chen Potenzials lässt sich finden, wenn das Po-
tenzial klein ist im Vergleich zur kinetischen
Energie des Elektrons an der Zonengrenze, d.h.
bei ~k = ~G/2: U ⌧ �k, mit

�k =
~2k2

2m

als kinetische Energie der freien Elektronen.
Die Diagonalelemente der Koeffizientenmatrix
für k = G/2(. . . , �3,-1, 1, 3, . . . ) werden dann
proportional zu ... 9 , 1 , 1 , 9 , .... , sodass die Au-
ßerdiagonalelemente U nur die beiden mittleren
Elemente effizient koppeln, nämlich die zu den
Wellenvektoren ~k = ±~G/2 an der Zonengren-
ze gehörenden Zustände. Wir betrachten deshalb
nur noch diese beiden Zustände.

Die beiden relevanten Gleichungen sind dann

(�k � E)C(

~G

2
) + U C(�

~G

2
) = 0

(�k�G � E)C(�

~G

2
) + U C(

~G

2
) = 0.

Für eine Lösung muss die Determinante ver-
schwinden. An der Zonengrenze gilt �k =

�k�G = � und die Bedingung für das Verschwin-
den der Determinante ist

(� � E)
2

= U2.

Die Energien werden damit

E = � ± U =
~2k2

2m
± U.

Sie sind also um 2U aufgespalten.

Wenn wir nicht nur die Zustände direkt an der
Zonengrenze betrachten, sondern in der Nähe,
erhalten wir aus der Eigenwertgleichung

(�k � E)C(~k) + U C(~k � ~G) = 0

(�k�G � E)C(~k � ~G) + U C(~k) = 0.
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Die Säkulargleichung wird dann

0 = (�k � E)(�k�G � E) � U2

= E
2
� E(�k�G + �k) + �k�k�G � U2.

Diese Gleichung hat die beiden Lösungen

E =
�k�G + �k

2
±

1

2

p
(�k�G � �k)

2 + 4U2.

k

E

fre
ie Elektr

onen

π/a

λzweites Band

erstes Band

Lücke = 2U

E
/

k
2

Abbildung 6.11: Bandaufspaltung an der Zonen-
grenze.

An der Zonengrenze, wo �k�G = �k, wird die
Energie der Eigenzustände um den Betrag U der
potenziellen Energie nach unten, respektive nach
oben verschoben - die Aufspaltung beträgt somit
2U . Weiter von der Zonengrenze entfernt nähern
sich die Energien quadratisch mit dem Abstand
den ungestörten Zuständen an. In der Nähe der
Zonengrenze kann man die Näherung

E(±) = E1 +
~2

(�k)
2

2m

✓
1 ±

2�

U

◆

benutzen, mit

�k = k �
1

2
G

für die Differenz zwischen dem Wellenvektor und
der Zonengrenze. E1 stellt die Energie an der Zo-
nengrenze dar. Sie variieren somit quadratisch
mit dem Abstand von der Zonengrenze.

6.2.8 Zustände und Energiefläche

Im Rahmen der hier diskutierten harmonischen
Näherung werden somit nur die Zustände am
Rand der ersten Brillouin-Zone aufgespalten,
und es entsteht eine Lücke zwischen dem nied-
rigsten und dem zweitniedrigsten Band, wie in
Abb. 6.11 gezeigt. Berücksichtigt man im Poten-
zial auch die höheren Harmonischen, so werden
die höheren Bänder ebenfalls aufgespalten.

kG/2

1

0

-1

C(k � G)

C(k)

C(k)

C(k � G)

Band 1

Band 2

Abbildung 6.12: Koeffizienten der Zustände am
Zonenrand.

Wie stark die Zustände gemischt werden, lässt
sich quantifizieren, indem man das Verhältnis der
beiden Koeffizienten

C(k � G)

C(k)
,

respektive das Inverse davon in den Eigenzustän-
den bestimmt. Bei vollständiger Mischung ist das
Verhältnis 1, bei verschwindender Kopplung geht
es gegen Null, respektive 1. Abb. 6.12 zeigt
dies in grafischer Form: Am Zonenrand entspre-
chen die Eigenzustände gerade der symmetri-
schen, resp. antisymmetrischen Linearkombina-
tion der freien Elektronenzustände; weiter vom
Zonenrand entfernt ist nur noch einer der Koef-
fizienten wesentlich von Null verschieden.

Ein wichtiges Resultat ist, dass aufgrund der
Aufspaltung an der Zonengrenze die Energie ei-
ne horizontale Tangente aufweist, also in erster
Ordnung unabhängig ist von der Wellenzahl.

Dies führt in drei Dimensionen dazu, dass die
Oberfläche konstanter Energie, z.B. die Fermi-
Oberfläche, am Zonenrand deformiert wird und
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senkrecht zum 
Zonenrand

Abbildung 6.13: Dreidimensionale Fermifläche
am Zonenrand.

senkrecht darauf auftrifft. In Abb. 6.13 stellt die
gestreifte gekrümmte Oberfläche die Fermiober-
fläche dar, während der Würfel den Rand der er-
sten Brillouin-Zone markiert. Dies ist ein wesent-
licher Unterschied gegenüber dem Modell freier
Elektronen, wo die Energie als Funktion des Wel-
lenvektors isotrop und die Fermioberfläche somit
eine Kugeloberfläche ist.

