5 Freie Elektronen
5.1 Klassische Beschreibung

5.1.1 Metalle und ihre Eigenschaften

RERT R O
RO
Abbildung 5.1: Metallische Bindung.

In diesem Kapitel soll in erster Linie der Versuch
unternommen werden, das Verhalten von Elek-
tronen in Metallen zu beschreiben. Die metalli-
sche Bindung stellt zwar nur eine von 5 Grund-
typen der Bindung in Festkorpern dar, sie ist je-
doch sehr weit verbreitet: mehr als 2/3 der Ele-
mente sind Metalle.

Metalle enthalten zwei Arten von Elektronen.
Wie in Abb. schematisch gezeigt sitzen die
meisten Elektronen in tief liegenden Orbitalen
der konstituierenden Atome, welche praktisch an
den entsprechenden Atomen lokalisiert sind. Da-
neben tragt jedes Atom eine geringe Zahl (ty-
pischerweise 1-3) Leitungselektronen bei, welche
sich praktisch frei durch das Material bewegen,
dieses jedoch nicht verlassen kénnen.

Diese frei beweglichen Leitungselektronen sind
fiir die charakteristischen Eigenschaften der Me-
talle verantwortlich, welche sie gegeniiber den
weiter verbreiteten nichtmetallischen Verbindun-
gen auszeichnen. Zu diesen charakteristischen Ei-
genschaften (— Abb. gehoren die gute Leit-
fahigkeit fiir Elektrizitdt und Warme, sowie der
Glanz von metallischen Oberflachen.

Sowohl das klassische Modell (Kap. , wie
auch das quantenmechanische (Kap. be-
schreiben die Metalle im Wesentlichen iiber freie

Warmeleitfahigkeit

Abbildung 5.2: Beispiele von Metallen und
metall-typischen Eigenschaften.

Elektronen, welche in einen Potenzialtopf einge-
sperrt sind, dessen Rénder den Réndern des Kri-
stalls entsprechen. Dieses Modell der freien Elek-
tronen eliminiert jede Wechselwirkung zwischen
Elektronen mit Ausnahme des Pauli-Prinzips.
Die Wechselwirkung der Elektronen mit Atom-
riimpfen wird zunéchst ebenfalls nicht beriick-
sichtigt und erst in einer zweiten Stufe (im Ka-
pitel 6) als ein periodisches Potenzial berticksich-
tigt, welches die gleiche Periode wie das Gitter
aufweist. Trotz dieser extremen Vereinfachungen
kann das Modell freier Elektronen erstaunlich
viele Aspekte der Metalle erklaren.

5.1.2 Das Drude-Modell

Die klassische Theorie entstand drei Jahre nach
der Entdeckung des Elektrons durch J.J. Thom-
son (1897). Im 19. JH hatte die kinetische Gas-
theorie eine befriedigende Erklarung fiir viele be-
kannte Effekte im Bereich der Thermodynamik
geliefert. Dies mag ein Motiv gewesen sein dafiir,
dass P. Drudd! die Elektronen in einem Metall

"Paul Drude (1863-1906)
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5 Freie Elektronen

als Gas modelliert Seine Annahme war, dass
die dufsersten Elektronen jedes Atoms sich im
Metall praktisch frei bewegen kénnen. Zu diesen
Leitungselektronen tragen die Atome, welche das
Gitter bilden, normalerweise ein bis drei Elektro-
nen bei. Diese Elektronen sind im gesamten Kri-
stall frei beweglich, wobei die positiv geladenen
Atomriimpfe ein Potenzial bilden.

Leitungselektronen: Atomriimpfe:
- ballistische Bewegung - klein
- kurze St6Re - statisch
@
N9 @ 9O 9
9\3 @ 9 0\ @
@ @ @ @O 9
Abbildung 5.3: Das Drude-Modell des freien
Elektronengases.

Nach Drude verhalten sich diese Elektronen ahn-

lich wie ungeladene Teilchen in einem klassischen
Gas:

e Die Atomriimpfe sind klein und statisch.

e Die Elektronen sollen eine freie Weglange
zwischen Stofen haben, welche vielen Git-
terkonstanten entspricht.

e Zwischen den Stéfen ist die Bewegung frei,
d.h. unabhéngig von den anderen Elektro-
nen (unabhéngige Elektronen) und von den
Atomriimpfen (freie Elektronen). Sind &u-
Rere Felder vorhanden, so beeinflussen die-
se die Bewegung wie in der Mechanik und
Elektrodynamik diskutiert.

e Stofe finden im Drude-Modell vor allem
mit den Jonenriimpfen statt; Stole zwi-
schen Elektronen sind sehr selten. Die Stofse
werden als kurz angenommen und die Ge-
schwindigkeit der Elektronen nach dem Stofs
ist unabhéngig von der Geschwindigkeit vor
dem Stof, sondern wird durch die Tempera-
tur des Kristalls bestimmt.

2P. Drude, Annalen der Physik 1, 566 und 3, 369 (1900).

5.1.3 Ergebnisse

Mit Hilfe dieses einfachen klassischen Modells
konnen unterschiedliche Aspekte der Phanome-
nologie von Metallen erkldrt werden. Beispiele
dafiir sind die Herleitung der qualitativen Aspek-
te des Ohm’schen Gesetzes, oder die Beziehung
zwischen elektrischer und thermischer Leitfahig-
keit. Wir diskutieren diese Resultate jedoch nicht
im Rahmen des klassischen Modells, sondern erst

nach der Einfiithrung des quantenmechanischen
Modells.

Element z n (1028/m3) r (A)
Li(78K) 1 470 1.72
Na(5K) 1  2.65 2.08
K (5K) 1 140 257
Be 2 24.7 0.99
Mg 2 8.61 1.41
Al 3 18.1 11

Ga 3 15.4 1.16

Tabelle 5.1: Anzahl Z freier Elektronen pro
Atom, Dichte n des Elektronengases
und mittlerer Abstand r zwischen
den Leitungselektronen fiir verschie-
dene Elemente.

Ein wesentlicher Unterschied zwischen dem Elek-
tronengas eines Metalls und einem echten Gas ist
die Dichte: Im Vergleich zu einem echten Gas ist
die Dichte des Elektronengases um rund einen
Faktor 1000 grofer: Pro Leitungselektron steht
lediglich ein Volumen zur Verfiigung das etwa
einem Atomvolumen entspricht. Fiir ein Atom
mit Radius 2 A erhilt man ein Volumen von
ca. 3-1072m3, entsprechend einer Teilchendichte
von 3-102®m 3. Dies ist eine typische Grokenord-
nung (ca. 1 —20-10?%m=3, siehe Tabelle[5.1). Im
Vergleich dazu nimmt ein Mol ideales Gas unter
Normalbedingungen ein Volumen von 22,4 1 ein.
Pro Atom steht somit ein Volumen von

22.4-1073

3 _ —26 .3
6105 m° =4-10 m

Vag =

zur Verfiigung.

Die positiv geladenen Atomriimpfe sind relativ
klein und fiillen lediglich einen kleinen Teil des
Raumes. Bei Natrium umfasst das Volumen der
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5 Freie Elektronen

Atomriimpfe rund 15 % des gesamten Festkor-
pervolumens; bei Edelmetallen wie Ag und Au,
wo auch kovalente Effekte zur Bindung beitra-
gen, steigt der Anteil. Die Kerne sind aber sehr
viel schwerer als die Elektronen und bleiben un-
beweglich auf ihren Plétzen.

5.1.4 Grenzen des Drude-Modells

Wie bei der Diskussion der Gitterschwingun-
gen gelangt man aber auch bei den Elektro-
nen im Rahmen der klassischen Physik sehr
bald an eine Grenze, ab der ein wirkliches Ver-
stéandnis nur mit Hilfe der Quantenmechanik er-
reicht werden kann. Zu den qualitativen Unter-
schieden zwischen den Voraussagen der klassi-
schen und der quantenmechanischen Theorie ge-
hort die Berechnung der Stéfse, die ein Elektron
bei der Durchquerung des Kristalls erleidet. Im
klassischen Bild wiirde man eine groffe Anzahl
Stoke mit den Gitteratomen erwarten. Experi-
mentell findet man, dass die Distanz, iber die
sich die Elektronen frei bewegen koénnen, von
der Qualitdt des Kristalls abhéngt, sowie von
der Temperatur. Wahrend in gewohnlichen Me-
tallen bei Raumtemperatur (z.B. Kupferdréhte)
die Elektronen nach wenigen Gitterperioden ge-
streut werden und sich deshalb insgesamt diffu-
sionsartig bewegen, kann bei tiefen Temperatu-
ren und guten Kristallen die mittlere freie Weg-
lange grofler als die Kristalldimension werden.
Aus experimentellen Daten ist bekannt, dass die
freie Weglénge bis zu einem Zentimeter betra-
gen kann. In diesem Fall bewegt sich somit das
Elektron ohne Streuung durch rund 10® atomare
Lagen; offenbar breiten sie sich dann ballistisch,
also ohne Streuung im Kristall aus.

Weitere experimentelle Befunde, die mit dem
Drude-Modell nicht erklart werden konnten, wa-
ren

e Die Temperaturabhéngigkeit der elektri-
schen und thermischen Leitfdhigkeit.

e In einem idealen Gas sollten die Elektro-
nen einen Beitrag 3/2 RT zur spezifischen

Wirme liefern; der experimentell beobach-
tete Beitrag ist um rund 2 Groéfenordnun-
gen kleiner.

e Hall Effekt (— Kapitel
o Leitfahigkeit fiir Wechselstrom

e Thermoelektrische Effekte

5.5.4)

(— Kapitel

Ein klassisches Modell, welches (teilweise) er-
klaren kann, welche Elemente metallischen Cha-
rakter haben, wurde 1927 durch Herzfeld vorge-
schlagelﬂ. Ein wirkliches Verstandnis ist jedoch
nur im Rahmen einer quantenmechanischen Be-
handlung moglich.

5.2 Das quantenmechanische
Modell

5.2.1 Das Sommerfeld-Modell

Die wichtigsten Beschrankungen des Drude Mo-
dells kénnen dadurch tiberwunden werden, dass
man die Elektronen als quantenmechanische
Teilchen, d.h. als Teilchen mit Wellencharak-
ter behandelt. Ein entsprechendes Modell wur-
de 1928 von Sommerfel vorgeschlagen, kurz
nach der Entdeckung des Pauli-Prinzips|13]. Da-
mit gelang es, die wichtigsten Inkonsistenzen des
Drude-Modells aufzulésen.

Ein Festkorper umfasst je nach Grofe minde-
stens 10?° miteinander wechselwirkende Teil-
chen. Natiirlich ist die exakte Behandlung eines
solchen Systems nicht méglich. Das Sommerfeld-
Modell macht deshalb zunéchst einige drastische
Vereinfachungen: es lasst die Wechselwirkungen
zwischen den Elektronen wie auch von Kernen
zu Elektronen vollstdndig weg und betrachtet zu-
néchst nur freie und unabhéngige Elektronen. Ih-
re Zusténde sind somit auch nur Einelektronen-
Zustande, die als Orbitale bezeichnet werden.

Damit brauchen wir lediglich freie Elektronen
in einem (unendlich ausgedehnten) Kristall zu

3Phys. Rev. 29, 701-705 (1927).
4Arnold Johannes Wilhelm Sommerfeld (1868 - 1951)
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Vakuum Vakuum

Metall
Potenzial der
Atomriimpfe

Energie £

~Atomrumpf = Kern
+ stark gebundene

Ort x Elektronen

Abbildung 5.4: Potenzial fiir Elektronen im
Sommerfeld-Modell.

betrachten. Die Rénder des Kristalls sind Po-
tenzialwénde. Als Eigenzustdnde solcher freier
Elektronen kann man bekanntlich ebene Wel-
len verwenden; diese sind allerdings im gesam-
ten Raum nicht normierbar. Man kann zu nor-
mierbaren Funktionen gelangen, indem man pe-
riodische Randbedingungen einfiithrt. Die ent-
sprechende Periode, welche grof gegen die Git-
terkonstante sein sollte, kann anschliefsend gegen
Unendlich gefiihrt werden.

Die Atomriimpfe bilden ein Hintergrundpotenzi-
al. Sie bestehen aus den Kernen plus den stark
gebundenen Elektronen in den gefiillten Schalen.
Je nach Metall sind diese Riimpfe relativ klein
und weit voneinander entfernt, oder sie beriihren
sich und bilden teilweise kovalente Bindungen.

Das Sommerfeld’sche Modell der freien Elektro-
nen passt am besten auf die Alkalimetalle. Hier
entsprechen die Atomriimpfe den abgeschlosse-
nen Schalen mit Edelgaskonfiguration, das eine
Valenzelektron im s-Orbital ist das freie Elek-
tron, welches ein Leitungsband mit s-Charakter
bildet.

