
2 Symmetrie und Struktur

2.1 Ordnung in Festkörpern

2.1.1 Atomtheorie

Die griechischen Philosophen der Antike stellten
als erste die Frage, ob es möglich sei, einen be-
stimmten Körper beliebig oft zu teilen. Demokrit
von Abdera beantwortete diese Frage als erster
negativ, in dem er forderte, dass alle Materie aus
identischen Teilchen aufgebaut sein sollte, den
Atomen. Diese Ansicht wurde dann von Aristote-
les widersprochen, und erst im 18 Jh. fanden die
aufblühenden Naturwissenschaften wieder Hin-
weise darauf, dass es doch solche Teilchen geben
sollte. Dafür sprachen insbesondere auch Beob-
achtungen der Kristallographen. Sie stellten fest,
dass Kristalle, wenn sie wachsen oder wenn sie
gespalten werden, beinahe perfekte Oberflächen
bilden, und dass zwischen verschiedenen solchen
Oberflächen nur ganz bestimmte Winkel auftre-
ten.
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Abbildung 2.1: NiO Kristall mit Wachstumsebe-
nen.

Dieser Befund konnte relativ leicht erklärt wer-
den, wenn man davon ausging, dass diese Kri-
stalle aus einer Vielzahl von identischen Teil-
chen zusammengesetzt waren [10]. Abb. 2.1 zeigt
als Beispiel einen NiO Kristall mit deutlichen
Wachstumsebenen, sowie ein Schema, wie man
sich die Bildung solcher Wachstumsebenen vor-
stellen kann.

Abbildung 2.2: Spaltebenen.

Nicht nur beim Kristallwachstum erhält man
Kristallflächen mit gleichen Winkeln, man fin-
det auch, dass bestimmte Flächen beim Spal-
ten von Kristallen bevorzugt auftreten. Die Idee,
dass Kristalle aus atomaren Einheiten bestehen,
wurde später durch unterschiedliche Methoden
betätigt, v.a. natürlich durch Beugungsexperi-
mente [6].
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Abbildung 2.3: Prinzip der Raster-
Tunnelmikroskopie und damit
gemessene Ni-Atome.

Seit einigen Jahren ist es auch möglich, die ato-
mare Struktur von Festkörpern auch direkt zu
beobachten, z.B. mit Hilfe der Tunnelmikrosko-
pie (STM). Abb. 2.3 zeigt das Funktionsprin-
zip, sowie das Bild einer Nickeloberfläche, die
mit STM gemessen wurde. Heute gehen wir des-
halb selbstverständlich davon aus, dass Festkör-
per aus Atomen oder Molekülen aufgebaut sind.
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2 Symmetrie und Struktur

2.1.2 Langreichweitige Ordnung

Die Atome oder Moleküle können auf unter-
schiedliche Weise im Festkörper angeordnet sein.
Man kann sie insbesondere auf Grund des Grades
an Ordnung auf unterschiedlichen Längenskalen
klassifizieren.

kristallin polykristallin

Abbildung 2.4: Kristalline vs. polykristalline
Ordnung.

• kristallin: periodische, langreichweitige Ord-
nung. Dieses Idealbild ist Ausgangspunkt
der meisten Theorien im Bereich der Fest-
körperphysik.

• polykristallin: Auf kurzen Längenskalen
sind diese Systeme kristallin. Der makrosko-
pische Körper umfasst jedoch viele einzelne
Kristalle.

Abbildung 2.5: Lokale 5-zählige Symmetrie.

• quasikristallin: Quasikristalle weisen lang-
reichweitige Ordnung auf, sind aber nicht
periodisch. Sie besitzen lokal 5- oder 10-
zählige Symmetrie, aber keine Translations-
symmetrie, wie in Abb. 2.5 gezeigt.

• amorph: In amorphen Materialien ist die di-
rekte Umgebung eines Atoms oder Moleküls
relativ gut (aber nicht perfekt) definiert.
Wie in Abb. 2.6 gezeigt, gibt es jedoch keine
langreichweitige Ordnung und keine Trans-
lationssymmetrie.

Abbildung 2.6: Amorphe Materialien: Nahord-
nung, aber keine Fernordnung.

Auf einer Skala von typischerweise einigen Na-
nometern nimmt der Grad der Ordnung ab und
auf einer Skala von mehr als 10 Nanometern sind
amorphe Materialien homogen und isotrop. Zu
den amorphen Materialien gehören v.a. Gläser
und Polymere, darunter auch viele biologische
Materialien.

Viele Eigenschaften von amorphen Materialien
hängen stark von ihrer Herstellung ab. So kann
man Gläser als “unterkühlte Flüssigkeiten, wel-
che zu kalt sind zum einfrieren” betrachten: ihre
Viskosität ist zu hoch als dass sie in den energe-
tisch tiefer liegenden kristallinen Zustand über-
gehen könnten. Diese Abhängigkeit von der Her-
stellung ist ein wichtiger Grund dafür, dass z.B.
die Herstellung von Gläsern lange Zeit mehr eine
Kunst als eine Wissenschaft war.

2.1.3 Flüssigkristalle

Abbildung 2.7: Flüssigkristalle und Flüssig-
kristall-Polymere.

• Flüssigkristalline Materialien zeigen (un-
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2 Symmetrie und Struktur

vollständige) langreichweitige Ordnung, wo-
bei z.B. nur die Orientierung der Moleküle
diese Ordnung zeigen kann. Abb. 2.7 zeigt
unterschiedliche Arten von Flüssigkristal-
len. Sie sind deshalb meist anisotrop.

eindimensionale Positionsfernordnung:

zweidimensionale Positionsfernordnung:

smektisch lamellar

hexagonal Condis

Abbildung 2.8: Partielle Positions-Fernordnung
in Flüssigkristallen.

Auch bezüglich Fernordnung sind Flüssigkristal-
le zwischen Flüssigkeiten und Kristallen angesie-
delt. Viele besitzen keine Positions-Fernordnung,
andere eine teilweise, also z.B. nur in einer oder
zwei Dimensionen, wie in Abb. 2.8 gezeigt. In ku-
bischen Phasen kann auch in 3 Dimensionen eine
partielle Fernordnung auftreten. Sie besitzen je-
doch im Gegensatz zu Festkörpern keine Formbe-
ständigkeit, d.h. ihr Schermodul verschwindet im
statischen Grenzfall. Flüssigkristalle haben in-
zwischen in verschiedenen Bereichen eine wichti-
ge Rolle erhalten, nicht nur in Anzeigen, sondern
auch in polymeren Werkstoffen.

Abbildung 2.9: Flüssigkristalline Ordnung einer
biologischen Membran.

Flüssigkristalle spielen auch in der Biologie ei-
ne wichtige Rolle: Membranen von Zellen sind

flüssigkristallin, d.h. die Moleküle sind im Mittel
alle gleich ausgerichtet und befinden sich in einer
Ebene. Diese Ebene ist jedoch leicht verformbar,
da die Moleküle in der Ebene frei beweglich sind.
Diese Membranen werden primär aus Fettsäure-
ähnlichen Molekülen gebildet, ähnlich wie Seifen-
schaum. Darin “schwimmen” eingelagert Protei-
ne.

Die Physik hat sich vor allem mit der Untersu-
chung perfekter Kristalle beschäftigt, wobei De-
fekte und Verunreinigungen als Störungen be-
trachtet wurden. Dieses Vorgehen hat enorme
Erfolge gebracht und z.B. die Grundlagen für die
Halbleiterindustrie gelegt. In den 80er und 90er
Jahren des 20. Jahrhunderts haben dann eini-
ge Physiker auch entdeckt, dass die Physik auch
zur Untersuchung von amorphen Systemen eini-
ges beitragen kann.

Abbildung 2.10: Pierre Gilles de Gennes.

Ein wichtiger Schritt war hier die Verleihung des
Nobelpreises 1991 an Pierre Gilles de Gennes.
Die Untersuchung von Materialien ohne lang-
reichweitige Ordnung dürfte in Zukunft eine zu-
nehmend wichtige Rolle spielen, da Polymere
und Gläser (z.B. metallische Gläser, amorphes
Silizium) auch industriell zunehmend wichtiger
werden. In dieser Vorlesung werden wir aber auf
die detaillierte Diskussion solcher Systeme ver-
zichten und uns auf Systeme mit Translations-
symmetrie beschränken. Der Grund dafür ist ei-
nerseits unser Curriculum, andererseits auch die
Tatsache, dass die Beschreibung von amorphen
Systemen noch nicht so weit ist, dass sie sich für
einen Einführungskurs gut eignet.
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2 Symmetrie und Struktur

2.1.4 Translationssymmetrie

Wie bereits erwähnt, betrachtet man in der Fest-
körperphysik zunächst ideale Kristalle. Darun-
ter stellt man sich einen unendlich ausgedehn-
ten Körper mit periodisch wiederholten Einhei-
ten vor. Es soll hier aber klar gemacht werden,
dass solche Körper in der Natur nicht existieren,
und zwar aus 2 Gründen:

• Bei endlicher Temperatur ist ein System oh-
ne Fehler, welches damit perfekt geordnet
wäre und Entropie null hätte, thermodyna-
misch instabil.

• Ein idealer Kristall ist immer unendlich aus-
gedehnt, da eine Oberfläche einen Bruch der
Symmetrie bewirkt.

Diese Grundannahme bedeutet auch, dass Ober-
flächeneffekte (in dieser Näherung) nicht berück-
sichtigt werden.

Abbildung 2.11: Kristallgitter in 2D.

Die Wiederholung der Grundeinheit erfolgt so,
dass die resultierende Anordnung Translations-
symmetrie zeigt. Das bedeutet, dass es möglich
ist, diese Anordnung um einen bestimmten Be-
trag zu verschieben, und dadurch das System in
ein ununterscheidbares System überzuführen. In
Abb. 2.11 sind zwei solche Möglichkeiten darge-
stellt: Verschiebungen um ~a1 und ~a2. Es gibt aber
eine unendliche Zahl von Translationen ~T , wel-
che diese Bedingung erfüllen. Es ist allerdings
nicht nötig, diese Operationen einzeln aufzuzäh-
len, man kann sie nach einer einfachen Formel
zusammenfassen.

Man benötigt für jede Dimension einen Basis-
Translationsvektor, welche wir als ~a1, ~a2 und
~a3 bezeichnen. Eine allgemeine Translation ~T

Abbildung 2.12: Basis-Translationsvektoren.

in drei Dimensionen wird dann definiert als die
Operation

~r0 = ~r + u1~a1 + u2~a2 + u3~a3 = ~r + ~T ,

wobei die Indizes ui beliebige ganze Zahlen dar-
stellen. Diese Beziehung gilt für jeden Punkt des
Kristalls, nicht nur für die Position der Atome.
Die Gesamtheit der Translationen ~T definiert das
Raumgitter oder Bravais1-Gitter. Ein idealer kri-
stalliner Festkörper ist dadurch definiert, dass
diese Translationen Symmetrieoperationen dar-
stellen, dass sie also die Struktur in sich selber
überführen

allgemein

quadratisch rechteckig

hexagonal

1

Abbildung 2.13: Translationsgitter in 2D.

Je nach relativer Länge und Orientierung der
erzeugenden Translationsvektoren unterscheidet
man verschiedene Arten von Translationsgittern.
Abb. 2.13 zeigt die wichtigsten Beispiele in zwei
Dimensionen: neben dem allgemeinen Fall findet
man die Spezialfälle quadratisch (Vektoren senk-
recht aufeinander, gleich lang), rechteckig (senk-
recht aufeinander, ungleich lang) und hexagonal
(gleich lang, Winkel 60 oder 120 Grad).

1Auguste Bravais (1811 - 1863)
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2 Symmetrie und Struktur

Abbildung 2.14: Struktur von GaAs.

Die Tatsache, dass die meisten Festkörper, wel-
che aus wenigen Bauelementen zusammengesetzt
sind, in periodischen Strukturen erstarren, lässt
sich leicht als eine Konsequenz der Energiemi-
nimierung verstehen: Wenn ein Atom, Ion oder
Molekül in einer bestimmten Umgebung die ge-
ringste Energie besitzt, so muss dies auch für alle
anderen Atome, Ionen oder Moleküle der glei-
chen Art gelten. Die Nachbarschaft aller gleich-
artigen Atome sollte also die gleiche sein. Dies
ist aber identisch mit der Aussage, dass man die
Nachbarschaft eines Atoms auf die Umgebung ei-
nes anderen abbilden kann. Details dazu werden
im dritten Kapitel behandelt.

2.1.5 Einheitszelle und Basis

Um eine Kristallstruktur zu definieren, braucht
man, neben der Translationssymmetrie, zusätz-
liche Information. Das Gitter definiert, auf wel-
che Art die Bausteine aneinander gefügt werden
müssen. Man benötigt aber noch die Kenntnis
der Bausteine. Diese werden als Einheitszelle be-
zeichnet, die darin enthaltenen Atome bilden die
Basis.

Die Position eines Atoms kann geschrieben wer-
den als

~rj = xj~a1 + yj~a2 + zj~a3,

mit j als Index des entsprechenden Atoms, ~ai ein
Gittervektor und {xj , yj , zj} die Koordinaten des
Atoms in der Einheitszelle. Üblicherweise wählt
man diese im Bereich [0..1].

Abbildung 2.15: Gitter und Basis in 2D.

Wird die Basis jeweils um einen Translationsvek-
tor des Gitters verschoben, so erhält man den
gesamten Kristall. In Abb. 2.15 ist das für den
zweidimensionalen Fall dargestellt. Jeder Trans-
lationsvektor des Gitters schiebt alle Moleküle
auf andere Moleküle des Kristalls, das Muster
bleibt somit das gleiche.

Die Einheitszellen können auf beliebige Weise de-
finiert werden, so lange sie unter den Translatio-
nen des Gitters den Kristall vollständig füllen.
Eine nahe liegende Möglichkeit zur Definition der
Einheitszelle ist deshalb die Menge aller Punkte,
welche durch

~r = x1~a1 + x2~a2 + x3~a3 0  xi  1

bestimmt wird. Dies entspricht dem in Abb. 2.12
gezeigten Parallel-Epiped. Das Volumen der Zel-
le kann mit Hilfe der Vektoralgebra bestimmt
werden:

V = |~a1 · (~a2 ⇥ ~a3)|.

2.1.6 Die Wigner-Seitz Konstruktion

Eine andere Methode zur Konstruktion einer
Einheitszelle ist die von Wigner2 und Seitz3. Da-
zu zieht man von einem Gitterpunkt Verbin-
dungslinien zu allen Nachbarn und fällt darauf
die mittelhalbierende Ebene. Abb. 2.16 zeigt das
zweidimensionale Analogon; in diesem Fall ist die

2Eugene Wigner (1902-1995)
3Frederick Seitz (1911-2008)
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2 Symmetrie und Struktur

WSZ
EZ

Abbildung 2.16: Wigner-Seitz Konstruktion
(WSZ) der Einheitszelle im
Vergleich mit der konven-
tionellen Einheitszelle (EZ).

Mittelhalbierende eine Gerade. Die Kombinati-
on dieser Ebenen (Linien) begrenzt die Wigner-
Seitz Zelle. Bei der Wigner-Seitz Zelle befindet
sich der Gitterpunkt im Zentrum der Einheits-
zelle, im Gegensatz zur konventionellen Wahl, wo
die Punkte sich auf den Ecken befinden. Die bei-
den Einheitszellen haben unterschiedliche Form,
aber das gleiche Volumen, resp. die gleiche Flä-
che.

Abbildung 2.17: Flächenfüllung mit der Wigner-
Seitz Einheitszelle.

Auch mit der Wigner-Seitz Einheitszelle kann
man jedoch den Raum füllen. Abb. 2.17 zeigt
ein Beispiel in zwei Dimensionen.

Ähnlich kann man das Wigner-Seitz Verfahren
in 3 Dimensionen anwenden. Man fällt hier je-
weils die mittelhalbierende Ebene. In der linken
Hälfte von Abb. 2.18 wurde die Konstruktion auf
ein raumzentriertes Gitter angewendet. Das Zen-
trum der Einheitszelle ist im Zentrum eines Wür-
fels, die nächsten Nachbarn sitzen an den Ecken
des Würfels. Auch diese Einheitszelle füllt den
gesamten Raum wenn sie durch die Gitteropera-
tionen verschoben wird.

Abbildung 2.18: Links: Wigner-Seitz Einheits-
zelle in 3D; rechts: raumfüllende
Anordnung von WS-Zellen.

Die Einheitszelle enthält im allgemeinen mehre-
re Atome, auch bei primitiven Gittern. Einato-
mige Einheitszellen kommen nur bei Kristallen
vor, welche aus einer einzigen Atomsorte beste-
hen, und auch dann nur wenn sämtliche Atome
durch Translationen ineinander übergeführt wer-
den können.

2.1.7 Punktsymmetrie-Operationen

Kristallgitter können nicht nur durch Trans-
lationen in sich selbst übergeführt werden,
sondern auch durch andere Symmetrieopera-
tionen, insbesondere Drehungen und Spiege-
lungen. Ein wesentlicher Unterschied zwischen
Punktsymmetrie-Operationen und Translatio-
nen ist, dass bei den Punktsymmetrien minde-
stens ein Punkt fest bleibt.
Wir betrachten zunächst den Effekt solcher Ope-
rationen auf einzelne Elemente. Man unterschei-
det die folgenden Symmetrieelemente:

• Drehachsen Ci oder Ai.
• Inversion I oder i führt ~r ! �~r über.
• Spiegelebene �: Invertiert die Komponen-

te senkrecht zur Ebene, z.B. (x, y, z) !

