
7 Halbleiter
7.1 Phänomenologie

7.1.1 Einführung

Der Ausdruck "Halbleiter" deutet an, dass diese Ma-
terialien weniger gut leiten als Metalle, aber bes-
ser als Isolatoren. Man kann entsprechend auch
Halbleiter als Materialien definieren, deren spezifi-
scher Widerstand bei Raumtemperatur im Bereich
von 10�4 � 107 Wm liegt. Ihre Leitfähigkeit ist da-
mit deutlich schlechter als die von Metallen. Be-
züglich ihrer elektronischen Struktur unterscheiden
sie sich von Metallen dadurch, dass die Fermikan-
te in einer Lücke zwischen zwei Bändern liegt, ge-
nau wie bei Isolatoren. Der Unterschied zwischen
Halbleitern und Isolatoren liegt in der Breite dieser
Bandlücke und ist damit nicht eindeutig. So ist Dia-
mant bei Raumtemperatur ein ausgezeichneter Iso-
lator, bei hohen Temperaturen kann er als Halbleiter
genutzt werden. Bei typischen Halbleitern liegt die
Bandlücke im Bereich von <2 eV.

Halbleiter sind deswegen sehr interessante Materia-
lien, weil es möglich ist, ihre Leitfähigkeit gezielt zu
beeinflussen, sowohl über die Materialeigenschaften
wie auch über äußere Felder. Dies ist ein Grund für
die große technologische Bedeutung der Halbleiter,
z.B.

• in der Optik als: Halbleiterlaser, Photodioden,
Solarzellen, CCD-Detektoren,

• bei der Einstellung oder Detektion von Tempe-
raturen als: Peltier-, NTC-Elemente,

• in der Elektronik als Halbleiter-Bauelemente.

Halbleiter haben deshalb heute eine enorme wirt-
schaftliche Bedeutung erhalten. Abb. 7.1 zeigt die
Entwicklung der Umsätze in der Halbleiterindustrie
über die Zeit von 1988-2015.

Die wichtigsten Anwendungen liegen in der Elek-
tronik, welche vor allem auf Silizium basiert. Abb.
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Abbildung 7.1: Zeitliche Entwicklung der Umsätze
der Halbleiterindustrie.
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Abbildung 7.2: Typische Kennlinien eines Transi-
stors.

7.2 zeigt als eine wichtige Voraussetzung die Steue-
rung des Der Strom-Spannungskennlinie eines Tran-
sistors durch einen Strom an der Basis.

Darüber hinaus stellen Halbleiter eine wichtige Rol-
le in der Optik, wo z.B. Halbleiterlaser die effiziente-
sten und am weitesten verbreiteten Lichtquellen dar-
stellen. Immer wichtiger wird auch die Möglichkeit,
mit Hilfe von Halbleitern Licht in elektrischen Strom
umzuwandeln, sowohl in Solarzellen wie auch in
Detektoren wie z.B. Photodioden oder CCD Sen-
soren. Weitere Eigenschaften von Halbleitern sind
auch die thermoelektrischen Eigenschaften, welche
u.a. die Möglichkeit bieten, mit Hilfe von Halblei-
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7 Halbleiter

tern zu kühlen oder zu heizen, oder Temperaturen zu
messen. In der Teilchenphysik werden Halbleiter als
Detektoren verwendet.

7.1.2 Klassifizierung

In Halbleitern ist bei 0 Kelvin die elektrische Leitfä-
higkeit gleich Null, da alle Zustände im Valenzband
besetzt und alle Zustände im Leitungsband unbesetzt
sind. Durch thermische Anregung kann die Energie-
lücke Eg aber (leicht) überwunden werden. Dies er-
gibt die intrinsische Leitfähigkeit von Halbleitern.
Die Bandlücke kann am einfachsten mit optischer
Absorption ausgemessen werden (! Kap. 7.1.5).

Leitungsband

Valenzband

Thermische
Anregung

E

Eg

Abbildung 7.3: Thermische Anregung über die
Bandlücke.

Halbleiter sind Kristalle mit einer Bandlücke, d.h.
ein Band ist vollständig gefüllt und das nächsthö-
here ist leer. Das untere Band wird als Valenzband
bezeichnet, das obere als Leitungsband. Am absolu-
ten Nullpunkt sind Halbleiter deshalb Isolatoren, d.h.
sie leiten keinen Strom. Wir beschreiben die Halb-
leiter im Folgenden mit Hilfe des Modells quasi-
freier Elektronen, also Einelektronenzuständen, wel-
che in unterschiedliche Bänder aufgespalten sind.
Diese sind durch Bandlücken getrennt.

Wie im letzten Kapitel diskutiert, müssen Halbleiter
(wie Isolatoren) immer eine gerade Anzahl Elektro-
nen pro Elementarzelle besitzen. Diese Bedingung
ist z.B. bei den Elementen der vierten Gruppe erfüllt,
wie z.B. Si oder Ge. Diese sind typische Beispiele
für elementare Halbleiter.

Ebenso ist die Bedingung erfüllt für Verbindun-
gen der Gruppen III und V des Periodensystems
wie GaAs, AlAs, GaN, oder InP, Verbindungen der

Abbildung 7.4: Struktur von GaAs.

Gruppen II und VI wie ZnS, CdTe. Die Bindung in
diesen Materialien hat einen stark kovalenten Cha-
rakter. Abb. 7.4 zeigt die Struktur von GaAs und vie-
ler anderer Verbindungshalbleiter.

Tetrazen

Abbildung 7.5: Tetrazen als organischer Halbleiter.

Auch organische Materialien können Halbleiterei-
genschaften aufweisen. Abb. 7.5 zeigt als ein Bei-
spiel Tetrazen. Diese Materialien werden erst seit
wenigen Jahren untersucht, haben aber schon eine
erhebliche Bedeutung, z.B. in der Form von orga-
nischen Leuchtdioden (OLEDs), welche für Bild-
schirme oder Beleuchtungen verwendet werden. Ge-
genüber den klassischen Flüssigkristallbildschirmen
bieten sie höheren Kontrast und geringeren Strom-
verbrauch.

7.1.3 Thermische Anregung

Halbleiter haben die gleiche Bandstruktur wie Iso-
latoren. Da die Bandlücke aber nur eine endliche
Breite hat, können bei endlichen Temperaturen ein-
zelne Elektronen aus dem Valenzband ins Leitungs-
band angeregt werden. Dabei entstehen bewegliche
Ladungsträger, und zwar sowohl im Leitungsband,
wo die Elektronen sich bewegen können, wie auch
im Valenzband, wo Zustände frei werden, so dass be-
nachbarte Elektronen unter dem Einfluss eines elek-
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7 Halbleiter

trischen Feldes ihren Impuls ändern können.

Die Anzahl der Elektronen, welche durch thermische
Anregung ins Leitungsband gelangen, ist gegeben
durch die Zustandsdichte D(E ) und die Besetzungs-
wahrscheinlichkeit f (E ):

Nc =
Z •

0
dE D(E ) f (E )

=
Z •

0
dE D(E )

1
e(E �µ)/kBT +1

.

Ist die thermische Energie klein im Vergleich mit der
Bandlücke, kBT ⌧ E � µ-, sind praktisch nur Zu-
stände im Bereich des Leitungsbandminimums be-
setzt und die Gesamtzahl der Ladungsträger wird
proportional zum Boltzmannfaktor e�Eg/2kBT , wobei
Eg die Bandlücke darstellt und wir angenommen ha-
ben, dass das Ferminiveau in der Mitte der Band-
lücke liegt. Eine etwas genauere Rechnung (siehe
Kap. 7.3.1) ergibt einen zusätzlichen Faktor T 3/2,

Nc µ T 3/2e�Eg/2kBT .
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Abbildung 7.6: Temperaturabhängige Ladungsträ-
gerdichte für Si und Ge.

Die Dichte der Ladungsträger nimmt deshalb mit zu-
nehmender Temperatur exponentiell zu. Je kleiner
die Bandlücke, desto rascher die Zunahme. Abb. 7.6
zeigt die Ladungsträgerkonzentration im Leitungs-
band für Germanium und Silizium als Funktion der
Temperatur. Bei Germanium ist die Bandlücke mit
0.67 eV kleiner als bei Silizium (1.14 eV), des-
halb ist die Zunahme rascher und die Leitfähigkeit

bei Raumtemperatur um rund drei Größenordnungen
höher als bei Silizium. Beträgt die Bandlücke z.B.
4 eV so ist die Anregungswahrscheinlichkeit 10�35,
d.h. praktisch null. Für eine Bandlücke von 0.25 eV
hingegen beträgt der Boltzmannfaktor bei Raumtem-
peratur rund 1%, so dass die Ladungsträgerdichte
schon fast den Wert eines Metalls erreichen kann.

Eg(T =300 K) Eg(T =0 K)  Natur der Lücke

Diamant 5,47 5,48 indirekt
Si 1,12 1,17 indirekt
Ge 0,66 0,75 indirekt
GaP 2,26 2,32 indirekt
GaAs 1,43 1,52 direkt
InSb 0,18 0,24 direkt
InP 1,35 1,42 direkt
CdS 2,42 2,58 direkt

Tabelle 7.1: Bandlücken der wichtigsten Halbleiter-
materialien.

Wie in Tabelle 7.1 gezeigt, liegen die Bandlücken
der wichtigsten Halbleitermaterialien im Bereich
von rund einem eV. Diamant hat eine wesentlich grö-
ßere Lücke und man findet deshalb erst bei Tem-
peraturen von mehreren hundert Grad eine wesent-
liche Eigenleitfähigkeit. Die Bandlücke hängt auch
von der Temperatur ab, sie nimmt bei zunehmen-
der Temperatur ab. Dies ist u.a. eine Folge der Aus-
dehnung des Kristalls und der dadurch abnehmenden
Bindungsstärke zwischen den Atomen, wie auch der
Kopplung der zunehmenden Phononenzahl.

7.1.4 Dotierung

Während bei Metallen die Leitfähigkeit abnimmt
wenn das Material verunreinigt wird, ist bei Halb-
leitern das Gegenteil der Fall. Auch kleine Verunrei-
nigungen können die Leitfähigkeit dramatisch ver-
ändern.

