
5 Freie Elektronen
5.1 Klassische Beschreibung

5.1.1 Metalle und ihre Eigenschaften
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Abbildung 5.1: Metallische Bindung.

In diesem Kapitel soll in erster Linie der Versuch un-
ternommen werden, das Verhalten von Elektronen in
Metallen zu beschreiben. Die metallische Bindung
stellt zwar nur eine von 5 Grundtypen der Bindung
in Festkörpern dar, sie ist jedoch sehr weit verbreitet:
mehr als 2/3 der Elemente sind Metalle.

Metalle enthalten zwei Arten von Elektronen. Die
meisten Elektronen sitzen in tief liegenden Orbita-
len der konstituierenden Atome, welche praktisch an
den entsprechenden Atomen lokalisiert sind. Dane-
ben trägt jedes Atom eine geringe Zahl (typischer-
weise 1-3) Leitungselektronen bei, welche sich prak-
tisch frei durch das Material bewegen, dieses jedoch
nicht verlassen können.

Diese frei beweglichen Leitungselektronen sind für
die charakteristischen Eigenschaften der Metalle
verantwortlich, welche sie gegenüber den weiter ver-
breiteten nichtmetallischen Verbindungen auszeich-
nen. Zu diesen charakteristischen Eigenschaften ge-
hören die gute Leitfähigkeit für Elektrizität und Wär-
me, sowie der Glanz von metallischen Oberflächen.

Sowohl das klassische Modell (Kap. 5.1), wie auch
das quantenmechanische (Kap. 5.2) beschreiben die
Metalle im Wesentlichen über freie Elektronen, wel-
che in einen Potenzialtopf eingesperrt sind, des-
sen Ränder den Rändern des Kristalls entsprechen.
Dieses Modell der freien Elektronen eliminiert je-
de Wechselwirkung zwischen Elektronen mit Aus-

Elektrische Leitfähigkeit

Metallglanz

Pyrit (FeS)
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(CoAsS)

Wärmeleitfähigkeit

Abbildung 5.2: Beispiele von Metallen und metall-
typischen Eigenschaften.

nahme des Pauli-Prinzips. Die Wechselwirkung der
Elektronen mit Atomrümpfen wird zunächst eben-
falls nicht berücksichtigt und erst in einer zweiten
Stufe (im Kapitel 6) als ein periodisches Potenzial
berücksichtigt, welches die gleiche Periode wie das
Gitter aufweist. Trotz dieser extremen Vereinfachun-
gen kann das Modell freier Elektronen erstaunlich
viele Aspekte der Metalle erklären.

5.1.2 Das Drude-Modell

Die klassische Theorie entstand drei Jahre nach
der Entdeckung des Elektrons durch J.J. Thomson
(1897). Im 19. JH hatte die kinetische Gastheorie
eine befriedigende Erklärung für viele bekannte Ef-
fekte im Bereich der Thermodynamik geliefert. Dies
mag ein Motiv gewesen sein dafür, dass P. Drude1

die Elektronen in einem Metall als Gas modellier-
te2. Seine Annahme war, dass die äußersten Elektro-
nen jedes Atoms sich im Metall praktisch frei be-
wegen können. Zu diesen Leitungselektronen tragen
die Atome, welche das Gitter bilden normalerweise

1Paul Drude (1863-1906)
2P. Drude, Annalen der Physik 1, 566 und 3, 369 (1900).
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5 Freie Elektronen

ein bis drei Elektronen bei. Diese Elektronen sind im
gesamten Kristall frei beweglich, wobei die positiv
geladenen Atomrümpfe ein Potenzial bilden.

+ + + + +

+ + + + +

+ + + + +

Atomrümpfe:
- klein
- statisch-

-
-

-

Valenzelektronen:
- ballistische Bewegung
- kurze Stöße

Abbildung 5.3: Das Drude-Modell des freien Elek-
tronengases.

Nach Drude verhalten sich diese Elektronen ähnlich
wie ungeladene Teilchen in einem klassischen Gas:

• Die Atomrümpfe sind klein und statisch.

• Die Elektronen sollen eine freie Weglänge zwi-
schen Stößen haben, welche vielen Gitterkon-
stanten entspricht.

• Zwischen den Stößen ist die Bewegung frei,
d.h. unabhängig von den anderen Elektronen
(unabhängige Elektronen) und von den Atom-
rümpfen (freie Elektronen). Sind äußere Felder
vorhanden, so beeinflussen diese die Bewegung
wie in der Mechanik und Elektrodynamik dis-
kutiert.

• Stöße finden im Drude-Modell vor allem mit
den Ionenrümpfen statt; Stöße zwischen Elek-
tronen sind sehr selten. Die Stöße werden als
kurz angenommen und die Geschwindigkeit der
Elektronen nach dem Stoß ist unabhängig von
der Geschwindigkeit vor dem Stoß, sondern
wird durch die Temperatur des Kristalls be-
stimmt.

5.1.3 Ergebnisse

Mit Hilfe dieses einfachen klassischen Modells kön-
nen unterschiedliche Aspekte der Phänomenolo-
gie von Metallen erklärt werden. Beispiele dafür
sind die Herleitung der qualitativen Aspekte des
Ohm’schen Gesetzes, oder die Beziehung zwischen

elektrischer und thermischer Leitfähigkeit. Wir dis-
kutieren diese Resultate jedoch nicht im Rahmen des
klassischen Modells, sondern erst nach der Einfüh-
rung des quantenmechanischen Modells.

Element Z n (1022/cm3) r (Å)
Li (78 K) 1 4.70 1.72
Na (5K) 1 2.65 2.08
K (5K) 1 1.40 2.57
Be 2 24.7 0.99
Mg 2 8.61 1.41
Al 3 18.1 1.1
Ga 3 15.4 1.16

Tabelle 5.1: Anzahl Z freier Elektronen pro Atom,
Dichte n des Elektronengases und mitt-
lerer Abstand r zwischen den Leitungs-
elektronen für verschiedene Elemente.

Ein wesentlicher Unterschied zwischen dem Elek-
tronengas eines Metalls und einem echten Gas ist
die Dichte: Im Vergleich zu einem echten Gas ist die
Dichte des Elektronengases um rund einen Faktor
1000 größer: Pro Leitungselektron steht lediglich ein
Volumen zur Verfügung das etwa einem Atomvolu-
men entspricht. Für ein Atom mit Radius 2 Å erhält
man ein Volumen von ca. 3 ·10�29m3, entsprechend
einer Teilchendichte von 3 · 1028m�3. Dies ist eine
typische Größenordnung (ca. 1 � 20 · 1028m�3, sie-
he Tabelle 5.1). Im Vergleich dazu nimmt ein idea-
les Gas unter Normalbedingungen ein Volumen von
22,4 l ein. Pro Atom steht somit ein Volumen von

Vag =
22,4 ·10�3

6 ·1023 m3 = 4 ·10�26 m3

zur Verfügung.

Die positiv geladenen Atomrümpfe sind relativ klein
und füllen lediglich einen kleinen Teil des Raumes.
Bei Natrium umfasst das Volumen der Atomrümp-
fe rund 15 % des gesamten Festkörpervolumens; bei
Edelmetallen wie Ag und Au, wo auch kovalente Ef-
fekte zur Bindung beitragen, steigt der Anteil. Die
Kerne sind aber sehr viel schwerer als die Elektro-
nen und bleiben unbeweglich auf ihren Plätzen.

5.1.4 Grenzen des Drude-Modells

Wie bei der Diskussion der Gitterschwingungen ge-
langt man aber auch bei den Elektronen im Rah-
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5 Freie Elektronen

men der klassischen Physik sehr bald an eine Gren-
ze, ab der ein wirkliches Verständnis nur mit Hilfe
der Quantenmechanik erreicht werden kann. Zu den
qualitativen Unterschieden zwischen den Voraussa-
gen der klassischen und der quantenmechanischen
Theorie gehört die Berechnung der Stöße, die ein
Elektron bei der Durchquerung des Kristalls erlei-
det. Im klassischen Bild würde man eine große An-
zahl Stöße mit den Gitteratomen erwarten. Experi-
mentell findet man, dass die Distanz, über die sich
die Elektronen frei bewegen können, von der Quali-
tät des Kristalls abhängt, sowie von der Temperatur.
Während in gewöhnlichen Metallen bei Raumtem-
peratur (z.B. Kupferdrähte) die Elektronen nach we-
nigen Gitterperioden gestreut werden und sich des-
halb insgesamt diffusionsartig bewegen, kann bei
tiefen Temperaturen und guten Kristallen die mitt-
lere freie Weglänge größer als die Kristalldimensi-
on werden. Aus experimentellen Daten ist bekannt,
dass die freie Weglänge bis zu einem Zentimeter be-
tragen kann. In diesem Fall bewegt sich somit das
Elektron ohne Streuung durch rund 108 atomare La-
gen; offenbar breiten sie sich dann ballistisch, also
ohne Streuung im Kristall aus.

Weitere experimentelle Befunde, die mit dem
Drude-Modell nicht erklärt werden konnten, waren

• Die Temperaturabhängigkeit der elektrischen
und thermischen Leitfähigkeit.

• In einem idealen Gas sollten die Elektronen
einen Beitrag 3/2RT zur spezifischen Wärme
liefern; der experimentell beobachtete Beitrag
ist um rund 2 Größenordnungen kleiner.

Ein klassisches Modell, welches (teilweise) erklä-
ren kann, welche Elemente metallischen Charakter
haben, wurde 1927 durch Herzfeld vorgeschlagen3.
Ein wirkliches Verständnis ist jedoch nur im Rahmen
einer quantenmechanischen Behandlung möglich.

3Phys. Rev. 29, 701-705

5.2 Das quantenmechanische Modell

5.2.1 Das Sommerfeld-Modell

Die wichtigsten Beschränkungen des Drude Modells
können dadurch überwunden werden, dass man die
Elektronen als quantenmechanische Teilchen, d.h.
als Teilchen mit Wellencharakter behandelt. Ein ent-
sprechendes Modell wurde 1928 von Sommerfeld
vorgeschlagen, kurz nach der Entdeckung des Pauli-
Prinzips. Damit gelang es, die wichtigsten Inkonsi-
stenzen des Drude-Modells aufzulösen.

