
5 Freie Elektronen

5.1 Klassische Beschreibung

5.1.1 Metalle und ihre Eigenschaften
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Abbildung 5.1: Metallische Bindung.

In diesem Kapitel soll in erster Linie der Versuch
unternommen werden, das Verhalten von Elek-
tronen in Metallen zu beschreiben. Die metalli-
sche Bindung stellt zwar nur eine von 5 Grund-
typen der Bindung in Festkörpern dar, sie ist je-
doch sehr weit verbreitet: mehr als 2/3 der Ele-
mente sind Metalle.

Metalle enthalten zwei Arten von Elektronen.
Wie in Abb. 5.1 schematisch gezeigt sitzen die
meisten Elektronen in tief liegenden Orbitalen
der konstituierenden Atome, welche praktisch an
den entsprechenden Atomen lokalisiert sind. Da-
neben trägt jedes Atom eine geringe Zahl (ty-
pischerweise 1-3) Leitungselektronen bei, welche
sich praktisch frei durch das Material bewegen,
dieses jedoch nicht verlassen können.

Diese frei beweglichen Leitungselektronen sind
für die charakteristischen Eigenschaften der Me-
talle verantwortlich, welche sie gegenüber den
weiter verbreiteten nichtmetallischen Verbindun-
gen auszeichnen. Zu diesen charakteristischen Ei-
genschaften (! Abb. 5.2) gehören die gute Leit-
fähigkeit für Elektrizität und Wärme, sowie der
Glanz von metallischen Oberflächen.

Sowohl das klassische Modell (Kap. 5.1), wie
auch das quantenmechanische (Kap. 5.2) be-
schreiben die Metalle im Wesentlichen über freie

Elektrische Leitfähigkeit

Metallglanz Pyrit (FeS)Cobaltin 
(CoAsS)

Wärmeleitfähigkeit

Hämatit1

Abbildung 5.2: Beispiele von Metallen und
metall-typischen Eigenschaften.

Elektronen, welche in einen Potenzialtopf einge-
sperrt sind, dessen Ränder den Rändern des Kri-
stalls entsprechen. Dieses Modell der freien Elek-
tronen eliminiert jede Wechselwirkung zwischen
Elektronen mit Ausnahme des Pauli-Prinzips.
Die Wechselwirkung der Elektronen mit Atom-
rümpfen wird zunächst ebenfalls nicht berück-
sichtigt und erst in einer zweiten Stufe (im Ka-
pitel 6) als ein periodisches Potenzial berücksich-
tigt, welches die gleiche Periode wie das Gitter
aufweist. Trotz dieser extremen Vereinfachungen
kann das Modell freier Elektronen erstaunlich
viele Aspekte der Metalle erklären.

5.1.2 Das Drude-Modell

Die klassische Theorie entstand drei Jahre nach
der Entdeckung des Elektrons durch J.J. Thom-
son (1897). Im 19. JH hatte die kinetische Gas-
theorie eine befriedigende Erklärung für viele be-
kannte Effekte im Bereich der Thermodynamik
geliefert. Dies mag ein Motiv gewesen sein dafür,
dass P. Drude1 die Elektronen in einem Metall

1Paul Drude (1863-1906)
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5 Freie Elektronen

als Gas modellierte2. Seine Annahme war, dass
die äußersten Elektronen jedes Atoms sich im
Metall praktisch frei bewegen können. Zu diesen
Leitungselektronen tragen die Atome, welche das
Gitter bilden, normalerweise ein bis drei Elektro-
nen bei. Diese Elektronen sind im gesamten Kri-
stall frei beweglich, wobei die positiv geladenen
Atomrümpfe ein Potenzial bilden.

-

-
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-

Atomrümpfe: 
- klein   
- statisch

+ + + + +

+ + + + +

+ + + + +

Leitungselektronen: 
- ballistische Bewegung   
- kurze Stöße

freie Weglänge λ ≫ a

Abbildung 5.3: Das Drude-Modell des freien
Elektronengases.

Nach Drude verhalten sich diese Elektronen ähn-
lich wie ungeladene Teilchen in einem klassischen
Gas:

• Die Atomrümpfe sind klein und statisch.

• Die Elektronen sollen eine freie Weglänge
zwischen Stößen haben, welche vielen Git-
terkonstanten entspricht.

• Zwischen den Stößen ist die Bewegung frei,
d.h. unabhängig von den anderen Elektro-
nen (unabhängige Elektronen) und von den
Atomrümpfen (freie Elektronen). Sind äu-
ßere Felder vorhanden, so beeinflussen die-
se die Bewegung wie in der Mechanik und
Elektrodynamik diskutiert.

• Stöße finden im Drude-Modell vor allem
mit den Ionenrümpfen statt; Stöße zwi-
schen Elektronen sind sehr selten. Die Stöße
werden als kurz angenommen und die Ge-
schwindigkeit der Elektronen nach dem Stoß
ist unabhängig von der Geschwindigkeit vor
dem Stoß, sondern wird durch die Tempera-
tur des Kristalls bestimmt.

2P. Drude, Annalen der Physik 1, 566 und 3, 369 (1900).

5.1.3 Ergebnisse

Mit Hilfe dieses einfachen klassischen Modells
können unterschiedliche Aspekte der Phänome-
nologie von Metallen erklärt werden. Beispiele
dafür sind die Herleitung der qualitativen Aspek-
te des Ohm’schen Gesetzes, oder die Beziehung
zwischen elektrischer und thermischer Leitfähig-
keit. Wir diskutieren diese Resultate jedoch nicht
im Rahmen des klassischen Modells, sondern erst
nach der Einführung des quantenmechanischen
Modells.

Element Z n (1028/m3) r (Å) 
Li (78 K) 1 4.70 1.72 
Na (5K) 1 2.65 2.08 
K (5K) 1 1.40 2.57
Be 2 24.7 0.99 
Mg 2 8.61 1.41

Al 3 18.1 1.1 
Ga 3 15.4 1.16

Tabelle 5.1: Anzahl Z freier Elektronen pro
Atom, Dichte n des Elektronengases
und mittlerer Abstand r zwischen
den Leitungselektronen für verschie-
dene Elemente.

Ein wesentlicher Unterschied zwischen dem Elek-
tronengas eines Metalls und einem echten Gas ist
die Dichte: Im Vergleich zu einem echten Gas ist
die Dichte des Elektronengases um rund einen
Faktor 1000 größer: Pro Leitungselektron steht
lediglich ein Volumen zur Verfügung das etwa
einem Atomvolumen entspricht. Für ein Atom
mit Radius 2 Å erhält man ein Volumen von
ca. 3·10

�29
m

3, entsprechend einer Teilchendichte
von 3·10

28
m

�3. Dies ist eine typische Größenord-
nung (ca. 1�20 ·10

28
m

�3, siehe Tabelle 5.1). Im
Vergleich dazu nimmt ein Mol ideales Gas unter
Normalbedingungen ein Volumen von 22,4 l ein.
Pro Atom steht somit ein Volumen von

Vag =
22, 4 · 10

�3

6 · 1023
m

3
= 4 · 10

�26
m

3

zur Verfügung.

Die positiv geladenen Atomrümpfe sind relativ
klein und füllen lediglich einen kleinen Teil des
Raumes. Bei Natrium umfasst das Volumen der
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5 Freie Elektronen

Atomrümpfe rund 15 % des gesamten Festkör-
pervolumens; bei Edelmetallen wie Ag und Au,
wo auch kovalente Effekte zur Bindung beitra-
gen, steigt der Anteil. Die Kerne sind aber sehr
viel schwerer als die Elektronen und bleiben un-
beweglich auf ihren Plätzen.

5.1.4 Grenzen des Drude-Modells

Wie bei der Diskussion der Gitterschwingun-
gen gelangt man aber auch bei den Elektro-
nen im Rahmen der klassischen Physik sehr
bald an eine Grenze, ab der ein wirkliches Ver-
ständnis nur mit Hilfe der Quantenmechanik er-
reicht werden kann. Zu den qualitativen Unter-
schieden zwischen den Voraussagen der klassi-
schen und der quantenmechanischen Theorie ge-
hört die Berechnung der Stöße, die ein Elektron
bei der Durchquerung des Kristalls erleidet. Im
klassischen Bild würde man eine große Anzahl
Stöße mit den Gitteratomen erwarten. Experi-
mentell findet man, dass die Distanz, über die
sich die Elektronen frei bewegen können, von
der Qualität des Kristalls abhängt, sowie von
der Temperatur. Während in gewöhnlichen Me-
tallen bei Raumtemperatur (z.B. Kupferdrähte)
die Elektronen nach wenigen Gitterperioden ge-
streut werden und sich deshalb insgesamt diffu-
sionsartig bewegen, kann bei tiefen Temperatu-
ren und guten Kristallen die mittlere freie Weg-
länge größer als die Kristalldimension werden.
Aus experimentellen Daten ist bekannt, dass die
freie Weglänge bis zu einem Zentimeter betra-
gen kann. In diesem Fall bewegt sich somit das
Elektron ohne Streuung durch rund 10

8 atomare
Lagen; offenbar breiten sie sich dann ballistisch,
also ohne Streuung im Kristall aus.

Weitere experimentelle Befunde, die mit dem
Drude-Modell nicht erklärt werden konnten, wa-
ren

• Die Temperaturabhängigkeit der elektri-
schen und thermischen Leitfähigkeit.

• In einem idealen Gas sollten die Elektro-
nen einen Beitrag 3/2 RT zur spezifischen

Wärme liefern; der experimentell beobach-
tete Beitrag ist um rund 2 Größenordnun-
gen kleiner.

• Hall Effekt (! Kapitel 5.4.6)

• Leitfähigkeit für Wechselstrom

• Thermoelektrische Effekte (! Kapitel
5.5.4)

Ein klassisches Modell, welches (teilweise) er-
klären kann, welche Elemente metallischen Cha-
rakter haben, wurde 1927 durch Herzfeld vorge-
schlagen3. Ein wirkliches Verständnis ist jedoch
nur im Rahmen einer quantenmechanischen Be-
handlung möglich.

5.2 Das quantenmechanische
Modell

5.2.1 Das Sommerfeld-Modell

Die wichtigsten Beschränkungen des Drude Mo-
dells können dadurch überwunden werden, dass
man die Elektronen als quantenmechanische
Teilchen, d.h. als Teilchen mit Wellencharak-
ter behandelt. Ein entsprechendes Modell wur-
de 1928 von Sommerfeld4 vorgeschlagen, kurz
nach der Entdeckung des Pauli-Prinzips[13]. Da-
mit gelang es, die wichtigsten Inkonsistenzen des
Drude-Modells aufzulösen.

Ein Festkörper umfasst je nach Größe minde-
stens 10

20 miteinander wechselwirkende Teil-
chen. Natürlich ist die exakte Behandlung eines
solchen Systems nicht möglich. Das Sommerfeld-
Modell macht deshalb zunächst einige drastische
Vereinfachungen: es lässt die Wechselwirkungen
zwischen den Elektronen wie auch von Kernen
zu Elektronen vollständig weg und betrachtet zu-
nächst nur freie und unabhängige Elektronen. Ih-
re Zustände sind somit auch nur Einelektronen-
Zustände, die als Orbitale bezeichnet werden.

Damit brauchen wir lediglich freie Elektronen
in einem (unendlich ausgedehnten) Kristall zu

3Phys. Rev. 29, 701-705 (1927).
4Arnold Johannes Wilhelm Sommerfeld (1868 - 1951)
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Abbildung 5.4: Potenzial für Elektronen im
Sommerfeld-Modell.

betrachten. Die Ränder des Kristalls sind Po-
tenzialwände. Als Eigenzustände solcher freier
Elektronen kann man bekanntlich ebene Wel-
len verwenden; diese sind allerdings im gesam-
ten Raum nicht normierbar. Man kann zu nor-
mierbaren Funktionen gelangen, indem man pe-
riodische Randbedingungen einführt. Die ent-
sprechende Periode, welche groß gegen die Git-
terkonstante sein sollte, kann anschließend gegen
Unendlich geführt werden.

Die Atomrümpfe bilden ein Hintergrundpotenzi-
al. Sie bestehen aus den Kernen plus den stark
gebundenen Elektronen in den gefüllten Schalen.
Je nach Metall sind diese Rümpfe relativ klein
und weit voneinander entfernt, oder sie berühren
sich und bilden teilweise kovalente Bindungen.

Das Sommerfeld’sche Modell der freien Elektro-
nen passt am besten auf die Alkalimetalle. Hier
entsprechen die Atomrümpfe den abgeschlosse-
nen Schalen mit Edelgaskonfiguration, das eine
Valenzelektron im s-Orbital ist das freie Elek-
tron, welches ein Leitungsband mit s-Charakter
bildet.