Abb. 7.7 zeigt die Ladungsträgerdichte von Germa-
nium, das mit Antimon dotiert wurde1. Je höher
die Konzentration der Verunreinigungen, desto hö-
her die Ladungsträgerdichte. Bei einer Variation der
Dichte der Verunreinigungen um 3 Größenordnun-
gen variiert der Widerstand um mehr als 10 Größen-
ordnungen. Diese großen Unterschiede findet man

1H. Fritzsche, J. Phys. Chem. Solids, 6, 69 (1958).
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Abbildung 7.7: Einfluss von Dotierung und Tem-
peratur auf den spezifischen Wider-
stand.

allerdings nur bei niedrigen Temperaturen. Für höhe-
re Temperaturen steigt die Leitfähigkeit in allen Fäl-
len auf den gleichen Grenzwert an - man nennt die-
sen den “intrinsischen” Wert, also die Leitfähigkeit,
die das Material ohne Verunreinigungen aufweist.

Ein weiterer interessanter Aspekt von Halbleitern
sind die gemessenen Werte für die Hallkonstante,

RH = � 1
ne

,

welche indirekt proportional zur Ladungsträgerdich-
te sein sollte. Bei Halbleitern findet man nicht nur
Werte, die sehr viel größer sind als bei Metallen (wie
wir es auf Grund der geringeren Ladungsträgerdich-
te erwarten), sie können auch positiv sein, was dar-
auf hindeutet, dass der Strom nicht durch Elektro-
nen, sondern durch positiv geladene Teilchen gelei-
tet wird.

7.1.5 Absorption von Licht

Ein weiterer interessanter Aspekt ist, dass die Leit-
fähigkeit durch einfallendes Licht wesentlich ge-
steigert werden kann. Diesen Effekt, den man als
Photo-Leitfähigkeit bezeichnet, deutet darauf hin,
dass Ladungsträger nicht nur thermisch erzeugt wer-
den, sondern auch durch Energiezufuhr über die Ab-
sorption von Photonen. Diese müssen eine Energie

aufweisen, die mindestens so groß ist wie die Band-
lücke. Für die Bandlücken der Halbleiter benötigt
man deshalb Photonen mit einer Wellenlänge im
Sichtbaren oder nahen Infraroten, also ca. 500 nm
bis 2 µm. Bei Silizium z.B. muss die Wellenlänge des
Lichtes kleiner als 1.1 µm sein. Diese Eigenschaften,
die Photovoltaik und die Photoleitfähigkeit, haben
heute eine große technische Bedeutung, indem Halb-
leiter als Solarzellen und Detektoren für Licht zum
Einsatz kommen, z.B. als Photodioden und CCD’s in
Kameras. Umgekehrt können Halbleiter auch Licht
erzeugen; dies wird in LED’s und Laserdioden be-
nutzt.

Die Bandlücke kann am einfachsten mit optischer
Absorption ausgemessen werden. Die optische Ab-
sorption setzt ein, wenn für die Energie der einfal-
lenden Photonen gilt:

Eg = h̄wg.

direkte Halbleiter indirekte Halbleiter
E

k

E

Eg

Leitungsband

Valenzband

0
k

E

Eg

0

Abbildung 7.8: Lichtabsorption bei direkten und in-
direkten Halbleitern.

Bei der Anregung vom Valenzband ins Leitungsband
muss der Impuls des Systems erhalten bleiben. Die
Wellenlänge l von optischem Licht ist sehr viel grö-
ßer als eine typische Gitterkonstante: l � a. Der Im-
puls p

n

= h̄k = h/l eines optischen Photons ist des-
halb klein im Vergleich zu einem typischen Impuls
eines Elektrons pe = h/a. Die Absorption eines Pho-
tons ändert deshalb den Impuls des Elektrons kaum,
er bleibt praktisch konstant. Das Elektron wechselt
deshalb bei der Absorption auf einen Zustand glei-
cher Wellenzahl; man nennt diesem einen vertikalen
Übergang.

Bei Energien am Rande der Bandlücke ist dies aber
nicht immer möglich. So ist es möglich, dass das
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7 Halbleiter

Minimum des Leitungsbandes bei einem Wert k 6= 0
auftritt, wie in Abb. 7.8 in der rechten Hälfte darge-
stellt. Photonen mit dieser Energie können somit nur
dann absorbiert werden, wenn die Impulsänderung
des Elektrons durch das System kompensiert wer-
den kann. Dies geschieht normalerweise durch die
Erzeugung eines Phonons mit dem richtigen Impuls,
respektive durch die Vernichtung eines Phonons mit
entgegengesetztem Impuls, falls diese Phononen ge-
nügend angeregt sind. Da die Energie der Phononen
sehr viel kleiner ist als die Photonenenergie, brau-
chen wir diese bei der Energieerhaltung nicht zu
berücksichtigen. Bei einem solchen Prozess werden
Energie und Impuls wie folgt erhalten:

EPhoton = h̄w = Eg + h̄W
~kPhoton = ~kc +~K ⇡ 0.

Hier stellen W die Frequenz und ~K den Wellenvektor
des Phonons dar.

indirekter HLdirekter HL

Eg
hi > Eg hi > Eg

Abbildung 7.9: Lichtabsorption und Relaxation bei
direkten und indirekten Halbleitern.

Absorptionsprozesse können nicht nur an der
Bandkante stattfinden, sondern auch bei höheren
Photonen-Energien. Dabei wird ein Loch im In-
nern des Valenzbandes erzeugt, zusammen mit ei-
nem Elektron im Innern des Leitungsbandes. Die
auf diese Weise erzeugten Ladungsträger streuen an
Phononen und relaxieren auf diese Weise rasch zum
Energieminimum ihrer Bänder (Abb. 7.9).

Aus der Wahrscheinlichkeit für solche Absorptions-
prozesse erhält man ein Absorptionsspektrum. Wie
in Abb. 7.10 gezeigt, ist die Absorptionskante bei ei-
nem direkten Halbleiter schärfer als bei einem indi-
rekten.

Abb. 7.11 zeigt als typisches Beispiel für einen di-
rekten Halbleiter die Bandstruktur von InSb; hier lie-
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Abbildung 7.10: Absorptionswahrscheinlichkeit bei
direkten und indirekten Halblei-
tern.
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Abbildung 7.11: Bandstruktur (links) und Absorpti-
on (rechts) von InSb.

gen das Maximum des Valenzbandes und das Mi-
nimum des Leitungsbandes beide im Zentrum der
Brillouin-Zone. Dementsprechend setzt die Absorp-
tion sehr scharf ein, wenn die Photonenenergie die
Bandlücke übersteigt, wie in der rechten Hälfte ge-
zeigt.

7.1.6 Lichtemission

Der Umkehrprozess der Absorption ist die Emissi-
on von Licht. Dabei geht ein Elektron aus dem Lei-
tungsband ins Valenzband über und strahlt die Ener-
giedifferenz in der Form eines Photons ab. Auch
hier muss die Erhaltung von Energie und Impuls ge-
währleistet sein. Bei einem Übergang von Bandkan-
te zu Bandkante wird somit ein Photon mit Energie
h̄w = Eg frei. Bei der Emission ist diese Bedingung
jedoch schwieriger zu erfüllen als bei der Absorp-
tion: Ein Elektron aus dem Leitungsband muss mit
einem Loch im Valenzband rekombinieren, welche
jeweils den gleichen Impuls besitzen. Dies ist bei
direkten Halbleitern unproblematisch, bei indirekten
Halbleitern jedoch nicht, da dort die freien Zustän-
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7 Halbleiter

de (= besetzten Lochzustände) nicht bei der gleichen
Wellenzahl auftreten. Der Unterschied zwischen di-
rekten und indirekten Halbleitern spielt deshalb für
die optischen Eigenschaften eine zentrale Rolle.

Si

indirekter HL
direkter HL

GaAs
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Abbildung 7.12: Bandstruktur von Si und GaAs.

Silizium, z.B. ist ein indirekter Halbleiter. Das ent-
artete Valenzband hat sein Maximum im Zentrum
der Brillouin-Zone, während das Leitungsband-
Minimum relativ weit vom Zentrum entfernt ist,
nämlich ca. 80 % der Brillouin-Zone in Richtung
100. Aus Symmetriegründen existieren 6 äquivalen-
te Richtungen entlang der 6 Koordinatenachsen. Un-
ter typischen Bedingungen ist die Dichte von Elek-
tronen im Leitungsband in der Näher des Leitungs-
bandminimums am größten. Bei einem senkrech-
ten Übergang ins Valenzband würden diese Elektro-
nen aber nur besetzte Zustände antreffen. Dadurch
ist in Si die Emission von Licht stark erschwert. Si
wird deshalb z.B. nicht für den Bau von Leuchtdi-
oden oder Halbleiterlasern verwendet. Ein typischer
direkter Halbleiter, welcher hauptsächlich für opto-
elektronische Komponenten wie z.B. Halbleiterlaser
verwendet wird, ist GaAs.

Erst seit kurzem kann man auch eine Modifikati-
on von Si herstellen, welche leuchtet. Während man
sich über den Mechanismus noch nicht ganz einig
ist, scheint es dafür nötig zu sein, dass das Material
auf so kleinen Skalen strukturiert ist, dass die übli-
che Beschreibung des Materials als unendlich ausge-
dehnter Kristall, die wir hier verwenden, nicht mehr
gültig sind.

Bei einigen Verbindungshalbleitern kann man die
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Abbildung 7.13: Bandlücken und Gitterkonstanten
von Verbindungshalbleitern.

Größe der Bandlücke und ihren Charakter (direkt
versus indirekt) durch die Herstellung anpassen -
dies wird als “band-gap engineering” bezeichnet.
Abb. 7.13 vergleicht die Bandlücken und Gitter-
konstanten von unterschiedlichen binären Halblei-
tern Die Linien deuten die Eigenschaften der quasi-
binären Verbindungen an, bei denen die Zusammen-
setzung variiert wird. Besonders interessant ist z.B.
GaAs-AlAs, denn hier ändert sich die Gitterkonstan-
te als Funktion der Konzentration fast nicht. Dies mi-
nimiert unerwünschte Verzerrungen des Gitters, ins-
besondere bei epitaktisch gewachsenen (z.B. Hetero-
) Strukturen.