(x, y, �z)

• Drehinversionsachsen Si

Abb. 2.19 zeigt als Beispiel eine 4-zählige Ro-
tationsachse, welche die vier L-förmigen Objek-
te ineinander überführt. Allgemein entspricht ei-
ne n-zählige Rotationsachse einer Symmetrieach-
se, welche Drehungen um ganzzahlige Vielfache
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2 Symmetrie und Struktur

C4

Abbildung 2.19: Transformation eines Objekts
durch eine 4-zählige Rotations-
achse.

von 2⇡/n bewirkt. In Systemen mit Translati-
onssymmetrie können als mögliche Werte für n
nur n = 1, 2, 3, 4 und 6 auftreten.

linke Hand

Spiegelbild 
~rechte Hand

Abbildung 2.20: Änderung der Händigkeit eines
Objekt bei Spiegelung.

Inversionszentrum und Spiegelebene ändern die
Händigkeit eines Objektes, sie führen z.B. eine
linke Hand in eine rechte Hand über, wie in Abb.
2.20 gezeigt. Kristalle mit intrinsischer Händig-
keit können somit keines dieser Symmetrieele-
mente enthalten. Ein Kristall, welcher Moleküle
mit entgegengesetzter Händigkeit enthält, kann
hingegen Spiegelebenen enthalten, welche die ei-
ne Form in die andere überführen.

Meistens treten die genannten Symmetrieele-
mente nicht einzeln auf, sondern in Kombinatio-
nen. Im Beispiel von Abb. 2.19 existiert auch
eine Spiegelebene, welche senkrecht zur Rota-
tionsachse liegt und durch die vier Elemente
läuft. Wären die beiden Schenkel dieser Elemente
gleich lang, so würden ausserdem vier 2-zählige
Rotationsachsen existieren, welche in der Ebene
liegen würden.

Es sind nicht beliebige Kombinationen von Sym-

metrieelementen möglich, da die Symmetrieele-
mente selber unter den Symmetrieoperationen
der übrigen Elemente auch erhalten bleiben müs-
sen. So können einzelne Symmetrieachsen nur
senkrecht zueinander oder in einer Ebene liegen.
Zwei Symmetrieebenen können nur senkrecht zu-
einander stehen, aber drei Ebenen können einen
Winkel von jeweils 60

� untereinander einschlies-
sen. Ausserdem erzeugt die Kombination von
zwei Elementen häufig ein drittes Element. So
erzeugen zwei Symmetrieebenen, die senkrecht
aufeinander stehen, eine 2-zählige Drehachse in
ihrer Schnittgeraden.

2.1.8 Gruppen

Im mathematischen Sinn bildet die Menge der
Symmetrieoperationen, welche ein Objekt inva-
riant lässt, eine Gruppe. Allgemein ist in der Ma-
thematik eine Gruppe G definiert als eine nicht
leere Menge G = {Ai} von Objekten Ai und ei-
ner binären Operation · zwischen den Objekten,
welche folgende Eigenschaften erfüllt:

• Das Resultat einer Operation Ai · Aj = Ak

ist selber ein Mitglied der Gruppe.

• Es existiert eine Einheit e mit der Eigen-
schaft e · Ai = Ai · e = Ai für alle Ai.

• Es existiert zu jedem Element ein inverses
Element A�1

i
mit Ai · A�1

i
= A�1

i
· Ai = e.

Die verschiedenen Kombinationen von Symme-
trieelementen erfüllen diese Anforderungen. Sie
werden als Punktsymmetrie-Gruppen bezeich-
net. Die verschiedenen Gruppen werden nach
zwei verschiedenen Systemen klassiert. Es exi-
stieren einerseits die sog. Schoenflies4-Symbole,
andererseits die Klassifikation nach Hermann-
Maugin, welche auch als international bezeich-
net wird. Für die Bezeichnungen nach Schoen-
flies verwendet man die folgenden Symbole:

• Drehgruppen: Cn (n=2, 3, 4, 6) j-fache Ro-
tationsachse. Die Drehgruppe Cn enthält die
Elemente Cn = {e, Cn, C2

n, . . . , Cn�1
n }.

4Arthur Moritz Schoenflies (1853 - 1928), deutscher Ma-
thematiker
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2 Symmetrie und Struktur

• Drehspiegelgruppen: Sn; wird durch eine
Drehspiegelachse erzeugt. Diese entspricht
einer Drehung um den Winkel 2⇡/n um die
entsprechende Achse, gefolgt von der Spie-
gelung an einer Ebene, die senkrecht zur
Drehachse steht.

• Dj : Diedergruppen. Werden durch eine Ro-
tationsachse Cn sowie n dazu senkrechte C2-
Achsen erzeugt.

• T : Tetraedergruppen: vier 3-fache und drei
2-fache Rotationsachsen in einem Tetraeder.

• O: Ikosaedergruppen: 4 3-fache und 3 4-
fache Rotationsachsen in einem Oktaeder.

D3h
C3

C2C2

C2

C4

C4

C4

C3C3
C3

C3

+ 6 C2-Achsen

+ 9 Symmetrieebenen

Abbildung 2.21: Punktgruppe D3h (links) und
Oktaeder mit 3- und 4-zähligen
Rotationsachsen (rechts). Nicht
eingezeichnet sind 6 C2-Achsen
und 9 Spiegelebenen.

Die Gruppen können neben den Rotationsach-
sen auch Spiegelebenen enthalten. Diese werden
durch die tiefgestellten Symbole h (für horizon-
tal, d.h. senkrecht zu Cn), v (für vertikal, d.h. Cn

liegt in der Ebene) oder d (ebenfalls senkrecht,
aber zwischen den horizontalen C2-Achsen) be-
zeichnet.

Daneben können auch Punktsymmetrien auftre-
ten, also Inversion an einem Punkt. Befindet sich
dieser Punkt im Ursprung, dann ist das Resultat
der entsprechenden Operation ~r ! �~r. Inver-
sionszentren und Spiegelebenen invertieren die
Händigkeit eines Objekts. Sie können also nur
dann auftreten, wenn das Objekt keine Händig-
keit aufweist.

2.1.9 Hermann-Maugin Notation

Punkt in allgemeiner (= sog. asymmetrischer) Lage

zweizählige  
Drehung 

2

zweizählige Drehung  
und Spiegelung  
oder (äquivalent) 
Spiegelung an zwei  
zueinander senkrechten  
Spiegelebenen

2m = mm

1

Identitäts- 
operation  
= einzählige  
Drehachse)

1m

einzählige 
Drehung und  
Spiegelung 

Abbildung 2.22: Beispiele für Punktgruppen in
Hermann-Maugin Notation.

Abb. 2.22 zeigt für einige einfache Kombinatio-
nen von Symmetrieelementen die entsprechenden
Symbole nach Hermann-Maugin. Im letzten Bei-
spiel sind 2 Möglichkeiten gezeigt, wie die Sym-
bole dargestellt werden: Eine 2-zählige Drehach-
se senkrecht zu einer Spiegelebene erzeugt eine
zweite Spiegelebene. Umgekehrt ist die Schnitt-
gerade von 2 senkrecht aufeinander stehenden
Spiegelebenen auch eine Drehachse.

a
a

Abbildung 2.23: Schraubenachsen und Gleit-
spiegelebenen.

Im Hermann-Maugin System verwendet man
gerne weitere Symmetrieelemente, welche
als Kombination von Translationen mit
Punktsymmetrie-Operationen verstanden wer-
den können. Abb. 2.23 zeigt die Schraubenachse
und die Gleitspiegelebene. Eine Schraubenachse
erzeugt eine Translation um einen Vektor ~a,
der nicht zum Bravaisgitter gehört, gefolgt von
einer Drehung um diesen Translationsvektor.
Eine Gleitspiegelebene erzeugt ebenfalls eine
Translation um einen Vektor ~a, der nicht zum
Bravaisgitter gehört, gefolgt von einer Spiege-
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2 Symmetrie und Struktur

lung an einer Ebene, die den Vektor enthält.
Beide müssen somit durch Betrag und Richtung
von ~a, sowie um den Drehwinkel, respektive die
Richtung der Ebene definiert werden.

2.2 Symmetrie und Gitter

2.2.1 Primitive und nichtprimitive
Gitter

Die Menge der Translationsvektoren ergibt das
Gitter. Da sie die Symmetrieoperationen zusam-
menfassen, sind Kristallgitter ein wichtiges Hilfs-
mittel zur Charakterisierung von Kristallen. Das
bedeutet aber nicht, dass ein gegebener Kristall
eindeutig zu einem bestimmten Gitter zugeord-
net werden kann. Häufig gibt es verschiedene
Möglichkeiten, ein Gitter zu spezifizieren. Eine
gegebene Anordnung von Atomen oder Molekü-
len kann auf unterschiedliche Weise in eine Ein-
heitszelle und ein Gitter zerlegt werden.

primitv 1

⃗a 1

⃗a 2

primitv 2

⃗a 1

⃗a 2

nicht primitv

⃗a 1
⃗a 2

Abbildung 2.24: Unterschiedliche Wahl der Ele-
mentarzelle in einem hexagona-
len Gitter in 2 Dimensionen.

Abb. 2.24 zeigt eine zweidimensionale Anord-
nung von Atomen, die in der Natur relativ häu-
fig vorkommt. Offensichtlich gibt es mehrere ver-
schiedene Möglichkeiten, die Gittervektoren ~a1

und ~a2 zu definieren. Die ersten beiden Möglich-
keiten sind hierbei gleichwertig; die Einheitszel-
len sind gleich groß und enthalten die gleiche
Anzahl an Atomen. Die dritte hingegen unter-
scheidet sich dadurch, dass es mit den hierdurch
definierten Translationen nicht möglich ist, die
dunklen Atome auf die Positionen der hellen zu
bringen. Dementsprechend enthält die dritte Ele-
mentarzelle zwei Atome, während bei den ersten
beiden Varianten die Elementarzelle jeweils nur
ein Atom enthält. Die dritte Elementarzelle ist
auch doppelt so groß wie die beiden ersten. Man
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bezeichnet die ersten beiden Gitter als primitiv,
das dritte als nicht primitiv.

Bei der Ermittlung der Anzahl Atome pro Ele-
mentarzelle muss berücksichtigt werden, dass die
Atome am Rand der Zelle zu mehreren Zel-
len beitragen, aber nur einmal gerechnet wer-
den dürfen. Man hat die Wahl, entweder die Ele-
mentarzelle leicht zu verschieben, so dass alle
Atome nur in einer Zelle liegen, oder man zählt
bei einem Atom, welches zu n Zellen beiträgt,
jeweils nur 1/n. Offenbar entspricht bei einem
Atom in der Seitenfläche n = 2, auf einer Kante
n = 3 oder 4, und auf der Ecke eines Würfels
n = 8.

2.2.2 Punktsymmetrieklassen

Abbildung 2.25: Versuche, mit 5- oder 7-eckigen
Elementen die Ebene abzu-
decken.

Die Symmetrie eines Kristalls ergibt sich durch
die Kombination der Punktsymmetriegruppen,
angewendet auf die Einheitszelle, mit der Trans-
lationsgruppe des Gitters. Nicht alle möglichen
Punktsymmetriegruppen sind aber mit periodi-
schen Gittern verträglich. Insbesondere sind 5-
7- oder 10-zählige Rotationsachsen nicht verträg-
lich mit Translationssymmetrie. Abb. 2.25 illu-
striert dies anhand eines Versuchs, die Ebene mit
5- oder 7-eckigen Elementen abzudecken. Ein Be-
weis dazu wird in Übung 2 behandelt.

Man kann einige Bedingungen definieren, welche
Symmetrieelemente in einem Kristallgitter auf-
treten können:

• Eine Einheitszelle als einfachste sich wieder-
holende Einheit in einem Kristall.

• Gegenüberliegende Flächen einer Einheits-
zelle sind parallel.

• Der Rand der Einheitszelle verbindet jeweils
äquivalente Stellen.

Insgesamt gibt es 32 Punktsymmetrieklassen, die
auch in periodischen Systemen vorkommen kön-
nen. Diese enthalten Spiegelebenen, sowie Rota-
tionsachsen mit 2-, 3-, 4- und 6-zähliger Symme-
trie.

Die Tabelle in Abb. 2.26 fasst alle 32 Punkt-
symmetriegruppen zusammen, welche mit Trans-
lationsgittern kompatibel sind. Die Bezeichnun-
gen sind nach Schoenflies und nach Hermann-
Maugin angegeben. Jede dieser Punktsymme-
triegruppen kann durch eines oder mehrere Sym-
metrieelemente erzeugt werden, wobei teilwei-
se unterschiedliche Möglichkeiten bestehen, die-
se Elemente zu wählen. Die Zahl ⌦ bezeichnet
die Anzahl äquivalenter Positionen in allgemei-
ner Lage.

Bei allen Symmetrieoperationen bleibt eine Men-
ge von Gitterpunkten fest, nämlich die Punkte,
welche auf das Symmetrieelement fallen.
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Abbildung 2.26: Die 32 Punktsymmetrieklassen.
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2.2.3 Kristallsysteme

a
b

c

Abbildung 2.27: Definition der Achsen und Win-
kel.

Die Kombination der Punktsymmetriegruppen
mit dem Translationsgitter ergibt insgesamt 230
unterschiedliche Raumgitter oder Raumgruppen.
Diese werden in mehreren hierarchischen Ebe-
nen eingeteilt. Zunächst betrachtet man die Ach-
sen a, b, c der Einheitszelle, sowie die Winkel
↵,�, � zwischen diesen Achsen. Abb. 2.27 zeigt,
zwischen welchen Achsen diese Winkel definiert
sind: ↵ zwischen b und c, � zwischen a und c
und � zwischen a und b. Aufgrund der möglichen
Werte dieser 6 Größen teilt man die Raumgrup-
pen ein in sieben Kristallsysteme.

kubisch

↵ = � = � = 90
�

a = b = c

a 6= b 6= c
↵ = � = 90

�
6= �

monoklin

aa

triklin

a 6= b 6= c
↵ = � = � = 90

�

orthorombisch

rhomboedrisch (trigonal)
a = b = c
↵ = � = � 6= 90

� < 120
�

hexagonal

a = b 6= c

↵ = � = 90
�, � = 120

�

a = b 6= c

↵ = � = � = 90
�

tetragonal

Abbildung 2.28: Übersicht über die 7 Kristallsy-
steme.

Abb. 2.28 zeigt die 7 Kristallsysteme, zusammen
mit den Bedingungen für die Winkel und Achsen.
Sie lauten

1. Triklin: a 6= b 6= c, ↵ 6= � 6= � : keine Sym-

metrie

2. Monoklin: a 6= b 6= c, ↵ = � = 90
�

6= � : 1
C2;

3. Orthorombisch: a 6= b 6= c, ↵ = � = � = 90
�

: 3 C2

4. Hexagonal: a = b 6= c, ↵ = � = 90
�, � =

120
� : 1 C6

5. Rhomboedrisch (trigonal): a = b = c, ↵ =

� = � 6= 90
� < 120

� : 1 C3

6. Tetragonal: a = b 6= c, ↵ = � = � = 90
� : 1

C4

7. Kubisch: a = b = c, ↵ = � = � = 90
� : 4 C3

2.2.4 Bravais-Gitter

Diese sieben Kristallsysteme werden weiter dif-
ferenziert in 14 Bravais-Gitter. Ein primitives
Bravais-Gitter ist definiert als die Menge aller
Translationsvektoren

~T = u1~a1 + u2~a2 + u3~a3, (2.1)

welche die entsprechende, unendlich ausgedehn-
te Kristallstruktur invariant lassen. Hier stellen
ui ganze Zahlen dar. In einem nicht-primitiven
Gitter werden zusätzliche Punkte eingefügt, so
dass jede Elementarzelle mehr als einen Punkt
enthält, welche nicht durch die in (2.1) definier-
ten Gittervektoren erreicht werden. Trotzdem ist
die Umgebung dieser Punkte identisch zur Um-
gebung aller anderen Gitterpunkte.

Zu jedem Kristallsystem gibt es ein primiti-
ves Gitter. Beim monoklinen gibt es ausserdem
ein basiszentriertes, d.h. die Einheitszelle besitzt
nicht nur Gitterpunkte an den Ecken, sondern
auch im Zentrum der durch a und b aufgespann-
ten Fläche (!Abb. 2.29). Dieses Gitter ist al-
so nicht primitiv. Beim orthorombischen gibt es
ebenfalls ein basiszentriertes Gitter, sowie zu-
sätzlich ein raumzentriertes (oder innenzentrier-
tes) und ein flächenzentriertes. Beim tetragona-
len Gitter gibt es ein raumzentriertes und beim
kubischen ein raumzentriertes und ein flächen-
zentriertes.
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Primitiv

Basiszentriert

a 6= b 6= c

↵ = � = 90
�

6= �

a
b

c
a

b

c

Abbildung 2.29: Monoklines Kristallsystem mit
unterschiedlichen Möglichkei-
ten der Basis.

r2 = (1/2, 1/2, 1/2)

Abbildung 2.30: Kubisch primitives, innenzen-
triertes und flächenzentrierte
Einheitszellen.

Die vielleicht einfachste Kristallstruktur ist das
primitiv kubische Gitter (Abb. 2.30 links). Die
Atome sind in diesem Fall auf den Ecken ei-
nes Würfels angeordnet, so dass jede Einheits-
zelle ein Atom enthält. In einem flächenzentrier-
ten kubischen Gitter (Abb. 2.30 rechts) sind drei
weitere Atome pro Einheitszelle vorhanden, zen-
triert in den Seitenflächen des Würfels.