Wasserstoff, das leichteste und häufigste Ele-
ment des Universums, gehört zur gleichen Grup-
pe des Periodensystems wie die Alkaliatome. Ge-
mäß theoretischen Vorhersagen sollte es bei ho-
hen Drücken metallisch werden. Man geht des-
halb davon aus, dass der Jupiter zu einem großen
Teil aus metallischem Wasserstoff besteht. Es
wurden viele Versuche gemacht, auf der Erde
Wasserstoff in die metallische Form zu bringen.
Theoretische Vorhersagen gehen davon aus, dass
dafür Drücke im Bereich von 500 GPa (5 · 10

6

atm) notwendig sind, und einzelne Experimente

Abbildung 5.5: Aufbau des Planeten Jupiter mit
einem Kern aus metallischem
Wasserstoff.

haben bei >400 GPa Hinweise auf metallisches
Verhalten geliefert.

5.2.2 Das Teilchen im Potenzialtopf

Um die quantenmechanischen Zustandsfunktio-
nen der Elektronen im Kristall zu bestimmen,
rekapitulieren wir zunächst das Problem eines
Teilchens in einem eindimensionalen Potenzial-
topf. Wie bei der Diskussion der Phononen füh-
ren wir zunächst Randbedingungen ein, welche
in erster Linie dazu dienen, die Zustände zu nor-
mieren und die Zustandsdichte zu berechnen.

V

0 L x

�n = A sin (n�
x
L )

λ = 2L

1

λ = L
4

λ = 2L/3
9

Abbildung 5.6: Eindimensionaler Potentialtopf.

Das Potenzial verschwindet auf der Strecke [0, L]

und ist unendlich hoch außerhalb. Der Hamilton-
operator dieses Systems beinhaltet im Bereich
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[0, L] lediglich die kinetische Energie

H =
p2

2m
= �

~2

2m

d2

dx2
.

Die Eigenfunktionen dieses Operators sind die
ebenen Wellen

 k = eikx

oder

 k = a sin kx + b cos kx

und die Eigenwerte sind

Ek =
~2k2

2m
=

p2

2m
.

Das Potenzial kann am einfachsten über die
Randbedingung berücksichtigt werden, dass

 (x  0) =  (x � L) = 0

sein muss. Damit sind die Lösungen

 n = A sin

⇣
n⇡

x

L

⌘
= A sin (kx)

mit k = n⇡/L. Die entsprechende Energie ist

En =
~2

2m

⇣n⇡

L

⌘2
=

~2k2

2m
.

Die Amplitude A ergibt sich aus der Normie-
rungsbedingung

Z
L

0
| (x)|

2dx = |A2
|
L

2
= 1

zu A =

p
2/L.

Wenn sich mehrere Elektronen in diesem Po-
tenzial befinden und wir deren elektrostati-
sche Wechselwirkung zunächst vernachlässigen,
so kann gemäß dem Ausschließungsprinzip von
Pauli jeder dieser Zustände mit zwei Elektro-
nen mit entgegen gesetztem Spin besetzt wer-
den. Das Gesamtsystem ist demnach im Grund-
zustand wenn die niedrigsten N/2 Zustände mit
jeweils 2 Elektronen besetzt sind.

5.2.3 Drei Raumdimensionen

In Kristallen entspricht der Potenzialtopf der
Randbedingung, dass die Elektronen sich inner-
halb des Kristalls befinden müssen. Wir berück-
sichtigen dies über periodische Randbedingun-
gen

 (x, y, z) =  (x + L, y, z) =  (x, y + L, z)

=  (x, y, z + L),

wobei L groß gegenüber einer Einheitszelle und
für alle 3 Richtungen gleich sein soll.

Im dreidimensionalen Raum lautet der Hamil-
tonoperator für ein freies Elektron

H = �
~2

2m

✓
d2

dx2
+

d2

dy2
+

d2

dz2

◆
.

Die Eigenfunktionen für Elektronen in einem Po-
tenzialtopf mit Kantenlänge L und periodischen
Randbedingungen sind dann

 n = A sin

✓
2⇡

L
nxx

◆
sin

✓
2⇡

L
nyy

◆
sin

✓
2⇡

L
nzz

◆
,

also periodisch mit L, im Gegensatz zur Periode
2L im Fall des Teilchens im Potenzialtopf (Kap.
5.2.2). Die entsprechenden Energien sind

En =
~2k2

2m
=

~2

2m

�
k2
x + k2

y + k2
z

�

=
~2

2m

✓
2⇡

L

◆2 �
n2
x + n2

y + n2
z

�
. (5.1)

Alternativ können komplexe Zustände (ebene
Wellen) verwendet werden:

 ~k
(~r) = ei

~k·~r ~k =
2⇡

L

0

@
nx

ny

nz

1

A . (5.2)

Da wir uns hier in einem endlichen Bereich (mit
Volumen L3) befinden, sind diese Zustände nor-
mierbar und die möglichen k-Werte diskret. Die
Energie dieser Zustände ist die gleiche wie in
(5.1). Der Impuls eines Elektrons in diesem Zu-
stand ist ~p = ~~k und seine Geschwindigkeit

135
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~v = ~~k/m. Wir verwenden diese Zustände als
Basisfunktionen für die Beschreibung von Elek-
tronen in einem Kristall der Kantenlänge L.

Nach Gl. (5.2) sind die Zustände gleichmäßig im
k�Raum verteilt. Die Energie steigt proportio-
nal zum Quadrat des Impulses.

5.2.4 Fermi-Kugel

Wir untersuchen nun die Frage, welche dieser Zu-
stände besetzt sind. Da Elektronen einen Spin ½
besitzen, unterliegen sie der Fermi-Dirac Stati-
stik und jeder räumliche Zustand kann maximal
von 2 Elektronen mit entgegengesetztem Spin
besetzt sein.

Zustände im k-Raum

2π
L

Zustände leer

N/2 Zustände 
besetzt

Fermi 
Energie

E

k

EF

Abbildung 5.7: Links: Zustände im k-Raum;
rechts: Besetzung der Zustände
bei T = 0.

Am absoluten Nullpunkt besetzen N Elektronen
die N/2 energetisch niedrigsten Zustände. Da die
Energie (im Rahmen dieses Modells) nur vom
Betrag des Impulses abhängt, bilden diese Zu-
stände im k-Raum eine Kugel. Die Energie des
energetisch höchsten noch besetzten Zustandes
wird als Fermi-Energie EF bezeichnet, der Radi-
us der Kugel im k-Raum mit kF .

Um die besetzten Zustände zu finden, bestimmen
wir zunächst die Dichte der Zustände im Impuls-
raum. Für periodische Randbedingungen ist der
Impulsraum diskret, mit Einheitszellen der Sei-
tenlänge 2⇡/L. Wie in Abb. 5.8 gezeigt, füllen die
besetzten Zustände in diesem Raum eine Kugel,
deren Radius wir mit kF bezeichnen. Das Volu-
men dieser Kugel beträgt k3

F
4⇡/3.

Die Anzahl der Zustände in dieser Kugel, d.h.
die Zahl der besetzten Zustände, muss der Zahl
der Elektronen entsprechen. Wir setzen somit

Volumen pro Punkt 
im k-Raum:

kF

kz

kx

ky

Fermifläche

✓
2⇡

L

◆3

Zustände mit k<kF

Abbildung 5.8: Fermikugel.

die Zahl N der Elektronen gleich der doppelten
(Spin!) Zahl der Moden. Diese berechnen wir, in-
dem wir das gesamte Volumen der Kugel durch
das Volumen pro Zustand dividieren,

N = 2

4⇡
3 k3

F�
2⇡
L

�3 =
V k3

F

3⇡2
. (5.3)

Beim zweiten Schritt wurde L3 durch das Volu-
men V = L3 des Kristalls ersetzt. Bei N Elek-
tronen muss damit der Radius der Kugel

kF =
3

r
3⇡2N

V

sein. kF hängt offenbar nur von der Dichte N/V
der Elektronen ab.

5.2.5 Fermi-Energie

Die Energie der Elektronen mit Impuls ~kF be-
trägt

EF =
~2k2

F

2m
=

~2

2m

✓
3⇡2N

V

◆ 2
3

(5.4)

und wird als Fermi-Energie bezeichnet. Die
Fermi-Energie ist somit die Energie der Elek-
tronen im höchsten besetzten Einelektronenzu-
stand. In der Fermi Energie tritt die Anzahl
Elektronen und das Volumen nicht mehr unab-
hängig auf, sondern sie hängt lediglich von der
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Dichte n = N/V der Elektronen ab. Die Elek-
tronendichte kann aus der Massendichte und der
Atommasse berechnet werden:

n =
N

V
= NA

Z ⇢

A
,

mit NA der Avogadro-Zahl, ⇢ der Dichte des
Materials, Z der Zahl der freien Elektronen pro
Atom und A der Atommasse.

Tabelle 5.2: Dichte der freien Elektronen in Me-
tallen.

Aus der Dichte n der freien Elektronen kann man
auch den mittleren Abstand 2rs zwischen ih-
nen berechnen, analog zum Drude-Modell. Wenn
man das Volumen pro Elektron schreibt als

1

n
=

V

N
=

4⇡

3
r3
s ,

dann wird der Radius rs dieser Kugel zu

rs =
3

r
3

4⇡n
.

Tabelle 5.2 listet neben der Dichte der frei-
en Elektronen ebenso den Parameter rs. Dieser
kann verglichen werden mit dem Bohr-Radius

a0 =
4⇡✏0~2

mee2
⇡ 0, 5 Å.

Tabelle 5.3: Beispiele von Fermi-Energien.

Nach Gleichung (5.4) sollte die Fermienergie mit
der Dichte der Elektronen zunehmen. Tabelle 5.3
zeigt, dass die experimentellen Werte dies bestä-
tigen. Typische Größenordnungen für die Elek-
tronenzahldichte liegen bei 10

29
m

�3, für die Fer-
mienergie bei 10 eV.

Häufig parametrisiert man die Fermi-Energie
auch über die Fermi-Temperatur:

kBTF = EF .

Dies entspricht der Temperatur, bei der die ther-
mische Energie gleich der Fermienergie wird. Ty-
pische Werte für die Fermi-Temperatur liegen bei
10

5 K, also bei Temperaturen weit oberhalb des
Schmelzpunktes. Somit ist T ⌧ TF immer eine
sehr gute Näherung.

Da die Fermienergie vom Volumen abhängt,
EF / V �2/3, steht das System unter einem ef-
fektiven Druck, welcher als Ableitung der Ener-
gie nach dem Volumen berechnet werden kann,

p = �
dU

dV
=

2

3

U

V
/ n5/3.

Dieser Fermidruck tritt auch bei anderen Fer-
mionen auf. Er ist z.B. dafür verantwortlich,
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dass Neutronensterne bis zu einer gewissen Grö-
ße dem Gravitationsdruck standhalten können.

Wenn wir den Impuls der Elektronen in eine Ge-
schwindigkeit umrechnen, erhalten wir für die
Geschwindigkeit der Elektronen an der Fermi-
Oberfläche

vF =
~kF
m

=
~
m

3

r
3⇡2N

V
.

Typische Werte liegen im Bereich von 10
6 m/s,

also bei 0.003 c. Allerdings sollte man dies nicht
mit einem entsprechend schnellen Massentrans-
port assoziieren.

Insgesamt ist die kinetische Energie der Lei-
tungselektronen deutlich niedriger als die ent-
sprechende kinetische Energie in einem isolierten
Atom. Diese Absenkung der kinetischen Energie
ist im Wesentlichen für die metallische Bindung
verantwortlich.

5.2.6 Zustandsdichte

Eine wichtige Größe ist die Zustandsdichte, d.h.
die Anzahl quantenmechanischer Zustände in ei-
nem bestimmten Volumen. Da die Elektronen
gleichmäßig über den ganzen Raum verteilt sind,
ist die Zustandsdichte im direkten (gewöhnli-
chen) Raum konstant. Im reziproken Raum (k-
Raum) ist die Zustandsdichte ebenfalls konstant,
wie in Kap. 5.2.4 gezeigt.

Anders sieht es aus, wenn wir die Anzahl Zu-
stände als Funktion des Betrages des k-Vektors
betrachten. Für die Berechnung dieser Zustands-
dichte bestimmen wir zunächst die Anzahl Zu-
stände, deren Wellenzahl kleiner als k ist. Laut
Gl. (5.3) ist dies

Nk =
V k3

3⇡2
.

Daraus können wir die Dichte der Zustände be-
rechnen in der Umgebung eines Wellenvektors
k, d.h. in einer Kugelschale mit Radien k und
k + dk:

dNk

dk
=

k2V

⇡2
.

Außerdem interessiert die Zustandsdichte im
Energieraum. Mit

E =
~2k2

2m
! k2

=
2m E

~2

erhalten wir für die Anzahl Zustände mit Energie
kleiner als E

N(E) = V
(2mE)

3/2

3⇡2~3

und daraus die Zustandsdichte im Energieraum

dN(E)

dE
= V

(2m)
3/2

3⇡2~3

d

dE
E

3/2

=

p
2V m3/2

⇡2~3

p

E . (5.5)

p
2V m3/2

⇡2~3

p

EdN(E)

dE

E

dN
dk

|k|

k2V
π2

Abbildung 5.9: Zustandsdichte im k-Raum
(links) und im Energieraum
(rechts).

