2 Symmetrie und Struktur

2.1 Ordnung in Festkorpern

2.1.1 Atomtheorie

Die griechischen Philosophen der Antike stellten
als erste die Frage, ob es moglich sei, einen be-
stimmten Korper beliebig oft zu teilen. Demokrit
von Abdera beantwortete diese Frage als erster
negativ, in dem er forderte, dass alle Materie aus
identischen Teilchen aufgebaut sein sollte, den
Atomen. Diese Ansicht wurde dann von Aristote-
les widersprochen, und erst im 18 Jh. fanden die
aufblithenden Naturwissenschaften wieder Hin-
weise darauf, dass es doch solche Teilchen geben
sollte. Dafiir sprachen insbesondere auch Beob-
achtungen der Kristallographen. Sie stellten fest,
dass Kristalle, wenn sie wachsen oder wenn sie
gespalten werden, beinahe perfekte Oberflachen
bilden, und dass zwischen verschiedenen solchen
Oberflachen nur ganz bestimmte Winkel auftre-
ten.

Abbildung 2.1: NiO Kristall mit Wachstumsebe-
nen.

Dieser Befund konnte relativ leicht erklart wer-
den, wenn man davon ausging, dass diese Kri-
stalle aus einer Vielzahl von identischen Teil-
chen zusammengesetzt waren [10]. Abb. zeigt
als Beispiel einen NiO Kristall mit deutlichen
Wachstumsebenen, sowie ein Schema, wie man
sich die Bildung solcher Wachstumsebenen vor-
stellen kann.

Abbildung 2.2: Spaltebenen.

Nicht nur beim Kristallwachstum erhélt man
Kristalllichen mit gleichen Winkeln, man fin-
det auch, dass bestimmte Fldchen beim Spal-
ten von Kristallen bevorzugt auftreten. Die Idee,
dass Kristalle aus atomaren Einheiten bestehen,
wurde spater durch unterschiedliche Methoden
betéatigt, v.a. natiirlich durch Beugungsexperi-
mente [6].

Elektronik

000000

der
Tunnelmikroskopie und damit
gemessene Ni-Atome.

Abbildung 2.3: Prinzip Raster-

Seit einigen Jahren ist es auch moglich, die ato-
mare Struktur von Festkorpern auch direkt zu
beobachten, z.B. mit Hilfe der Tunnelmikrosko-
pie (STM). Abb. zeigt das Funktionsprin-
zip, sowie das Bild einer Nickeloberfliche, die
mit STM gemessen wurde. Heute gehen wir des-
halb selbstverstandlich davon aus, dass Festkor-
per aus Atomen oder Molekiilen aufgebaut sind.
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2 Symmetrie und Struktur

2.1.2 Langreichweitige Ordnung

Die Atome oder Molekiile kénnen auf unter-
schiedliche Weise im Festkorper angeordnet sein.
Man kann sie insbesondere auf Grund des Grades
an Ordnung auf unterschiedlichen Langenskalen
klassifizieren.

kristallin polykristallin
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Abbildung 2.4: Kristalline polykristalline

Ordnung.

VS.

e kristallin: periodische, langreichweitige Ord-
nung. Dieses Idealbild ist Ausgangspunkt
der meisten Theorien im Bereich der Fest-
korperphysik.

polykristallin:  Auf kurzen Léangenskalen
sind diese Systeme kristallin. Der makrosko-
pische Korper umfasst jedoch viele einzelne

Kristalle.
quasikri§~tallin S “;"Q“..‘Q'
o9 vy
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Abbildung 2.5: Lokale 5-zdhlige Symmetrie.

e quasikristallin: Quasikristalle weisen lang-
reichweitige Ordnung auf, sind aber nicht
periodisch. Sie besitzen lokal 5- oder 10-
zdhlige Symmetrie, aber keine Translations-
symmetrie, wie in Abb. gezeigt.

amorph: In amorphen Materialien ist die di-
rekte Umgebung eines Atoms oder Molekiils
relativ gut (aber nicht perfekt) definiert.
Wie in Abb. gezeigt, gibt es jedoch keine
langreichweitige Ordnung und keine Trans-
lationssymmetrie.

amorph [ 6e05 )" - Oktaeder

Li* (Netzwerk-Modifier)

Abbildung 2.6: Amorphe Materialien: Nahord-
nung, aber keine Fernordnung.

Auf einer Skala von typischerweise einigen Na-
nometern nimmt der Grad der Ordnung ab und
auf einer Skala von mehr als 10 Nanometern sind
amorphe Materialien homogen und isotrop. Zu
den amorphen Materialien gehoren v.a. Gléser
und Polymere, darunter auch viele biologische
Materialien.

Viele Eigenschaften von amorphen Materialien
héngen stark von ihrer Herstellung ab. So kann
man Gléser als “unterkiihlte Fliissigkeiten, wel-
che zu kalt sind zum einfrieren” betrachten: ihre
Viskositéat ist zu hoch als dass sie in den energe-
tisch tiefer liegenden kristallinen Zustand iiber-
gehen konnten. Diese Abhéngigkeit von der Her-
stellung ist ein wichtiger Grund dafiir, dass z.B.
die Herstellung von Glésern lange Zeit mehr eine
Kunst als eine Wissenschaft war.

2.1.3 Fliissigkristalle

Abbildung 2.7: Fliissigkristalle
kristall-Polymere.

und  Fliissig-

e Fliissigkristalline Materialien zeigen (un-

18



2 Symmetrie und Struktur

vollstandige) langreichweitige Ordnung, wo-
bei z.B. nur die Orientierung der Molekiile
diese Ordnung zeigen kann. Abb. zeigt
unterschiedliche Arten von Fliissigkristal-
len. Sie sind deshalb meist anisotrop.

eindimensionale Positionsfernordnung:

\aslots g
nm@m it

WALY Auwﬁm
smektisch lamellar

zweidimensionale Positionsfernordnung:

S

hexagonal

Abbildung 2.8: Partielle Positions-Fernordnung
in Flissigkristallen.

Auch beziiglich Fernordnung sind Fliissigkristal-
le zwischen Fliissigkeiten und Kristallen angesie-
delt. Viele besitzen keine Positions-Fernordnung,
andere eine teilweise, also z.B. nur in einer oder
zwei Dimensionen, wie in Abb. gezeigt. In ku-
bischen Phasen kann auch in 3 Dimensionen eine
partielle Fernordnung auftreten. Sie besitzen je-
doch im Gegensatz zu Festkorpern keine Formbe-
standigkeit, d.h. ihr Schermodul verschwindet im
statischen Grenzfall. Fliissigkristalle haben in-
zwischen in verschiedenen Bereichen eine wichti-
ge Rolle erhalten, nicht nur in Anzeigen, sondern
auch in polymeren Werkstoffen.

Abbildung 2.9: Fliissigkristalline Ordnung einer
biologischen Membran.

Fliissigkristalle spielen auch in der Biologie ei-
ne wichtige Rolle: Membranen von Zellen sind

fliissigkristallin, d.h. die Molekiile sind im Mittel
alle gleich ausgerichtet und befinden sich in einer
Ebene. Diese Ebene ist jedoch leicht verformbar,
da die Molekiile in der Ebene frei beweglich sind.
Diese Membranen werden primér aus Fettsaure-
ghnlichen Molekiilen gebildet, &hnlich wie Seifen-
schaum. Darin “schwimmen” eingelagert Protei-
ne.

Die Physik hat sich vor allem mit der Untersu-
chung perfekter Kristalle beschéftigt, wobei De-
fekte und Verunreinigungen als Stérungen be-
trachtet wurden. Dieses Vorgehen hat enorme
Erfolge gebracht und z.B. die Grundlagen fiir die
Halbleiterindustrie gelegt. In den 80er und 90er
Jahren des 20. Jahrhunderts haben dann eini-
ge Physiker auch entdeckt, dass die Physik auch
zur Untersuchung von amorphen Systemen eini-
ges beitragen kann.

The Nobel Prize in
Physics 1991

e W “For discovering that methodes
developed for studying order
phenomena in simple systems

. can be generalized to more
complex forms of matter, in

~ particular to liquid crystals and
polymers”

Abbildung 2.10: Pierre Gilles de Gennes.

Ein wichtiger Schritt war hier die Verleihung des
Nobelpreises 1991 an Pierre Gilles de Gennes.
Die Untersuchung von Materialien ohne lang-
reichweitige Ordnung diirfte in Zukunft eine zu-
nehmend wichtige Rolle spielen, da Polymere
und Gléser (z.B. metallische Gléser, amorphes
Silizium) auch industriell zunehmend wichtiger
werden. In dieser Vorlesung werden wir aber auf
die detaillierte Diskussion solcher Systeme ver-
zichten und uns auf Systeme mit Translations-
symmetrie beschranken. Der Grund dafiir ist ei-
nerseits unser Curriculum, andererseits auch die
Tatsache, dass die Beschreibung von amorphen
Systemen noch nicht so weit ist, dass sie sich fiir
einen Einfiihrungskurs gut eignet.
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2 Symmetrie und Struktur

2.1.4 Translationssymmetrie

Wie bereits erwahnt, betrachtet man in der Fest-
korperphysik zunéchst ideale Kristalle. Darun-
ter stellt man sich einen unendlich ausgedehn-
ten Korper mit periodisch wiederholten Einhei-
ten vor. Es soll hier aber klar gemacht werden,
dass solche Korper in der Natur nicht existieren,
und zwar aus 2 Griinden:

e Bei endlicher Temperatur ist ein System oh-
ne Fehler, welches damit perfekt geordnet
wére und Entropie null hitte, thermodyna-
misch instabil.

e Ein idealer Kristall ist immer unendlich aus-
gedehnt, da eine Oberfliche einen Bruch der
Symmetrie bewirkt.

Diese Grundannahme bedeutet auch, dass Ober-
flicheneffekte (in dieser Naherung) nicht beriick-
sichtigt werden.

ay

1o %o o

Abbildung 2.11: Kristallgitter in 2D.

Die Wiederholung der Grundeinheit erfolgt so,
dass die resultierende Anordnung Translations-
symmetrie zeigt. Das bedeutet, dass es moglich
ist, diese Anordnung um einen bestimmten Be-
trag zu verschieben, und dadurch das System in
ein ununterscheidbares System iiberzufiihren. In
Abb. [2.11] sind zwei solche Moglichkeiten darge-
stellt: Verschiebungen um @; und ds. Es gibt aber
eine unendliche Zahl von Translationen f, wel-
che diese Bedingung erfiillen. Es ist allerdings
nicht notig, diese Operationen einzeln aufzuzah-
len, man kann sie nach einer einfachen Formel
zusammenfassen.

Man bendtigt flir jede Dimension einen Basis-
Translationsvektor, welche wir als @i, do und
ds bezeichnen. FEine allgemeine Translation T

Abbildung 2.12: Basis-Translationsvektoren.

in drei Dimensionen wird dann definiert als die
Operation

—
—

7 =74 uid) + usls + usds =7+ T,
wobei die Indizes u; beliebige ganze Zahlen dar-
stellen. Diese Beziehung gilt fiir jeden Punkt des
Kristalls, nicht nur fiir die Position der Atome.
Die Gesamtheit der Translationen T definiert das
Raumgitter oder BravaiGitter. Fin idealer kri-
stalliner Festkorper ist dadurch definiert, dass
diese Translationen Symmetrieoperationen dar-
stellen, dass sie also die Struktur in sich selber
iiberfithren

quadratisch rechteckig

allgemein

hexagonal

Abbildung 2.13: Translationsgitter in 2D.

Je nach relativer Lange und Orientierung der
erzeugenden Translationsvektoren unterscheidet
man verschiedene Arten von Translationsgittern.
Abb. [2.13] zeigt die wichtigsten Beispiele in zwei
Dimensionen: neben dem allgemeinen Fall findet
man die Spezialfille quadratisch (Vektoren senk-
recht aufeinander, gleich lang), rechteckig (senk-
recht aufeinander, ungleich lang) und hexagonal
(gleich lang, Winkel 60 oder 120 Grad).

! Auguste Bravais (1811 - 1863)
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2 Symmetrie und Struktur

Ga bevorzugt
tetraedrische
Umgebung aus As

=

As bevorzugt
tetraedrische
Umgebung aus Ga

2 |

;.r

Abbildung 2.14: Struktur von GaAs.

Die Tatsache, dass die meisten Festkorper, wel-
che aus wenigen Bauelementen zusammengesetzt
sind, in periodischen Strukturen erstarren, ldsst
sich leicht als eine Konsequenz der Energiemi-
nimierung verstehen: Wenn ein Atom, Ion oder
Molekiil in einer bestimmten Umgebung die ge-
ringste Energie besitzt, so muss dies auch fiir alle
anderen Atome, Ionen oder Molekiile der glei-
chen Art gelten. Die Nachbarschaft aller gleich-
artigen Atome sollte also die gleiche sein. Dies
ist aber identisch mit der Aussage, dass man die
Nachbarschaft eines Atoms auf die Umgebung ei-
nes anderen abbilden kann. Details dazu werden
im dritten Kapitel behandelt.

2.1.5 Einheitszelle und Basis

Um eine Kristallstruktur zu definieren, braucht
man, neben der Translationssymmetrie, zusétz-
liche Information. Das Gitter definiert, auf wel-
che Art die Bausteine aneinander gefiigt werden
miissen. Man bendétigt aber noch die Kenntnis
der Bausteine. Diese werden als Einheitszelle be-
zeichnet, die darin enthaltenen Atome bilden die
Basis.

Die Position eines Atoms kann geschrieben wer-
den als

rj = xja1 + yja2 + z;as,

mit j als Index des entsprechenden Atoms, @; ein
Gittervektor und {z;, y;, z; } die Koordinaten des
Atoms in der Einheitszelle. Ublicherweise wihlt
man diese im Bereich [0..1].

Gitter

Abbildung 2.15: Gitter und Basis in 2D.

Wird die Basis jeweils um einen Translationsvek-
tor des Gitters verschoben, so erhélt man den
gesamten Kristall. In Abb. ist das fiir den
zweidimensionalen Fall dargestellt. Jeder Trans-
lationsvektor des Gitters schiebt alle Molekiile
auf andere Molekiile des Kristalls, das Muster
bleibt somit das gleiche.

Die Einheitszellen kénnen auf beliebige Weise de-
finiert werden, so lange sie unter den Translatio-
nen des Gitters den Kristall vollsténdig fiillen.
Eine nahe liegende Moglichkeit zur Definition der
Einheitszelle ist deshalb die Menge aller Punkte,
welche durch

7= x1d1 + Toda +23d3 0<z; <1

bestimmt wird. Dies entspricht dem in Abb.
gezeigten Parallel-Epiped. Das Volumen der Zel-
le kann mit Hilfe der Vektoralgebra bestimmt
werden:

V = ’51 . (52 X 63)|

2.1.6 Die Wigner-Seitz Konstruktion

Eine andere Methode zur Konstruktion einer
Einheitszelle ist die von Wigne und Seit Da-
zu zieht man von einem Gitterpunkt Verbin-
dungslinien zu allen Nachbarn und fallt darauf
die mittelhalbierende Ebene. Abb. [2.16 zeigt das
zweidimensionale Analogon; in diesem Fall ist die

2Eugene Wigner (1902-1995)
3Frederick Seitz (1911-2008)
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2 Symmetrie und Struktur

4
° . e
Abbildung 2.16: Wigner-Seitz Konstruktion
(WSZ) der Einheitszelle im
Vergleich mit der konven-
tionellen Einheitszelle (EZ).

Mittelhalbierende eine Gerade. Die Kombinati-
on dieser Ebenen (Linien) begrenzt die Wigner-
Seitz Zelle. Bei der Wigner-Seitz Zelle befindet
sich der Gitterpunkt im Zentrum der Einheits-
zelle, im Gegensatz zur konventionellen Wahl, wo
die Punkte sich auf den Ecken befinden. Die bei-
den Einheitszellen haben unterschiedliche Form,
aber das gleiche Volumen, resp. die gleiche Fl&-
che.

Abbildung 2.17: Fliachenfiillung mit der Wigner-
Seitz Einheitszelle.

Auch mit der Wigner-Seitz Einheitszelle kann
man jedoch den Raum fiillen. Abb. 2.17 zeigt

ein Beispiel in zwei Dimensionen.

Ahnlich kann man das Wigner-Seitz Verfahren
in 3 Dimensionen anwenden. Man fallt hier je-
weils die mittelhalbierende Ebene. In der linken
Hilfte von Abb.[2.18 wurde die Konstruktion auf
ein raumzentriertes Gitter angewendet. Das Zen-
trum der Einheitszelle ist im Zentrum eines Wiir-
fels, die néchsten Nachbarn sitzen an den Ecken
des Wiirfels. Auch diese Einheitszelle fiillt den
gesamten Raum wenn sie durch die Gitteropera-
tionen verschoben wird.

—~ S
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\T ¢ T‘\ \
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Abbildung 2.18: Links: Wigner-Seitz Einheits-
zelle in 3D; rechts: raumfiillende
Anordnung von WS-Zellen.

Die Einheitszelle enthélt im allgemeinen mehre-
re Atome, auch bei primitiven Gittern. Einato-
mige Einheitszellen kommen nur bei Kristallen
vor, welche aus einer einzigen Atomsorte beste-
hen, und auch dann nur wenn samtliche Atome
durch Translationen ineinander tibergefiihrt wer-
den konnen.

2.1.7 Punktsymmetrie-Operationen

Kristallgitter konnen nicht nur durch Trans-
lationen in sich selbst {ibergefithrt werden,
sondern auch durch andere Symmetrieopera-
tionen, insbesondere Drehungen und Spiege-
lungen. Ein wesentlicher Unterschied zwischen
Punktsymmetrie-Operationen und Translatio-
nen ist, dass bei den Punktsymmetrien minde-
stens ein Punkt fest bleibt.