6.2.9 Abschätzung der Bandlücke

Durch die Aufspaltung der Zustände am Zonen-
rand ändert sich der Charakter der Zustände
qualitativ. Während die ebenen Wellen, welche
für freie Elektronen eine gute Näherung darstel-
len, eine konstante Elektronendichte aufweisen,
ist die Dichte der gekoppelten Zustände  ± (!
Gl. 6.1) moduliert, wie in Abb. 6.8 gezeigt. Die
Zustände am Zonenrand unterscheiden sich da-
bei um eine Verschiebung um eine halbe Peri-
ode. Beim energetisch niedrigeren Zustand ist
die Elektronendichte am Ort des Kerns lokali-
siert, beim energetisch höher liegenden Zustand
zwischen den Kernen. Man bezeichnet deshalb
diese Zustände auch als “s-artig” und “p-artig”,
was aus der Analogie zu molekularen Bindungen
hervorgeht, wo die Bindungen durch s- und p-
Orbitale gebildet werden. Da sich die Zustände
weiter von der Zonengrenze entfernt den unge-
störten Zuständen annähern, wird dort diese Un-
terscheidung in s- und p-artige Zustände weniger
eindeutig.

Aus dieser Betrachtung kann man auch die Brei-

te der Bandlücke abschätzen. Der Wellenvektor
ist für die beiden Zustände  ± der gleiche; so-
mit haben die beiden Zustände den gleichen Im-
puls und die gleiche kinetische Energie. Sie un-
terscheiden sich jedoch bezüglich ihrer potenzi-
ellen Energie. Diese kann man z.B. relativ leicht
berechnen für das vereinfachte Potenzial

U(x) = �UG cos
2⇡

a
x.

Die Bandlücke Eg entspricht dann dem Unter-
schied zwischen den Energien von  + und  �:

Eg =

Z
a

0
U(x)

⇣
| �|

2
� | +|

2
⌘

dx

= �
2Ug

a

Z
a

0
cos

2⇡

a
x ·

·

⇣
sin

2 ⇡

a
x � cos

2 ⇡

a
x
⌘

dx

=
2Ug

a
cos

2 2⇡x

a
dx = Ug.

Die Aufspaltung entspricht somit gerade dem
Potenzial.
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6.3 Bänder

6.3.1 Dispersionsrelation und
Brillouin-Zone

Bei der Diskussion der Phononen hatten wir ge-
sehen, dass physikalisch die Wellenvektoren au-
ßerhalb der ersten Brillouin-Zone keine Bedeu-
tung haben. Bei den Elektronen ist die Situation
anders, da diese eine kontinuierliche Verteilung
bilden, also nicht nur auf den Gitterplätzen de-
finiert sind. Trotzdem spielt auch hier der Rand
der Brillouinzone eine wichtige Rolle, u.A. weil
hier das periodische Potenzial zu einer Mischung
der Zustände und dadurch zu einer Diskontinui-
tät und einer Lücke auf der Energieachse, also
zu einem “verbotenen” Bereich von Energien, in
dem keine Zustände existieren.

Aus diesen Gründen stellt man häufig die Zu-
standsfunktionen in der ersten Brillouinzone dar,
indem man als Argument den ‘reduzierten’ Wel-
lenvektor ~k benutzt, anstelle des vollen Wellen-
vektors ~K = ~k + ~G. Alle Zustände fallen dann in
die erste Brillouin-Zone und der reziproke Git-
tervektor ~G wird zu einem Index des Zustan-
des, in Analogie zu den diskreten Zuständen
eines Atoms. Die elektronischen Zustände wer-
den dann nicht mehr nur durch die Quantenzahl
~k, sondern zusätzlich durch den Bandindex ~G
beschrieben. Innerhalb eines Bandes gibt es ei-
ne quasi-kontinuierliche Verteilung der Energien,
aber zwischen den Bändern existiert eine Lücke.

Im Rahmen der ersten Definition der Blochfunk-
tionen kann man diese Neuformulierung leicht
begründen. Ein Zustand zu einem Wellenvektor
~k + ~G kann demnach geschrieben werden als

 ~k+ ~G
(~r) = u~k+ ~G

(~r)ei(
~k+ ~G)·~r

= u~k+ ~G
(~r)ei

~G·~rei
~k·~r

= u( ~G)
~k

(~r)ei
~k·~r

mit

u( ~G)
~k

(~r) = u~k+ ~G
(~r)ei

~G·~r,

d.h. wir können die Änderung des Zustandes
durch den reziproken Gittervektor ~G entweder
in der Gitter-periodischen Funktion u oder im
ebene-Welle Teil ei

~k·~r berücksichtigen. Ohne Ver-
lust der Allgemeinheit können wir fordern, dass
der Definitionsbereich der Zustandsfunktion auf
die erste Brillouin-Zone beschränkt sein soll. Für
jeden reziproken Gittervektor ~G erhalten wir
dann eine Dispersionsrelation. Ein Teil der Zu-
standsfunktion wird dann in der Form u(r) ge-
schrieben, welche die Periodizität des Gitters
aufweist.

K=k+Gπ
a

0

E
 = ei 3�

4a x
= u(r)eikr

u(r) = eiGr

r

u = 1

u =
e iGr

Abbildung 6.14: Faltung eines Bandes; links
: Dispersionsrelation; rechts:
u(r) im direkten Raum.

Als Beispiel zeigt Abbildung 6.14 die Funktion

 = ei3⇡x/4a = u(r)eikr.

Mit den Substitutionen k ! k�G für Werte von
k > G/2 und k ! �k 2 wird

u(r) = eiGr,

wie rechts in der Abbildung gezeigt. Der Teil der
Parabel für k > G/2 = ⇡/a wird an diesem Wert
der k-Achse gespiegelt. Die Dispersionsrelation
berücksichtigt hier noch nicht die Aufspaltung
auf Grund des periodischen Potenzials.