Wasserstoff, das leichteste und héufigste Ele-
ment des Universums, gehort zur gleichen Grup-
pe des Periodensystems wie die Alkaliatome. Ge-
méf theoretischen Vorhersagen sollte es bei ho-
hen Driicken metallisch werden. Man geht des-
halb davon aus, dass der Jupiter zu einem grofsen
Teil aus metallischem Wasserstoff besteht. Es
wurden viele Versuche gemacht, auf der Erde
Wasserstoff in die metallische Form zu bringen.
Theoretische Vorhersagen gehen davon aus, dass
dafiir Driicke im Bereich von 500 GPa (5 - 10°
atm) notwendig sind, und einzelne Experimente

Abbildung 5.5: Aufbau des Planeten Jupiter mit
einem Kern aus metallischem
Wasserstoff.

haben bei >400 GPa Hinweise auf metallisches
Verhalten geliefert.

5.2.2 Das Teilchen im Potenzialtopf

Um die quantenmechanischen Zustandsfunktio-
nen der Elektronen im Kristall zu bestimmen,
rekapitulieren wir zunédchst das Problem eines
Teilchens in einem eindimensionalen Potenzial-
topf. Wie bei der Diskussion der Phononen fiih-
ren wir zundchst Randbedingungen ein, welche
in erster Linie dazu dienen, die Zustidnde zu nor-
mieren und die Zustandsdichte zu berechnen.

7

/ w, = sin (a3 )

Abbildung 5.6: Eindimensionaler Potentialtopf.

Das Potenzial verschwindet auf der Strecke [0, L]
und ist unendlich hoch aufserhalb. Der Hamilton-
operator dieses Systems beinhaltet im Bereich
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5 Freie Elektronen

[0, L] lediglich die kinetische Energie

p__n &
2m dz?’

- 2m

Die Eigenfunktionen dieses Operators sind die
ebenen Wellen

WU, =a sinkx + b coskzx

und die Eigenwerte sind

h2k2 2
=t _ P
2m

2m’

Das Potenzial kann am einfachsten {iiber die
Randbedingung beriicksichtigt werden, dass

U(z<0)=¥Y(x>L)=0
sein muss. Damit sind die Losungen
. X .
¥, = A sin (mrz) = A sin (kz)

mit k = nmw/L. Die entsprechende Energie ist

gn_’ﬂm)?_W

S om \L/)  2m’

Die Amplitude A ergibt sich aus der Normie-
rungsbedingung

L L
| P =145 =1
0 2

zu A= ./2/L.

Wenn sich mehrere Elektronen in diesem Po-
tenzial befinden und wir deren elektrostati-
sche Wechselwirkung zunéchst vernachlassigen,
so kann geméfs dem Ausschliefsungsprinzip von
Pauli jeder dieser Zustdnde mit zwei Elektro-
nen mit entgegen gesetztem Spin besetzt wer-
den. Das Gesamtsystem ist demnach im Grund-
zustand wenn die niedrigsten N/2 Zustédnde mit
jeweils 2 Elektronen besetzt sind.

5.2.3 Drei Raumdimensionen

In Kristallen entspricht der Potenzialtopf der
Randbedingung, dass die Elektronen sich inner-
halb des Kristalls befinden miissen. Wir beriick-
sichtigen dies iiber periodische Randbedingun-
gen
U(z,y,z) U(x+ L,y,z) =¥(z,y+ L,2)

= U(z,y,z+ L),

wobei L groff gegeniiber einer Einheitszelle und
fiir alle 3 Richtungen gleich sein soll.

Im dreidimensionalen Raum lautet der Hamil-
tonoperator fiir ein freies Elektron

d? d? d?
(e 7).
Die Eigenfunktionen fiir Elektronen in einem Po-

tenzialtopf mit Kantenlédnge L und periodischen
Randbedingungen sind dann

2 2 2
v, = Asin <I7jnxac) sin (;nyy> sin (;nzz) ,

also periodisch mit L, im Gegensatz zur Periode
2L im Fall des Teilchens im Potenzialtopf (Kap.
5.2.2). Die entsprechenden Energien sind

h2

2m

H =

En = G = g Koty +E)
R /27?2

Alternativ konnen komplexe Zustédnde (ebene
Wellen) verwendet werden:

P
‘PE(F) =P k= T Ny (5.2)
Ny

Da wir uns hier in einem endlichen Bereich (mit
Volumen L3) befinden, sind diese Zustinde nor-
mierbar und die moglichen k-Werte diskret. Die
Energie dieser Zustédnde ist die gleiche wie in
. Der Impuls eines Elektrons in diesem Zu-
stand ist 7 = Ak und seine Geschwindigkeit
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5 Freie Elektronen

U= hE/m Wir verwenden diese Zustande als
Basisfunktionen fiir die Beschreibung von Elek-
tronen in einem Kristall der Kantenlédnge L.

Nach Gl. (5.2)) sind die Zusténde gleichméfig im
k—Raum verteilt. Die Energie steigt proportio-
nal zum Quadrat des Impulses.

5.2.4 Fermi-Kugel

Wir untersuchen nun die Frage, welche dieser Zu-
stinde besetzt sind. Da Elektronen einen Spin %
besitzen, unterliegen sie der Fermi-Dirac Stati-
stik und jeder raumliche Zustand kann maximal
von 2 Elektronen mit entgegengesetztem Spin
besetzt sein.

E

Zustande im k-Raum

° 012_77
° ° L

Zustande leer X
Fermi

EF
Energie

N/2 Zustéande
besetzt

Abbildung 5.7: Links: Zustdnde im k-Raum;
rechts: Besetzung der Zustdnde
bei T'= 0.

Am absoluten Nullpunkt besetzen N Elektronen
die N/2 energetisch niedrigsten Zusténde. Da die
Energie (im Rahmen dieses Modells) nur vom
Betrag des Impulses abhéngt, bilden diese Zu-
stdnde im k-Raum eine Kugel. Die Energie des
energetisch hochsten noch besetzten Zustandes
wird als Fermi-Energie £ bezeichnet, der Radi-
us der Kugel im k-Raum mit k.

Um die besetzten Zusténde zu finden, bestimmen
wir zunéchst die Dichte der Zusténde im Impuls-
raum. Fiir periodische Randbedingungen ist der
Impulsraum diskret, mit Einheitszellen der Sei-
tenléinge 2 /L. Wie in Abb.[5.8gezeigt, fiillen die
besetzten Zusténde in diesem Raum eine Kugel,
deren Radius wir mit kr bezeichnen. Das Volu-
men dieser Kugel betriigt k3.4 /3.

Die Anzahl der Zustidnde in dieser Kugel, d.h.
die Zahl der besetzten Zustédnde, muss der Zahl
der Elektronen entsprechen. Wir setzen somit

kz

Volumen pro Punkt
im k-Raum: (ﬁ)‘
L

Zustande mit k<kr

kx

Abbildung 5.8: Fermikugel.

die Zahl N der Elektronen gleich der doppelten
(Spin!) Zahl der Moden. Diese berechnen wir, in-
dem wir das gesamte Volumen der Kugel durch
das Volumen pro Zustand dividieren,

CoOMEE O
Beim zweiten Schritt wurde L? durch das Volu-
men V = L3 des Kristalls ersetzt. Bei N Elek-
tronen muss damit der Radius der Kugel

(5.3)

3 37T2N
V

krp =

sein. kp héngt offenbar nur von der Dichte N/V
der Elektronen ab.

5.2.5 Fermi-Energie

Die Energie der Elektronen mit Impuls hkp be-
tragt

2
h2k‘2 2 2N 3
_ hky Ok (37T ) (5.4)

&r = 2m  2m \%4
und wird als Fermi-Energie bezeichnet. Die
Fermi-Energie ist somit die Energie der Elek-
tronen im hochsten besetzten Einelektronenzu-
stand. In der Fermi Energie tritt die Anzahl
Elektronen und das Volumen nicht mehr unab-
héngig auf, sondern sie hingt lediglich von der
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Dichte n = N/V der Elektronen ab. Die Elek-
tronendichte kann aus der Massendichte und der
Atommasse berechnet werden:
N Zp
= — = N _—
n Vv A A ;
mit Ny der Avogadro-Zahl, p der Dichte des
Materials, Z der Zahl der freien Elektronen pro
Atom und A der Atommasse.

Element Z n(10%) /em® rs (A) rs/a
Li (78 K) | 4,70 1,72 3,25
Na (5 K) 1 2,65 2,08 3,93
K(5K) | 1,40 2,57 486
Rb (5§ K) 1 1,15 2,75 5,20
Cs (5K) | 091 2,98 5,62
Cu 1 8.47 1,41 2,67
Ag | 5.86 1,60 3,02
Au 1 5,90 1,59 3,01
Be 2 247 0,99 1,87
Mg 2 8.61 141 2,66
Ca 2 4,61 1,73 3,27
Sr 2 3,55 1,89 3,57
Ba 2 3,15 1,96 3,71
Nb | 5.56 1,63 3,07
Fe 2 17,0 1,12 2,12
Mn (a) 2 16,5 1,13 2,14
Zn 2 13,2 1,22 2,30
Cd 2 9,27 1,37 2,59
Hg (78 K) 2 8,65 1,40 2,65
Al 3 18,1 1.10 2,07
Ga 3 154 1,16 2,19
In 3 11.5 1,27 241
Tl 3 10,5 1,31 248
Sn 4 148 1,17 2,22
Pb 4 13,2 1,22 2,30
Bi 5 14,1 1,19 2,25
Sb 5 16.5 1.13 2,14

Tabelle 5.2: Dichte der freien Elektronen in Me-
tallen.

Aus der Dichte n der freien Elektronen kann man
auch den mittleren Abstand 2r; zwischen ih-
nen berechnen, analog zum Drude-Modell. Wenn
man das Volumen pro Elektron schreibt als

1V 4
==,

n N

dann wird der Radius r4 dieser Kugel zu

S
s dmn’

Tabelle [5.2] listet neben der Dichte der frei-
en Elektronen ebenso den Parameter rg. Dieser
kann verglichen werden mit dem Bohr-Radius

Amegh?
apg =

e ~0,5A.

Wertig- Elektronenzahl- Fermi- - Fermi-
keit dichte Energie Temperatur
[em2] [eV] (K]

Li 1 4,70 - 1022 4,72 54800
Rb 1 1,15 - 1022 1,85 21500 °
Cu 1 8,45 - 1022 7,00 81200
Au 1 5,90 - 1022 5,51 63900
Be 2 24,20 - 1022 14,14 164100
Zn 2 13,10 - 1022 9,39 109000
Al 3 18,06 - 1022 11,63 134900
Pb 4 13,20 - 1022 9,37 108700

Tabelle 5.3: Beispiele von Fermi-Energien.

Nach Gleichung sollte die Fermienergie mit
der Dichte der Elektronen zunehmen. Tabelle[5.3]
zeigt, dass die experimentellen Werte dies besté-
tigen. Typische Gréfenordnungen fiir die Elek-
tronenzahldichte liegen bei 102? m™3, fiir die Fer-
mienergie bei 10 V.

Héufig parametrisiert man die Fermi-Energie
auch iiber die Fermi-Temperatur:

kpTr = EF.

Dies entspricht der Temperatur, bei der die ther-
mische Energie gleich der Fermienergie wird. Ty-
pische Werte fiir die Fermi-Temperatur liegen bei
10° K, also bei Temperaturen weit oberhalb des
Schmelzpunktes. Somit ist T" <« Tr immer eine
sehr gute Naherung.

Da die Fermienergie vom Volumen abhéngt,
Er x V72/3 steht das System unter einem ef-
fektiven Druck, welcher als Ableitung der Ener-

gie nach dem Volumen berechnet werden kann,
P="av —3v ="

Dieser Fermidruck tritt auch beil anderen Fer-
mionen auf. Er ist z.B. dafiir verantwortlich,
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dass Neutronensterne bis zu einer gewissen Gro-
e dem Gravitationsdruck standhalten kénnen.

Wenn wir den Impuls der Elektronen in eine Ge-
schwindigkeit umrechnen, erhalten wir fiir die
Geschwindigkeit der Elektronen an der Fermi-
Oberfléche

hkp h 3/3m2N
Vp = —— = — .
m m Vv

Typische Werte liegen im Bereich von 106 m/s,
also bei 0.003 c. Allerdings sollte man dies nicht
mit einem entsprechend schnellen Massentrans-
port assoziieren.

Insgesamt ist die kinetische Energie der Lei-
tungselektronen deutlich niedriger als die ent-
sprechende kinetische Energie in einem isolierten
Atom. Diese Absenkung der kinetischen Energie
ist im Wesentlichen fiir die metallische Bindung
verantwortlich.

5.2.6 Zustandsdichte

Eine wichtige Grofe ist die Zustandsdichte, d.h.
die Anzahl quantenmechanischer Zustédnde in ei-
nem bestimmten Volumen. Da die Elektronen
gleichméfRig iiber den ganzen Raum verteilt sind,
ist die Zustandsdichte im direkten (gewohnli-
chen) Raum konstant. Im reziproken Raum (k-
Raum) ist die Zustandsdichte ebenfalls konstant,
wie in Kap. [5.2.4 gezeigt.