Die Zustandsdichte steigt also proportional zur
Wurzel aus der Energie; sie verschwindet beim
Nullpunkt und ist proportional zum Volumen V
des Kristalls. Abb. 5.9 zeigt die entsprechenden
Größen.

5.3 Thermodynamik des
Elektronengases

Das Drude-Modell benutzt die klassische Ther-
modynamik für die Berechnung der Geschwin-
digkeitsverteilung der Elektronen. Dies wäre
aber nicht mit dem Pauli-Prinzip vereinbar. Dies
wird korrigiert durch die Fermi-Dirac Statistik.
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5.3.1 Besetzungswahrscheinlichkeit

Am absoluten Nullpunkt sind die Zustände bis
zur Fermienergie mit jeweils zwei Elektronen mit
entgegengesetztem Spin besetzt, die darüber lie-
genden Zustände sind leer. In Wirklichkeit befin-
den sich die Elektronen jedoch immer bei endli-
cher Temperatur und sind somit thermisch an-
geregt.

T=0

E
EF

D(E) T>0

E
EF

D(E)

Abbildung 5.10: Besetzungswahrscheinlichkeit
der Zustände bei T = 0 (links)
und T > 0 (rechts).

Dieses System kann zusätzliche Energie aufneh-
men wenn ein Elektron aus einem Niveau unter-
halb der Fermikante in eines oberhalb angeregt
wird. Abb. 5.10 zeigt qualitativ diese Umvertei-
lung.

E"i

Abbildung 5.11: Beispiel eines N -Elektronen Zu-
stands, mit unterschiedlich be-
setzten 1-Elektronenzuständen
der Energie Ei.

Wir bestimmen nun die Wahrscheinlichkeit
p(E ; T ), dass ein Zustand mit gegebener Ener-
gie E bei einer Temperatur T besetzt ist. Dabei
ist es nicht möglich, die Elektronen einzeln zu
betrachten, da die Besetzung der Einelektronen-
zustände aufgrund des Pauliprinzips stark anein-
ander gekoppelt ist. Wir diskutieren deshalb im
Folgenden nicht 1-Elektronenzustände, sondern
N -Elektronenzustände. Abb. 5.11 zeigt einen sol-
chen Zustand, welcher als Produktzustand von
Einelektronenzuständen gegeben ist.

Die Wahrscheinlichkeit, dass ein N -Elektro-

nenzustand mit Energie E besetzt ist, beträgt

PN(E) =
e�E/kBT

P
↵

e�E↵/kBT
. (5.6)

Die Summe im Nenner läuft über alle möglichen
Zustände. Sie ist aus der statistischen Thermo-
dynamik als Zustandssumme bekannt und kann
geschrieben werden als

X

↵

e�E↵/kBT
= e�F/kBT

= e�(U�TS)/kBT ,

wobei F die Helmholtz’sche freie Energie, U die
innere Energie und S die Entropie des Systems
darstellt. Wir können deshalb die Besetzungs-
wahrscheinlichkeit auch schreiben als

PN(E) = e�E/kBT eF/kBT
= e�(E�F )/kBT .

In der Praxis kennt man leider den N -Elek-
tronenzustand nicht. Experimentell zugänglich
ist hingegen die Besetzungswahrscheinlichkeit fi
für einen Einelektronenzustand i (Spin-Orbital).

Diesen berechnet man aus der Vertei-
lung (5.6) durch Summation über alle N -
Elektronenzustände, in denen der Zustand i
besetzt ist,

fN

i =

X

�

PN (E
N

�
).

b läuft über alle Zustände, in denen das i-te Or-
bital besetzt ist.

Der Zustand i ist entweder besetzt oder leer. So-
mit kann man die Besetzungswahrscheinlichkeit
auch als die Differenz zwischen 1 und der Wahr-
scheinlichkeit für Nichtbesetzung schreiben:

fN

i = 1 �

X

�

PN (E
N

� ),

wobei die Summe jetzt über diejenigen Zustände
läuft, bei denen der Zustand i nicht besetzt ist.

Im Modell freier Elektronen ist die Gesamtener-
gie des N -Elektronen Zustandes durch die Sum-
me der Energien der besetzten 1-Elektronen Zu-
stände gegeben. Wir drücken jetzt die Energie
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E
N
� des N -Elektronenzustands mit leerem Zu-

stand i aus durch die Energie des entsprechenden
N +1-Elektronen Zustandes, in dem der Zustand
i besetzt, ist minus die Energie des entsprechen-
den Elektrons, E

N
� = E

N+1
�

� "i. Damit wird

fN

i = 1 �

X

�

PN (E
N+1
�

� "i), (5.7)

wobei "i die Energie des Einelektronenzustands
i darstellt.

5.3.2 Die Fermi-Dirac Verteilung

Das Verhältnis der Besetzungswahrscheinlichkei-
ten für den N -Elektronenzustand und den N +1

Elektronenzustand beträgt

PN (E
N+1
�

� "i)

PN+1(E
N+1
�

)
=

e
�

EN+1
�

�"i�FN

kBT

e
�

EN+1
�

�FN+1

kBT

= e
"i�µ
kBT , (5.8)

wobei

µ = FN+1
� FN

das chemische Potenzial darstellt, d.h. die Ablei-
tung der freien Energie nach der Teilchenzahl,

µ =
@U

@N
.

Diese thermodynamische Zustandsvariable gibt
an, wie stark sich die Energie des Systems än-
dert, wenn die Teilchenzahl N (hier: die Zahl
der Elektronen) um eins ändert. Die Besetzungs-
wahrscheinlichkeit hängt also davon ab, ob der
Zustand i oberhalb oder unterhalb des chemi-
schen Potenzials liegt.

Aus (5.8) erhalten wir für den Summanden in
(5.7)

PN (E
N+1
�

� "i) = e
"i�µ
kBT PN+1(E

N+1
�

).

Wir setzen dieses Resultat in die Summe ein und
erhalten

fN

i = 1 � e
"i�µ
kBT

X

�

PN+1(E
N+1
�

).

Diese Summe ist aber gerade die Besetzungs-
wahrscheinlichkeit fN+1

i
für den i-ten Zustand

in einem System mit N + 1-Elektronen:

fN

i = 1 � e
"i�µ
kBT fN+1

i
.

Wir können diese Form vereinfachen, wenn wir
annehmen, dass die Besetzungswahrscheinlich-
keit sich durch die Veränderung der Elektronen-
dichte um ein Elektron (also relativ um ⇡ 10

�23)
nicht wesentlich ändert. Wir können dann fN+1

i

ersetzen durch fN

i
. Auflösen der Gleichung nach

fN

i
ergibt

fN

i =
1

e("i�µ)/kBT + 1
.

Dies ist die Fermi-Dirac Verteilung, d.h. die Be-
setzungswahrscheinlichkeit für Fermionen in ei-
nem Zustand der Energie "i. Der Term +1 im
Nenner stellt sicher, dass die Funktion nicht grö-
ßer als 1 wird, dass also kein Zustand mehr als
einmal besetzt werden kann. Die Bose-Einstein
Statistik unterscheidet sich durch ein Minus an
dieser Stelle. In diesem Fall kann die Beset-
zungswahrscheinlichkeit sehr groß werden. Bei
tiefen Temperaturen kondensieren Bosonen des-
halb alle in den Grundzustand. Solche Phänome-
ne sind für kollektive Quantenphänomene ver-
antwortlich, wie z.B. Supraleitung, Suprafluidi-
tät oder Bose-Einstein Kondensation.

5.3.3 Eigenschaften der Fermi-Dirac
Verteilung

Da die Fermi-Temperatur sehr viel höher ist als
die Raumtemperatur und für niedrige Tempera-
turen µ ⇡ kBTF , gilt meistens T ⌧ µ/kB. Wir
betrachten die folgenden Grenzfälle:

a) "i ! 0 : Die Exponentialfunktion geht gegen
null und fN

i
! 1.

b) "i � µ: Die Exponentialfunktion wird groß
gegen 1 und fN

i
! e�("i�µ)/kBT . In diesem Be-

reich nähert sich die Fermi-Dirac Verteilung der
Boltzmann-Verteilung an und fällt exponentiell
gegen Null ab.
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Abbildung 5.12: Fermi-Dirac Besetzungswahr-
scheinlichkeit bei verschiedenen
Temperaturen.

Bei der Temperatur 0 K macht die Fermi-Dirac
Verteilung einen abrupten Übergang von 1 nach
0 an der Fermikante : alle Zustände unterhalb
von EF sind besetzt, alle oberhalb sind leer. Bei
höheren Temperaturen wird Population aus der
Nähe der Fermikante in energetisch höhere Zu-
stände verschoben. Die Breite dieses Übergangs-
bereiches ist von der Größenordnung kBT . Das
Zentrum des Übergangsbereichs wird durch das
chemische Potenzial µ bestimmt, welches am ab-
soluten Nullpunkt der Fermienergie entspricht.
Im Gegensatz zur Fermienergie ist das chemi-
sche Potenzial aber temperaturabhängig. Man
kann die Temperaturabhängigkeit berechnen, in-
dem man aus der Besetzungswahrscheinlichkeit
die gesamte Elektronenzahl berechnet:

N =

X

i

fi =

X

i

1

e("�µ)/kBT + 1
.

Hier wurde der Index i für die Energie des Ei-
nelektronenzustands weggelassen. Für eine fe-
ste Elektronenzahl N kann man aus dieser Glei-
chung das chemische Potenzial µ bestimmen. Da-
für entwickelt man die Differenz der Besetzungs-
wahrscheinlichkeiten bei der Temperatur T und
bei T = 0 K als Taylorreihe um E = µ. Daraus
erhält man für die Temperaturabhängigkeit des
chemischen Potenzials in niedrigster Ordnung in
T

µ(T ) = EF

 
1 �

⇡2

12

✓
T

TF

◆2

+ . . .

!
.

Für alle relevanten Temperaturen gilt T ⌧ TF ,
so dass höhere Terme in exzellenter Näherung
vernachlässigt werden können.

5.3.4 Die thermische Energie des
Elektronengases

Gemäß der klassischen Drude-Theorie sollte die
kinetische Energie der Elektronen wie bei Gas-
teilchen 3

2NkBT sein. Damit sollte die Wärme-
kapazität also Cel ⇡ 3R/2 betragen, unabhän-
gig von der Temperatur. Experimentell beobach-
tet man aber bei Raumtemperatur einen Wert,
der wesentlich niedriger ist, von der Größenord-
nung <1% des klassischen Wertes, und außerdem
temperaturabhängig. Erst die Fermi-Dirac Ver-
teilung löste dieses Problem: Während in einem
klassischen Gas eine Temperaturerhöhung um
�T die Energie jedes Teilchens um kB�T/2 er-
höht, können die meisten Leitungselektronen kei-
ne Energie von der Größenordnung kBT aufneh-
men, da in diesem Bereich keine leeren Zustände
zur Verfügung stehen. Lediglich in der Nähe der
Fermikante, in einem Bereich der Breite ⇡ kBT
um die Fermi-Energie stehen teilweise gefüllte
Zustände zur Verfügung. Die Zahl der Elektro-
nen in diesem Bereich liegt in der Größenordnung
von T/TF mal die Zahl aller Elektronen. Da ty-
pische Werte für die Fermi-Temperatur bei rund
10

5 K liegen beträgt dieses Verhältnis bei Raum-
temperatur weniger als 1%. Die gleiche Überle-
gung sagt auch voraus, dass die Energie propor-
tional zum Quadrat der Temperatur sein sollte,

U / NkBT
T

TF

und damit die spezifische Wärme proportional
zur Temperatur sein sollte:

C =
dU

dT
/ 2NkB

T

TF

.

Die Rechnung lässt sich in der Tieftemperatur-
Näherung T ⌧ TF auch exakter durchführen.
Wir berechnen die gesamte Energie U der Elek-
tronen als Summe über die Energie aller besetz-
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ten Einelektronenzustände als

U =

Z 1

0
d" " D(") f(") (5.9)

=

Z 1

0
d" D(")

"

e("�µ)/kBT + 1
,

wobei D(") die Zustandsdichte und f(") die Be-
setzungswahrscheinlichkeit bezeichnen.

Die thermische Energie UT des Elektronengases
bei der Temperatur T entspricht der Erhöhung
dieser Energie bei einer Temperaturänderung T :

0 ! T :

UT = U(T ) � U(0)

=

Z 1

0
d" " D(") f(") �

Z
"F

0
d" " D(").