Ein Festkörper umfasst rund 1020 miteinander wech-
selwirkende Teilchen. Natürlich ist die exakte Be-
handlung eines solchen Systems nicht möglich. Das
Sommerfeld-Modell macht deshalb zunächst einige
drastische Vereinfachungen: es lässt die Wechsel-
wirkungen zwischen den Elektronen wie auch von
Kernen zu Elektronen vollständig weg und betrach-
tet zunächst nur freie und unabhängige Elektronen.
Ihre Zustände sind somit auch nur Einelektronen-
Zustände, die als Orbitale bezeichnet werden.
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Abbildung 5.4: Potenzial für Elektronen im
Sommerfeld-Modell.

Damit brauchen wir lediglich freie Elektronen in ei-
nem (unendlich ausgedehnten) Kristall zu betrach-
ten. Die Ränder des Kristalls sind Potenzialwände.
Als Eigenzustände solcher freier Elektronen kann
man bekanntlich ebene Wellen verwenden; diese
sind allerdings im gesamten Raum nicht normier-
bar. Man kann zu normierbaren Funktionen gelan-
gen, indem man periodische Randbedingungen ein-
führt. Die entsprechende Periode, welche groß ge-
gen die Gitterkonstante sein sollte, kann anschlie-
ßend gegen Unendlich geführt werden.

Die Atomrümpfe bilden ein Hintergrundpotenzial.
Sie bestehen aus den Kernen plus den stark gebun-
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5 Freie Elektronen

denen Elektronen in den gefüllten Schalten. Je nach
Metall sind diese Rümpfe relativ klein und weit von-
einander entfernt, oder sie berühren sich und bilden
teilweise kovalente Bindungen.

Das Sommerfeld’sche Modell der freien Elektronen
passt am besten auf die Alkalimetalle. Hier entspre-
chen die Atomrümpfe den abgeschlossenen Schalen
mit Edelgaskonfiguration, das eine Valenzelektron
im s-Orbital ist das freie Elektron, welches ein Lei-
tungsband mit s-Charakter bildet.

Abbildung 5.5: Aufbau des Planeten Jupiter.

Wasserstoff, das leichteste und häufigste Element
des Universums, gehört zur gleichen Gruppe des Pe-
riodensystems wie die Alkaliatome. Gemäß theoreti-
schen Vorhersagen sollte es bei hohen Drücken me-
tallisch werden. Man geht deshalb davon aus, dass
der Jupiter zu einem großen Teil aus metallischem
Wasserstoff besteht. Versuche, auf der Erde Was-
serstoff in die metallische Form zu bringen, haben
jedoch bisher keine eindeutigen Resultate geliefert.
Theoretische Vorhersagen gehen davon aus, dass da-
für Drücke im Bereich von 500 GPa (5 · 106 atm)
notwendig sind.

5.2.2 Das Teilchen im Potenzialtopf

Um die quantenmechanischen Zustandsfunktionen
der Elektronen im Kristall zu bestimmen, rekapitu-
lieren wir zunächst das Problem eines Teilchens in
einem eindimensionalen Potenzialtopf. Wie bei der
Diskussion der Phononen führen wir zunächst Rand-
bedingungen ein, welche in erster Linie dazu dienen,

die Zustände zu normieren und die Zustandsdichte
zu berechnen.

V

0 L x

λ = 2L

λ = L

λ = 2L/3
9

4

1

Abbildung 5.6: Eindimensionaler Potentialtopf.

Das Potenzial verschwindet auf der Strecke [0,L]
und ist unendlich hoch außerhalb. Der Hamiltonope-
rator dieses Systems beinhaltet im Bereich [0,L] le-
diglich die kinetische Energie

H =
p2

2m
= � h̄2

2m
d2

dx2 .

Die Eigenfunktionen dieses Operators sind die ebe-
nen Wellen

Yk = eikx

oder

Yk = a sinkx+b coskx

und die Eigenwerte sind

Ek =
h̄2k2

2m
=

p2

2m
.

Das Potenzial kann am einfachsten über die Randbe-
dingung berücksichtigt werden, dass

Y(x  0) = Y(x � L) = 0

sein muss. Damit sind die Lösungen

Yn = A sin
⇣

np

x
L

⌘

und die entsprechende Energie

En =
h̄2

2m

⇣np

L

⌘2
.
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Die Amplitude A ergibt sich aus der Normierungs-
bedingung

Z L

0
|Y(x)|2dx = |A2|L

2
= 1

zu A =
p

2/L.

Wenn sich mehrere Elektronen in diesem Potenzial
befinden und wir deren elektrostatische Wechselwir-
kung zunächst vernachlässigen, so kann gemäß dem
Ausschließungsprinzip von Pauli jeder dieser Zu-
stände mit zwei Elektronen mit entgegen gesetztem
Spin besetzt werden. Das Gesamtsystem ist demnach
im Grundzustand wenn die niedrigsten N/2 Zustän-
de mit jeweils 2 Elektronen besetzt sind.

5.2.3 Drei Raumdimensionen

In Kristallen entspricht der Potenzialtopf der Rand-
bedingung, dass die Elektronen sich innerhalb des
Kristalls befinden müssen. Wir berücksichtigen dies
wiederum über periodische Randbedingungen

Y(x,y,z) = Y(x+L,y,z) = Y(x,y+L,z)
= Y(x,y,z+L),

wobei L groß gegenüber einer Einheitszelle sein soll.

Im dreidimensionalen Raum lautet der Hamilton-
operator für ein freies Elektron

H = � h̄2

2m

✓
d2

dx2 +
d2

dy2 +
d2

dz2

◆
.

Elektronen in einem Potenzialtopf mit Kantenlänge
L haben dann die Zustände

Yn = Asin
✓

2p

L
nxx

◆
sin

✓
2p

L
nyy

◆
sin

✓
2p

L
nzz

◆

und Energien

En =
h̄2k2

2m
=

h̄2

2m
�
k2

x + k2
y + k2

z
�

=
h̄2

2m

✓
2p

L

◆2 �
n2

x +n2
y +n2

z
�
. (5.1)

Alternativ können komplexe Zustände (ebene Wel-
len) verwendet werden:

Y~k(~r) = ei~k·~r ~k =
2p

L

0

@
nx
ny
nz

1

A . (5.2)

Da wir uns hier in einem endlichen Bereich (mit Vo-
lumen L3) befinden, sind diese Zustände normierbar
und die möglichen k-Werte diskret. Die Energie die-
ser Zustände ist die gleiche wie in (5.1). Der Impuls
eines Elektrons in diesem Zustand ist ~p = h̄~k und sei-
ne Geschwindigkeit~v = h̄~k/m. Wir verwenden diese
Zustände als Basisfunktionen für die Beschreibung
von Elektronen in einem Kristall der Kantenlänge L.

Nach Gl. (5.2) sind die Zustände gleichmäßig im
k�Raum verteilt. Die Energie steigt proportional
zum Quadrat des Impulses.

5.2.4 Fermi-Kugel

Wir untersuchen nun die Frage, welche dieser Zu-
stände besetzt sind. Da Elektronen einen Spin ½ be-
sitzen, unterliegen sie der Fermi-Dirac Statistik und
jeder räumliche Zustand kann maximal von 2 Elek-
tronen mit entgegengesetztem Spin besetzt sein.

2ʌ/L

k

E

EF
Zustände leer

N Zustände 
besetzt

Fermi 
Energie

Abbildung 5.7: Links: Zustände im k-Raum; rechts:
Besetzung der Zustände bei T = 0.

Am absoluten Nullpunkt besetzen N Elektronen die
N/2 energetisch niedrigsten Zustände. Da die Ener-
gie (im Rahmen dieses Modells) nur vom Betrag
des Impulses abhängt, bilden diese Zustände im k-
Raum eine Kugel. Um die besetzten Zustände zu fin-
den, bestimmen wir zunächst die Zahl, respektive die
Dichte der Zustände im Impulsraum.

Für periodische Randbedingungen ist der Impuls-
raum diskret, mit Einheitszellen der Seitenlänge
2p/L. Die besetzten Zustände füllen in diesem
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Volumen pro Punkt 
im k-Raum:

kF

kz

kx

ky

Fermifläche

✓
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◆3

Zustände mit k<kF

Abbildung 5.8: Fermikugel.

Raum eine Kugel, deren Radius wir mit kF bezeich-
nen. Das Volumen dieser Kugel beträgt k3

F4p/3.

Die Anzahl der Zustände in dieser Kugel, d.h. die
Zahl der besetzten Zustände, muss der Zahl der Elek-
tronen entsprechen. Wir setzen somit die Zahl der
Elektronen gleich der doppelten (Spin!) Zahl der
Moden. Diese berechnen wir, indem wir das gesamte
Volumen der Kugel durch das Volumen pro Zustand
dividieren,

N = 2
4p

3 k3
F� 2p

L

�3 =
V k3

F
3p

2 . (5.3)

Bei N Elektronen muss damit der Radius der Kugel

kF =
3

r
3p

2N
V

sein.

5.2.5 Fermi-Energie

Die Energie der Elektronen mit Impuls h̄kF beträgt

EF =
h̄2k2

F
2m

=
h̄2

2m

✓
3p

2N
V

◆ 2
3

(5.4)

und wird als Fermi-Energie bezeichnet. Die Fermi-
Energie ist somit die Energie der Elektronen im
höchsten besetzten Einelektronenzustand. In der
Fermi Energie tritt die Anzahl Elektronen und das
Volumen nicht mehr unabhängig auf, sondern sie

hängt lediglich von der Dichte n = N/V der Elek-
tronen ab. Die Elektronendichte kann aus der Mas-
sendichte und der Atommasse berechnet werden:

n =
N
V

= NA
Z r

A
,

mit NA der Avogadro-Zahl, r der Dichte des Materi-
als, Z der Zahl der freien Elektronen pro Atom und
A der Atommasse.

Tabelle 5.2: Dichte der freien Elektronen in Metal-
len.

Aus der Dichte n der freien Elektronen kann man
auch den mittleren Abstand rs zwischen ihnen be-
rechnen, analog zum Drude-Modell. Wenn man das
Volumen pro Elektron schreibt als

1
n

=
V
N

=
4p

3
r3

s ,

dann wir der Radius rs dieser Kugel zu

rs = 3

r
3

4pn
.
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Tabelle 5.2 listet neben der Dichte der freien Elektro-
nen ebenso den Parameter rs. Dieser kann verglichen
werden mit dem Bohr-Radius a0 ⇡ 0,5 Å.