7.2 Ladungsträger

7.2.1 Elektronen und Löcher

Im Grundzustand ist ein Halbleiter ein Isolator: das
Valenzband ist vollständig gefüllt, das Leitungsband
leer. Somit existieren keine freien Ladungsträger.
Der Impuls eines vollständig gefüllten Bandes ist
null und da keine freien Zustände existieren, können
die Elektronen nicht auf äußere Felder reagieren –
das Material ist ein Isolator.

Durch die Absorption von Licht oder durch ther-
mische Anregung können Elektronen vom Valenz-
band ins Leitungsband gebracht werden. Damit ent-
stehen im Leitungsband frei bewegliche Ladungs-
träger, welche auf äußere Felder reagieren können.
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Leitungsband

Valenzband

Eg

Abbildung 7.14: Bandlücke.

Ebenso werden im Valenzband leere Zustände ver-
fügbar, welche durch andere Elektronen besetzt wer-
den können, und so ebenfalls zur Leitfähigkeit bei-
tragen.

Wir betrachten als Ausgangspunkt den Fall, dass ge-
nau ein Elektron aus dem Valenzband ins Leitungs-
band angeregt wurde. Der Beitrag des einzelnen
Elektrons im Leitungsband zur elektrischen Leitfä-
higkeit kann relativ leicht mit Hilfe einer halbklas-
sischen Bewegungsgleichung beschrieben werden,
da es sich um ein einzelnes Elektron handelt. Um
den Beitrag des Valenzbandes zur Bewegung der
Ladungsträger zu berechnen, müsste aber eigentlich
die Bewegung sämtlicher Elektronen und die Beset-
zungszahl aller Zustände berücksichtigt werden – ei-
ne unlösbare Aufgabe.

Man kann jedoch den Impuls des gesamten Valenz-
bandes (mit einem leeren Zustand) relativ leicht be-
rechnen wenn man vom Impuls des vollständig be-
setzten Bandes ausgeht (=0) und davon den Impuls
h̄k des leeren Zustandes abzieht: offenbar beträgt
der Impuls des beinahe gefüllten Bandes somit �h̄k.
Man kann allgemein den Beitrag des Valenzbandes
berechnen, indem man den leeren Zustand verfolgt.
Man bezeichnet ein solches fehlendes Elektron als
Loch. In einem intrinsischen Halbleiter entstehen bei
der Erzeugung von Ladungsträgern durch Licht oder
Wärme immer eine identische Zahl von Elektronen
und Löchern.

7.2.2 Eigenschaften der Löcher

Um das Konzept der Löcher als effektive Teilchen
korrekt verwenden zu können, muss man einige Re-
geln beachten. Zunächst muss man sich entschei-

den, ob man ein Band über Löcher oder Elektro-
nen beschreiben will. Dies ist i. A. keine Schwie-
rigkeit: Halbleiter zeichnen sich ja dadurch aus, dass
alle Bänder entweder (fast) voll oder (fast) leer (von
Elektronen) sind. Fast volle Bänder werden sinnvol-
lerweise als fast leere Loch-Bänder beschrieben, fast
leere Bänder als fast leere Elektronen-Bänder. An-
ders ausgedrückt: Zustände oberhalb der Fermiener-
gie werden als Zustände von Elektronen beschrie-
ben, unterhalb als Loch-Zustände.

Elektronen

Löcher

Abbildung 7.15: Bewegung von Elektronen und Lö-
chern in einem elektrischen Feld.

Wenn sich die Elektronen in einem fast vollständig
gefüllten Band unter dem Einfluss eines elektrischen
Feldes bewegen, verschiebt sich die Lücke in ent-
gegengesetzter Richtung, wie in Abb. 7.15 gezeigt.
Dies lässt sich qualitativ dadurch erklären, dass man
dem Loch eine positive Ladung zuschreibt.
~kh = �~ke : Die Summe der Wellenvektoren eines
vollständig besetzten Bandes verschwindet, Â~k = 0.
Fehlt ein Elektron mit Wellenvektor~ke, so muss da-
mit die Summe über alle besetzten Zustände gleich
�~ke sein. Da wir das ganze Band als leer, abgese-
hen von einem einzelnen Loch beschreiben möchten,
muss dieses den Wellenvektor~kh = �~ke haben.

Eh = �Ee : Wir setzen den Energienullpunkt an die
Oberkante des Bandes. Um ein Elektron aus einem
energetisch niedrigen Zustand zu entfernen, muss
viel Energie aufgebracht werden; die daraus resultie-
rende Energie des Systems ist also hoch. Beschreibt
man das System mit Hilfe eines Lochs, ist somit die
Energie des Lochs hoch, Eh = �Ee.

Dadurch ergibt sich, dass die Dynamik des Lochs am
besten diskutiert werden kann, wenn wir das beina-
he gefüllte Valenzband ersetzen durch ein beinahe
leeres Lochband, welches am Scheitelpunkt des Va-
lenzbandes gespiegelt ist, wie in Abb. 7.16 gezeigt.
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k

E

Valenzband, in dem 
ein Elektron fehlt

Lochband mit ~kh = �~ke

Eh = �Ee

Abbildung 7.16: Symmetrie zwischen Elektron und
Loch.

mh = �me : Die Masse eines Ladungsträgers ist
proportional zur Krümmung (zweite Ableitung) des
Bandes, wie in Kapitel 6.4 diskutiert. Diese ist we-
gen Eh = �Ee für das Lochband gerade das Inver-
se der Krümmung des Valenzbandes. Die effektive
Masse des Elektrons an der Oberkante des Bandes
ist negativ, so dass die Masse mh des Lochs positiv
wird.

vh = ve : Da sowohl Impuls wie Masse ihre Vorzei-
chen wechseln, ist die Geschwindigkeit des Lochs
die gleiche wie die des Elektrons.

Mit diesen Regeln folgt, dass die Bewegungsglei-
chung für das Loch gerade derjenigen für ein positiv
geladenes Teilchen entspricht.

Die Bewegungsgleichung für ein Loch lautet somit

h̄
d~kh

dt
= +e(~E +~vh ⇥~B).

Für die Stromdichte gilt ~j = nq~v, mit q der Ladung
und ~v der Geschwindigkeit der Ladungsträger. Für
Elektronen im Leitungsband ergibt dies

~je = ne(�e)~ve = �nee~ve

und für Löcher im Valenzband
~jh = nh(+e)~vh = +nhe~vh.

Für Löcher ist damit die Stromdichte parallel zur
Bewegungsrichtung, für Elektronen entgegengesetzt
dazu.

7.2.3 Effektive Masse und Bandkrümmung

Die Energie von freien Elektron ist gegeben durch
die kinetische Energie

E =
h̄2k2

2m
,

d.h. die Energie ist eine quadratische Funktion
des Wellenvektors, wobei der Proportionalitätsfaktor
und damit die Krümmung der Kurve durch die Mas-
se des Elektrons bestimmt wird.

E

k

�2

2m

Abbildung 7.17: Bandkrümmung bei freien Elektro-
nen.

Die (inverse) effektive Masse m⇤ eines Elektrons
kann somit aus der Dispersionsrelation berechnet
werden als

1
m⇤ =

1
h̄2

d2E

dk2 . (7.1)

Aufgrund der Kopplung der Elektronen an das peri-
odische Potenzial des Gitters ändert sich die Krüm-
mung des Bandes, insbesondere in der Nähe der Zo-
nengrenze. Dies bedeutet, dass obige Beziehung in
dieser Form nicht allgemein gelten kann. Insbeson-
dere am Rand der Brillouinzone, wo durch die Kopp-
lung an das periodische Potenzial eine Bandlücke
entsteht, ergeben sich Abweichungen. Man korri-
giert dies häufig so, dass man die Beziehung (7.1)
postuliert und die Masse als eine Variable betrachtet:
Das Elektron, resp. Loch erhält eine effektive Masse.
Die Änderung widerspiegelt den Einfluss des Gitters
auf die Dynamik der Ladungsträger.

E

k

�2

2m

Abbildung 7.18: Bandkrümmung am Zonenrand.

Als Beispiel für die Änderung einer effektiven Mas-
se betrachten wir die Krümmung an der Grenze der
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ersten Brillouinzone. Bei der Diskussion des pe-
riodischen Potenzials hatten wir gesehen, dass die
Aufspaltung zwischen Valenz- und Leitungsband die
Energie der Einelektronenzustände in der Nähe der
Zonengrenze verändert und damit die Krümmung
beeinflusst. Wir hatten gefunden, dass die Energie
der Elektronen im Leitungsband in der Nähe der Zo-
nengrenze

E = E1 +
h̄2

dk2

2m

✓
1+

2l

U

◆

beträgt. dk bezeichnet die Differenz der Wellenzahl
zur Referenz an der Bandkante, l die kinetische
Energie der Elektronen an der Bandkante, U die
Stärke der Kopplung mit dem periodischen Potenzi-
al, und E1 die Unterkante des Leitungsbandes. Diese
Gleichung kann geschrieben werden als

E = E1 +
h̄2

dk2

2me

mit

me =
m

1+ 2l

U

.

Üblicherweise gilt l � U , so dass

me ⇡ m
U
2l

.

Die Krümmung vergrößert sich dabei um einen Fak-
tor l/Eg, wobei l die Energie des freien Elektrons
und Eg die Aufspaltung, also die Bandlücke darstellt.
Typische Werte für Halbleiter sind l = 20eV und Eg
= 0.2 - 2 eV. Damit vergrößert sich die Krümmung
um einen Faktor 10 bis 100 und die effektive Mas-
se wird um diesen Faktor kleiner als für ein freies
Elektron.

Für die Zustände im Valenzband gilt

E = E0 � h̄2
dk2

2mh

mit

mh =
m

2l

U �1
.

Das Minuszeichen bei der Energie sorgt dafür, dass
die Masse positiv wird, obwohl die Krümmung der
Bandkante negativ ist.

E

k

Abbildung 7.19: Bandkrümmung im Lochband.

7.2.4 3D: Halbklassische
Bewegungsgleichung

Eine eigentliche Herleitung benutzt die Bewegungs-
gleichung für ein Elektron, resp. Loch. Wir betrach-
ten deshalb ein Wellenpaket, dessen mittlerer Impuls
h̄k sein soll. Die Gruppengeschwindigkeit beträgt

vG =
dw

dk
=

1
h̄

dE

dk

oder

~v = ~—~kE (~k).