Wir betrachten zunéchst den Effekt solcher Ope-
rationen auf einzelne Elemente. Man unterschei-
det die folgenden Symmetrieelemente:

e Drehachsen C; oder A;.
e Inversion [ oder ¢ fiihrt 7 — —7 iiber.
e Spiegelebene o: Invertiert die Komponen-
te senkrecht zur Ebene, z.B. (z,y,z) —
(:U7 Y, _Z)
e Drehinversionsachsen S;
Abb. zeigt als Beispiel eine 4-zdhlige Ro-
tationsachse, welche die vier L-férmigen Objek-
te ineinander tiberfiihrt. Allgemein entspricht ei-

ne n-zéhlige Rotationsachse einer Symmetrieach-
se, welche Drehungen um ganzzahlige Vielfache
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2 Symmetrie und Struktur

Abbildung 2.19: Transformation eines Objekts
durch eine 4-zahlige Rotations-
achse.

von 27/n bewirkt. In Systemen mit Translati-
onssymmetrie konnen als mogliche Werte fiir n
nur n = 1,2, 3,4 und 6 auftreten.

) Spiegelbild
| | ~rechte Hand

|}|\ v |

| / B
| linke Hand

Abbildung 2.20: Anderung der Handigkeit eines
Objekt bei Spiegelung.

Inversionszentrum und Spiegelebene &ndern die
Héndigkeit eines Objektes, sie filhren z.B. eine
linke Hand in eine rechte Hand iiber, wie in Abb.
2.20 gezeigt. Kristalle mit intrinsischer Handig-
keit konnen somit keines dieser Symmetrieele-
mente enthalten. Ein Kristall, welcher Molekiile
mit entgegengesetzter Handigkeit enthélt, kann
hingegen Spiegelebenen enthalten, welche die ei-
ne Form in die andere iiberfiihren.

Meistens treten die genannten Symmetrieele-
mente nicht einzeln auf, sondern in Kombinatio-
nen. Im Beispiel von Abb. existiert auch
eine Spiegelebene, welche senkrecht zur Rota-
tionsachse liegt und durch die vier Elemente
1duft. Waren die beiden Schenkel dieser Elemente
gleich lang, so wiirden ausserdem vier 2-zdhlige
Rotationsachsen existieren, welche in der Ebene
liegen wiirden.

Es sind nicht beliebige Kombinationen von Sym-

metrieelementen moglich, da die Symmetrieele-
mente selber unter den Symmetrieoperationen
der iibrigen Elemente auch erhalten bleiben miis-
sen. So konnen einzelne Symmetrieachsen nur
senkrecht zueinander oder in einer Ebene liegen.
Zwei Symmetrieebenen kénnen nur senkrecht zu-
einander stehen, aber drei Ebenen kénnen einen
Winkel von jeweils 60° untereinander einschlies-
sen. Ausserdem erzeugt die Kombination von
zwei Elementen héufig ein drittes Element. So
erzeugen zwei Symmetrieebenen, die senkrecht
aufeinander stehen, eine 2-zéhlige Drehachse in
ihrer Schnittgeraden.

2.1.8 Gruppen

Im mathematischen Sinn bildet die Menge der
Symmetrieoperationen, welche ein Objekt inva-
riant lasst, eine Gruppe. Allgemein ist in der Ma-
thematik eine Gruppe G definiert als eine nicht
leere Menge G = {A;} von Objekten A; und ei-
ner bindren Operation - zwischen den Objekten,
welche folgende Eigenschaften erfiillt:

e Das Resultat einer Operation A4; - A; = Ay,
ist selber ein Mitglied der Gruppe.

e Es existiert eine Einheit e mit der Eigen-

schaft e- A; = A; - e = A; fir alle A;.

e Es existiert zu jedem Element ein inverses
Element Ai_1 mit A; - Ai_l = Ai_1 A, =e.

Die verschiedenen Kombinationen von Symme-
trieelementen erfiillen diese Anforderungen. Sie
werden als Punktsymmetrie-Gruppen bezeich-
net. Die verschiedenen Gruppen werden nach
zwei verschiedenen Systemen klassiert. Es exi-
stieren einerseits die sog. SchoenﬂieSymbole,
andererseits die Klassifikation nach Hermann-
Maugin, welche auch als international bezeich-
net wird. Fiir die Bezeichnungen nach Schoen-
flies verwendet man die folgenden Symbole:

e Drehgruppen: C,, (n=2, 3, 4, 6) j-fache Ro-
tationsachse. Die Drehgruppe C), enthélt die
Elemente C,, = {e,C,,,C2, ..., Cn~1}.

4 Arthur Moritz Schoenflies (1853 - 1928), deutscher Ma-
thematiker
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2 Symmetrie und Struktur

Drehspiegelgruppen: S,,; wird durch eine
Drehspiegelachse erzeugt. Diese entspricht
einer Drehung um den Winkel 27/n um die
entsprechende Achse, gefolgt von der Spie-
gelung an einer Ebene, die senkrecht zur
Drehachse steht.

Dj: Diedergruppen. Werden durch eine Ro-
tationsachse C}, sowie n dazu senkrechte Cy-
Achsen erzeugt.

T: Tetraedergruppen: vier 3-fache und drei
2-fache Rotationsachsen in einem Tetraeder.

O: Tkosaedergruppen: 4 3-fache und 3 4-
fache Rotationsachsen in einem Oktaeder.

Dsn

Cz

C?
: + 6 Co-Achser

+ 9 Symmetrieebenen

Abbildung 2.21: Punktgruppe D3, (links) und
Oktaeder mit 3- und 4-zéhligen
Rotationsachsen (rechts). Nicht
eingezeichnet sind 6 Cy-Achsen

und 9 Spiegelebenen.

Die Gruppen koénnen neben den Rotationsach-
sen auch Spiegelebenen enthalten. Diese werden
durch die tiefgestellten Symbole A (fiir horizon-
tal, d.h. senkrecht zu C,,), v (fiir vertikal, d.h. C),
liegt in der Ebene) oder d (ebenfalls senkrecht,
aber zwischen den horizontalen Cs-Achsen) be-
zeichnet.

Daneben kénnen auch Punktsymmetrien auftre-
ten, also Inversion an einem Punkt. Befindet sich
dieser Punkt im Ursprung, dann ist das Resultat
der entsprechenden Operation ¥ — —7. Inver-
sionszentren und Spiegelebenen invertieren die
Héndigkeit eines Objekts. Sie kdnnen also nur
dann auftreten, wenn das Objekt keine Handig-
keit aufweist.

2.1.9 Hermann-Maugin Notation

® Punkt in allgemeiner (= sog. asymmetrischer) Lage

Identitats- einzahlige

gpeei;itéli(:]rl]ige Drehung und

Drehachse) Spiegelung

1 im

zweizahlige Drehung
und Spiegelung

zweizdhlige [¢ N ) (.o .\ oder (aquivalent)

Drehung Spiegelung an zwei

zueinander senkrechten

> Spiegelebenen

2m = mm

Abbildung 2.22: Beispiele fiir Punktgruppen in
Hermann-Maugin Notation.

Abb. zeigt fiir einige einfache Kombinatio-
nen von Symmetrieelementen die entsprechenden
Symbole nach Hermann-Maugin. Im letzten Bei-
spiel sind 2 Moglichkeiten gezeigt, wie die Sym-
bole dargestellt werden: Eine 2-zdhlige Drehach-
se senkrecht zu einer Spiegelebene erzeugt eine
zweite Spiegelebene. Umgekehrt ist die Schnitt-
gerade von 2 senkrecht aufeinander stehenden
Spiegelebenen auch eine Drehachse.

Abbildung 2.23: Schraubenachsen und Gleit-
spiegelebenen.

Im Hermann-Maugin System verwendet man
gerne  weitere  Symmetrieelemente, welche
als  Kombination Translationen  mit
Punktsymmetrie-Operationen verstanden wer-
den konnen. Abb. [2.23 zeigt die Schraubenachse
und die Gleitspiegelebene. Eine Schraubenachse
erzeugt eine Translation um einen Vektor da,
der nicht zum Bravaisgitter gehort, gefolgt von
einer Drehung um diesen Translationsvektor.
Eine Gleitspiegelebene erzeugt ebenfalls eine
Translation um einen Vektor d, der nicht zum
Bravaisgitter gehort, gefolgt von einer Spiege-

von
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2 Symmetrie und Struktur

lung an einer Ebene, die den Vektor enthélt.
Beide miissen somit durch Betrag und Richtung
von @, sowie um den Drehwinkel, respektive die
Richtung der Ebene definiert werden.

2.2 Symmetrie und Gitter

2.2.1 Primitive und nichtprimitive
Gitter

Die Menge der Translationsvektoren ergibt das
Gitter. Da sie die Symmetrieoperationen zusam-
menfassen, sind Kristallgitter ein wichtiges Hilfs-
mittel zur Charakterisierung von Kristallen. Das
bedeutet aber nicht, dass ein gegebener Kristall
eindeutig zu einem bestimmten Gitter zugeord-
net werden kann. H&aufig gibt es verschiedene
Moglichkeiten, ein Gitter zu spezifizieren. Eine
gegebene Anordnung von Atomen oder Molekii-
len kann auf unterschiedliche Weise in eine Ein-
heitszelle und ein Gitter zerlegt werden.
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Abbildung 2.24: Unterschiedliche Wahl der Ele-
mentarzelle in einem hexagona-
len Gitter in 2 Dimensionen.

Abb. [2.24] zeigt eine zweidimensionale Anord-
nung von Atomen, die in der Natur relativ hau-
fig vorkommt. Offensichtlich gibt es mehrere ver-
schiedene Moglichkeiten, die Gittervektoren @
und @z zu definieren. Die ersten beiden Moglich-
keiten sind hierbei gleichwertig; die Einheitszel-
len sind gleich grofs und enthalten die gleiche
Anzahl an Atomen. Die dritte hingegen unter-
scheidet sich dadurch, dass es mit den hierdurch
definierten Translationen nicht moglich ist, die
dunklen Atome auf die Positionen der hellen zu
bringen. Dementsprechend enthalt die dritte Ele-
mentarzelle zwei Atome, wihrend bei den ersten
beiden Varianten die Elementarzelle jeweils nur
ein Atom enthélt. Die dritte Elementarzelle ist
auch doppelt so groft wie die beiden ersten. Man
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2 Symmetrie und Struktur

bezeichnet die ersten beiden Gitter als primitiv,
das dritte als nicht primitiv.

Bei der Ermittlung der Anzahl Atome pro Ele-
mentarzelle muss berticksichtigt werden, dass die
Atome am Rand der Zelle zu mehreren Zel-
len beitragen, aber nur einmal gerechnet wer-
den diirfen. Man hat die Wahl, entweder die Ele-
mentarzelle leicht zu verschieben, so dass alle
Atome nur in einer Zelle liegen, oder man zéhlt
bei einem Atom, welches zu n Zellen beitragt,
jeweils nur 1/n. Offenbar entspricht bei einem
Atom in der Seitenflache n = 2, auf einer Kante
n = 3 oder 4, und auf der Ecke eines Wiirfels
n = 8.

2.2.2 Punktsymmetrieklassen

Abbildung 2.25: Versuche, mit 5- oder 7-eckigen
Elementen die Ebene abzu-
decken.

Die Symmetrie eines Kristalls ergibt sich durch
die Kombination der Punktsymmetriegruppen,
angewendet auf die Einheitszelle, mit der Trans-
lationsgruppe des Gitters. Nicht alle moglichen
Punktsymmetriegruppen sind aber mit periodi-
schen Gittern vertriglich. Insbesondere sind 5-
7- oder 10-zéhlige Rotationsachsen nicht vertrég-
lich mit Translationssymmetrie. Abb. illu-
striert dies anhand eines Versuchs, die Ebene mit
5- oder 7-eckigen Elementen abzudecken. Ein Be-
weis dazu wird in Ubung 2 behandelt.

Man kann einige Bedingungen definieren, welche
Symmetrieelemente in einem Kristallgitter auf-
treten kénnen:

e Fine Einheitszelle als einfachste sich wieder-
holende Einheit in einem Kristall.

e Gegeniiberliegende Fliachen einer Einheits-
zelle sind parallel.

e Der Rand der Einheitszelle verbindet jeweils
aquivalente Stellen.

Insgesamt gibt es 32 Punktsymmetrieklassen, die
auch in periodischen Systemen vorkommen kon-
nen. Diese enthalten Spiegelebenen, sowie Rota-
tionsachsen mit 2-, 3-, 4- und 6-zdhliger Symme-
trie.

Die Tabelle in Abb. 2.26 fasst alle 32 Punkt-
symmetriegruppen zusammen, welche mit Trans-
lationsgittern kompatibel sind. Die Bezeichnun-
gen sind nach Schoenflies und nach Hermann-
Maugin angegeben. Jede dieser Punktsymme-
triegruppen kann durch eines oder mehrere Sym-
metrieelemente erzeugt werden, wobei teilwei-
se unterschiedliche Moglichkeiten bestehen, die-
se Elemente zu wahlen. Die Zahl 2 bezeichnet
die Anzahl dquivalenter Positionen in allgemei-
ner Lage.

Bei allen Symmetrieoperationen bleibt eine Men-
ge von Gitterpunkten fest, ndmlich die Punkte,
welche auf das Symmetrieelement fallen.
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2 Symmetrie und Struktur

ANr. Symbol nach Erzeugende Symmetrieele- Q | Kristall-
Scroes-  HER- mente unter Verwendung von system
B e Toveis: v (Ziffer 3.3)
FLIES MANN nversionsachsen Spiegel-
Maveriyn ebenen
1|C, 1 A 1 | triklin
2 (0s 2 13 2 | monoklin
3|Cs 3 A3 3 |trigonal
4 |Cy 4 A3 4 |tetragonal
5 |Ce 6 Ag G | hexagonal
6 S‘| =C; |1 =2 2 | triklin
7(82=C5 | m 12 o3 2 | monoklin
8 83 Cy |3 Ii=A34+2 G | trigonal
918, 4 I3 4 |tetragonal
10 |S¢ = Can | 6 : A+ o7 | 6 |hexagonal
11 |[Da=V | 222 Ai+ Ay 4 |orthorhomb.
12 | D3 32 A3+ Ay 6 |trigonal
13 | 1)y 42 A+ A% 8 |tetragonal
14 | g 622 A4 A 12 | hexagonal
15 | Cay mm2 A+ Iy Ai 4 oy | 4 |orthorhomb.
16 | Cgy 3m Ai4- 1Y 4% + oy | 6 [trigonal
17 [Cap 4mm A4 1% A} + oy | 8 |tetragonal
18 | Cgy 6 mm A1y Ai + op |12 | hexagonal
19 | Daa ?-_ m B+A¥a A3+d8+ 2 12 |trigonal
20 [ D2a=Va| 42m 15 + A3 8 |tetragonal
21 | Day 62m I+ A 12 | hexagonal
22 | Oy, 2/m A+ 7 4i+0; | 4 | monoklin
23 | Cyp 4/m A:4-Z Ai+ 0. | 8 |tetragonal
24 [Cop 6/m Ai+Z Ai+ 0: |12 | hexagonal
25 | Dap = V| mmm Ai4 AV +Z 8 | orthorhomb.
26 | Dan dmmm | Ai4 AL+ 72 16 | tetragonal
27 | Dgn G/mmm | Aj+ A+ Z 24 | hexagonal
28| 7T 23 Akd L 42 12 | kubisch
20 |0 432 Ak 4 43 24 | kubisch
30 | Ty 43m AX® 4 I2 24 | kubisch
31 | Th m 3 AP+ A3+ Z 24 |kubisch
32 |0, m3m A+ A4+ Z 48 | kubisch

Symbole: 43, 47 A%: p-zihlige Deckachsen in 2, r, y-Richtung
;. I3, IY:  p-zihlige Inversionsachsen in z, z, y-Richtung

AR® dreizithlige Deckachse in Richtung der Raumdiagonalen
Z=1i: Inversionszentrum

o2t Spiegelebene | z

Op: (vertikale) Spiegelebene durch z

1,2,3,-+- p: p-zihlige Deckachse

1,2,---p:  p-zihlige Inversionsachse

m: Spiegelebene

pim: p-zihlige Deckachse und Spiegelebene | dazu

Abbildung 2.26: Die 32 Punktsymmetrieklassen.
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2 Symmetrie und Struktur

2.2.3 Kristallsysteme

Abbildung 2.27: Definition der Achsen und Win-
kel.

Die Kombination der Punktsymmetriegruppen
mit dem Translationsgitter ergibt insgesamt 230
unterschiedliche Raumgitter oder Raumgruppen.
Diese werden in mehreren hierarchischen Ebe-
nen eingeteilt. Zunichst betrachtet man die Ach-
sen a,b,c der Einheitszelle, sowie die Winkel
@, 3,7 zwischen diesen Achsen. Abb. 2.27 zeigt,
zwischen welchen Achsen diese Winkel definiert
sind: « zwischen b und ¢, § zwischen a und ¢
und « zwischen a und b. Aufgrund der moglichen
Werte dieser 6 Grofen teilt man die Raumgrup-
pen ein in sieben Kristallsysteme.

triklin hexagonal
aFbsc a=b#c
aFBEy > a=p3=90°~v=120°

monoklin

b tetragonal
aFbFc . a=b#c
a=v=90°#p3 a=8=ry=090°
orthorombisch )
a#b+#ec kubisch
a:ﬁ:fyzgoo a=b=c

. . a=pf=y=90°
rhomboedrisch (trigonal
a=b=c
a=L0=v#90° < 120°

@

Abbildung 2.28: Ubersicht iiber die 7 Kristallsy-

steme.