Tabelle 5.3: Beispiele von Fermi-Energien.

Nach Gleichung (5.4) sollte die Fermienergie mit
der Dichte der Elektronen zunehmen. Tabelle 5.3
zeigt, dass die experimentellen Werte dies bestäti-
gen. Typische Größenordnungen für die Elektronen-
zahldichte liegen bei 1029 m�3, für die Fermienergie
bei 10 eV.

Häufig parametrisiert man die Fermi-Energie auch
über die Temperatur:

kBTF = EF .

Typische Werte für die Fermi-Temperatur liegen bei
105 K, also bei Temperaturen weit oberhalb des
Schmelzpunktes. Somit ist T ⌧ TF immer eine sehr
gute Näherung.

Da die Fermienergie vom Volumen abhängt, EF µ
V �2/3, steht das System unter einem effektiven
Druck, welcher als Ableitung der Energie nach dem
Volumen berechnet werden kann,

p = �dU
dV

=
2
3

U
V

.

Dieser Fermidruck tritt auch bei anderen Fermionen
auf. Er ist z.B. dafür verantwortlich, dass Neutronen-
sterne bis zu einer gewissen Größe dem Gravitati-
onsdruck standhalten können.

Wenn wir den Impuls der Elektronen in eine
Geschwindigkeit umrechnen, erhalten wir für die
Geschwindigkeit der Elektronen an der Fermi-
Oberfläche

vF =
h̄kF

m
=

h̄
m

3

r
3p

2N
V

.

Typische Werte liegen im Bereich von 106 m/s, also
bei 0.003 c. Allerdings sollte man dies nicht mit ei-
nem entsprechend schnellen Massentransport asso-
ziieren.

Insgesamt ist die kinetische Energie der Leitungs-
elektronen deutlich niedriger als die entsprechende
kinetische Energie in einem isolierten Atom. Diese
Absenkung der kinetischen Energie ist im Wesentli-
chen für die metallische Bindung verantwortlich.

5.2.6 Zustandsdichte

Eine wichtige Größe ist die Zustandsdichte, d.h. die
Anzahl quantenmechanischer Zustände in einem be-
stimmten Volumen. Da die Elektronen gleichmäßig
über den ganzen Raum verteilt sind, ist die Zustands-
dichte im direkten (gewöhnlichen) Raum konstant.
Im reziproken Raum (k-Raum) ist die Zustandsdich-
te ebenfalls konstant, wie in Kap. 5.2.4 gezeigt.

Anders sieht es aus, wenn wir die Anzahl Zustän-
de als Funktion des Betrages des k-Vektors betrach-
ten. Für die Berechnung dieser Zustandsdichte be-
stimmen wir zunächst die Anzahl Zustände, deren
Wellenzahl kleiner als k ist. Laut Gl. (5.3) ist dies

Nk =
V k3

3p

2 .

Daraus können wir die Dichte der Zustände berech-
nen in der Umgebung eines Wellenvektors k, d.h. in
einer Kugelschale mit Radien k und k +dk:

dNk

dk
=

k2V
p

2 .

Außerdem interessiert die Zustandsdichte im Ener-
gieraum. Mit

E =
h̄2k2

2m
! k2 =

2mE

h̄2

erhalten wir für die Anzahl Zustände mit Energie
kleiner als E

N(E ) = V
(2mE )3/2

3p

2h̄3
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und daraus die Zustandsdichte im Energieraum

dN(E )

dE
= V

(2m)3/2

3p

2h̄3
d

dE
E 3/2

=

p
2V m3/2

p

2h̄3

p
E . (5.5)

p
2V m3/2

�2�3

p
E

dN(E)

dE

E

dN
dk

|k|

k2V
π2

Abbildung 5.9: Zustandsdichte im k-Raum (links)
und im Energieraum (rechts).

Die Zustandsdichte steigt also proportional zur Wur-
zel aus der Energie; sie verschwindet beim Null-
punkt und ist proportional zum Volumen V des Kri-
stalls. Abb. 5.9 zeigt die entsprechenden Größen.

5.3 Thermodynamik des
Elektronengases

Das Drude-Modell benutzt die klassische Thermo-
dynamik für die Berechnung der Geschwindigkeits-
verteilung der Elektronen. Dies wäre aber nicht mit
dem Pauli-Prinzip vereinbar. Dies wird korrigiert
durch die Fermi-Dirac Statistik.

5.3.1 Besetzungswahrscheinlichkeit

Am absoluten Nullpunkt sind die Zustände bis zur
Fermienergie mit jeweils zwei Elektronen mit ent-
gegengesetztem Spin besetzt, die darüber liegenden
Zustände sind leer. In Wirklichkeit befinden sich die
Elektronen jedoch immer bei endlicher Temperatur
und sind somit thermisch angeregt.

Dieses System kann zusätzliche Energie aufnehmen
wenn ein Elektron aus einem Niveau unterhalb der

E

D(E)

EF

T=0

E

D(E)

EF

T>0

Abbildung 5.10: Besetzungswahrscheinlichkeit der
Zustände bei T = 0 (links) und T >
0 (rechts).

E�i

Abbildung 5.11: Beispiel eines N-Elektronen Zu-
stands, mit unterschiedliche be-
setzten 1-Elektronenzuständen der
Energie Ei.

Fermikante in eines oberhalb angeregt wird. Abb.
5.10 zeigt qualitativ diese Umverteilung.

Wir bestimmen nun die Wahrscheinlichkeit, dass ein
Zustand mit gegebener Energie E bei einer Tempera-
tur T besetzt ist. Dabei ist es nicht möglich, die Elek-
tronen einzeln zu betrachten, da die Besetzung der
Einelektronenzustände aufgrund des Pauliprinzips
stark aneinander gekoppelt ist. Wir diskutieren des-
halb im Folgenden nicht 1-Elektronenzustände, son-
dern N-Elektronenzustände. Abb. 5.11 zeigt einen
solchen Zustand, welcher als Produktzustand von
Einelektronenzuständen gegeben ist.

Die Wahrscheinlichkeit, dass ein N-Elek-
tronenzustand mit Energie E besetzt ist, beträgt

PN(E ) =
e�E /kBT

Â
a

e�E
a

/kBT . (5.6)

Die Summe im Nenner läuft über alle möglichen Zu-
stände. Sie ist aus der statistischen Thermodynamik
als Zustandssumme bekannt uns kann geschrieben
werden als

Â
a

e�E
a

/kBT = e�F/kBT = e�(U�T S)/kBT ,

wobei F die Helmholtz’sche freie Energie, U die
innere Energie und S die Entropie des Systems
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darstellt. Wir können deshalb die Besetzungswahr-
scheinlichkeit auch schreiben als

PN(E ) = e�E /kBT eF/kBT = e�(E �F)/kBT .

In der Praxis kennt man leider den N-Elek-
tronenzustand nicht. Experimentell zugänglich ist
hingegen die Besetzungswahrscheinlichkeit fi für
einen Einelektronenzustand i (Spin-Orbital).

Diesen berechnet man aus der Verteilung (5.6) durch
Summation über alle N-Elektronenzustände, in de-
nen der Zustand i besetzt ist,

f N
i = Â

b

PN(E N
b

).

b läuft über alle Zustände, in denen das i-te Orbital
besetzt ist.

Der Zustand i ist entweder besetzt oder leer. Somit
kann man die Besetzungswahrscheinlichkeit auch
als die Differenz zwischen 1 und der Wahrschein-
lichkeit für Nichtbesetzung schreiben:

f N
i = 1�Â

g

PN(E N
g

),

wobei die Summe jetzt über diejenigen Zustände
läuft, bei denen der Zustand i nicht besetzt ist.

Im Modell freier Elektronen ist die Gesamtenergie
des N-Elektronen Zustandes durch die Summe der
Energien der besetzten 1-Elektronen Zustände ge-
geben. Wir drücken jetzt die Energie E N

g

des N-
Elektronenzustands mit leerem Zustand i aus durch
die Energie des entsprechenden N + 1-Elektronen
Zustandes, in dem der Zustand i besetzt, ist mi-
nus die Energie des entsprechenden Elektrons, E N

g

=

E N+1
b

� ei. Damit wird

f N
i = 1�Â

b

PN(E N+1
b

� ei), (5.7)

wobei ei die Energie des Einelektronenzustands i
darstellt.

5.3.2 Die Fermi-Dirac Verteilung

Das Verhältnis der Besetzungswahrscheinlichkeiten
für den N-Elektronenzustand und den N +1 Elektro-

nenzustand beträgt

PN(E N+1
b

� ei)

PN+1(E
N+1

b

)
=

e�
E N+1

b

�ei�FN

kBT

e�
E N+1

b

�FN+1

kBT

= e
ei�µ

kBT , (5.8)

wobei

µ = FN+1 �FN

das chemische Potenzial darstellt, d.h. die Ableitung
der freien Energie nach der Teilchenzahl,

µ =
∂U
∂N

.

Diese thermodynamische Zustandsvariable gibt an,
wie stark sich die Energie des Systems ändert, wenn
die Teilchenzahl N (hier: die Zahl der Elektronen)
um eins ändert. Die Besetzungswahrscheinlichkeit
hängt also davon ab, ob der Zustand i oberhalb oder
unterhalb des chemischen Potenzials liegt.

Aus (5.8) erhalten wir für den Summanden in (5.7)

PN(E N+1
b

� ei) = e
ei�µ

kBT PN+1(E
N+1

b

).

Wir setzen dieses Resultat in die Summe ein und er-
halten

f N
i = 1� e

ei�µ

kBT Â
b

PN+1(E
N+1

b

).

Diese Summe ist aber gerade die Besetzungswahr-
scheinlichkeit f N+1

i für den i-ten Zustand in einem
System mit N +1-Elektronen:

f N
i = 1� e

ei�µ

kBT f N+1
i .

Wir können diese Form vereinfachen, wenn wir an-
nehmen, dass die Besetzungswahrscheinlichkeit sich
durch die Veränderung der Elektronendichte um ein
Elektron (also relativ um ⇡ 10�23) nicht wesentlich
ändert. Wir können dann f N+1

i ersetzen durch f N
i .