~a2

~a3

~a1

Abbildung 2.31: fcc Gitter mit einer (alternati-
ven) primitiven Einheitszelle.

Ein basiszentriertes oder raumzentriertes Git-
ter besitzen zwei Gitterpunkte pro Einheitszelle,

ein flächenzentriertes Gitter vier. Natürlich wä-
re es bei allen nichtprimitiven Gittern ebenfalls
möglich, eine andere Einheitszelle zu wählen, so-
dass das Gitter primitiv würde. Abb. 2.31 zeigt
als Beispiel ein fcc Gitter mit einer alternativen
Einheitszelle. Diese entspricht einem rhomboe-
drischen Gitter. Diese Einheitszelle enthält nur
einen Gitterpunkt und ist damit vier mal kleiner.
Eine der Möglichkeiten, eine primitive Einheits-
zelle zu wählen, ist die Wigner-Seitz Konstruk-
tion. Häufig sind aber die Rechnungen einfacher
in einem nichtprimitiven Gitter durchzuführen,
z.B. wenn man dann ein orthonormiertes Koor-
dinatensystem verwenden kann.

Insgesamt ergeben sich die folgenden 7 Kristall-
systeme und 14 Bravais-Gitter:

1. Triklin: a 6= b 6= c, ↵ 6= � 6= � : keine Sym-
metrie

2. Monoklin: a 6= b 6= c, ↵ = � = 90
�

6= � : 1
C2; a) primitiv, b) basiszentriert

3. Orthorombisch: a 6= b 6= c, ↵ = � = � =

90
� : 3 C2 a) primitiv, b) basiszentriert, c)

raumzentriert, d) flächenzentriert

4. Hexagonal: a = b 6= c, ↵ = � = 90
�, � =

120
� : 1 C6 primitiv

5. Rhomboedrisch (trigonal): a = b = c, ↵ =

� = � 6= 90
� < 120

� : 1 C3 primitiv

6. Tetragonal: a = b 6= c, ↵ = � = � = 90
� : 1

C4 a) primitiv, b) raumzentriert

7. Kubisch: a = b = c, ↵ = � = � = 90
� : 4 C3

a) primitiv, b) raumzentriert, c) flächenzen-
triert

2.2.5 Raumgruppen

Bisher hatten wir angenommen, dass die Objekte
selber sphärische Symmetrie aufweisen. Dies ist
im Allgemeinen nicht der Fall.

Werden die unterschiedlichen Symmetrien der
Basis mit berücksichtigt, dann ergibt sich eine
weitere Unterteilung der Bravais-Gitter in ins-
gesamt 230 Raumgruppen. Abb. 2.32 zeigt zwei
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A
B

Spiegelebenen

A B

Abbildung 2.32: Links: Einheitszelle mit zwei
Atomen in allgemeiner Lage,
mit Multiplizität 4. Rechts: 3
Atome in spezieller Lage; A hat
Multiplizität 2, B 1.

Beispiele. In der linken Hälfte sitzen die Atome
auf allgemeinen Lagen, mit Multiplizität 4 auf-
grund der beiden Spiegelebenen. In der rechten
Hälfte sitzen sie auf symmetrischen Positionen
mit entsprechend niedrigerer Multiplizität von 2
für A und 1 für B.

7 Kristallsysteme

Basis : primitiv / nicht primitiv

14 Bravaisgitter

z.B. triklin

z.B. kubisch innenzentriert

Symmetrie der Basis

230 Raumgruppen z.B. Amm2 / 

Uran(V,VI)-oxid

C14
2v

Abbildung 2.33: Kristallsysteme, Bravais-Gitter
und Raumgruppen.

Abb. 2.33 fasst diesen Übergang zusammen. Als
Beispiel ist die Raumgruppe von Uran(V,VI)-
oxid gezeigt. Weitere Beispiele von kubischen
Raumgruppen werden in Kapitel 2.3.3 behan-
delt. Die vollständige Liste der Raumgruppen
wurde von Arthur Moritz Schoenflies und Jew-
graf Stepanowitsch Fjodorow erstellt.

2.3 Strukturen

2.3.1 Netzebenen und Miller Indizes

In der Kristallographie spielen die sog. Netzebe-
nen eine große Rolle. Dabei handelt es sich um
(gedachte) Ebenen, die mit Atomen oder Gitter-
punkten besetzt sind. Wie man sich leicht über-
zeugen kann, sind die Atome in einer solchen
Ebene ebenfalls periodisch angeordnet, wobei die
Periodizität größer sein kann als die Periodizi-
tät des Kristalls. Jede Netzebene entspricht einer
Netzebenenschar, d.h. einer unendlichen Schar
von äquivalenten Ebenen, welche parallel zuein-
ander in einem festen Abstand liegen. Diese Net-
zebenen entsprechen auch möglichen Spaltflä-
chen oder Wachstumsebenen von Kristallen. Au-
ßerdem reflektieren diese Ebenen Röntgenstrah-
lung und spielen deshalb eine entscheidende Rol-
le bei der Strukturbestimmung (! Kap. 2.6).

Netzebenen können durch jeweils drei ganze Zah-
len eindeutig charakterisiert werden. Diese wer-
den als Miller’sche Indizes5 bezeichnet und in der
Form (jkl) geschrieben.

a

b

Abbildung 2.34: Zweidimensionale Netzebene
mit Achsenabschnitten 3, 1.

Dafür bestimmt man die Abschnitte, an denen
die Ebene die Achsen schneidet. Die Achsenab-
schnitte werden in Vielfachen der Einheitszelle
(also nicht der primitiven Elementarzelle) be-
stimmt. Im Beispiel von Abb. 2.34 sind dies die
Zahlen 3 und 1. Die Miller Indizes erhält man,
indem man den Kehrwert der Achsenabschnitte
bildet (hier: 1/3, 1/1) und das kleinste ganzzah-
lige Verhältnis bestimmt (hier: 1, 3).

5Nach dem Vorschlag von William Hallowes Miller
(1801–1880).
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Abbildung 2.35: Netzebene in 3D; Achsenab-
schnitte 3, 1, 2.

In drei Dimensionen geht man analog vor. Im
Beispiel von Abb. 2.35 sind die Achsenabschnit-
te 3, 1, 2 und die Kehrwerte somit 1/3, 1, 1/2.
Ganzzahlige Indizes erhält man durch Erweitern
mit 6 : (263). In einem zweiten Beispiel seien die
Achsenabschnitte 6, 2, 3. Daraus erhält man die
Kehrwerte 1/6, 1/2 = 3/6, 1/3 = 2/6 und damit
Miller Indizes (132).

x
y

z

(100)

z

x
y

(110)

z

x
y

(111)

x
y

z

(200)
x y

z

(100)-

Abbildung 2.36: Beispiele für Netzebenen.

Einige Beispiele von Miller Indizes für häufig ver-
wendete Ebenen sind in Abb. 2.36 zusammenge-
stellt. Liegt die Netzebene parallel zu einer Ach-
se, so beträgt der entsprechende Achsenabschnitt
unendlich und der Index 0. Negative Achsenab-
schnitte werden mit einem Querstrich bezeich-
net.

Meist sind aufgrund der Symmetrie des Gitters
mehrere Netzebenen äquivalent zueinander. Ein
einfaches Beispiel sind die Ebenen (100), (010),
und (001) des einfach kubischen Gitters. Solche

Gruppen von äquivalenten Netzebenen fasst man
zusammen, indem man die Indizes in geschweifte
Klammern setzt, also z.B. {100}.

Für Richtungen im direkten Raum verwendet
man eckige Klammern, also z.B. [hkl]. In einem
kubischen Kristall stehen die Richtungen [hkl]
senkrecht auf die Netzebenen (hkl).

2.3.2 Dichteste Kugelpackung

Festkörper bilden sich, weil die darin enthaltenen
Bausteine sich gegenseitig anziehen. Die Ener-
gie eines Kristalls kann deshalb meist optimiert
werden, wenn die Bestandteile möglichst dicht
gepackt sind. Es stellt sich somit die Frage, wel-
che Anordnung den Raum optimal füllt. Für die
meisten Bestandteile ist die Antwort nicht ana-
lytisch, aber für den wichtigen Fall, dass die Be-
standteile durch karte Kugeln angenähert wer-
den könne, lässt sich die Frage beantworten. Ku-
gelförmige Bestandteile sind eine gute Näherung
für viele Ionenkristalle.

In einer Dimension wird die dichteste Kugel-
packung durch eine Reihe direkt aneinander ge-
legter Kugeln realisiert.

Abbildung 2.37: Links: dichteste Kugelpackung
in einer Ebene; rechts: 2 hexa-
gonal dichtest gepackte Ebenen
gestapelt.

In zwei Dimensionen kann man Reihen von Ku-
geln jeweils um eine halbe Gitterkonstante ver-
schoben aneinander fügen und erhält eine dich-
teste Kugelpackung, welche einem hexagonalen
Gitter entspricht. Fügt man zwei solcher Schich-
ten aufeinander, so wird der Schichtabstand mi-
nimal, wenn sich die Kugeln der oberen Lage
über einer Lücke der unteren Lage befinden (sie-
he Abb. 2.37 rechts).
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Abbildung 2.38: 3 hexagonal dichtest gepackte
Ebenen gestapelt.

Fügt man eine dritte Schicht auf diese beiden, so
kann dies auf zwei Arten optimiert werden: Man
legt die dritte Schicht vertikal über die erste oder
man verschiebt sie nochmals in die gleiche Rich-
tung wie beim ersten Schritt, so dass die dritte
über die gemeinsame Lücke der blauen und roten
Schicht zu liegen kommt. Die erste Folge wird als
ABAB charakterisiert, die zweite als ABCABC.
Beide Varianten kommen in der Natur vor, und
es sind auch gemischte Fälle möglich, d.h. die
Stapelfolge kann variieren.

In beiden Fällen berührt jede Kugel 12 näch-
ste Nachbarn. Das Volumen der Kugeln nimmt
⇡

3
p

2
⇡ 0, 74048 oder 74 % des Kristallvolumens

ein. Dieses Verhältnis der Kugelvolumina zum
gesamten Volumen wird als Raumfüllung be-
zeichnet. Da diese beiden Packungen die maxi-
mal mögliche Raumfüllung aufweisen, werden sie
als ‘dichteste Kugelpackung’ bezeichnet.

Schicht A

Schicht B
Schicht A

A

B

C
A

Abbildung 2.39: Anordnung der Schichten in
der hexagonal dichtesten Kugel-
packung (links) und in der flä-
chenzentrierten dichtesten Ku-
gelpackung (rechts).

Ist die Stapelfolge ABAB, so wählt man nor-

malerweise eine hexagonale Einheitszelle, wie in
Abb. 2.39 links dargestellt. Diese Struktur wird
als hexagonal dichteste Kugelpackung bezeichnet
oder kurz als hcp (=hexagonal close packed). Die
Stapelrichtung entspricht der c-Achse des hexa-
gonalen Kristallsystems.

Abbildung 2.40: Strukturparameter der hexago-
nal dichtesten Kugelpackung.

Abb. 2.40 zeigt eine weitere Darstellung der hcp
Struktur. Es gilt, wie immer im hexagonalen Kri-
stallsystem, a = b, � = 120

� und ↵ = � = 90
�.

Somit sind die freien Parameter nur noch die bei-
den Kantenlängen c und a. Die Basis besteht hier
aus zwei Atomen mit den Koordinaten (0,0,0)
und (2/3, 1/3, 1/2). Jedes Atom hat 12 nächste
Nachbarn; man bezeichnet diese Zahl als Koor-
dinationszahl. Für die ideale hcp Struktur gilt
außerdem c =

p
8/3 a ⇡ 1, 633 a. Reale Struktu-

ren besitzen ein Verhältnis c/a, welches nahe bei
diesem Wert ist (siehe Abb. 2.40 rechts).

Für die Beschreibung des Gitters, das durch die
Stapelfolge ABCABC erzeugt wird, verwendet
man das kubisch flächenzentrierte Gitter, wel-
ches in Abb. 2.39 rechts dargestellt ist. Die Sta-
pelrichtung entspricht der Raumdiagonale des
Würfels. Dieser Fall wird kurz als fcc (=face
centered cubic) bezeichnet. Die Raumfüllung be-
trägt in beiden Fällen (hcp und fcc) 74%. In ei-
nem kubisch innenzentrierten Gitter (bcc = (bo-
dy centered cubic) ist die Raumfüllung 68%, in
einem einfachen kubischen Gitter 52%, und in
einem Diamantgitter 34%.

2.3.3 Kubische Strukturen

Eine relativ wichtige Struktur ist diejenige von
Diamant, welche in Abb. 2.41 dargestellt ist. Sie
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0 0

0 0

01/2 1/2

1/2

1/2

1/4

1/4

3/4

3/4

Abbildung 2.41: Struktur von Diamant als
3D Darstellung und Projekti-
on in die xy-Ebene mit den
z-Koordinaten der Atome.

kann als kubisch flächenzentrierte Struktur dar-
gestellt werden, welches zusätzlich ein Atom an
der Stelle (1/4, 1/4, 1/4) und den entsprechen-
den äquivalenten Positionen enthält.

Abbildung 2.42: Struktur von GaAs.

Viele Halbleiter, wie z.B. Si oder GaAs kristalli-
sieren in einer Struktur, welche von der Diamant-
struktur abgeleitet werden kann und in Abb. 2.42
dargestellt ist. Bei den binären Halbleitern wer-
den die Gitterplätze abwechselnd mit den beiden
unterschiedlichen Atomsorten, wie z.B. Ga und
As belegt.

Die Struktur eines Materials, welches in der
Zinkblende-Struktur kristallisiert, ist vollständig
bestimmt, wenn noch die Kantenlänge a der Ein-
heitszelle gegeben ist. Tabelle 2.1 zeigt diesen Pa-
rameter für 12 unterschiedliche Verbindungen.

Auch SiC ist dadurch charakterisiert, dass ein Si
Atom jeweils tetraedrisch durch kovalente Bin-
dungen mit vier Kohlenstoff-Atomen verknüpft

Kristall Kristalla a

Tabelle 2.1: Größe der Einheitszelle für un-
terschiedliche Materialien mit
Zinkblende-Struktur.

ist, und umgekehrt. Allerdings findet man in die-
sem Fall unterschiedliche Stapelfolgen und des-
halb eine große Zahl von unterschiedlichen Struk-
turen.

Cl– 

Na+

a

Abbildung 2.43: Struktur von NaCl (links) und
CsCl (rechts).

Kristalle, die aus mehr als einer Atomsorte beste-
hen, enthalten dementsprechend mehrere Atome
pro Einheitszelle. Ein relativ einfaches Beispiel
ist NaCl (Kochsalz) (siehe Abb. 2.43 links). Da
die Na+-Ionen kleiner sind als die Cl�-Ionen ist
in diesem Fall ein kubisch flächenzentriertes Git-
ter energetisch am günstigsten. Dies bedeutet,
dass in einem Untergitter, welches nur die Cl�,
resp. Na+-Ionen enthält, jeweils Ecken und Flä-
chenmittelpunkte eines Kubus besetzt sind. Man
kann das Gitter aber auch als primitiv kubisches
Gitter (mit der halben Gitterkonstante, d.h. 1/8
Volumen der Einheitszelle) beschreiben, bei dem
die Gitterplätze alternierend mit Cl, resp. Na be-
setzt sind.

Im CsCl-Kristall (Abb. 2.43 rechts) besetzen die
Cs+-Ionen die Gitterpunkte eines einfach kubi-
schen Gitters. Das Raumgitter (Bravais-Gitter)
ist damit einfach kubisch (sc) mit einer zweiato-
migen Basis aus einem Cs+-Ion bei (0,0,0) und
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einem Cl�-Ion bei (½,½,½). Jedes Atom befindet
sich im Mittelpunkt eines Würfels der anderen
Atomsorte. Die Koordinationszahl ist somit 8.

dhcp-Struktur  =  double hexagonally close packed: Stapelfolge ABACABAC

No

Abbildung 2.44: Übersicht über die Struktur von
elementaren Kristallen.

Viele Elemente kristallisieren in kubischen
Strukturen, Abb. 2.44 fasst sie zusammen. Die
wichtigsten sind bcc, fcc, hcp und dhcp (dou-
ble hexagonally close packed, mit der Stapelfolge
ABACABAC), sowie die Diamantstruktur.

2.3.4 Quasikristalle

Wie bereits erwähnt, sind 5-zählige Rotations-
achsen in einem System mit Translationssymme-
trie nicht möglich. Auch in zwei Dimensionen ist
es nicht möglich, die Ebene mit Einheitszellen
mit 5-zähliger Symmetrie abzudecken. Man hat
deshalb lange Zeit geglaubt, dass solche Kristalle
nicht existieren würden. Erst 1984 wurden erst-
mals in Beugungsexperimenten 10-zählige Sym-
metrieachsen gefunden, und etwas später konnte
man diese Symmetrie auch makroskopisch nach-
weisen.

Mit Hilfe der Elektronenmikroskopie findet man
die 5-zählige Symmetrie sowohl in der Morpho-
logie der Kristalle wie auch in der atomaren
Struktur. Die gleiche Symmetrie findet man auch
in hochauflösenden Mikroskopie Bildern, wel-
che direkt die atomare Struktur darstellen. Da

Abbildung 2.45: Morphologie eines Quasikri-
stalls (links) und zugehöriges
Beugungsmuster (rechts).

diese Materialien zwar einen hohen Ordnungs-
grad, aber keine Translationssymmetrie aufwei-
sen, werden sie als Quasikristalle bezeichnet. Die
Details dieser Strukturen sind noch nicht in al-
len Fällen vollständig verstanden. Sie basieren
jedoch auf räumlich nichtperiodischen Struktu-
ren.