6.3.2 Zonenschemata

Die elektronischen Zustände werden durch die
Aufspaltung an der Zonengrenze in unterschied-
liche Bänder aufgeteilt. Beim reduzierten Zonen-
schema bleibt der Vektor ~k innerhalb der ersten

2gültig für Systeme mit Zeit-Umkehr Symmetrie
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0 ~k

reduziertes Zonenschema

erweitertes 
Zonenschema

periodisches Zonenschema

Abbildung 6.15: Unterschiedliche Zonenschema-
ta: Energie vs. Wellenzahl.

Brillouinzone und die Änderung durch den Git-
tervektor erzeugt höher gelegene Zustände, die
zum gleichen Wellenvektor gehören (! Abb. 6.15
Mitte) und mit einem Index n bezeichnet wer-
den können. Die zweite (äquivalente) Möglich-
keit entspricht der Erweiterung des Zonensche-
mas. Dabei wird für jeden k-Vektor genau ein
elektronischer Zustand definiert (! Abb. 6.15
oben).

Manchmal ist es nützlich, das reduzierte Zo-
nenschema mit allen Bändern wieder zu erwei-
tern, indem man die Bänder periodisch fortführt,
E(~k + ~G) = E(~k). Damit erhält man das so ge-
nannte periodische Zonenschema (! Abb. 6.15
unten).

Abbildung 6.16: 3D Fermioberfläche im redu-
zierten und im periodischen Zo-
nenschema.

Dieses enthält die gleiche Information wie das
reduzierte Schema. Es kann aber nützlich sein,

wenn man mögliche Elektronenbahnen verfolgen
möchte, welche aus der ersten Brillouinzone hin-
ausführen. In Abb. 6.16 ist die Fermioberfläche
für ein einfaches kubisches Gitter gezeigt – links
im reduzierten Zonenschema, rechts ein Teil des
periodischen Zonenschemas. Wie man auf der
linken Seite erkennen kann, gibt es geschlosse-
ne Kurven (im reziproken Raum), bei denen die
Zustände innerhalb der Kurve besetzt sind. Auf
der rechten Seite erkennt man leichter, dass ge-
schlossene Kurven auch freie Zustände einschlie-
ßen können.

6.3.3 Drei Dimensionen

Die obige Diskussion beschränkte sich aus Grün-
den der Übersichtlichkeit auf eindimensionale
Modelle. Die Resultate bleiben in drei Dimen-
sionen gültig, so lange k-Vektoren in einer be-
stimmten Richtung verglichen werden.

Die Energie des Systems hängt dann von den drei
Komponenten kx, ky und kz ab; für verschwin-
dendes Potenzial erhält man

E(~k+~G) =
~2

2m
((kx+Gx)

2
+(ky+Gy)

2
+(kz+Gz)

2
).

Tabelle 6.1 zeigt die Energie für verschiedene
Richtungen und unterschiedliche Werte von G
in Einheiten von ~2/2m für ein kubisches Gitter
und verschwindendes Potenzial (also freie Elek-
tronen). In diesem Fall spielt die Richtung keine
Rolle, lediglich der Betrag des k-Vektors.

Abbildung 6.17 zeigt diese Dispersionsrelationen
entlang ausgewählter Richtungen im dreidimen-
sionalen k-Raum, immer noch für freie Elektro-
nen. Die verschiedenen Richtungen werden mei-
stens auf einer Achse zusammengefasst. Je nach
der Anzahl Elektronen pro Einheitszelle sind Zu-
stände von einem Ast oder in mehreren Ästen
besetzt. Dabei ist zu beachten, dass die ausge-
wählten Richtungen eine relativ hohe Symmetrie
aufweisen, sodass diese Äste teilweise mehrfach
entartet sind.

Aus dieser Figur wird ein wesentlicher Unter-
schied zum eindimensionalen Fall deutlich: in ei-
ner Dimension besitzt jeder Ast für einen Betrag
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# Ga/2⇡ E(000) E(kx00) E(0ky0)

1 000 0 k2
x k2

y

2 ±100 (2⇡/a)
2

(kx ± 2⇡/a)
2 k2

y + (2⇡/a)
2

3 0 ± 10 (2⇡/a)
2 k2

x + (2⇡/a)
2

(ky ± 2⇡/a)
2

4 00 ± 1 (2⇡/a)
2 k2

x + (2⇡/a)
2 k2

y + (2⇡/a)
2

5 110 2(2⇡/a)
2

(kx ± 2⇡/a)
2
+ (2⇡/a)

2
(ky ± 2⇡/a)

2
+ (2⇡/a)

2

Tabelle 6.1: Energie verschiedener Bänder in einem kubischen Gitter mit verschwindendem Poten-
zial, in Einheiten von ~2/2m.

# 
E

le
kt

ro
ne

n
für fcc Gitter

(000) (100) (111) (000) (110) (100)

9.12.12 12:57 

Page 1 of 1http://upload.wikimedia.org/wikipedia/commons/c/c1/Brillouin_Zone_%281st%2C_FCC%29.svg
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Abbildung 6.17: Dreidimensionale Bandstruktur
für fcc-Gitter.

des k-Vektors nur eine Lösung, welche monoton
mit der Wellenzahl wächst. Bei gefalteten Ästen
kann diese monotone Zunahme auch in Richtung
abnehmender Wellenzahlen laufen. In drei Di-
mensionen existieren jedoch meist mehrere Lö-
sungen für Wellenvektoren in unterschiedlichen
Richtungen, die jeweils unterschiedliche Disper-
sion zeigen. Dadurch überlappen sich die Äste
auf der Energieachse und es können auch mehre-
re teilweise besetzt sein.