Anders sieht es aus, wenn wir die Anzahl Zu-
stande als Funktion des Betrages des k-Vektors
betrachten. Fiir die Berechnung dieser Zustands-
dichte bestimmen wir zunéchst die Anzahl Zu-
stande, deren Wellenzahl kleiner als k ist. Laut

Gl (5.3)) ist dies

B Vi3

© 372

Daraus konnen wir die Dichte der Zusténde be-
rechnen in der Umgebung eines Wellenvektors

k, d.h. in einer Kugelschale mit Radien k& und
k + dk:

AN, KV

dk w2’

Ny,

Auferdem interessiert die Zustandsdichte im
Energieraum. Mit
h2k2 2mé&
E=—" 5 k=
2m h2

erhalten wir fiir die Anzahl Zustinde mit Energie
kleiner als £

(2m&)3/?

N(€) = Vi?m?h?’

und daraus die Zustandsdichte im Energieraum

dN(E) L @m)*? d g
d€ B 3n2h3 dE
VAV
= (5:5)
V2V m3/2
dN v dN(€) Ve
dk 2y S dE
Ikl €
Abbildung 5.9: Zustandsdichte im  k-Raum

und

(links)
(rechts).

im Energieraum

Die Zustandsdichte steigt also proportional zur
Wurzel aus der Energie; sie verschwindet beim

Nullpunkt und ist proportional zum Volumen V'
des Kristalls. Abb. zeigt die entsprechenden
Grofsen.

5.3 Thermodynamik des
Elektronengases

Das Drude-Modell benutzt die klassische Ther-
modynamik fiir die Berechnung der Geschwin-
digkeitsverteilung der Elektronen. Dies ware
aber nicht mit dem Pauli-Prinzip vereinbar. Dies
wird korrigiert durch die Fermi-Dirac Statistik.
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5 Freie Elektronen

5.3.1 Besetzungswahrscheinlichkeit

Am absoluten Nullpunkt sind die Zusténde bis
zur Fermienergie mit jeweils zwei Elektronen mit
entgegengesetztem Spin besetzt, die dariiber lie-
genden Zustinde sind leer. In Wirklichkeit befin-
den sich die Elektronen jedoch immer bei endli-
cher Temperatur und sind somit thermisch an-
geregt.

D(E)

Er

Abbildung 5.10: Besetzungswahrscheinlichkeit
der Zusténde bei ' = 0 (links)
und 7" > 0 (rechts).

Dieses System kann zusétzliche Energie aufneh-
men wenn ein Elektron aus einem Niveau unter-
halb der Fermikante in eines oberhalb angeregt
wird. Abb. [5.10 zeigt qualitativ diese Umvertei-
lung.

TETLEL TEE

£

Abbildung 5.11: Beispiel eines N-Elektronen Zu-
stands, mit unterschiedlich be-
setzten 1-Elektronenzustianden
der Energie &;.

Wir bestimmen nun die Wahrscheinlichkeit
p(E;T), dass ein Zustand mit gegebener Ener-
gie £ bei einer Temperatur T besetzt ist. Dabei
ist es nicht moglich, die Elektronen einzeln zu
betrachten, da die Besetzung der Einelektronen-
zustidnde aufgrund des Pauliprinzips stark anein-
ander gekoppelt ist. Wir diskutieren deshalb im
Folgenden nicht 1-Elektronenzustédnde, sondern
N-Elektronenzustande. Abb.[5.11 zeigt einen sol-
chen Zustand, welcher als Produktzustand von
Einelektronenzustanden gegeben ist.

Die Wahrscheinlichkeit, dass ein N-Elektro-

nenzustand mit Energie £ besetzt ist, betrégt

o—E/kBT

PN©) = S o g (5.6)

Die Summe im Nenner lauft iiber alle méglichen
Zustédnde. Sie ist aus der statistischen Thermo-
dynamik als Zustandssumme bekannt und kann
geschrieben werden als

Zefé‘a/kBT _ ¢ F/kpT _ ~(U=TS)/kpT
o

wobei F' die Helmholtz’sche freie Energie, U die
innere Energie und S die Entropie des Systems
darstellt. Wir kénnen deshalb die Besetzungs-
wahrscheinlichkeit auch schreiben als
Py = o—E/kBT F/kpT _ ,—(E-F)/kpT

In der Praxis kennt man leider den N-Elek-
tronenzustand nicht. Experimentell zuganglich
ist hingegen die Besetzungswahrscheinlichkeit f;
fiir einen Einelektronenzustand 4 (Spin-Orbital).

Diesen berechnet man aus der Vertei-
lung durch Summation {iber alle N-
Elektronenzustdnde, in denen der Zustand 3
besetzt ist,

Y=Y Pa(ER).
E

B lauft iiber alle Zusténde, in denen das i-te Or-
bital besetzt ist.

Der Zustand i ist entweder besetzt oder leer. So-
mit kann man die Besetzungswahrscheinlichkeit
auch als die Differenz zwischen 1 und der Wahr-
scheinlichkeit fiir Nichtbesetzung schreiben:

szZl_ZPN(S’]yV)a
vy

wobei die Summe jetzt {iber diejenigen Zustédnde
lauft, bei denen der Zustand 4 nicht besetzt ist.

Im Modell freier Elektronen ist die Gesamtener-
gie des N-Elektronen Zustandes durch die Sum-
me der Energien der besetzten 1-Elektronen Zu-
stande gegeben. Wir driicken jetzt die Energie
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5 Freie Elektronen

54\[ des N-Elektronenzustands mit leerem Zu-
stand ¢ aus durch die Energie des entsprechenden
N +1-Elektronen Zustandes, in dem der Zustand
1 besetzt, ist minus die Energie des entsprechen-
den Elektrons, 54\7 = Eév +1 _ ¢, Damit wird

FN=1=) Py(EYT <), (5.7)
B

wobei ¢; die Energie des Einelektronenzustands
1 darstellt.

5.3.2 Die Fermi-Dirac Verteilung

Das Verhéltnis der Besetzungswahrscheinlichkei-
ten fiir den N-Elektronenzustand und den N +1
Elektronenzustand betréagt

et _ei— PN

Pt g
— —= e"B s .
PN+1(5éV+1) gy TIoENT
e kT
wobel

M:FN+1 _FN

das chemische Potenzial darstellt, d.h. die Ablei-
tung der freien Energie nach der Teilchenzahl,

_oau
H= ON
Diese thermodynamische Zustandsvariable gibt
an, wie stark sich die Energie des Systems &n-
dert, wenn die Teilchenzahl N (hier: die Zahl
der Elektronen) um eins dndert. Die Besetzungs-
wahrscheinlichkeit hangt also davon ab, ob der
Zustand ¢ oberhalb oder unterhalb des chemi-
schen Potenzials liegt.

Aus (5.8) erhalten wir fiir den Summanden in
(-7

gi—h
Py(EYH! —&i) = eF5T Py (E)).

Wir setzen dieses Resultat in die Summe ein und
erhalten

EiTH
¥ =1—e*T > Pyia(E)).
B

Diese Summe ist aber gerade die Besetzungs-
wahrscheinlichkeit le *1 fiir den i-ten Zustand
in einem System mit N + 1-Elektronen:

gi—H

N %aT £N+1
f’L :1—€kBTfi + .

Wir kénnen diese Form vereinfachen, wenn wir
annehmen, dass die Besetzungswahrscheinlich-
keit sich durch die Verdnderung der Elektronen-
dichte um ein Elektron (also relativ um ~ 10723)
nicht wesentlich andert. Wir kénnen dann fZ.N +
ersetzen durch fiN . Auflésen der Gleichung nach

I ergibt

f,N — ;
t elei—m)/ksT 4 1°

Dies ist die Fermi-Dirac Verteilung, d.h. die Be-
setzungswahrscheinlichkeit fiir Fermionen in ei-
nem Zustand der Energie €;. Der Term +1 im
Nenner stellt sicher, dass die Funktion nicht gro-
fer als 1 wird, dass also kein Zustand mehr als
einmal besetzt werden kann. Die Bose-Einstein
Statistik unterscheidet sich durch ein Minus an
dieser Stelle. In diesem Fall kann die Beset-
zungswahrscheinlichkeit sehr grof werden. Bei
tiefen Temperaturen kondensieren Bosonen des-
halb alle in den Grundzustand. Solche Phanome-
ne sind fiir kollektive Quantenphidnomene ver-
antwortlich, wie z.B. Supraleitung, Suprafluidi-
tat oder Bose-Einstein Kondensation.

5.3.3 Eigenschaften der Fermi-Dirac
Verteilung

Da die Fermi-Temperatur sehr viel hoher ist als
die Raumtemperatur und fiir niedrige Tempera-
turen p ~ kpTp, gilt meistens T' < p/kp. Wir
betrachten die folgenden Grenzfille:

a) €; — 0 : Die Exponentialfunktion geht gegen
null und fiN — 1.

b) €; > wu: Die Exponentialfunktion wird grofs
gegen 1 und fiN — e~ (E=m/kBT Tn diesem Be-
reich néahert sich die Fermi-Dirac Verteilung der
Boltzmann-Verteilung an und fallt exponentiell
gegen Null ab.
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kT =0

o —_
IIIICFIIIIO

Besetzungswahrscheinlichkeit f;

o
o9

Energie 5i/M

Abbildung 5.12: Fermi-Dirac  Besetzungswahr-
scheinlichkeit bei verschiedenen
Temperaturen.

Bei der Temperatur 0 K macht die Fermi-Dirac
Verteilung einen abrupten Ubergang von 1 nach
0 an der Fermikante : alle Zusténde unterhalb
von & sind besetzt, alle oberhalb sind leer. Bei
hoheren Temperaturen wird Population aus der
Néhe der Fermikante in energetisch hohere Zu-
stinde verschoben. Die Breite dieses Ubergangs-
bereiches ist von der Groéfenordnung kgT'. Das
Zentrum des Ubergangsbereichs wird durch das
chemische Potenzial y bestimmt, welches am ab-
soluten Nullpunkt der Fermienergie entspricht.

Im Gegensatz zur Fermienergie ist das chemi-
sche Potenzial aber temperaturabhéingig. Man
kann die Temperaturabhangigkeit berechnen, in-
dem man aus der Besetzungswahrscheinlichkeit
die gesamte Elektronenzahl berechnet:

1
Hier wurde der Index ¢ fiir die Energie des FEi-
nelektronenzustands weggelassen. Fiir eine fe-
ste Elektronenzahl N kann man aus dieser Glei-
chung das chemische Potenzial p bestimmen. Da-
fiir entwickelt man die Differenz der Besetzungs-
wahrscheinlichkeiten bei der Temperatur 7' und
bei T = 0 K als Taylorreihe um £ = p. Daraus
erhalt man fiir die Temperaturabhéngigkeit des
chemischen Potenzials in niedrigster Ordnung in

T
= (1= () 4 ).

Fiir alle relevanten Temperaturen gilt T' < Tx,
so dass hohere Terme in exzellenter Néherung
vernachlassigt werden kénnen.

5.3.4 Die thermische Energie des
Elektronengases

Gemaéfs der klassischen Drude-Theorie sollte die
kinetische Energie der Elektronen wie bei Gas-
teilchen %N kpT sein. Damit sollte die Warme-
kapazitit also Cq ~ 3R/2 betragen, unabhén-
gig von der Temperatur. Experimentell beobach-
tet man aber bei Raumtemperatur einen Wert,
der wesentlich niedriger ist, von der Gréfenord-
nung < 1% des klassischen Wertes, und aufserdem
temperaturabhingig. Erst die Fermi-Dirac Ver-
teilung loste dieses Problem: Wéhrend in einem
klassischen Gas eine Temperaturerhchung um
AT die Energie jedes Teilchens um kpAT/2 er-
hoht, kdnnen die meisten Leitungselektronen kei-
ne Energie von der Gréfenordnung kg1’ aufneh-
men, da in diesem Bereich keine leeren Zustiande
zur Verfligung stehen. Lediglich in der Néhe der
Fermikante, in einem Bereich der Breite ~ kgT
um die Fermi-Energie stehen teilweise gefiillte
Zustdnde zur Verfiigung. Die Zahl der Elektro-
nen in diesem Bereich liegt in der Gréfsenordnung
von T'/Tr mal die Zahl aller Elektronen. Da ty-
pische Werte fiir die Fermi-Temperatur bei rund
10° K liegen betriigt dieses Verhiltnis bei Raum-
temperatur weniger als 1%. Die gleiche Uberle-
gung sagt auch voraus, dass die Energie propor-
tional zum Quadrat der Temperatur sein sollte,

T

Ux NkpT—

x Nkp T

und damit die spezifische Warme proportional
zur Temperatur sein sollte:

dUu T
= — X 2Nkp—.
C dT XX kBTF

Die Rechnung lésst sich in der Tieftemperatur-
Néherung T <« TF auch exakter durchfiihren.
Wir berechnen die gesamte Energie U der Elek-
tronen als Summe iiber die Energie aller besetz-
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ten Einelektronenzustinde als

U - /Ooo de = D(e) £(2) (5.9)

00 €
_ /0 de D) Cempiat 5 1

wobei D(e) die Zustandsdichte und f(e) die Be-
setzungswahrscheinlichkeit bezeichnen.