Abbildung 2.46: Zwei Beispiele, wie eine Ebe-
ne mit einem nichtperiodischen
Muster abgedeckt werden kann.

In zwei Dimensionen können Kombinationen von
2 Elementen den Raum vollständig abdecken, oh-
ne dass sie Translationssymmetrie aufweisen. Be-
kannt dafür sind vor allem die Elemente von Pen-
rose6.

Quasikristalle wurden 1984 in bestimmten in-
termetallischen Verbindungen entdeckt [14] und
charakterisiert. Für einige Jahre waren sie relativ
umstritten, aber weitere Arbeiten und auch Mes-
sungen im direkten Raum haben ihre Existenz
bestätigt. Die meisten Quasikristalle wurden in

6Roger Penrose (* 1931)

34



2 Symmetrie und Struktur

künstlich hergestellten Verbindungen gefunden.
Seit einigen Jahren gibt es jedoch auch Hinweise
darauf, dass Quasikristalle in natürlich vorkom-
menden Mineralien vertreten sind [3].

2.3.5 Defekte

Abbildung 2.47: Unterschiedliche Arten von De-
fekten.

Ideale Kristalle stellen eine nützliche Fiktion dar.
Sie existieren jedoch nicht, sondern alle realen
Kristalle enthalten Abweichungen vom idealen
Gitter, welche als Defekte bezeichnet werden.
Abb. 2.47 zeigt die wichtigsten Defekte. Dazu ge-
hören Leerstellen, Zwischengitteratome, Verset-
zungen und Substitution durch Fremdatome. Als
Fremdatome bezeichnet man Atome einer ande-
ren Sorte, also z.B. Nickel-Atome in einem Git-
ter aus Eisenatomen. Häufig treten auch unter-
schiedliche Arten von Defekten in Kombinatio-
nen auf. Diese Defekte erhöhen im Allgemeinen
die Energie des Systems, aber auch die Entropie.
Deshalb sind im thermodynamischen Gleichge-
wicht immer Defekte vorhanden, und die Zahl
der Defekte nimmt mit zunehmender Tempera-
tur zu. Eine Leerstelle in Kupfer besitzt z.B. ei-
ne Energie von 1,2 eV, ein Zwischengitteratom
3,4 eV. Abb. 2.47 zeigt außerdem wie die Defek-
te die Gitterstruktur stören, auch auf Distanzen
die deutliche größer sind als eine Einheitszelle.

Eine Kombination von 2 elementaren Defekten
tritt z.B. bei der Frenkel-Fehlstelle auf (! Abb.
2.48): hier wurde ein Atom von seinem eigent-

Ag Cl

Abbildung 2.48: Frenkel Fehlstelle als Verschie-
bung eines Atoms auf einen
Zwischengitterplatz, respektive
als Kombination einer Leerstel-
le mit einem Zwischengitter-
Atom.

lichen Gitterplatz auf einen Zwischengitterplatz
verschoben. Wie in Abb. 2.48 rechts gezeigt ist,
kann dieser Defekt auch als Kombination einer
Leerstelle mit einem Zwischengitteratom gesehen
werden.

Leerstelle

STM-Bild

NaCl

Schottky-Defekt in NaCl

Abbildung 2.49: Schottky Defekt in einem NaCl
Kristall (links) und Leerstelle
in einem einatomigen Kristall
(rechts).

Als Schottky-Defekt bezeichnet man eine Kombi-
nation aus zwei Leerstellen von Atomen mit ent-
gegengesetzter Ladung. Dieser Defekt ist damit,
wie auch der Frenkel-Defekt, ladungsneutral.

Eine weitere Kombination von elementaren De-
fekten ist das Stickstoff-Leerstellen Zentrum im
Diamant (! Abb. 2.50). Es wird auch als NV-
Zentrum bezeichnet (von Nitrogen-Vacancy). Es
ist ein gutes Beispiel dafür, wie solche Defekte
die Eigenschaften eines Materials verändern kön-
nen. Während reiner Diamant praktisch farblos
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Abbildung 2.50: Stickstoff-Leerstellen Defekt im
Diamant.

ist, hat das NV-Zentrum einen erlaubten Über-
gang im sichtbaren Bereich des Spektrums und
führt deshalb zu einer Färbung des Kristalls.

Abbildung 2.51: Struktur eines metallischen
Glases (links) und eine Mög-
lichkeit zu ihrer Herstellung
durch schnelles Abkühlen
(rechts).

Defekte bilden sich nicht nur im thermodynami-
schen Gleichgewicht, sie können auch z.B. auch
bei der Kristallisation entstehen, vor allem wenn
die Abkühlung sehr schnell vor sich geht. Dies
führt z.B. zu Gläsern oder amorphen Substan-
zen. Gläser können durchsichtig sein, wenn sie
aus dielektrischen Materialien bestehen, aber es
existieren auch metallische Gläser, welche inter-
essante Eigenschaften als Werkstoffe aufweisen.

Die genannten Defekte sind Punktdefekte. Da-
neben gibt es auch eindimensionale Defekte, wie
z.B. Schraubenversetzungen oder Stufenverset-
zungen (siehe Abb. 2.52). Solche Defekte können
durch einen Burgersvektor charakterisiert wer-
den (~b in Abb. 2.52 rechts). Er wird bestimmt,

b
!

Abbildung 2.52: Stufenversetzung (links) und
ihre Charakterisierung durch
einen Burgersvektor ~b.

indem man analoge Wege im perfekten und im
defektbehafteten Teil des Kristalls vergleicht.

Zweidimensionale Defekte umfassen Korngren-
zen und Stapelfehler. Auch dreidimensionale De-
fekte können charakterisiert werden.

2.4 Strukturbestimmung

Die atomare oder molekulare Struktur eines Kör-
pers kann viele seiner Eigenschaften erklären und
ist deshalb immer von großem Interesse. Um
diese Struktur zu bestimmen, benötigt man ein
Werkzeug, welches in atomaren Größen arbeiten
kann. In erster Linie benutzt man dafür elektro-
magnetische Wellen mit kurzer Wellenlänge, d.h.
Röntgenstrahlen. Auch Materiewellen sind mit
Erfolg eingesetzt worden, in erster Linie Elek-
tronen oder Neutronenstrahlen, aber neuerdings
auch Atomstrahlen.

Neben der Art des “Werkzeugs” ist ein wichti-
ges Unterscheidungsmerkmal, ob die Messung im
Ortsraum oder im Impulsraum, dem sogenann-
ten reziproken Raum stattfindet. Hier werden zu-
erst die direkten Methoden diskutiert, danach
die Beugungsmethoden.
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Abbildung 2.53: Prinzip der Feldionenmikrosko-
pie.

2.4.1 Feld-Ionen Mikroskopie

Die erste Methode, welche Atome direkt sicht-
bar machte, war die Feld-Ionen Mikroskopie7.
Es handelt sich dabei um ein relativ einfaches
Gerät: im Wesentlichen benötigt man eine sehr
scharfe Spitze, an die man eine positive elektri-
sche Spannung anlegt. Dadurch erhält man an
der Spitze ein sehr hohes elektrisches Feld. Aus-
serhalb der Spitze befindet sich mit niedrigem
Druck ein Gas, typischerweise Helium. Wenn ein
Heliumatom in die Nähe der Spitze gelangt, wird
es durch dieses enorme elektrische Feld ionisiert,
das heisst diese Metallspitze zieht eines der Elek-
tronen des Heliumatoms weg. Dadurch wird das
Heliumatom zu einem positiv geladenen Heliu-
mion und wird nun durch das starke elektrische
Feld sehr rasch von der Spitze weg beschleunigt.
Nach einer Distanz von etwa 10 cm trifft es auf
einen Schirm, wo es sichtbar gemacht wird. Da
sich die Atome auf dem direktesten Weg von
der Spitze entfernen, entsteht dadurch auf dem
Schirm ein Bild der Spitze. Die Vergrößerung
kommt durch das Verhältnis des Radius der Spit-
ze zur Distanz vom Schirm zustande und benö-
tigt keine weiteren abbildenden Elemente. Man
erhält also auf diese Weise auf dem Schirm ein
Bild dieser Spitze mit sehr hoher Auflösung. Al-
lerdings ist das Bild ziemlich stark verzerrt.

Diese Art von Mikroskopie ist inzwischen mehr
7Erwin Wilhelm Müller (1911 - 1977) hat 1936 das

Feld-Ionenmikroskop entwickelt. Er gilt als der erste
Mensch, der ein Atom „gesehen“ hat.

Abbildung 2.54: Feldionenmikroskop-
Aufnahmen von Atomen,
die sich auf einer Metallspitze
bewegen. Das obere ist ein
Rhenium-, das untere ein
Wolfram-Atom. [16]

als 80 Jahre alt [12], sorgt aber immer noch für
spektakuläre Bilder, wie z.B. die Serie von Bil-
dern in Abb. 2.54, welche zeigen, dass man damit
nicht nur atomare Auflösung erhält, also einzelne
Atome sehen kann, sondern auch deren Bewe-
gung über die Oberfläche beobachten kann. In
Abb. 2.54 ist die Oberfläche einer Wolframspitze
dargestellt, auf der sich zwei einzelne Atome be-
wegen, welche durch die dreieckigen Pfeile mar-
kiert sind. Beim unteren handelt es sich um ein
Wolfram-Atom, beim oberen um ein Rhenium-
Atom.

2.4.2 Elektronenmikroskopie

Um ein weniger verzerrtes Bild einer beliebigen
atomaren Struktur zu erhalten, benötigt man ei-
ne Abbildungsoptik, die unabhängig vom abzu-
bildenden Objekt ist. Die Wellenlänge des abbil-
denden Feldes muss dazu kleiner sein als die ab-
zubildenden Strukturen. Verwendet man elektro-
magnetische Wellen (d.h. Röntgenstrahlen), sind
abbildende Linsen praktisch nicht herstellbar.

Verwendet man jedoch Elektronen für die Abbil-
dung, so können Linsen mit elektromagnetischen
Feldern erzeugt werden, wie in Abb. 2.55 sche-
matisch dargestellt.
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Elektronen-
quelle

Objekt magnetische 
Linsen

Bild auf dem Schirm1

Abbildung 2.55: Funktionsprinzip eines Elektro-
nenmikroskops.

Abbildung 2.56: Elektronenmikroskopische Auf-
nahme eines Molekülkristalls.

Hochgezüchtete Systeme sind in der Lage, Ato-
me direkt abzubilden. Dafür muss allerdings eine
Vergrößerung um mindestens 7 Größenordnun-
gen erreicht werden. Aufgrund der damit ver-
bundenen technischen Schwierigkeiten ist dies
erst seit wenigen Jahren möglich und stellt im-
mer noch kein Routineverfahren dar. Abb. 2.56
zeigt als Beispiel einen Molekülkristall mit ato-
marer Auflösung. Dies ist allerdings nur möglich,
wenn die Orientierung geeignet gewählt ist, so
dass Stapel von übereinander liegenden Molekü-
len aufeinander abgebildet werden.

Die Kryo-Elektronenmikroskopie ist eine Versi-
on davon, welche für die Strukturbestimmung an
Biomolekülen entwickelt wurde. Dabei werden
die Proben auf tiefe Temperaturen gekühlt. Um
eine molekulare Struktur zu bestimmen, muss je-
doch im Rechner eine große Zahl von Aufnahmen
verarbeitet werden. Diese Methode wurde 2017
mit dem Nobelpreis für Chemie ausgezeichnet.

Im Herbst 2020 ist es erstmals gelungen, mit die-
ser Methode atomare Auflösung zu erzielen.

2.4.3 Rastersonden Mikroskopie

Die Methode, mit der man die strukturelle In-
formation erhält, hängt stark davon ab, welches
dieser Werkzeuge man verwendet. Im Falle der
Rastersonden Mikroskopie ist die Methode sehr
direkt: man tastet den Gegenstand mit der Pro-
be ab und zeichnet die Position der Probe auf,
um so direkt ein Bild der Oberfläche zu erhalten.

Elektronik

St
ro
m

Abbildung 2.57: Funktionsprinzip der Raster-
Tunnelmikroskopie.

Diese Methode wurde 1982 von Binnig und Roh-
rer am IBM Forschungslaboratorium in Rüsch-
likon entwickelt. Dabei wurde eine feine Spit-
ze über eine Oberfläche geführt, wobei der Ab-
stand zwischen der Spitze und der Oberfläche
konstant gehalten wurde. Indem man die Po-
sition der Spitze aufzeichnete, konnte man ein
Bild der Oberfläche erhalten. Man tastet also die
Oberfläche mit einer Spitze ab, benutzt also ei-
ne Art verfeinerten Tastsinn, um die Oberfläche
sichtbar zu machen.

Insbesondere hat man auch gelernt, mit dem Mi-
kroskop Atome zu verschieben, nicht nur zu be-
obachten. Abb. 2.58 zeigt als Beispiel einen Ring
aus 48 Eisenatomen, welche mit einer Rastertun-
nelspitze auf der Oberfläche eingesammelt und
an einen Ort gebracht wurden. Anschliessend
wurde das gleiche Gerät dafür verwendet, die
hergestellten Strukturen abzubilden.
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Abbildung 2.58: STM Bild eines Kreises aus 48
Eisenatomen.

Die Raster-Sonden Mikroskope verwendeten die
exponentielle Abhängigkeit des sog. Tunnel-
stroms, also eines elektrischen Stroms durch ein
nichtleitendes Medium wie das Vakuum, um ein
Bild zu erhalten. Diese Technik wird deshalb als
Tunnelmikroskopie (STM = scanning tunneling
microscopy) bezeichnet. Die Notwendigkeit für
einen elektrischen Strom beschränkt diese Tech-
nik auf leitende Oberflächen. Später kamen an-
dere Arten von Sonden dazu, wie die Raster-
Kraftmikroskopie (AFM = atomic force micros-
copy) die magnetische Wechselwirkung (MFM
= magnetic force microscopy) oder die optische
Nahfeld Mikroskopie (SNOM = scanning near
field optical microscopy). Alle diese Techniken
sind hervorragend für die Untersuchung von be-
stimmten Oberflächen geeignet. Sie sind aber un-
empfindlich für Bereiche unterhalb der ersten 1-2
atomaren Lagen und deshalb nicht geeignet für
die Untersuchung von Volumenkristallen.

2.4.4 Röntgenbeugung

Vor der Entwicklung der direkten Methoden war
die einzige Möglichkeit, mit atomarer Auflösung
Informationen über Kristallstrukturen zu erhal-
ten, die Verwendung von Beugungsmethoden, al-
so die Streuung einer Welle an einer periodi-
schen Struktur. Auch heute ist das für Volumen-
kristalle meist die einzige Möglichkeit, da die
direkten Methoden nur für Oberflächen geeig-
net sind. Voraussetzung für die Verwendung von
Beugungsmethoden ist, dass die Wellenlänge der
verwendeten Strahlung von der gleichen Größen-
ordnung ist wie die Abstände zwischen den Ato-

men, also weniger als 1 nm.

Cl- Na+

a0

a0

Abbildung 2.59: Struktur von NaCl.

Die Beugung von Wellen an periodischen Struk-
turen, wie dem NaCl Kristall von Abb. 2.59
wurde u.a. von den Braggs8 erklärt. Ihre Erklä-
rung ist sehr anschaulich und liefert das rich-
tige Resultat. Man betrachtet dabei eine Reihe
von parallelen Ebenen. Im Kristall sind dies na-
türlich keine wirklichen Ebenen, sondern Netze-
benen, also zweidimensionale Anordnungen von
Atomen.

Röntgenstrahl

d

d

✓ ✓

✓ ✓

✓ ✓

Abbildung 2.60: Interferenz von Teilstrahlen and
benachbarten Netzebenen.

Jede dieser Ebenen reflektiert einen Teil der ein-
fallenden Welle. Wie groß dieser Anteil ist, hängt
von der Welle selber ab, sowie von der Netzebe-
ne: wie dicht sind die Atome gepackt, was für
eine Art von Atomen sind es etc. Dies wird in
Kapitel 2.6 genauer diskutiert.

Für die Herleitung der Bragg-Bedingung be-
zeichnen wir den Abstand zwischen diesen Ebe-
nen als d, wie in Abb. 2.60 gezeigt. Falls der Bre-
chungsindex dieser Ebenen von demjenigen des

8Sohn William Lawrence Bragg und Vater William Hen-
ry Bragg, 1912
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übrigen Materials abweicht, wird an diesen Ebe-
nen jeweils ein Teil der Welle reflektiert. Die Mo-
dulation des Brechungsindexes kommt durch die
Verteilung der Elektronendichte zustande. Typi-
sche Werte für die Reflektivität einer einzelnen
Ebene liegen bei 10

�5 . . . 10
�3; die transmittier-

te Welle wird somit kaum abgeschwächt. Da es
sich um eine Welle handelt, tritt beim Beobach-
ter Interferenz ein, d.h. die gesamte reflektierte
Welle ergibt sich durch lineare Superposition der
Teilwellen, welche an den einzelnen Ebenen re-
flektiert werden.

✓

✓

d sin ✓
d}

Abbildung 2.61: Berechnung der Bedingung für
konstruktive Interferenz.