Abb. zeigt die 7 Kristallsysteme, zusammen
mit den Bedingungen fiir die Winkel und Achsen.
Sie lauten

1. Triklin: @ # b # ¢, a # B # 7 : keine Sym-

metrie

. Monoklin: a #b#c,a=~v=90°#(:1
Ca;

3. Orthorombisch: a #b # ¢, a = =~ = 90°
: 3 Cy

4. Hexagonal: a = b # ¢, a = = 90°, v =
120° : 1 Cg

5. Rhomboedrisch (trigonal): a = b = ¢, a =

B=n~90°<120°: 1 Cs

. Tetragonal: a =b#c,a==~v=090°:1
Cy

Kubisch: a =b=c,a=8=v=90°:4 C;

2.2.4 Bravais-Gitter

Diese sieben Kristallsysteme werden weiter dif-
ferenziert in 14 Bravais-Gitter. Ein primitives
Bravais-Gitter ist definiert als die Menge aller
Translationsvektoren

=

T = uydy + usds + usds, (2.1)

welche die entsprechende, unendlich ausgedehn-
te Kristallstruktur invariant lassen. Hier stellen
u; ganze Zahlen dar. In einem nicht-primitiven
Gitter werden zusétzliche Punkte eingefiigt, so
dass jede Elementarzelle mehr als einen Punkt
enthéalt, welche nicht durch die in definier-
ten Gittervektoren erreicht werden. Trotzdem ist
die Umgebung dieser Punkte identisch zur Um-
gebung aller anderen Gitterpunkte.

Zu jedem Kristallsystem gibt es ein primiti-
ves Gitter. Beim monoklinen gibt es ausserdem
ein basiszentriertes, d.h. die Einheitszelle besitzt
nicht nur Gitterpunkte an den Ecken, sondern
auch im Zentrum der durch a und b aufgespann-
ten Fliche (—Abb. [2.29). Dieses Gitter ist al-
so nicht primitiv. Beim orthorombischen gibt es
ebenfalls ein basiszentriertes Gitter, sowie zu-
sétzlich ein raumzentriertes (oder innenzentrier-
tes) und ein flichenzentriertes. Beim tetragona-
len Gitter gibt es ein raumzentriertes und beim
kubischen ein raumzentriertes und ein flichen-
zentriertes.
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«
B c
0 3 Primitiv

y
atb#c
a=v=90°#p

Basiszentriert
Abbildung 2.29: Monoklines Kristallsystem mit

unterschiedlichen  Moglichkei-
ten der Basis.

Abbildung 2.30:

Kubisch primitives, innenzen-
triertes und flachenzentrierte
Einheitszellen.

Die vielleicht einfachste Kristallstruktur ist das
primitiv kubische Gitter (Abb. [2.30 links). Die
Atome sind in diesem Fall auf den Ecken ei-
nes Wiirfels angeordnet, so dass jede Einheits-
zelle ein Atom enthélt. In einem flachenzentrier-
ten kubischen Gitter (Abb. [2.30 rechts) sind drei
weitere Atome pro Einheitszelle vorhanden, zen-
triert in den Seitenflichen des Wiirfels.

Abbildung 2.31: fcc Gitter mit einer (alternati-
ven) primitiven Einheitszelle.

Ein basiszentriertes oder raumzentriertes Git-
ter besitzen zwei Gitterpunkte pro Einheitszelle,

ein flichenzentriertes Gitter vier. Natiirlich wa-
re es bei allen nichtprimitiven Gittern ebenfalls
moglich, eine andere Einheitszelle zu wéahlen, so-
dass das Gitter primitiv wiirde. Abb. zeigt
als Beispiel ein fcc Gitter mit einer alternativen
Einheitszelle. Diese entspricht einem rhomboe-
drischen Gitter. Diese Einheitszelle enthalt nur
einen Gitterpunkt und ist damit vier mal kleiner.
Eine der Moglichkeiten, eine primitive Einheits-
zelle zu wahlen, ist die Wigner-Seitz Konstruk-
tion. Haufig sind aber die Rechnungen einfacher
in einem nichtprimitiven Gitter durchzufiihren,
z.B. wenn man dann ein orthonormiertes Koor-
dinatensystem verwenden kann.

Insgesamt ergeben sich die folgenden 7 Kristall-

systeme und 14 Bravais-Gitter:
1. Triklin: @ # b # ¢, a # 8 # 7 : keine Sym-
metrie

. Monoklin: a #b#c,a=~v=90°# g :1
Cy; a) primitiv, b) basiszentriert

. Orthorombisch: @ # b # ¢, « = = 7
90° : 3 Cy a) primitiv, b) basiszentriert,
raumzentriert, d) flichenzentriert

8

. Hexagonal: a = b # ¢, a = § = 90°, v
120° : 1 Cg primitiv

. Rhomboedrisch (trigonal): a = b = ¢, «
B =7 #90° < 120° : 1 C5 primitiv

. Tetragonal: a =b#c,a=F=~v=090°:1
C} a) primitiv, b) raumzentriert

Kubisch: a=b=c,a=8=v=90°:4 C;
a) primitiv, b) raumzentriert, c) flachenzen-
triert

2.2.5 Raumgruppen

Bisher hatten wir angenommen, dass die Objekte
selber sphérische Symmetrie aufweisen. Dies ist
im Allgemeinen nicht der Fall.

Werden die unterschiedlichen Symmetrien der
Basis mit beriicksichtigt, dann ergibt sich eine
weitere Unterteilung der Bravais-Gitter in ins-
gesamt 230 Raumgruppen. Abb. [2.32 zeigt zwei
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®°
P,

Spiegelebenen

Abbildung 2.32: Links: Einheitszelle mit zwei
Atomen in allgemeiner Lage,
mit Multiplizitdt 4. Rechts: 3
Atome in spezieller Lage; A hat
Multiplizitat 2, B 1.

Beispiele. In der linken Hélfte sitzen die Atome
auf allgemeinen Lagen, mit Multiplizitdt 4 auf-
grund der beiden Spiegelebenen. In der rechten
Halfte sitzen sie auf symmetrischen Positionen
mit entsprechend niedrigerer Multiplizitdt von 2
fiir A und 1 fiir B.

7 Kristallsysteme

- L

14 Bravaisgitter

- £

230 Raumgruppen 7 B Amm2 / C3

z.B. triklin

Basis : primitiv / nicht primitiv
z.B. kubisch innenzentriert

Symmetrie der Basis

I

Uran(V,VI)-oxid

&%

Abbildung 2.33: Kristallsysteme, Bravais-Gitter
und Raumgruppen.

Abb. @ fasst diesen Ubergang zusammen. Als
Beispiel ist die Raumgruppe von Uran(V,VI)-
oxid gezeigt. Weitere Beispiele von kubischen
Raumgruppen werden in Kapitel [2.3.3 behan-
delt. Die vollstandige Liste der Raumgruppen
wurde von Arthur Moritz Schoenflies und Jew-
graf Stepanowitsch Fjodorow erstellt.

2.3 Strukturen

2.3.1 Netzebenen und Miller Indizes

In der Kristallographie spielen die sog. Netzebe-
nen eine grofe Rolle. Dabei handelt es sich um
(gedachte) Ebenen, die mit Atomen oder Gitter-
punkten besetzt sind. Wie man sich leicht iiber-
zeugen kann, sind die Atome in einer solchen
Ebene ebenfalls periodisch angeordnet, wobei die
Periodizitat grofer sein kann als die Periodizi-
tat des Kristalls. Jede Netzebene entspricht einer
Netzebenenschar, d.h. einer unendlichen Schar
von dquivalenten Ebenen, welche parallel zuein-
ander in einem festen Abstand liegen. Diese Net-
zebenen entsprechen auch moglichen Spaltfla-
chen oder Wachstumsebenen von Kristallen. Au-
ferdem reflektieren diese Ebenen Rontgenstrah-
lung und spielen deshalb eine entscheidende Rol-
le bei der Strukturbestimmung (— Kap. .

Netzebenen konnen durch jeweils drei ganze Zah-
len eindeutig charakterisiert werden. Diese wer-
den als Miller’sche Indizes?| bezeichnet und in der
Form (jkl) geschrieben.

Q O 0 0 0 O

Q O O 0 0 O

a

Abbildung 2.34: Zweidimensionale = Netzebene
mit Achsenabschnitten 3, 1.

Dafiir bestimmt man die Abschnitte, an denen
die Ebene die Achsen schneidet. Die Achsenab-
schnitte werden in Vielfachen der Einheitszelle
(also nicht der primitiven Elementarzelle) be-
stimmt. Im Beispiel von Abb. [2.34 sind dies die
Zahlen 3 und 1. Die Miller Indizes erhalt man,
indem man den Kehrwert der Achsenabschnitte
bildet (hier: 1/3, 1/1) und das kleinste ganzzah-
lige Verhéltnis bestimmt (hier: 1, 3).

®Nach dem Vorschlag von William Hallowes Miller
(1801-1880).
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2 Symmetrie und Struktur

Abbildung 2.35: Netzebene in 3D; Achsenab-
schnitte 3, 1, 2.

In drei Dimensionen geht man analog vor. Im
Beispiel von Abb. sind die Achsenabschnit-
te 3, 1, 2 und die Kehrwerte somit 1/3, 1, 1/2.
Ganzzahlige Indizes erhalt man durch Erweitern
mit 6 : (263). In einem zweiten Beispiel seien die
Achsenabschnitte 6, 2, 3. Daraus erhélt man die
Kehrwerte 1/6, 1/2 = 3/6, 1/3 = 2/6 und damit
Miller Indizes (132).

z

z z

y y y
(100) (110) (111)
(200) (100)

Abbildung 2.36: Beispiele fiir Netzebenen.

Einige Beispiele von Miller Indizes fiir haufig ver-
wendete Ebenen sind in Abb. [2.36 zusammenge-
stellt. Liegt die Netzebene parallel zu einer Ach-
se, so betrigt der entsprechende Achsenabschnitt
unendlich und der Index 0. Negative Achsenab-
schnitte werden mit einem Querstrich bezeich-
net.

Meist sind aufgrund der Symmetrie des Gitters
mehrere Netzebenen dquivalent zueinander. Ein
einfaches Beispiel sind die Ebenen (100), (010),
und (001) des einfach kubischen Gitters. Solche

Gruppen von dquivalenten Netzebenen fasst man
zusammen, indem man die Indizes in geschweifte
Klammern setzt, also z.B. {100}.

Fiir Richtungen im direkten Raum verwendet
man eckige Klammern, also z.B. [hkl]. In einem
kubischen Kristall stehen die Richtungen [hkl]
senkrecht auf die Netzebenen (hkl).

2.3.2 Dichteste Kugelpackung

Festkorper bilden sich, weil die darin enthaltenen
Bausteine sich gegenseitig anziehen. Die Ener-
gie eines Kristalls kann deshalb meist optimiert
werden, wenn die Bestandteile moglichst dicht
gepackt sind. Es stellt sich somit die Frage, wel-
che Anordnung den Raum optimal fiillt. Fiir die
meisten Bestandteile ist die Antwort nicht ana-
lytisch, aber fiir den wichtigen Fall, dass die Be-
standteile durch karte Kugeln angendhert wer-
den konne, lasst sich die Frage beantworten. Ku-
gelformige Bestandteile sind eine gute Ndherung
fiir viele Ionenkristalle.

In einer Dimension wird die dichteste Kugel-
packung durch eine Reihe direkt aneinander ge-
legter Kugeln realisiert.

Abbildung 2.37: Links: dichteste Kugelpackung
in einer Ebene; rechts: 2 hexa-
gonal dichtest gepackte Ebenen
gestapelt.

In zwei Dimensionen kann man Reihen von Ku-
geln jeweils um eine halbe Gitterkonstante ver-
schoben aneinander fiigen und erhélt eine dich-
teste Kugelpackung, welche einem hexagonalen
Gitter entspricht. Fiigt man zwei solcher Schich-
ten aufeinander, so wird der Schichtabstand mi-
nimal, wenn sich die Kugeln der oberen Lage
tiber einer Liicke der unteren Lage befinden (sie-

he Abb. [2.37 rechts).
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Abbildung 2.38: 3 hexagonal dichtest gepackte
Ebenen gestapelt.

Fiigt man eine dritte Schicht auf diese beiden, so
kann dies auf zwei Arten optimiert werden: Man
legt die dritte Schicht vertikal iiber die erste oder
man verschiebt sie nochmals in die gleiche Rich-
tung wie beim ersten Schritt, so dass die dritte
iiber die gemeinsame Liicke der blauen und roten
Schicht zu liegen kommt. Die erste Folge wird als
ABAB charakterisiert, die zweite als ABCABC.
Beide Varianten kommen in der Natur vor, und
es sind auch gemischte Félle moglich, d.h. die
Stapelfolge kann variieren.

In beiden Féllen beriihrt jede Kugel 12 néch-
ste Nachbarn. Das Volumen der Kugeln nimmt
ﬁ ~ 0,74048 oder 74 % des Kristallvolumens
ein. Dieses Verhéltnis der Kugelvolumina zum
gesamten Volumen wird als Raumfiillung be-
zeichnet. Da diese beiden Packungen die maxi-
mal mogliche Raumfiillung aufweisen, werden sie
als ‘dichteste Kugelpackung’ bezeichnet.

Abbildung 2.39: Anordnung der Schichten in
der hexagonal dichtesten Kugel-
packung (links) und in der fla-
chenzentrierten dichtesten Ku-
gelpackung (rechts).

Ist die Stapelfolge ABAB, so wéhlt man nor-

malerweise eine hexagonale Einheitszelle, wie in
Abb. links dargestellt. Diese Struktur wird
als hexagonal dichteste Kugelpackung bezeichnet
oder kurz als hep (=hexagonal close packed). Die
Stapelrichtung entspricht der c-Achse des hexa-
gonalen Kristallsystems.

Kristall ~ ¢/a Kristall ~ c/a Kristall  c/a
He 1,633 | Zn 1861 | Zr 1,59
Be 1,581 | Cd 1,886 | Gd 1,592
Mg 1,623 | Co 1622 | Lu 1,586
Ti 158 | Y 1,570

Abbildung 2.40:

Strukturparameter der hexago-
nal dichtesten Kugelpackung.

Abb. 2.40 zeigt eine weitere Darstellung der hep
Struktur. Es gilt, wie immer im hexagonalen Kri-
stallsystem, @ = b, v = 120° und o = 5 = 90°.
Somit sind die freien Parameter nur noch die bei-
den Kantenldngen c und a. Die Basis besteht hier
aus zwei Atomen mit den Koordinaten (0,0,0)
und (2/3,1/3,1/2). Jedes Atom hat 12 néchste
Nachbarn; man bezeichnet diese Zahl als Koor-
dinationszahl. Fiir die ideale hcp Struktur gilt
auferdem ¢ = \/% a ~ 1,633 a. Reale Struktu-
ren besitzen ein Verhéltnis ¢/a, welches nahe bei
diesem Wert ist (siche Abb. rechts).

Fiir die Beschreibung des Gitters, das durch die
Stapelfolge ABCABC erzeugt wird, verwendet
man das kubisch flichenzentrierte Gitter, wel-
ches in Abb. rechts dargestellt ist. Die Sta-
pelrichtung entspricht der Raumdiagonale des
Wiirfels. Dieser Fall wird kurz als fcc (=face
centered cubic) bezeichnet. Die Raumfiillung be-
tragt in beiden Féllen (hcp und fec) 74%. In ei-
nem kubisch innenzentrierten Gitter (bcc = (bo-
dy centered cubic) ist die Raumfiillung 68%, in
einem einfachen kubischen Gitter 52%, und in
einem Diamantgitter 34%.

2.3.3 Kubische Strukturen

Eine relativ wichtige Struktur ist diejenige von
Diamant, welche in Abb. [2.41 dargestellt ist. Sie
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Abbildung 2.41: Struktur von Diamant als
3D Darstellung und Projekti-
on in die zy-Ebene mit den
z-Koordinaten der Atome.

kann als kubisch flichenzentrierte Struktur dar-
gestellt werden, welches zusétzlich ein Atom an
der Stelle (1/4, 1/4, 1/4) und den entsprechen-
den dquivalenten Positionen enthalt.

Abbildung 2.42: Struktur von GaAs.

Viele Halbleiter, wie z.B. Si oder GaAs kristalli-
sieren in einer Struktur, welche von der Diamant-
struktur abgeleitet werden kann und in Abb.
dargestellt ist. Bei den bindren Halbleitern wer-
den die Gitterplatze abwechselnd mit den beiden

unterschiedlichen Atomsorten, wie z.B. Ga und
As belegt.

Die Struktur eines Materials, welches in der
Zinkblende-Struktur kristallisiert, ist vollsténdig
bestimmt, wenn noch die Kantenldnge a der Ein-
heitszelle gegeben ist. Tabelle[2.1]zeigt diesen Pa-
rameter fiir 12 unterschiedliche Verbindungen.

Auch SiC ist dadurch charakterisiert, dass ein Si
Atom jeweils tetraedrisch durch kovalente Bin-
dungen mit vier Kohlenstoff-Atomen verkniipft

Kristall a Kristall a
CuF 426A | ZnSe 5,65A
SiC 4,35 GaAs 5,65
CuCl 541 AlAs 5,66
ZnS 541 cds 5,82
AlP 545 InSb 6,46
GaP 545 Agl 6,47

Tabelle 2.1: GroRe der Einheitszelle fir un-
terschiedliche Materialien mit
Zinkblende-Struktur.

ist, und umgekehrt. Allerdings findet man in die-
sem Fall unterschiedliche Stapelfolgen und des-
halb eine grofse Zahl von unterschiedlichen Struk-
turen.

Abbildung 2.43: Struktur von NaCl (links) und
CsCl (rechts).