Die Bewegung eines Elektrons wird sowohl durch
äußere Felder wie auch durch den Kristall beein-
flusst. Wir berechnen zunächst die Energieänderung
bei der Bewegung in einem äußeren Feld ~E für eine
Zeit d t:

dE = F dx = �eEdx = �eEvGdt = FvGdt,

wobei F die äußere Kraft darstellt, welche hier durch
die Coulomb-Wechselwirkung zustande kommt.
Gleichzeitig gilt

dE =
dE

dk
dk = h̄vGdk.

Damit erhalten wir eine Bewegungsgleichung für
den Wellenvektor

dk = �eE
h̄

dt ! h̄
dk
dt

= �eE = F.

Die äußere Kraft bewirkt also eine Änderung des
Wellenvektors k: Ein Teilchen, auf das eine konstan-
te Kraft wirkt, bewegt sich im k-Raum mit gleichför-
miger Geschwindigkeit.
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Wir interessieren uns aber primär für die Geschwin-
digkeit im direkten Raum, d.h. für die Änderung der
Gruppengeschwindigkeit des Teilchens. Diese än-
dert sich wie folgt:

h̄
d
dt

vG =
d
dt

dE

dk
=

d
dk

dE

dk
dk
dt

=
d2E

dk2
F
h̄

.

Wir vergleichen dies mit dem Newton’schen Gesetz

dvG

dt
=

F
m

.

Wenn dieses gültig bleiben soll, müssen wir eine ef-
fektive Masse m* definieren als

1
m⇤ =

1
h̄2

d2E

dk2 .

Für ein anisotropes System wird die Bewegungsglei-
chung zu

dv
µ

dt
= Â

n

✓
1

m⇤

◆

µn

F
n

.

Die effektive Masse ist hier ein Tensor
✓

1
m⇤

◆

µn

=
1
h̄2

d2E

dk
µ

dk
n

mit µ,n = x,y,z .

Dieser Tensor der reziproken effektiven Masse ist in
erster Linie ein Maß für die Krümmung der Fermi-
Oberfläche an der Bandkante. Diese kann lokal im-
mer durch ein Ellipsoid angenähert werden, genau
wie in einer Dimension durch eine Parabel.

7.2.5 Effektive Massen in Halbleitern

Man kann den Massentensor auch benutzen, um die
Dispersionsrelation in drei Dimensionen darzustel-
len:

E = E0 +
h̄2

2 Â
µn

dk
µ

dk
n

✓
1
m

◆

µn

.

Diese Gleichung definiert ein Ellipsoid.

In Abb. 7.20 sind Ellipsoide konstanter Energie für
die Elektronen in Germanium dargestellt. Der Mas-
sentensor ist durch die zweiten Ableitungen der
Energie nach dem Wellenvektor gegeben. Hier sind

[001]

[111]

[100]

[010]

Abbildung 7.20: Ellipsoide konstanter Energie für
Germanium am L-Punkt, d.h. in
[111]-Richtung.

die Massentensoren am Minimum des Leitungsban-
des (beim L-Punkt) dargestellt.

Aufgrund der Spin-Bahn Wechselwirkung können
Bänder in Subbänder mit unterschiedlicher effekti-
ver Masse aufgespalten werden. Abb. 7.21 zeigt eine
Bandstruktur, wie sie für viele Halbleiter mit direk-
ter Bandlücke, wie z.B. GaAs typisch ist.

Elektronen

schwere Löcher
leichte Löcher

abgespaltene Löcher

k

E

hh
lh

soh

J=3/2

J=1/2

J=1/2

Abbildung 7.21: Effektive Massen für Bänder in
Halbleitern mit direkter Bandlücke.

Das Valenzband besteht aus p-Orbitalen, deren
Bahndrehimpuls beträgt L = 1. Durch die Spin-Bahn
Kopplung spaltet das Band auf in zwei Subbänder
mit J = 3/2 und J = 1/2, deren Energie sich um die
Spin-Bahn Kopplung D unterscheidet. Nimmt man
für den Energienullpunkt die Obergrenze des gesam-
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ten Bandes, so werden die Energien

E (hh) = � h̄2k2

2mhh

E (lh) = � h̄2k2

2mlh

E (soh) = �D� h̄2k2

2msoh

Das energetisch tiefer liegende Band mit J = 1/2
wird als abgespaltenes Band (englisch ’split-off
band’) bezeichnet. Im energetisch höher liegenden
Band mit J = 3/2 sind die Zustände im Zentrum
der Brillouin-Zone entartet, aber die Dispersion der
Zustände mit mJ = ±3/2 ist schwächer als die der
Zustände mit mJ = ±1/2. Sie werden deshalb als
schwere Löcher bezeichnet, diejenigen mit m j =
±1/2 als leichte Löcher. Allerdings sind beide deut-
lich ‘leichter’ als isolierte Elektronen, wie in Tabelle
7.2 gezeigt.

Material me
m

mhh
m

mlh
m

msoh
m D/eV

InSb 0,015 0,39 0,021 0,11 0,82
InAs 0,026 0,41 0,025 0,08 0,43
InP 0,073 0,4 0,078 0,15 0,11

GaSb 0,047 0,3 0,06 0,14 0,80
GaAs 0,066 0,5 0,082 0,17 0,34
Cu2O 0,99 0,58 0,69 0,13

Tabelle 7.2: Effektive Massen für verschiedene
Halbleiter.

7.2.6 Dynamik am Zonenrand

Die Änderung der effektiven Masse des Elektrons
hängt eng zusammen mit der Bragg-Reflexion an ei-
nem periodischen Gitter: In der Nähe der Oberkante
des Bandes bestehen die Zustände nicht nur aus ebe-
nen Wellen, sondern zu jedem Zustand mit Wellen-
vektor k ist auch ein Komponente mit k � G beige-
mischt, welche durch Reflexion am Gitter zustande
kommt:

Y(x) = Ckeikx +Ck�Gei(k�G)x.

Diese Zumischung einer gegenläufigen Komponente
nimmt in der Nähe der Zonengrenze rasch zu. Der
Erwartungswert des Impulses ist gegeben durch die
gewichtete Mittelung über die beiden Komponenten

hpi = h̄
⇥
C2

k k +C2
k�G(k �G)

⇤

und verschwindet am Zonenrand, d.h. bei k = G/2:

hpi = h̄C2
k


G
2

� G
2

�
= 0.

Das gleiche gilt für die Gruppengeschwindigkeit.

kG/2

1

0

-1

C(k � G)

C(k)

C(k)

C(k � G)

Band 1

Band 2

Abbildung 7.22: Koeffizienten der Zustände am Zo-
nenrand.

Wirkt auf ein Elektron in der Nähe der Bandkante
eine äußere Kraft, welche den Wellenvektor vergrö-
ßert, so muss für die Änderung des Erwartungswer-
tes auch die Abhängigkeit der Koeffizienten vom no-
minellen Wellenvektor berücksichtigt werden:

d
dk

hpi = h̄(C2
k +k

d
dk

C2
k +C2

k�G +(k�G)
d
dk

C2
k�G).

Berücksichtigt man die Normierung

C2
k +C2

k�G = 1,

vereinfacht sich dieser Ausdruck zu

d
dk

hpi = h̄(1+ k
d
dk

C2
k +(k �G)

d
dk

C2
k�G

= h̄(1�G
d
dk

C2
k�G).

Der zweite Term kann größer als 1, die rechte Sei-
te damit negativ werden. Dies bedeutet, dass die re-
sultierende Bewegungsänderung im Mittel der Kraft
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entgegenwirkt, d.h. die effektive Masse ist negativ.
Der erste Term entspricht dabei der Impulsänderung
eines freien Elektrons, während der zweite Term den
Einfluss des Gitters reflektiert. Dieser Teil der Im-
pulsänderung wird deshalb durch eine inverse Im-
pulsänderung der Atomrümpfe kompensiert.

Oberhalb der Bandlücke hingegen nimmt die Am-
plitude der gegenläufigen Komponente mit zuneh-
mendem Impuls rasch ab. Dies bedeutet, dass die
Geschwindigkeitsänderung größer ist als bei einem
freien Elektron, resp. die effektive Masse positiv und
klein.

7.2.7 Leichte und schwere Elektronen

Da die inverse Masse proportional zur Krümmung
des Bandes ist, wird die Masse klein, wenn die
Krümmung groß ist und umgekehrt. Sie ist dem-
nach am kleinsten wenn die Kopplung ans periodi-
sche Gitter klein ist.

k π/a

E schwache Kopplung 
starke Krümmung 

kleine Masse

Abbildung 7.23: Geringe Bandlücke, geringe Mas-
se.

Abb. 7.23 zeigt einen Fall, bei dem die Bandlücke
sehr klein ist. Damit weichen die gekoppelten Zu-
stände erst in der Nähe der Zonengrenze wesentlich
von den Zuständen der freien Elektronen ab. Die
Krümmung wird deshalb hier groß und die Masse
klein.

k π/a

E
1/m* klein

Abbildung 7.24: Geringe Krümmung, große Masse.

Es gibt aber auch Materialien in denen die Energie
nur schwach von k abhängt. In Abb. 7.24 wird die
Krümmung klein und die effektive Masse sehr groß.

schwach gekoppelt
lokalisierte Elektronen
schwache Krümmung

hohe Masse

stark gekoppelt
delokalisierte Elektronen

hohe Krümmung
geringe Masse

Kopplungsstärke

En
er

gi
e

Abbildung 7.25: Variation von Energie, Breite der
Bänder und effektiven Massen mit
der Kopplungsstärke.

Dies entspricht einem starken Potenzial: Die Elek-
tronen sind dann beinahe vollständig bei den einzel-
nen Atomen lokalisiert und die Breite des Bandes ist
klein. Es ist dann schwierig, das Elektron in Bewe-
gung zu bringen und die effektive Masse ist groß.

Ort

En
er
gi
e

Abbildung 7.26: Lokalisierung von elektronischen
Zuständen in Potenzialminima.

Solche Systeme erhält man vor allem, wenn die
Valenzelektronen f -Elektronen von seltenen Erden
oder Actiniden sind. Diese Orbitale sind relativ tief
im Atomrumpf versteckt und überlappen deshalb nur
schwach. Die effektive Masse kann in solchen Syste-
men sehr groß werden. Sie sind als Schwere Fermio-
nen Systeme bekannt.