Die thermische Energie Ur des Elektronengases
bei der Temperatur T entspricht der Erhchung
dieser Energie bei einer Temperaturanderung 7' :
0—1T:

Ur = U(T)-U(0)
= /0 dssD(s)f(e)—/o dee D(e).

Das erste Integral wird in 2 Bereiche aufgeteilt:

(/OEF +/€:o)d55D(s)f(e)
—/OEF de = D(e)

und die Terme mit den gleichen Integrationsgren-
zen werden zusammengefasst:

Ur = /ngdaeD(a) (f(e) = 1)

—i—/oo dee D(e) f(e).

EF

Das erste Integral beinhaltet die Energie, welche
bendétigt wird, um die Elektronen aus den Zu-
stdnden unterhalb der Fermikante zu entfernen,
das zweite Integral die Energie der Elektronen
oberhalb der Fermikante, also in den Zustédnden,
die bei T' = 0 nicht besetzt sind.

Die Anzahl Elektronen muss dabei konstant blei-
ben,

N =

= /OEF de D(e)

Diese Identitdt kann mit der Fermienergie ep
multipliziert werden:

[+ j)de cr D) f(2)

eF
= / deerp D(e).
0

Wir addieren die rechte Seite zur thermischen
Energie und subtrahieren die linke Seite und er-
halten

Ur =

Die entspricht einer Verschiebung des Energie-
nullpunktes: die Energien werden jetzt relativ
zur Fermienergie berechnet.

Das erste Integral bezeichnet die Energie, welche
bendétigt wird, um die Elektronen aus einem be-
setzten Zustand an die Fermikante anzuheben,
das zweite die Energie, welche zusatzlich aufge-
bracht werden muss, um sie von der Fermikante
in einen leeren Zustand oberhalb zu bringen. Bei-
de Beitrige zur Energie sind positiv. Abb. [5.13
zeigt diesen Beitrag in der unteren Kurve.

5.3.5 Spezifische Wirme

Wir suchen nun die spezifische Warme, also die
Anderung der inneren Energie Ur pro Tempe-
raturdnderung. Der einzige Term in Gleichung

(5.9), resp. (5.10), der sich mit der Tempera-

tur dndert, ist die Besetzungswahrscheinlichkeit
f(&). Wir erhalten deshalb

Cu= 21 /dee—ep 1D(e) 2.
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Anderung der Besetzun

df (e)

E—EFR

Anderung der Energie

3

Abbildung 5.13: Anderung der Besetzung und
Anderung der Energie bei end-
licher Temperatur.

Da sich die Besetzungswahrscheinlichkeit nur in
der Nédhe der Fermikante wesentlich dndert, ver-
schwindet der Integrand fiir Energien weit von
der Fermienergie. Wir konnen deshalb die Zu-
standsdichte in guter Naherung durch den Wert
an der Fermikante ersetzen, D(¢) — D(ef), und
aus dem Integral herausziehen:

Ce = D(ep) /OOO de(e — 5F)d{l(;). (5.11)

Fiir die Berechnung der Anderung der Beset-
zungswahrscheinlichkeit approximieren wir das
chemische Potenzial durch die Fermienergie:

1
ce—er)/kpT 4 1

f=

Dies ist eine gute Ndherung bei niedrigen Tem-
peraturen. Damit wird die Ableitung nach der
Temperatur

i c—en  eleer)kaT
dT kgT? (e(a—EF)/k?BT_Fl)T

Einsetzen in ((5.11) ergibt die Warmekapazitét

o) 2
E—EF
kgD d
b (EF)/O 8</<?BT>

e—er)/ksT

Cel =

e(
(ele—er)/ksT 4 1)%

Fiir die Integration verwendet man die Abkiir-
zung x = (¢ —ep)/kpT und de = dx kpT":

o0 x

kLT D ep/ da:eri
5T D(er) —ep/ksT (ez+1)2
00 1:2

r—.
er+2+4e%

(5.12)

Cel =
= k3TD(cr) /

—ep/kgT

04

03

X

Abbildung 5.14: Grafische Darstellung des Inte-

granden in GI. .

Abbildung[5.14]zeigt eine graphische Darstellung
des Integranden. Er fillt fir |z| > 1 exponen-
tiell ab. Fiir Temperaturen weit unterhalb der
Fermitemperatur, k7T < e, d.h. im gesamten
interessanten Bereich, kann die untere Integra-
tionsgrenze deshalb auf -co gesetzt werden. Das
resultierende Integral ist nicht trivial, kann aber
bestimmt werden und hat den Betrag

/ood 1‘2 71.2
r——=—".
oo ETF 2477 3

Damit wird

7T2
Cy = /-c?BTD(gF)?

Die Zustandsdichte an der Fermikante erhalten
wir aus (|5.5)

(2m)3/2
2m2h3

= \/{:‘FV
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nach Erweiterung mit 1 als

) 3
(2m)5/2 —3/2 hQ 2 37T2N
D = / —
(€r) erV om2p3 F 2m 1%
_ 3N _ 3N
28 2kpTy’
sodass
2
T
C. = %k:BNT—F (5.13)

wird. Offenbar wéchst die elektronische Warme-
kapazitat proportional zur Temperatur und er-
reicht erst in der Nahe der Fermitemperatur den
Wert von Dulong-Petit. Bei niedrigeren Tempe-
raturen ist die Warmekapazitiat somit um etwa
das Verhéltnis T/Tr geringer.

Gleichung (5.13) wird auch gerne als Cy = T
geschrieben. Der theoretische Wert fiir v, bezo-
gen auf 1 Mol, d.h. N = N4 ist

WQNAk% B 7r2NAk:]23
7T Togr T 2(k2/2m)(3n2n)2/3
(m/3)2/3N Ak _

und hat die Einheit

J

bl = mol K2°

Hier wurde Tp — Er/kp gesetzt.

5.3.6 Vergleich Elektronen /
Phononen

Gemessen wird nie die elektronische Wéarmeka-
pazitédt alleine, sondern die gesamte Wéarmeka-
pazitét, welche sich aus einem phononischen und
einem elektronischen Teil zusammensetzt. Zwi-
schen der Debye-Temperatur und der Fermitem-
peratur dominiert somit der phononische An-
teil. Flir Temperaturen unterhalb der Debye-
Temperatur erwarten wir eine Temperaturab-
héngigkeit der Form

¢

C =~T + AT? oder T =y 4+ AT2

Hier stellt « den elektronischen und A den pho-
nonischen Anteil dar. Diese Beziehung stellt man
gerne in der in Abb. gezeigten Form dar: das
Verhéltnis C'/T wird gegen das Quadrat der ab-
soluten Temperatur aufgetragen.

5 S T T

5
= 4 - -
© c 2
o = =7+tAT KCl
o N~ T
gx
kg3
==
® S5
NEal .
g2
=
X O
[CRS)
c 1 Cu s
S
:(;U
(1] e 1 1
0 5 10 15

Temperatur? / K2

Abbildung 5.15: Vergleich der Temperaturab-
hangigkeit der Warmekapazita-
ten des Isolators KCI und des
Metalls Cu.

In dieser Darstellung zeigt der Achsenabschnitt
den Beitrag der Elektronen, die Steigung den
Beitrag der Phononen. Der elektronische Beitrag
sollte also fiir sehr tiefe Temperaturen dominie-
ren. Abb. zeigt dass dies fiir Cu der Fall
ist. Da KCI keine freien Elektronen besitzt, ver-
schwindet hier der elektronische Beitrag zur spe-
zifischen Wéarme: die entsprechende Kurve hat
Achsenabschnitt Null.

Phononen Elektronen
w(k) E(k)
k ' k
(1) = 1 1
I(E, )76%— f€.1) = E—fp
e BT 41

Abbildung 5.16: Vergleich der Dispersion und
Statistik fiir
Elektronen.

Phononen und
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Die unterschiedliche Temperaturabhéingigkeit
fir Elektronen und Phononen kann auf zwei
fundamentale Unterschiede zwischen den beiden
Arten von Teilchen zuriickgefiihrt werden. Zum
einen sind Phononen Quasiteilchen, welche er-
zeugt und vernichtet werden konnen (Ruhemasse
= 0), wihrend fiir Elektronen Teilchenzahlerhal-
tung gilt, da deren Ruhemasse endlich ist. Die
unterschiedliche Ruhemasse fithrt auch zu unter-
schiedlichen Dispersionsrelationen, wie in Abb.
dargestellt. Zum andern unterliegen Elek-
tronen im Gegensatz zu Phononen dem Pauli-
Prinzip, da sie einen Spin //2 besitzen, wihrend
Phononen Bosonen sind. Dies fiihrt zu einer un-
terschiedlichen Statistik (Fermi-Dirac vs. Bose-
Einstein).

5.3.7 Effektive Masse

Element Yth Yexp Element  ym Yexp

1074 1074J 1074J 1074J

Mol K2 Mol K2 MolK2 Mol K2
Li 7.5 17.5 Fe 6.3 50.1
Na 10.9 14.6 Mn 6.3 167.1
K 16.7 19.6 Zn 75 5.8
Rb 19.2 24.2 Cd 9.6 71
Cs 221 32.2 Hg 10.0 20.9
Cu 5.0 6.7 Al 9.2 12.5
Ag 6.3 6.7 Ga 10.0 6.3
Au 6.3 6.7 In 12.1 18.0
Be 5.0 2.1 T 13.0 14.6
Mg 10.0 134 Sn 13.8 18.4
Ca 15.0 27.2 Pb 15.0 29.2
Sr 18.0 36.3 Bi 18.0 0.8
Ba 19.6 27.2 Sb 16.3 6.3
Nb 6.7 83.6

Tabelle 5.4: Vergleich der theoretischen und ex-
perimentellen Wérmekapazitaten ei-
niger Elemente.

Ein Vergleich der gemessenen und berechneten
elektronischen Warmekapazitat (— Tab.
zeigt, dass die beobachteten Werte in der richti-
gen Grofenordnung liegen, aber nicht quantita-
tiv exakt sind. Dies liegt zum einen daran, dass
die Dichte der freien Elektronen teilweise schwie-
rig zu bestimmen ist. Ein Beispiel dafiir sind die
Ubergangsmetalle, wo an der Fermikante sowohl
die Elektronen aus den d-Orbitalen, wie auch
diejenigen aus den s-Orbitalen beitragen.

o m*/m, ~ 200
1000, *—’_;Hﬁ—»—_
800}
9 i | I A | L 1] 1 1
1000 |~ 0 0.2 04 06 08 10 12 14 16
- -
200l .
o 3
<] CeCu,Si,
r—{ 600}~ -
g2
g r ]
4005 —~
Ol~ [ '
.
m—.. —
L1 1 1 1 1 1 S Y (SO RO (S
"o 200 400 600 800 1000 120C
T? [K?]

Abbildung 5.17: Warmekapazitdt als Funktion
der Temperatur fiir Metalle mit
4f und 5f Elektronen.

Wie Abb. zeigt, gibt es viele Verbindungen,
bei denen das beobachtete Verhalten stark von
der Erwartung abweicht. So steigt hier die War-
mekapazitit bei tiefen Temperaturen wieder an.

Laut Gleichung ist die Wéarmekapazitat
proportional zur Masse der Elektronen. Deshalb
beschreibt man den Unterschied zwischen den
experimentellen und dem theoretischen Wert der
Wirmekapazitit gerne iiber eine Anderung der
effektiven Elektronenmasse. Einige intermetalli-
sche Verbindungen von seltenen Erden und Acti-
noiden (also Elementen mit f-Elektronen) zeigen
bei niedrigen Temperaturen extrem hohe Wiér-
mekapazititen, welche einer effektiven Elektro-
nenmasse von rund 1000 m, entsprechen. Die-
se Anderungen der effektiven Masse konnen im
Rahmen des Bandermodells als Kopplung an die
Atomriimpfe teilweise erklért werden (— Kap.[6]

Abb. F18).

AAA

Abbildung 5.18: Gitterpotenzial fiir schwere Fer-
mionen.

Bei solchen Verbindungen spricht man héufig
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von “schweren Fermionen”. Sie haben verschiede-
ne interessante Eigenschaften. So bilden sie eine
spezielle Klasse von Supraleitern, die “exotischen
Supraleiter”.

5.4 Elektrische Leitfahigkeit

5.4.1 Beschleunigung

Die Fahigkeit, elektrischen Strom zu leiten, ge-
hort zu den charakteristischen Eigenschaften der
Metalle. Sowohl die klassische Drude-Theorie
wie auch die quantenmechanische Theorie bie-
ten einen Ansatz fiir die Erklarung dieses Phé-
nomens. Wir diskutieren hier einen halbklassi-
sche Beschreibung, d.h. wir verwenden klassische
Bewegungsgleichungen, beriicksichtigen aber die
Fermi-Dirac Verteilung.