Das erste Integral wird in 2 Bereiche aufgeteilt:

UT = (

Z
"F

0
+

Z 1

"F

)d" " D(") f(")

�

Z
"F

0
d" " D(")

und die Terme mit den gleichen Integrationsgren-
zen werden zusammengefasst:

UT =

Z
"F

0
d" " D(") (f(") � 1)

+

Z 1

"F

d" " D(") f(").

Das erste Integral beinhaltet die Energie, welche
benötigt wird, um die Elektronen aus den Zu-
ständen unterhalb der Fermikante zu entfernen,
das zweite Integral die Energie der Elektronen
oberhalb der Fermikante, also in den Zuständen,
die bei T = 0 nicht besetzt sind.

Die Anzahl Elektronen muss dabei konstant blei-
ben,

N = N(T ) = N(0) =

Z 1

0
d" D(") f(")

=

Z
"F

0
d" D(").

Diese Identität kann mit der Fermienergie "F
multipliziert werden:

(

Z
"F

0
+

Z 1

"F

)d" "F D(") f(")

=

Z
"F

0
d" "F D(").

Wir addieren die rechte Seite zur thermischen
Energie und subtrahieren die linke Seite und er-
halten

UT =

Z
"F

0
d" [" D(") (f(") � 1)

+"F D(") � "F D(")f(")]

+

Z 1

"F

d" [" D(") f(") � "F D(") f(")]

=

Z
"F

0
d" (" � "F ) D(") (f(") � 1)(5.10)

+

Z 1

"F

d" (" � "F ) D(") f(").

Die entspricht einer Verschiebung des Energie-
nullpunktes: die Energien werden jetzt relativ
zur Fermienergie berechnet.

Das erste Integral bezeichnet die Energie, welche
benötigt wird, um die Elektronen aus einem be-
setzten Zustand an die Fermikante anzuheben,
das zweite die Energie, welche zusätzlich aufge-
bracht werden muss, um sie von der Fermikante
in einen leeren Zustand oberhalb zu bringen. Bei-
de Beiträge zur Energie sind positiv. Abb. 5.13
zeigt diesen Beitrag in der unteren Kurve.

5.3.5 Spezifische Wärme

Wir suchen nun die spezifische Wärme, also die
Änderung der inneren Energie UT pro Tempe-
raturänderung. Der einzige Term in Gleichung
(5.9), resp. (5.10), der sich mit der Tempera-
tur ändert, ist die Besetzungswahrscheinlichkeit
f(E). Wir erhalten deshalb

Cel =
dUT

dT
=

Z 1

0
d"(" � "F )D(")

df(")

dT
.
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Änderung der Besetzungdf(")

"
"F

" � "F

"

Änderung der Energie

Abbildung 5.13: Änderung der Besetzung und
Änderung der Energie bei end-
licher Temperatur.

Da sich die Besetzungswahrscheinlichkeit nur in
der Nähe der Fermikante wesentlich ändert, ver-
schwindet der Integrand für Energien weit von
der Fermienergie. Wir können deshalb die Zu-
standsdichte in guter Näherung durch den Wert
an der Fermikante ersetzen, D(") ! D("F ), und
aus dem Integral herausziehen:

Cel = D("F )

Z 1

0
d"(" � "F )

df(")

dT
. (5.11)

Für die Berechnung der Änderung der Beset-
zungswahrscheinlichkeit approximieren wir das
chemische Potenzial durch die Fermienergie:

f =
1

e("�"F )/kBT + 1
.

Dies ist eine gute Näherung bei niedrigen Tem-
peraturen. Damit wird die Ableitung nach der
Temperatur

df

dT
=

" � "F
kBT 2

e("�"F )/kBT

�
e("�"F )/kBT + 1

�2 .

Einsetzen in (5.11) ergibt die Wärmekapazität

Cel = kBD("F )

Z 1

0
d"

✓
" � "F
kBT

◆2

·
e("�"F )/kBT

�
e("�"F )/kBT + 1

�2 .

Für die Integration verwendet man die Abkür-
zung x = (" � "F )/kBT und d" = dx kBT :

Cel = k2
BTD("F )

Z 1

�"F /kBT

dx x2 ex

(ex + 1)
2

= k2
BTD("F )

Z 1

�"F /kBT

dx
x2

ex + 2 + e�x
.

(5.12)

-10 -5 5 10
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0.3
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0 x

Abbildung 5.14: Grafische Darstellung des Inte-
granden in Gl. (5.12).

Abbildung 5.14 zeigt eine graphische Darstellung
des Integranden. Er fällt für |x| � 1 exponen-
tiell ab. Für Temperaturen weit unterhalb der
Fermitemperatur, kBT ⌧ "F , d.h. im gesamten
interessanten Bereich, kann die untere Integra-
tionsgrenze deshalb auf -1 gesetzt werden. Das
resultierende Integral ist nicht trivial, kann aber
bestimmt werden und hat den Betrag

Z 1

�1
dx

x2

ex + 2 + e�x
=

⇡2

3
.

Damit wird

Cel = k2
BTD("F )

⇡2

3
.

Die Zustandsdichte an der Fermikante erhalten
wir aus (5.5)

D("F ) =
dN(E)

dE

����
"F

=
p

"FV
(2m)

3/2

2⇡2~3

und (5.4)

"F =
~2

2m

✓
3⇡2N

V

◆ 2
3
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nach Erweiterung mit 1 als

D(EF ) =
p

"FV
(2m)

3/2

2⇡2~3
E
�3/2
F

✓
~2

2m

◆ 3
2 3⇡2N

V

=
3N

2EF
=

3N

2kBTF

,

sodass

Cel =
⇡2

2
kBN

T

TF

(5.13)

wird. Offenbar wächst die elektronische Wärme-
kapazität proportional zur Temperatur und er-
reicht erst in der Nähe der Fermitemperatur den
Wert von Dulong-Petit. Bei niedrigeren Tempe-
raturen ist die Wärmekapazität somit um etwa
das Verhältnis T/TF geringer.

Gleichung (5.13) wird auch gerne als Cel = �T
geschrieben. Der theoretische Wert für �, bezo-
gen auf 1 Mol, d.h. N = NA ist

� =
⇡2NAk2

B

2EF
=

⇡2NAk2
B

2(~2/2m)(3⇡2n)2/3

= m
(⇡/3)

2/3NAk2
B

~2
n�2/3 (5.14)

und hat die Einheit

[�] =
J

mol K2
.

Hier wurde TF ! EF /kB gesetzt.

5.3.6 Vergleich Elektronen /
Phononen

Gemessen wird nie die elektronische Wärmeka-
pazität alleine, sondern die gesamte Wärmeka-
pazität, welche sich aus einem phononischen und
einem elektronischen Teil zusammensetzt. Zwi-
schen der Debye-Temperatur und der Fermitem-
peratur dominiert somit der phononische An-
teil. Für Temperaturen unterhalb der Debye-
Temperatur erwarten wir eine Temperaturab-
hängigkeit der Form

C = �T + AT 3
oder

C

T
= � + AT 2.

Hier stellt � den elektronischen und A den pho-
nonischen Anteil dar. Diese Beziehung stellt man
gerne in der in Abb. 5.15 gezeigten Form dar: das
Verhältnis C/T wird gegen das Quadrat der ab-
soluten Temperatur aufgetragen.
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Abbildung 5.15: Vergleich der Temperaturab-
hängigkeit der Wärmekapazitä-
ten des Isolators KCl und des
Metalls Cu.

In dieser Darstellung zeigt der Achsenabschnitt
den Beitrag der Elektronen, die Steigung den
Beitrag der Phononen. Der elektronische Beitrag
sollte also für sehr tiefe Temperaturen dominie-
ren. Abb. 5.15 zeigt dass dies für Cu der Fall
ist. Da KCl keine freien Elektronen besitzt, ver-
schwindet hier der elektronische Beitrag zur spe-
zifischen Wärme: die entsprechende Kurve hat
Achsenabschnitt Null.

f(E , t) =
1

e
��

kBT � 1
f(E , t) =

1

e
E�EF
kBT + 1

k

!(k) E(k)

k

Phononen Elektronen

Abbildung 5.16: Vergleich der Dispersion und
Statistik für Phononen und
Elektronen.
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Die unterschiedliche Temperaturabhängigkeit
für Elektronen und Phononen kann auf zwei
fundamentale Unterschiede zwischen den beiden
Arten von Teilchen zurückgeführt werden. Zum
einen sind Phononen Quasiteilchen, welche er-
zeugt und vernichtet werden können (Ruhemasse
= 0), während für Elektronen Teilchenzahlerhal-
tung gilt, da deren Ruhemasse endlich ist. Die
unterschiedliche Ruhemasse führt auch zu unter-
schiedlichen Dispersionsrelationen, wie in Abb.
5.16 dargestellt. Zum andern unterliegen Elek-
tronen im Gegensatz zu Phononen dem Pauli-
Prinzip, da sie einen Spin ~/2 besitzen, während
Phononen Bosonen sind. Dies führt zu einer un-
terschiedlichen Statistik (Fermi-Dirac vs. Bose-
Einstein).

5.3.7 Effektive Masse

Element γth γexp 
     
  
Fe 6.3 50.1 
Mn 6.3  167.1 
Zn 7.5 5.8 
Cd 9.6 7.1 
Hg 10.0 20.9 
Al 9.2 12.5 
Ga 10.0 6.3 
In 12.1 18.0 
Tl 13.0 14.6 
Sn 13.8 18.4 
Pb 15.0 29.2 
Bi 18.0 0.8 
Sb 16.3 6.3

Element γth γexp 
     
  

Li 7.5 17.5 
Na 10.9 14.6 
K 16.7 19.6 
Rb 19.2 24.2 
Cs 22.1 32.2 
Cu 5.0 6.7 
Ag 6.3 6.7 
Au 6.3 6.7 
Be 5.0 2.1 
Mg 10.0 13.4 
Ca 15.0 27.2 
Sr 18.0 36.3 
Ba 19.6 27.2 
Nb 6.7 83.6 

10
�4

J

Mol K2

10
�4

J

Mol K2
10

�4
J

Mol K2

10
�4

J

Mol K2

Tabelle 5.4: Vergleich der theoretischen und ex-
perimentellen Wärmekapazitäten ei-
niger Elemente.

Ein Vergleich der gemessenen und berechneten
elektronischen Wärmekapazität (! Tab. 5.4)
zeigt, dass die beobachteten Werte in der richti-
gen Größenordnung liegen, aber nicht quantita-
tiv exakt sind. Dies liegt zum einen daran, dass
die Dichte der freien Elektronen teilweise schwie-
rig zu bestimmen ist. Ein Beispiel dafür sind die
Übergangsmetalle, wo an der Fermikante sowohl
die Elektronen aus den d-Orbitalen, wie auch
diejenigen aus den s-Orbitalen beitragen.

CeCu2Si2

m*/me ~ 200

T2 [K2]

C T

m
J

m
o
l
K

2

Abbildung 5.17: Wärmekapazität als Funktion
der Temperatur für Metalle mit
4f und 5f Elektronen.

Wie Abb. 5.17 zeigt, gibt es viele Verbindungen,
bei denen das beobachtete Verhalten stark von
der Erwartung abweicht. So steigt hier die Wär-
mekapazität bei tiefen Temperaturen wieder an.

Laut Gleichung (5.14) ist die Wärmekapazität
proportional zur Masse der Elektronen. Deshalb
beschreibt man den Unterschied zwischen den
experimentellen und dem theoretischen Wert der
Wärmekapazität gerne über eine Änderung der
effektiven Elektronenmasse. Einige intermetalli-
sche Verbindungen von seltenen Erden und Acti-
noiden (also Elementen mit f-Elektronen) zeigen
bei niedrigen Temperaturen extrem hohe Wär-
mekapazitäten, welche einer effektiven Elektro-
nenmasse von rund 1000 me entsprechen. Die-
se Änderungen der effektiven Masse können im
Rahmen des Bändermodells als Kopplung an die
Atomrümpfe teilweise erklärt werden (! Kap. 6,
Abb. 5.18).

Abbildung 5.18: Gitterpotenzial für schwere Fer-
mionen.

Bei solchen Verbindungen spricht man häufig

145



5 Freie Elektronen

von “schweren Fermionen”. Sie haben verschiede-
ne interessante Eigenschaften. So bilden sie eine
spezielle Klasse von Supraleitern, die “exotischen
Supraleiter”.