Kristalle, die aus mehr als einer Atomsorte beste-
hen, enthalten dementsprechend mehrere Atome
pro Einheitszelle. Ein relativ einfaches Beispiel
ist NaCl (Kochsalz) (siche Abb. links). Da
die Na™-Ionen kleiner sind als die C1™-Ionen ist
in diesem Fall ein kubisch flichenzentriertes Git-
ter energetisch am glinstigsten. Dies bedeutet,
dass in einem Untergitter, welches nur die Cl7,
resp. NaT-Tonen enthilt, jeweils Ecken und Fli-
chenmittelpunkte eines Kubus besetzt sind. Man
kann das Gitter aber auch als primitiv kubisches
Gitter (mit der halben Gitterkonstante, d.h. 1/8
Volumen der Einheitszelle) beschreiben, bei dem
die Gitterplatze alternierend mit Cl, resp. Na be-
setzt sind.

Im CsCl-Kristall (Abb. rechts) besetzen die
Cs*-Ionen die Gitterpunkte eines einfach kubi-
schen Gitters. Das Raumgitter (Bravais-Gitter)
ist damit einfach kubisch (sc) mit einer zweiato-
migen Basis aus einem Cs*-Ion bei (0,0,0) und
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einem Cl™-Ton bei (3,3,3). Jedes Atom befindet

sich im Mittelpunkt eines Wiirfels der anderen
Atomsorte. Die Koordinationszahl ist somit 8.

Ga/Ge|As|® | B

In S“l‘S)ATeVI

Th \Pu

Pa| U Np|PuA mBkTCf{EsFde‘ Lw|

D fcc ﬂ Diamant

dhcp-Struktur = double hexagonally close packed: Stapelfolge ABACABAC

hcp
dhcp

Abbildung 2.44: Ubersicht iiber die Struktur von
elementaren Kristallen.

Viele Elemente kristallisieren in kubischen
Strukturen, Abb. fasst sie zusammen. Die
wichtigsten sind bcee, fee, hep und dhep (dou-
ble hexagonally close packed, mit der Stapelfolge
ABACABAC), sowie die Diamantstruktur.

2.3.4 Quasikristalle

Wie bereits erwahnt, sind 5-zdhlige Rotations-
achsen in einem System mit Translationssymme-
trie nicht moglich. Auch in zwei Dimensionen ist
es nicht moglich, die Ebene mit Einheitszellen
mit 5-zdhliger Symmetrie abzudecken. Man hat
deshalb lange Zeit geglaubt, dass solche Kristalle
nicht existieren wiirden. Erst 1984 wurden erst-
mals in Beugungsexperimenten 10-zéhlige Sym-
metrieachsen gefunden, und etwas spéater konnte
man diese Symmetrie auch makroskopisch nach-
weisen.

Mit Hilfe der Elektronenmikroskopie findet man
die 5-zéhlige Symmetrie sowohl in der Morpho-
logie der Kristalle wie auch in der atomaren
Struktur. Die gleiche Symmetrie findet man auch
in hochauflésenden Mikroskopie Bildern, wel-
che direkt die atomare Struktur darstellen. Da

Abbildung 2.45: Morphologie Quasikri-
stalls (links) und zugehoriges
Beugungsmuster (rechts).

eines

diese Materialien zwar einen hohen Ordnungs-
grad, aber keine Translationssymmetrie aufwei-
sen, werden sie als Quasikristalle bezeichnet. Die
Details dieser Strukturen sind noch nicht in al-
len Féllen vollstdndig verstanden. Sie basieren
jedoch auf rdumlich nichtperiodischen Struktu-
ren.
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Abbildung 2.46: Zwei Beispiele, wie eine Ebe-
ne mit einem nichtperiodischen
Muster abgedeckt werden kann.

In zwei Dimensionen kénnen Kombinationen von
2 Elementen den Raum vollstdndig abdecken, oh-
ne dass sie Translationssymmetrie aufweisen. Be-
kannt dafiir sind vor allem die Elemente von Pen-

I‘OSdgl-

Quasikristalle wurden 1984 in bestimmten in-
termetallischen Verbindungen entdeckt [14] und
charakterisiert. Fiir einige Jahre waren sie relativ
umstritten, aber weitere Arbeiten und auch Mes-
sungen im direkten Raum haben ihre Existenz
bestétigt. Die meisten Quasikristalle wurden in

SRoger Penrose (* 1931)
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kiinstlich hergestellten Verbindungen gefunden.
Seit einigen Jahren gibt es jedoch auch Hinweise
darauf, dass Quasikristalle in natiirlich vorkom-
menden Mineralien vertreten sind [3].

2.3.5 Defekte

Zwischengitteratom

GroReres Substitutionsatom

ﬁ09#4ﬁﬂ$¢#$4#+

- "

}}¢+++ ~v~~~~~

Leerstelle Frenkel-Paar Kleineres Substitutionsatom

Abbildung 2.47: Unterschiedliche Arten von De-
fekten.

Ideale Kristalle stellen eine niitzliche Fiktion dar.
Sie existieren jedoch nicht, sondern alle realen
Kristalle enthalten Abweichungen vom idealen
Gitter, welche als Defekte bezeichnet werden.
Abb. [2.47]zeigt die wichtigsten Defekte. Dazu ge-
horen Leerstellen, Zwischengitteratome, Verset-
zungen und Substitution durch Fremdatome. Als
Fremdatome bezeichnet man Atome einer ande-
ren Sorte, also z.B. Nickel-Atome in einem Git-
ter aus Eisenatomen. Haufig treten auch unter-
schiedliche Arten von Defekten in Kombinatio-
nen auf. Diese Defekte erhohen im Allgemeinen
die Energie des Systems, aber auch die Entropie.
Deshalb sind im thermodynamischen Gleichge-
wicht immer Defekte vorhanden, und die Zahl
der Defekte nimmt mit zunehmender Tempera-
tur zu. Fine Leerstelle in Kupfer besitzt z.B. ei-
ne Energie von 1,2 eV, ein Zwischengitteratom
3,4 eV. Abb. zeigt auRerdem wie die Defek-
te die Gitterstruktur storen, auch auf Distanzen
die deutliche grofier sind als eine Einheitszelle.

Eine Kombination von 2 elementaren Defekten
tritt z.B. bei der Frenkel-Fehlstelle auf (— Abb.
2.48): hier wurde ein Atom von seinem eigent-

d—4 4 Ag ClI
1 . T—»— Y ®
P oD e o e@
e 7 o
FL“ [ L o
°
R o L o

Frenkel Fehlstelle als Verschie-
bung eines Atoms auf einen
Zwischengitterplatz, respektive
als Kombination einer Leerstel-
le mit einem Zwischengitter-
Atom.

Abbildung 2.48:

lichen Gitterplatz auf einen Zwischengitterplatz
verschoben. Wie in Abb. rechts gezeigt ist,
kann dieser Defekt auch als Kombination einer
Leerstelle mit einem Zwischengitteratom gesehen
werden.

060000

e 0000 O iSTM-BiId
o000 o
00000

® o000

e 0 0060 O Leerstelle

Schottky-Defekt in NaCl

Abbildung 2.49: Schottky Defekt in einem NaCl
Kristall (links) und Leerstelle
in einem einatomigen Kristall
(rechts).

Als Schottky-Defekt bezeichnet man eine Kombi-
nation aus zwei Leerstellen von Atomen mit ent-
gegengesetzter Ladung. Dieser Defekt ist damit,
wie auch der Frenkel-Defekt, ladungsneutral.

Eine weitere Kombination von elementaren De-
fekten ist das Stickstoff-Leerstellen Zentrum im
Diamant (— Abb. 2.50). Es wird auch als NV-
Zentrum bezeichnet (von Nitrogen-Vacancy). Es
ist ein gutes Beispiel dafiir, wie solche Defekte
die Eigenschaften eines Materials verandern kon-
nen. Wéahrend reiner Diamant praktisch farblos
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Abbildung 2.50: Stickstoff-Leerstellen Defekt im
Diamant.

ist, hat das NV-Zentrum einen erlaubten Uber-
gang im sichtbaren Bereich des Spektrums und
fiihrt deshalb zu einer Farbung des Kristalls.

Pressure

Quartz
container
Melted alloy.
A Ribbon
Heating —
.Palladlulr \
© Kupfor
@ Nickel
@ Phosphon
Cold wheel
Abbildung 2.51: Struktur eines metallischen

Glases (links) und eine Mog-
lichkeit zu ihrer Herstellung
durch  schnelles  Abkiihlen
(rechts).

Defekte bilden sich nicht nur im thermodynami-
schen Gleichgewicht, sie kénnen auch z.B. auch
bei der Kristallisation entstehen, vor allem wenn
die Abkiihlung sehr schnell vor sich geht. Dies
fiihrt z.B. zu Gléasern oder amorphen Substan-
zen. Gléser konnen durchsichtig sein, wenn sie
aus dielektrischen Materialien bestehen, aber es
existieren auch metallische Gléser, welche inter-
essante Figenschaften als Werkstoffe aufweisen.

Die genannten Defekte sind Punktdefekte. Da-
neben gibt es auch eindimensionale Defekte, wie
z.B. Schraubenversetzungen oder Stufenverset-
zungen (siehe Abb.[2.52). Solche Defekte konnen
durch einen Burgersvektor charakterisiert wer-
den (b in Abb. rechts). Er wird bestimmt,

Abbildung 2.52: Stufenversetzung (links) und
ihre Charakterisierung durch
einen Burgersvektor b.

indem man analoge Wege im perfekten und im
defektbehafteten Teil des Kristalls vergleicht.

Zweidimensionale Defekte umfassen Korngren-
zen und Stapelfehler. Auch dreidimensionale De-
fekte konnen charakterisiert werden.

2.4 Strukturbestimmung

Die atomare oder molekulare Struktur eines Kor-
pers kann viele seiner Eigenschaften erkldren und
ist deshalb immer von grofsem Interesse. Um
diese Struktur zu bestimmen, bendtigt man ein
Werkzeug, welches in atomaren Grofen arbeiten
kann. In erster Linie benutzt man dafiir elektro-
magnetische Wellen mit kurzer Wellenlénge, d.h.
Rontgenstrahlen. Auch Materiewellen sind mit
Erfolg eingesetzt worden, in erster Linie Elek-
tronen oder Neutronenstrahlen, aber neuerdings
auch Atomstrahlen.

Neben der Art des “Werkzeugs” ist ein wichti-
ges Unterscheidungsmerkmal, ob die Messung im
Ortsraum oder im Impulsraum, dem sogenann-
ten reziproken Raum stattfindet. Hier werden zu-
erst die direkten Methoden diskutiert, danach
die Beugungsmethoden.
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Abbildung 2.53: Prinzip der Feldionenmikrosko-
pie.

2.4.1 Feld-Ionen Mikroskopie

Die erste Methode, welche Atome direkt sicht-
bar machte, war die Feld-Ionen Mikroskopi
Es handelt sich dabei um ein relativ einfaches
Geréit: im Wesentlichen benétigt man eine sehr
scharfe Spitze, an die man eine positive elektri-
sche Spannung anlegt. Dadurch erhdlt man an
der Spitze ein sehr hohes elektrisches Feld. Aus-
serhalb der Spitze befindet sich mit niedrigem
Druck ein Gas, typischerweise Helium. Wenn ein
Heliumatom in die Nahe der Spitze gelangt, wird
es durch dieses enorme elektrische Feld ionisiert,
das heisst diese Metallspitze zieht eines der Elek-
tronen des Heliumatoms weg. Dadurch wird das
Heliumatom zu einem positiv geladenen Heliu-
mion und wird nun durch das starke elektrische
Feld sehr rasch von der Spitze weg beschleunigt.
Nach einer Distanz von etwa 10 cm trifft es auf
einen Schirm, wo es sichtbar gemacht wird. Da
sich die Atome auf dem direktesten Weg von
der Spitze entfernen, entsteht dadurch auf dem
Schirm ein Bild der Spitze. Die Vergroferung
kommt durch das Verhéltnis des Radius der Spit-
ze zur Distanz vom Schirm zustande und beno-
tigt keine weiteren abbildenden Elemente. Man
erhélt also auf diese Weise auf dem Schirm ein
Bild dieser Spitze mit sehr hoher Auflésung. Al-
lerdings ist das Bild ziemlich stark verzerrt.

Diese Art von Mikroskopie ist inzwischen mehr

"Erwin Wilhelm Miiller (1911 - 1977) hat 1936 das
Feld-Tonenmikroskop entwickelt. Er gilt als der erste
Mensch, der ein Atom ,gesehen® hat.

Abbildung 2.54:

Feldionenmikroskop-
Aufnahmen

Atomen,
die sich auf einer Metallspitze
bewegen. Das obere
Rhenium-, das untere
Wolfram-Atom. [16]

von

ist ein
ein

als 80 Jahre alt [12], sorgt aber immer noch fiir
spektakuldre Bilder, wie z.B. die Serie von Bil-
dern in Abb. [2.54] welche zeigen, dass man damit
nicht nur atomare Auflésung erhélt, also einzelne
Atome sehen kann, sondern auch deren Bewe-
gung iiber die Oberfliche beobachten kann. In
Abb. [2.54 ist die Oberfliche einer Wolframspitze
dargestellt, auf der sich zwei einzelne Atome be-
wegen, welche durch die dreieckigen Pfeile mar-
kiert sind. Beim unteren handelt es sich um ein
Wolfram-Atom, beim oberen um ein Rhenium-
Atom.

2.4.2 Elektronenmikroskopie

Um ein weniger verzerrtes Bild einer beliebigen
atomaren Struktur zu erhalten, benotigt man ei-
ne Abbildungsoptik, die unabhingig vom abzu-
bildenden Objekt ist. Die Wellenlénge des abbil-
denden Feldes muss dazu kleiner sein als die ab-
zubildenden Strukturen. Verwendet man elektro-
magnetische Wellen (d.h. Rontgenstrahlen), sind
abbildende Linsen praktisch nicht herstellbar.

Verwendet man jedoch Elektronen fiir die Abbil-
dung, so kénnen Linsen mit elektromagnetischen
Feldern erzeugt werden, wie in Abb. sche-
matisch dargestellt.
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Elektronen-_|

magnetische
Linsen

LLI > Bild auf dem Schirm

Abbildung 2.55: Funktionsprinzip eines Elektro-
nenmikroskops.

Abbildung 2.56: Elektronenmikroskopische Auf-
nahme eines Molekiilkristalls.

Hochgeziichtete Systeme sind in der Lage, Ato-
me direkt abzubilden. Dafiir muss allerdings eine
Vergrofierung um mindestens 7 Grofenordnun-
gen erreicht werden. Aufgrund der damit ver-
bundenen technischen Schwierigkeiten ist dies
erst seit wenigen Jahren moglich und stellt im-
mer noch kein Routineverfahren dar. Abb. 2.56
zeigt als Beispiel einen Molekiilkristall mit ato-
marer Auflésung. Dies ist allerdings nur moglich,
wenn die Orientierung geeignet gewéahlt ist, so
dass Stapel von iibereinander liegenden Molekii-
len aufeinander abgebildet werden.

Die Kryo-Elektronenmikroskopie ist eine Versi-
on davon, welche fiir die Strukturbestimmung an
Biomolekiilen entwickelt wurde. Dabei werden
die Proben auf tiefe Temperaturen gekiihlt. Um
eine molekulare Struktur zu bestimmen, muss je-
doch im Rechner eine grofte Zahl von Aufnahmen
verarbeitet werden. Diese Methode wurde 2017
mit dem Nobelpreis fiir Chemie ausgezeichnet.

Im Herbst 2020 ist es erstmals gelungen, mit die-
ser Methode atomare Auflésung zu erzielen.

2.4.3 Rastersonden Mikroskopie

Die Methode, mit der man die strukturelle In-
formation erhalt, hangt stark davon ab, welches
dieser Werkzeuge man verwendet. Im Falle der
Rastersonden Mikroskopie ist die Methode sehr
direkt: man tastet den Gegenstand mit der Pro-
be ab und zeichnet die Position der Probe auf,
um so direkt ein Bild der Oberfléche zu erhalten.

Elektronik F

Abbildung 2.57: Funktionsprinzip der Raster-
Tunnelmikroskopie.

Diese Methode wurde 1982 von Binnig und Roh-
rer am IBM Forschungslaboratorium in Riisch-
likon entwickelt. Dabei wurde eine feine Spit-
ze iiber eine Oberfliche gefiihrt, wobei der Ab-
stand zwischen der Spitze und der Oberflache
konstant gehalten wurde. Indem man die Po-
sition der Spitze aufzeichnete, konnte man ein
Bild der Oberflache erhalten. Man tastet also die
Oberfliche mit einer Spitze ab, benutzt also ei-
ne Art verfeinerten Tastsinn, um die Oberflache
sichtbar zu machen.

Insbesondere hat man auch gelernt, mit dem Mi-
kroskop Atome zu verschieben, nicht nur zu be-
obachten. Abb. [2.58| zeigt als Beispiel einen Ring
aus 48 Eisenatomen, welche mit einer Rastertun-
nelspitze auf der Oberflache eingesammelt und
an einen Ort gebracht wurden. Anschliessend
wurde das gleiche Gerdt dafiir verwendet, die
hergestellten Strukturen abzubilden.
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Abbildung 2.58: STM Bild eines Kreises aus 48

Eisenatomen.

Die Raster-Sonden Mikroskope verwendeten die
exponentielle Abhéngigkeit des sog. Tunnel-
stroms, also eines elektrischen Stroms durch ein
nichtleitendes Medium wie das Vakuum, um ein
Bild zu erhalten. Diese Technik wird deshalb als
Tunnelmikroskopie (STM = scanning tunneling
microscopy) bezeichnet. Die Notwendigkeit fiir
einen elektrischen Strom beschrankt diese Tech-
nik auf leitende Oberflichen. Spéter kamen an-
dere Arten von Sonden dazu, wie die Raster-
Kraftmikroskopie (AFM = atomic force micros-
copy) die magnetische Wechselwirkung (MFM
= magnetic force microscopy) oder die optische
Nahfeld Mikroskopie (SNOM = scanning near
field optical microscopy). Alle diese Techniken
sind hervorragend fiir die Untersuchung von be-
stimmten Oberflachen geeignet. Sie sind aber un-
empfindlich fiir Bereiche unterhalb der ersten 1-2
atomaren Lagen und deshalb nicht geeignet fiir
die Untersuchung von Volumenkristallen.