6.3.4 Fermioberfläche

Die Fermi-Energie bleibt auch in diesem Fall die
Energie, welche bei T = 0 die besetzen von den
leeren Zuständen trennt. Für jedes teilweise ge-
füllte Band existiert dann, in Abhängigkeit von
der Richtung ein maximaler k-Wert für die be-
setzten Zustände. Diese ergeben eine Fläche im

k-Raum, die Fermifläche. Sind mehrere Bänder
teilweise gefüllt, so tragen sie alle zur Fermifläche
bei.

Nur wenige Menschen würden ein Metall als
“einen Festkörper mit einer Fermi-Fläche” de-
finieren. Trotzdem kann das die zutreffendste
Definition eines Metalls sein, die man heute
geben kann: Sie bezeichnet einen wesentlichen
Fortschritt im Verständnis des Verhaltens der
Metalle . . . A.R. Mackintosh

2

2

2

2

3

3

3

3

k-Raum

1. BZ

Fermi Kugel

Abbildung 6.18: Die Fermifläche in 2D ist für
freie Elektronen ein Kreis. In
diesem Beispiel schneidet sie die
2., 3. und 4. Brillouinzone.

Abb. 6.18 zeigt zur Illustration ein Beispiel in
zwei Dimensionen. Hier ist die Fermioberfläche
für freie Elektronen ein Kreis. Je nach Elektro-
nendichte und Kristallstruktur fällt dieser Kreis
in unterschiedliche Brillouinzonen. In diesem
Beispiel schneidet er die zweite, dritte und vierte
Brillouin-Zone.
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6.3.5 Darstellung höherer BZ

bcc

fcc

1. BZ 2. BZ 3. BZ

Abbildung 6.19: Oberflächen der 1.-3. Brillouin-
Zonen in 3D für das bcc und das
fcc Gitter.

Die (n + 1)-te Brillouin-Zone ist die Menge aller
Punkte, die nicht in der (n � 1)-ten Zone liegen
und aus der n-ten Zone heraus durch Queren ei-
ner einzigen Bragg-Ebene zugänglich sind (gilt
für n � 2). Für die n = 1-ste Brillouin- Zone
gilt dabei, dass alle Punkte erreicht werden müs-
sen, ohne eine Ebene zu kreuzen. Die n = 2-te
Brillouin-Zone erreicht man aus der Ersten durch
Queren einer Bragg-Ebene. Abb. 6.19 zeigt die
Oberflächen der ersten drei Brillouin-Zonen für
das bcc und das fcc Gitter.

Da jede BZ das gleiche Volumen aufweist wie die
erste, ist es möglich, die höheren BZ in der 1. BZ
darzustellen.

1. Zone 2. Zone 3. Zone

Abbildung 6.20: Verschiebung der höheren BZ in
die 1. BZ.

Abb. 6.20 zeigt das Prinzip für ein quadratisches
Gitter in 2 Dimensionen. Die 2. BZ wird dabei
in 4 Dreiecke geteilt, welche jeweils um eine Pe-
riode in die 1. BZ verschoben werden. Bei der 3.
BZ sind es 8 Dreiecke. Im rechten Teilbild ist die
Fermifläche (für freie Elektronen) eingezeichnet.

Für den gewählten Radius (d.h. die entsprechen-
de Elektronendichte) schneidet sie mehrere BZ.
Die 1. BZ ist vollständig innerhalb der Fermiku-
gel, die 2. und 3. werden geschnitten.

1. Zone 2. Zone 3. Zone

Abbildung 6.21: Fermi-Fläche für freie Elektro-
nen im reduzierten Zonensche-
ma.

Abb. 6.21 stellt die gleiche Fermifläche für freie
Elektronen im reduzierten Zonenschema dar. Die
besetzten Zustände sind jeweils grau markiert.

6.3.6 Zonenrand-Effekte

Wie in Kapitel 6.2.7 diskutiert, führt das peri-
odische Potenzial dazu, dass am Zonenrand eine
Bandlücke entsteht. Die Dispersionsrelation !(k)

zeigt am Zonenrand jeweils eine horizontale Tan-
gente, d!/dt = 0.

k

G =
2⇡

a

E

Bandlücke

Zo
ne
ng
re
nz
e

Zo
ne
ng
re
nz
e

Abbildung 6.22: Bandlücke und Verbiegung der
Bänder am Zonenrand.

Abb. 6.22 zeigt den entsprechenden Effekt in ei-
ner Dimension. In diesem Kapitel wurde nur die
Lücke bei G = ⇡/a explizit diskutiert. Berück-
sichtig man aber höhere Terme in der Fourier-

178



6 Fast Freie Elektronen: Bandstrukturen

Entwicklung des Potenzials, so findet man auch
die Lücken bei G = 2⇡/a, G = 3⇡/a etc.

freie Elektronen quasi-freie Elektronen
Zo

ne
nr

an
d

Zo
ne

nr
an

d

Abbildung 6.23: Die Kopplung ans Gitter führt
zu einem rechten Winkel zwi-
schen Fermifläche und Zonen-
rand.

Abb. 6.23 illustriert dies für 2 Dimensionen: die
Fermioberfläche wird so verbogen, dass sie je-
weils senkrecht auf die Bragg-Ebenen trifft. Abb.
6.13 zeigt denselben Effekt in 3D, wobei nur die
1. BZ dargestellt ist.