7.2.8 Form der Fermi-Oberfläche /
Zyklotronresonanz

Das elektrische Verhalten der Halbleiter wird be-
stimmt durch die Dynamik der Ladungsträger, wel-
che sich in der Nähe des oberen, resp. unteren
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Endes des Valenz-, resp. Leitungsbandes befinden.
Man kann deshalb Materialien besser charakterisie-
ren wenn man ihre Fermi-Oberfläche kennt. Eine
wichtige Methode dafür ist die Zyklotronresonanz.

Dazu müssen wir in der Bewegungsgleichung (5.13)
die Lorentzkraft berücksichtigen. Der zusätzliche
Term ist

h̄
dk
dt

= F = �e~v⇥~B.

Mit der Beziehung für die Gruppengeschwindigkeit

~v =
1
h̄
~—~kE (~k)

wird daraus

dk
dt

= � e
h̄2

⇣
~—~kE (~k)

⌘
⇥~B.

Hier tritt als einzige Koordinate der Wellenvektor
auf, d.h. die Bewegungsgleichung bezieht sich auf
den reziproken Raum; ihre Lösung wird durch eine
Kurve im k-Raum beschrieben.

kz

ky
kx

Abbildung 7.27: Bahn eines Elektrons im k-Raum.

Die Gleichung zeigt, dass das Elektron im Magnet-
feld senkrecht zum Gradienten der Energie bewegt,
und damit auf einer Fläche konstanter Energie, wie
in Abb. 7.27 gezeigt. Dies folgt auch aus der Ener-
gieerhaltung, da ein konstantes Magnetfeld keine
Energieänderung des abgelenkten Teilchens bewirkt.
Gleichzeitig bewegt es sich senkrecht zum äußeren
Magnetfeld. Aus diesen rein geometrischen Überle-
gungen folgt somit, dass sich das Elektron auf einer
Kurve bewegt, welche durch die Schnittkurve der

Iso-Energie Fläche mit einer Ebene senkrecht zum
Magnetfeld gegeben ist - beide Flächen sind im k-
Raum definiert.

Da sich bewegliche Ladungsträger notwendigerwei-
se an der Fermi-Oberfläche befinden, kann eine Mes-
sung dieser Bewegung Informationen über die Struk-
tur der Fermi-Oberfläche liefern. Bei freien Elek-
tronen ist die Zyklotronfrequenz wc = eB/m. Für
die Verallgemeinerung auf Kristallelektronen ersetzt
man die Masse durch eine effektive Masse m⇤, wel-
che die drei Hauptwerte enthält:

wc =
eB
m⇤ .

B0

E1 cos(ωt) ⊥ B0

Abbildung 7.28: Prinzip der Zyklotronresonanz.

Weil die effektive Masse gerade die Krümmung des
Bandes darstellt, kann über ihre Messung die Form
des Bandes bestimmt werden. Diese Zyklotronfre-
quenz kann gemessen werden, indem senkrecht zum
statischen Magnetfeld ein elektrisches Wechselfeld
der Frequenz wc angelegt wird (! Abb. 7.28). Man
findet resonante Absorption der Mikrowellenstrah-
lung. Die Elektronen im Festkörper bewegen sich
auf (im einfachsten Fall: Kreis-) Bahnen senkrecht
zum Magnetfeld. Absorption des elektromagneti-
schen Wechselfeldes tritt immer dann auf, wenn die
Feldfrequenz gleich (einem Vielfachen) der Umlauf-
frequenz wc ist.

Experimentell ist die Breite der gemessenen Absorp-
tionslinien von der Relaxationszeit t für Stöße ab-
hängig. Damit eine Zyklotronresonanz in den Spek-
tren sichtbar wird, muss wct � 1 gelten. Die mittlere
freie Weglänge zwischen zwei Stößen muss so groß
sein, dass das Elektron dazwischen mindestens et-
wa eine volle Kreisbahn durchlaufen hat. Folgende
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Bedingungen müssen für die Beobachtung der Zy-
klotronresonanz erfüllt sein:

• hochreine Kristalle

• tiefe Temperaturen (flüssiges He)

• hohe B-Felder und HF-Strahlung

Bei einer Temperatur von 4 K ist die Eindringtiefe
in Kupfer etwa 10 nm. Bei Halbleitern muss je nach
Material und Messbedingung die Probe mit Licht be-
strahlt werden, um Elektronen ins Leitungsband an-
zuregen.

7.2.9 Beispiele

Für freie Elektronen beträgt die Zyklotronfrequenz
bei 1 T

wc =
eB
m

=
1,6 ·10�19

9,1 ·10�31
C
kg

N
Am

⇡ 176 ·109 s�1

oder

nc =
wc

2p

⇡ 28GHz.

Typische Werte sind m ⇤/m = 0.1, fc = 24 GHz und
B = 86 mT. Die Temperaturen müssen niedrig sein,
damit die Stoßzeiten lang und die Auflösung hoch
sind.

Extremalbahnen 
in [111]-Richtung

Abbildung 7.29: Extremalbahnen für unterschiedli-
che Magnetfeldrichtungen.

Damit kann man für die entsprechende Magnetfeld-
orientierung die Krümmung der Fermioberfläche be-
stimmen. Die stärkste Absorption ergeben von so-
genannten Extremalbahnen, also Bahnen bei denen

die Krümmung und damit die effektive Masse nä-
herungsweise konstant sind. Abb. 7.29 zeigt eini-
ge Beispiele von Extremalbahnen; links für die Ma-
gnetfeldrichtung entlang~k1 mit drei Extremalbahnen
und~k2 mit einer Extremalbahn und rechts in [111]-
Richtung, mit zwei unterschiedlichen Bahnen.
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Abbildung 7.30: Zyklotronresonanz-Spektren von
Silizium und Germanium.

Abb. 7.30 zeigt als Beispiel die Resonanzen von Sili-
zium und Germanium. Je nachdem, ob die besetzten
Zustände innerhalb oder außerhalb der Bahn liegen,
werden sie als Elektron- oder Lochbahn bezeichnet.

Winkel in Grad von der [001]-Achse in einer 110 Ebene
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Abbildung 7.31: Anisotrope effektive Masse von
Germanium.

Die gesamte Fermioberfläche kann durch Drehung
des Magnetfeldes oder der Probe gemessen werden.
Abb. 7.31 stellt die effektiven Massen von Germani-
um als Funktion der Richtung im k�Raum dar.

Bei der Diskussion der Bandstrukturen spielen eini-
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fcc bcc

Abbildung 7.32: Bezeichnung der wichtigsten Punk-
te im k-Raum.

ge Punkte der Brillouin-Zone eine besondere Rolle.
Für diese hat sich eine eigene Nomenklatur einge-
bürgert. Das Zentrum der Brillouin-Zone wird im-
mer als G-Punkt bezeichnet. Weitere Punkte sind für
das fcc- und bcc Gitter:

~k = 2p

a fcc bcc

(000) G G
� 1

2
1
2

1
2
�

L P
�1

2 00
�

D D

K, resp. N bezeichnen die Zonengrenze in Richtung
(110) und L, resp. P in Richtung (111).

7.2.10 Zustandsdichte im Magnetfeld

In dünnen Halbleiterfilmen (Dicke ⇡ 10 nm) be-
wegen sich die Elektronen (und Löcher) quasi-
zweidimensional. In einem Magnetfeld sind die
kreisförmigen Landau-Bahnen die relevanten Eigen-
zustände (Details ! Kap. 8.3). Im k-Raum beträgt
der Radius der Bahnen

k` =

s✓
`+

1
2

◆
2m⇤

wc

h̄
,

mit der Zyklotronfrequenz

wc =
eB
m⇤ .

Die Fläche innerhalb dieser Bahnen beträgt

S` =

✓
`+

1
2

◆
2peB

h̄

und ist damit proportional zur Stärke des Magnetfel-
des. Ihre Energie beträgt

El =

✓
`+

1
2

◆
h̄wc.

Zustandsdichte D(E)

EE

kx

Abbildung 7.33: Zustände im k-Raum ohne Ma-
gnetfeld (links) und Zustandsdich-
te in Gegenwart eines Magnetfel-
des (rechts).

Beim Einschalten des Magnetfeldes "kondensieren"
alle Zustände, die sich in einem Energieintervall
h̄wc µ B befinden, auf das entsprechende Landau-
Niveau (Abb. 7.33 rechts). Davon gibt es für zuneh-
mende Magnetfeldstärke (und damit wc) immer we-
niger, so dass die Besetzung pro Niveau NLa steigen
muss, denn die Gesamtzahl der Zustände ist kon-
stant. Der Entartungsgrad ist deshalb proportional
zur Stärke des Magnetfeldes:

NLa = r2DDS =
L2

4p

2
2pe

h̄
B =

e
h

L2B.

Hier stellt DS den Unterschied in der Fläche von
zwei aufeinander folgenden Bahnen dar und L die
Kantenlänge der quadratischen Probe.

Die Gesamtzahl der Zustände ohne Feld (Fläche un-
ter der roten Linie in Abb. 7.34) und mit B-Feld sind
gleich. In drei Dimensionen kann sich das Elektron
außerdem parallel zum Magnetfeld bewegen. In die-
ser Richtung spielt das Magnetfeld keine Rolle und
die Energie ist deshalb nicht quantisiert. Wegen der
quasi-kontinuierlichen Variation von kz kann in 3D
die Energie jeden Wert bis zur Fermi-Kante anneh-
men. Bei den Energien, die zu den Landau-Niveaus
korrespondieren, tritt wegen deren hoher Entartung
jeweils eine van Hove-Singularität auf. Diese Singu-
laritäten wiederholen sich jedes Mal, wenn ein wei-
teres Sub-Band eine waagerechte Tangente aufweist.
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E/ℏω

2D

D
(E

)

B = 0

E/ℏω

3D

B = 0

Abbildung 7.34: Zustandsdichte in 2D und 3D, je-
weils ohne Magnetfeld (rote Kur-
ven) und mit Magnetfeld (schwarze
Kurven).

7.3 Leitfähigkeit

Die elektrische Leitfähigkeit von Halbleitern wird
vor allem durch die Temperatur und die Dotierung
mit Fremdatomen beeinflusst. Wir betrachten zu-
nächst reine Halbleiter.

7.3.1 Ladungsträgerdichte und
Zustandsdichte

Bei den Metallen konnte die Leitfähigkeit über den
Ausdruck (5.14) berechnet werden:

s = ne2 t

m
.