Elektrischer Strom wird durch die freien Elek-
tronen getragen. Deren Reaktion auf das ange-
legte elektrische Feld bestimmt deshalb die Be-
ziehung zwischen Strom und Spannung, welche
im Rahmen dieser Theorie mit dem Ohm’schen
Gesetz ilibereinstimmt. Die meisten freien Elek-
tronen bewegen sich mit einer relativ hohen Ge-
schwindigkeit; die Fermigeschwindigkeit liegt bei
rund 10° m/s. Da die Verteilung der Geschwin-
digkeiten ohne ein dufseres Feld isotrop ist, findet
jedoch netto kein Ladungstransport statt.

Perfekte Metalle konnen prinzipiell Strom leiten
auch wenn kein elektrisches Feld anliegt. Rea-
le Metalle weisen jedoch immer einen endlichen
Widerstand auf — mit Ausnahme der Supralei-
ter, welche nicht als normale Metalle beschrieben
werden konnen und in einem spéteren Kapitel
noch behandelt werden.

Werden auftere Felder an ein Metall angelegt, so
bewirken diese auf die Elektronen eine zusétzli-
che Kraft

- 4y dk . .
Fe=m@ —pY = cEvoxB. (.1
m— hdt elE+ v x B]. (5.15)

Gleichzeitig konnen wir die Geschwindigkeit
schreiben als

. dF hk

U= =—.

dt — m

Diese Verhalten wiirde man auch quantenmecha-
nisch erhalten, wenn man ein Wellenpaket be-
schreibt.

Wir betrachten hier zunéchst nur elektrische Fel-
der E, welche offenbar zu einer gleichférmigen
Beschleunigung fithren. Vor Anlegen eines elek-
trischen Feldes besetzen die Elektronen die Zu-
stande im Inneren der Fermikugel. Unter dem
Einfluss des elektrischen Feldes, welches zur Zeit
t = 0 eingeschaltet wird, dndert sich der Impuls,
respektive der Wellenvektor der Elektronen zu

k() — K(0) = — < Et,
h

d.h. er nimmt linear mit der Zeit zu. Dies ist in
einem Metall fiir einzelne Elektronen nicht mog-
lich, da es durch eine Impulsédnderung in einen
Zustand tiibergehen wiirde, der bereits durch ein
anderes Elektron besetzt ist. Da die Felder auf
alle Elektronen wirken, wird jedoch die gesamte
Fermikugel verschoben um eine Distanz, welche
linear mit der Zeit wéchst. Fiir das gesamte Sy-
stem von N Elektronen wird der Impuls damit

plt) =D hkn(t) = —NeEit.

Hier wurde beriicksichtigt, dass der Gesamtim-
puls vor Einschalten des Feldes verschwindet,

7(0) = 0.

5.4.2 Stole

In Wirklichkeit dauert die Beschleunigung der
Elektronen nicht beliebig lange, sondern nur bis
die Elektronen einen Stofs ausfilhren. Bei ei-
nem Stoft wird kinetische Energie vom Elektron
auf das Gitter {ibertragen. Im Rahmen dieses
Modells wird dabei angenommen, dass die Ge-
schwindigkeit des Elektrons thermalisiert wird,
d.h. sie kehrt zur Fermi-Dirac Verteilung zuriick.
Wenn die Thermalisierung im Mittel eine Zeit 7
beansprucht, erreichen die Elektronen im Mittel
einen Impuls, der sich um

hék = —eET
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vom thermischen Gleichgewicht unterscheidet.
Die Fermikugel im k-Raum wird somit um die-
sen Betrag gegeniiber dem Ursprung verschoben
und der resultierende Gesamtimpuls wird

p= ZﬁEn = —NeET
n

Fermikugel beiE>0
,'///

Fermikugel bei E=0

Abbildung 5.19: Verschobene Fermikugel im
elektrischen Feld.

Da die Geschwindigkeit der Elektronen direkt
proportional zum k-Vektor ist,
2 hk B eET

17 — )
m m m

konnen wir daraus die Stromdichte berechnen:

j=n(—e)7 = ne’*rE/m.

Hier stellt n die Anzahl Leitungselektronen pro
Volumeneinheit dar. Der Strom ist somit propor-
tional zur Feldstirke, wie im Ohm’schen Gesetz.
Die Proportionalitétskonstante ist die spezifische
elektrische Leitfahigkeit

1
o= nezl; [0] = —
m

(5.16)

und der Kehrwert

1 m

p_a_nezT

[p] = Qm

ist der spezifische elektrische Widerstand. Die-
ses Resultat ist identisch mit der Voraussage des
klassischen Modells.

Prinzipiell sind alle diese Gréfen anisotrop. Ent-
sprechend wird die Leitfdhigkeit im allgemeinen
Fall durch einen Tensor beschrieben. Wir be-
schrinken uns hier jedoch auf den isotropen Fall.

Element | 77 K [ 273 K [ 373 K |

Li 7.3 0.88 0.61
Na 17 3.2
K 18 4.1
Rb 14 2.8

Tabelle 5.5: Relaxationszeiten fiir einige Alkali-
metalle in Einheiten von 10714 s.

Offenbar ist die Leitfahigkeit proportional zur
Zeit zwischen zwei Stofen. In sehr sauberen Me-
tallen kann bei tiefen Temperaturen eine freie
Weglange von bis zu 10 cm erreicht werden. Die
Geschwindigkeit der Elektronen kann unter die-
sen extremen Bedingungen mehrere Prozent der
Lichtgeschwindigkeit erreichen.

5.4.3 Widerstand

Streuung von Ladungstrigern findet vor allem
an Gitterfehlern statt. Dabei kann man zwi-
schen statischen Gitterfehlern (Fehlstellen und
Verunreinigungen) und dynamischen Gitterfeh-
lern (Schwingungen, Phononen) unterscheiden.
Die beiden Prozesse tragen additiv zum spezi-
fischen Widerstand bei,

1
p=—=pp+pi
g

wobei pp den Beitrag der Phononen beschreibt
und p; den Beitrag der statischen Gitterfeh-
ler. Diese Aufteilung des spezifischen Wider-
standes wird als MatthiesserP} Regel bezeichnet.
Dementsprechend kann man die Beitrége zur Re-
laxationszeit 7 unterteilen:

1 1 1

_l’_

T TDefekt

M
TPhonon

wobei Tpefekt die Zeit bis zur Streuung an einem
Defekt bezeichnet und 7Tpponon die Zeit bis zur
Streuung an einem Phonon. Die letztere ist stark
von der Temperatur abhéngig, die erstere nicht.

®Nach Augustus Matthiessen (1831 - 1870)
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Deshalb wird der Widerstand bei Raumtempe-
ratur hauptséchlich durch Streuung an Phono-
nen verursacht, wahrend bei tiefen Temperatu-
ren Stofse mit Gitterfehlern und Fremdatomen
dominieren.

'E 20t

S x T°

"o_ L

>

2

§ 10

&

35

= | Restwiderstand

N

8 0 | | | | e

® -0 10 20
Temperatur T [K]

Abbildung 5.20: Tieftemperaturverhalten  des

spezifischen Widerstandes.

Da die Phononen bei tiefen Temperaturen ver-
schwinden, bleibt dann nur noch der Beitrag
der Kristallfehler zuriick. Dieser Beitrag ist je
nach Probe unterschiedlich. Abb. [5.20 zeigt den
temperaturabhiangigen Widerstand, welcher bei
tiefen Temperaturen in einen konstanten Wert

iibergeht.
G o
S
5
g 5t _
S pu‘)"/
S - WLMM \
4 -
% zwei verschiedene Proben
[ d
8 P
= o~
g 21 ;ﬂ}(‘(
E et e i
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Abbildung 5.21: Tieftemperaturverhalten  des
spezifischen Widerstandes fiir
zwei unterschiedliche Proben
aus Kalium.

Abb. zeigt 2 Datensétze, welche an unter-
schiedlichen Proben von Kalium gemessen wur-
den. Im Tieftemperaturbereich tragen vor allem
Gitterfehler bei, welche bei den beiden Proben
in unterschiedlichem Mafe vorhanden sind. Uber
solche Messungen kann man die Konzentration
von Verunreinigungen bestimmen. Typische Wi-
derstandswerte fiir Fremdatome liegen bei etwa
1079 Qcm pro Atom-% Verunreinigung.

5.4.4 Streuung an Phononen

Bei hoheren Temperaturen treten auch “dynami-
sche Kristallfehler” auf, ndmlich Phononen. De-
ren Beitrag zum elektrischen Widerstand wird
am besten als Emission oder Absorption eines
Phonons durch ein Elektron beschrieben. Sowohl
Energie wie auch Impuls muss bei diesen Prozes-
sen erhalten bleiben, d.h.

Ek = Ek! + ﬁw(k - k/),

wobei k, k' die Wellenzahlen des Elektrons vor
und nach dem Streuprozess bezeichnen, w(q) die
Phononenfrequenz.

An diesen Streuprozessen kénnen praktisch nur
Elektronen in der Néhe der Fermikante teilneh-
men, da fiir die anderen keine freien Zustdnde
zur Verfiigung stehen. Somit gilt e ~ ey ~ epv.

, k-k’

ék/’\/\/'

Abbildung 5.22: Elektron-Phonon Streuung.

Die Zahl solcher Streuprozesse kann bei hohen
Temperaturen als proportional zur Phononen-
zahl angesetzt werden, d.h. zu

1
<77,> = 6hw/kBT _ 1

Ist die Temperatur oberhalb der Debye-
Temperatur, w < kT, so wachst die Phono-
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nenzahl

(n)

N 1 kT
T4+ -1 hw
d.h. proportional zur Temperatur. Damit nimmt

auch die Anzahl Stofle und der elektrische Wi-
derstand o T zu.

5.4.5 Temperaturabhingigkeit

Brillouin-Zone

(4
o5

&
QQ}

[ \

e

Wellenvektor ky

Wellenvektor kx
Abbildung 5.23: Umklapp-Streuprozess.

Bei Temperaturen in der N&éhe und ober-
halb der Debye-Temperatur spielen Umklapp-
Prozesse (G # 0) eine wichtige Rolle. Abb. [5.23
zeigt schematisch die Streuung eines Elektrons
von einem Zustand nahe der Fermikante. Unter
Erzeugung eines Phonons und eines Gittervek-
tors streut das Elektron praktisch auf die ent-
gegengesetzte Seite der Fermifliche. Der fiir ei-
ne Riickwartsstreuung erforderliche Phononen-
impuls muss bei weitem nicht so grofl sein wie
bei einem Normal-Prozess. Dafiir werden Phono-
nen mit Energien in der Grofienordnung der hal-
ben Debye-Energie benotigt. Deren Zahl nimmt
mit abnehmender Temperatur exponentiell ab.
Umklapp-Prozesse sind bei “mittleren” Tempe-
raturen relevant.

Bei Temperaturen deutlich unterhalb der Debye-
Temperatur werden Normal-Prozesse wichtiger
als Umklapp-Prozesse. Im Rahmen des einfa-
chen Modells von Kapitel konnen wir ab-
schétzen, dass die Zahl der Phononen mit Fre-
quenz w ~ kgT/h mit T? abnimmt. Die Wahr-
scheinlichkeit, dass solche Streuprozesse stattfin-
den, sinkt aukerdem mit 1/7", da Phononen mit

Abbildung 5.24: Streuprozess nahe bei der Fer-
mikante.

grofer Wellenlange eine geringere Wahrschein-
lichkeit fiir einen Absorptions-/Emissionsprozess
besitzen.

Die Energie eines Elektrons an der Fermikan-
te (=10 eV) ist viel grofer als die Energie des
entsprechenden Phonons (=~ kT & 25 meV bei
Raumtemperatur). Fiir die Elektronen sind diese
Streuprozesse somit beinahe elastisch, sie bleiben
in der Ndhe der Fermikante. Dadurch wird der
Streuwinkel bei Normalprozessen gering, d.h. die
Elektronen streuen fast vollstdndig in Vorwérts-
richtung. Sie werden dadurch nicht mehr voll-
standig thermalisiert, sondern ihre Geschwindig-
keit sinkt proportional zu 1 — cos o, wobei « der
Streuwinkel ist. Wie in Abb. dargestellt, ist
dieser proportional zur Wellenzahl kp der Pho-
nonen, welche linear mit 7" abnimmt. Damit ist
die Geschwindigkeitsénderung pro Stofs propor-
tional zu T?2. Insgesamt ergibt sich dadurch eine
Abnahme des elektrischen Widerstandes mit 7.
Dies kann in Abb. qualitativ tiberpriift wer-

den.

Abb. zeigt die Temperaturabhingigkeit des
elektrischen Widerstandes fiir verschiedene Me-
talle. Dabei sind Temperatur und Widerstand
auf die Debye-Temperatur reduziert. Im oberen
Bereich ist das Verhalten linear, im Tieftempe-
raturbereich oc 7.