2. BZ

3. BZ

2. BZ

3. BZ

Fermi-Fläche
freie Elektronen Kristallelektronen

erweitertes Zonenschema

Abbildung 6.24: Effekt des periodischen Poten-
zials auf eine Fermifläche, wel-
che die 2., 3. und 4. BZ schnei-
det.

Abb. 6.24 zeigt den Effekt für eine Fermifläche,
welche die 2., 3. und 4. BZ schneidet. Im Zentrum
ist der Effekt im erweiterten Zonenschema dar-
gestellt, außen im reduzierten Schema - links für
freie Elektronen, rechts unter Berücksichtigung
des periodischen Potenzials. Auch hier wird die
Fermifläche durch das periodische Potenzial je-

weils verbogen, so dass sie auch auf die Ränder
der höheren BZ senkrecht auftrifft.

6.3.7 Messung

Für die experimentelle Bestimmung von Fermi-
Flächen wurde eine Reihe von Methoden ent-
wickelt: Magnetwiderstand, anomaler Skineffekt,
Zyklotronresonanz, magneto-akustische Effekte,
Shubnikov-de Haas-Effekt, de Haas-van Alphén-
Effekt, optische Reflektivität, Ultraschallabsorp-
tion und weitere. Zu den wichtigsten Methoden
gehört die Photoemissionsspektroskopie, welche
die Messung von besetzten Bändern ermöglicht.

Photonenquelle

Probe
Elektronen

Energie-Analysator

Elektronen-
Detektor

h�
e-

Abbildung 6.25: Prinzip der Photoelektronen-
spektroskopie.

Dafür verwendet man den Photoeffekt: Wie in
Abb. 6.25 gezeigt, wird dafür kurzwelliges Licht
auf die Probe eingestrahlt und die Energie der
emittierten Elektronen wird mit Hilfe eines hoch-
auflösenden Spektrometers gemessen. Die Rich-
tung, in der der Analysator / Detektor platziert
wird, bestimmt die Richtung des Impulses, also
des Wellenvektors. Je nach Art der verwendeten
Photonen spricht man von UVPS (~! < 100 eV),
SXPS (~! > 100 eV), XPS (~! > 1000 eV). Da-
mit misst man Elektronen in unterschiedlich tie-
fen Schalen.

Wie in Abb. 6.26 gezeigt, wird bei der Absorp-
tion eines Photons die Energie eines Elektrons
jeweils um die Photonenenergie ~! erhöht. Ist
diese Energie hoch genug, so kann das Elektron
das Metall verlassen. Die Überschussenergie

Ekin = ~! � Ebind � W

wird in kinetische Energie umgewandelt. Hier
stellt Ebind die Bindungsenergie bezüglich der
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Abbildung 6.26: Prinzip der Photoelektronen-
Spektroskopie.

Fermifläche und W die Austrittsarbeit dar. Da
der Ausgangszustand besetzt sein muss, tragen
hierzu nur die Zustände unterhalb der Fermi-
energie EF bei.

Die gemessene Verteilung der Energie der Pho-
toelektronen ergibt deshalb direkt die Band-
struktur, respektive die Zustandsdichte D(E) als
Funktion der Energie.

E
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Zustandsdichte (willk. Einh.)
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Abbildung 6.27: Bandstruktur von Kupfer.

Abb. 6.27 zeigt als Beispiel die Zustandsdichte
von Kupfer (auf der linken Seite), zusammen mit
einem Vergleich der gemessenen und berechne-
ten Bänder (rechts). Kupfer hat die Konfigura-
tion [Ar]3d104s1. Die fünf d-Bänder sind relativ
“flach”, d.h. sie zeigen deutliche Abweichungen
vom Verhalten freier Elektronen.

Weitere Messmethoden werden in Kapitel 7 und

8 diskutiert.

6.3.8 Zustandsdichte und Bandlücke

Viele Experimente zur Messung der Fermiflä-
che nutzen externe elektrische oder magnetische
Felder. Dabei nutzt man die Tatsache, dass die
Geschwindigkeit der Elektronen von der Krüm-
mung der Fermi-Fläche abhängt.

|~r~k
E(~k)| =

d

dk?
E(~k) = ~vG

~k?
|k?|

. (6.5)

Hier ist k? die Komponente von k, die senkrecht
auf der Fläche konstanter Energie steht. vG it
somit senkrecht zur Fermifläche orientiert. Von
vG abhängige Größen kann man daher benutzen,
um die Fermi-Fläche zu rekonstruieren.

2π/L

π/a
k

dk⊥

E konstant

E+dE konstant

π/a

1. BZ 2. BZ
Wegen der 

Randbedingungen sind 
die k-Werte diskret

k = 0, ± 2�
L

, ± 4�
L

, …, , ± N�
L

E
ne

rg
ie

Diskret Kontinuierlich

Abbildung 6.28: Links: diskrete Zustandsdichte
in 1D. Rechts: Kontinuierliche
Zustandsdichte in 3D.

Für die Bestimmung der Zustandsdichte nutzen
wir, dass die k-Werte für periodische Randbe-
dingungen diskret sind (! Abb. 6.28 links). Wir
betrachten einen linearen Kristall mit der Git-
terkonstante a, der aus N Einheitszellen besteht.
Dann sind die möglichen k-Werte

k = 0, ±
2⇡

L
, ±

4⇡

L
, . . . , , ±

N⇡

L
=

N⇡

Na
=

⇡

a
.