Als Funktion der Temperatur variierte vor allem die
Stoßzeit t , was zu einer Abnahme der Leitfähigkeit
mit zunehmender Temperatur führte.

Bei den Halbleitern ist nicht nur die Stoßzeit, son-
dern zusätzlich auch die Ladungsträgerdichte n stark
von der Temperatur abhängig. Dies führt dazu, dass
in diesem Fall die Leitfähigkeit mit der Temperatur
zunimmt.

Am absoluten Nullpunkt sind Halbleiter Isolatoren,
aber bei endlicher Temperatur werden Elektronen
aus dem Valenzband ins Leitungsband angeregt. Die
Anzahl der Elektronen im Leitungsband ist bestimmt
durch die Fermi-Dirac Verteilung. Die Besetzungs-
wahrscheinlichkeit für einen Einelektronenzustand

mit Energie E ist allgemein

fe =
1

e
E �µ

kBT +1
,

wobei µ das chemische Potenzial darstellt. Für einen
reinen Halbleiter bei niedriger Temperatur liegt die-
ses in der Mitte zwischen Valenzband und Leitungs-
band. Bei nicht allzu hohen Temperaturen ist E �
µ � kBT für Elektronen im Leitungsband. Damit
wird die Exponentialfunktion im Nenner groß ge-
gen 1 und der Ausdruck kann vereinfacht werden zur
Boltzmann-Statistik

fe = e
µ�E
kBT .

Innerhalb des Leitungsbandes wächst die Energie
des Elektrons quadratisch mit dem Impuls

E = Ec +
h̄2k2

2me
. (7.2)

Die Anzahl Zustände mit Wellenvektor < k ist nach
Gl. (5.3)

n(k) = V
k3

3p

2 . (7.3)

Wir lösen die Dispersionsrelation (7.2) auf nach der
Wellenzahl

k =

p
2me

h̄

p
E �Ec

und setzen dies ein in (7.3):

n(E ) =
V

3p

2
(2me)

3
2

h̄3 (E �Ec)
3
2 .

Die Zustandsdichte De(E ) als Funktion der Energie
ist deshalb

De(E ) =
dn(E )

dE
=

V
2p

2
(2me)

3
2

h̄3

p
E �Ec,

für E > Ec. Damit ergibt sich die Dichte n der Elek-
tronen im Leitungsband als

n =
1
V

Z •

Ec

De(E ) fe(E )dE

=
1

2p

2
(2me)

3
2

h̄3 e
µ

kBT

Z •

Ec

p
E �Ece

�E
kBT dE .
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Für die Berechnung des Integrals kann der Ausdruck
Z •

0

p
ue�udu = 2

Z •

0
v2e�v2

dv = 2
p

p

4
=

p
p

2

verwendet werden. Damit erhält man

n = 2
✓

mekBT
2p h̄2

◆ 3
2

e
µ�Ec
kBT .

7.3.2 Ladungsträgerdichte für Löcher

fe =
1

e
E�µ
kBT + 1

Energie Eµ

Valenzband Leitungsband

fh = 1 � fe

De(E) �
p

E � Ec

La
du

ng
s-

tr
äg

er
di

ch
te

Abbildung 7.35: Besetzungswahrscheinlichkeit für
Elektronen und Löcher in einem
reinen Halbleiter.

Die Löcherkonzentration fh erhält man, indem man
berücksichtigt, dass ein Orbital entweder voll oder
leer ist, d.h.

fh = 1� fe = 1� 1

e
E �µ

kBT +1

=
e

E �µ

kBT

e
E �µ

kBT +1
=

1

1+ e
µ�E
kBT

⇡ e
E �µ

kBT .

Die Zustandsdichte der Löcher ist

Dh(E ) =
V

2p

2
(2mh)

3
2

h̄3

p
E �Ev.

Damit wird die Dichte der Löcher bei der Tempera-
tur T

p = 2
✓

mhkBT
2p h̄2

◆ 3
2

e
Ev�µ

kBT .

Das Produkt der Ladungsträger

n · p = 4
✓

kBT
2p h̄2

◆3

(memh)
3
2 e�Eg/kBT

hängt damit nur von der Bandlücke Eg = Ec �Ev und
der Temperatur ab. Dies bedeutet, dass eine Erhö-
hung der Anzahl Elektronen im Leitungsband zu ei-
ner Verringerung der Anzahl Löcher im Valenzband
führt und umgekehrt. Beispiele sind

Si Ge GaAs
n · p [cm�6]
bei 300 K

2 ·1019 3 ·1026 7 ·1012

Eg [eV] 1,12 0,66 1,43

Für einen reinen Halbleiter gilt n = p und damit

n = p =
p

n p

= 2
✓

kBT
2p h̄2

◆ 3
2

(memh)
3
4 e�Eg/2kBT . (7.4)

Das chemische Potenzial µ eines reinen Halbleiters
kann bestimmt werden, indem man die Ausdrücke
für die Anzahl Elektronen und Löcher gleichsetzt.
Daraus erhält man

m
3
2
e e

µ

kBT e
�Ec
kBT = m

3
2
h e

Ev
kBT e

�µ

kBT

und damit

e
2µ

kBT =

✓
mh

me

◆ 3
2

e
Ev+Ec

kBT .

Logarithmieren gibt

2µ

kBT
=

3
2

ln
✓

mh

me

◆
+

Ev +Ec

kBT
.

Damit wird das Potenzial

µ =
Ev +Ec

2
+

3
4

kBT ln
✓

mh

me

◆
.

Für identische Massen oder am absoluten Nullpunkt
liegt das chemische Potenzial somit in der Mitte zwi-
schen Valenzband und Leitungsband.
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Mit Hilfe desAusdrucks (7.4) kann man auch die La-
dungsträgerdichte von zwei unterschiedlichen Mate-
rialien vergleichen:

nGe

nSi
=

e�Eg,Ge/2kBT

e�Eg,Si/2kBT = e(Eg,Si�Eg,Ge)/2kBT

= e
0,45

0,052 ⇡ 5000.

Hier wurden die Unterschiede in den Massen ver-
nachlässigt.

7.3.3 Beweglichkeit

Der Strom in Halbleitern wird durch Elektronen wie
auch Löcher geleitet.

E
+

-

v
j

v j

Abbildung 7.36: Bewegung von Elektronen und Lö-
chern in einem E-Feld.

Dabei bewegen sich die Löcher in Richtung des Fel-
des, die Elektronen entgegengesetzt. Die Richtung
des Stromes ist in beiden Fällen parallel zum Feld.

Wenn wir uns für die Leitfähigkeit interessieren, be-
nötigen wir nicht nur die Ladungsträgerdichte, son-
dern auch die Geschwindigkeit v der Ladungsträ-
ger für ein gegebenes Feld. Dies wird üblicherweise
durch die Beweglichkeit

µ =
|v|
|E| [µ] =

m2

Vs

quantifiziert. Damit wird die gesamte Leitfähigkeit
eines Materials

s = ne µe + pe µh,

mit den Ladungsträgerdichten n und p für Elektro-
nen und Löcher.

Wie in Metallen ist die Driftgeschwindigkeit der La-
dungsträger proportional zur Stoßzeit t:

v =
qtE
m

.

Somit ist auch die Beweglichkeit proportional zu t:

µe = e
te

me
und µh = e

th

mh
.

Tabelle 7.3: Beweglichkeit von Elektronen und Lö-
chern bei Raumtemperatur in cm2/Vs.

Tabelle 7.3 enthält die Beweglichkeiten unterschied-
licher Ladungsträger in den wichtigsten Halbleiter-
materialien. Normalerweise ist die Beweglichkeit
der Elektronen höher als die der Löcher, µe > µh.
Grund dafür sind einerseits die kleinere effektive
Masse der Elektronen, me < mh, sowie Entartungen
an der Valenzbandkante, welche zu Streuung zwi-
schen den Lochbändern führen. Die experimentell
gefundenen Beweglichkeiten hängen einerseits von
der Temperatur, andererseits von der Art und Quali-
tät der Kristalle ab. Die Beweglichkeit der Elektro-
nen ist größer als die der Löcher, so dass die elek-
trische Leitfähigkeit in nicht dotierten Halbleitern
durch die Elektronen dominiert wird.

7.3.4 Dotierung

Der Grund, dass Halbleiter in der Industrie so nütz-
lich geworden sind, liegt nicht an ihrer intrinsischen
Leitfähigkeit, sondern an der Möglichkeit, die Leit-
fähigkeit durch die Zugabe von Fremdatomen gezielt
zu verändern.

Man hat zwei Arten von Variationsmöglichkeiten: In
binären Verbindungen wie GaAs erzeugt eine Ab-
weichung von der exakten Stöchiometrie Mangel-
halbleiter; die häufigere Methode ist Dotieren, also
der Einbau von Fremdatomen. Wie Abb. 7.37 zeigt,
kann eine Zugabe von kleinsten Mengen von Anti-
mon zu Germanium die elektrische Leitfähigkeit um
mehr als 10 Größenordnungen verändern.

Am einfachsten lässt sich der Effekt bei den dia-
mantartigen Halbleitern wie Silizium diskutieren.
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Abbildung 7.37: Einfluss von Dotierung und Tem-
peratur auf den spezifischen Wider-
stand. [2]

N-Dotierung

Si Si Si

Si

Si

-Si P Si

Si

Si

Abbildung 7.38: N-Dotierung.

Wird ein fünfwertiges Atom wie N, P oder As in Si-
lizium eingebaut, so nimmt es einen Gitterplatz von
Si ein. Das Gitter bleibt damit weitgehend unverän-
dert, aber die Rumpfladung des eingebauten Atoms
ist um eins höher als die der übrigen Gitteratome; au-
ßerdem ist die Anzahl der Elektronen um eines höher
als bei einem reinen Halbleiter. Solche Atome wer-
den deshalb als Donatoren bezeichnet.