2.4.4 Rontgenbeugung

Vor der Entwicklung der direkten Methoden war
die einzige Moglichkeit, mit atomarer Auflésung
Informationen iiber Kristallstrukturen zu erhal-
ten, die Verwendung von Beugungsmethoden, al-
so die Streuung einer Welle an einer periodi-
schen Struktur. Auch heute ist das fiir Volumen-
kristalle meist die einzige Moglichkeit, da die
direkten Methoden nur fiir Oberflichen geeig-
net sind. Voraussetzung fiir die Verwendung von
Beugungsmethoden ist, dass die Wellenlénge der
verwendeten Strahlung von der gleichen Gréfen-
ordnung ist wie die Absténde zwischen den Ato-

men, also weniger als 1 nm.

Abbildung 2.59: Struktur von NaCl.

Die Beugung von Wellen an periodischen Struk-
turen, wie dem NaCl Kristall von Abb. [2.59
wurde u.a. von den Bragg erklart. Thre Erkla-
rung ist sehr anschaulich und liefert das rich-
tige Resultat. Man betrachtet dabei eine Reihe
von parallelen Ebenen. Im Kristall sind dies na-
tiirlich keine wirklichen Ebenen, sondern Netze-
benen, also zweidimensionale Anordnungen von
Atomen.

Rontgenstrahl

Abbildung 2.60: Interferenz von Teilstrahlen and
benachbarten Netzebenen.

Jede dieser Ebenen reflektiert einen Teil der ein-
fallenden Welle. Wie grofs dieser Anteil ist, hangt
von der Welle selber ab, sowie von der Netzebe-
ne: wie dicht sind die Atome gepackt, was fiir
eine Art von Atomen sind es etc. Dies wird in
Kapitel genauer diskutiert.

Fiir die Herleitung der Bragg-Bedingung be-
zeichnen wir den Abstand zwischen diesen Ebe-
nen als d, wie in Abb. [2.60 gezeigt. Falls der Bre-
chungsindex dieser Ebenen von demjenigen des

83ohn William Lawrence Bragg und Vater William Hen-
ry Bragg, 1912
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iibrigen Materials abweicht, wird an diesen Ebe-
nen jeweils ein Teil der Welle reflektiert. Die Mo-
dulation des Brechungsindexes kommt durch die
Verteilung der Elektronendichte zustande. Typi-
sche Werte fiir die Reflektivitdt einer einzelnen
Ebene liegen bei 1075 ...1073; die transmittier-
te Welle wird somit kaum abgeschwécht. Da es
sich um eine Welle handelt, tritt beim Beobach-
ter Interferenz ein, d.h. die gesamte reflektierte
Welle ergibt sich durch lineare Superposition der
Teilwellen, welche an den einzelnen Ebenen re-
flektiert werden.

Abbildung 2.61: Berechnung der Bedingung fiir
konstruktive Interferenz.

Damit positive Interferenz entsteht, muss, in di-
rekter Analogie zum Beugungsgitter, der Weg-
unterschied zwischen den einzelnen Teilwellen
ein ganzzahliges Vielfaches der Wellenlénge sein.
Fiir die in Abb. gezeigte Geometrie lautet
die Bedingung fiir konstruktive Interferenz

2dsin 0 = n. (2.2)
Der Bragg-Winkel 6 ist hier der Winkel zwischen
der Einfallsrichtung des Rontgenstrahls und der
Netzebene (d.h. 90°-Einfallswinkel) und damit
die Hélfte des Ablenkwinkels fiir den Rontgen-
strahl, wie in Abb. [2.61 gezeigt, n ist eine ganze
Zahl und X\ die Wellenlange.

Dies ist die sogenannte Bragg-Bedingung: Beu-
gungsreflexe kénnen nur dann auftreten, wenn
der Einfallswinkel des Rontgenstrahls auf die
Netzebene durch das Verhéaltnis zwischen

Netzebenenabstand und Wellenldnge gegeben
ist. Die Bedingung kann offenbar nur dann er-
fiillt werden, wenn die Wellenldnge A kleiner ist
als der doppelte Abstand, A < 2d. Um gut aufge-
l6ste Beugungsbilder zu erhalten, bendtigt man
Wellen, deren Wellenldnge vergleichbar ist mit
dem Abstand der untersuchten Netzebenen, also
im Bereich von ~ 1A ...1nm.

Wie diese Herleitung zeigt, erzeugt jede Schar
von Netzebenen einen Beugungsreflex. Ein Beu-
gungsmuster enthélt deshalb viele Reflexe, wel-
che jeweils einer Netzebene zugeordnet werden
konnen. Die Bragg-Bedingung bestimmt jedoch
nur die moglichen Reflexionsrichtungen, sie sagt
nichts iiber die Intensitdt des Beugungsmaxi-
muins.

2.4.5 Beugung von Materiewellen

Anstelle von Rontgenstrahlen kann man auch
Materiewellen fiir Beugungsuntersuchungen ver-
wenden. Gemaéfs de Broglie betréagt die Wellen-
lange eines Teilchens mit Impuls p

h

A=—

p
oder k = p/h. Fiir nichtrelativistische Elektro-
nen der Energie £ erhélt man den Impuls als

V2mé& = ﬁ,

: (2.3)

p:

mit m als Masse des Elektrons. Daraus ergibt
sich die Wellenlange als

= 2(\/an)

vVE

oder rund 150 eV fiir eine Wellenlénge von 0.1
nm.

A

Elektronenstrahlen ergeben @hnliche Beugungs-
muster wie Rontgenstrahlen mit der gleichen
Wellenlénge. Die Eindringtiefe von Elektronen
dieser Energie ist recht klein (15 nm), sodass sich
Elektronenbeugung in erster Linie fiir die Unter-
suchung von Oberflichen eignet. Man misst des-
halb die Beugungsmuster nicht in Transmission,
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Elektronen

Abbildung 2.62: Elektronenbeugung.

wie bei der Réntgenbeugung, sondern in Reflexi-
on, wie in Abb. [2.62/gezeigt. Sie wird u.a. verwen-
det, um epitaktisches Wachstum zu iiberwachen,
vor allem in der Halbleiterindustrie.

Ebenfalls recht héufig verwendet werden Neutro-
nen. Da diese rund 1836 mal schwerer sind als
Elektronen, haben sie bei gegebener Energie ei-
ne sehr viel kiirzere Wellenlénge als Elektronen.
Dementsprechend benétigt man Neutronen mit
einer sehr viel niedrigeren Energie um eine be-
stimmte Wellenldnge zu erreichen. Als Richtlinie
kann verwendet werden: 0.1 nm wird erreicht bei
einer Energie von 80 meV.

Sowohl Neutronen wie auch Elektronen zeigen
eine andere Abhéngigkeit zwischen Energie und
Wellenlénge als Photonen. Bei Photonen ist die
Wellenlénge invers proportional zur Energie, A
E~!, wihrend fiir massive Teilchen gemif Glei-
chung gilt A oc £71/2. Abb. [2.63 zeigt die-
se Abhéngigkeit fiir Photonen, Elektronen und
Neutronen. Fiir den relevanten Wellenldngenbe-
reich kann man sie schreiben als

)\e (A) = El'(2eV)
An(A) = (J)Eif\/) . (2.4)

Fiir die Untersuchung der Struktur von Oberfla-

@(/ 00/7
&

Wellenlange in A

o
-

0
Photonenenergie in keV
Neutronenenergie in 0,01 eV
Elektronenenergie in 100 eV

100

Abbildung 2.63: Wellenldnge als Funktion der
Energie fiir Elektronen, Neutro-
nen und Photonen.

chen kann man auch Helium-Atome verwenden.
Deren Wellenldnge ist bei gleicher Energie noch
etwas kiirzer als diejenige von Neutronen.

2.4.6 Neutronenbeugung

Der wesentliche Unterschied zwischen Elektro-
nen (oder Rontgenstrahlen) und Neutronen liegt
in der Art ihrer Wechselwirkung: Neutronen
wechselwirken in erster Linie mit den Atomker-
nen, nicht mit den Elektronen, und die Stérke
der Wechselwirkung héngt nicht von der Ladung
ab. Sie kann deshalb fiir Kerne mit &hnlicher
Ordnungszahl oder fiir Isotope des gleichen Ele-
mentes stark variieren. Neutronen sind attrakti-
ve Sonden fiir die Messung an leichten Kernen,
welche mit Rontgenstrahlen fast unsichtbar sind.
Die Eindringtiefe kann sehr stark variieren, von
wenigen um bis zu mehreren Zentimetern.

Neutronen konnen allerdings nicht im Labor-
massstab genutzt werden: Man bendtigt als
Quelle einen Reaktor (wie z.B. am ILL in Gre-
noble; Abb. . Dort werden die Neutronen
im Reaktor durch Kernspaltung erzeugt und
iiber Strahlrohre aus dem Reaktorkern nach au-
Ken gefiihrt. Eine Alternative sind Beschleuniger-
basierte Quellen wie die European Spallation
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Abbildung 2.64: Erzeugung von Neutronen im
Forschungsreaktor (ILL Greno-
ble).

Guide halt

Reactor hall

Source ERIC (ESS), welche seit 2014 im Bau
ist und 2023 den Betrieb aufnehmen soll. Hier
werden relativistische Protonen auf ein Target
geschossen, aus dem dadurch Neutronen austre-
ten.

Anti-overlap chopper
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Abbildung 2.65: Neutronen-
Flugzeitspektrometer
am ILL Grenoble.

ING6

Auch die eigentlichen Spektrometer, welche aus
Neutronen mit bestimmter Energie auswéhlen,
sind sehr aufwindige Grofigeréte, welche nur an
wenigen Forschungszentren zur Verfiigung ste-
hen, wie z.B. am Institut Laue-Langevin (ILL)
in Grenoble. Abb. zeigt schematisch ein sol-
ches Gerit.

Beziiglich der reinen Strukturaufklirung unter-

Neutronen Roéntgen
WM H
"} Q L
@ C
”, - o IO
Fe "Fe “Fe
3 o @ .Fe [+
Fé wu
— @ o

Abbildung 2.66: Vergleich der Streuquerschnit-
te von unterschiedlichen Ato-
men fiir Neutronen und Ront-
genstrahlen.

scheiden sich Neutronen von Rontgenstrahlung
vor allem durch den Streuquerschnitt: sie bil-
den nicht die Elektronendichte ab, sondern die
Position der Kerne. Deshalb sind sie z.B. niitz-
lich fiir die Messung der Position von Wasser-
stoffatomen, welche wegen ihrer geringen An-
zahl Elektronen in Rontgenmessungen schlecht
sichtbar sind. Auferdem kénnen sie zur Mes-
sung von Kernbewegungen, magnetischer Ord-
nung und Isotopenverteilung eingesetzt werden.
Wie in Abb. gezeigt, unterscheiden sich die
Streuquerschnitte auch fiir unterschiedliche Iso-
tope des gleichen Elements.

2.5 Das reziproke Gitter

Die Bragg-Bedingung liefert zwar eine Be-
dingung fiir das Auftreten von Réntgenreflexen,
aber es ist zum einen keine hinreichende Bedin-
gung, zum zweiten liefert sie keine Intensitdten.
Wie grofs die Intensitédt der gestreuten Welle ist,
hangt davon ab, wie stark die einzelnen Ebenen
reflektieren. Im Falle der Rontgenstrahlung ist
die Beugungseffizienz im Wesentlichen propor-
tional zur Elektronendichte. Fiir die Berechnung
der Streuintensitdt muss deshalb die rdumliche
Abhéngigkeit der Elektronendichte beriicksichtig
werden. Hier ist vor allem wichtig, die Periodizi-
tét des Gitters zu beriicksichtigen.
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2.5.1 Periodizitat der
Elektronendichte

Aufgrund der Periodizitit des Kristalls muss die
Elektronendichte n(7) ebenfalls periodisch sein,

n( n(r),

wobel T einen Translationsvektor

+T) =

ﬁi

T = uidq + ugds + ugds

darstellt.

Harmonische Funktion
fix) = cos(2mx/a)

VA ff A
VVVVVVT

Periodische Funktion
8(x)

MAN”

7NN NN

E:i>

2mla

Diskrete Funktion

cﬂ“ g(x) dx

0 2m 4 61 k
a a a

Abbildung 2.67: Fourier-Zerlegung einer eindi-
mensionalen Funktion.

Daraus folgt, dass man die Elektronendichte als
Fourier-Reihe schreiben kann. In einer Dimensi-
on wird sie dann

n(x )—no—l-ZC cos ——

p>0

2mpx 27rpac

+ Spsin

Hier stellt ng den Mittelwert darund p = 1,2, ...
eine natiirliche Zahl. Alternativ kann die Reihe
komplex geschrieben werden:

0o
§ : i2mpz/a
npé .

p=—00

Damit die Elektronendichte reell wird, muss gel-
ny. Die Koeffizienten C),, S, oder
n, erhélt man durch Fourier-Transformation der
Elektronendichte (siche Abb. [2.67).

*
ten nZ,

Diese eindimensionale Betrachtung muss man fiir
Kristalle auf drei Dimensionen erweitern. Die

dreidimensionale Elektronendichte ist periodisch
in den Richtungen der Basisvektoren ay, ds, und
as des Gitters. Dies kann geschrieben werden als

H(F) — § :npqSeZQTrpx/al 6127rqy/a2 elQﬂ'SZ/ag
pgs
i2m(P2 4 LY —‘r e
= E Npgs€ (“1 a3 )
pgs

wobei p, ¢ und s iiber alle (positiven und nega-
tiven) ganzen Zahlen laufen.

Der Exponent kann als Skalarprodukt geschrie-
ben werden:

27r(ZE

a

=G .7

as

+ &y
a2

Damit wird die Elektronendichte
_ iG-7
= Ynge
G

Der Vektor

2n ( )

wird definiert durch drei ganze Zahlen p,q,s.
Er stellt also einen Punkt in einem Gitter dar,
hnlich wie die Translationsvektoren T'. Dieses
Gitter wird durch drei Basisvektoren der Lange
2w /a1, 2w /ag und 27 /a3 aufgespannt. Es befin-
det sich allerdings nicht im gewdhnlichen dreidi-
mensionalen Raum, sondern hat die Dimension
einer inversen Lénge. Es wird tblicherweise als
reziprokes Gitter bezeichnet.

p q s

G b )
ap a2 as

2.5.2 Definition des reziproken Gitters

Eine mogliche Definition des reziproken Gitters
ist die folgende:

Das reziproke Gitter besteht aus denjenigen
Wellenvektoren k: die eine Funktion e*7 defi-
nieren, welche im direkten Raum die Periodi-
zitdt des direkten Gitters aufweist.

Alternativ kann man das reziproke Gitter kon-
struktiv definieren, indem seine Basisvektoren b;
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aus den Basisvektoren @; des direkten Gitters be-
stimmt werden:

- 52 X 63 Eig X as
by = 2mr—— — =27
ai - (a2 X ag) Vv

- 63 X 61
by = 2w

|4
- dl X
bs = 2w

V

Aufgrund dieser Konstruktion steht by senkrecht
auf @ und @3 und entsprechendes gilt (unter zy-
klischer Vertauschung) fiir die anderen Vektoren.
Sakalarprodukte zwischen Basisvektoren des di-
rekten und reziproken Gitters werden somit

l_);' . Jj = 27T5ij. (2.5)

Diese Konstruktion kann auch in Matrixform ge-
schrieben werden. Wir definieren die Matrix

A1z G2¢ A3z
A= (d1,d2,d3) = | a1y azy asy
alz G2z a3z

der primitiven Gittervektoren.

Entsprechend kénnen wir eine Matrix B fiir die
Basisvektoren des reziproken Gitters definieren.
Aus der Orthogonalitiitsbeziehung folgt ATB =
2711 oder

B=2r (AT>_1.

Damit ist es moglich, die Bestimmung des rezi-
proken Gitters auf eine Matrixinversion zuriick-
zufithren. Aus dieser Konstruktion folgt auch,
dass das reziproke Gitter fest and das direkte
Gitter und den Kristall gekoppelt ist.

Aus der Konstruktion der Basisvektoren, resp.
der Orthogonalitatsbeziehung glwc_ij = 2mé;; folgt
fiir beliebige Vektoren T des direkten Gitters und
G des reziproken Gitters

(u1v1 + uguy + uzvs) 27
(ganze Zahl) 27

(2.6)

Dies entspricht der ersten Definition des rezipro-
ken Gitters.

2.5.3 Beispiele

Abbildung 2.68: Einheitszelle des kubisch primi-
tiven Gitters und des zugehéri-
gen reziproken Gitters.

Bei kubischen Strukturen mit Kantenléingen a
der Einheitszelle ist das reziproke Gitter eben-
falls eine kubische Struktur, wie in Abb. [2.68
gezeigt. Die Achsen haben die gleiche Richtung
wie in der direkten Struktur, die Kantenldnge
betragt 27 /a. Die primitiven Gittervektoren des
direkten und des reziproken Gitters sind dann

direktes Gitter reziprokes Gitter

61 :aé’m b1 = 2;530
R T 2=
o = aey l?‘aey
53:agz bgz%ré;

3
ved  V=(%)

Die Situation wird etwas komplizierter fiir nicht-
kubische Einheitszellen, insbesondere fiir schief-
winklige.

20

Abbildung 2.69: Primitive EZ im fcc-Gitter mit
den Basisvektoren des rezipro-
ken Gitters.