Somit gibt es N verschiedene k-Werte innerhalb
der 1. BZ und jede primitive Einheitszelle trägt
mit einem unabhängigen k-Wert und 2 Zustän-
den (Spin!) zu jedem Energieband bei.
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Im kontinuierlichen Fall in 3D (! Abb. 6.28
rechts) kann die Anzahl der Zustände im Ener-
giebereich zwischen E und E + dE als

D(E) dE =
2V

(2⇡)
3

Z E+dE

E
d3k

geschrieben werden. Hier stellt D(E) =
2V

(2⇡)3
die

Zustandsdichte im E-Raum dar und das Integral
läuft über das gesamte Volumen zwischen den
beiden Flächen Eund E + dE .

Gemäß Gleichung (6.5) und Abb. 6.28 kann das
Volumenelement dk3 geschrieben werden als

dk3
= dE

dSE

~vg
.

Hier stellt dSE ein Flächenelement auf der Ener-
giefläche Ek dar. Damit wird

D(E) dE =
2V

(2⇡)
3 ~

dE

Z

E=const

dSE

vg
.

Die Zustandsdichte ist also indirekt proportional
zur Gruppengeschwindigkeit, wie bereits bei den
Phononen.

E

0 k

E

0 D(E)

Abbildung 6.29: Dispersion und Zustandsdichte
für freie Elektronen.

Im Modell freier Elektronen nimmt die Zustands-
dichte mit der Wurzel aus der Energie zu. Dies
ist im periodischen Potenzial offenbar nicht mehr
der Fall.

An der Zonengrenze werden die beiden Bänder
aufgespalten, es entsteht ein Bereich der Ener-
gieachse, welcher keine Zustände enthält. Man
spricht von einer Energielücke oder Bandlücke
(engl. band gap). Im einfachsten Fall enthält je-
des der beiden Bänder 2N Zustände, wobei N

E

0 k D(E)

E

0

Bandlücke

Abbildung 6.30: Dispersion und Zustandsdichte
für Elektronen in Bändern.

0 k

E

π/a

n=1 2N Zustände

n=2

Abbildung 6.31: In einem Band finden maximal
2N Elektronen Platz.

die Anzahl Atome pro Einheitszelle darstellt und
der Faktor 2 von der Spin-Entartung herrührt.

Falls pro Einheitszelle ein Atom jeweils ein Elek-
tron in dieses Band abgibt, so ist es genau halb
gefüllt (n = 1 in Abb. 6.31). In diesem Bereich
ist die Näherung freier Elektronen recht gut, weil
die Fermioberfläche relativ weit vom Zonenrand
entfernt ist. Wie wir im Kapitel 5 gesehen ha-
ben, verhalten sie sich dann am ehesten wie freie
Elektronen.

6.3.9 Fermiflächen von Alkalimetallen

Alkalimetalle sind einwertig, d.h. es ist pro Atom
1 freies Elektron vorhanden. Damit kann der Ra-
dius der Fermifläche im Modell freier Elektronen
berechnet werden. Das Volumen der Fermikugel
beträgt 4⇡k3

F
/3 und das Volumen pro Zustand

im k-Raum
✓

2⇡

L

◆3

=
1

N

✓
2⇡

a

◆3

,

181



6 Fast Freie Elektronen: Bandstrukturen

mit N als Zahl der Einheitszellen im Kristall mit
Volumen V . Die Zahl der Zustände in der Fer-
mikugel ist somit

n =
4⇡k3

F

3

Na3

(2⇡)
3 = N

k3
F
a3

6⇡2
.

Hier ist N die Zahl der Einheitszellen. Jede Ein-
heitszelle (bcc Struktur) enthält 2 Atome, welche
jeweils 1 Elektron beitragen. Die Zahl der Spin-
Zustände ist doppelt so groß, so dass wir die An-
zahl Zustände gleich der Anzahl Atome setzen
können. Damit wird der Fermi-Radius

kF =
3

r
6⇡2

a3
=

3

r
3

4⇡

2⇡

a
⇡ 0, 62

2⇡

a
.

Diesen Wert kann man vergleichen mit dem Ab-
stand zur Zonengrenze, z.B. zum N -Punkt bei
(1/2, 1/2, 0): Hier ist der Abstand vom Zentrum
der Brillouin-Zone

�N =

r
1

4
+

1

4

2⇡

a
⇡ 0, 71

2⇡

a
> kF .

Somit liegt die Fermikugel vollständig innerhalb
der ersten BZ.

N k

E(k)

Egap

Li K

Na Rb

Abbildung 6.32: Fermiflächen der Alkaliatome.

Obwohl die Bandstruktur der Alkali-Metalle eine
ausgeprägte Bandlücke am Rand der Brillouin-
Zonen hat, sind die Bänder bei kF = 0.877 �N
nicht von den Bändern freier Elektronen zu un-
terscheiden. Deshalb verhalten sie sich praktisch
wie ein freies Elektronengas, ihre Fermiflächen
sind praktisch kugelförmig, wie in Abb. 6.32 ge-
zeigt.

6.3.10 Einwertige Edelmetalle

Die einwertigen Edelmetalle Cu, Ag und Au kri-
stallisieren in einer kubisch flächenzentrierten
Struktur (fcc). Dadurch reichen ihre Fermiflä-
chen näher an den Rand der Brillouin-Zone als
im Fall der Alkaliatome.

X
U

L

K

Cu

Ag

Au

K

K

Abbildung 6.33: Fermiflächen der einwertigen
Edelmetalle mit fcc-Struktur.

Für freie Elektronen in einem fcc Gitter ist

kF ⇡ 0, 903�L.

In <111>-Richtung liegt die Fermifläche somit
sehr nahe am Zonenrand, was zu einer merkli-
chen Krümmung führt, wie in Abb. 6.33 gezeigt.