5.4 Elektrische Leitfähigkeit

5.4.1 Beschleunigung

Die Fähigkeit, elektrischen Strom zu leiten, ge-
hört zu den charakteristischen Eigenschaften der
Metalle. Sowohl die klassische Drude-Theorie
wie auch die quantenmechanische Theorie bie-
ten einen Ansatz für die Erklärung dieses Phä-
nomens. Wir diskutieren hier einen halbklassi-
sche Beschreibung, d.h. wir verwenden klassische
Bewegungsgleichungen, berücksichtigen aber die
Fermi-Dirac Verteilung.
Elektrischer Strom wird durch die freien Elek-
tronen getragen. Deren Reaktion auf das ange-
legte elektrische Feld bestimmt deshalb die Be-
ziehung zwischen Strom und Spannung, welche
im Rahmen dieser Theorie mit dem Ohm’schen
Gesetz übereinstimmt. Die meisten freien Elek-
tronen bewegen sich mit einer relativ hohen Ge-
schwindigkeit; die Fermigeschwindigkeit liegt bei
rund 10

6 m/s. Da die Verteilung der Geschwin-
digkeiten ohne ein äußeres Feld isotrop ist, findet
jedoch netto kein Ladungstransport statt.
Perfekte Metalle können prinzipiell Strom leiten
auch wenn kein elektrisches Feld anliegt. Rea-
le Metalle weisen jedoch immer einen endlichen
Widerstand auf – mit Ausnahme der Supralei-
ter, welche nicht als normale Metalle beschrieben
werden können und in einem späteren Kapitel
noch behandelt werden.
Werden äußere Felder an ein Metall angelegt, so
bewirken diese auf die Elektronen eine zusätzli-
che Kraft

~F = m
d~v

dt
= ~d~k

dt
= �e[ ~E + ~v ⇥ ~B]. (5.15)

Gleichzeitig können wir die Geschwindigkeit
schreiben als

~v =
d~r

dt
=

~~k
m

.

Diese Verhalten würde man auch quantenmecha-
nisch erhalten, wenn man ein Wellenpaket be-
schreibt.

Wir betrachten hier zunächst nur elektrische Fel-
der ~E, welche offenbar zu einer gleichförmigen
Beschleunigung führen. Vor Anlegen eines elek-
trischen Feldes besetzen die Elektronen die Zu-
stände im Inneren der Fermikugel. Unter dem
Einfluss des elektrischen Feldes, welches zur Zeit
t = 0 eingeschaltet wird, ändert sich der Impuls,
respektive der Wellenvektor der Elektronen zu

~k(t) � ~k(0) = �
e

~
~Et,

d.h. er nimmt linear mit der Zeit zu. Dies ist in
einem Metall für einzelne Elektronen nicht mög-
lich, da es durch eine Impulsänderung in einen
Zustand übergehen würde, der bereits durch ein
anderes Elektron besetzt ist. Da die Felder auf
alle Elektronen wirken, wird jedoch die gesamte
Fermikugel verschoben um eine Distanz, welche
linear mit der Zeit wächst. Für das gesamte Sy-
stem von N Elektronen wird der Impuls damit

~p(t) =

X

n

~~kn(t) = �Ne ~Et.

Hier wurde berücksichtigt, dass der Gesamtim-
puls vor Einschalten des Feldes verschwindet,
~p(0) = 0.

5.4.2 Stöße

In Wirklichkeit dauert die Beschleunigung der
Elektronen nicht beliebig lange, sondern nur bis
die Elektronen einen Stoß ausführen. Bei ei-
nem Stoß wird kinetische Energie vom Elektron
auf das Gitter übertragen. Im Rahmen dieses
Modells wird dabei angenommen, dass die Ge-
schwindigkeit des Elektrons thermalisiert wird,
d.h. sie kehrt zur Fermi-Dirac Verteilung zurück.
Wenn die Thermalisierung im Mittel eine Zeit ⌧
beansprucht, erreichen die Elektronen im Mittel
einen Impuls, der sich um

~�~k = �e ~E⌧
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5 Freie Elektronen

vom thermischen Gleichgewicht unterscheidet.
Die Fermikugel im k-Raum wird somit um die-
sen Betrag gegenüber dem Ursprung verschoben
und der resultierende Gesamtimpuls wird

~p =

X

n

~~kn = �Ne ~E⌧

E

Fermikugel bei E=0

kF

Fermikugel bei E>0

kx

ky

Abbildung 5.19: Verschobene Fermikugel im
elektrischen Feld.

Da die Geschwindigkeit der Elektronen direkt
proportional zum k-Vektor ist,

~v =
~p

m
=

~~k
m

= �
e ~E⌧

m
,

können wir daraus die Stromdichte berechnen:

~j = n(�e)~v = ne2⌧ ~E/m.

Hier stellt n die Anzahl Leitungselektronen pro
Volumeneinheit dar. Der Strom ist somit propor-
tional zur Feldstärke, wie im Ohm’schen Gesetz.
Die Proportionalitätskonstante ist die spezifische
elektrische Leitfähigkeit

� = ne2 ⌧

m
; [�] =

1

⌦m
(5.16)

und der Kehrwert

⇢ =
1

�
=

m

ne2⌧
[⇢] = ⌦m

ist der spezifische elektrische Widerstand. Die-
ses Resultat ist identisch mit der Voraussage des
klassischen Modells.

Prinzipiell sind alle diese Größen anisotrop. Ent-
sprechend wird die Leitfähigkeit im allgemeinen
Fall durch einen Tensor beschrieben. Wir be-
schränken uns hier jedoch auf den isotropen Fall.

Element 77 K 273 K 373 K
Li 7.3 0.88 0.61
Na 17 3.2
K 18 4.1
Rb 14 2.8

Tabelle 5.5: Relaxationszeiten für einige Alkali-
metalle in Einheiten von 10

�14 s.

Offenbar ist die Leitfähigkeit proportional zur
Zeit zwischen zwei Stößen. In sehr sauberen Me-
tallen kann bei tiefen Temperaturen eine freie
Weglänge von bis zu 10 cm erreicht werden. Die
Geschwindigkeit der Elektronen kann unter die-
sen extremen Bedingungen mehrere Prozent der
Lichtgeschwindigkeit erreichen.

5.4.3 Widerstand

Streuung von Ladungsträgern findet vor allem
an Gitterfehlern statt. Dabei kann man zwi-
schen statischen Gitterfehlern (Fehlstellen und
Verunreinigungen) und dynamischen Gitterfeh-
lern (Schwingungen, Phononen) unterscheiden.
Die beiden Prozesse tragen additiv zum spezi-
fischen Widerstand bei,

⇢ =
1

�
= ⇢P + ⇢i,

wobei ⇢P den Beitrag der Phononen beschreibt
und ⇢i den Beitrag der statischen Gitterfeh-
ler. Diese Aufteilung des spezifischen Wider-
standes wird als Matthiessen5-Regel bezeichnet.
Dementsprechend kann man die Beiträge zur Re-
laxationszeit ⌧ unterteilen:

1

⌧
=

1

⌧Defekt
+

1

⌧Phonon
,

wobei ⌧Defekt die Zeit bis zur Streuung an einem
Defekt bezeichnet und ⌧Phonon die Zeit bis zur
Streuung an einem Phonon. Die letztere ist stark
von der Temperatur abhängig, die erstere nicht.

5Nach Augustus Matthiessen (1831 - 1870)
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5 Freie Elektronen

Deshalb wird der Widerstand bei Raumtempe-
ratur hauptsächlich durch Streuung an Phono-
nen verursacht, während bei tiefen Temperatu-
ren Stöße mit Gitterfehlern und Fremdatomen
dominieren.

Temperatur T [K]
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Abbildung 5.20: Tieftemperaturverhalten des
spezifischen Widerstandes.

Da die Phononen bei tiefen Temperaturen ver-
schwinden, bleibt dann nur noch der Beitrag
der Kristallfehler zurück. Dieser Beitrag ist je
nach Probe unterschiedlich. Abb. 5.20 zeigt den
temperaturabhängigen Widerstand, welcher bei
tiefen Temperaturen in einen konstanten Wert
übergeht.

zwei verschiedene Proben
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Abbildung 5.21: Tieftemperaturverhalten des
spezifischen Widerstandes für
zwei unterschiedliche Proben
aus Kalium.

Abb. 5.21 zeigt 2 Datensätze, welche an unter-
schiedlichen Proben von Kalium gemessen wur-
den. Im Tieftemperaturbereich tragen vor allem
Gitterfehler bei, welche bei den beiden Proben
in unterschiedlichem Maße vorhanden sind. Über
solche Messungen kann man die Konzentration
von Verunreinigungen bestimmen. Typische Wi-
derstandswerte für Fremdatome liegen bei etwa
10

�6
⌦ cm pro Atom-% Verunreinigung.

5.4.4 Streuung an Phononen

Bei höheren Temperaturen treten auch “dynami-
sche Kristallfehler” auf, nämlich Phononen. De-
ren Beitrag zum elektrischen Widerstand wird
am besten als Emission oder Absorption eines
Phonons durch ein Elektron beschrieben. Sowohl
Energie wie auch Impuls muss bei diesen Prozes-
sen erhalten bleiben, d.h.

"k = "k0 ± ~!(k � k0
),

wobei k, k0 die Wellenzahlen des Elektrons vor
und nach dem Streuprozess bezeichnen, !(q) die
Phononenfrequenz.

An diesen Streuprozessen können praktisch nur
Elektronen in der Nähe der Fermikante teilneh-
men, da für die anderen keine freien Zustände
zur Verfügung stehen. Somit gilt "k ⇡ "k0 ⇡ "F 0 .

εk

εk’

ω, k-k’

Abbildung 5.22: Elektron-Phonon Streuung.

Die Zahl solcher Streuprozesse kann bei hohen
Temperaturen als proportional zur Phononen-
zahl angesetzt werden, d.h. zu

hni =
1

e~!/kBT � 1
.

Ist die Temperatur oberhalb der Debye-
Temperatur, ~! ⌧ kBT , so wächst die Phono-
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nenzahl

hni ⇡
1

1 +
~!
kBT

� 1
=

kBT

~!
,

d.h. proportional zur Temperatur. Damit nimmt
auch die Anzahl Stöße und der elektrische Wi-
derstand / T zu.

5.4.5 Temperaturabhängigkeit
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Abbildung 5.23: Umklapp-Streuprozess.

Bei Temperaturen in der Nähe und ober-
halb der Debye-Temperatur spielen Umklapp-
Prozesse (G 6= 0) eine wichtige Rolle. Abb. 5.23
zeigt schematisch die Streuung eines Elektrons
von einem Zustand nahe der Fermikante. Unter
Erzeugung eines Phonons und eines Gittervek-
tors streut das Elektron praktisch auf die ent-
gegengesetzte Seite der Fermifläche. Der für ei-
ne Rückwärtsstreuung erforderliche Phononen-
impuls muss bei weitem nicht so groß sein wie
bei einem Normal-Prozess. Dafür werden Phono-
nen mit Energien in der Größenordnung der hal-
ben Debye-Energie benötigt. Deren Zahl nimmt
mit abnehmender Temperatur exponentiell ab.
Umklapp-Prozesse sind bei “mittleren” Tempe-
raturen relevant.

Bei Temperaturen deutlich unterhalb der Debye-
Temperatur werden Normal-Prozesse wichtiger
als Umklapp-Prozesse. Im Rahmen des einfa-
chen Modells von Kapitel 4.4.10 können wir ab-
schätzen, dass die Zahl der Phononen mit Fre-
quenz ! ⇡ kBT/~ mit T 2 abnimmt. Die Wahr-
scheinlichkeit, dass solche Streuprozesse stattfin-
den, sinkt außerdem mit 1/T , da Phononen mit

k
k’

EF

kBT

Fermikugel

Abbildung 5.24: Streuprozess nahe bei der Fer-
mikante.

großer Wellenlänge eine geringere Wahrschein-
lichkeit für einen Absorptions-/Emissionsprozess
besitzen.

Die Energie eines Elektrons an der Fermikan-
te (⇡10 eV) ist viel größer als die Energie des
entsprechenden Phonons (⇡ kBT ⇡ 25 meV bei
Raumtemperatur). Für die Elektronen sind diese
Streuprozesse somit beinahe elastisch, sie bleiben
in der Nähe der Fermikante. Dadurch wird der
Streuwinkel bei Normalprozessen gering, d.h. die
Elektronen streuen fast vollständig in Vorwärts-
richtung. Sie werden dadurch nicht mehr voll-
ständig thermalisiert, sondern ihre Geschwindig-
keit sinkt proportional zu 1 � cos ↵, wobei ↵ der
Streuwinkel ist. Wie in Abb. 5.24 dargestellt, ist
dieser proportional zur Wellenzahl kP der Pho-
nonen, welche linear mit T abnimmt. Damit ist
die Geschwindigkeitsänderung pro Stoß propor-
tional zu T 2. Insgesamt ergibt sich dadurch eine
Abnahme des elektrischen Widerstandes mit T 5.
Dies kann in Abb. 5.20 qualitativ überprüft wer-
den.

Abb. 5.25 zeigt die Temperaturabhängigkeit des
elektrischen Widerstandes für verschiedene Me-
talle. Dabei sind Temperatur und Widerstand
auf die Debye-Temperatur reduziert. Im oberen
Bereich ist das Verhalten linear, im Tieftempe-
raturbereich / T 5.

5.4.6 Der Hall-Effekt

In einem Magnetfeld muss in der Bewegungsglei-
chung auch die Lorentzkraft berücksichtigt wer-
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Abbildung 5.25: Temperaturabhängigkeit des
spezifischen Widerstandes für
verschiedene Metalle.

den:

~F = �e[ ~E + ~v ⇥ ~B].