Fiir die primitive Einheitszelle des kubisch fla-

chenzentrierten Gitters (siehe Abb. [2.69), z.B.,
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erhalten wir

4
2

O = =
_ = O
_ O

wobei a wie iiblich die Kantenléinge des Wiirfels
darstellt. Damit wird die entsprechende Matrix
fiir das reziproke Gitter

="

a

-1 1 1

Dies sind die primitiven Gittervektoren des bce
Gitters (kubisch innenzentriert). Wie in Abb.
gezeigt, sind die Vektoren b; in diesem Fall
nicht parallel zu @;, aber sie stehen senkrecht auf
die iibrigen Vektoren ay fiir k # 7.

¥ a 47t/u‘ A fec
{ N
u
a™a
S nen Reziproke Gittervektoren:
Primitive Gittervektoren: proke G cKto
A g =2z +2)
a, =—7-~(—(" +e, +<{.) a Y 2
. _4 (5 _5 .3 a,==—/(¢e . +¢e.)
u:—; ((.‘ (‘+L:) - a ( x
2

. Q- pom . . =
‘l1=?'(("+(" _(,:) a, = - ((.‘ +e

Ve, =a*/2

Abbildung 2.70: Berechnung des reziproken Git-
ters fiir das bee Gitter.

Wie in Abb. 2.70 gezeigt, ergeben sich fiir die
Basisvektoren des reziproken Gitters einer bcc-
Struktur die primitiven Gittervektoren des fcc-
Gitters.

2.5.4 Gitterelemente

Das gesamte Gitter erhélt man wiederum durch
Linearkombination der Basisvektoren

G= 11151 + 1}252 + v353

mit ganzzahligen v;. G wird als Punkt oder Vek-
tor des reziproken Gitters bezeichnet. Die Di-
mension dieser Vektoren betriigt m~!, wie man

leicht aus der Definition der Basisvektoren er-
sieht. Falls die Vektoren a; die Basisvektoren des
primitiven Gitters sind, so sind auch die Vekto-
ren I;; die Basisvektoren des primitiven rezipro-
ken Gitters.

Die Punkte des reziproken Gitters sind Fourier-
Komponenten des Kristalls und damit in er-
ster Linie mathematische Hilfsmittel. Um sie
doch etwas zu veranschaulichen, kann man sich
aber vorstellen, dass sie ein Objekt des direkten
Raumes beschreiben, welches eine bestimmte Pe-
riodizitéat besitzt. Ein Gitterpunkt, der im zwei-
dimensionalen reziproken Raum die Koordinaten
(r, s) besitzt, entspricht der Komponente

2rrx

. 2msy
sin n
b

a

Reziprokes Gitter

Abbildung 2.71: Punkte im reziproken Gitter
und ihre Fouriertransformier-
ten.

Abb. zeigt zwei Beispiele. Ein Vektor des
reziproken Gitters entspricht damit immer einer
entsprechenden Periodizitdt im direkten Raum.
Damit enthélt die Wellenfunktion des Kristalls
eine Komponente ¢**7. Aufgrund der Beziehung
von de Broglie kann dies auch so interpretiert
werden, dass ein Impuls in Richtung k vorhanden
ist. Mit anderen Worten: das reziproke Gitter ist
eine Zerlegung des Festkorperimpulses.

Zu den wichtigsten Eigenschaften des reziproken
Gitters gehoren
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. Das reziproke Gitter eines Bravais-Gitters
ist selbst ein Bravais-Gitter.

. Das reziproke Gitter des reziproken Gitters
ist das direkte Gitter.

. Ist V. das Volumen der von den primitiven
Gittervektoren aufgespannten Einheitszelle
im direkten Gitter, so ist (27)3/V, das Vo-
lumen der Zelle im reziproken Raum.

. Die Lange der reziproken Gittervektoren ist
proportional zum Kehrwert der Léange der
Gittervektoren im direkten Raum.

2.5.5 Reziproke Gittervektoren und
Ebenenscharen

Eine wichtige Beziehung besteht auch zu den
Netzebenen des direkten Gitters: Ist eine Ebe-
ne durch die Miller Indizes hkl gegeben, so steht
der Vektor

h
k
l

é = = hgl + kgg + lgg;

des reziproken Gitters senkrecht auf dieser Ebe-
ne. Beweis: wir zeigen, dass dieser Vektor senk-
recht auf zwei linear unabhéngigen Vektoren
und ¥ steht, welche die Ebene (hkl) aufspannen.
Wir wahlen

—

Abbildung 2.72: Definition von ;.

Wie in Abb. 2.72 gezeigt, liegt der Vektor o
in der Schnittgeraden von (hkl) und der Ebene,
die von a7 und do aufgespannt wird. Entspre-
chend liegt ¥ in der Schnittgeraden von (hkl)

und (da, d3), und gemeinsam spannen die beiden
Vektoren die Netzebene auf. Das Skalarprodukt
mit dem reziproken Gittervektor G ist

Die Orthogonalitdtsrelation zwischen den Basis-
vektoren des direkten und reziproken Raums er-
gibt

—

— d - g 1 1
G.o (hb1 T kby + lbg) : <hal — Sy

k

G 0,=G-th=2r(1—1)=0M

Der kiirzeste Vektor G des reziproken Gitters,
der senkrecht auf den Netzebenen steht, hat die
Lange

| ’:Fv

wobei d den Abstand zwischen benachbarten
Netzebenen darstellt. Diese Beziehung folgt aus
der Tatsache, dass die Funktion ¢‘“" im direk-
ten Raum eine Periode von 27 /|G| hat, welche
dem Abstand zwischen Netzebenen entsprechen

muss.

Abbildung 2.73: Abstand der Netzebenen.

Fiir den Spezialfall eines rechteckigen Gitters in 2
Dimensionen berechnen wir den Abstand do zwi-
schen aufeinander folgenden Netzebenen gemaéfs

Abb. .73

do
Daraus erhalten wir den Abstand
1

&2
2T

az
k

do — a1a9 _
? \/a%k‘z + a3h?

B2
2
ay

in zwel Dimensionen.
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Abbildung 2.74: 1. Brillouin-Zone als Wigner-
Seitz Einheitszelle des rezipro-
ken Raums.

2.5.6 Brillouin-Zonen

Im reziproken Gitter kann man genau so wie im
direkten Gitter Einheitszellen definieren. Einige
Beispiele wurden in Kapitel [2.5.3 diskutiert. Im
reziproken Raum spielt, im Gegensatz zum di-
rekten Raum, die Wigner-Seitz Zelle (— Kapitel
eine besonders wichtige Rolle. Sie wird als
die erste Brillouin-Zone bezeichnet.

Der einfachste Fall ist das reziproke Gitter des
primitiv kubischen Gitters. Die Basisvektoren
des direkten Gitters sind in diesem Fall die Vek-
toren @, dy und @, alle mit der Lénge a. Die
Basisvektoren des reziproken Gitters sind im Fall
des kubischen Gitters in die gleiche Richtung ori-
entiert und ihre Lénge betridgt 27 /a. Das Vo-
lumen der ersten Brillouin-Zone betrigt damit
(27/a)?. Da bei der iiblichen Wigner-Seitz Kon-
struktion der ersten Brillouin-Zone der Gitter-
punkt im Zentrum liegt, reicht die Zone von —b/2
bis +b/2, d.h. von —7/a bis +7/a. Die Form ist,
wie beim direkten Raum, die eines Wiirfels.

Abb. 2.75] zeigt als Beispiel die 1. BZ fiir das re-
ziproke bce und fee Gitter im dreidimensionalen
Raum.

In spéateren Kapiteln werden auch die héheren
BZ eine Rolle spielen (jedoch nicht so wichtig
wie die erste BZ). Abb. [2.76 zeigt die Konstruk-

kx

Abbildung 2.75: 1. Brillouin-Zone des bec (links)
und fcc (rechts) Gitters.

Abbildung 2.76: Weitere Brillouin-Zonen.

tion fiir die ersten drei Zonen. Dafiir werden die
Mittelsenkrechten auf die Verbindungslinien zu
den tiberndchsten (usw.) Nachbarn gelegt. Hier
wird ersichtlich, dass die héheren Zonen komple-
xere Formen haben und teilweise nicht einfach
zusammenhéangend sind.

2.6 Strukturbestimmung mit
Beugungsmethoden

2.6.1 Streuung an kontinuierlichen
Medien

Die Bragg-Bedingung (— Kapitel ist eine
notwendige Bedingung fiir das Auftreten eines
Beugungsreflexes durch Reflexion an Netzebenen
diskutiert. Diese Netzebenen sind niitzliche ma-
thematische Hilfsmittel, aber in Wirklichkeit er-
folgt die Streuung der Rontgenstrahlung nicht an
den Netzebenen, sondern an den Elektronen des
Materials, d.h. an einer kontinuierlichen Vertei-
lung. Auflerdem liefert die Bragg-Bedingung fiir
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die Netzebenen keine Amplituden fiir die Beu-
gungsreflexe.

Den physikalischen Prozess der Rontgenstreu-
ung an den Elektronen kann man sich am be-
sten so vorstellen, dass die einfallende Welle in
der Elektronendichteverteilung eine erzwungene
Schwingung erzeugt, welche ihrerseits eine Welle
abstrahlt. Die Phase dieser gestreuten Welle ist
starr an die der einlaufenden Welle gekoppelt.
Wir nehmen im Folgenden an, dass die gestreute
Welle selber nicht mehr gestreut wird. Dies wird
als erste Born’sche Naherung bezeichnet und ist
fiir die Streuung von Rontgenlicht in Kristallen
fast immer eine gute Naherung. Mehrfachstreu-
ung kann nur in wenigen Féllen iiberhaupt be-
obachtet werden. Der Grund dafiir ist der gerin-
ge Streuquerschnitt fiir die Streuung von Photo-
nen an Elektronen: er ist von der Gréfsenordnung
r? = 1072 m?, wobei

2

_ 1 e

= —— ~ 2,818 1071
© dmeg mec? ’ m

den klassischen Elektronenradius darstellt.

Quelle Detektor

Abbildung 2.77: Beitrag des Volumenelements
dV zur Streuamplitude.

Wir gehen aus von einem einfallenden Rontgen-
strahl, der durch den Wellenvektor k beschrieben
wird, und bestimmen die Intensitéit eines Strahls,
der in Richtung K gestreut wird. Dazu berech-
nen wir den Beitrag jedes Volumenelementes des
Kristalls. Ein Element dV an der Stelle 7 erzeugt
einen Beitrag, der proportional ist zur Elektro-
nendichte n(7) an diesem Ort. Wir gehen davon
aus, dass die einlaufende Welle als ebene Welle
beschrieben werden kann und dass der Detektor
so weit vom Kristall entfernt ist, dass die gestreu-

te Welle (welche einer Kugelwelle um dV ent-
spricht) in guter Ndherung beim Detektor eben-
falls als ebene Welle beschrieben werden kann.

Gegeniiber einer Referenz-Phasenfliche durch
den Ursprung O des Koordinatensystems erhélt
die einfallende Welle bis zum Volumenelement
dV eine Phasenverzégerung um k-7 Die gestreu-
te Welle erhélt auf dem Weg zum Detektor eben-
falls eine Phasenverzogerung, um —k’ - 7. Somit
ergibt sich insgesamt fiir den Beitrag des Volu-
menelements bei 77 eine Phasenverschiebung um
den Betrag

mit Ak = k' —k als Anderung des Impulses beim
Streuprozess. Bei elastischer Streuung sind die
Betrége der beiden Vektoren gleich, |k| = |k/|.

2.6.2 Bragg-Bedingung

Die gesamte Amplitude F' des Rontgenstrahls am
Detektor erhélt man durch Integration iiber das
Volumen des Kristalls, wobei die einzelnen Bei-
trage mit der entsprechenden Elektronendichte
gewichtet werden:

F= / / / dV n(7)e i8R,

Das Integral entspricht einer 3D-Fourier-
transformation. Damit ist die Streuamplitude
proportional zur Fourier-Amplitude der Elek-
tronendichte n(7) bei der rédumlichen Frequenz
Ak. Dies ist die Basis aller Beugungsmethoden
fiir die Strukturbestimmung.

(2.7)

Da die Elektronendichte eines Kristalls peri-
odisch ist, kann sie als Fourier-Reihe dargestellt
werden:

n(r) = Znéei T
G
Damit wird die gestreute Amplitude

F= /// dvgnéei(é—AE)'F.

(2.8)
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Das Integral kann nur dann von Null verschie-
den sein, wenn der Integrand nicht oszilliert, d.h.
wenn

G = AL,

d.h. wenn Ak ein Vektor des reziproken Gitters
ist. Somit findet man nur dann einen Beugungs-
reflex, wenn der Streuvektor einem Vektor des
reziproken Gitters entspricht. Dies ist einer der
wesentlichsten Griinde dafiir, dass die Festkor-
perphysik in erster Linie kristalline Materialien
diskutiert.

Abbildung 2.78: Beugungsreflexe von Muskovit
(KAl (AlSi3019)(F,0H)2).

Abb. .78 zeigt als Beispiel die Beugungsrefle-
xe von Muskovit (KAIQ(A1813010)<F,OH)2) Die
einzelnen Reflexe sind als Vektoren des rezipro-
ken Gitters indiziert. Die Schérfe dieser Bedin-
gung ist begrenzt durch die Grofe des Kristalls;
die Unschérfe nimmt ab mit der Anzahl der Ele-
mentarzellen, welche zur Streuung beitragen.

Diese Bedingung kann quantenmechanisch auch
als Impulserhaltung verstanden werden: Rk ist
der Impuls der einfallenden Welle, hk' der Impuls
der gebeugten Welle. Aufgrund der Impulserhal-
tung kann Beugung nur auftreten, wenn der ent-
sprechende Impulsunterschied RAK vom Materi-
al, d.h. vom Gitter zur Verfiigung gestellt wird.
Diese Moglichkeit ist genau dann gegeben, wenn
ein entsprechender Vektor G = hAk im rezipro-
ken Gitter existiert.

2.6.3 Rontgenstrahlung

Hochvakuumréhre Rontgenstrahlung

Tl TTnische\\ j s
Elektronenemission \

o—> |
e' O —p ‘f
/

s

/ O @&
Kathode” Anodenspannung\
~10-100 kV

Heiz-
Spannungo

Anode

Abbildung 2.79: Erzeugung von Rontgenstrah-
lung in einer Rontgenrohre.

Die verwendete Rontgenstrahlung wird meist
mit einer Rontgenrdhre erzeugt. Wie in Abb.
[2.79 gezeigt, werden darin Elektronen aus einer
Glithkathode ins Vakuum emittiert und zur An-
ode beschleunigt. Beim Auftreffen auf die Anode
erzeugen sie hochenergetische Strahlung, welche
2 Komponenten enthéalt: breitbandige Brems-
strahlung und schmalbandige charakteristische
Strahlung, welche fiir das Material der Anode
charakteristische Ubergangsfrequenzen aufweist.

Einfallende Strahlung
(breitbandig)

Log(Intensitat)

Photonenenergie

Monochromator- Strahlung vom Monochromator

Kristall y
Nicht abgelenkte

Komponenten des
Primarstrahls

Zur Probe

Abbildung 2.80: Filterung der Rontgenstrahlung
in einem Monochromator.

Fiir viele Anwendungen ist es notwendig, mo-
nochromatische Strahlung zu verwenden. Die-
se stellt man her, indem man die unerwiinsch-
ten Teile unterdriickt. Dies kann durch Bragg-
Streuung an einem Monochromator-Kristall er-

folgen, wie in Abb. gezeigt.
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2.6.4 Ewald-Konstruktion

Mit der Bedingung G = Ak allein kénnte fiir
jeden einfallenden Rontgenstrahl eine unendli-
che Zahl von Beugungsmaxima auftreten. Fiir
die Strukturaufkldrung ist jedoch vor allem ein
Spezialfall wichtig, ndmlich der Fall der elasti-
schen Streuung, d.h. dass die Wellenlénge der
gebeugten Welle gleich derjenigen der einfallen-
den Welle ist, |k| = |K'|. Mit dieser zusitzlichen
Bedingung ist die Bedingung fiir das Auftreten
von Beugung nicht mehr automatisch erfiillt.

elastische Streuung:
k| = K]

reziprokes Gitter

QQ . e v I
einfallender Strahl 7

Abbildung 2.81: Ewald-Konstruktion.

Die Bedingung dafiir, dass ein Rontgenreflex auf-
tritt, kann mit Hilfe der Ewald-Konstruktion
dargestellt werden (siehe Abb. . Ausgangs-
punkt sind die Bedingungen

k=K , K—-k=G

fiir das Auftreten eines Reflexes. Man stellt da-
bei den einfallenden Réntgenstrahl durch einen
Vektor k dar, wobei seine Spitze auf einem Git-
terpunkt des reziproken Raumes liegt. Der re-
flektierte Strahl wird durch einen Vektor &' dar-
gestellt, dessen Spitze wiederum auf einem Git-
terpunkt liegen muss und dessen Ursprung mit
demjenigen des einfallenden Strahls zusammen-
fillt. Der Streuvektor Ak = G ist dann ein Vek-
tor des reziproken Gitters. Der Winkel 20 zwi-
schen den beiden Vektoren entspricht der Bragg-
Bedingung.

Die Ewald-Konstruktion zeigt, dass das Auftre-
ten von Beugung nur fiir wenige spezielle Wel-
lenvektoren auftritt. Man findet diese Vektoren,

wenn man einen Kreis mit Radius k verschiebt,
bis er durch zwei Gitterpunkte lduft. Die Kon-
struktion zeigt auch, dass |k| > %|é\min sein
muss, d.h. der Betrag des einfallenden Wellen-
vektors muss mindestens gleich der Hilfte des
Betrags des kleinsten Gittervektors sein.

e

e 5
nt T
T T
P4 | T

i

s
T
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" o D PR

Abbildung 2.82: Die Ewald-Kugel.