6.3.11 Metalle und Isolatoren

Abb. 6.34 zeigt schematisch den Einfluss der
Bandlücke auf die Beweglichkeit der Elektronen.
Die obere Zeile stellt die Situation der freien
Elektronen (! Kap. 5) dar: ein Feld verschiebt
die Fermikugel im k-Raum, die Elektronen er-
halten einen endlichen Impuls, es fließt Strom.
Existiert dagegen eine Bandlücke, können die
Elektronen nicht in unbesetzte Zustände wech-
seln und es fließt kein Strom. Dies gilt allgemein
für vollständig besetzte Bänder: der Gesamtim-
puls der Elektronen verschwindet,

P
i
~ki = 0.
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~E = 0 ~E 6= 0

Lücke

k k

E(k) E(k)

Lücke

k k

E(k) E(k)

Abbildung 6.34: Einfluss der Bandlücke auf die
Beweglichkeit der Elektronen.
Die obere Reihe beschreibt
freie Elektronen, die untere ein
gefülltes Band unterhalb der
Bandlücke.

Umfasst die Einheitszelle ein zweiwertiges oder
zwei einwertige Atome, so ist das erste Band ge-
nau gefüllt. Die Fermi-Energie fällt dann gera-
de in eine Energielücke. In einem solchen Fall
gilt die Theorie der Leitfähigkeit, welche für die
freien Elektronen diskutiert wurde, nicht mehr.
Dort hatten wir gesehen, dass das externe Feld
zu einer Änderung des Elektronenimpulses führt.
Dies ist aber nur möglich wenn entsprechende
unbesetzte Impulszustände zur Verfügung ste-
hen. In der Energielücke ist dies nicht möglich.

Halbleiter HalbmetallIsolatorMetall

E
ne

rg
ie

 E

EF

1
Abbildung 6.35: Bandlücke und Besetzung für

Metall, Isolator, Halbleiter und
Halbmetall.

Daraus folgt die qualitative Unterscheidung der
Materialien in Metalle und Isolatoren: Bei Me-

tallen ist die Fermioberfläche etwa in der Mit-
te des Bandes. Die Elektronen in der Nähe der
Fermioberfläche sind in diesem Fall weit von der
Zonengrenzen entfernt und spüren deshalb den
Einfluss des periodischen Potenzials kaum. Ein
elektrisches Feld kann damit relativ ungestört die
Fermikugel verschieben und es fließt ein Strom.

Anders die Situation bei einem Isolator: Hier ist
die Fermioberfläche zwischen zwei Bändern. Die
Elektronen spüren deshalb das periodische Po-
tenzial maximal, sie werden aufgrund der Bragg
Bedingung daran reflektiert. Das Modell frei-
er Elektronen ist hier deshalb nicht anwendbar.
Dies kann man auch so verstehen, dass in der
Nähe der Fermioberfläche keine Impulszustände
verfügbar sind, so dass äußere Felder den Impuls
der Elektronen nicht verändern können.

6.3.12 Halbleiter und Halbmetalle

Bei Halbleitern befindet sich die Fermienergie
ebenfalls in der Mitte zwischen zwei Bändern.
Halbleiter unterscheiden sich von Isolatoren da-
durch, dass der Abstand zwischen den Bändern
relativ klein ist, so dass freie Ladungsträger ei-
nerseits durch thermische Anregung, anderer-
seits durch Verunreinigungen in der Nähe der
Bandkante erzeugt werden können. Diese Mög-
lichkeiten werden im nächsten Kapitel noch dis-
kutiert. Im Fall eines Halbmetalls überlappen
sich zwei Bänder in der Nähe der Fermikante.
Dadurch sind freie Ladungsträger vorhanden, die
Zustandsdichte ist jedoch relativ klein und da-
durch die Leitfähigkeit gering.

Aus dem Gesagten folgt, dass ein Isolator oder
ein Halbleiter, also Materialien bei denen die Fer-
mienergie in eine Bandlücke fällt, immer eine ge-
rade Anzahl Elektronen in der primitiven Ele-
mentarzelle haben muss. Dies ist aber keine hin-
reichende Bedingung, da unterschiedliche Bän-
der nicht immer durch eine Energielücke vonein-
ander getrennt sind.

Überlappen mehrere Bänder, so können sie teil-
weise gefüllt sein und das Material kann elektri-
schen Strom leiten.
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Abbildung 6.36: Überlappende Bänder.

6.4 Dynamik

6.4.1 Bewegungsgleichungen

Für die Bewegung der Elektronen in den Bän-
dern verwendet man das gleiche Modell wie in
Kapitel 5. Der wesentliche Unterschied liegt dar-
in, dass die Geschwindigkeit der Elektronen nicht
mehr einfach als ~~k/m geschrieben werden kann,
sondern als

~v =
d~r

dt
=

1

~
@E(k)

@k
.

E v

-π/a 0 π/a k

v(k)E(k)

Abbildung 6.37: Energie und Geschwindigkeit
als Funktion der Wellenzahl.

Daraus folgt, dass die Geschwindigkeit nicht mo-
noton mit der Wellenzahl zunimmt. Wie in Abb.
6.37 gezeigt, nimmt sie zunächst zu, erreicht etwa
auf halbem Weg zum Rand der Brillouin-Zone
ein Maximum und nimmt dann wieder ab. Am
Rand der ersten Brillouin-Zone, wo die Dispersi-
onskurve E(k) horizontal wird, verschwindet die

Geschwindigkeit. Für negative k-Werte in der er-
sten Brillouin-Zone sind die Geschwindigkeiten
negativ. Da sich die Bänder periodisch fortset-
zen, ist auch die Geschwindigkeit periodisch mit
k.