Wir suchen nun die stationäre Verschiebung �~k
der Fermikugel aus der Bewegungsgleichung für
den Impuls

~d�~k

dt
= ~d~k

dt
= m

d~v

dt

= �e[ ~E + ~v ⇥ ~B] � ~�~k

⌧
= 0,

wobei ⌧ die Thermalisierungszeit (durch Stöße)
des Impulses darstellt.

Bz

Ex

Abbildung 5.26: Bewegung von Elektronen in
gekreuzten E/B Feldern.

Wir betrachten den Fall, wo ein Magnetfeld par-
allel zur z-Achse angelegt ist, ~B = (0, 0, B).
Dann wird

~v ⇥ ~B = (vyB, �vxB, 0).

und die stationäre Lösung der Bewegungsglei-
chungen für die drei Geschwindigkeitskomponen-
ten ist

m

⌧
vx = �e(Ex + Bvy)

m

⌧
vy = �e(Ey � Bvx)

m

⌧
vz = �eEz.

Man schreibt dies gerne als

vx = �
e⌧

m
Ex � !c⌧vy

vy = �
e⌧

m
Ey + !c⌧vx

vz = �
e⌧

m
Ez, (5.17)

wobei

!c =
eB

m
(5.18)

die Zyklotronfrequenz darstellt. Offenbar verlau-
fen die Bahnen der Elektronen jetzt nicht mehr
parallel zum elektrischen Feld, sondern werden
in der xy-Ebene abgelenkt. Der Ablenkwinkel ist
durch das Produkt !c⌧ aus Zyklotronfrequenz
und Stoßzeit gegeben. Dies wird als Hall6-Effekt
bezeichnet.

Bz

Ex

+ + + + + +

- - - - - -
Ey

Abbildung 5.27: Gleichgewichtszustand in ge-
kreuzten E/B Feldern.

Wir betrachten nun den Fall, dass das äuße-
re elektrische Feld entlang der x�Achse liegt
und ein Strom entlang der x-Achse fließt, d.h.
wir setzen vy = vz = 0. Aus der obigen Glei-
chung sehen wir, dass der Strom in x-Richtung
durch das Magnetfeld in y-Richtung abgelenkt
wird. Wir können somit nur dann eine verschwin-
dende Bewegung in y-Richtung erhalten, wenn

6Edwin Herbert Hall (1855 - 1938)
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diese Lorentzkraft durch eine entgegengerichtete
Coulomb-Kraft, d.h. durch ein elektrisches Feld
kompensiert wird. Gemäß Gleichung (5.17) be-
dingt dies für den stationären Fall, dass

vx = �e
⌧

m
Ex (5.19)

und

0 = �e
⌧

m
Ey + !c⌧vx.

Auflösen nach Ey ergibt

Ey = !cvx
m

e
.

Mit dem stationären Wert von vx (5.19) wird
daraus

Ey = �e
⌧

m
Ex!c

m

e
= �⌧!cEx.

Wenn wir den Ausdruck (5.18) für die Zyklotron-
frequenz verwenden, entspricht dies

Ey = �ExB
e⌧

m
. (5.20)

Es entsteht also eine Spannung, welche senkrecht
auf der Richtung des Stroms und dem magneti-
schen Feld liegt.

5.4.7 Hall-Konstante

Als Hall-Konstante

A =
Ey

jxB

bezeichnet man das Verhältnis der Spannung
zum Produkt aus Stromdichte jx und Magnet-
feldstärke B. Wir schreiben die Stromdichte als
das Produkt aus Driftgeschwindigkeit vx und La-
dungsdichte �en und erhalten

jx = �envx =
ne2⌧

m
Ex.

Mit der Beziehung (5.20) zwischen Ex und Ey

erhalten wir

A =
�Exe⌧B/m

(ne2⌧/m)ExB
= �

1

ne
,

d.h. sie entspricht der inversen Ladungsdichte
und ist für freie Elektronen negativ. Je niedriger
die Dichte der Ladungsträger, desto größer ist al-
so die Hall-Konstante und damit die Hall Span-
nung Ey. Dies kann man qualitativ so verstehen,
dass der gleiche Strom bei niedriger Ladungs-
trägerdichte nur durch eine höhere Geschwindig-
keit und damit durch eine höhere Lorentzkraft
erreicht wird. Die Hall-Konstante ist eine Mög-
lichkeit, die Ladungsträgerkonzentration n expe-
rimentell zu bestimmen. Sie ist (theoretisch) un-
abhängig von B und für freie Elektronen immer
negativ.

Metall

Li
Na
K
Rb
Cs
Cu
Ag
Au
Be
Mg
In
Al

# Valenz-
elektronen

1
1
1
1
1
1
1
1
2
2
3
3

-1
RHne
0.8
1.2
1.1
1.0
0.9
1.5
1.3
1.5
-0.2
-0.4
-0.3
-0.3

Tabelle 5.6: Beispiele von Hall-Konstanten.

Tabelle 5.6 zeigt einige Hall-Konstanten bei tie-
fen Temperaturen, jeweils als Verhältnis aus der
Ladungsdichte zur gemessenen Hall-Konstanten.
Offenbar passt diese einfache Theorie recht gut
für die Alkalimetalle, weniger gut für die Edel-
metalle, und für die letzten vier Elemente gar
nicht.

Oberflächenkanal Hallspannungssonde

Quelle Senke

Tor

Potenzialsonden

Abbildung 5.28: Messanordnung für die Mes-
sung von Hall-Spannungen.

Die Messung der Hall-Konstante (! Abb. 5.28)
dient deshalb auch zur experimentellen Bestim-
mung der Ladungsträgerkonzentration.

Eine andere Anwendung des Hall-Effekts ist die

151



5 Freie Elektronen

Messung der Magnetfeldstärke, z.B. über Glei-
chung (5.20). Dafür muss der Sensor zuerst ka-
libriert werden, da die Ladungsträgerdichte und
die Stoßzeit herstellungsmässig und temperatur-
abhängig variieren.

Die Hall Konstante hat auch das gleiche Vor-
zeichen wie die Ladung der beweglichen Teil-
chen. Sie kann somit auch Auskunft geben über
das Vorzeichen der Ladung der Ladungsträger.
Wir haben hier angenommen, dass es sich um
Elektronen, also negative Teilchen, handelt, und
erhalten wie gezeigt eine negative Konstante.
Wenn es sich um Löcher, also positive Ladungs-
träger handelt, so wird auch die Konstante po-
sitiv. Diese Art der Leitung wird in Kapitel 7
behandelt.

5.4.8 Der Quanten-Hall-Effekt

Eine besondere Art des Hall-Widerstandes tritt
auf bei tiefen Temperaturen in zweidimensiona-
len Elektronensystemen. In diesem Fall ist der
Hall-Widerstand nicht mehr proportional zum
Magnetfeld, sondern er nimmt in Stufen zu. Man
bezeichnet diese als Quanten-Hall Effekt (QHE).
Er wurde wurde 1930 von Landau postuliert.
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Abbildung 5.29: Hall Widerstand von Al-
GaAs/GaAs bei T=8 mK als
Funktion der Magnetfeldstärke.

Wie in Abb. 5.29 gezeigt, betrifft dies sowohl
den longitudinalen Widerstand, also den Span-
nungsverlust über der Probe dividiert durch den
Strom, wie auch den Hallwiderstand, also die
Spannung senkrecht zur Probe dividiert durch
den Strom. Der longitudinale Widerstand ver-
schwindet, außer für bestimmte Werte des Fel-
des, während der transversale Widerstand bei
diesen Werten stufenförmig zunimmt. Die Pla-
teauwerte zwischen den Stufen sind unabhängig
von der Probe oder den Materialeigenschaften.
Ihre Werte sind

⇢H =
h

i e2
=

RK

i
, i 2 N.

Die Klitzing7-Konstante RK hat den Wert

RK =
h

e2
⇡

6, 63 · 10
�34

(1, 60 · 10�19)
2⌦ ⇡ 25, 812807 k⌦

und wird inzwischen zur Norm-Definition des
elektrischen Widerstandes verwendet. In Gra-
phen kann der QHE auch bei Raumtemperatur
beobachtet werden.

Dieser Effekt wird auch als integraler Quanten-
Hall-Effekt (QHE) bezeichnet, weil die Nenner
ganze Zahlen sind. Dementsprechend findet man
auch einen gebrochenzahligen, fraktionalen oder
fraktionierten QHE, bei dem die Nenner die
Form von Brüchen annehmen. Beide Fälle kön-
nen durch die Bildung von Zuständen erklärt
werden, bei denen die Flussquanten und Elek-
tronen Quasiteilchen bilden, wobei beim gebro-
chenzahligen QHE mehrere Elektronen beteiligt
sind.

5.5 Wärmeleitung in Metallen

Die Tatsache, dass Metalle sich bei niedrigen
Temperaturen sehr kalt und bei hohen Tempe-
raturen sehr heiß (im Vergleich zu anderen Ma-
terialien) anfühlen zeigt, dass sie gute Wärme-
leiter sind. Als Beispiel hat Kupfer in der Nähe

7Klaus von Klitzing (*1943) Nobelpreis 1985

152



5 Freie Elektronen

von Raumtemperatur einen Wärmeleitkoeffizien-
ten von etwa 400 W/mK, während typische Iso-
latoren bei etwa 1 W/mK liegen. Der Grund ist,
dass freie Elektronen sehr viel effizienter Wär-
me übertragen als Phononen und deshalb in Me-
tallen den dominanten Beitrag liefern. In diesem
Kapitel wird deshalb der Beitrag der freien Elek-
tronen zur Wärmeleitung diskutiert.

5.5.1 Ansatz

Die Wärmeleitfähigkeit einer Probe wird gemes-
sen, indem man sie thermisch isoliert, auf der
einen Seite heizt, und auf der anderen Seite
die Temperatur misst. Wie im Falle der Git-
terschwingungen (! Kapitel 4) verwendet man
auch hier den Ansatz aus der kinetischen Gas-
theorie

� =
1

3
Cv`

für die Wärmeleitung � eines idealen Gases mit
Wärmekapazität C, Geschwindigkeit v und mitt-
lerer freier Weglänge `. Wir benutzen den Aus-
druck (5.13) für die elektronische Wärmekapazi-
tät

Cel =
⇡2

2
kBn

T

TF

.

Wir hatten bereits im Rahmen der Theorie der
spezifischen Wärme gesehen, dass nur die Elek-
tronen in der Nähe der Fermikante durch Stö-
ße Energie mit dem Gitter austauschen. Diese
sollten auch den dominanten Beitrag zur Wär-
meleitfähigkeit liefern. Dementsprechend setzen
wir für die Geschwindigkeit die Fermigeschwin-
digkeit vF ein und für die mittlere freie Weglän-
ge das Produkt aus Fermi-Geschwindigkeit und
Stoßzeit, ` = vF ⌧ . Damit wird die Wärmeleitfä-
higkeit

� =
1

3
Cel v

2
F ⌧

=
1

3

⇡2

2
kBn

T

TF

v2
F ⌧.

Die Fermi-Geschwindigkeit vF ist eine Funktion
der Fermi-Energie

v2
F =

2"F
m

=
2kBTF

m
.

Damit wird die Wärmeleitfähigkeit

� =
⇡2

3

k2
B

nT ⌧

m
. (5.21)

5.5.2 Temperaturabhängigkeit

Die Wärmeleitfähigkeit sollte also proportional
zur Temperatur und zur mittleren Stoßzeit ⌧
sein. Die Stoßzeit ist stark temperaturabhängig
und diese Abhängigkeit überwiegt bei Tempera-
turen über 20 K.
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Abbildung 5.30: Verhalten der Wärmeleitfähig-
keit bei tiefen Temperaturen.

Abb. 5.30 zeigt qualitativ das erwartete Verhal-
ten für die freie Weglänge, die Wärmekapazi-
tät und deren Produkt. Bei tiefen Temperaturen
wird die Stoßzeit konstant und die Temperatur-
abhängigkeit der Wärmeleitung wird durch die
Wärmekapazität bestimmt, welche / T ist. Bei
höheren Temperaturen werden freie Weglänge `,
respektive die Stoßzeit ⌧ kürzer, wie in Kap. 5.4
diskutiert, so dass die Wärmeleitfähigkeit wieder
abnimmt.

Abb. 5.31 zeigt als Beispiel die Wärmeleitfähig-
keit von Kupfer als Funktion der Temperatur.
Sie geht offenbar durch ein Maximum, wie wir
es für den Fall freier Elektronen erwarten. Das
Verhalten ist somit qualitativ ähnlich wie bei
der Wärmeleitung durch Phononen, doch nimmt
die Wärmeleitfähigkeit bei tiefen Temperaturen
nicht mit T 3, sondern mit T ab.
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Abbildung 5.31: Temperaturabhängigkeit der
Wärmeleitfähigkeit von Kupfer.