Damit positive Interferenz entsteht, muss, in di-
rekter Analogie zum Beugungsgitter, der Weg-
unterschied zwischen den einzelnen Teilwellen
ein ganzzahliges Vielfaches der Wellenlänge sein.
Für die in Abb. 2.61 gezeigte Geometrie lautet
die Bedingung für konstruktive Interferenz

2d sin ✓ = n�. (2.2)

Der Bragg-Winkel ✓ ist hier der Winkel zwischen
der Einfallsrichtung des Röntgenstrahls und der
Netzebene (d.h. 90

�-Einfallswinkel) und damit
die Hälfte des Ablenkwinkels für den Röntgen-
strahl, wie in Abb. 2.61 gezeigt, n ist eine ganze
Zahl und � die Wellenlänge.

Dies ist die sogenannte Bragg-Bedingung: Beu-
gungsreflexe können nur dann auftreten, wenn
der Einfallswinkel des Röntgenstrahls auf die
Netzebene durch das Verhältnis (2.2) zwischen

Netzebenenabstand und Wellenlänge gegeben
ist. Die Bedingung kann offenbar nur dann er-
füllt werden, wenn die Wellenlänge � kleiner ist
als der doppelte Abstand, �  2d. Um gut aufge-
löste Beugungsbilder zu erhalten, benötigt man
Wellen, deren Wellenlänge vergleichbar ist mit
dem Abstand der untersuchten Netzebenen, also
im Bereich von ⇡ 1 Å . . . 1 nm.

Wie diese Herleitung zeigt, erzeugt jede Schar
von Netzebenen einen Beugungsreflex. Ein Beu-
gungsmuster enthält deshalb viele Reflexe, wel-
che jeweils einer Netzebene zugeordnet werden
können. Die Bragg-Bedingung bestimmt jedoch
nur die möglichen Reflexionsrichtungen, sie sagt
nichts über die Intensität des Beugungsmaxi-
mums.

2.4.5 Beugung von Materiewellen

Anstelle von Röntgenstrahlen kann man auch
Materiewellen für Beugungsuntersuchungen ver-
wenden. Gemäß de Broglie beträgt die Wellen-
länge eines Teilchens mit Impuls p

� =
h

p

oder k = p/~. Für nichtrelativistische Elektro-
nen der Energie E erhält man den Impuls als

p =

p

2mE =
h

�
, (2.3)

mit m als Masse des Elektrons. Daraus ergibt
sich die Wellenlänge als

� =
1.2
p

E
(

p

eV nm)

oder rund 150 eV für eine Wellenlänge von 0.1
nm.

Elektronenstrahlen ergeben ähnliche Beugungs-
muster wie Röntgenstrahlen mit der gleichen
Wellenlänge. Die Eindringtiefe von Elektronen
dieser Energie ist recht klein (15 nm), sodass sich
Elektronenbeugung in erster Linie für die Unter-
suchung von Oberflächen eignet. Man misst des-
halb die Beugungsmuster nicht in Transmission,
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Röntgen Elektronen

Vergleich der 
Beugungsmuster von 
Röntgen und 
Elektronenstrahlen

Elektronenkanone

Detektor

Abbildung 2.62: Elektronenbeugung.

wie bei der Röntgenbeugung, sondern in Reflexi-
on, wie in Abb. 2.62 gezeigt. Sie wird u.a. verwen-
det, um epitaktisches Wachstum zu überwachen,
vor allem in der Halbleiterindustrie.

Ebenfalls recht häufig verwendet werden Neutro-
nen. Da diese rund 1836 mal schwerer sind als
Elektronen, haben sie bei gegebener Energie ei-
ne sehr viel kürzere Wellenlänge als Elektronen.
Dementsprechend benötigt man Neutronen mit
einer sehr viel niedrigeren Energie um eine be-
stimmte Wellenlänge zu erreichen. Als Richtlinie
kann verwendet werden: 0.1 nm wird erreicht bei
einer Energie von 80 meV.

Sowohl Neutronen wie auch Elektronen zeigen
eine andere Abhängigkeit zwischen Energie und
Wellenlänge als Photonen. Bei Photonen ist die
Wellenlänge invers proportional zur Energie, � /

E
�1, während für massive Teilchen gemäß Glei-

chung (2.3) gilt � / E
�1/2. Abb. 2.63 zeigt die-

se Abhängigkeit für Photonen, Elektronen und
Neutronen. Für den relevanten Wellenlängenbe-
reich kann man sie schreiben als

�R(Å) =
12.4

E(keV
)

�e(Å) =
12p

E(eV)

�N (Å) =
0.28p
E(eV)

. (2.4)

Für die Untersuchung der Struktur von Oberflä-

10

Photonenenergie in keV
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Elektronenenergie in 100 eV
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Abbildung 2.63: Wellenlänge als Funktion der
Energie für Elektronen, Neutro-
nen und Photonen.

chen kann man auch Helium-Atome verwenden.
Deren Wellenlänge ist bei gleicher Energie noch
etwas kürzer als diejenige von Neutronen.

2.4.6 Neutronenbeugung

Der wesentliche Unterschied zwischen Elektro-
nen (oder Röntgenstrahlen) und Neutronen liegt
in der Art ihrer Wechselwirkung: Neutronen
wechselwirken in erster Linie mit den Atomker-
nen, nicht mit den Elektronen, und die Stärke
der Wechselwirkung hängt nicht von der Ladung
ab. Sie kann deshalb für Kerne mit ähnlicher
Ordnungszahl oder für Isotope des gleichen Ele-
mentes stark variieren. Neutronen sind attrakti-
ve Sonden für die Messung an leichten Kernen,
welche mit Röntgenstrahlen fast unsichtbar sind.
Die Eindringtiefe kann sehr stark variieren, von
wenigen µm bis zu mehreren Zentimetern.

Neutronen können allerdings nicht im Labor-
massstab genutzt werden: Man benötigt als
Quelle einen Reaktor (wie z.B. am ILL in Gre-
noble; Abb. 2.64). Dort werden die Neutronen
im Reaktor durch Kernspaltung erzeugt und
über Strahlrohre aus dem Reaktorkern nach au-
ßen geführt. Eine Alternative sind Beschleuniger-
basierte Quellen wie die European Spallation
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Abbildung 2.64: Erzeugung von Neutronen im
Forschungsreaktor (ILL Greno-
ble).

Source ERIC (ESS), welche seit 2014 im Bau
ist und 2023 den Betrieb aufnehmen soll. Hier
werden relativistische Protonen auf ein Target
geschossen, aus dem dadurch Neutronen austre-
ten.

Abbildung 2.65: Neutronen-
Flugzeitspektrometer IN6
am ILL Grenoble.

Auch die eigentlichen Spektrometer, welche aus
Neutronen mit bestimmter Energie auswählen,
sind sehr aufwändige Großgeräte, welche nur an
wenigen Forschungszentren zur Verfügung ste-
hen, wie z.B. am Institut Laue-Langevin (ILL)
in Grenoble. Abb. 2.65 zeigt schematisch ein sol-
ches Gerät.

Bezüglich der reinen Strukturaufklärung unter-

Neutronen Röntgen

Abbildung 2.66: Vergleich der Streuquerschnit-
te von unterschiedlichen Ato-
men für Neutronen und Rönt-
genstrahlen.

scheiden sich Neutronen von Röntgenstrahlung
vor allem durch den Streuquerschnitt: sie bil-
den nicht die Elektronendichte ab, sondern die
Position der Kerne. Deshalb sind sie z.B. nütz-
lich für die Messung der Position von Wasser-
stoffatomen, welche wegen ihrer geringen An-
zahl Elektronen in Röntgenmessungen schlecht
sichtbar sind. Außerdem können sie zur Mes-
sung von Kernbewegungen, magnetischer Ord-
nung und Isotopenverteilung eingesetzt werden.
Wie in Abb. 2.66 gezeigt, unterscheiden sich die
Streuquerschnitte auch für unterschiedliche Iso-
tope des gleichen Elements.

2.5 Das reziproke Gitter

Die Bragg-Bedingung (2.2) liefert zwar eine Be-
dingung für das Auftreten von Röntgenreflexen,
aber es ist zum einen keine hinreichende Bedin-
gung, zum zweiten liefert sie keine Intensitäten.
Wie groß die Intensität der gestreuten Welle ist,
hängt davon ab, wie stark die einzelnen Ebenen
reflektieren. Im Falle der Röntgenstrahlung ist
die Beugungseffizienz im Wesentlichen propor-
tional zur Elektronendichte. Für die Berechnung
der Streuintensität muss deshalb die räumliche
Abhängigkeit der Elektronendichte berücksichtig
werden. Hier ist vor allem wichtig, die Periodizi-
tät des Gitters zu berücksichtigen.
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2.5.1 Periodizität der
Elektronendichte

Aufgrund der Periodizität des Kristalls muss die
Elektronendichte n(~r) ebenfalls periodisch sein,

n(~r + ~T ) = n(~r),

wobei ~T einen Translationsvektor

~T = u1~a1 + u2~a2 + u3~a3

darstellt.

x

Harmonische Funktion
f(x) = cos(2πx/a)

Periodische Funktion
g(x)

F{f(x)} =

Z ��

��
e�ikxf(x) dx

F{g(x)} =

Z ��

��
e�ikxg(x) dx

k

� (k � 2�
a )

0 2π/a

Diskrete Funktion

k0 2π
a

4π
a

6π
a

a

a

x

Abbildung 2.67: Fourier-Zerlegung einer eindi-
mensionalen Funktion.

Daraus folgt, dass man die Elektronendichte als
Fourier-Reihe schreiben kann. In einer Dimensi-
on wird sie dann

n(x) = n0 +

X

p>0

Cp cos
2⇡px

a
+ Sp sin

2⇡px

a
.

Hier stellt n0 den Mittelwert dar und p = 1, 2, . . .
eine natürliche Zahl. Alternativ kann die Reihe
komplex geschrieben werden:

n(x) =

1X

p=�1
npe

i2⇡px/a.

Damit die Elektronendichte reell wird, muss gel-
ten n⇤

�p = np. Die Koeffizienten Cp, Sp oder
np erhält man durch Fourier-Transformation der
Elektronendichte (siehe Abb. 2.67).

Diese eindimensionale Betrachtung muss man für
Kristalle auf drei Dimensionen erweitern. Die

dreidimensionale Elektronendichte ist periodisch
in den Richtungen der Basisvektoren ~a1, ~a2, und
~a3 des Gitters. Dies kann geschrieben werden als

n(~r) =

X

pqs

npqse
i2⇡px/a1ei2⇡qy/a2ei2⇡sz/a3

=

X

pqs

npqse
i2⇡( px

a1
+ qy

a2
+ sz

a3
)
,

wobei p, q und s über alle (positiven und nega-
tiven) ganzen Zahlen laufen.

Der Exponent kann als Skalarprodukt geschrie-
ben werden:

2⇡(
px

a1
+

qy

a2
+

sz

a3
) = ~G · ~r.

Damit wird die Elektronendichte

n(~r) =

X

G

n ~G
ei

~G·~r.

Der Vektor

~G = 2⇡

✓
p

a1
,

q

a2
,

s

a3

◆

wird definiert durch drei ganze Zahlen p, q, s.
Er stellt also einen Punkt in einem Gitter dar,
ähnlich wie die Translationsvektoren ~T . Dieses
Gitter wird durch drei Basisvektoren der Länge
2⇡/a1, 2⇡/a2 und 2⇡/a3 aufgespannt. Es befin-
det sich allerdings nicht im gewöhnlichen dreidi-
mensionalen Raum, sondern hat die Dimension
einer inversen Länge. Es wird üblicherweise als
reziprokes Gitter bezeichnet.

2.5.2 Definition des reziproken Gitters

Eine mögliche Definition des reziproken Gitters
ist die folgende:

Das reziproke Gitter besteht aus denjenigen
Wellenvektoren ~k, die eine Funktion ei

~k·~r defi-
nieren, welche im direkten Raum die Periodi-
zität des direkten Gitters aufweist.

Alternativ kann man das reziproke Gitter kon-
struktiv definieren, indem seine Basisvektoren ~bi
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aus den Basisvektoren ~ai des direkten Gitters be-
stimmt werden:

~b1 = 2⇡
~a2 ⇥ ~a3

~a1 · (~a2 ⇥ ~a3)
= 2⇡

~a2 ⇥ ~a3

V

~b2 = 2⇡
~a3 ⇥ ~a1

V

~b3 = 2⇡
~a1 ⇥ ~a2

V
.

Aufgrund dieser Konstruktion steht ~b1 senkrecht
auf ~a2 und ~a3 und entsprechendes gilt (unter zy-
klischer Vertauschung) für die anderen Vektoren.
Sakalarprodukte zwischen Basisvektoren des di-
rekten und reziproken Gitters werden somit

~bi · ~aj = 2⇡�ij . (2.5)

Diese Konstruktion kann auch in Matrixform ge-
schrieben werden. Wir definieren die Matrix

A = (~a1,~a2,~a3) =

0

@
a1x a2x a3x

a1y a2y a3y

a1z a2z a3z

1

A

der primitiven Gittervektoren.
Entsprechend können wir eine Matrix B für die
Basisvektoren des reziproken Gitters definieren.
Aus der Orthogonalitätsbeziehung folgt A†B =

2⇡1 oder

B = 2⇡
⇣
A†

⌘�1
.

Damit ist es möglich, die Bestimmung des rezi-
proken Gitters auf eine Matrixinversion zurück-
zuführen. Aus dieser Konstruktion folgt auch,
dass das reziproke Gitter fest and das direkte
Gitter und den Kristall gekoppelt ist.
Aus der Konstruktion der Basisvektoren, resp.
der Orthogonalitätsbeziehung~bi ·~aj = 2⇡�ij folgt
für beliebige Vektoren ~T des direkten Gitters und
~G des reziproken Gitters

~T · ~G = (u1v1 + u2v2 + u3v3) 2⇡

= (ganze Zahl) 2⇡

oder

ei
~T · ~G

= 1. (2.6)

Dies entspricht der ersten Definition des rezipro-
ken Gitters.

2.5.3 Beispiele

a reziproker 
Raum

2π
a

Abbildung 2.68: Einheitszelle des kubisch primi-
tiven Gitters und des zugehöri-
gen reziproken Gitters.

Bei kubischen Strukturen mit Kantenlängen a
der Einheitszelle ist das reziproke Gitter eben-
falls eine kubische Struktur, wie in Abb. 2.68
gezeigt. Die Achsen haben die gleiche Richtung
wie in der direkten Struktur, die Kantenlänge
beträgt 2⇡/a. Die primitiven Gittervektoren des
direkten und des reziproken Gitters sind dann

direktes Gitter reziprokes Gitter

~a1 = a~ex ~b1 =
2⇡
a

~ex
~a2 = a~ey ~b2 =

2⇡
a

~ey
~a3 = a~ez ~b3 =

2⇡
a

~ez
V = a3 V =

�
2⇡
a

�3

Die Situation wird etwas komplizierter für nicht-
kubische Einheitszellen, insbesondere für schief-
winklige.

~a2

~a3

~a1

Abbildung 2.69: Primitive EZ im fcc-Gitter mit
den Basisvektoren des rezipro-
ken Gitters.

Für die primitive Einheitszelle des kubisch flä-
chenzentrierten Gitters (siehe Abb. 2.69), z.B.,
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erhalten wir

A =
a

2

0

@
1 0 1

1 1 0

0 1 1

1

A ,

wobei a wie üblich die Kantenlänge des Würfels
darstellt. Damit wird die entsprechende Matrix
für das reziproke Gitter

B =
2⇡

a

0

@
1 �1 1

1 1 �1

�1 1 1

1

A .

Dies sind die primitiven Gittervektoren des bcc
Gitters (kubisch innenzentriert). Wie in Abb.
2.69 gezeigt, sind die Vektoren ~bi in diesem Fall
nicht parallel zu ~ai, aber sie stehen senkrecht auf
die übrigen Vektoren ~ak für k 6= i.

Abbildung 2.70: Berechnung des reziproken Git-
ters für das bcc Gitter.

Wie in Abb. 2.70 gezeigt, ergeben sich für die
Basisvektoren des reziproken Gitters einer bcc-
Struktur die primitiven Gittervektoren des fcc-
Gitters.

2.5.4 Gitterelemente

Das gesamte Gitter erhält man wiederum durch
Linearkombination der Basisvektoren

~G = v1
~b1 + v2

~b2 + v3
~b3

mit ganzzahligen vi. ~G wird als Punkt oder Vek-
tor des reziproken Gitters bezeichnet. Die Di-
mension dieser Vektoren beträgt m�1, wie man

leicht aus der Definition der Basisvektoren er-
sieht. Falls die Vektoren ~ai die Basisvektoren des
primitiven Gitters sind, so sind auch die Vekto-
ren ~bi die Basisvektoren des primitiven rezipro-
ken Gitters.

Die Punkte des reziproken Gitters sind Fourier-
Komponenten des Kristalls und damit in er-
ster Linie mathematische Hilfsmittel. Um sie
doch etwas zu veranschaulichen, kann man sich
aber vorstellen, dass sie ein Objekt des direkten
Raumes beschreiben, welches eine bestimmte Pe-
riodizität besitzt. Ein Gitterpunkt, der im zwei-
dimensionalen reziproken Raum die Koordinaten
(r, s) besitzt, entspricht der Komponente

sin
2⇡rx

a
sin

2⇡sy

b
.

(1,2)

Reziprokes Gitter

Direktes Gitter

a1

a2

a1

a2

~b1

~b2

(1,3)

~b1

~b2

Abbildung 2.71: Punkte im reziproken Gitter
und ihre Fouriertransformier-
ten.