Als Bewegungsgleichung für die Dynamik der
Elektronen gilt auch hier

~d~k

dt
= �e

h
~E + ~v ⇥ ~B

i
= ~F , (6.6)

mit der Kraft ~F . Im Folgenden soll das magne-
tische Feld verschwinden. Somit führt ein kon-
stantes elektrisches Feld zu einer Verschiebung
der Fermikugel, sofern die entsprechenden Zu-
stände zur Verfügung stehen und keine Streuung
stattfindet. Im Gegensatz zu den freien Elektro-
nen werden hier die Elektronen nicht mehr im-
mer schneller, sie können auch wieder langsamer
werden. Dieser Effekt ergibt sich, wenn man die
Bewegungsgleichung (für 1D) in der Form

v̇ =
1

~
@

@t

✓
@E(k)

@k

◆
=

1

~
@

@k

✓
@E(k)

@k

◆
@k

@t

=
1

~

✓
@2

E(k)

@k2

◆
k̇

schreibt. Setzt man die Bewegungsgleichung
(6.6) ein, so wird daraus

v̇ =
1

~2

✓
@2

E(k)

@k2

◆
F.

Die entspricht der Newton’schen Bewegungsglei-
chung

m⇤v̇ = F

wenn man eine effektive Masse m⇤ definiert als

1

m⇤ =
1

~2

✓
@2

E(k)

@k2

◆
.

Die inverse Masse ist somit proportional zur
Krümmung des Bandes.

Abb. 6.38 zeigt den Verlauf der effektiven Mas-
se in der ersten BZ. Sie bleibt relativ konstant
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Abbildung 6.38: Dispersion und effektive Masse
in der ersten BZ.

im Zentrum der BZ, wo die Dispersion durch ei-
ne Parabel angenähert werden kann. Für größe-
re Wellenzahlen steigt sie an und divergiert an
den Wendepunkten von E(k). Bei noch größe-
ren Wellenzahlen ist die Krümmung und damit
die effektive Masse negativ. In diesem Bereich
erzeugt somit eine Kraft eine Beschleunigung in
entgegengesetzter Richtung.

Bewegungen der Elektronen finden nur inner-
halb eines Bandes statt. Übergänge zwischen den
Bändern sind im Rahmen dieses Modells ausge-
schlossen. In Wirklichkeit können diese auftre-
ten wenn Bänder überlappen oder wenn Pho-
tonen die nötige Energie zur Verfügung stellen.
Interband-Übergänge von oben nach unten tre-
ten auch spontan auf. Durch elektrische Felder
können solche Übergänge nur angeregt werden,
wenn die Spannung sehr hoch ist und die Leitfä-
higkeit sehr gering. Man spricht dann von elek-
trischem Durchbruch.

6.4.2 Bloch-Oszillationen

Die Bandstruktur kann zu einigen Effekten füh-
ren, die nicht direkt intuitiv erscheinen. Dazu
gehören die Bloch-Oszillationen. Im klassischen
Modell erwartet man, dass ein elektrisches Feld

die Elektronen kontinuierlich beschleunigt, so-
fern sie keine Streuung erfahren. Im periodischen
Potenzial ist dies nicht der Fall, sondern die Elek-
tronen führen eine Oszillationsbewegung aus.
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Abbildung 6.39: Bloch-Oszillationen.

Abb. 6.39 zeigt, wie diese zustande kommen. Das
elektrische Feld führt zu einer Zunahme des Im-
pulses, und damit zu einer Zunahme der Wel-
lenzahl (siehe Kap. 5.4). Ohne periodisches Po-
tenzial würde dies zu einer kontinuierlichen Be-
schleunigung führen (linke und mittlere Figur in
Abb. 6.39). In der Gegenwart des periodischen
Potenzials erhalten wir am Zonenrand eine Auf-
spaltung zwischen den Bändern. Dadurch kann
das Elektron nicht ins nächste Band “springen”,
sondern es erscheint auf der gegenüberliegenden
Seite des reduzierten Zonenschemas wieder, wo
seine Geschwindigkeit negativ ist. Dieser Effekt
kann auch als Reflexion am Gitter aufgefasst
werden, welche dann auftritt, wenn die Wellen-
länge der Zustandsfunktion gerade der doppelten
Periode des Gitters entspricht.
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Abbildung 6.40: Auslenkung eines Elektrons als
Funktion der Zeit während ei-
ner Bloch-Oszillation.
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Die Zeit TB, welche das Elektron benötigt, um
einen Zyklus zu durchlaufen, ist gegeben durch

2⇡

a
=

1

~eETB.

Dies kann man auch ausdrücken als die Frequenz
!B des Bloch-Oszillators:

!B =
2⇡

TB

=
eEa

~ .

Bei einer Feldstärke von E = 10
6 V/m und ei-

ner Periode von a = 10
�10 m erhalten wir ei-

ne Blochfrequenz von !B = 1, 5 · 10
11

s
�1 (⇡ 24

GHz) und damit einer Periode von TB = 4.2
ps. Eine solche Oszillation ist sehr schwierig zu
beobachten, da die Elektronen meistens streuen
bevor ein vollständiger Zyklus durchlaufen ist.
Verwendet man jedoch eine größere Periode, z.B.
a = 10

�8 m, so erhöht sich die Frequenz um zwei
Größenordnungen, was die Beobachtung erleich-
tert. Solche Perioden erhält man in künstlichen
Schichtstrukturen aus Halbleitermaterialien.
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