Auflösen der Gleichung nach f N
i ergibt

f N
i =

1
e(ei�µ)/kBT +1

.

Dies ist die Fermi-Dirac Verteilung, d.h. die Be-
satzungswahrscheinlichkeit für Fermionen in einem
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Zustand der Energie ei. Der Term +1 im Nenner
stellt sicher, dass die Funktion nicht größer als 1
wird, dass also kein Zustand mehr als einmal be-
setzt werden kann. Die Bose-Einstein Statistik un-
terscheidet sich durch ein Minus an dieser Stelle. In
diesem Fall kann die Besetzungswahrscheinlichkeit
sehr groß werden. Bei tiefen Temperaturen konden-
sieren Bosonen deshalb alle in den Grundzustand.
Solche Phänomene sind für kollektive Quantenphä-
nomene verantwortlich, wie z.B. Supraleitung, Su-
prafluidität oder Bose-Einstein Kondensation.

5.3.3 Eigenschaften der Fermi-Dirac
Verteilung

Da die Fermi-Temperatur sehr viel höher ist als die
Raumtemperatur und für niedrige Temperaturen µ ⇡
kBTF , gilt meistens T ⌧ µkB. Wir betrachten die fol-
genden Grenzfälle:

a) ei ! 0 : Die Exponentialfunktion geht gegen null
und f N

i ! 1.

b) ei � µ: Die Exponentialfunktion wird groß ge-
gen 1 und f N

i ! e�(ei�µ)/kBT . In diesem Bereich nä-
hert sich die Fermi-Dirac Verteilung der Boltzmann-
Verteilung an und fällt exponentiell gegen Null ab.

kBT = µ

kBT = µ/10

�i/µEnergie

f i
Be

se
tz
un

gs
w
ah

rs
ch

ei
nl
ic
hk

ei
t

0,0 0,5 1,0
0,0

0,5

1,0
fN

i =
1

e(�i�µ)/kBT + 1
kBT =

µ

100

Abbildung 5.12: Fermi-Dirac Besetzungswahr-
scheinlichkeit bei verschiedenen
Temperaturen.

Bei der Temperatur 0 K macht die Fermi-Dirac Ver-
teilung einen abrupten Übergang von 1 nach 0 an der
Fermikante : alle Zustände unterhalb von EF sind be-
setzt, alle oberhalb sind leer. Bei höheren Tempera-

turen wird Population aus der Nähe der Fermikan-
te in energetisch höhere Zustände verschoben. Die
Breite dieses Übergangsbereiches ist von der Grö-
ßenordnung kBT . Das Zentrum des Übergangsbe-
reichs wird durch das chemische Potenzial µ be-
stimmt, welches am absoluten Nullpunkt der Fermi-
energie entspricht.

Im Gegensatz zur Fermienergie ist das chemische
Potenzial aber temperaturabhängig. Man kann die
Temperaturabhängigkeit berechnen, indem man aus
der Besetzungswahrscheinlichkeit die gesamte Elek-
tronenzahl berechnet:

N = Â
i

fi = Â
i

1
e(e�µ)/kBT +1

.

Hier wurde der Index i für die Energie des Einelek-
tronenzustands weggelassen. Für eine feste Elektro-
nenzahl N kann man aus dieser Gleichung das che-
mische Potenzial µ bestimmen. Dafür entwickelt
man die Differenz der Besetzungswahrscheinlich-
keiten bei der Temperatur T und bei T = 0 K als
Taylorreihe um E = µ . Daraus erhält man für die
Temperaturabhängigkeit des chemischen Potenzials
in niedrigster Ordnung in T

µ(T ) = EF

 
1� p

2

12

✓
T
TF

◆2

+ . . .

!
.

Für alle relevanten Temperaturen gilt T ⌧ TF , so
dass höhere Terme in exzellenter Näherung vernach-
lässigt werden können.

5.3.4 Die thermische Energie des
Elektronengases

Gemäß der klassischen Drude-Theorie sollte die ki-
netische Energie der Elektronen wie bei Gasteil-
chen 3

2 NkBT sein. Damit sollte die Wärmekapazi-
tät also Cel ⇡ 3R/2 betragen, unabhängig von der
Temperatur. Experimentell beobachtet man aber bei
Raumtemperatur einen Wert, der wesentlich niedri-
ger ist, von der Größenordnung <1% des klassischen
Wertes, und außerdem temperaturabhängig. Erst die
Fermi-Dirac Verteilung löste dieses Problem: Wäh-
rend in einem klassischen Gas eine Temperaturerhö-
hung um DT die Energie jedes Teilchens um kBDT/2
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erhöht, können die meisten Leitungselektronen kei-
ne Energie von der Größenordnung kBT aufnehmen,
da in diesem Bereich keine leeren Zustände zur Ver-
fügung stehen. Lediglich in der Nähe der Fermikan-
te, in einem Bereich der Breite ⇡ kBT um die Fermi-
Energie stehen teilweise gefüllte Zustände zur Ver-
fügung. Die Zahl der Elektronen in diesem Bereich
liegt in der Größenordnung von T/TF mal die Zahl
aller Elektronen. Da typische Werte für die Fermi-
Temperatur bei rund 105 K liegen beträgt dieses Ver-
hältnis bei Raumtemperatur weniger als 1%. Die
gleiche Überlegung sagt auch voraus, dass die spe-
zifische Wärme proportional zur Temperatur abneh-
men sollte.

Die Rechnung lässt sich in der Tieftemperatur-
Näherung T ⌧ TF auch exakter durchführen. Wir
berechnen die gesamte Energie U der Elektronen als
Summe über die Energie aller besetzten Einelektro-
nenzustände als

U =
Z •

0
de e D(e) f (e)

=
Z •

0
de D(e)

e

e(e�µ)/kBT +1
,

wobei D(e) die Zustandsdichte und f (e) die Beset-
zungswahrscheinlichkeit bezeichnen.

Die thermische Energie UT des Elektronengases bei
der Temperatur T entspricht der Erhöhung dieser
Energie bei einer Temperaturänderung T : 0 ! T :

UT = U(T )�U(0)

=
Z •

0
de e D(e) f (e)�

Z
eF

0
de e D(e).

Das erste Integral wird in 2 Bereiche aufgeteilt:

UT = (
Z

eF

0
+

Z •

eF

)de e D(e) f (e)

�
Z

eF

0
de e D(e)

und die Terme mit den gleichen Integrationsgrenzen
werden zusammengefasst:

UT =
Z

eF

0
de e D(e) ( f (e)�1)

+
Z •

eF

de e D(e) f (e).

Das erste Integral beinhaltet die Energie, welche be-
nötigt wird, um die Elektronen aus den Zuständen
unterhalb der Fermikante zu entfernen, das zweite
Integral die Energie der Elektronen oberhalb der Fer-
mikante, also in den Zuständen, die bei T = 0 nicht
besetzt sind.

Die Anzahl Elektronen muss dabei konstant bleiben,

N = N(T ) = N(0) =
Z •

0
de D(e) f (e)

=
Z

eF

0
de D(e).

Diese Identität kann mit der Fermienergie eF multi-
pliziert werden:

(
Z

eF

0
+

Z •

eF

)de eF D(e) f (e)

=
Z

eF

0
de eF D(e).

Wir addieren die rechte Seite zur thermischen Ener-
gie und subtrahieren die linke Seite und erhalten

UT =
Z

eF

0
de [e D(e) ( f (e)�1)

+eF D(e)� eF D(e) f (e)]

+
Z •

eF

de [e D(e) f (e)� eF D(e) f (e)]

=
Z

eF

0
de (e � eF)D(e) ( f (e)�1)

+
Z •

eF

de (e � eF)D(e) f (e).

Die entspricht einer Verschiebung des Energienull-
punktes: die Energien werden jetzt relativ zur Fer-
mienergie berechnet.

Das erste Integral bezeichnet die Energie, welche be-
nötigt wird, um die Elektronen aus einem besetzten
Zustand an die Fermikante anzuheben, das zweite
die Energie, welche zusätzlich aufgebracht werden
muss, um sie von der Fermikante in einen leeren Zu-
stand oberhalb zu bringen. Beide Beiträge zur Ener-
gie sind positiv. Abb. 5.13 zeigt diesen Beitrag in der
unteren Kurve.
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5.3.5 Spezifische Wärme

Wir suchen nun die spezifische Wärme, also die
Änderung der inneren Energie pro Temperaturände-
rung. Der einzige Term in der obigen Gleichung, der
sich mit der Temperatur ändert, ist die Besetzungs-
wahrscheinlichkeit f (E ). Wir erhalten deshalb

Cel =
dU
dT

=
Z •

0
de(e � eF)D(e)

d f (e)

dT
.

Da sich die Besetzungswahrscheinlichkeit nur in der
Nähe der Fermikante wesentlich ändert, verschwin-
det der Integrand für Energien weit von der Fermi-
energie. Wir können deshalb die Zustandsdichte in
guter Näherung durch den Wert an der Fermikante
ersetzen, D(e) ! D(eF), und aus dem Integral her-
ausziehen:

Cel = D(eF)
Z •

0
de(e � eF)

d f (e)

dT
. (5.9)

Für die Berechnung der Änderung der Besetzungs-
wahrscheinlichkeit approximieren wir das chemi-
sche Potenzial durch die Fermienergie:

f =
1

e(e�eF )/kBT +1
.

Dies ist eine gute Näherung bei niedrigen Tempera-
turen. Damit wird die Ableitung nach der Tempera-
tur

d f
dT

=
e � eF

kBT 2
e(e�eF )/kBT

�
e(e�eF )/kBT +1

�2 .

einsetzen in (5.9) ergibt die Wärmekapazität

Cel = kBD(eF)
Z •

0
de

✓
e � eF

kBT

◆2

· e(e�eF )/kBT

�
e(e�eF )/kBT +1

�2 .

Abbildung 5.13 zeigt eine graphische Darstellung
des Integranden.

Änderung der Besetzungdf(�)

�
�F

� � �F

�

Änderung der Energie

Abbildung 5.13: Änderung der Besetzung und Än-
derung der Energie bei endlicher
Temperatur.