7.3.5 Donatorzustände

Das Überschusselektron bewegt sich im Coulomb-
Potenzial

Udon =
e

4pee0r
,

des positiv geladenen Atomrumpfes mit e als Di-
elektrizitätskonstante. Die elektronische Zustände
entsprechen deshalb den Zuständen des Wasserstof-
fatoms und sind in der Nähe des Zentrums lokali-

-

Leitungsband

Valenzband

Donatorniveau

E

Ed

Donator-
Ionisierungsenergien 
in Si und Ge, in meV

 P As Sb 
Si 45 49 39 
Ge 12 12,7 9,6

Abbildung 7.39: Energie und Struktur eines
Donator-Zentrums.

siert, wie in Abb. 7.39 rechts gezeigt. Beim Wasser-
stoffatom ist die Energie des Grundzustands

E1 = � e4m
2(4pe0h̄)2 ⇡ �13,6eV. (7.5)

Im Falle eines Dotierungsatoms gibt es zwei Unter-
schiede: zum einen wird die positive Ladung des
Atomrumpfes durch die übrigen Elektronen abge-
schirmt. Man nähert diesen Abschirmeffekt übli-
cherweise durch die statische Dielektrizitätskonstan-
te des Materials.

Abbildung 7.40: Statische Dielektrizitätskonstante
von Halbleitern.

Außerdem wird in der Energie (7.5) die Elektronen-
masse m durch die effektive Masse me ersetzt. Die
veränderte Bindungsenergie wird damit zu

Ed =
e4me

2(4pee0h̄)2 ⇡ 13,6
e

2
me

m
eV.

Sie hängt somit quadratisch von der Dielektrizitäts-
konstante und linear von der effektiven Masse ab.
Die Dielektrizitätskonstante e eines Halbleiters ist
in der Größenordnung von 10 (siehe Abb. 7.40),
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die effektive Masse bei etwa 0.1 m. Somit erwarten
wir eine Reduktion der Bindungsenergie um etwa
einen Faktor 1000. Experimentell beobachtete Ener-
gien sind auch tatsächlich etwa 10 meV für Ge und
40-50 meV für Si.

Durch die Abschirmung und die kleinere effektive
Masse wird nicht nur die Bindungsenergie reduziert,
gleichzeitig wird auch das Orbital größer. Im Was-
serstoffatom ist die Größe des Orbitals durch den
Bohr’schen Radius

a0 =
4pe0h̄2

me2 ⇡ 0,53 Å

gegeben. Im Halbleiter wird dieser zu

a⇤
0 =

4pee0h̄2

mee2 = a0e

m
me

⇡ 100a0 ⇡ 50 Å.

Für eine genauere Betrachtung müsste man auch be-
rücksichtigen, dass die effektiven Massen anisotrop
sind. Die Größenordnung der Werte ist jedoch kor-
rekt. Sie zeigt z.B., dass innerhalb der Elektronen-
bahn rund 1000 Si-Atome liegen.

Photonenenergie [meV]

Ab
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rp
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ko

ns
ta
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e 

[c
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-1
]

Wellenlänge λ [µm]

Bindungs-
energie

Abbildung 7.41: Messung der Bindungsenergie des
Sb-Donators in Ge bei T =9 K mit
Infrarot-Spektroskopie.

Die Bindungsenergie kann z.B. mit Infrarot-
Spektroskopie gemessen werden, wie in Abb. 7.41
für Antimon in Germanium gezeigt. Die Banden
für E < 9.6 meV rühren von Anregungen aus dem
Donator-Grundzustand in höhere Zustände her. Die
Aufhebung der Entartung durch das Kristallfeld lie-
fert hier ein Mehrlinienspektrum das komplexer ist,
als das von atomarem Wasserstoff.

7.3.6 P-Dotierung

Si Si Si

Si

Si

+Si Al Si

Si

Si

P-Dotierung

Abbildung 7.42: P-Dotierung.

Anstelle von fünfwertigen Atomen können auch
dreiwertige eingebaut werden, wie z.B. B, Al, In. In
diesem Fall ist die Rumpfladung geringer. Das feh-
lende Elektron kann aus dem Valenzband kommen;
dort wird dadurch ein Loch erzeugt. Diese Art von
Zentren wird deshalb als Akzeptor-Zentren bezeich-
net.

-

Leitungsband

Valenzband

Akzeptorniveau

E

Akzeptor-Ionisierungsenergien 
in Si und Ge, in meV

 B Al Ga In 
Si 45 57 65 16 
Ge 10,4 10,2 10,8 11,2

⊕

Abbildung 7.43: Energie der Akzeptorzustände.

Wiederum sorgt die veränderte Ladung für lokali-
sierte Zustände, welche ebenfalls mit dem modifi-
zierten Bohr’schen Modell behandelt werden, wobei
die Vorzeichen der Ladungen invertiert sind. Die Io-
nisationsenergien sind ähnlich wie bei den Donator-
zuständen. Abb. 7.43 zeigt schematisch die Struktur
eines solchen Zentrums und die Energien der rele-
vanten Zustände.

Abb. 7.44 zeigt die Energien der wichtigsten Do-
natoren und Akzeptoren in Silizium und Germa-
nium. Die Bindungsenergien der Donatorzustände
beziehen sich auf den Abstand von der Leitungs-
bandkante, diejenigen der Akzeptorzustände auf die
Valenzbandkante. Die Werte liegen teilweise unter-
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Silizium
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Ev

Eg=1,12 eV

Leitungs-
band

Valenz-
band

Eg=0,66 eV

Leitungs-
band

Valenz-
band

Ec

Ev
Germanium

Abbildung 7.44: Energien von unterschiedlichen
Dotier-Atomen in Si und Ge.

halb, teilweise oberhalb der thermischen Energie bei
Raumtemperatur.

7.3.7 Exzitonen

Abbildung 7.45: Exziton als gebundener Zustand
von Elektron und Loch.

Sind in einem Halbleiter sowohl Elektronen wie
auch Löcher vorhanden (z.B. bei optischer Anre-
gung), so gehen diese auf Grund der Coulomb-
Wechselwirkung häufig eine Bindung ein, wie in
Abb. 7.45 gezeigt. Das System aus einem positi-
ven und einem negativen Ladungsträger entspricht
formal einem Wasserstoffatom (genauer: Positroni-
um). Entsprechend sind die gebundenen Zustände
die gleichen wie beim Wasserstoff - allerdings mit
anderen Energien.

Tabelle 7.4 zeigt die Bindungsenergie von Exziton in
unterschiedlichen Materialien. Ist die Bindungsener-
gie gering, von der Größenordnung 10 meV, spricht

Tabelle 7.4: Bindungsenergie von Exziton in unter-
schiedlichen Materialien in meV.

man von Mott-Wannier-Exziton. Ist sie in der Grö-
ßenordnung von 1eV spricht man von stark gebun-
denen oder Frenkel-Exziton.

Leitungsband

Valenzband

Exzitonenzustände

0

Eg

Eg-Eex
Eex Bindungs-

energie{
Bandlücke{

Abbildung 7.46: Energieniveaus von Exzitonen. Die
vertikalen Pfeile entsprechen ab-
sorbierten Photonen.

Abbildung 7.46 zeigt die Energieniveaus eines Exzi-
tons innerhalb der Bandlücke. Optische Übergänge,
die von der Oberkante des Valenzbandes ausgehen
und Exzitonen erzeugen, sind durch Pfeile darge-
stellt. Der längste Pfeil entspricht der Energielücke.
Die Bindungsenergie des Exzitons ist Eex und be-
zieht sich auf ein freies Elektron und ein freies Loch.
Die Absorptionslinie mit der niedrigsten Energie ist
deshalb Eg �Eex.

7.3.8 Thermische Anregung

Im Grundzustand, d.h. bei T = 0, sind die Elektronen
der Dotierungsatome lokalisiert, das Material bleibt
ein Isolator. Da ihre Energien jedoch nahe bei den
Bandkanten liegen, können sie durch thermische An-
regung leicht ionisiert werden. Aufgrund der relativ
niedrigen Ionisierungsenergie ist diese, je nach Art
des Zentrums, schon unterhalb der Raumtemperatur
praktisch vollständig. Sind nur Donatoren vorhanden
und ist die Temperatur sehr klein, kBT ⌧ Ed , so wird
die Konzentration der Elektronen

n =
p

n0Nde� Ed
2kBT
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mit

n0 = 2
✓

mekBT
2p h̄2

◆ 3
2

und Nd die Konzentration der Donatoren. In Abb.
7.47 sind die Donatoren bei etwa 90 K vollständig
ionisiert.
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Abbildung 7.47: Ladungsträgerkonzentration als
Funktion der Temperatur.

Ein analoges Resultat gilt für Akzeptoren. Bei
Raumtemperatur (kBTR = 26 meV) sind beide io-
nisiert und die Ladungsträgerkonzentration wird zu
n = Nd �Na falls das Material n-dotiert ist (Nd > Na),
oder p = Na �Nd im umgekehrten Fall.
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Abbildung 7.48: Temperaturabhängigkeit der La-
dungsträgerkonzentration.

Abb.7.48 fasst die Temperaturabhängigkeit der La-
dungsträgerkonzentration zusammen. Bei niedrigen

Temperaturen tragen nur die Dotieratome zur Leit-
fähigkeit bei und die Ladungsträgerkonzentration
steigt rasch, bis zu etwa 100 K, wo alle Zentren ioni-
siert sind. Danach ändert sich die Leitfähigkeit nicht
mehr stark mit der Temperatur, bis die Temperatur
hoch genug wird, dass Elektronen aus dem Valenz-
band ins Leitungsband angeregt werden können. Er-
höht man die Temperatur auf mehrere 100 K (je nach
Dotierung), wird die Eigenleitung dominant, da die
Zahl der intrinsischen Elektronen sehr viel größer
ist, als die der Dotieratome (siehe Abb, 7.37).

7.3.9 Ladungsträger-Gleichgewicht

Da die Leitfähigkeit durch die Summe der Löcher
und Elektronen gegeben ist, erhält man sowohl für
hohe Donatoren-Konzentrationen wie auch für ho-
he Konzentrationen von Akzeptoren eine hohe Leit-
fähigkeit. Je nachdem, welcher Beitrag dominiert
spricht man von p-Leitung (Lochleitung), resp. n-
Leitung (Elektronenleitung).

Intrinsisches Material enthält Ladungsträger auf
Grund der thermisch angeregten Übergänge zwi-
schen Valenz- und Leitungsband. Die Zahl der po-
sitiven und negativen (beweglichen) Ladungsträger
ist gleich:

n = p = ni.

Wird das Material negativ dotiert, so steigt die An-
zahl der freien Elektronen, diejenige der Löcher
sinkt. Das Produkt der beiden bleibt konstant,

n · p = n2
i .