Abb. 2.71 zeigt zwei Beispiele. Ein Vektor des
reziproken Gitters entspricht damit immer einer
entsprechenden Periodizität im direkten Raum.
Damit enthält die Wellenfunktion des Kristalls
eine Komponente ei

~k·~r. Aufgrund der Beziehung
von de Broglie kann dies auch so interpretiert
werden, dass ein Impuls in Richtung ~k vorhanden
ist. Mit anderen Worten: das reziproke Gitter ist
eine Zerlegung des Festkörperimpulses.

Zu den wichtigsten Eigenschaften des reziproken
Gitters gehören
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1. Das reziproke Gitter eines Bravais-Gitters
ist selbst ein Bravais-Gitter.

2. Das reziproke Gitter des reziproken Gitters
ist das direkte Gitter.

3. Ist Vc das Volumen der von den primitiven
Gittervektoren aufgespannten Einheitszelle
im direkten Gitter, so ist (2⇡)

3/Vc das Vo-
lumen der Zelle im reziproken Raum.

4. Die Länge der reziproken Gittervektoren ist
proportional zum Kehrwert der Länge der
Gittervektoren im direkten Raum.

2.5.5 Reziproke Gittervektoren und
Ebenenscharen

Eine wichtige Beziehung besteht auch zu den
Netzebenen des direkten Gitters: Ist eine Ebe-
ne durch die Miller Indizes hkl gegeben, so steht
der Vektor

~G =

0

@
h
k
l

1

A = h~b1 + k~b2 + l~b3;

des reziproken Gitters senkrecht auf dieser Ebe-
ne. Beweis: wir zeigen, dass dieser Vektor senk-
recht auf zwei linear unabhängigen Vektoren ~v1

und ~v2 steht, welche die Ebene (hkl) aufspannen.
Wir wählen

~v1 =
1

h
~a1 �

1

k
~a2 , ~v2 =

1

k
~a2 �

1

l
~a3.

~v1 =
1

h
~a1 �

1

k
~a2

1

h
~a1

1

k
~a2

~a2

~a1

Abbildung 2.72: Definition von ~v1.

Wie in Abb. 2.72 gezeigt, liegt der Vektor ~v1

in der Schnittgeraden von (hkl) und der Ebene,
die von ~a1 und ~a2 aufgespannt wird. Entspre-
chend liegt ~v2 in der Schnittgeraden von (hkl)

und (~a2,~a3), und gemeinsam spannen die beiden
Vektoren die Netzebene auf. Das Skalarprodukt
mit dem reziproken Gittervektor ~G ist

~G · ~v1 =

⇣
h~b1 + k~b2 + l~b3

⌘
·

✓
1

h
~a1 �

1

k
~a2

◆
.

Die Orthogonalitätsrelation zwischen den Basis-
vektoren des direkten und reziproken Raums er-
gibt

~G · ~v1 = ~G · ~v2 = 2⇡ (1 � 1) = 0 ⌅.

Der kürzeste Vektor ~G des reziproken Gitters,
der senkrecht auf den Netzebenen steht, hat die
Länge

|~G| =
2⇡

d
,

wobei d den Abstand zwischen benachbarten
Netzebenen darstellt. Diese Beziehung folgt aus
der Tatsache, dass die Funktion ei

~G·~r im direk-
ten Raum eine Periode von 2⇡/|~G| hat, welche
dem Abstand zwischen Netzebenen entsprechen
muss.

~a2

~a1{
a2

k
a1

h

{d2

Abbildung 2.73: Abstand der Netzebenen.

Für den Spezialfall eines rechteckigen Gitters in 2
Dimensionen berechnen wir den Abstand d2 zwi-
schen aufeinander folgenden Netzebenen gemäß
Abb. 2.73

d2
a1
h

=

a2
kq

a
2
1

h2 +
a
2
2

k2

.

Daraus erhalten wir den Abstand

d2 =
a1a2p

a2
1k

2 + a2
2h

2
=

1q
k2

a
2
2

+
h2

a
2
1

=
2⇡

|G|

in zwei Dimensionen.
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~a1

~a2

Mittel-
senkrechte

Abbildung 2.74: 1. Brillouin-Zone als Wigner-
Seitz Einheitszelle des rezipro-
ken Raums.

2.5.6 Brillouin-Zonen

Im reziproken Gitter kann man genau so wie im
direkten Gitter Einheitszellen definieren. Einige
Beispiele wurden in Kapitel 2.5.3 diskutiert. Im
reziproken Raum spielt, im Gegensatz zum di-
rekten Raum, die Wigner-Seitz Zelle (! Kapitel
2.1.6) eine besonders wichtige Rolle. Sie wird als
die erste Brillouin-Zone bezeichnet.

Der einfachste Fall ist das reziproke Gitter des
primitiv kubischen Gitters. Die Basisvektoren
des direkten Gitters sind in diesem Fall die Vek-
toren ~ax, ~ay und ~az, alle mit der Länge a. Die
Basisvektoren des reziproken Gitters sind im Fall
des kubischen Gitters in die gleiche Richtung ori-
entiert und ihre Länge beträgt 2⇡/a. Das Vo-
lumen der ersten Brillouin-Zone beträgt damit
(2⇡/a)

3. Da bei der üblichen Wigner-Seitz Kon-
struktion der ersten Brillouin-Zone der Gitter-
punkt im Zentrum liegt, reicht die Zone von �b/2

bis +b/2, d.h. von �⇡/a bis +⇡/a. Die Form ist,
wie beim direkten Raum, die eines Würfels.

Abb. 2.75 zeigt als Beispiel die 1. BZ für das re-
ziproke bcc und fcc Gitter im dreidimensionalen
Raum.

In späteren Kapiteln werden auch die höheren
BZ eine Rolle spielen (jedoch nicht so wichtig
wie die erste BZ). Abb. 2.76 zeigt die Konstruk-

Abbildung 2.75: 1. Brillouin-Zone des bcc (links)
und fcc (rechts) Gitters.

Abbildung 2.76: Weitere Brillouin-Zonen.

tion für die ersten drei Zonen. Dafür werden die
Mittelsenkrechten auf die Verbindungslinien zu
den übernächsten (usw.) Nachbarn gelegt. Hier
wird ersichtlich, dass die höheren Zonen komple-
xere Formen haben und teilweise nicht einfach
zusammenhängend sind.

2.6 Strukturbestimmung mit
Beugungsmethoden

2.6.1 Streuung an kontinuierlichen
Medien

Die Bragg-Bedingung (! Kapitel 2.4.4) ist eine
notwendige Bedingung für das Auftreten eines
Beugungsreflexes durch Reflexion an Netzebenen
diskutiert. Diese Netzebenen sind nützliche ma-
thematische Hilfsmittel, aber in Wirklichkeit er-
folgt die Streuung der Röntgenstrahlung nicht an
den Netzebenen, sondern an den Elektronen des
Materials, d.h. an einer kontinuierlichen Vertei-
lung. Außerdem liefert die Bragg-Bedingung für
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die Netzebenen keine Amplituden für die Beu-
gungsreflexe.

Den physikalischen Prozess der Röntgenstreu-
ung an den Elektronen kann man sich am be-
sten so vorstellen, dass die einfallende Welle in
der Elektronendichteverteilung eine erzwungene
Schwingung erzeugt, welche ihrerseits eine Welle
abstrahlt. Die Phase dieser gestreuten Welle ist
starr an die der einlaufenden Welle gekoppelt.
Wir nehmen im Folgenden an, dass die gestreute
Welle selber nicht mehr gestreut wird. Dies wird
als erste Born’sche Näherung bezeichnet und ist
für die Streuung von Röntgenlicht in Kristallen
fast immer eine gute Näherung. Mehrfachstreu-
ung kann nur in wenigen Fällen überhaupt be-
obachtet werden. Der Grund dafür ist der gerin-
ge Streuquerschnitt für die Streuung von Photo-
nen an Elektronen: er ist von der Größenordnung
r2
e ⇡ 10

�29
m

2, wobei

re =
1

4⇡✏0

e2

mec2
⇡ 2, 818 · 10

�15
m

den klassischen Elektronenradius darstellt.

0

Quelle Detektor

~r

dV

~k
~k�

Abbildung 2.77: Beitrag des Volumenelements
dV zur Streuamplitude.

Wir gehen aus von einem einfallenden Röntgen-
strahl, der durch den Wellenvektor ~k beschrieben
wird, und bestimmen die Intensität eines Strahls,
der in Richtung ~k0 gestreut wird. Dazu berech-
nen wir den Beitrag jedes Volumenelementes des
Kristalls. Ein Element dV an der Stelle ~r erzeugt
einen Beitrag, der proportional ist zur Elektro-
nendichte n(~r) an diesem Ort. Wir gehen davon
aus, dass die einlaufende Welle als ebene Welle
beschrieben werden kann und dass der Detektor
so weit vom Kristall entfernt ist, dass die gestreu-

te Welle (welche einer Kugelwelle um dV ent-
spricht) in guter Näherung beim Detektor eben-
falls als ebene Welle beschrieben werden kann.

Gegenüber einer Referenz-Phasenfläche durch
den Ursprung O des Koordinatensystems erhält
die einfallende Welle bis zum Volumenelement
dV eine Phasenverzögerung um ~k ·~r. Die gestreu-
te Welle erhält auf dem Weg zum Detektor eben-
falls eine Phasenverzögerung, um �~k0

· ~r. Somit
ergibt sich insgesamt für den Beitrag des Volu-
menelements bei ~r eine Phasenverschiebung um
den Betrag

'(~r) = ~k · ~r �~k0
· ~r =

⇣
~k � ~k0

⌘
· ~r = ��~k · ~r,

mit �~k = ~k0
�~k als Änderung des Impulses beim

Streuprozess. Bei elastischer Streuung sind die
Beträge der beiden Vektoren gleich, |~k| = |~k0

|.

2.6.2 Bragg-Bedingung

Die gesamte Amplitude F des Röntgenstrahls am
Detektor erhält man durch Integration über das
Volumen des Kristalls, wobei die einzelnen Bei-
träge mit der entsprechenden Elektronendichte
gewichtet werden:

F =

ZZZ
dV n(~r)e�i�~k·~r. (2.7)

Das Integral entspricht einer 3D-Fourier-
transformation. Damit ist die Streuamplitude
proportional zur Fourier-Amplitude der Elek-
tronendichte n(~r) bei der räumlichen Frequenz
�~k. Dies ist die Basis aller Beugungsmethoden
für die Strukturbestimmung.

Da die Elektronendichte eines Kristalls peri-
odisch ist, kann sie als Fourier-Reihe dargestellt
werden:

n(~r) =

X

G

n ~G
ei

~G·~r.

Damit wird die gestreute Amplitude

F =

ZZZ
dV

X

G

n ~G
ei(

~G��~k)·~r. (2.8)
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Das Integral kann nur dann von Null verschie-
den sein, wenn der Integrand nicht oszilliert, d.h.
wenn

~G = �~k,

d.h. wenn �~k ein Vektor des reziproken Gitters
ist. Somit findet man nur dann einen Beugungs-
reflex, wenn der Streuvektor einem Vektor des
reziproken Gitters entspricht. Dies ist einer der
wesentlichsten Gründe dafür, dass die Festkör-
perphysik in erster Linie kristalline Materialien
diskutiert.

b1

b2

Text

Abbildung 2.78: Beugungsreflexe von Muskovit
(KAl2(AlSi3O10)(F,OH)2).

Abb. 2.78 zeigt als Beispiel die Beugungsrefle-
xe von Muskovit (KAl2(AlSi3O10)(F,OH)2). Die
einzelnen Reflexe sind als Vektoren des rezipro-
ken Gitters indiziert. Die Schärfe dieser Bedin-
gung ist begrenzt durch die Größe des Kristalls;
die Unschärfe nimmt ab mit der Anzahl der Ele-
mentarzellen, welche zur Streuung beitragen.

Diese Bedingung kann quantenmechanisch auch
als Impulserhaltung verstanden werden: ~~k ist
der Impuls der einfallenden Welle, ~~k0 der Impuls
der gebeugten Welle. Aufgrund der Impulserhal-
tung kann Beugung nur auftreten, wenn der ent-
sprechende Impulsunterschied ~�~k vom Materi-
al, d.h. vom Gitter zur Verfügung gestellt wird.
Diese Möglichkeit ist genau dann gegeben, wenn
ein entsprechender Vektor ~G = ~�~k im rezipro-
ken Gitter existiert.

2.6.3 Röntgenstrahlung

Anodenspannung 
~10-100 kV

Röntgenstrahlung

Thermische 
Elektronenemission

Hochvakuumröhre

Heiz-
Spannung

Kathode Anode

Abbildung 2.79: Erzeugung von Röntgenstrah-
lung in einer Röntgenröhre.

Die verwendete Röntgenstrahlung wird meist
mit einer Röntgenröhre erzeugt. Wie in Abb.
2.79 gezeigt, werden darin Elektronen aus einer
Glühkathode ins Vakuum emittiert und zur An-
ode beschleunigt. Beim Auftreffen auf die Anode
erzeugen sie hochenergetische Strahlung, welche
2 Komponenten enthält: breitbandige Brems-
strahlung und schmalbandige charakteristische
Strahlung, welche für das Material der Anode
charakteristische Übergangsfrequenzen aufweist.

Einfallende Strahlung 
(breitbandig)

Monochromator-
Kristall

Nicht abgelenkte 
Komponenten des 
Primärstrahls

Strahlung vom Monochromator

2θ Zur Probe

Photonenenergie

Lo
g(

In
te

ns
itä

t) Kα
Kβ

Abbildung 2.80: Filterung der Röntgenstrahlung
in einem Monochromator.

Für viele Anwendungen ist es notwendig, mo-
nochromatische Strahlung zu verwenden. Die-
se stellt man her, indem man die unerwünsch-
ten Teile unterdrückt. Dies kann durch Bragg-
Streuung an einem Monochromator-Kristall er-
folgen, wie in Abb. 2.80 gezeigt.
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2.6.4 Ewald-Konstruktion

Mit der Bedingung ~G = �~k allein könnte für
jeden einfallenden Röntgenstrahl eine unendli-
che Zahl von Beugungsmaxima auftreten. Für
die Strukturaufklärung ist jedoch vor allem ein
Spezialfall wichtig, nämlich der Fall der elasti-
schen Streuung, d.h. dass die Wellenlänge der
gebeugten Welle gleich derjenigen der einfallen-
den Welle ist, |~k| = |~k0

|. Mit dieser zusätzlichen
Bedingung ist die Bedingung für das Auftreten
von Beugung nicht mehr automatisch erfüllt.

elastische Streuung: 
|k| = |k’|

ge
str

eu
ter

 S
tra

hl
~k�

�~k

einfallender Strahl

reziprokes Gitter

2θ ~k

Abbildung 2.81: Ewald-Konstruktion.

Die Bedingung dafür, dass ein Röntgenreflex auf-
tritt, kann mit Hilfe der Ewald-Konstruktion
dargestellt werden (siehe Abb. 2.81). Ausgangs-
punkt sind die Bedingungen

|~k| = |~k0
| , ~k0

� ~k = ~G

für das Auftreten eines Reflexes. Man stellt da-
bei den einfallenden Röntgenstrahl durch einen
Vektor ~k dar, wobei seine Spitze auf einem Git-
terpunkt des reziproken Raumes liegt. Der re-
flektierte Strahl wird durch einen Vektor ~k0 dar-
gestellt, dessen Spitze wiederum auf einem Git-
terpunkt liegen muss und dessen Ursprung mit
demjenigen des einfallenden Strahls zusammen-
fällt. Der Streuvektor �~k = ~G ist dann ein Vek-
tor des reziproken Gitters. Der Winkel 2✓ zwi-
schen den beiden Vektoren entspricht der Bragg-
Bedingung.

Die Ewald-Konstruktion zeigt, dass das Auftre-
ten von Beugung nur für wenige spezielle Wel-
lenvektoren auftritt. Man findet diese Vektoren,

wenn man einen Kreis mit Radius k verschiebt,
bis er durch zwei Gitterpunkte läuft. Die Kon-
struktion zeigt auch, dass |~k| �

1
2 |~G|min sein

muss, d.h. der Betrag des einfallenden Wellen-
vektors muss mindestens gleich der Hälfte des
Betrags des kleinsten Gittervektors sein.

Abbildung 2.82: Die Ewald-Kugel.

Abbildung 2.82 zeigt die Ewald-Konstruktion in
drei Dimensionen.

2.6.5 Beugung an Pulvern

Da ein einfallender Röntgenstrahl i.A. keinen Re-
flex erzeugt, sind verschiedene Methoden ent-
wickelt worden, um Röntgenbeugung zu beob-
achten. Die einfachste Methode ist die Pulver-
oder Debye-Scherrer Methode: man bestrahlt ein
Pulver.

nach Debye-Scherrer

Abbildung 2.83: Beugung an Pulvern (Debye-
Scherrer).

50



2 Symmetrie und Struktur

Ein Pulver besteht aus vielen Kristallen mit zu-
fälliger Orientierung. Da alle möglichen Orien-
tierungen vorkommen, sind immer einige Kri-
stallite richtig orientiert, so dass Reflexe auf-
treten. Aus Symmetriegründen ist die gebeugte
Röntgenstrahlung in diesem Fall konisch, d.h. die
Beugung hängt nur vom Winkel gegenüber der
Strahlrichtung ab. Wie in Abb. 2.83 gezeigt, wird
die Probe in das Zentrum eines Zylinders gelegt,
und die Innenseite des Zylinders mit einem Film
belegt. Auf dem Detektor findet man deshalb
konzentrische Ringe. Da nicht bekannt ist, wie
der Kristallit, welcher den Reflex erzeugt, orien-
tiert ist, eignet sich dieses Verfahren nicht für
eine vollständige Strukturbestimmung. Es kann
aber verwendet werden, um Gitterkonstanten zu
bestimmen.