Für die Integration verwendet man die Abkürzung
x = (e � eF)/kBT und de = dxkBT :

Cel = k2
BT D(eF)

Z •

�eF/kBT
dxx2 ex

(ex +1)2

= k2
BT D(eF)

Z •

�eF/kBT
dx

x2

ex +2+ e�x .

(5.10)

-10 -5 5 10

0.2

0.3
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0 x

Abbildung 5.14: Grafische Darstellung des Integran-
den in Gl. (5.10).

Der Integrand fällt für |x| � 1 exponentiell ab. Für
Temperaturen weit unterhalb der Fermitemperatur,
kBT ⌧ eF , d.h. im gesamten interessanten Bereich,
kann die untere Integrationsgrenze deshalb auf -•
gesetzt werden. Das resultierende Integral ist nicht
trivial, kann aber bestimmt werden und hat den Be-
trag p

2/3. Damit wird

Cel = k2
BT D(eF)

p

2

3
.
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Die Zustandsdichte an der Fermikante erhalten wir
aus (5.5)

D(eF) =
dN(E )

dE

����
eF

=
p

eFV
(2m)3/2

2p

2h̄3

und (5.4)

eF =
h̄2

2m

✓
3p

2N
V

◆ 2
3

nach Erweiterung mit 1 als

D(eF) =
p

eFV
(2m)3/2

2p

2h̄3 e

�3/2
F

✓
h̄2

2m

◆ 3
2 3p

2N
V

=
3N
2eF

=
3N

2kBTF
,

sodass

Cel =
p

2

2
kBN

T
TF

(5.11)

wird. Offenbar wächst die die elektronische Wärme-
kapazität proportional zur Temperatur und erreicht
erst in der Nähe der Fermitemperatur den Wert von
Dulong-Petit. Bei niedrigeren Temperaturen ist die
Wärmekapazität somit um etwa das Verhältnis T/TF
geringer.

Gleichung (5.11) wird auch gerne als Cel = gT ge-
schrieben. Der theoretische Wert für die Proportio-
nalitätskonstante g ist

g =
p

2NAk2
B

2EF
=

p

2NAk2
B

2(h̄2/2m)(3p

2n)2/3

= m
(p/3)2/3NAk2

B

h̄2 n�2/3 (5.12)

und hat die Einheit

[g] =
J

molK2 .

5.3.6 Vergleich Elektronen / Phononen

Gemessen wird nie die elektronische Wärmekapa-
zität alleine, sondern die gesamte Wärmekapazität,
welche sich aus einem phononischen und einem

elektronischen Teil zusammensetzt. Zwischen der
Debye-Temperatur und der Fermitemperatur domi-
niert somit der phononische Anteil. Für Temperatu-
ren unterhalb der Debye-Temperatur erwarten wir ei-
ne Temperaturabhängigkeit der Form

C = gT +AT 3 oder
C
T

= g +AT 2.

Hier stellt g den elektronischen und A den phononi-
schen Anteil dar. Diese Beziehung stellt man gerne
in der in Abb. 5.15 gezeigten Form dar: das Verhält-
nis C/T wird gegen das Quadrat der absoluten Tem-
peratur aufgetragen.

Abbildung 5.15: Vergleich der Temperaturabhängig-
keit der Wärmekapazitäten des Iso-
lators KCl und des Metalls Cu.

In dieser Darstellung zeigt der Achsenabschnitt den
Beitrag der Elektronen, die Steigung den Beitrag der
Phononen. Der elektronische Beitrag sollte also für
sehr tiefe Temperaturen dominieren. Abb. 5.15 zeigt
dies für Cu. Da KCl keine freien Elektronen besitzt,
verschwindet hier der elektronische Beitrag zur spe-
zifischen Wärme: die entsprechende Kurve hat Ach-
senabschnitt Null.

Die unterschiedliche Temperaturabhängigkeit für
Elektronen und Phononen kann auf zwei funda-
mentale Unterschiede zwischen den beiden Arten
von Teilchen zurückgeführt werden. Zum einen sind
Phononen Quasiteilchen, welche erzeugt und ver-
nichtet werden können (Ruhemasse = 0), während

135



5 Freie Elektronen

f(E , t) =
1

e
��

kBT � 1
f(E , t) =

1

e
E�EF
kBT + 1

k

�(k) E(k)

k

Phononen Elektronen

Abbildung 5.16: Vergleich der Dispersion und Stati-
stik für Phononen und Elektronen.

für Elektronen Teilchenzahlerhaltung gilt, da deren
Ruhemasse endlich ist. Die unterschiedliche Ruhe-
masse führt auch zu unterschiedlichen Dispersions-
relationen, wie in Abb. 5.16 dargestellt. Zum an-
dern unterliegen Elektronen im Gegensatz zu Pho-
nonen dem Pauli-Prinzip, da sie einen Spin h̄/2 be-
sitzen, während Phononen Bosonen sind. Dies führt
zu einer unterschiedlichen Statistik (Fermi-Dirac vs.
Bose-Einstein).

5.3.7 Effektive Masse

Element γth γexp 
     
  
Fe 6.3 50.1 
Mn 6.3  167.1 
Zn 7.5 5.8 
Cd 9.6 7.1 
Hg 10.0 20.9 
Al 9.2 12.5 
Ga 10.0 6.3 
In 12.1 18.0 
Tl 13.0 14.6 
Sn 13.8 18.4 
Pb 15.0 29.2 
Bi 18.0 0.8 
Sb 16.3 6.3

Element γth γexp 
     
  

Li 7.5 17.5 
Na 10.9 14.6 
K 16.7 19.6 
Rb 19.2 24.2 
Cs 22.1 32.2 
Cu 5.0 6.7 
Ag 6.3 6.7 
Au 6.3 6.7 
Be 5.0 2.1 
Mg 10.0 13.4 
Ca 15.0 27.2 
Sr 18.0 36.3 
Ba 19.6 27.2 
Nb 6.7 83.6 

10�4J

Mol K2

10�4J

Mol K2
10�4J

Mol K2

10�4J

Mol K2

Tabelle 5.4: Vergleich der theoretischen und expe-
rimentellen Wärmekapazitäten einiger
Elemente.

Ein Vergleich der gemessenen und berechneten elek-
tronischen Wärmekapazität (! Tab. 5.4) zeigt, dass

die beobachteten Werte in der richtigen Größenord-
nung liegen, aber nicht quantitativ exakt sind. Dies
liegt zum einen daran, dass die Dichte der freien
Elektronen teilweise schwierig zu bestimmen ist. Ein
Beispiel dafür sind die Übergangsmetalle, wo an
der Fermikante sowohl die Elektronen aus den d-
Orbitalen, wie auch diejenigen aus den s-Orbitalen
beitragen.

CeCu2Si2

m*/me ~ 200

T2 [K2]

C T

m
J

m
ol

K
2

Abbildung 5.17: Wärmekapazität als Funktion der
Temperatur für Metalle mit 4f und
5f Elektronen.

Wie Abb. 5.17 zeigt, gibt es viele Verbindungen, bei
denen das beobachtete Verhalten stark von der Er-
wartung abweicht. So steigt hier die Wärmekapazität
bei tiefen Temperaturen wieder an.

Laut Gleichung (5.12) ist die Wärmekapazität pro-
portional zur Masse der Elektronen. Deshalb be-
schreibt den Unterschied zwischen den experimen-
tellen und dem theoretischen Wert der Wärmekapa-
zität gerne über eine Änderung der effektiven Elek-
tronenmasse. Einige intermetallische Verbindungen
von seltenen Erden und Actiniden (also Elementen
mit f-Elektronen) zeigen bei niedrigen Temperatu-
ren extrem hohe Wärmekapazitäten, welche einer ef-
fektiven Elektronenmasse von rund 1000 me entspre-
chen. Diese Änderungen der effektiven Masse kön-
nen im Rahmen des Bändermodells als Kopplung an
die Atomrümpfe teilweise erklärt werden (! Kap.
6, Abb. 5.18).

Bei solchen Verbindungen spricht man häufig von
“schweren Fermionen”. Sie haben verschiedene in-
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Abbildung 5.18: Gitterpotenzial für schwere Fer-
mionen.

teressante Eigenschaften. So bilden sie eine speziel-
le Klasse von Supraleitern, die “exotischen Supralei-
ter”.

5.4 Elektrische Leitfähigkeit

5.4.1 Grundlagen

Die Fähigkeit, elektrischen Strom zu leiten, gehört
zu den charakteristischen Eigenschaften der Metal-
le. Sowohl die klassische Drude-Theorie wie auch
die quantenmechanische Theorie bieten einen An-
satz für die Erklärung dieses Phänomens. Wir disku-
tieren hier einen halbklassische Beschreibung, d.h.
wir verwenden klassische Bewegungsgleichungen,
berücksichtigen aber die Fermi-Dirac Verteilung.

Elektrischer Strom wird durch die freien Elektronen
getragen. Deren Reaktion auf das angelegte elek-
trische Feld bestimmt deshalb die Beziehung zwi-
schen Strom und Spannung, welche im Rahmen die-
ser Theorie mit dem Ohm’schen Gesetz überein-
stimmt. Die meisten freien Elektronen bewegen sich
mit einer relativ hohen Geschwindigkeit; die Fer-
migeschwindigkeit liegt bei rund 106 m/s. Da die
Verteilung der Geschwindigkeiten ohne ein äußeres
Feld isotrop ist, findet jedoch netto kein Ladungs-
transport statt.

Perfekte Metalle können prinzipiell Strom leiten
auch wenn kein elektrisches Feld anliegt. Reale Me-
talle weisen jedoch immer einen endlichen Wider-
stand auf – mit Ausnahme der Supraleiter, welche
nicht als normale Metalle beschrieben werden kön-
nen und in einem späteren Kapitel noch behandelt
werden.

Werden äußere Felder an ein Metall angelegt, so
bewirken diese auf die Elektronen eine zusätzliche

Kraft

~F = m
d~v
dt

= h̄
d~k
dt

= �e[~E +~v⇥~B]. (5.13)

Im Rahmen der klassischen Mechanik können wir
gleichzeitig die Geschwindigkeit schreiben als

~v =
d~r
dt

=
h̄~k
m

.

Diese Verhalten würde man auch quantenmecha-
nisch erhalten, wenn man damit ein Wellenpaket be-
schreibt.