Da das Material insgesamt neutral sein muss, ist die
Summe der positiven Ladungsträger gleich der Sum-
me der negativen Ladungsträger. Für vollständig io-
nisierte Zentren lautet die Bilanzgleichung

Nd + p = Na +n.

Hier stellt ND die Dichte der positiv geladenen Do-
natorenrümpfe, NA die Dichte der negativ geladenen
Akzeptoren dar. In einem n-dotierten Material ist
ND ⇡ n � p. Zusammen mit dem Massenwirkungs-
gesetz folgt daraus

p ⇡ n2
i

Nd
.
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7 Halbleiter

Typische Zahlenwerte für n-Si sind ni ⇡ 1010 cm�3,
Nd ⇡ 1015 cm�3 und damit p ⇡ 105 cm�3.

7.4 Halbleiter-Bauelemente

19.12.12 11:41 

Page 1 of 1http://upload.wikimedia.org/wikipedia/commons/1/1c/NPN_transistor_basic_operation.svg

Emitter

Basis

Kollektor

n p n++ +

Löcher

Rekombination

Elektronen

Transistor

Diode p n

Abbildung 7.49: Aufbau einer Diode und eines
Transistors.

Die Halbleiterelektronik benutzt gezielt die Effekte,
die beim Übergang zwischen Gebieten unterschied-
licher Dotierungen auftreten. Eine Diode (Abb. 7.49
oben) besteht aus einem p/n Übergang, ein Transi-
stor (Abb. 7.49 unten) aus einer Abfolge von p/n/p
oder n/p/n-dotierten Bereichen. Als Halbleitermate-
rial verwendet man meist Silizium. Alternativen sind
Germanium oder binäre Halbleiter aus Elementen
der dritten und fünften Gruppe (III/V) Halbleiter,
wie z.B. GaAs. Im Rahmen dieser Vorlesung be-
schränken wir uns auf Silizium, mit Hinweisen auf
Germanium und GaAs. Die wichtigsten Parameter
dieser Materialien sind in Tabelle 7.5 zusammenge-
stellt.

7.4.1 n-p Übergang

Die wichtigsten Halbleiter-Bauelemente sind Di-
oden und Transistoren. Diese, wie auch praktisch al-
le anderen enthalten Grenzschichten zwischen einem
n-(negativ) dotierten Teil und einem p-(positiv) do-
tierten Teil.

Abb. 7.50 zeigt eine solche Grenzschicht. In der lin-
ken Hälfte ist das Material n-dotiert, die Fermiener-
gie liegt deshalb in der Nähe der Unterkante des Lei-
tungsbandes. In der rechten Hälfte ist das Material p-
dotiert und die Fermienergie liegt nahe an der Ober-
kante des Valenzbandes.

Leitungsband

Valenzband

n-dotiert
EF

- - - -

+ + EF+ +

p-dotiert

EF
- - -

+ + +

Kontakt, Ladungstransfer

Abbildung 7.50: Übergang zwischen n-dotiertem
und p-dotiertem Halbleiter ohne
und mit elektrischem Kontakt.

Bringt man die beiden Materialien in Kontakt, so
gleichen sich die Ferminiveaus an. Im Bereich des
Kontaktes verbiegen sich deshalb die Bänder. Die-
se Bandverbiegung kommt durch Diffusion der La-
dungsträger zustande. Dadurch treffen Elektronen
und Löcher aufeinander und rekombinieren. In der
Nähe der Grenzschicht wird deshalb die Dichte der
Ladungsträger reduziert. Man bezeichnet diesen Be-
reich als Verarmungszone.

x
�(x)

x

|E(x)|

x
�(x)

Abbildung 7.51: Ladungsdichte, elektrisches Feld
und Potenzial im Bereich des
Übergangs.

Da die ionisierten Atomrümpfe in der Verarmungs-
zone zurückbleiben, entsteht im n-dotierten Be-
reich eine Zone positiver Raumladungen, auf der p-
dotierten Seite ein Bereich negativer Raumladungen.
Dies erzeugt ein elektrisches Feld in der Richtung
vom n- zum p-dotierten Bereich. Die Stärke des Fel-
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7 Halbleiter

Ge Si GaAs
Bandlücke 0,66 1,12 1,4 eV

Eigenleitungsdichte ni 2,5·1013 1,5·1010 9,2·106 cm�3

Elektronenbeweglichkeit µn 3900 1350 8800 cm2/Vs
Löcherbeweglichkeit µp 1900 480 450 cm2/Vs

Tabelle 7.5: Parameter für die wichtigsten Halbleitermaterialien

des ist bestimmt durch die Dichte der Raumladung,

div~E =
r

e0e

oder, in einer Dimension,

∂Ex

∂x
=

r

e0e

.

Die zugehörige Potenzialdifferenz entspricht dem
Integral

F(x) = �
Z

Ex(x)dx.

Dieses elektrische Feld, resp. das Potenzial, wirkt
der Diffusion entgegen, so dass sich ein Gleichge-
wicht bildet. Die Breite der Verarmungszone liegt im
Bereich von µm und ist abhängig vom Dotierungs-
profil.

7.4.2 Diode

Ein Übergang zwischen zwei entgegengesetzt do-
tierten Bereichen bildet eine Halbleiterdiode. Wird
an einen solchen Übergang eine Spannung angelegt,
so hängt der Strom stark von der Richtung und der
Stärke der Spannung ab. Wir betrachten zunächst
den Fall, dass am p-Leiter eine negative Spannung
angelegt wird und am n-Leiter eine positive. Da-
durch werden die Ladungsträger im Halbleiter in
Richtung auf die Elektroden verschoben. Die Sperr-
schicht wird dadurch breiter, die Raumladungszone
wird größer und damit der Abstand zwischen den
Energien der Bänder auf beiden Seiten.

Da sich in der Sperrschicht keine Ladungsträger be-
finden, fließt praktisch kein Strom durch die Sperr-
schicht. Da die Leitfähigkeit im Bereich der Sperr-
schicht weitaus niedriger ist, fällt hier der größte Teil

EF

- - + ++
+
+

-
-
-

Abbildung 7.52: Sperrschicht bei Anlegen einer
Spannung in Rückwärtsrichtung.

der Spannung ab. Der Unterschied im Ferminiveau
zwischen den beiden Bereichen entspricht praktisch
der angelegten Spannung.

EF

- -

+ +

+
+
+

-
-
- + +

- -

Abbildung 7.53: Sperrschicht bei Anlegen einer
Spannung in Vorwärtsrichtung.

Wechselt man das Vorzeichen der Spannung, so wer-
den auf der p-dotierten Seite zusätzliche Löcher,
auf der n-dotierten Seite zusätzliche Elektronen ein-
gebracht. Diese wandern in Richtung Sperrschicht,
diese wird schmaler, die Raumladungszone wird
reduziert und die Diffusionsspannung weitgehend
kompensiert. Die Ladungsträger können die Sperr-
schicht durchqueren und rekombinieren, so dass hier
ein Strom fließt. Man spricht deshalb vom “Durch-
lassbereich”.

7.4.3 Diodenkennlinie

Die Beziehung zwischen Strom und Spannung ei-
ner Diode ist stark asymmetrisch. Im Sperrbereich
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7 Halbleiter
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Abbildung 7.54: Strom-Spannungskennlinie einer
typischen Diode.

fließt nur ein geringer Strom, der Sperrstrom IS, der
von den Minoritätsladungsträgern gebildet wird, d.h.
den Elektronen im p-Bereich und den Löchern im p-
dotierten Bereich. Für Ge-Dioden ist er in der Grö-
ßenordnung von µA, für Si-Dioden in der Größen-
ordnung von nA. Da mit zunehmender Temperatur
die Zahl der Minoritätsladungsträger zunimmt, steigt
die Leitfähigkeit mit der Temperatur. Eine Tempera-
turerhöhung um 10 �C verdoppelt etwa den Sperr-
strom IS.

Wenn die Spannung (in Sperrrichtung) die Durch-
bruchspannung UBr übersteigt, so steigt der Strom
sehr schnell an. In diesem Bereich reicht die kineti-
sche Energie der Ladungsträger, um über Stoßioni-
sation weitere Ladungsträger zu erzeugen. Wird der
Strom in diesem Bereich nicht beschränkt, kann dies
zur Zerstörung der Diode führen.

Im Durchlassbereich, d.h. in Vorwärtsrichtung, wer-
den Ladungsträger in die Verarmungszone einge-
bracht, diese wird dünner. In diesem Bereich kann
der Strom beschrieben werden durch die Funktion

I = Is(eU/UT �1),

wobei UT die Temperaturspannung kBT/e ⇡ 26 mV
darstellt. Bei großen Spannungen, U � UT weicht
die Kennlinie von der Exponentialfunktion ab und
nähert sich einer Geraden, da hier der endliche Bahn-
widerstand der Diode wichtig wird.

7.4.4 Thermoelektrische Effekte

Elektronen und Löcher, die in Halbleitern Ladung
transportieren, besitzen eine Energie, die wesentlich
über der Fermienergie liegt. Sie transportieren des-
halb immer auch thermische Energie, wie bereits in
Kap. 5.5.4 diskutiert. Der Energiefluss beträgt für
Elektronen in einem elektrischen Feld E

jU = n(Ec � µ +
3
2

kBT )(�µe)E,

wobei µe die Beweglichkeit der Elektronen darstellt.
Der Energietransport ist verbunden mit dem La-
dungstransport über den Peltier-Koeffizienten

Pe = �
Ec � µ + 3

2 kBT
e

.

Dieser ist für Elektronen negativ, da die thermische
Energie in die umgekehrte Richtung transportiert
wird wie die elektrische Ladung. Für Löcher gilt ei-
ne analoge Beziehung, doch ist dort der Koeffizient
positiv.

Si

Temperatur [K]

Q
T 

[e
V]

Abbildung 7.55: Peltier-Koeffizient von Si als Funk-
tion der Temperatur.

Der Transport von thermischer Energie in einem
elektrischen Feld führt zum Aufbau einer Tempera-
turdifferenz, weshalb Peltier-Elemente zum Heizen
oder Kühlen verwendet werden. Umgekehrt erzeugt
eine Temperaturdifferenz eine Spannung E = Q—T ,
wobei die thermoelektrische Kraft Q direkt mit dem
Peltier-Koeffizienten gekoppelt ist: P = QT .
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