Beugungswinkel  (Grad)

In
te

ns
itä

t

50 100

Abbildung 2.84: Beugungsmaxima für Si-Pulver.

Abb. 2.84 zeigt das Beugungsmuster, welches
von Silizium-Pulver gemessen wurde. Die einzel-
nen Beugungsmaxima sind mit den zugehörigen
Miller-Indizes bezeichnet. Im Bereich 0

� < 2✓ <
180

� findet man Reflexe zu allen Gittervektoren,
welche kürzer sind als 2 |k|. Während ihre Rich-
tung sich aus dem Pulvermuster nicht bestim-
men lässt, erhält man ihre Länge aus der Bedin-
gung

|G| = 2k sin ✓.

2.6.6 Einkristall-Verfahren

Ein Verfahren, welches vollständige Strukturana-
lysen von Einkristallen erlaubt, ist das Bragg-
oder Drehkristall-Verfahren. Dabei wird der Kri-
stall gedreht. Da das reziproke Gitter starr an

Monochromator

Röntgenstrahl

Kollimatoren

transmittierter Strahl 
(nicht verwendete Wellenlängen)

Detektor

Probenkristall

1

Abbildung 2.85: Drehkristall-Verfahren.

das direkte Gitter gekoppelt ist, wird es dabei
mit gedreht. In einem Koordinatensystem, wel-
ches an das reziproke Gitter gekoppelt ist, wird
damit die Ewald-Kugel gedreht und es treten bei
bestimmten Orientierungen Reflexe auf. Dabei
werden alle Reflexe gemessen, welche im Lauf der
Drehung auftreten.

Für diese Art von Messungen benötigt man mo-
nochromatische Röntgenstrahlung. Ist die ver-
wendete Quelle breitbandig, so wird deshalb
ein Monochromator benötigt, um die gewünsch-
te Wellenlänge herauszufiltern. Dafür verwendet
man normalerweise ebenfalls Bragg-Beugung an
einem Kristall (siehe Abb. 2.85).

reziprokes Gitter

~k

~k�

Abbildung 2.86: Prinzip des Laue-
Verfahrens(links) und Ewald-
Konstruktion für das Laue-
Verfahren.

Eine weitere Möglichkeit für Messungen an Ein-
kristallen ist das sogenannte Laue-Verfahren.
Dabei benutzt man kontinuierliche Röntgen-
strahlung aus dem Bremsstrahlungsbereich.
Wenn ein breiter Bereich von k-Vektoren (und
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damit Radien der Ewald-Kugel) vorkommen,
gibt es immer die Möglichkeit, die Bragg-
Bedingung zu erfüllen. Dieses Verfahren eig-
net sich wiederum nicht für die Strukturbestim-
mung, da man nicht weiss, welche Wellenlänge
welchen Reflex erzeugt hat. Man kann das Ver-
fahren aber benutzen, um Änderungen von Zell-
konstanten (z.B. mit der Temperatur) zu beob-
achten, oder um Kristalle mit bekannter Struk-
tur zu orientieren.

Insgesamt gibt es also 3 unterschiedliche Verfah-
ren, um die Beugungsbedingung �~k = ~G zu er-
füllen:

1. Der Einfallswinkel ✓ wird konstant gehalten
und die Gleichung wird für unterschiedliche
Wellenlängen l erfüllt: Laue-Verfahren.

2. Die Wellenlänge l wird konstant gehalten
und die Bragg-Gleichung wird für unter-
schiedliche ✓ erfüllt: Drehkristall-Verfahren.

3. Die Wellenlänge l wird konstant gehalten
und die Bragg-Gleichung wird für unter-
schiedliche ✓ dadurch erfüllt, dass in ei-
ner pulverförmigen Probe irgendein Kristal-
lit immer „richtig“ liegt: Debye-Scherrer-
Verfahren.

2.6.7 Laue-Bedingung

Unterschiedliche Formen der Bedingung für das
Auftreten eines Röntgenreflexes können bei der
Analyse von bestimmten Situationen nützlich
sein. Allgemein gilt die Impulserhaltung, resp.
die Bedingung, dass der einfallende und der ge-
streute Strahl sich um einen Vektor des rezipro-
ken Gitters unterscheiden müssen,

~k0
= ~k + ~G.

Für elastische Streuung können wir daraus eine
Bedingung für die Längen ableiten:

���~k + ~G
���
2

= k2
oder 2~k · ~G + G2

= 0

oder, da dies auch für �~G gelten muss, welcher
ebenfalls ein Gittervektor ist,

2~k · ~G = G2.

Wenn wir beide Seiten dieser Gleichung durch 4
dividieren, erhalten wir

~k ·
1

2

~G =

✓
1

2
G

◆2

. (2.9)

Diese Bedingung eignet sich wiederum für eine
geometrische Konstruktion, welche in Abb. 2.87
gezeigt ist.

reziprokes GitterD

O

⃗G

Alle Vektoren  mit 
Ursprung in O und Spitze 
auf dieser Ebene erfüllen 
die Beugungsbedingung

⃗k

Mitte
lsenkrechte

⃗k

Abbildung 2.87: Laue-Konstruktion der Beu-
gungsbedingung.

Ausgangspunkt ist diesmal der Streuvektor
�~k = ~G, welcher die Punkte O und D im rezi-
proken Gitter verbinden soll. Um diejenigen ein-
fallenden Wellenvektoren ~k zu finden, welche die
Beugungsbedingung erfüllen, fällen wir die Mit-
telsenkrechte auf den Vektor ~G. Jeder Vektor,
dessen Ursprung in O liegt und auf dieser Mittel-
senkrechten endet, erfüllt offenbar die Bedingung
(2.9).

Diese Konstruktion entspricht offenbar gerade
der Wigner-Seitz Konstruktion für die Einheits-
zelle, d.h. der Brillouin-Zone. Streuung findet
somit immer dann statt, wenn der Wellenvek-
tor des einfallenden Strahls auf der Grenze der
Brillouin-Zone liegt.

2.7 Berechnung der gestreuten
Intensität

Bisher wurden nur Auswahlregeln betrachtet, al-
so ob in die entsprechende Richtung überhaupt
etwas gestreut wird. Als nächstes soll die Stärke
eines Reflexes berechnet werden.
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2.7.1 Streuamplitude und
Strukturfaktor

Wenn ein Reflex auftritt, d.h. wenn der Streu-
vektor �~k ein Vektor des reziproken Gitters ist,
wird exp(i(~G � �~k) · ~r) = 1. Damit vereinfacht
sich der Ausdruck (2.8) für die Streuamplitude
zu F / n ~G

.

� ⃗k = ⃗G
ϕ=0

ϕ=2π

ϕ=4π

Abbildung 2.88: Reflexion an der 100 Ebene.

Offenbar ist die räumliche Abhängigkeit im Inte-
granden verschwunden. Dies bedeutet, dass alle
Einheitszellen identische Beiträge zur Streuam-
plitude liefern, welche durch die entsprechende
Fourier-Komponente der Elektronendichte im re-
ziproken Gitter gegeben sind. Diese ist definiert
als

n ~G
=

ZZZ
dV n(~r) e�i ~G·~r.

Damit wird die Streuamplitude

F = n~G
=

ZZZ
dV n(~r) e�i ~G·~r. (2.10)

Aufgrund der Periodizität der Elektronendichte
kann das Integral über den Kristall auf ein In-
tegral über eine Einheitszelle und eine Multipli-
kation mit der Zahl der Einheitszellen reduziert
werden: Für ~G einen Vektor des reziproken Git-
ters und ~T einen beliebigen Vektor des direkten
Gitters gilt gemäß (2.6):

e�i ~G·(~r+~T )
= e�i ~G·~r.

Damit können wir das Integral in (2.10) auf eine
Einheitszelle reduzieren,

F = N

ZZZ

EZ

dV n(~r) e�i ~G·~r
= N S~G

,

wobei N die Anzahl Zellen im Kristall darstellt
und

S ~G
=

ZZZ

EZ

dV n(~r) e�i ~G·~r

als Strukturfaktor bezeichnet wird. Der Struk-
turfaktor ist also die Fouriertransformierte der
Elektronendichte n(~r) über eine Einheitszelle.

2.7.2 Atomare Beiträge

In vielen Fällen ist es nützlich, die Elektronen-
dichte n(~r) in Beiträge der einzelnen Atome auf-
zuteilen. Die Zuordnung einzelner Elektronen zu
bestimmten Atomen ist natürlich eine Näherung.
Für Elektronen in der K-Schale ist diese Nähe-
rung sehr gut, für Valenzelektronen in kovalent
gebundenen Atomen oder Metallen eher schlecht.
Die Mehrheit der Elektronen ist jedoch relativ
gut lokalisiert, und die Näherung hilft sehr gut
beim Verständnis für die Berechnung der Beu-
gungsintensitäten.

Wir bezeichnen mit ~rj die Position eines Atoms.
Dann stellt die Funktion nj(~r � ~rj) den Beitrag
dieses Atoms zur Elektronendichte dar. Die ge-
samte Elektronendichte am Ort ~r ist gegeben
durch die Summe über die s Atome der Basis:

n(~r) =

sX

j=1

nj(~r � ~rj).

Dies erlaubt uns, auch den Strukturfaktor in Bei-
träge der einzelnen Atome aufzuteilen:

S ~G
=

Z

EZ

dV
sX

j=1

nj(~r � ~rj) e�i ~G·~r

Wir bezeichnen mit ~rj die Position des j-ten
Atoms. Dann stellt die Funktion nj(~r � ~rj) den
Beitrag dieses Atoms zur Elektronendichte dar,
in einem Koordinatensystem, dessen Ursprung
sich im Zentrum des Atoms befindet. In diesem
Koordinatensystem ist ~⇢ = ~r � ~rj die Position
des Elektrons. Damit wird ~r = ~rj + ~⇢ und der
Strukturfaktor

S ~G
=

Z

Zelle

dV
sX

j=1

nj(~⇢) e�i ~G·~⇢ e�i ~G·~rj .
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Streuzentrum

~r

dV

~⇢

bcc Struktur

~rj

Elektronenhülle des Atoms j

Abbildung 2.89: Relativkoordinaten zur Berech-
nung der Streuamplitude.

Damit ist

fj =

Z
dV nj(~⇢) e�i ~G·~⇢ (2.11)

der Beitrag des j-ten Atoms. Er wird als Atom-
formfaktor bezeichnet. Die Integration erstreckt
sich über den gesamten Raum. Der Atomform-
faktor entspricht also im Wesentlichen der Fou-
riertransformierten der Elektronendichte eines
Atoms und kann in erster Näherung als eine ato-
mare Eigenschaft betrachtet werden. Diese Nä-
herung impliziert, dass die Elektronendichte des
Kristalls als Summe der atomaren Elektronen-
dichten geschrieben werden kann.

Mit dieser Definition können wir den Struktur-
faktor schreiben als

S ~G
=

sX

j=1

fj e�i ~G·~rj . (2.12)

d.h. der Strukturfaktor setzt sich additiv aus den
Beiträgen der einzelnen Atome zusammen, wobei
jeder Beitrag mit einem Phasenfaktor multipli-
ziert wird, der seine Position codiert. Die Pha-
se entspricht derjenigen, welche eine Welle mit
Wellenvektor ~G auf dem Weg vom Ursprung des
Koordinatensystems zur Position ~rj des Atoms
akkumulieren würde.

2.7.3 Beispielrechnung

Wir berechnen zunächst den Phasenfaktor
e�i ~G·~rj eines Atoms an der Stelle ~rj . Dafür schrei-
ben wir für die Position des Atoms innerhalb der

Elementarzelle

~rj = xj~a1 + yj~a2 + zj~a3.

Damit erhalten wir für den Reflex, welcher dem
Gittervektor

~G =

⇣
v1

~b1 + v2
~b2 + v3

~b3

⌘

entspricht, das Skalarprodukt

~G · ~rj =

⇣
v1

~b1 + v2
~b2 + v3

~b3

⌘

· (xj~a1 + yj~a2 + zj~a3)

= 2⇡ (v1xj + v2yj + v3zj) .

Beim zweiten Schritt wurde die Orthogonalität
(2.5) der beiden Gitter verwendet. Damit wird
der Strukturfaktor

S ~G
=

sX

j=1

fj e�i2⇡(v1xj+v2yj+v3zj).

Der Strukturfaktor ist im Allgemeinen komplex.
Gemessen wird allerdings nicht direkt die ge-
streute Amplitude, sondern die Intensität, wel-
che gegeben ist durch |S|

2
= S⇤S, und somit

immer reell ist.

Wie oben gezeigt, ist die Streuamplitude propor-
tional zur Anzahl N der Elementarzellen des Kri-
stalls. Die Intensität wird damit proportional zu
N2. Gleichzeitig nimmt aber die Breite eines Re-
flexes mit 1/N ab, sodass die integrierte Intensi-
tät eines Reflexes nur mit N ansteigt.

Basis: identische 
Atome bei (0,0,0) 
und (½,½,½)

~r2 = (
1

2
,
1

2
,
1

2
)

Abbildung 2.90: Einheitszelle des kubisch innen-
zentrierten Gitters.

Wir berechnen als Beispiel den Strukturfaktor
des kubisch innenzentrierten Gitters (bcc). Wie
in Abb. 2.90 gezeigt, besteht die Basis dieses Git-
ters aus zwei identischen Atomen bei x1 = y1 =
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z1 = 0 und x2 = y2 = z2 = 1/2, d.h.

~r1 = (0, 0, 0)

~r2 =

✓
1

2
,
1

2
,
1

2

◆
.

Damit wird der Strukturfaktor

S~G
= f

⇣
1 + e�i⇡(v1+v2+v3)

⌘
.

Wir berücksichtigen, dass vi ganze Zahlen sein
müssen und der Exponent somit ein ganzzahli-
ges Vielfaches von i⇡. Der Beitrag des zweiten
Atoms kann somit �1 oder +1 betragen und der
Strukturfaktor kann zwei mögliche Werte anneh-
men:

S = 0 wenn v1 + v2 + v3 = ungerade

S = 2f wenn v1 + v2 + v3 = gerade.

Offenbar verschwindet die Streuamplitude, wenn
die Summe der drei Indizes ungerade ist. Das
Fehlen des Beugungsreflexes für eine ungerade
Summe ist eine direkte Konsequenz davon, dass
das bcc Gitter nicht primitiv ist.

' = 0

' = 2⇡

' = ⇡

' = 3⇡

Abbildung 2.91: Destruktive Interferenz im in-
nenzentrierten Gitter.

Betrachten wir z.B. die Beugung an den Netzebe-
nen 100. Für das primitiv kubische Gitter erhal-
ten wir einen Reflex der Stärke f , welcher gera-
de dem ersten Summanden entspricht. Zwischen
jeweils 2 Ebenen, welche die Würfelflächen ent-
halten, liegt aber auch eine Ebene, welche durch
das Zentrum der Einheitszelle läuft, und sym-
metrieäquivalent ist und somit einen Beitrag lie-
fert, welcher den gleichen Betrag hat, aber nicht

die gleiche Phase. Während der Phasenunter-
schied zwischen zwei Teilwellen, welche an der
(100) Ebene reflektiert werden, 2⇡ beträgt, ist
der Weglängenunterschied für die dazwischen lie-
genden Ebenen gerade halb so groß. Die Phase
beträgt hier somit gerade ⇡. Damit entsteht de-
struktive Interferenz und der Reflex verschwin-
det.

2.7.4 Symmetriebedingte Auslöschung

Atom A 
oder B

Atom B

Atom A

ungeordnet geordnet

Abbildung 2.92: Struktur von FeCo; links : un-
geordnet; rechts : geordnet.

Man kann diesen Effekt z.B. in der Verbindung
FeCo direkt beobachten. Die Atome bilden ein
bcc Gitter, wobei in der geordneten Phase die
beiden Atome der Basis jeweils zu unterschied-
lichen Elementen gehören. Die beiden Teilwellen
addieren sich deshalb zu einer Gesamtamplitude
fA � fB, wobei fA,B die Atomformfaktoren der
beiden Atome auf den Gitterplätzen (000) und
(1
2

1
2

1
2) darstellen. Die Intensität des 100 Refle-

xes ist deshalb proportional zu (fA � fB)
2. Im

reinen Eisen oder Kobalt verschwindet er des-
halb (A = B). In der Verbindung FeCo sind
die Ecken der Einheitszelle durch Fe, das Zen-
trum durch Co besetzt (resp. umgekehrt, je nach
Wahl der Einheitszelle). Dann sind die beiden
Formfaktoren leicht unterschiedlich und der Re-
flex tritt auf. Die Zahl der Elektronen ist al-
lerdings relativ ähnlich für die beiden Atome
(Z(Fe) = 26, Z(Co) = 27), so dass diese Re-
flexe relativ schwach sind.

Die Verbindung tritt jedoch auch in einer un-
geordneten Struktur auf, in der jeder Gitter-
platz im Schnitt gleich häufig von Fe und Co be-
setzt ist. In diesem Fall gilt im Schnitt wiederum
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FeCo

Abbildung 2.93: Beugungsreflexe an FeCo.

fA = fB und der Reflex verschwindet wieder, wie
im unteren Teil von Abb. 2.93 gezeigt. In diesem
Fall wurde die Beugung von Neutronen gemes-
sen. Die Intensität der Reflexe ist deshalb nicht
proportional zur Elektronendichte, sondern zur
Differenz der Streuquerschnitte der Kerne.

Abbildung 2.94: Struktur von NaCl, KCl und
KBr.