Die Wärmeleitfähigkeit enthält, wie im Kapitel
4 gezeigt, außerdem Beiträge der Phononen. Im
allgemeinen überwiegt der Beitrag der Elektro-
nen, insbesondere in “guten” Metallen. Metalle
sind deshalb bessere Wärmeleiter als dielektri-
sche Materialien, wie z.B. ionische Kristalle. In
verunreinigten Metallen und ungeordneten Le-
gierungen nimmt der elektronische Beitrag zur
Wärmeleitung stark ab, während der Beitrag der
Phononen relativ konstant bleibt und deshalb
vergleichbar und in Isolatoren dominant werden
kann.

5.5.3 Vergleich elektrische /
thermische Leitfähigkeit

Man kann die thermische Wärmeleitfähigkeit
(5.21) mit der elektrischen Leitfähigkeit (5.16)

� =
ne2⌧

m

vergleichen. Man sieht aus der obigen Behand-
lung, dass sie die gleiche Tendenz zeigen sollten:
Beide sind proportional zur Ladungsträgerdichte
n und zur mittleren Stoßzeit ⌧ . Das Verhältnis
zwischen den beiden Werten,

�

�
=

⇡2k2
B

3e2
T

sollte direkt proportional zur Temperatur T sein.
Diese Beziehung wird als Wiedemann-Franz8 Ge-
setz bezeichnet. Dividiert man auch durch die
Temperatur, berechnet also

L =
�

�T
=

⇡2k2
B

3e2
= 2, 45 · 10

�8 W⌦

K2
,

so erhält man eine materialunabhängige Kon-
stante L, welche als Lorenz-Zahl bezeichnet wird.
Damit kann man das Wiedemann-Franz Gesetz
als

�

�
= LT

schreiben.

Tabelle 5.7: Gemessene Werte für die Lorenzzahl
bei unterschiedlichen Metallen.

Tabelle 5.7 zeigt einige Werte für die Lorenz-
Zahl. Sie liegen im Bereich 2.3 < L < 2.6 · 10

�8

WW/K2, stimmen also recht gut mit dem theo-
retischen Wert überein, was als Bestätigung des
Modells des freien Elektronengases betrachtet
werden kann.

Abb. 5.32 vergleicht die Temperaturabhängig-
keit der Lorenzzahl für einige Elemente mit dem
theoretisch temperaturunabhängigen Wert.

Das theoretische Resultat hängt allerdings da-
von ab, dass die Stoßzeit ⌧ für die beiden Pro-
zesse die gleiche sein soll. Dies ist nicht zwin-
gend der Fall und führt deshalb zu Abweichun-
gen vom Wiedemann-Franz Gesetz. Mit sinken-
der Temperatur durchläuft die Lorenz-Zahl oft
ein Minimum. Abb. 5.33 zeigt als Beispiel die Da-
ten für Kupfer. Der Grund dafür sind die unter-
schiedlichen Zeitkonstanten für die Thermalisie-
rung beim elektrischen und thermischen Trans-
port.

8nach Gustav Heinrich Wiedemann (1826 - 1899) und
Rudolph Franz (1826 - 1902)
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Abbildung 5.32: Temperaturabhängigkeit der
Lorenzzahl.
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Abbildung 5.33: Temperaturabhängigkeit von
elektrischer und thermischer
Leitfähigkeit von Kupfer, sowie
der Lorenzzahl.

5.5.4 Thermoelektrische Effekte

Das verwendete Modell geht davon aus, dass
Elektronen bei Stößen thermalisieren, d.h. dass
ihre Energieverteilung sich an die lokale Tem-
peratur anpasst. Da heissere Elektronen eine
(geringfügig) höhere Geschwindigkeit haben als
kalte, ist der Transport von Elektronen zwi-
schen zwei Punkten unterschiedlicher Tempera-
tur asymmetrisch: Elektronen, die vom heissen
zum kalten Punkt fließen, haben eine höhere
Geschwindigkeit als diejenigen in umgekehrter
Richtung. Damit erfolgt netto ein Ladungstrans-
port in Richtung zum kalten Ende. Dieser hält
an, bis der thermische Gradient durch einen elek-
trischen Gradienten ausgeglichen wird. Ein Tem-

peraturgradient erzeugt deshalb eine Spannungs-
differenz

~E = S~rT [S] =
V

K
.

Dieser sogenannte thermoelektrische Effekt
(auch Seebeck9-Effekt genannt) unterscheidet
sich zwischen verschiedenen Metallen.
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Abbildung 5.34: Anordnung zur Messung von
Thermospannungen und tem-
peraturabhängige Thermospan-
nungen, normiert auf die Werte
bei 0�C.

Er kann z.B. gemessen werden, indem man die
Enden von zwei unterschiedlichen Metallen kon-
taktiert und die Kontaktpunkte auf unterschied-
liche Temperaturen bringt und die resultieren-
de Spannung misst. Typische thermoelektrische
Koeffizienten liegen im Bereich von S ⇡ µV/K.
Abb. 5.34 zeigt das Messprinzip und die Ther-
mospannungen als Funktion der Temperatur für
drei unterschiedliche Kombinationen von Metal-
len.

Prinzipiell ist die Kopplung zwischen elektri-
schem und thermischem Transport eine Materi-
aleigenschaft. Allerdings ist sie als absolute Grö-
ße schwierig zu messen. Man verwendet deshalb
Paare von Metallen, wie in Abb. 5.34 gezeigt.
Vergleicht man Paare mit einem festen Referenz-
material (meist Platin), so lassen sich aber die
Werte für einzelne Materialien bestimmen. Abb.
5.35 zeigt die thermoelektrischen Koeffizienten

9Thomas Johann Seebeck (1770 – 1831)
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Abbildung 5.35: Seebeck-Koeffizienten unter-
schiedlicher Metalle als Funk-
tion der Temperatur.

einiger Metalle als Funktion der Temperatur. Ty-
pische Werte für Metalle sind 10

�5 . . . 10
�6V/K.

Wesentlich größere Werte, im Bereich von mV/K
findet man bei Halbleitern.

Der Effekt kann prinzipiell zur Stromerzeugung
genutzt werden, hat aber einen relativ niedrigen
Wirkungsgrad. Eine wichtige Anwendung liegt in
der Messung von Temperaturen (Thermoelemen-
te).

5.6 Kollektive Phänomene

Das Modell des freien Elektronengases geht, wie
zu Beginn des Kapitels erwähnt, davon aus, dass
zwischen den Elektronen keine Wechselwirkun-
gen existieren. Dieses Modell der freien und un-
abhängigen Elektronen funktioniert erstaunlich
gut. Dieses Unterkapitel befasst sich mit der Fra-
ge, weshalb das funktioniert und wo die Grenzen
liegen.

5.6.1 Abgeschirmte
Coulomb-Wechselwirkung

Einer der Gründe für den Erfolg des Modells
der unabhängigen Elektronen ist, dass die elek-
trostatische Wechselwirkung zwischen zwei Elek-
tronen von den anderen weitgehend abgeschirmt

wird. Das gleiche gilt für positive Ladungen. In
beiden Fällen kann der Effekt über eine Ände-
rung in der Abstandsabhängigkeit der Coulomb-
Wechselwirkung beschrieben werden.

+

- - - - -

- - - - -

- - - - -

- - - - -

Leitungselektronen

Abbildung 5.36: Abschirmung einer positiven
Ladung durch die Leitungselek-
tronen.

Wird eine positive Ladung in die Leitungselek-
tronen eingebracht, so verschieben sich die Elek-
tronen in Richtung dieser Ladung, wie in Abb.
5.36 skizziert.

D(EF) Energieabsenkung 
-eU

D(E)

EF

E

Leitungselektronen füllen 
Fermi-See bis E = EF 

(Thomas-Fermi Näherung)

D(�) � �/�F

Abbildung 5.37: Abschätzung der zusätzlichen
Ladungsdichte.

Die zusätzliche Ladungsdichte, welche diesen
Abschirmeffekt bewirkt, kann über die Thomas-
Fermi Näherung berechnet werden. Dazu be-
trachtet man die Umgebung der positiven La-
dung im Energieraum. Hier werden sämtliche Zu-
stände um die Energie –eU abgesenkt, wobei U
das Zusatzpotenzial der Störung darstellt. Da-
durch gelangt der in Abb. 5.37 rot eingezeichnete
Bereich unter die Fermienergie und wird durch
Elektronen von außerhalb des Bereiches aufge-
füllt. Die positiv geladene Störung wird somit
durch die zusätzliche Elektronendichte teilweise
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kompensiert.

Die Anzahl zusätzlicher Elektronen, �n V kann
als Integral über die Zustandsdichte der zusätz-
lich besetzten Zustände berechnet werden. Die
Dichte an Zuständen als Funktion der Energie
" nimmt mit der Wurzel aus der Energie zu,
D(") /

p
"/"F . Die Fläche des roten Rechtecks

in Abb. 5.37 kann damit berechnet werden als
Produkt aus Breite

D("F ) =
V m

⇡2~2

�
3⇡2n0

� 1
3 = V

3

2

n0

"F

und Höhe eU ;

�n =
eUD("F )

V
= eU

3

2
n0

1

"F
. (5.22)

Hier bezeichnet n0 die Elektronendichte ohne die
Störung. Die Dichte n0 ist wie üblich die Zahl der
Elektronen pro Volumen, n0 = N0/V .

Ort r r0

E
ne

rg
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Zustands-
dichte D(E)

U(~r � ~r0)

Abbildung 5.38: Lokale Änderung von Potenzial
und Elektronendichte durch ei-
ne zusätzliche Ladung bei ~r0.

Da �n vom Potenzial U und U von �n abhängt
und beide vom Ort abhängen, benötigen wir eine
selbstkonsistente Lösung. Diese erhalten wir aus
der Poisson-Gleichung: Die eingeschlossene La-
dung ⇢(~r) = �e �n(~r) wirkt als Quelle des elek-
trischen Feldes,

r
2U = �

1

✏0
(⇢(r) � ⇢0) =

e �n

✏0
.

Mit Gleichung (5.22) für �n ergibt dies

r
2U = U

3e2n0

2 ✏0 "F
= �2U

mit

�2
=

3e2n0

2 ✏0 "F
.

Für eine isotrope Ladungsverteilung lautet der
Laplace-Operator in Kugelkoordinaten

r
2

=
@2

@r2
+

2

r

@

@r
.

Damit wird

r
2U =

✓
d2

dr2
+

2

r

d

dr

◆
U =

1

r

d

dr2
(rU) = �2U.

Die allgemeine Lösung für U(r) ist

U =
A

r
e��r

=
A

r
e�r/rA. (5.23)
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Abbildung 5.39: Vergleich des abgeschirmten
mit dem normalen Coulomb-
Potenzial.

Die Abschirmung führt also dazu, dass die
1/r Abhängigkeit der Coulomb-Wechselwirkung
durch einen zusätzlichen exponentiellen Term
verstärkt wird. Abb. 5.39 vergleicht die beiden
Funktionen. Somit fällt das Feld deutlich schnel-
ler ab (exponentiell statt 1/r). Die Abschirmlän-
ge beträgt

rA =

r
2 ✏0 "F
3 e2n0

. (5.24)

Verwendet man den Ausdruck (5.4) für die Fer-
mienergie

"F =
~2

2m

�
3⇡2n0

�2/3
,
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so findet man

rA = ~
r

2 ✏0
3 e2n02m

�
3⇡2n0

�1/3
/ n�1/6

0 .

Somit verkürzt sich die Abschirmlänge mit zu-
nehmender Elektronendichte wie rA / n�1/6

0 .
Die Elektronendichte bezieht sich hier nur auf
die frei beweglichen Elektronen - die Rumpfelek-
tronen tragen nicht zur Abschirmung bei.

Ein typischer Wert für die Abschirmlänge ist
rA ⇡ 0, 55 Å bei einer Elektronendichte n0 =

8, 5 · 10
28

m
�3, was dem Wert von Kupfer ent-

spricht. In Metallen ist die Abschirmung auf-
grund der hohen Elektronendichte besonders ef-
fektiv.

5.6.2 Metall-Isolator Übergang

Das Phänomen der Abschirmung kann auch als
qualitatives Argument für die Unterscheidung
zwischen Metallen und Isolatoren genutzt wer-
den. In Metallen existieren frei bewegliche Elek-
tronen, in Isolatoren sind alle Elektronen lokal
gebunden. Mit zunehmender Lokalisierung der
Elektronen nimmt ihre kinetische Energie zu.
Dies kann dazu führen, dass sie nicht mehr im
Potenzial gebunden sind.

Um zu sehen, wann das geschieht, muss die
Schrödingergleichung für das Potenzial (5.23) ge-
löst werden. Analytisch ist das nicht möglich,
aber numerische Methoden zeigen, dass gebun-
dene Lösungen existieren, falls rA > 0, 84 a0 ist,
mit dem Bohr-Radius a0.