5.4.6 Der Hall-Effekt

In einem Magnetfeld muss in der Bewegungsglei-
chung auch die Lorentzkraft beriicksichtigt wer-
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Abbildung 5.25: Temperaturabhéngigkeit  des
spezifischen Widerstandes fiir
verschiedene Metalle.

den:
F = —¢[E +7x Bl

Wir suchen nun die stationdre Verschiebung 5k
der Fermikugel aus der Bewegungsgleichung fiir
den Impuls

@
o de T dt
B L0k
= —e[E+Ux B]—-h— =0,
T

dok
dt

wobei 7 die Thermalisierungszeit (durch Stofe)
des Impulses darstellt.

EX
& & BZ ® ® & &
& & ® ® & &

Abbildung 5.26: Bewegung von Elektronen in
gekreuzten F/B Feldern.

Wir betrachten den Fall, wo ein Magnetfeld par-
allel zur z-Achse angelegt ist, B = (0,0, B).
Dann wird

Tx B = (vyB, —v;B,0).

und die stationédre Losung der Bewegungsglei-
chungen fiir die drei Geschwindigkeitskomponen-
ten ist

Vs = —e(E, + Buy)
Tvy = —e(Ey — Buy)
-

Tvz = —ekF,.

Man schreibt dies gerne als

Vp = —%Em—wchy

vy = —%Ey—l—wchx

v, = ~LR, (5.17)
wobei

wc:% (5.18)

die Zyklotronfrequenz darstellt. Offenbar verlau-
fen die Bahnen der Elektronen jetzt nicht mehr
parallel zum elektrischen Feld, sondern werden
in der xy-Ebene abgelenkt. Der Ablenkwinkel ist
durch das Produkt w.7 aus Zyklotronfrequenz
und Stofzeit gegeben. Dies wird als Hal]ﬁ-Eﬁekt
bezeichnet.

E,
® ®Bz® ® ® ®
+ + + + + +
Ef° @ .5 e
® ® ® ® ® ®

Abbildung 5.27: Gleichgewichtszustand
kreuzten E/B Feldern.

in ge-

Wir betrachten nun den Fall, dass das &ufe-
re elektrische Feld entlang der xz—Achse liegt
und ein Strom entlang der x-Achse flieftt, d.h.
wir setzen vy, = v, = 0. Aus der obigen Glei-
chung sehen wir, dass der Strom in z-Richtung
durch das Magnetfeld in y-Richtung abgelenkt
wird. Wir kénnen somit nur dann eine verschwin-
dende Bewegung in y-Richtung erhalten, wenn

SEdwin Herbert Hall (1855 - 1938)

150



5 Freie Elektronen

diese Lorentzkraft durch eine entgegengerichtete
Coulomb-Kraft, d.h. durch ein elektrisches Feld
kompensiert wird. Geméfs Gleichung be-
dingt dies fir den stationéren Fall, dass

T

vy = —e—F,
m

(5.19)
und
0= —elEy + WeTV.
m

Auflésen nach E, ergibt

m
Ey = U.)C’Uw;.

Mit dem stationdren Wert von v, (5.19) wird

daraus
T m
E)=—e—FEw.— = —Tw.E;.
m e

Wenn wir den Ausdruck (5.18) fiir die Zyklotron-

frequenz verwenden, entspricht dies

eT
By=—E,B—. (5.20)

Es entsteht also eine Spannung, welche senkrecht
auf der Richtung des Stroms und dem magneti-
schen Feld liegt.

5.4.7 Hall-Konstante

Als Hall-Konstante
Ey

B

bezeichnet man das Verhéltnis der Spannung
zum Produkt aus Stromdichte j, und Magnet-
feldstarke B. Wir schreiben die Stromdichte als
das Produkt aus Driftgeschwindigkeit v, und La-
dungsdichte —en und erhalten

n€27'

E,.
m

Je = —envy =

Mit der Beziehung (5.20) zwischen E, und E,

erhalten wir

A —LeerB/m 1
(ne?r/m)E,B ne’

d.h. sie entspricht der inversen Ladungsdichte
und ist fiir freie Elektronen negativ. Je niedriger
die Dichte der Ladungstréger, desto grofer ist al-
so die Hall-Konstante und damit die Hall Span-
nung E,. Dies kann man qualitativ so verstehen,
dass der gleiche Strom bei niedriger Ladungs-
tragerdichte nur durch eine héhere Geschwindig-
keit und damit durch eine hohere Lorentzkraft
erreicht wird. Die Hall-Konstante ist eine Mog-
lichkeit, die Ladungstragerkonzentration n expe-
rimentell zu bestimmen. Sie ist (theoretisch) un-
abhéngig von B und fiir freie Elektronen immer
negativ.

Metall # Valenz- -1
elektronen Ryne
Li 1 0.8
Na 1 1.2
K 1 1.1
Rb 1 1.0
Cs 1 0.9
Cu 1 15
Ag 1 13
Au 1 15
Be 2 -0.2
Mg 2 0.4
In 3 -0.3
Al 3 -0.3

Tabelle 5.6: Beispiele von Hall-Konstanten.

Tabelle zeigt einige Hall-Konstanten bei tie-
fen Temperaturen, jeweils als Verhéltnis aus der
Ladungsdichte zur gemessenen Hall-Konstanten.
Offenbar passt diese einfache Theorie recht gut
fiir die Alkalimetalle, weniger gut fiir die Edel-
metalle, und fiir die letzten vier Elemente gar
nicht.

Oberflachenkanal Hallspannungssonde

Quelle Senke

Tor

Potenzialsonden

Abbildung 5.28: Messanordnung fiir die Mes-
sung von Hall-Spannungen.

Die Messung der Hall-Konstante (— Abb.
dient deshalb auch zur experimentellen Bestim-
mung der Ladungstragerkonzentration.

Eine andere Anwendung des Hall-Effekts ist die
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Messung der Magnetfeldstéirke, z.B. iiber Glei-
chung . Dafiir muss der Sensor zuerst ka-
libriert werden, da die Ladungstréagerdichte und
die Stofszeit herstellungsmaéssig und temperatur-
abhéngig variieren.

Die Hall Konstante hat auch das gleiche Vor-
zeichen wie die Ladung der beweglichen Teil-
chen. Sie kann somit auch Auskunft geben iiber
das Vorzeichen der Ladung der Ladungstréger.
Wir haben hier angenommen, dass es sich um
Elektronen, also negative Teilchen, handelt, und
erhalten wie gezeigt eine negative Konstante.
Wenn es sich um Locher, also positive Ladungs-
trager handelt, so wird auch die Konstante po-
sitiv. Diese Art der Leitung wird in Kapitel
behandelt.

5.4.8 Der Quanten-Hall-Effekt

Eine besondere Art des Hall-Widerstandes tritt
auf bei tiefen Temperaturen in zweidimensiona-
len Elektronensystemen. In diesem Fall ist der
Hall-Widerstand nicht mehr proportional zum
Magnetfeld, sondern er nimmt in Stufen zu. Man
bezeichnet diese als Quanten-Hall Effekt (QHE).
Er wurde wurde 1930 von Landau postuliert.

- -
[ = )

Hall Widerstand pyxy, [kQ]

L

1;; 4 5 6
Magnetfeld B [T]

Longitudinaler
Widerstand pxx [Q]

Abbildung 5.29: Hall Widerstand von Al-
GaAs/GaAs bei T=8 mK als
Funktion der Magnetfeldstérke.

Wie in Abb. gezeigt, betrifft dies sowohl
den longitudinalen Widerstand, also den Span-
nungsverlust iiber der Probe dividiert durch den
Strom, wie auch den Hallwiderstand, also die
Spannung senkrecht zur Probe dividiert durch
den Strom. Der longitudinale Widerstand ver-
schwindet, aufer fiir bestimmte Werte des Fel-
des, wahrend der transversale Widerstand bei
diesen Werten stufenférmig zunimmt. Die Pla-
teauwerte zwischen den Stufen sind unabhéngig
von der Probe oder den Materialeigenschaften.
Ihre Werte sind

h R
1€ 7

Die Klitzing-Konstante Ry hat den Wert

h 6,63 - 1073
e (1,60 -10-19)

Q) ~ 25,812807 k2
und wird inzwischen zur Norm-Definition des
elektrischen Widerstandes verwendet. In Gra-
phen kann der QHE auch bei Raumtemperatur
beobachtet werden.

Dieser Effekt wird auch als integraler Quanten-
Hall-Effekt (QHE) bezeichnet, weil die Nenner
ganze Zahlen sind. Dementsprechend findet man
auch einen gebrochenzahligen, fraktionalen oder
fraktionierten QHE, bei dem die Nenner die
Form von Briichen annehmen. Beide Falle kon-
nen durch die Bildung von Zustédnden erklért
werden, bei denen die Flussquanten und Elek-
tronen Quasiteilchen bilden, wobei beim gebro-
chenzahligen QHE mehrere Elektronen beteiligt
sind.

5.5 Warmeleitung in Metallen

Die Tatsache, dass Metalle sich bei niedrigen
Temperaturen sehr kalt und bei hohen Tempe-
raturen sehr heifs (im Vergleich zu anderen Ma-
terialien) anfiihlen zeigt, dass sie gute Wérme-
leiter sind. Als Beispiel hat Kupfer in der Ndhe

"Klaus von Klitzing (*1943) Nobelpreis 1985
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von Raumtemperatur einen Warmeleitkoeffizien-
ten von etwa 400 W/mK, wihrend typische Iso-
latoren bei etwa 1 W/mK liegen. Der Grund ist,
dass freie Elektronen sehr viel effizienter Wir-
me iibertragen als Phononen und deshalb in Me-
tallen den dominanten Beitrag liefern. In diesem
Kapitel wird deshalb der Beitrag der freien Elek-
tronen zur Wéarmeleitung diskutiert.

5.5.1 Ansatz

Die Warmeleitfahigkeit einer Probe wird gemes-
sen, indem man sie thermisch isoliert, auf der
einen Seite heizt, und auf der anderen Seite
die Temperatur misst. Wie im Falle der Git-
terschwingungen (— Kapitel [4) verwendet man
auch hier den Ansatz aus der kinetischen Gas-
theorie

A= éCvE
fiir die Warmeleitung X eines idealen Gases mit
Wirmekapazitit C', Geschwindigkeit v und mitt-
lerer freier Weglénge ¢. Wir benutzen den Aus-
druck fiir die elektronische Warmekapazi-
tat

2

Co = ZanTTF
Wir hatten bereits im Rahmen der Theorie der
spezifischen Warme gesehen, dass nur die Elek-
tronen in der Nihe der Fermikante durch Sto-
Ke Energie mit dem Gitter austauschen. Diese
sollten auch den dominanten Beitrag zur War-
meleitfahigkeit liefern. Dementsprechend setzen
wir fiir die Geschwindigkeit die Fermigeschwin-
digkeit v ein und fiir die mittlere freie Weglan-
ge das Produkt aus Fermi-Geschwindigkeit und
Stofszeit, £ = vp 7. Damit wird die Warmeleitfa-
higkeit

Die Fermi-Geschwindigkeit vg ist eine Funktion
der Fermi-Energie
26F 2]€BTF

2 _ _
Vp = = .
m m

Damit wird die Warmeleitfahigkeit

\ = ﬁk%nTT
3 m

(5.21)

5.5.2 Temperaturabhingigkeit

Die Wirmeleitfahigkeit sollte also proportional
zur Temperatur und zur mittleren Stofszeit 7
sein. Die Stofzeit ist stark temperaturabhéngig
und diese Abhéingigkeit iberwiegt bei Tempera-
turen iiber 20 K.

Warmeleitfahigkeit 1
\
R
3

Temperatur T

Abbildung 5.30: Verhalten der Warmeleitfahig-
keit bei tiefen Temperaturen.

Abb. [5.30] zeigt qualitativ das erwartete Verhal-
ten fiir die freie Wegldnge, die Warmekapazi-
tat und deren Produkt. Bei tiefen Temperaturen
wird die Stofzeit konstant und die Temperatur-
abhéngigkeit der Warmeleitung wird durch die
Wiérmekapazitit bestimmt, welche o T ist. Bei
hoheren Temperaturen werden freie Wegléange £,
respektive die Stofizeit T kiirzer, wie in Kap.
diskutiert, so dass die Warmeleitfahigkeit wieder
abnimmt.

Abb. [5.31 zeigt als Beispiel die Warmeleitféhig-
keit von Kupfer als Funktion der Temperatur.
Sie geht offenbar durch ein Maximum, wie wir
es fiir den Fall freier Elektronen erwarten. Das
Verhalten ist somit qualitativ dhnlich wie bei
der Warmeleitung durch Phononen, doch nimmt
die Warmeleitfahigkeit bei tiefen Temperaturen
nicht mit 73, sondern mit T ab.
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Abbildung 5.31: Temperaturabhéngigkeit  der

Wairmeleitfahigkeit von Kupfer.