Man kann den Effekt auch an den beiden Sub-
stanzen KBr und KCl beobachten. In beiden
Substanzen bilden die Kationen und die Anio-
nen jeweils ein kubisch flächenzentriertes Gitter,
welche gegeneinander um eine halbe Kantenlän-
ge verschoben sind. Unterscheidet man nicht zwi-
schen den Atomen erhält man somit ein kubisch
primitives Gitter mit der halben Kantenlänge.

Im Fall von KCl besitzen K+ und Cl� jeweils
18 Elektronen. Dadurch sind die Elektronen-
dichten der beiden Ionen fast gleich, so dass
auch die Atomformfaktoren praktisch gleich sind
und Auslöschung stattfindet. Man findet deshalb

Streuwinkel 2θ
80o60o40o20o

KCl

KBr

Streuwinkel 2θ
80o60o40o20o

(200)

(220)

(222) (400) (420)

(200)

(220)

(222) (400) (420)(111)
(311)

(331)

Abbildung 2.95: Vergleich der Beugungsreflexe
von KCl und KBr.

praktisch nur Reflexe mit einer geraden Summe
der Indizes.

Die Situation ist anders in KBr, welches die glei-
che Struktur hat wie KCl. Brom hat eine doppelt
so große Zahl von Elektronen (Br : 36), so dass
hier die beiden Atomarten deutlich unterschied-
lich zum gestreuten Signal beitragen. Die (genä-
herte) Symmetrie entfällt und man beobachtet
auch ungeradzahlige Reflexe.

Abbildung 2.96: Einheitszelle von Kochsalz
(NaCl).

Ähnliche Auslöschungen gibt es auch bei der
Struktur von Kochsalz (NaCl). Abb. 2.96 zeigt
die Einheitszelle, welche eine fcc-Struktur auf-
weist und damit 4 Atome von jeder Sorte ent-
hält. Die Positionen sind (0, 0, 0), (1/2, 1/2, 0),
(1/2, 0, 1/2) und (0, 1/2, 1/2), die vier Cl-Atome
sind jeweils um eine halbe Gitterkonstante ver-
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setzt.

Für die Na-Atome ergeben sich somit die Phasen

e0
+ e�i⇡(v1+v2) + e�i⇡(v1+v3) + e�i⇡(v2+v3).

Die einzelnen Summanden sind jeweils ±1 für
gerade / ungerade Summen. Sind alle drei In-
dizes gerade oder alle 3 ungerade, so sind alle
Summanden = +1, die Summe also +4. Sind die
Indizes gemischt (sowohl gerade wie ungerade),
so verschwindet die Summe.

Für die Beiträge der Cl-Atome gilt das gleiche,
doch enthalten dort die Summanden wegen der
Verschiebung um a/2 einen zusätzlichen Faktor
ei⇡ = �1. Die Summe aus den Beiträgen von Na
und Cl ist somit

0

4fNa + 4fCl

4fNa � 4fCl

9
=

; für hkl

8
<

:

gemischt

alle gerade

alle ungerade

.

2.7.5 Atomformfaktor

Röntgenstrahl

Phasendifferenz

2θ

Abbildung 2.97: Phasenverschiebung zwischen
den Teilstrahlen.

Da die Wellenlänge der Röntgenstrahlung ver-
gleichbar ist mit der Ausdehnung eines Atoms,
erhalten Beiträge zur Streuamplitude aus un-
terschiedlichen Bereichen der Elektronenhülle
unterschiedliche Phasenverschiebungen, wie in
Abb. 2.97 gezeigt. Dies überlagern sich im Atom-
formfaktor.

Die Berechnung des Atomformfaktors für ein
Atom mit kugelsymmetrischer Elektronendichte-
verteilung kann vereinfacht werden, wenn man
Kugelkoordinaten ~⇢ = (r, ✓, ') einführt. Wir
wählen ~G entlang der z-Achse. Damit wird (2.11)

zu

fj =

Z
dr r2

sin ✓ d✓ d' nj(r)e
�iGr cos ✓

= 2⇡

Z
dr r2d(cos ✓)nj(r)e

�iGr cos ✓.

Integration über cos ✓ gibt

fj = 2⇡

Z
dr r2 nj(r)

eiGr
� e�iGr

iGr

= 4⇡

Z
dr nj(r) r2 sin(Gr)

Gr
.

Vorwärtsstreuung Rückwärtsstreuung

~k

~k�
~G = �~k

~k~k�

~G = �~k

Abbildung 2.98: Streuvektoren bei Vorwärts-
und Rückwärtsstreuung.

Für kleine Streuvektoren, G ! 0, kann
sin(Gr)/(Gr) über den Bereich des Atoms (r <
10

�10m) näherungsweise durch eins ersetzt wer-
den. Damit reduziert sich das Integral auf die
Anzahl der Elektronen. Für endliche Streuvek-
toren berücksichtigt der Atomformfaktor die de-
struktive Interferenz zwischen Teilen der Elek-
tronendichteverteilung, die weit auseinander lie-
gen. Bei gegebener Wellenlänge entspricht ein
kleiner Streuvektor einem kleinen Streuwinkel,
d.h. der Vorwärtsstreuung, ein großer Streuvek-
tor einem großen Streuwinkel, also Rückwärts-
streuung (! Abb. 2.98). Wird das Produkt Gr
groß gegen eins, so wird der Faktor sin(Gr)/Gr
kleiner als eins und die Streuamplitude nimmt
ab.

Wir erwarten deshalb, dass der Atomformfak-
tor kleiner wird, wenn wir Reflexe beobachten,
welche einem großen Streuwinkel entsprechen.
Abb. 2.99 zeigt dies für das Beispiel von Eisen.
Die einzelnen Punkte zeigen den Atomformfak-
tor für unterschiedliche Reflexe, welche unter-
schiedlichen Streuvektoren ~G entsprechen. Die

57



2 Symmetrie und Struktur

Beispiel : Eisen
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Abbildung 2.99: Atomformfaktor von Eisen.
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Abbildung 2.100: Atomformfaktoren für Wasser-
stoff und Aluminium.

Wellenlänge der Röntgenstrahlung beträgt 0,709
nm.

Abb. 2.100 zeigt die Atomformfaktoren für Was-
serstoff und Aluminium.

Die Situation is anders, wenn anstelle von Rönt-
genstrahlen Neutronen gestreut werden: In die-
sem Fall findet die Wechselwirkung mit den
Atomkernen statt, welche für alle praktischen
Belange punktförmige Teilchen sind. Der Atom-
formfaktor ist deshalb in diesem Fall konstant.

2.7.6 Das Phasenproblem

Die Streuamplitude

S =

Z
dV n(~r)e�i ~G·~r

ist nichts anderes als die Fouriertransformierte
der Elektronendichte, welche man eigentlich mes-
sen möchte.

Abbildung 2.101: Elektronendichteverteilung
von NaCl.

Abb. 2.101 zeigt als typisches Beispiel die Elek-
tronendichte in Kochsalz. Die Fouriertransfor-
mation kann relativ einfach und effizient inver-
tiert werden. Leider wird aber in einem Rönt-
genbeugungsexperiment nicht die Streuamplitu-
de S gemessen, sondern die verfügbaren Detek-
toren sind nur empfindlich auf die Intensität I =

|S|
2

= S⇤S. Bei der Bildung des Absolutqua-
drats geht die Phaseninformation verloren und
damit ist die Fouriertransformation nicht mehr
umkehrbar. Dieses Problem ist als das Phasen-
problem bekannt.

In der Optik ist es möglich, die Phase der ge-
streuten Welle in einem interferometrischen Ex-
periment zu bestimmen: Man überlagert das zu
messende Feld A mit einem Referenzfeld B und
misst die Intensität der Summe

|A + B|
2

= |A|
2
+ |B|

2
+ 2|AB| cos �',

wobei �' die Differenz zwischen den Phasen der
beiden Felder darstellt. Im Bereich der Röntgen-
strahlen sind interferometrische Messungen je-
doch sehr schwierig und für die Strukturbestim-
mung nicht direkt anwendbar. Man muss deshalb
wesentlich aufwendigere Verfahren benutzen, um
die Kristallstruktur aus der gemessenen Intensi-
tätsverteilung zu bestimmen.

Die ‘normale’ Methode besteht darin, aufgrund
einer vermuteten Struktur das entsprechende
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Beugungsmuster zu rechnen. Diese Rechnung ist
eindeutig, die Berechnung der Intensität aus der
Amplitude ist immer möglich. Aus den Unter-
schieden zwischen gemessener und beobachtetem
Beugungsmuster bestimmt man anschliessend ei-
ne neue Näherung und iteriert dieses Vorgehen
bis es konvergiert.

Dieses rechnerische Vorgehen kann unterstützt
werden durch experimentelle ‘Tricks’. So kann
man schwere Atome in eine Struktur einbauen.
Diese haben so viele Elektronen, dass das Beu-
gungsmuster durch sie dominiert wird. Man hat
dadurch ein wesentlich einfacheres Beugungsmu-
ster und bestimmt zunächst nur die Anordnung
der schweren Atome. Die Bestimmung der üb-
rigen Atome in diesem Gitter wird danach we-
sentlich einfacher, da die bekannten Beiträge der
schweren Atome gewissermassen als Phasenrefe-
renz dienen können. Wie die Beiträge verschiede-
ner Atome innerhalb der Einheitszelle interferie-
ren, wurde bereits bei der Diskussion des Struk-
turfaktors gezeigt.

e-Strahl

Röntgen-Strahl

Abbildung 2.102: Bauprinzip eines freien Elek-
tronenlasers.

Es ist aber nicht ausgeschlossen, dass diese auf-
wendigen Prozeduren in der Zukunft überflüssig
werden. So sind seit einigen Jahren relativ ko-
härente Röntgenquellen verfügbar, wie z.B. freie
Elektronenlaser oder Röntgenlaser. Deren Kohä-
renzeigenschaften sind allerdings bisher noch un-
genügend, um die Phase der gestreuten Welle in-
terferometrisch zu messen.
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e[

f(t
)]
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R
e[

F(
ω

)]
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F(ω) = F(-ω)

Abbildung 2.103: Symmetrieeigenschaften der
Fourier-Transformation.

2.7.7 Reelle und Komplexe
Streuamplituden

Eine weitere Limitierung der Strukturmessung
durch Beugungsexperimente ist durch eine Sym-
metrie gegeben: Die Streudichte n(~r) ist eine
reelle Größe, sofern Absorption vernachlässigt
werden kann. Dadurch wird die Streuamplitude
symmetrisch bezüglich Inversion:

S ~G
= S� ~G

. (2.13)

Dadurch enthält das Beugungsmuster immer ein
Inversionszentrum.

Abbildung 2.104: Quasikristall mit 5-zähliger
Symmetrie (links) und das zu-
gehörige Beugungsbild mit 10-
zähliger Symmetrie (rechts).

Eine 3-zählige Symmetrieachse erscheint als ei-
ne 6-zählige Achse und es ist nicht möglich,
aufgrund von Röntgenbeugungsmessungen die
Händigkeit einer Struktur ohne Inversionszen-
trum zu bestimmen. Abb. 2.104 zeigt als Bei-
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spiel einen Quasikristall mit 5-zähliger Symme-
trie und das zugehörige Beugungsbild, welches
10-zählige Symmetrie aufweist.

Dieses Problem kann gelöst werden, indem man
Röntgenstrahlung verwendet, welche in der Nä-
he einer Absorptionskante liegt. In diesem Fall
wird ein Teil der Röntgenstrahlung absorbiert
und die Streuamplitude wird dadurch komplex.
Damit wird die Symmetrie (2.13) gebrochen und
das Vorzeichen kann bestimmt werden. Aller-
dings wird dadurch die Analyse des Beugungs-
musters deutlich aufwändiger.

2.7.8 Thermische Bewegung

Bisher sind wir davon ausgegangen, dass die Ato-
me perfekt auf bestimmten Gitterplätzen liegen.
In Wirklichkeit führen sie aber thermische Bewe-
gungen um diese Gitterplätze aus, und sogar am
absoluten Nullpunkt besteht eine gewisse Orts-
unschärfe. Interessanterweise führt diese Bewe-
gung nicht zu einer Verbreiterung der Reflexe.
Sie führt aber zu einer Reduktion der Intensi-
tät der Beugungsreflexe, da ein Teil der einfal-
lenden Strahlung inelastisch gestreut wird. Die-
se erscheint als diffuser Untergrund zwischen den
Reflexen.

Um die Reduktion der Intensität zu berechnen,
schreibt man die Position eines Atoms als

~r(t) = ~rj + ~u(t),

wobei ~rj die Ruhelage darstellt und ~u(t) eine Zu-
fallsbewegung um die Ruhelage (d.h. h~u(t)i = 0.
Wenn wir dies in die Definition (2.12) des Struk-
turfaktors einsetzen und über die Zufallsbewe-
gung mitteln, erhalten wir

S ~G
=

X

j

fje
�i ~G·~rj he�i ~G·~u(t)

i.

Der Erwartungswert kann als Taylor-Reihe ge-
schrieben werden:

he�i ~G·~u(t)
i = 1 � ih~G · ~u(t)i

�
1

2
h

⇣
~G · ~u(t)

⌘2
i + . . . .

Da ~G und ~u statistisch nicht korreliert sind, kön-
nen wir die Mittelwerte einzeln ausrechnen. Da-
mit folgt für den linearen Term h~G · ~u(t)i =

~Gh~u(t)i. Die Auslenkung ~u ist so definiert, dass
ihr Mittelwert verschwindet, h~u(t)i = 0. Der li-
neare Term in der Taylorreihe verschwindet des-
halb.

Für die Mittelung des quadratischen Terms set-
zen wir

h

⇣
~G · ~u(t)

⌘2
i = G2

hu2
cos

2 �i = G2
hu2

ihcos
2 �i,

wobei u = |~u| und � den Winkel zwischen ~G und
~u darstellt und somit ebenfalls eine Zufallsgrö-
ße ist. u und � werden ebenfalls als unabhängig
betrachtet.

Bei der Mittelung über den Winkelanteil muss
berücksichtig werden, dass nicht alle Werte gleich
wahrscheinlich sind, sondern mit sin � gewichtet
werden müssen. Die Mittelung des Winkelanteils
über alle möglichen Orientierungen ergibt des-
halb

hcos
2 �i =

1

2

Z
⇡

0
d� cos

2 � sin �

=
1

2

✓
�

1

3

◆
cos

3 �|
⇡

0 =
1

3
.

Damit erhalten wir

he�i ~G·~u(t)
i = 1 �

1

6
G2

h~u2
i

für die ersten beiden Terme der Taylor-Reihe.
Damit kann man den Strukturfaktor schreiben
als

S = S0e
�G2hu2i

6 ,

mit S0 als Strukturfaktor für statische Ato-
me. Gemessen wird allerdings die Streuintensität
(d.h. das Quadrat der Amplitude)

I = I0e
�G2hu2i

3 . (2.14)

hu2
i stellt hier die mittlere quadratische Ver-

schiebung des Atoms dar. Diese kann in erster
Linie durch thermische Anregung zustande kom-
men, aber auch durch die quantenmechanische
Unschärfe im Schwingungs-Grundzustand.
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2.7.9 Debye-Waller Faktor

Wir betrachten zunächst den Fall der thermi-
schen Anregung. Dafür beschreiben wir die Be-
wegung des Atoms als harmonischen Oszillator
mit der Frequenz !. Dafür können wir die mitt-
lere quadratische Verschiebung aus der mittleren
Energie berechnen, welche in drei Dimensionen
3kBT beträgt. Die mittlere kinetische Energie
Mhv2

i/2 = Mhu2
i!2/2 und die mittlere poten-

zielle Energie Chu2
i/2 betragen im Mittel jeweils

die Hälfte der thermischen Energie,

1

2
Chu2

i =
1

2
M!2

hu2
i =

3

2
kBT

oder

hu2
ith =

3kBT

M!2
.

Dabei ist M die Masse des Atoms und C eine
Kraftkonstante. Damit wird die Streuintensität
(2.14)

I = I0e
�G2kBT

M!2 .
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Abbildung 2.105: Temperaturabhängigkeit des
Debye-Waller Faktors von
Aluminium.

Diese Reduktion der Intensität mit steigender
Temperatur und Streuvektor wird als Debye-
Waller Faktor bezeichnet. Es handelt sich hier
um eine klassische Näherung, welche bei hohen

Temperaturen recht gut ist. Offenbar ist die Ab-
nahme dann am kleinsten, wenn die Masse der
Atome groß ist (d.h. für schwere Kerne) und
wenn die Frequenz hoch ist (d.h. das Gitter starr
ist). Der Effekt nimmt außerdem mit dem Betrag
des Streuvektors G zu, wie in Abb. 2.105 gezeigt.

Bei niedrigen Temperaturen muss auch die Orts-
unschärfe aufgrund der Unschärfenrelation be-
rücksichtigt werden. Wir bestimmen sie über
die NullpunktsEnergie des harmonischen Oszil-
lators. In drei Dimensionen beträgt diese 3~!/2,
wobei kinetische und potenzielle Energie zu glei-
chen Teilen beitragen. Somit ist

1

2
M!2

hu2
i =

3

4
~! ! hu2

iQM =
3~

2M!
.

Damit wird die Intensität

I = I0e
�~G2

/2M!.

Typische Zahlenwerte sind G = 10
11

m
�1, M =

10
�25

kg (entspricht etwa Nickel), ! = 10
14

s
�1.

Unter diesen Bedingungen werden am absoluten
Nullpunkt rund 90% der maximalen Streuinten-
sität erreicht.
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