Wir betrachten hier zunächst nur elektrische Felder,
welche offenbar zu einer gleichförmigen Beschleu-
nigung führen. Im Impulsraum erhalten wir

~k(t)�~k(0) = � e
h̄
~Et,

d.h. einen Impuls, der linear mit der Zeit zunimmt.
Dies ist in einem Metall für einzelne Elektronen
nicht möglich, da es durch eine Impulsänderung in
einen Zustand übergehen würde, der bereits durch
ein anderes Elektron besetzt ist. Da die Felder auf
alle Elektronen wirken, wird jedoch die gesamte Fer-
mikugel verschoben um eine Distanz, welche linear
mit der Zeit wächst. Für das gesamte System von N
Elektronen wird der Impuls damit

~p = Â
n

h̄~kn = �Ne~Et

In Wirklichkeit dauert die Beschleunigung der Elek-
tronen nicht beliebig lange, sondern nur bis die Elek-
tronen einen Stoß ausführen. Bei einem Stoß wird
kinetische Energie vom Elektron auf das Gitter über-
tragen. Im Rahmen dieses Modells wird dabei an-
genommen, dass die Geschwindigkeit des Elektrons
thermalisiert wird, d.h. sie kehrt zur Fermi-Dirac
Verteilung zurück. Wenn die Thermalisierung im
Mittel eine Zeit t beansprucht, erreichen die Elek-
tronen im Mittel einen Impuls, der sich um

d

~k = �e~Et

h̄

vom thermischen Gleichgewicht unterscheidet. Die
Fermikugel im k-Raum wird somit um diesen Betrag
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Abbildung 5.19: Verschobene Fermikugel im elek-
trischen Feld.

gegenüber dem Ursprung verschoben und der resul-
tierende Gesamtimpuls wird

~p = Â
n

h̄~kn = �Ne~Et

Da die Geschwindigkeit der Elektronen direkt pro-
portional zum k-Vektor ist,

~v =
h̄~k
m

= �e~Et

m
,

können wir daraus die Stromdichte berechnen:

~j = n(�e)~v = ne2
t

~E/m.

Hier stellt n die Anzahl Leitungselektronen pro Vo-
lumeneinheit dar. Der Strom ist somit proportional
zur Feldstärke, wie im Ohm’schen Gesetz. Die Pro-
portionalitätskonstante ist die spezifische elektrische
Leitfähigkeit

s = ne2 t

m
; [s ] =

1
Wm

(5.14)

und der Kehrwert

r =
1
s

=
m

ne2
t

[r] = Wm

ist der spezifische elektrische Widerstand. Dieses
Resultat ist identisch mit der Voraussage des klas-
sischen Modells.

Prinzipiell sind alle diese Größen anisotrop. Entspre-
chend wird die Leitfähigkeit im allgemeinen Fall
durch einen Tensor beschrieben. Wir beschränken
uns hier jedoch auf den isotropen Fall.

Element 77 K 273 K 373 K
Li 7.3 0.88 0.61
Na 17 3.2
K 18 4.1
Rb 14 2.8

Tabelle 5.5: Relaxationszeiten für einige Alkalime-
talle in Einheiten von 10�14 s.

Offenbar ist die Leitfähigkeit proportional zur Zeit
zwischen zwei Stößen. In sehr sauberen Metallen
kann bei tiefen Temperaturen eine freie Weglänge
von bis zu 10 cm erreicht werden. Die Geschwindig-
keit der Elektronen kann unter diesen extremen Be-
dingungen mehrere Prozent der Lichtgeschwindig-
keit erreichen.

5.4.2 Widerstand

Man kann zwei wichtige Beiträge zur Streuung von
Ladungsträgern unterscheiden, die Streuung an Pho-
nonen und die Streuung an Gitterfehlern, also Fehl-
stellen und Verunreinigungen. Die beiden Prozesse
tragen additiv zum spezifischen Widerstand bei,

r =
1
s

= rP +ri,

wobei rP den Beitrag der Phononen beschreibt und
ri den Beitrag der Gitterfehler. Diese Aufteilung
des spezifischen Widerstandes wird als Matthiesen4-
Regel bezeichnet. Dementsprechend kann man die
Relaxationszeiten t unterteilen:

1
t

=
1

tDefekt
+

1
tPhonon

,

wobei tDefekt die Zeit bis zur Streuung an einem De-
fekt bezeichnet und tPhonon die Zeit bis zur Streuung
an einem Phonon. Die letztere ist stark von der Tem-
peratur abhängig, die erstere nicht. Deshalb wird
der Widerstand bei Raumtemperatur hauptsächlich
durch Streuung an Phononen verursacht, während
bei tiefen Temperaturen Stöße mit Gitterfehlern und
Fremdatomen dominieren.

4Nach Augustus Matthiessen (1831 - 1870)
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Abbildung 5.20: Tieftemperaturverhalten des spezi-
fischen Widerstandes.

Da die Phononen bei tiefen Temperaturen ver-
schwinden, bleibt dann nur noch der Beitrag der Kri-
stallfehler zurück. Dieser Beitrag ist je nach Probe
unterschiedlich. Abb. 5.20 zeigt den temperaturab-
hängigen Widerstand, welcher bei tiefen Temperatu-
ren in einen konstanten Wert übergeht.
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Abbildung 5.21: Tieftemperaturverhalten des spezi-
fischen Widerstandes für zwei un-
terschiedliche Proben aus Kalium.

Abb. 5.21 zeigt 2 Datensätze, welche an unterschied-
lichen Proben von Kalium gemessen wurden. Im
Tieftemperaturbereich tragen vor allem Gitterfehler
bei, welche bei den beiden Proben in unterschiedli-
chem Maße vorhanden sind. Über solche Messungen
kann man die Konzentration von Verunreinigungen

bestimmen. Typische Widerstandswerte für Fremda-
tome liegen bei etwa 10�6 Wcm pro Atom-% Verun-
reinigung.

5.4.3 Streuung an Phononen

Bei höheren Temperaturen treten auch “dynamische
Kristallfehler” auf, nämlich Phononen. Deren Bei-
trag zum elektrischen Widerstand wird am besten als
Emission oder Absorption eines Phonons durch ein
Elektron beschrieben. Sowohl Energie wie auch Im-
puls muss bei diesen Prozessen erhalten bleiben, d.h.

ek = ek0 ± h̄w(k � k0),

wobei k, k0 die Wellenzahlen des Elektrons vor und
nach dem Streuprozess bezeichnen, w(q) die Phono-
nenfrequenz.

An diesen Streuprozessen können praktisch nur
Elektronen in der Nähe der Fermikante teilnehmen,
da für die anderen keine freien Zustände zur Verfü-
gung stehen.

¡k

¡k'

t, k-k'

Abbildung 5.22: Elektron-Phonon Streuung.

Die Zahl solcher Streuprozesse kann bei hohen Tem-
peraturen als proportional zur Phononenzahl ange-
setzt werden, d.h. zu

hni =
1

eh̄w/kBT �1
.

Ist die Temperatur oberhalb der Debye-Temperatur,
h̄w ⌧ kBT , so wächst die Phononenzahl

hni ⇡ 1
1+ h̄w

kBT �1
=

kBT
h̄w

,

d.h. proportional zur Temperatur. Damit nimmt auch
die Anzahl Stöße und der elektrische Widerstand µ
T zu.
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Abbildung 5.23: Umklapp-Streuprozess.

5.4.4 Temperaturabhängigkeit

Bei Temperaturen in der Nähe der Debye-
Temperatur spielen Umklapp-Prozesse (G 6= 0)
eine wichtige Rolle. Abb. 5.23 zeigt schematisch die
Streuung eines Elektrons von einem Zustand nahe
der Fermikante. Unter Erzeugung eines Phonons
und eines Gittervektors streut das Elektron praktisch
auf die entgegengesetzte Seite der Fermifläche.
Der für eine Rückwärtsstreuung erforderliche
Phononenimpuls muss bei weitem nicht so groß
sein wie bei einem Normal-Prozess. Dafür werden
Phononen mit Energien in der Größenordnung
der halben Debye-Energie benötigt. Deren Zahl
nimmt mit abnehmender Temperatur exponen-
tiell ab. Umklapp-Prozesse sind bei “mittleren”
Temperaturen relevant.

EF

kBT

k
k’

Abbildung 5.24: Streuprozess nahe bei der Fermi-
kante.

Bei Temperaturen deutlich unterhalb der Debye-
Temperatur sind werden Normal-Prozesse wichti-
ger als Umklapp-Prozesse. Im Rahmen des einfa-
chen Modells von Kapitel 4.4.9 können wir ab-
schätzen, dass die Zahl der Phononen mit Frequenz

w ⇡ kBT/h̄ mit T 2 abnimmt. Die Wahrscheinlich-
keit, dass solche Streuprozesse stattfinden, sinkt au-
ßerdem mit 1/T , da Phononen mit großer Wellen-
länge eine geringere Wahrscheinlichkeit für einen
Absorptions-/Emissionsprozess besitzen.

Die Energie eines Elektrons an der Fermikante (~10
eV) ist viel größer als die Energie des entsprechen-
den Phonons (⇡ kBT ⇡ 25 meV bei Raumtempe-
ratur). Für die Elektronen sind diese Streuprozes-
se somit beinahe elastisch, sie bleiben in der Nähe
der Fermikante. Dadurch wird der Streuwinkel bei
Normalprozessen gering, d.h. die Elektronen streu-
en fast vollständig in Vorwärtsrichtung. Sie wer-
den dadurch nicht mehr vollständig thermalisiert,
sondern ihre Geschwindigkeit sinkt proportional zu
1� cosa , wobei a der Streuwinkel ist. Wie in Abb.
5.24 dargestellt, ist dieser proportional zur Wellen-
zahl kP der Phononen, welche linear mit T abnimmt.
Damit ist die Geschwindigkeitsänderung pro Stoß
proportional zu T 2. Insgesamt ergibt sich dadurch ei-
ne Abnahme des elektrischen Widerstandes mit T 5.
Dies kann in Abb. 5.20 qualitativ überprüft werden.
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Abbildung 5.25: Temperaturabhängigkeit des spezi-
fischen Widerstandes für verschie-
dene Metalle.