Die Warmeleitfahigkeit enthélt, wie im Kapitel
4 gezeigt, aukerdem Beitrdge der Phononen. Im
allgemeinen iiberwiegt der Beitrag der Elektro-
nen, insbesondere in “guten” Metallen. Metalle
sind deshalb bessere Warmeleiter als dielektri-
sche Materialien, wie z.B. ionische Kristalle. In
verunreinigten Metallen und ungeordneten Le-
gierungen nimmt der elektronische Beitrag zur
Warmeleitung stark ab, wahrend der Beitrag der
Phononen relativ konstant bleibt und deshalb
vergleichbar und in Isolatoren dominant werden
kann.

5.5.3 Vergleich elektrische /
thermische Leitfahigkeit

Man kann die thermische Waéarmeleitfahigkeit

(5.21) mit der elektrischen Leitfahigkeit ((5.16)

vergleichen. Man sieht aus der obigen Behand-
lung, dass sie die gleiche Tendenz zeigen sollten:
Beide sind proportional zur Ladungstrégerdichte
n und zur mittleren Stofszeit 7. Das Verhéltnis
zwischen den beiden Werten,

A 77214:%

o 3e2

sollte direkt proportional zur Temperatur T sein.
Diese Beziehung wird als Wiedemann—Fran Ge-
setz bezeichnet. Dividiert man auch durch die
Temperatur, berechnet also

A 7r2k:]23 WQ

T oT 32 K2
so erhdlt man eine materialunabhéangige Kon-
stante L, welche als Lorenz-Zahl bezeichnet wird.
Damit kann man das Wiedemann-Franz Gesetz
als

=2,45-1078

A
A A

g

schreiben.

L-10% Watt Q/K? L-10% Wau Q/K?

Metall 0°C 100°C  Metall 0°C 100°C
Ag 2,31 237  Pb 2,47 2,56
Au 235 240 Pt 2,51 2,60
cd 242 243 Sn 2,52 2,49
Cu 2,23 233 W 3,04 3,20
Mo 2,61 279  Zn 2,31 2,33

Tabelle 5.7: Gemessene Werte fiir die Lorenzzahl
bei unterschiedlichen Metallen.

Tabelle zeigt einige Werte fiir die Lorenz-
Zahl. Sie liegen im Bereich 2.3 < L < 2.6 - 1078
WQ /K2, stimmen also recht gut mit dem theo-
retischen Wert iiberein, was als Bestéatigung des
Modells des freien Elektronengases betrachtet
werden kann.

Abb. [5.32 vergleicht die Temperaturabhéingig-
keit der Lorenzzahl fiir einige Elemente mit dem
theoretisch temperaturunabhéngigen Wert.

Das theoretische Resultat hingt allerdings da-
von ab, dass die Stolzeit 7 fiir die beiden Pro-
zesse die gleiche sein soll. Dies ist nicht zwin-
gend der Fall und fiihrt deshalb zu Abweichun-
gen vom Wiedemann-Franz Gesetz. Mit sinken-
der Temperatur durchlauft die Lorenz-Zahl oft
ein Minimum. Abb. [5.33]zeigt als Beispiel die Da-
ten fiir Kupfer. Der Grund dafiir sind die unter-
schiedlichen Zeitkonstanten fiir die Thermalisie-
rung beim elektrischen und thermischen Trans-
port.

8nach Gustav Heinrich Wiedemann (1826 - 1899) und
Rudolph Franz (1826 - 1902)
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Abbildung 5.32: Temperaturabhéngigkeit  der
Lorenzzahl.
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Abbildung 5.33: Temperaturabhéngigkeit  von

elektrischer und thermischer
Leitfahigkeit von Kupfer, sowie
der Lorenzzahl.

5.5.4 Thermoelektrische Effekte

Das verwendete Modell geht davon aus, dass
Elektronen bei Stofen thermalisieren, d.h. dass
ihre Energieverteilung sich an die lokale Tem-
peratur anpasst. Da heissere Elektronen eine
(geringfiigig) hohere Geschwindigkeit haben als
kalte, ist der Transport von Elektronen zwi-
schen zwei Punkten unterschiedlicher Tempera-
tur asymmetrisch: Elektronen, die vom heissen
zum Kkalten Punkt fliefen, haben eine hohere
Geschwindigkeit als diejenigen in umgekehrter
Richtung. Damit erfolgt netto ein Ladungstrans-
port in Richtung zum kalten Ende. Dieser halt
an, bis der thermische Gradient durch einen elek-
trischen Gradienten ausgeglichen wird. Ein Tem-

peraturgradient erzeugt deshalb eine Spannungs-
differenz

- - \Y%
E=5VT |[5]=~=.
5] =

Dieser sogenannte thermoelektrische Effekt

(auch Seebeckﬂ-Effekt genannt) unterscheidet
sich zwischen verschiedenen Metallen.
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Abbildung 5.34: Anordnung zur Messung von
Thermospannungen und tem-
peraturabhéangige Thermospan-
nungen, normiert auf die Werte
bei 0°C.

Er kann z.B. gemessen werden, indem man die
Enden von zwei unterschiedlichen Metallen kon-
taktiert und die Kontaktpunkte auf unterschied-
liche Temperaturen bringt und die resultieren-
de Spannung misst. Typische thermoelektrische
Koeffizienten liegen im Bereich von S ~ pV/K.
Abb. [5.34 zeigt das Messprinzip und die Ther-
mospannungen als Funktion der Temperatur fiir
drei unterschiedliche Kombinationen von Metal-
len.

Prinzipiell ist die Kopplung zwischen elektri-
schem und thermischem Transport eine Materi-
aleigenschaft. Allerdings ist sie als absolute Gro-
e schwierig zu messen. Man verwendet deshalb
Paare von Metallen, wie in Abb. [5.34 gezeigt.
Vergleicht man Paare mit einem festen Referenz-
material (meist Platin), so lassen sich aber die
Werte fiir einzelne Materialien bestimmen. Abb.
5.35 zeigt die thermoelektrischen Koeffizienten

®Thomas Johann Seebeck (1770 — 1831)
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Abbildung 5.35: Seebeck-Koeffizienten  unter-
schiedlicher Metalle als Funk-
tion der Temperatur.

einiger Metalle als Funktion der Temperatur. Ty-
pische Werte fiir Metalle sind 1077 ...107V /K.
Wesentlich grofere Werte, im Bereich von mV /K
findet man bei Halbleitern.

Der Effekt kann prinzipiell zur Stromerzeugung
genutzt werden, hat aber einen relativ niedrigen
Wirkungsgrad. Eine wichtige Anwendung liegt in
der Messung von Temperaturen (Thermoelemen-
te).

5.6 Kollektive Phanomene

Das Modell des freien Elektronengases geht, wie
zu Beginn des Kapitels erwéhnt, davon aus, dass
zwischen den Elektronen keine Wechselwirkun-
gen existieren. Dieses Modell der freien und un-
abhéngigen Elektronen funktioniert erstaunlich
gut. Dieses Unterkapitel befasst sich mit der Fra-
ge, weshalb das funktioniert und wo die Grenzen
liegen.

5.6.1 Abgeschirmte
Coulomb-Wechselwirkung

Einer der Griinde fiir den Erfolg des Modells
der unabhéngigen Elektronen ist, dass die elek-
trostatische Wechselwirkung zwischen zwei Elek-
tronen von den anderen weitgehend abgeschirmt

wird. Das gleiche gilt fiir positive Ladungen. In
beiden Fillen kann der Effekt iiber eine Ande-
rung in der Abstandsabhéngigkeit der Coulomb-
Wechselwirkung beschrieben werden.

Leitungselektronen
© C [C] © ©

a @ © » o
@

g & B e e

e 6 © e e

Abbildung 5.36: Abschirmung einer positiven
Ladung durch die Leitungselek-
tronen.

Wird eine positive Ladung in die Leitungselek-
tronen eingebracht, so verschieben sich die Elek-
tronen in Richtung dieser Ladung, wie in Abb.

[5.36 skizziert.

Leitungselektronen flllen
Fermi-See bis E = Er
(Thomas-Fermi Naherung)

T p Energieabsenkung
Er -eU
x4/ E/Ep
D(E)

Abbildung 5.37: Abschétzung der zusétzlichen
Ladungsdichte.

Die zusétzliche Ladungsdichte, welche diesen
Abschirmeffekt bewirkt, kann tiber die Thomas-
Fermi Naherung berechnet werden. Dazu be-
trachtet man die Umgebung der positiven La-
dung im Energieraum. Hier werden sdmtliche Zu-
stdnde um die Energie —eU abgesenkt, wobei U
das Zusatzpotenzial der Storung darstellt. Da-
durch gelangt der in Abb.[5.37 rot eingezeichnete
Bereich unter die Fermienergie und wird durch
Elektronen von aufserhalb des Bereiches aufge-
filllt. Die positiv geladene Stérung wird somit
durch die zusétzliche Elektronendichte teilweise
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kompensiert.

Die Anzahl zusétzlicher Elektronen, on V' kann
als Integral tiber die Zustandsdichte der zuséatz-
lich besetzten Zusténde berechnet werden. Die
Dichte an Zustdnden als Funktion der Energie
€ nimmt mit der Wurzel aus der Energie zu,
D(e) x y/e/ep. Die Fliache des roten Rechtecks
in Abb. [B.37 kann damit berechnet werden als
Produkt aus Breite

Vm 9 1% 3 ng
D(SF) = 71'2h2 (37T 'fl(]) 3 = Vgg
und Héhe eU;
D 1
on = eUD(er) = eUéno— (5.22)
V 2 ep

Hier bezeichnet ng die Elektronendichte ohne die
Storung. Die Dichte ng ist wie iiblich die Zahl der
Elektronen pro Volumen, ng = No/V.

J—
l:_L) F
2
o
Q
&
!
N U7 —75) Zustands-
ortr ro T dichte D(E)

Abbildung 5.38: Lokale Anderung von Potenzial
und Elektronendichte durch ei-
ne zuséatzliche Ladung bei 5.

Da én vom Potenzial U und U von én abhéngt
und beide vom Ort abhéngen, bendtigen wir eine
selbstkonsistente Losung. Diese erhalten wir aus
der Poisson-Gleichung: Die eingeschlossene La-
dung p(7) = —edn(7) wirkt als Quelle des elek-
trischen Feldes,

1 eon
= (plr) — po) = <.
€0 €0

Mit Gleichung (5.22) fiir on ergibt dies

ViU =

2
VI = St ey
2€0€F
mit
\2 3e?ng
N 260€F'

Fiir eine isotrope Ladungsverteilung lautet der
Laplace-Operator in Kugelkoordinaten

92 290
v2o 9 29
- Or2 + ror

Damit wird

2
v2U—(d +2d>U

4" 2 _lad
dr?2 = rdr

= —50U) = AU

Die allgemeine Losung fiir U(r) ist

U= e ="¢"/m™ (5.23)
T T
0,0
L e T/rTE i
z Olr abgeschirmtes
3 Potenzial
o L i
‘8
5}
8 02| -
Coulomb-
- Potenzial .
-0,3 | | 1 | 1 | 1
0 2 4 6 8 10

Abstand /A

Abbildung 5.39: Vergleich des abgeschirmten
mit dem normalen Coulomb-
Potenzial.

Die Abschirmung fithrt also dazu, dass die
1/r Abhéngigkeit der Coulomb-Wechselwirkung
durch einen zusétzlichen exponentiellen Term
verstarkt wird. Abb. [5.39 vergleicht die beiden
Funktionen. Somit fallt das Feld deutlich schnel-
ler ab (exponentiell statt 1/r). Die Abschirmlén-
ge betragt

2 €EFR
rA =4/ .

A 3e2ng
Verwendet man den Ausdruck (5.4)) fiir die Fer-

mienergie

(5.24)

h2

Ep = D (3772110)2/3

9
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so findet man

[ 2€p 9 \1/3 -1/6
TAIFL m(z}ﬂ‘ no) XN .

Somit verkiirzt sich die Abschirmldnge mit zu-
nehmender Elektronendichte wie r4 o< ny 16
Die Elektronendichte bezieht sich hier nur auf
die frei beweglichen Elektronen - die Rumpfelek-

tronen tragen nicht zur Abschirmung bei.

Ein typischer Wert fiir die Abschirmlénge ist
ra ~ 0,55 A bei einer Elektronendichte ng =
8,5 - 10¥®m=3, was dem Wert von Kupfer ent-
spricht. In Metallen ist die Abschirmung auf-
grund der hohen Elektronendichte besonders ef-
fektiv.

5.6.2 Metall-Isolator Ubergang

Das Phédnomen der Abschirmung kann auch als
qualitatives Argument fiir die Unterscheidung
zwischen Metallen und Isolatoren genutzt wer-
den. In Metallen existieren frei bewegliche Elek-
tronen, in Isolatoren sind alle Elektronen lokal
gebunden. Mit zunehmender Lokalisierung der
Elektronen nimmt ihre kinetische Energie zu.
Dies kann dazu fiithren, dass sie nicht mehr im
Potenzial gebunden sind.