Abbildung zeigt die Ewald-Konstruktion in

drei Dimensionen.

2.6.5 Beugung an Pulvern

Da ein einfallender Réntgenstrahl i.A. keinen Re-
flex erzeugt, sind verschiedene Methoden ent-
wickelt worden, um Rontgenbeugung zu beob-
achten. Die einfachste Methode ist die Pulver-
oder Debye-Scherrer Methode: man bestrahlt ein
Pulver.

nach Debye-Scherrer

Abbildung 2.83: Beugung an Pulvern (Debye-
Scherrer).
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2 Symmetrie und Struktur

Ein Pulver besteht aus vielen Kristallen mit zu-
falliger Orientierung. Da alle moglichen Orien-
tierungen vorkommen, sind immer einige Kri-
stallite richtig orientiert, so dass Reflexe auf-
treten. Aus Symmetriegriinden ist die gebeugte
Rontgenstrahlung in diesem Fall konisch, d.h. die
Beugung héangt nur vom Winkel gegeniiber der
Strahlrichtung ab. Wie in Abb. [2.83 gezeigt, wird
die Probe in das Zentrum eines Zylinders gelegt,
und die Innenseite des Zylinders mit einem Film
belegt. Auf dem Detektor findet man deshalb
konzentrische Ringe. Da nicht bekannt ist, wie
der Kristallit, welcher den Reflex erzeugt, orien-
tiert ist, eignet sich dieses Verfahren nicht fiir
eine vollstdndige Strukturbestimmung. Es kann
aber verwendet werden, um Gitterkonstanten zu
bestimmen.

Intensitat

s
333

A

1 22
00 331

T

“o 51

620
533 "
| oy

A

1118

100 2
Beugungswinkel (Grad)

Abbildung 2.84: Beugungsmaxima fiir Si-Pulver.

Abb. zeigt das Beugungsmuster, welches
von Silizium-Pulver gemessen wurde. Die einzel-
nen Beugungsmaxima sind mit den zugehorigen
Miller-Indizes bezeichnet. Im Bereich 0° < 260 <
180° findet man Reflexe zu allen Gittervektoren,
welche kiirzer sind als 2 |k|. Wahrend ihre Rich-
tung sich aus dem Pulvermuster nicht bestim-
men lésst, erhdlt man ihre Lénge aus der Bedin-

gung

|G| = 2ksin#.

2.6.6 Einkristall-Verfahren

Ein Verfahren, welches vollsténdige Strukturana-
lysen von Einkristallen erlaubt, ist das Bragg-
oder Drehkristall-Verfahren. Dabei wird der Kri-
stall gedreht. Da das reziproke Gitter starr an

Rontgenstrahl

Kollimatoren

Probenkristall

Monochromator,

transmittierter Strahl
(nicht verwendete Wellenlangen)

Detektor

Abbildung 2.85: Drehkristall-Verfahren.

das direkte Gitter gekoppelt ist, wird es dabei
mit gedreht. In einem Koordinatensystem, wel-
ches an das reziproke Gitter gekoppelt ist, wird
damit die Ewald-Kugel gedreht und es treten bei
bestimmten Orientierungen Reflexe auf. Dabei
werden alle Reflexe gemessen, welche im Lauf der
Drehung auftreten.

Fiir diese Art von Messungen benétigt man mo-
nochromatische Rontgenstrahlung. Ist die ver-
wendete Quelle breitbandig, so wird deshalb
ein Monochromator benéttigt, um die gewiinsch-
te Wellenldnge herauszufiltern. Dafiir verwendet

man normalerweise ebenfalls Bragg-Beugung an
einem Kristall (sieche Abb. [2.85).

reziprokes Gitter

des
Verfahrens(links) und Ewald-

Abbildung 2.86: Prinzip Laue-

Konstruktion fiir das Laue-

Verfahren.

Eine weitere Moglichkeit fiir Messungen an Ein-
kristallen ist das sogenannte Laue-Verfahren.
Dabei benutzt man kontinuierliche Roéntgen-
strahlung aus dem Bremsstrahlungsbereich.
Wenn ein breiter Bereich von k-Vektoren (und
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damit Radien der Ewald-Kugel) vorkommen,
gibt es immer die Moglichkeit, die Bragg-
Bedingung zu erfiillen. Dieses Verfahren eig-
net sich wiederum nicht fiir die Strukturbestim-
mung, da man nicht weiss, welche Wellenlange
welchen Reflex erzeugt hat. Man kann das Ver-
fahren aber benutzen, um Anderungen von Zell-
konstanten (z.B. mit der Temperatur) zu beob-
achten, oder um Kristalle mit bekannter Struk-
tur zu orientieren.

Insgesamt gibt es also 3 unterschiedliche Verfah-
ren, um die Beugungsbedingung Ak = G zu er-
fiillen:

1. Der Einfallswinkel 6 wird konstant gehalten
und die Gleichung wird fiir unterschiedliche
Wellenléngen A erfiillt: Laue-Verfahren.

. Die Wellenldnge A wird konstant gehalten
und die Bragg-Gleichung wird fiir unter-
schiedliche 6 erfiillt: Drehkristall-Verfahren.

. Die Wellenldnge A wird konstant gehalten
und die Bragg-Gleichung wird fiir unter-
schiedliche 6 dadurch erfiillt, dass in ei-
ner pulverféormigen Probe irgendein Kristal-
lit immer ,richtig® liegt: Debye-Scherrer-
Verfahren.

2.6.7 Laue-Bedingung

Unterschiedliche Formen der Bedingung fiir das
Auftreten eines Rontgenreflexes kénnen bei der
Analyse von bestimmten Situationen niitzlich
sein. Allgemein gilt die Impulserhaltung, resp.
die Bedingung, dass der einfallende und der ge-
streute Strahl sich um einen Vektor des rezipro-
ken Gitters unterscheiden miissen,

K =k+G.
Fiir elastische Streuung koénnen wir daraus eine
Bedingung fiir die Langen ableiten:

- 12 o5 o
‘k+G‘ — k2 oder 2k-G+G2=0

oder, da dies auch fiir e gelten muss, welcher
ebenfalls ein Gittervektor ist,

2% - G = G2

Wenn wir beide Seiten dieser Gleichung durch 4
dividieren, erhalten wir

1=~
.2g_<

Diese Bedingung eignet sich wiederum fiir eine
geometrische Konstruktion, welche in Abb. [2.87
gezeigt ist.

-

X (2.9)

reziprokes Gitter

D

Alle Vektoren & mit
Ursprung in O und Sp'ﬂze/
auf dieser Ebene erfiillen
die Beugungsbedingung

Abbildung 2.87: Laue-Konstruktion der
gungsbedingung.

Beu-

Ausgangspunkt ist diesmal der Streuvektor
Ak = é, welcher die Punkte O und D im rezi-
proken Gitter verbinden soll. Um diejenigen ein-
fallenden Wellenvektoren k zu finden, welche die
Beugungsbedingung erfiillen, fallen wir die Mit-
telsenkrechte auf den Vektor G. Jeder Vektor,
dessen Ursprung in O liegt und auf dieser Mittel-
senkrechten endet, erfiillt offenbar die Bedingung

9.

Diese Konstruktion entspricht offenbar gerade
der Wigner-Seitz Konstruktion fiir die Einheits-
zelle, d.h. der Brillouin-Zone. Streuung findet
somit immer dann statt, wenn der Wellenvek-
tor des einfallenden Strahls auf der Grenze der
Brillouin-Zone liegt.

2.7 Berechnung der gestreuten
Intensitat

Bisher wurden nur Auswahlregeln betrachtet, al-
so ob in die entsprechende Richtung iiberhaupt
etwas gestreut wird. Als néchstes soll die Stérke
eines Reflexes berechnet werden.

52



2 Symmetrie und Struktur

2.7.1 Streuamplitude und
Strukturfaktor

Wenn ein Reflex auftritt, d.h. wenn der Streu-
vektor Ak ein Vektor des reziproken Gitters ist,
wird exp(i(G — Ak) - 7) = 1. Damit vereinfacht
sich der Ausdruck fiir die Streuamplitude

zZu Focné.

—

Ak =G

N
N g

\/ v

Abbildung 2.88: Reflexion an der 100 Ebene.

Offenbar ist die rdumliche Abhéngigkeit im Inte-
granden verschwunden. Dies bedeutet, dass alle
Einheitszellen identische Beitrage zur Streuam-
plitude liefern, welche durch die entsprechende
Fourier-Komponente der Elektronendichte im re-
ziproken Gitter gegeben sind. Diese ist definiert

als
ng = /// dv n(r) e~iGT,

Damit wird die Streuamplitude

F=ng= /// dv n(r) e~iIGT,

Aufgrund der Periodizitat der Elektronendichte
kann das Integral iiber den Kristall auf ein In-
tegral iber eine Einheitszelle und eine Multipli-
kation mit der Zahl der Einheitszellen reduziert
werden: Fiir G einen Vektor des reziproken Git-
ters und T einen beliebigen Vektor des direkten

Gitters gilt gemafs (2.6)):

(2.10)

Damit kénnen wir das Integral in (2.10) auf eine
Einheitszelle reduzieren,

F:N//EZan(F)e_

.

G T NSG*,

wobei N die Anzahl Zellen im Kristall darstellt

und
o= [[[avorn

als Strukturfaktor bezeichnet wird. Der Struk-
turfaktor ist also die Fouriertransformierte der
Elektronendichte n(7) iiber eine Einheitszelle.

iG-T

2.7.2 Atomare Beitrige

In vielen Fallen ist es niitzlich, die Elektronen-
dichte n(7) in Beitrage der einzelnen Atome auf-
zuteilen. Die Zuordnung einzelner Elektronen zu
bestimmten Atomen ist natiirlich eine Ndherung.
Fir Elektronen in der K-Schale ist diese Néhe-
rung sehr gut, fiir Valenzelektronen in kovalent
gebundenen Atomen oder Metallen eher schlecht.
Die Mehrheit der Elektronen ist jedoch relativ
gut lokalisiert, und die Naherung hilft sehr gut
beim Verstindnis fiir die Berechnung der Beu-
gungsintensitaten.

Wir bezeichnen mit 7; die Position eines Atoms.
Dann stellt die Funktion n;(7 — 7;) den Beitrag
dieses Atoms zur Elektronendichte dar. Die ge-
samte Elektronendichte am Ort  ist gegeben
durch die Summe iiber die s Atome der Basis:

n() =3 ny(F ~ 7).
j=1

Dies erlaubt uns, auch den Strukturfaktor in Bei-
trage der einzelnen Atome aufzuteilen:

/ dV an(F— i) e
EZ =

Wir bezeichnen mit 7; die Position des j-ten
Atoms. Dann stellt die Funktion n;(7 — 7;) den
Beitrag dieses Atoms zur Elektronendichte dar,
in einem Koordinatensystem, dessen Ursprung
sich im Zentrum des Atoms befindet. In diesem
Koordinatensystem ist g = ¥ — 7; die Position
des Elektrons. Damit wird ¥ = rj + g und der
Strukturfaktor

_ iG-r
Sa

S~ = av n;(p) eGP TG
G g\p
Zelle j=1

S
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bce Struktur

Abbildung 2.89: Relativkoordinaten zur Berech-
nung der Streuamplitude.

Damit ist

fi = / AV n;(p) e "¢P (2.11)
der Beitrag des j-ten Atoms. Er wird als Atom-
formfaktor bezeichnet. Die Integration erstreckt
sich {iber den gesamten Raum. Der Atomform-
faktor entspricht also im Wesentlichen der Fou-
riertransformierten der Elektronendichte eines
Atoms und kann in erster Naherung als eine ato-
mare Eigenschaft betrachtet werden. Diese Na-
herung impliziert, dass die Elektronendichte des
Kristalls als Summe der atomaren Elektronen-
dichten geschrieben werden kann.

Mit dieser Definition konnen wir den Struktur-
faktor schreiben als

s

_ —iGr

S@— E fje T,
Jj=1

d.h. der Strukturfaktor setzt sich additiv aus den
Beitragen der einzelnen Atome zusammen, wobei
jeder Beitrag mit einem Phasenfaktor multipli-
ziert wird, der seine Position codiert. Die Pha-
se entspricht derjenigen, welche eine Welle mit
Wellenvektor G auf dem Weg vom Ursprung des
Koordinatensystems zur Position 7; des Atoms
akkumulieren wiirde.

(2.12)

2.7.3 Beispielrechnung

Wir  berechnen zundchst den Phasenfaktor
e~ "G eines Atoms an der Stelle 7j. Dafiir schrei-
ben wir fiir die Position des Atoms innerhalb der

Elementarzelle
f}' = xjd’l + yjcig + ch_ig.

Damit erhalten wir fiir den Reflex, welcher dem
Gittervektor

G= (21151 + vzgz + U353)

entspricht, das Skalarprodukt

Ty (12151 + U252 + Us&%)

. (xjd'l + ij_L'Q + ch_ig)

2 (lej + v2y; + U3Zj) .

Beim zweiten Schritt wurde die Orthogonalitét
(2.5) der beiden Gitter verwendet. Damit wird
der Strukturfaktor

s
S@ _ § :f] €—i27r(v1xj+v2yj+v3zj-).
i=1

Der Strukturfaktor ist im Allgemeinen komplex.
Gemessen wird allerdings nicht direkt die ge-
streute Amplitude, sondern die Intensitat, wel-
che gegeben ist durch |S|? = S*S, und somit
immer reell ist.

Wie oben gezeigt, ist die Streuamplitude propor-
tional zur Anzahl N der Elementarzellen des Kri-
stalls. Die Intensitat wird damit proportional zu
N2. Gleichzeitig nimmt aber die Breite eines Re-
flexes mit 1/N ab, sodass die integrierte Intensi-
tét eines Reflexes nur mit IV ansteigt.

Abbildung 2.90: Einheitszelle des kubisch innen-
zentrierten Gitters.

Wir berechnen als Beispiel den Strukturfaktor
des kubisch innenzentrierten Gitters (bcc). Wie
in Abb. gezeigt, besteht die Basis dieses Git-
ters aus zwei identischen Atomen bei 1 = y; =
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z1 =0und z9 = yo = 29 = 1/2, d.h.

7 = (0,0,0)
= o (L11
27 \22272)°

Damit wird der Strukturfaktor

Sg=1f (1 + e‘”(“1+“2+“3)> .

Wir beriicksichtigen, dass v; ganze Zahlen sein
miissen und der Exponent somit ein ganzzahli-
ges Vielfaches von im. Der Beitrag des zweiten
Atoms kann somit —1 oder +1 betragen und der
Strukturfaktor kann zwei mogliche Werte anneh-
men:

S=0 wenn v;+ v9+ vy = ungerade

S=2f wenn wv;+ ve -+ vz = gerade.

Offenbar verschwindet die Streuamplitude, wenn
die Summe der drei Indizes ungerade ist. Das
Fehlen des Beugungsreflexes fiir eine ungerade
Summe ist eine direkte Konsequenz davon, dass
das bee Gitter nicht primitiv ist.

=0
vw_fr
- ® o=2r
*\\i

=

Abbildung 2.91: Destruktive Interferenz im in-
nenzentrierten Gitter.

=37

o

Betrachten wir z.B. die Beugung an den Netzebe-
nen 100. Fiir das primitiv kubische Gitter erhal-
ten wir einen Reflex der Starke f, welcher gera-
de dem ersten Summanden entspricht. Zwischen
jeweils 2 Ebenen, welche die Wiirfelflichen ent-
halten, liegt aber auch eine Ebene, welche durch
das Zentrum der Einheitszelle 1duft, und sym-
metriedquivalent ist und somit einen Beitrag lie-
fert, welcher den gleichen Betrag hat, aber nicht

die gleiche Phase. Wahrend der Phasenunter-
schied zwischen zwei Teilwellen, welche an der
(100) Ebene reflektiert werden, 27 betrigt, ist
der Weglédngenunterschied fiir die dazwischen lie-
genden Ebenen gerade halb so grof. Die Phase
betrégt hier somit gerade m. Damit entsteht de-
struktive Interferenz und der Reflex verschwin-
det.

2.7.4 Symmetriebedingte Ausléschung

ungeordnet

geordnet

Abbildung 2.92: Struktur von FeCo; links : un-
geordnet; rechts : geordnet.

Man kann diesen Effekt z.B. in der Verbindung
FeCo direkt beobachten. Die Atome bilden ein
bee Gitter, wobei in der geordneten Phase die
beiden Atome der Basis jeweils zu unterschied-
lichen Elementen gehoéren. Die beiden Teilwellen
addieren sich deshalb zu einer Gesamtamplitude
fa — fB, wobei fa p die Atomformfaktoren der
beiden Atome auf den Gitterplitzen (000) und
(333) darstellen. Die Intensitéit des 100 Refle-
xes ist deshalb proportional zu (f4 — fg)%. Im
reinen Eisen oder Kobalt verschwindet er des-
halb (A = B). In der Verbindung FeCo sind
die Ecken der Einheitszelle durch Fe, das Zen-
trum durch Co besetzt (resp. umgekehrt, je nach
Wahl der Einheitszelle). Dann sind die beiden
Formfaktoren leicht unterschiedlich und der Re-
flex tritt auf. Die Zahl der Elektronen ist al-
lerdings relativ dhnlich fiir die beiden Atome
(Z(Fe) = 26, Z(Co) = 27), so dass diese Re-
flexe relativ schwach sind.