Laut Gleichung (5.24) ist die Abschirmlänge eine
Funktion der Zustandsdichte an der Fermikante.
Die Fermienergie kann geschrieben werden als

"F =
~2

2m
(3⇡2n)

2/3
=

a0e2

8✏0
3
2/3⇡1/3n2/3

Hier wurde der Bohr’sche Radius

a0 =
4⇡✏0~2

me2

verwendet. Damit wird (5.24) zu

r2
A =

2

3

✏0
e2n

a0e2

8✏0
3
2/3⇡1/3n2/3

=
3
2/3⇡1/3

12

a0

n1/3
⇡

1

4

a0

n1/3
.

Der kritische Wert ist somit

r2
A = (0, 84 a0)

2
=

1

4

a0

n1/3
c

.

Aufgelöst nach der kritischen Dichte erhält man

nc =

✓
1

a0 · 4 · 0, 842

◆3

=

✓
1

a0 · 2, 8

◆3

=
1

22 a3
0

.

Für einen Isolator muss somit gelten, dass die
Elektronendichte n kleiner sein muss als

n <
0, 045

a3
0

.

Für ein kubisch primitives Gitter mit einem frei-
en Elektron pro Einheitszelle muss die Kanten-
länge der Einheitszelle a > 2, 8 a0 sein, damit ein
Isolator vorliegt.

Die Elektronendichte kann auf verschiedene Wei-
sen variiert werden, z.B. durch Anwendung von
Druck, Temperatur oder Magnetfeldern, oder
durch Dotierung. Damit ist es möglich, ein Sy-
stem von einem isolierenden in einen leiten-
den Zustand zu bringen. So gibt es Hinweise,
dass Wasserstoff unter hohem Druck die kritische
Dichte erreicht und metallisch wird. Dies Art
von Phasenübergängen wird auch als Mott10-
Übergang bezeichnet.

Abb. 5.40 zeigt für den Fall von Silizium, wie ei-
ne zunehmende Dotierung mit Phosphor die La-
dungsträgerdichte so stark erhöht, dass das Sy-
stem vom Isolator zum Metall wird.

5.6.3 Quantisierte elektronische
Anregungszustände

Da die Leitungselektronen in einem Metall frei
beweglich sind, können sie auch zum Schwingen
10Sir Nevill Francis Mott (1905 - 1996)

158



5 Freie Elektronen

Si:P

Isolator Metall

Elektronendichte n [1018/cm3]

sp
ez

. L
ei

tfä
hi

gk
ei

t σ
 [Ω

-1
cm

-1
]

ncrit

0 2 4 6
1

10

100

Abbildung 5.40: Metall-Isolator Übergang in Si-
lizium durch Dotierung mit
Phosphor.
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Abbildung 5.41: Elektronengas.

angeregt werden. Wir diskutieren hier kollektive
Schwingungen der Elektronen. Wird ein einzel-
nes Elektron um die Distanz x aus der Ruhelage
ausgelenkt, so erzeugt es einen elektrischen Di-
pol der Größe p(x) = ex. Wird ein Elektronengas
der Dichte n ausgelenkt, so entsteht eine elektro-
nische Polarisation

P (x) = n e x.

Diese Polarisation entspricht einem zusätzlichen
elektrischen Feld

E(x) =
1

""0
P (x) =

n e

""0
x.

Dieses elektrische Feld wirkt als Kraft auf die
Elektronen. Wir erhalten die Bewegungsglei-
chung

meẍ = �eE(x) = �
ne2

""0
x.

Dies entspricht einem harmonischen Oszillator

ẍ = �!2
px,

wobei die Plasmafrequenz !p gegeben ist durch

!p =

s
ne2

me""0
.

Quantenmechanisch sind die Energiezustände ei-
nes harmonischen Oszillators gegeben als

En = (n +
1

2
)~!p.

Da die Plasmafrequenz ein Maß für die Elektro-
nendichte ist, bietet sich ihre Messung als in-
teressante Methode zur Bestimmung der Elek-
tronendichte an. Allerdings sind die Plasmonen
in vielen Systemen stark gedämpft (z.B. durch
Inter-Band Übergänge), dass sie gar nicht beob-
achtet werden können.

Typische Werte für die Plasmafrequenz liegen im
Bereich von einigen (3-20) eV.

5.6.4 Messung der Plasmafrequenz

e-Strahl

~ 10 keV
Plasmon

Metall!lm

gestreuter 
Strahl

Abbildung 5.42: Prinzip der Messung von Plas-
monenenergien.

Die Plasmonenfrequenzen können gemessen wer-
den, indem man die entsprechende Probe mit
Elektronen bestrahlt. Diese stoßen mit den freien
Elektronen der Probe und regen dadurch Plas-
monen an. Gleichzeitig verlieren die Elektronen
des Strahls die entsprechende Energie.

Für die Messung des Energieverlustes in der Pro-
be benötigt man ein hochauflösendes Elektro-
nenspektrometer, welches die kinetische Energie
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Kathode
Spektrometer

Anode

Monochromator

Verzögerungsfeld

Analysator

Detektor

Abbildung 5.43: Apparatur für die Messung von
Plasmonenenergien.

Al

Energieverlust / eV

Volumen-
plasmonOber!ächen-

plasmon

Abbildung 5.44: Plasmonenspektrum von Alu-
minium mit Aufspaltung der
Resonanzen.

der transmittierten Elektronen misst. Abb. 5.43
zeigt den entsprechenden Messaufbau.

Abb. 5.44 zeigt ein typisches Verlustspektrum,
welches an einem dünnen Aluminiumfilm gemes-
sen wurde. In diesem Fall wurden die zurückge-
streuten Elektronen analysiert. Man findet Re-
sonanzen, welche der Erzeugung von n = 1, 2, ...
Plasmonen entsprechen. Die Resonanzen sind
überdies aufgespalten: an der Oberfläche ist die
Plasmonenfrequenz geringer als im Volumen.

Tabelle 5.8 vergleicht einige gemessene und be-
rechnete Plasmonenenergien. Die Übereinstim-
mung ist relativ gut. Die Plasmafrequenzen neh-
men mit der Elektronendichte zu: Al (3 Lei-
tungselektronen pro Atom) hat eine deutlich

Gemessen Berechnet
Li 7,12 8,02
Na 5,71 5,95
K 3,72 4,29
Mg 10,6 10,9
Al 15,3 15,8

Tabelle 5.8: Plasmonenenergien in eV.

höhere Plasmafrequenz als die Alkaliatome (1
Leitungselektron). Bei den Alkaliatomen nimmt
die Elektronendichte mit zunehmendem Atom-
gewicht ab. Deshalb ist die Plasmonenfrequenz
von K niedriger als die von Na und Li.

5.6.5 Elektromagnetische Wellen in
Metallen

Die beweglichen Elektronen beeinflussen auch
elektromagnetische Wellen in Metallen. Elektro-
magnetische Wellen in einem nichtmagnetischen
Material können beschrieben werden über eine
Dispersionsrelation der Form

✏(!)!2
= c2k2. (5.25)

Hier ist ✏(!) die dielektrische Funktion, welche
in Metallen die Form

✏(!) = ✏1

 
1 �

!2
p

!2

!

hat. ✏1 stellt den Grenzwert für hohe Frequen-
zen dar, ! � !p, welcher durch die gebundenen
Elektronen dominiert wird. Einsetzen in (5.25)
ergibt die Dispersionsrelation

!2
� !2

p =
c2k2

✏1

für die elektromagnetischen Wellen im Materi-
al. Je nachdem, ob die Frequenz ! höher oder
niedriger ist als die Plasmafrequenz ist der lin-
ke Seite positiv oder negativ. Im negativen Fall
wird der Wellenvektor imaginär, d.h. das Licht
wird vollständig absorbiert. Langwellige Wellen
werden deshalb in Metallen absorbiert.
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Abbildung 5.45: Dispersion für elektromagneti-
sche Wellen in einem Metall mit
der Plasmafrequenz !p.

Für Frequenzen oberhalb der Plasmafrequenz er-
hält man normale Ausbreitung, mit der Disper-
sionsrelation

! =

q
!2
p + c2k2.

Abb. 5.45 vergleicht diese Dispersionsrelation
mit derjenigen einer Lichtwelle im Vakuum. Für
große Wellenlängen geht die Frequenz gegen
einen endlichen Wert, die Plasmafrequenz !p, für
hohe Wellenzahlen nähert sich die Frequenz der
einer entsprechenden Lichtwelle im freien Raum.
Wellen mit Frequenzen unterhalb der Plasmafre-
quenz können sich in Metallen nicht ausbreiten
(verbotener Frequenzbereich). Trifft eine elektro-
magnetische Welle in diesem Bereich auf eine
Metalloberfläche, so wird sie deshalb reflektiert.
Bei polierten Metalloberflächen entsteht ergibt
dies deshalb den charakteristischen Metallglanz,
welcher z.B. bei Spiegeln verwendet wird.

5.7 Elektron-Phonon
Wechselwirkung

5.7.1 Grundlagen

Die bisher verwendete Born-Oppenheimer Nähe-
rung vernachlässigt Wechselwirkungen zwischen

Elektronen und Kernen. Einige der vernachläs-
sigten Terme haben wir bereits berücksichtigt,
z.B. indem wir die Streuung von Elektronen
an Phononen als Beitrag zum elektrischen Wi-
derstand diskutiert haben. Eine Wechselwirkung
kommt dadurch zustande, dass Phononen das
Kerngitter verzerren und die Elektronen des-
halb ein Potenzial spüren, welches nicht mehr
die ideale Periodizität aufweist. Phononen kön-
nen deshalb absorbiert oder gestreut werden. Die
Wechselwirkung kann mit akustischen Phononen
oder mit optischen Phononen geschehen. Man
unterscheidet

• Fröhlich-Wechselwirkung

• Deformationspotenzial-Wechselwirkung

• Piezoelektrische Wechselwirkung.

Elektronen-Phononen Wechselwirkungen spielen
in Halbleitern (vor allem binären und ternären)
eine wichtige Rolle, sowie in Supraleitern, wo sie
für die Bildung der Cooper-Paare verantwortlich
sind.

5.7.2 Polaronen

Auch in dielektrischen Festkörpern spielen
Elektron-Phonon Wechselwirkungen eine Rolle.
Dass es eine Wechselwirkung zwischen Elektro-
nen und Phononen geben sollte, vermutete Lev
Landau schon 1933, kurz nachdem das Kon-
zept von Phononen entwickelt worden war. Man
kann diesen Effekt auch über ein neues Quasi-
teilchen beschreiben, das Polaron. Dabei handelt
es sich um ein Elektron, welches an eine Gitter-
Deformation gekoppelt ist. Diese Kopplung führt
zu einer höheren effektiven Masse des Elektrons.

In einem ionischen Kristall, wie z.B. KCl erzeugt
ein Elektron eine Gitterverzerrung: die positiven
Ionen werden in Richtung auf das Elektron ver-
schoben, die negativen davon weg. Ein Resul-
tat dieser Wechselwirkung ist, dass die effektive
Masse des Elektrons steigt: wird es bewegt, so
bewegt sich die Gitterverzerrung mit. Die Kom-
bination aus Ladung und Gitterverzerrung (oder
Ladung und Phonon) wird als Polaron bezeich-
net.
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Abbildung 5.46: Gitterverzerrung durch Wech-
selwirkung mit Elektron.

Kopplungskonstante
Masse
Bandmasse (starres G.)

Abbildung 5.47: Effektive Masse von
Leitungsband-Elektronen
in Isolatoren.

Die effektive Masse eines Leitungselektrons in
KCl wächst dadurch um einen Faktor 2.5 im Ver-
gleich zum Fall eines starren Gitters.

Abbildung 5.48: Effektive Masse von
Leitungsband-Elektronen
in Halbleitern mit teilweise
kovalenten Bindungen.

Bei Materialien mit stärker kovalentem Charak-
ter, wie z.B. dem Halbleiter GaAs, ist die Gitter-
verzerrung durch die Leitungselektronen schwä-
cher und damit die Kopplungskonstante kleiner.

5.7.3 Cooper Paare

Die Verzerrung, welche die Elektronen im Git-
ter erzeugen, wirkt wiederum auf andere Elektro-
nen und kann dazu führen, dass zwischen (weit
voneinander entfernten) Elektronen eine effekti-
ve Anziehungskraft zustande kommt. Abbildung

e-

e-

e-

e-

Ze
it

Abbildung 5.49: Feynman Diagramm für die Bil-
dung von Cooper Paaren durch
die Kopplung an Phononen.

5.49 zeigt dies schematisch als Feynman Dia-
gramm, wobei � das Phonon darstellt. Dadurch
kommt es zur Bildung von sogenannten Cooper
Paaren, welche für die Supraleitung verantwort-
lich sind. Dies wird im Kapitel 9 genauer disku-
tiert.
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