Um zu sehen, wann das geschieht, muss die
Schrédingergleichung fiir das Potenzial ge-
16st werden. Analytisch ist das nicht moglich,
aber numerische Methoden zeigen, dass gebun-
dene Losungen existieren, falls r4 > 0,84 ag ist,
mit dem Bohr-Radius ag.

Laut Gleichung ([5.24) ist die Abschirmlénge eine
Funktion der Zustandsdichte an der Fermikante.
Die Fermienergie kann geschrieben werden als

2 \2/3 a0€223 1/3, 2/3
ep = —(3n2n)?/3 = =_32/371/3p2/
2m €0

Hier wurde der Bohr’sche Radius

Amegh?
apg =

me2

verwendet. Damit wird (5.24) zu

220 TOF 32/3.1/3,2/3

3e2n 8¢ T

32/371'1/3 ao Nl ao
12 pl/3 " 4pl/3

Der kritische Wert ist somit

1 ag

2 2
4 = (0,84a9)” = — :
Apl/3

Aufgelost nach der kritischen Dichte erhélt man

1 3 1\ 1
n, = B — = _— = —_—
" \ag-4-0,842 ap- 2,8 22a3

Fiir einen Isolator muss somit gelten, dass die
Elektronendichte n kleiner sein muss als

0,045
<

o
Qg

Fiir ein kubisch primitives Gitter mit einem frei-
en Elektron pro Einheitszelle muss die Kanten-
lange der Einheitszelle a > 2, 8 ag sein, damit ein
Isolator vorliegt.

Die Elektronendichte kann auf verschiedene Wei-
sen variiert werden, z.B. durch Anwendung von
Druck, Temperatur oder Magnetfeldern, oder
durch Dotierung. Damit ist es moglich, ein Sy-
stem von einem isolierenden in einen leiten-
den Zustand zu bringen. So gibt es Hinweise,
dass Wasserstoff unter hohem Druck die kritische
Dichte erreicht und metallisch wird. Dies Art
von Phaseniibergdngen wird auch als MottE]—
Ubergang bezeichnet.

Abb. [5.40 zeigt fiir den Fall von Silizium, wie ei-
ne zunehmende Dotierung mit Phosphor die La-
dungstréigerdichte so stark erhdht, dass das Sy-
stem vom Isolator zum Metall wird.

5.6.3 Quantisierte elektronische
Anregungszustinde

Da die Leitungselektronen in einem Metall frei
beweglich sind, kénnen sie auch zum Schwingen

108ir Nevill Francis Mott (1905 - 1996)
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Abbildung 5.40: Metall-Isolator Ubergang in Si-
lizium durch Dotierung mit
Phosphor.

Abbildung 5.41: Elektronengas.

angeregt werden. Wir diskutieren hier kollektive
Schwingungen der Elektronen. Wird ein einzel-
nes Elektron um die Distanz x aus der Ruhelage
ausgelenkt, so erzeugt es einen elektrischen Di-
pol der Grofe p(x) = ex. Wird ein Elektronengas
der Dichte n ausgelenkt, so entsteht eine elektro-
nische Polarisation

P(z)=neux.
Diese Polarisation entspricht einem zusétzlichen
elektrischen Feld
1 ne
P

Xr) = —.
EEN

E(x) - EEN

Dieses elektrische Feld wirkt als Kraft auf die
Elektronen. Wir erhalten die Bewegungsglei-
chung

Tl62

med = —eE(x) = —%x.

Dies entspricht einem harmonischen Oszillator
I =—w,x,

wobei die Plasmafrequenz w, gegeben ist durch

ne?

Wy = .
P MeEED

Quantenmechanisch sind die Energiezustéande ei-
nes harmonischen Oszillators gegeben als

En=(n+ %)hwp.
Da die Plasmafrequenz ein Malis fiir die Elektro-
nendichte ist, bietet sich ihre Messung als in-
teressante Methode zur Bestimmung der Elek-
tronendichte an. Allerdings sind die Plasmonen
in vielen Systemen stark geddmpft (z.B. durch
Inter-Band Uberginge), dass sie gar nicht beob-
achtet werden koénnen.

Typische Werte fiir die Plasmafrequenz liegen im
Bereich von einigen (3-20) eV.

5.6.4 Messung der Plasmafrequenz

~10 keV
Metallfilm

gestreuter
Strahl

Abbildung 5.42: Prinzip der Messung von Plas-
monenenergien.

Die Plasmonenfrequenzen kénnen gemessen wer-
den, indem man die entsprechende Probe mit
Elektronen bestrahlt. Diese stofen mit den freien
Elektronen der Probe und regen dadurch Plas-
monen an. Gleichzeitig verlieren die Elektronen
des Strahls die entsprechende Energie.

Fiir die Messung des Energieverlustes in der Pro-
be bendtigt man ein hochauflésendes Elektro-
nenspektrometer, welches die kinetische Energie
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Abbildung 5.43: Apparatur fiir die Messung von

Plasmonenenergien.
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Abbildung 5.44: Plasmonenspektrum von Alu-
minium mit Aufspaltung der
Resonanzen.

der transmittierten Elektronen misst. Abb. [5.43
zeigt den entsprechenden Messaufbau.

Abb. zeigt ein typisches Verlustspektrum,
welches an einem diinnen Aluminiumfilm gemes-
sen wurde. In diesem Fall wurden die zuriickge-
streuten Elektronen analysiert. Man findet Re-
sonanzen, welche der Erzeugung von n = 1,2, ...
Plasmonen entsprechen. Die Resonanzen sind
iiberdies aufgespalten: an der Oberfliache ist die
Plasmonenfrequenz geringer als im Volumen.

Tabelle vergleicht einige gemessene und be-
rechnete Plasmonenenergien. Die Ubereinstim-
mung ist relativ gut. Die Plasmafrequenzen neh-
men mit der Elektronendichte zu: Al (3 Lei-
tungselektronen pro Atom) hat eine deutlich

’ ‘ Gemessen | Berechnet

Li 712 8,02
Na 5,71 5,95
K 3,72 4,29
Mg 10,6 10,9
Al 15,3 15,8

Tabelle 5.8: Plasmonenenergien in eV.

hohere Plasmafrequenz als die Alkaliatome (1
Leitungselektron). Bei den Alkaliatomen nimmt
die Elektronendichte mit zunehmendem Atom-
gewicht ab. Deshalb ist die Plasmonenfrequenz
von K niedriger als die von Na und Li.

5.6.5 Elektromagnetische Wellen in
Metallen

Die beweglichen Elektronen beeinflussen auch
elektromagnetische Wellen in Metallen. Elektro-
magnetische Wellen in einem nichtmagnetischen
Material kénnen beschrieben werden {iiber eine
Dispersionsrelation der Form

e(w)w? = k2. (5.25)
Hier ist €(w) die dielektrische Funktion, welche
in Metallen die Form

hat. €5, stellt den Grenzwert fiir hohe Frequen-
zen dar, w > wp, welcher durch die gebundenen
Elektronen dominiert wird. Einsetzen in ([5.25)
ergibt die Dispersionsrelation

5 2 62k2

w —wp—

€

fiir die elektromagnetischen Wellen im Materi-
al. Je nachdem, ob die Frequenz w héher oder
niedriger ist als die Plasmafrequenz ist der lin-
ke Seite positiv oder negativ. Im negativen Fall
wird der Wellenvektor imaginédr, d.h. das Licht
wird vollsténdig absorbiert. Langwellige Wellen
werden deshalb in Metallen absorbiert.
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Abbildung 5.45: Dispersion fiir elektromagneti-
sche Wellen in einem Metall mit
der Plasmafrequenz wp.

Fiir Frequenzen oberhalb der Plasmafrequenz er-
hélt man normale Ausbreitung, mit der Disper-
sionsrelation

w = w/wf) + c2k2.

Abb. [5.45 vergleicht diese Dispersionsrelation
mit derjenigen einer Lichtwelle im Vakuum. Fiir
groffe Wellenldngen geht die Frequenz gegen
einen endlichen Wert, die Plasmafrequenz wy, fiir
hohe Wellenzahlen néahert sich die Frequenz der
einer entsprechenden Lichtwelle im freien Raum.
Wellen mit Frequenzen unterhalb der Plasmafre-
quenz konnen sich in Metallen nicht ausbreiten
(verbotener Frequenzbereich). Trifft eine elektro-
magnetische Welle in diesem Bereich auf eine
Metalloberflache, so wird sie deshalb reflektiert.
Bei polierten Metalloberflachen entsteht ergibt
dies deshalb den charakteristischen Metallglanz,
welcher z.B. bei Spiegeln verwendet wird.

5.7 Elektron-Phonon
Wechselwirkung

5.7.1 Grundlagen

Die bisher verwendete Born-Oppenheimer Néhe-
rung vernachléssigt Wechselwirkungen zwischen

Elektronen und Kernen. Einige der vernachlas-
sigten Terme haben wir bereits beriicksichtigt,
z.B. indem wir die Streuung von Elektronen
an Phononen als Beitrag zum elektrischen Wi-
derstand diskutiert haben. Eine Wechselwirkung
kommt dadurch zustande, dass Phononen das
Kerngitter verzerren und die Elektronen des-
halb ein Potenzial spiiren, welches nicht mehr
die ideale Periodizitdt aufweist. Phononen kon-
nen deshalb absorbiert oder gestreut werden. Die
Wechselwirkung kann mit akustischen Phononen
oder mit optischen Phononen geschehen. Man
unterscheidet

e Frohlich-Wechselwirkung
e Deformationspotenzial-Wechselwirkung
e Piezoelektrische Wechselwirkung.

Elektronen-Phononen Wechselwirkungen spielen
in Halbleitern (vor allem bindren und ternéren)
eine wichtige Rolle, sowie in Supraleitern, wo sie
fiir die Bildung der Cooper-Paare verantwortlich
sind.

5.7.2 Polaronen

Auch in dielektrischen Festkorpern spielen
Elektron-Phonon Wechselwirkungen eine Rolle.
Dass es eine Wechselwirkung zwischen Elektro-
nen und Phononen geben sollte, vermutete Lev
Landau schon 1933, kurz nachdem das Kon-
zept von Phononen entwickelt worden war. Man
kann diesen Effekt auch iiber ein neues Quasi-
teilchen beschreiben, das Polaron. Dabei handelt
es sich um ein Elektron, welches an eine Gitter-
Deformation gekoppelt ist. Diese Kopplung fiihrt
zu einer hoheren effektiven Masse des Elektrons.

In einem ionischen Kristall, wie z.B. KCI erzeugt
ein Elektron eine Gitterverzerrung: die positiven
Ionen werden in Richtung auf das Elektron ver-
schoben, die negativen davon weg. Ein Resul-
tat dieser Wechselwirkung ist, dass die effektive
Masse des Elektrons steigt: wird es bewegt, so
bewegt sich die Gitterverzerrung mit. Die Kom-
bination aus Ladung und Gitterverzerrung (oder
Ladung und Phonon) wird als Polaron bezeich-
net.
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Abbildung 5.46: Gitterverzerrung durch Wech-
selwirkung mit Elektron.

Crystal KCl KBr AgCl AgBr

« 397 352 200 169
Kopplungskonstante . 125 093 051 033
Masse m'/m 050 043 035 024
Bandmasse (starres G.)  mj/m’ 2.3 2.2 15 1.4
Abbildung 5.47: Effektive Masse von

Leitungsband-Elektronen
in Isolatoren.

Die effektive Masse eines Leitungselektrons in
KCl wéachst dadurch um einen Faktor 2.5 im Ver-
gleich zum Fall eines starren Gitters.

Zn0 PbS InSh GaAs
a 085 016 0014  0.06
mEol/m - — 0.014 —
m/m — — 0.014 A
myg/m’  — - 1.0 =
Abbildung 5.48: Effektive Masse von

Leitungsband-Elektronen
in Halbleitern mit teilweise
kovalenten Bindungen.

Bei Materialien mit stérker kovalentem Charak-
ter, wie z.B. dem Halbleiter GaAs, ist die Gitter-
verzerrung durch die Leitungselektronen schwé-
cher und damit die Kopplungskonstante kleiner.

5.7.3 Cooper Paare

Die Verzerrung, welche die Elektronen im Git-
ter erzeugen, wirkt wiederum auf andere Elektro-
nen und kann dazu fithren, dass zwischen (weit
voneinander entfernten) Elektronen eine effekti-
ve Anziehungskraft zustande kommt. Abbildung

Zeit

e e

Abbildung 5.49: Feynman Diagramm fiir die Bil-
dung von Cooper Paaren durch
die Kopplung an Phononen.

.49 zeigt dies schematisch als Feynman Dia-
gramm, wobei v das Phonon darstellt. Dadurch
kommt es zur Bildung von sogenannten Cooper
Paaren, welche fiir die Supraleitung verantwort-
lich sind. Dies wird im Kapitel 9 genauer disku-
tiert.
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