Die Verbindung tritt jedoch auch in einer un-
geordneten Struktur auf, in der jeder Gitter-
platz im Schnitt gleich haufig von Fe und Co be-
setzt ist. In diesem Fall gilt im Schnitt wiederum
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so- b FeCo
= 60} ordered
‘€ 40
3 20
5 0 o J’__‘, e o Q0, R O i 2 Dol _ %
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40°
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Abbildung 2.93: Beugungsreflexe an FeCo.

fa = fp und der Reflex verschwindet wieder, wie
im unteren Teil von Abb. gezeigt. In diesem
Fall wurde die Beugung von Neutronen gemes-
sen. Die Intensitdt der Reflexe ist deshalb nicht
proportional zur Elektronendichte, sondern zur
Differenz der Streuquerschnitte der Kerne.

Abbildung 2.94: Struktur von NaCl, KCI und
KBr.

Man kann den Effekt auch an den beiden Sub-
stanzen KBr und KCIl beobachten. In beiden
Substanzen bilden die Kationen und die Anio-
nen jeweils ein kubisch flichenzentriertes Gitter,
welche gegeneinander um eine halbe Kantenlan-
ge verschoben sind. Unterscheidet man nicht zwi-
schen den Atomen erhélt man somit ein kubisch
primitives Gitter mit der halben Kantenlange.

Im Fall von KCI besitzen K™ und Cl~ jeweils
18 Elektronen. Dadurch sind die Elektronen-
dichten der beiden Ionen fast gleich, so dass
auch die Atomformfaktoren praktisch gleich sind
und Ausléschung stattfindet. Man findet deshalb

(200)
KCl
(220)
‘ (222) (400) (420)
T T T |L 4L| A T >
20°  (200) 400 60° 80°
; Streuwinkel 26
KBr
(220)
(111) (222)  (400) (420)
f T T  E— p— N
200 400 o

60° !
Streuwinkel 26

Abbildung 2.95: Vergleich der Beugungsreflexe
von KCI und KBr.

praktisch nur Reflexe mit einer geraden Summe
der Indizes.

Die Situation ist anders in KBr, welches die glei-
che Struktur hat wie KCIl. Brom hat eine doppelt
so grofe Zahl von Elektronen (Br : 36), so dass
hier die beiden Atomarten deutlich unterschied-
lich zum gestreuten Signal beitragen. Die (gené-
herte) Symmetrie entféllt und man beobachtet
auch ungeradzahlige Reflexe.

Abbildung 2.96: Einheitszelle
(NaCl).

Kochsalz

von

Ahnliche Ausléschungen gibt es auch bei der
Struktur von Kochsalz (NaCl). Abb. zeigt
die Einheitszelle, welche eine fcc-Struktur auf-
weist und damit 4 Atome von jeder Sorte ent-
hélt. Die Positionen sind (0,0,0), (1/2,1/2,0),
(1/2,0,1/2) und (0,1/2,1/2), die vier Cl-Atome
sind jeweils um eine halbe Gitterkonstante ver-
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setzt.

Fiir die Na-Atome ergeben sich somit die Phasen

60 + e—iTr(vl-‘rvg) + e—iﬂ(vl—‘rvg) + e—iw(vg-{—vg)'

Die einzelnen Summanden sind jeweils 41 fiir
gerade / ungerade Summen. Sind alle drei In-
dizes gerade oder alle 3 ungerade, so sind alle
Summanden = +1, die Summe also +4. Sind die
Indizes gemischt (sowohl gerade wie ungerade),
so verschwindet die Summe.

Fiir die Beitrdge der Cl-Atome gilt das gleiche,
doch enthalten dort die Summanden wegen der
Verschiebung um a/2 einen zusétzlichen Faktor
e’™ = —1. Die Summe aus den Beitrigen von Na
und Cl ist somit

0 gemischt
4fNa +4fcr ¢ firhkl alle gerade
dfna —4Afcr alle ungerade

2.7.5 Atomformfaktor

20—

P
Réntgenst\raﬁ&ﬂm

Abbildung 2.97: Phasenverschiebung
den Teilstrahlen.

zwischen

Da die Wellenlange der Rontgenstrahlung ver-
gleichbar ist mit der Ausdehnung eines Atoms,
erhalten Beitrage zur Streuamplitude aus un-
terschiedlichen Bereichen der Elektronenhiille
unterschiedliche Phasenverschiebungen, wie in
Abb.[2.97 gezeigt. Dies iiberlagern sich im Atom-
formfaktor.

Die Berechnung des Atomformfaktors fiir ein
Atom mit kugelsymmetrischer Elektronendichte-
verteilung kann vereinfacht werden, wenn man
Kugelkoordinaten g = (r,6,¢) einfithrt. Wir
wihlen G entlang der z-Achse. Damit wird

i /dr 72 sin 6 df dep nj(r)e "G eos?

27r/d7“ r2d(cos G)nj(r)e_iGrcose.
Integration iiber cos 6 gibt

) 6iGr o efiGr
= 9 d .
/i 7r/ rren;(r) Cr
sin(Gr)
= Am / drn;(r) r27Gr .
Vorwartsstreuung Ruckwartsstreuung
k . G = Ak
—— 10=0k  ———
k K’ k

Abbildung 2.98: Streuvektoren bei Vorwérts-
und Riickwartsstreuung.

Fiir kleine Streuvektoren, G — 0, kann
sin(Gr)/(Gr) iiber den Bereich des Atoms (r <
1071%m) niherungsweise durch eins ersetzt wer-
den. Damit reduziert sich das Integral auf die
Anzahl der Elektronen. Fiir endliche Streuvek-
toren berticksichtigt der Atomformfaktor die de-
struktive Interferenz zwischen Teilen der Elek-
tronendichteverteilung, die weit auseinander lie-
gen. Bei gegebener Wellenldnge entspricht ein
kleiner Streuvektor einem kleinen Streuwinkel,
d.h. der Vorwéirtsstreuung, ein grofer Streuvek-
tor einem grofsen Streuwinkel, also Riickwérts-
streuung (— Abb. 2.98). Wird das Produkt Gr
grofs gegen eins, so wird der Faktor sin(Gr)/Gr
kleiner als eins und die Streuamplitude nimmt
ab.

Wir erwarten deshalb, dass der Atomformfak-
tor kleiner wird, wenn wir Reflexe beobachten,
welche einem grofen Streuwinkel entsprechen.
Abb. 2.99 zeigt dies fiir das Beispiel von Eisen.
Die einzelnen Punkte zeigen den Atomformfak-
tor fiir unterschiedliche Reflexe, welche unter-
schiedlichen Streuvektoren G entsprechen. Die
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Beispiel : Eisen A = 0, 709nm

15

Atomformfaktor fre

411
5 LR
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Abbildung 2.99: Atomformfaktor von Eisen.
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Abbildung 2.100: Atomformfaktoren fiir Wasser-
stoff und Aluminium.

Wellenlénge der Rontgenstrahlung betragt 0,709
nm.

Abb.[2.100] zeigt die Atomformfaktoren fiir Was-
serstoff und Aluminium.

Die Situation is anders, wenn anstelle von Ront-
genstrahlen Neutronen gestreut werden: In die-
sem Fall findet die Wechselwirkung mit den
Atomkernen statt, welche fiir alle praktischen
Belange punktformige Teilchen sind. Der Atom-
formfaktor ist deshalb in diesem Fall konstant.

2.7.6 Das Phasenproblem

Die Streuamplitude

S = /an(F)e_ié'F

ist nichts anderes als die Fouriertransformierte
der Elektronendichte, welche man eigentlich mes-
sen mochte.

Abbildung 2.101: Elektronendichteverteilung
von NaCL

Abb. zeigt als typisches Beispiel die Elek-
tronendichte in Kochsalz. Die Fouriertransfor-
mation kann relativ einfach und effizient inver-
tiert werden. Leider wird aber in einem Ront-
genbeugungsexperiment nicht die Streuamplitu-
de S gemessen, sondern die verfiigharen Detek-
toren sind nur empfindlich auf die Intensitat I =
|S|2 = S*S. Bei der Bildung des Absolutqua-
drats geht die Phaseninformation verloren und
damit ist die Fouriertransformation nicht mehr
umkehrbar. Dieses Problem ist als das Phasen-
problem bekannt.

In der Optik ist es mdglich, die Phase der ge-
streuten Welle in einem interferometrischen Ex-
periment zu bestimmen: Man iiberlagert das zu
messende Feld A mit einem Referenzfeld B und
misst die Intensitdt der Summe

|A+ B|? = |A]? +|BJ* + 2|AB| cos Ay,

wobei Ay die Differenz zwischen den Phasen der
beiden Felder darstellt. Im Bereich der Rontgen-
strahlen sind interferometrische Messungen je-
doch sehr schwierig und fiir die Strukturbestim-
mung nicht direkt anwendbar. Man muss deshalb
wesentlich aufwendigere Verfahren benutzen, um
die Kristallstruktur aus der gemessenen Intensi-
tatsverteilung zu bestimmen.

Die ‘normale’ Methode besteht darin, aufgrund
einer vermuteten Struktur das entsprechende

o8



2 Symmetrie und Struktur

Beugungsmuster zu rechnen. Diese Rechnung ist
eindeutig, die Berechnung der Intensitit aus der
Amplitude ist immer moglich. Aus den Unter-
schieden zwischen gemessener und beobachtetem
Beugungsmuster bestimmt man anschliessend ei-
ne neue Naherung und iteriert dieses Vorgehen
bis es konvergiert.

Dieses rechnerische Vorgehen kann unterstiitzt
werden durch experimentelle ‘Tricks’. So kann
man schwere Atome in eine Struktur einbauen.
Diese haben so viele Elektronen, dass das Beu-
gungsmuster durch sie dominiert wird. Man hat
dadurch ein wesentlich einfacheres Beugungsmu-
ster und bestimmt zunéchst nur die Anordnung
der schweren Atome. Die Bestimmung der iib-
rigen Atome in diesem Gitter wird danach we-
sentlich einfacher, da die bekannten Beitrége der
schweren Atome gewissermassen als Phasenrefe-
renz dienen konnen. Wie die Beitrége verschiede-
ner Atome innerhalb der Einheitszelle interferie-
ren, wurde bereits bei der Diskussion des Struk-
turfaktors gezeigt.

Abbildung 2.102: Bauprinzip eines freien Elek-
tronenlasers.

Es ist aber nicht ausgeschlossen, dass diese auf-
wendigen Prozeduren in der Zukunft iiberfliissig
werden. So sind seit einigen Jahren relativ ko-
hérente Rontgenquellen verfiigbar, wie z.B. freie
Elektronenlaser oder Rontgenlaser. Deren Kohé-
renzeigenschaften sind allerdings bisher noch un-
geniigend, um die Phase der gestreuten Welle in-
terferometrisch zu messen.

Reelle Funktion Symmetrische Funktion

—
= 3
g iy
() [0}
© ©
= Zeit § Frequenz
= iy
E S requenz
Zeit
Imff(t)] = 0 Flw) = F(-w)

Abbildung 2.103: Symmetrieeigenschaften  der

Fourier-Transformation.

2.7.7 Reelle und Komplexe
Streuamplituden

Eine weitere Limitierung der Strukturmessung
durch Beugungsexperimente ist durch eine Sym-
metrie gegeben: Die Streudichte n(7) ist eine
reelle Grofle, sofern Absorption vernachldssigt
werden kann. Dadurch wird die Streuamplitude

symmetrisch beziiglich Inversion:
S@ = S_@. (2.13)

Dadurch enthilt das Beugungsmuster immer ein
Inversionszentrum.

Abbildung 2.104: Quasikristall mit 5-z&hliger
Symmetrie (links) und das zu-
gehorige Beugungsbild mit 10-
zéhliger Symmetrie (rechts).

Eine 3-zéhlige Symmetrieachse erscheint als ei-
ne 6-zéhlige Achse und es ist nicht moglich,
aufgrund von Rontgenbeugungsmessungen die
Héndigkeit einer Struktur ohne Inversionszen-

trum zu bestimmen. Abb. [2.104] zeigt als Bei-
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spiel einen Quasikristall mit 5-zdhliger Symme-
trie und das zugehorige Beugungsbild, welches
10-zéhlige Symmetrie aufweist.

Dieses Problem kann gelost werden, indem man
Rontgenstrahlung verwendet, welche in der Na-
he einer Absorptionskante liegt. In diesem Fall
wird ein Teil der Rontgenstrahlung absorbiert
und die Streuamplitude wird dadurch komplex.
Damit wird die Symmetrie gebrochen und
das Vorzeichen kann bestimmt werden. Aller-
dings wird dadurch die Analyse des Beugungs-
musters deutlich aufwéndiger.

2.7.8 Thermische Bewegung

Bisher sind wir davon ausgegangen, dass die Ato-
me perfekt auf bestimmten Gitterplétzen liegen.
In Wirklichkeit fiihren sie aber thermische Bewe-
gungen um diese Gitterplatze aus, und sogar am
absoluten Nullpunkt besteht eine gewisse Orts-
unschérfe. Interessanterweise fiihrt diese Bewe-
gung nicht zu einer Verbreiterung der Reflexe.
Sie fiihrt aber zu einer Reduktion der Intensi-
tat der Beugungsreflexe, da ein Teil der einfal-
lenden Strahlung inelastisch gestreut wird. Die-
se erscheint als diffuser Untergrund zwischen den
Reflexen.

Um die Reduktion der Intensitét zu berechnen,
schreibt man die Position eines Atoms als

7(t) =7 + d(t),

wobei 7; die Ruhelage darstellt und (t) eine Zu-
fallsbewegung um die Ruhelage (d.h. (@(t)) = 0.
Wenn wir dies in die Definition des Struk-
turfaktors einsetzen und {iber die Zufallsbewe-
gung mitteln, erhalten wir

S@ _ Z fje—iG_"-Fj <€—i@~ﬁ(t)>_
J

Der Erwartungswert kann als Taylor-Reihe ge-
schrieben werden:

<671G-ﬁ(t)

)

Da G und @ statistisch nicht korreliert sind, kon-
nen wir die Mittelwerte einzeln ausrechnen. Da-
mit folgt fiir den linearen Term (G - @(t))
G(ii(t)). Die Auslenkung @ ist so definiert, dass
ihr Mittelwert verschwindet, (i(t)) = 0. Der li-
neare Term in der Taylorreihe verschwindet des-
halb.

Fiir die Mittelung des quadratischen Terms set-
zen wir

(G-ii(1) ) = G*u? cos? ) = G2(u)(cos? B),

wobei u = |@] und 8 den Winkel zwischen G und
i darstellt und somit ebenfalls eine Zufallsgro-
e ist. u und 8 werden ebenfalls als unabhéngig
betrachtet.

Bei der Mittelung iiber den Winkelanteil muss
berticksichtig werden, dass nicht alle Werte gleich
wahrscheinlich sind, sondern mit sin 8 gewichtet
werden miissen. Die Mittelung des Winkelanteils
iiber alle moglichen Orientierungen ergibt des-

halb
1

2
1

2

(cos? B)

/Tr df3 cos® Bsin 3

0

(

=1- éa2<rﬂ>

1 1
—3) cos® B|F = 3

Damit erhalten wir

<e—iG-ﬁ(t)>

fiir die ersten beiden Terme der Taylor-Reihe.
Damit kann man den Strukturfaktor schreiben
als

G2 (u?)
6

S = S()e_

)

mit Sy als Strukturfaktor fiir statische Ato-
me. Gemessen wird allerdings die Streuintensitét

(d.h. das Quadrat der Amplitude)

G2 (u?)
3

I=Ihe (2.14)

(u?) stellt hier die mittlere quadratische Ver-
schiebung des Atoms dar. Diese kann in erster
Linie durch thermische Anregung zustande kom-
men, aber auch durch die quantenmechanische
Unschérfe im Schwingungs-Grundzustand.
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2.7.9 Debye-Waller Faktor

Wir betrachten zunéchst den Fall der thermi-
schen Anregung. Dafiir beschreiben wir die Be-
wegung des Atoms als harmonischen Oszillator
mit der Frequenz w. Dafiir kénnen wir die mitt-
lere quadratische Verschiebung aus der mittleren
Energie berechnen, welche in drei Dimensionen
3kpT betragt. Die mittlere kinetische Energie
M(v?)/2 = M{(u?)w?/2 und die mittlere poten-
zielle Energie C'(u?) /2 betragen im Mittel jeweils
die Hélfte der thermischen Energie,

1

1
SCl?) = S M (?) = ngT
oder
3T
2 B
Wi = 305

Dabei ist M die Masse des Atoms und C' eine
Kraftkonstante. Damit wird die Streuintensitat
(12.14)

_ G2%kpT
I= I()e Mw? |

(200)
(400)

ya il
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Abbildung 2.105: Temperaturabhéngigkeit
Debye-Waller  Faktors
Aluminium.

des
von

Diese Reduktion der Intensitit mit steigender
Temperatur und Streuvektor wird als Debye-
Waller Faktor bezeichnet. Es handelt sich hier

um eine klassische Naherung, welche bei hohen

Temperaturen recht gut ist. Offenbar ist die Ab-
nahme dann am kleinsten, wenn die Masse der
Atome groft ist (d.h. fiir schwere Kerne) und
wenn die Frequenz hoch ist (d.h. das Gitter starr
ist). Der Effekt nimmt auferdem mit dem Betrag
des Streuvektors G zu, wie in Abb. gezeigt.

Bei niedrigen Temperaturen muss auch die Orts-
unschéarfe aufgrund der Unschérfenrelation be-
riicksichtigt werden. Wir bestimmen sie iiber
die NullpunktsEnergie des harmonischen Oszil-
lators. In drei Dimensionen betréigt diese 3fuw/2,
wobei kinetische und potenzielle Energie zu glei-
chen Teilen beitragen. Somit ist

1
S MW () = zhw S (WPom =

3h
2Mw’
Damit wird die Intensitat

I = Ioe—ﬁG2/2Mw

Typische Zahlenwerte sind G = 10M'm~", M =
10~?°kg (entspricht etwa Nickel), w = 1014s71.
Unter diesen Bedingungen werden am absoluten
Nullpunkt rund 90% der maximalen Streuinten-
sitat erreicht.
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