Abb. 5.25 zeigt die Temperaturabhängigkeit des
elektrischen Widerstandes für verschiedene Metal-
le. Dabei sind Temperatur und Widerstand auf die
Debye-Temperatur reduziert. Im oberen Bereich ist
das Verhalten linear, im Tieftemperaturbereich µ T 5.
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5.4.5 Der Hall-Effekt

In einem Magnetfeld muss in der Bewegungsglei-
chung auch die Lorentzkraft berücksichtigt werden:

~F = �e[~E +~v⇥~B].

Wir suchen nun die stationäre Verschiebung d

~k der
Fermikugel aus der Bewegungsgleichung für den
Impuls

h̄
dd

~k
dt

= h̄
d~k
dt

= m
d~v
dt

= �e[~E +~v⇥~B]� h̄
d

~k
t

= 0,

wobei t die Thermalisierungszeit (durch Stöße) des
Impulses darstellt.

Bz

Ex

Abbildung 5.26: Bewegung von Elektronen in ge-
kreuzten E/B Feldern.

Wir betrachten den Fall, wo ein Magnetfeld parallel
zur z-Achse angelegt ist, ~B = (0,0,B). Dann wird

~v⇥~B = (vyB,�vxB,0)

und die Bewegungsgleichungen für die drei Ge-
schwindigkeitskomponenten werden

m
✓

d
dt

+
1
t

◆
vx = �e(Ex +Bvy)

m
✓

d
dt

+
1
t

◆
vy = �e(Ey �Bvx)

m
✓

d
dt

+
1
t

◆
vz = �eEz.

Daraus können wir die stationären Geschwindigkei-
ten bestimmen:

vx = �et

m
Ex �wctvy

vy = �et

m
Ey +wctvx

vz = �et

m
Ez, (5.15)

wobei

wc =
eB
m

(5.16)

die Zyklotronfrequenz darstellt. Offenbar verlaufen
die Bahnen der Elektronen jetzt nicht mehr parallel
zum elektrischen Feld, sondern werden in der xy-
Ebene abgelenkt. Der Ablenkwinkel ist durch das
Produkt wct aus Zyklotronfrequenz und Stoßzeit ge-
geben. Dies wird als Hall5-Effekt bezeichnet.

Bz

Ex

+ + + + + +

- - - - - -
Ey

Abbildung 5.27: Gleichgewichts-Ladungsverteilung
in gekreuzten E/B Feldern.

Wir betrachten nun den Fall, dass ein Strom ent-
lang der x-Achse fließt, d.h. wir setzen vy = vz = 0.
Aus der obigen Gleichung sehen wir, dass der Strom
in x-Richtung durch das Magnetfeld in y-Richtung
abgelenkt wird. Wir können somit nur dann eine
verschwindende Bewegung in y-Richtung erhalten,
wenn diese Lorentzkraft durch eine entgegengerich-
tete Coulomb-Kraft, d.h. durch ein elektrisches Feld
kompensiert wird. Gemäß Gleichung (5.15) bedingt
dies für den stationären Fall, dass

vx = �e
t

m
Ex (5.17)

und

0 = �e
t

m
Ey +wctvx.

Auflösen nach Ey ergibt

Ey = wcvx
m
e

.

Mit dem stationären Wert von vx (5.17) wird daraus

Ey = �e
t

m
Exwc

m
e

= �twcEx.

Wenn wir den Ausdruck (5.16) für die Zyklotronfre-
quenz verwenden, entspricht dies

Ey = �ExB
et

m
. (5.18)

5Edwin Herbert Hall (1855 - 1938)
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Es entsteht also eine Spannung, welche senkrecht
auf der Richtung des Stroms und dem magnetischen
Feld liegt.

5.4.6 Hall-Konstante

Als Hall-Konstante

RH =
Ey

jxB

bezeichnet man das Verhältnis der Spannung zum
Produkt aus Stromdichte jx und Magnetfeldstärke B.
Wir schreiben die Stromdichte als das Produkt aus
Driftgeschwindigkeit vx und Ladungsdichte �en und
erhalten

jx = �envx =
ne2

t

m
Ex.

Mit der Beziehung (5.18) zwischen Ex und Ey erhal-
ten wir

RH =
�ExetB/m

(ne2
t/m)ExB

= � 1
ne

,

d.h. sie entspricht der inversen Ladungsdichte und ist
für freie Elektronen negativ. Je niedriger die Dich-
te der Ladungsträger, desto größer ist also die Hall-
Konstante und damit die Hall Spannung Ey. Dies
kann man qualitativ so verstehen, dass der glei-
che Strom bei niedriger Ladungsträgerdichte nur
durch eine höhere Geschwindigkeit und damit durch
eine höhere Lorentzkraft erreicht wird. Die Hall-
Konstante ist eine Möglichkeit, die Ladungsträger-
konzentration n experimentell zu bestimmen. Sie ist
unabhängig von B und für freie Elektronen immer
negativ.

Tabelle 5.6 zeigt einige Hall-Konstanten bei tiefen
Temperaturen, jeweils als Verhältnis aus der La-
dungsdichte zur gemessenen Hall-Konstanten. Of-
fenbar passt diese einfache Theorie recht gut für die
Alkalimetalle, weniger gut für die Edelmetalle, und
für die letzten vier Elemente gar nicht.

Die Messung der Hall-Konstante (! Abb. 5.28)
dient deshalb auch zur experimentellen Bestimmung
der Ladungsträgerkonzentration.

Eine andere Anwendung des Hall-Effekts ist die
Messung der Magnetfeldstärke, z.B. über Gleichung

Metall

Li
Na
K
Rb
Cs
Cu
Ag
Au
Be
Mg
In
Al

# Valenz-
elektronen

1
1
1
1
1
1
1
1
2
2
3
3

-1
RHne
0.8
1.2
1.1
1.0
0.9
1.5
1.3
1.5
-0.2
-0.4
-0.3
-0.3

Tabelle 5.6: Beispiele von Hall-Konstanten.

Oberflächenkanal Hallspannungssonde

Quelle Senke

Tor

Potenzialsonden

Abbildung 5.28: Messanordnung für die Messung
von Hall-Spannungen.

(5.18). Dafür muss der Sensor zuerst kalibriert wer-
den, da die Ladungsträgerdichte und die Stoßzeit
herstellungsmässig und temperaturabhängig variie-
ren.

Die Hall Konstante hat auch das gleiche Vorzeichen
wie die Ladung der beweglichen Teilchen. Sie kann
somit auch Auskunft geben über das Vorzeichen der
Ladung der Ladungsträger. Wir haben hier ange-
nommen, dass es sich um Elektronen, also negative
Teilchen, handelt, und erhalten wie gezeigt eine ne-
gative Konstante. Wenn es sich um Löcher, also po-
sitive Ladungsträger handelt, so wird auch die Kon-
stante positiv. Diese Art der Leitung wird in Kapitel
7 behandelt.

5.4.7 Der Quanten-Hall-Effekt

Eine besondere Art des Hall-Widerstandes tritt
auf bei tiefen Temperaturen in zweidimensionalen
Elektronensystemen. In diesem Fall ist der Hall-
Widerstand nicht mehr proportional zum Magnet-
feld, sondern er nimmt in Stufen zu.

Wie in Abb. 5.29 gezeigt, betrifft dies sowohl den
longitudinalen Widerstand, also den Spannungsver-
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Abbildung 5.29: Hall Widerstand von Al-
GaAs/GaAs bei T =8 mK als
Funktion der Magnetfeldstärke.

lust über der Probe dividiert durch den Strom, wie
auch den Hallwiderstand, also die Spannung senk-
recht zur Probe dividiert durch den Strom. Der lon-
gitudinale Widerstand verschwindet, außer für be-
stimmte Werte des Feldes, während der transversa-
le Widerstand bei diesen Werten stufenförmig zu-
nimmt. Die Plateauwerte zwischen den Stufen sind
unabhängig von der Probe oder den Materialeigen-
schaften. Ihre Werte sind

rH =
h

ie2 =
RK

i
, i 2 N.

Die Klitzing6-Konstante RK hat den Wert

RK =
h
e2 ⇡ 6,63 ·10�34

(1,60 ·10�19)2 W ⇡ 25,812807kW

und wird inzwischen zur Norm-Definition des elek-
trischen Widerstandes verwendet.

Dieser Effekt wird auch als integraler Quanten-
Hall-Effekt (QHE) bezeichnet, weil die Nenner gan-
ze Zahlen sind. Dementsprechend findet man auch
einen gebrochenzahligen, fraktionalen oder fraktio-
nierten QHE, bei dem die Nenner die Form von Brü-
chen annehmen. Beide Fälle können durch die Bil-
dung von Zuständen erklärt werden, bei denen die

6Klaus von Klitzing (*1943) Nobelpreis 1985

Flussquanten und Elektronen Quasiteilchen bilden,
wobei beim gebrochenzahligen QHE mehrere Elek-
tronen beteiligt sind.

5.5 Wärmeleitung in Metallen

Die Tatsache, dass Metalle sich bei niedrigen Tem-
peraturen sehr kalt und bei hohen Temperaturen sehr
heiß (im Vergleich zu anderen Materialien) anfühlen
zeigt, dass sie gute Wärmeleiter sind. Wärmeüber-
tragung spielt nicht nur technisch eine wichtige Rol-
le, sie ist auch ein guter Test für das Verständnis der
entsprechenden Materialien.

5.5.1 Ansatz

Die Wärmeleitfähigkeit einer Probe wird gemessen,
indem man sie thermisch isoliert, auf der einen Sei-
te heizt, und auf der anderen Seite die Temperatur
misst. Wie in Kapitel 4 ist auch hier der Ansatz aus
der kinetischen Gastheorie

l =
1
3

Cv`

für die Wärmeleitung l eines idealen Gases mit
Wärmekapazität C, Geschwindigkeit v und mittler-
er freier Weglänge `. Wir benutzen den Ausdruck
(5.11) für die elektronische Wärmekapazität

Cel =
p

2

2
kBn

T
TF

.

Wir hatten bereits im Rahmen der Theorie der spe-
zifischen Wärme gesehen, dass nur die Elektronen
in der Nähe der Fermikante durch Stöße Energie
mit dem Gitter austauschen. Diese sollten auch den
dominanten Beitrag zur Wärmeleitfähigkeit liefern.
Dementsprechend setzen wir für die Geschwindig-
keit die Fermigeschwindigkeit vF ein und für die
mittlere freie Weglänge das Produkt aus Fermi-
Geschwindigkeit und Stoßzeit, ` = vF t . Damit wird
die Wärmeleitfähigkeit

l =
1
3

Cel v2
F t

=
1
3

p

2

2
kBn

T
TF

v2
Ft.
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Die Fermi-Geschwindigkeit vF ist eine Funktion der
Fermi-Energie

v2
F =

2eF

m
=

2kBTF

m
.

Damit wird die Wärmeleitfähigkeit

l =
p

2

3
k2

BnT t

m
. (5.19)

5.5.2 Temperaturabhängigkeit

Die Wärmeleitfähigkeit sollte also proportional zur
Temperatur und zur mittleren Stoßzeit t sein. Die
Stoßzeit ist stark temperaturabhängig und diese Ab-
hängigkeit überwiegt bei Temperaturen über 20 K.

λ

T

C∝T

λ∝Tτ

ℓ∝τ

endlicher 
Wert

Abbildung 5.30: Verhalten der Wärmeleitfähigkeit
bei tiefen Temperaturen.

Abb. 5.30 zeigt qualitativ das erwartete Verhalten für
die freie Weglänge, die Wärmekapazität und deren
Produkt. Bei tiefen Temperaturen wird die Stoßzeit
konstant und die Temperaturabhängigkeit der Wär-
meleitung wird durch die Wärmekapazität bestimmt,
welche µ T ist.

Abb. 5.31 zeigt als Beispiel die Wärmeleitfähigkeit
von Kupfer als Funktion der Temperatur. Sie geht
offenbar durch ein Maximum, wie wir es für den Fall
freier Elektronen erwarten. Das Verhalten ist somit
qualitativ ähnlich wie bei der Wärmeleitung durch
Phononen, doch nimmt die Wärmeleitfähigkeit bei
tiefen Temperaturen nicht mit T 3, sondern mit T ab.

Die Wärmeleitfähigkeit enthält, wie im Kapitel 4 ge-
zeigt, außerdem Beiträge der Phononen. Im allge-
meinen überwiegt der Beitrag der Elektronen, insbe-
sondere in “guten” Metallen. Metalle sind deshalb
bessere Wärmeleiter als dielektrische Materialien,
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Abbildung 5.31: Temperaturabhängigkeit der Wär-
meleitfähigkeit von Kupfer.

wie z.B. ionische Kristalle. In verunreinigten Metal-
len und ungeordneten Legierungen nimmt der elek-
tronische Beitrag zur Wärmeleitung stark ab, wäh-
rend der Beitrag der Phononen relativ konstant bleibt
und deshalb vergleichbar und in Isolatoren dominant
werden kann.

5.5.3 Vergleich elektrische / thermische
Leitfähigkeit

Man kann die thermische Wärmeleitfähigkeit (5.19)
mit der elektrischen Leitfähigkeit (5.14)

s =
ne2

t

m
vergleichen. Man sieht aus der obigen Behandlung,
dass sie die gleiche Tendenz zeigen sollten: Beide
sind proportional zur Ladungsträgerdichte n und zur
mittleren Stoßzeit t. Das Verhältnis zwischen den
beiden Werten,

l

s

=
p

2k2
BT

3e2

sollte direkt proportional zur Temperatur T sein.
Diese Beziehung wird als Wiedemann-Franz7 Ge-
setz bezeichnet. Dividiert man auch durch die Tem-
peratur, berechnet also

L =
l

sT
=

p

2k2
B

3e2 = 2,45 ·10�8 WW
K2 ,

7nach Gustav Heinrich Wiedemann (1826 - 1899) und Ru-
dolph Franz (1826 - 1902)
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so erhält man eine materialunabhängige Konstante
L, welche als Lorenz-Zahl bezeichnet wird. Damit
kann man das Wiedemann-Franz Gesetz als

l

s

= LT

schreiben.

Tabelle 5.7: Gemessene Werte für die Lorenzzahl
bei unterschiedlichen Metallen.

Tabelle 5.7 zeigt einige Werte für die Lorenz-Zahl.
Sie liegen im Bereich 2.3 < L < 2.6 · 10�8 WW/K2,
stimmen also recht gut mit dem theoretischen Wert
überein, was als Bestätigung des Modells des freien
Elektronengases betrachtet werden kann.
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Abbildung 5.32: Temperaturabhängigkeit der Lo-
renzzahl.

Abb. 5.32 vergleicht die Temperaturabhängigkeit der
Lorenzzahl für einige Elemente mit dem theoretisch
temperaturunabhängigen Wert.

Das theoretische Resultat hängt allerdings davon ab,
dass die Stoßzeit t für die beiden Prozesse die glei-
che sein soll. Dies ist nicht zwingend der Fall und
führt deshalb zu Abweichungen vom Wiedemann-
Franz Gesetz. Mit sinkender Temperatur durchläuft
die Lorenz-Zahl oft ein Minimum. Abb. 5.33 zeigt
als Beispiel die Daten für Kupfer. Der Grund dafür
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Abbildung 5.33: Temperaturabhängigkeit von elek-
trischer und thermischer Leitfähig-
keit von Kupfer, sowie der Lorenz-
zahl.

sind die unterschiedlichen Stoßzeiten beim elektri-
schen und thermischen Transport.

5.5.4 Thermoelektrische Effekte

Das verwendete Modell geht davon aus, dass Elek-
tronen bei Stößen thermalisieren, d.h. dass ihre Ener-
gieverteilung sich an die lokale Temperatur anpasst.
Da heissere Elektronen eine (geringfügig) höhe-
re Geschwindigkeit haben als kalte, ist der Trans-
port von Elektronen zwischen zwei Punkten unter-
schiedlicher Temperatur asymmetrisch: Elektronen,
die vom heissen zum kalten Punkt fließen, haben ei-
ne höhere Geschwindigkeit als diejenigen in umge-
kehrter Richtung. Damit erfolgt netto ein Ladungs-
transport in Richtung zum kalten Ende. Dieser hält
an, bis der thermische Gradient durch einen elektri-
schen Gradienten ausgeglichen wird. Ein Tempera-
turgradient erzeugt deshalb eine Spannungsdifferenz

~E = Q~—T [Q] =
V
K

.

Dieser sogenannte thermoelektrische Effekt (auch
Seebeck8-Effekt genannt) unterscheidet sich zwi-
schen verschiedenen Metallen.

Er kann z.B. gemessen werden, indem man die En-
den von zwei unterschiedlichen Metallen kontaktiert

8Thomas Johann Seebeck (1770 – 1831)

145



5 Freie Elektronen

M
at

er
ia

l B

Temperatur / oC

Th
er

m
os

pa
nn

un
g 

/ m
V

0

20

40

60

0 500 1000 1500
NiC

r -
 C

uN
i

Ni - C
rNi

Pt30Rh - Pt6Rh

T1

T2

M
at

er
ia

l A

Abbildung 5.34: Anordnung zur Messung von Ther-
mospannungen und temperaturab-
hängige Thermospannungen, nor-
miert auf die Werte bei 0�C.

und die Kontaktpunkte auf unterschiedliche Tempe-
raturen bringt und die resultierende Spannung misst.
Typische thermoelektrische Koeffizienten liegen im
Bereich von Q ⇡ µV/K. Abb. 5.34 zeigt das Mess-
prinzip und die Thermospannungen als Funktion der
Temperatur für drei unterschiedliche Kombinationen
von Metallen.
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Abbildung 5.35: Seebeck-Koeffizienten unter-
schiedlicher Metalle als Funktion
der Temperatur.

Prinzipiell ist die Kopplung zwischen elektrischem
und thermischem Transport eine Materialeigen-
schaft. Allerdings ist sie als absolute Größe schwie-
rig zu messen. Man verwendet deshalb Paare von
Metallen, wie in Abb. 5.34 gezeigt. Vergleicht man

Paare mit einem festen Referenzmaterial (meist Pla-
tin), so lassen sich aber die Werte für einzelne Mate-
rialien bestimmen. Abb. 5.35 zeigt die thermoelek-
trischen Koeffizienten einiger Metalle als Funkti-
on der Temperatur. Typische Werte für Metalle sind
10�5 . . .10�6V/K. Wesentlich größere Werte, im Be-
reich von mV/K findet man bei Halbleitern.

Der Effekt kann prinzipiell zur Stromerzeugung ge-
nutzt werden, hat aber einen relativ niedrigen Wir-
kungsgrad. Eine wichtige Anwendung liegt in der
Messung von Temperaturen (Thermoelemente).

5.6 Kollektive Phänomene

Das Modell des freien Elektronengases geht, wie zu
Beginn des Kapitels erwähnt, davon aus, dass zwi-
schen den Elektronen keine Wechselwirkungen exi-
stieren. Dieses Modell der freien und unabhängigen
Elektronen funktioniert erstaunlich gut. Dieses Un-
terkapitel befasst sich mit der Frage, weshalb das
funktioniert und wo die Grenzen liegen.

5.6.1 Abgeschirmte
Coulomb-Wechselwirkung

Einer der Gründe für den Erfolg des Modells der un-
abhängigen Elektronen ist, dass die elektrostatische
Wechselwirkung zwischen zwei Elektronen von den
anderen weitgehend abgeschirmt wird. Das gleiche
gilt für positive Ladungen. In beiden Fällen kann der
Effekt über eine Änderung in der Abstandsabhängig-
keit der Coulomb-Wechselwirkung beschrieben wer-
den.

Wird eine positive Ladung in die Leitungselektronen
eingebracht, so verschieben sich die Elektronen in
Richtung dieser Ladung.

Die zusätzliche Ladungsdichte, welche diesen Ab-
schirmeffekt bewirkt, kann über die Thomas-Fermi
Näherung berechnet werden. Dazu betrachtet man
die Umgebung der positiven Ladung im Energie-
raum. Hier werden sämtliche Zustände um die Ener-
gie –eU abgesenkt, wobei U das Zusatzpotenzial der
Störung darstellt. Dadurch gelangt der in Abb. 5.37
rot eingezeichnete Bereich unter die Fermienergie
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Abbildung 5.36: Abschirmung einer positiven La-
dung durch die Leitungselektronen.
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Abbildung 5.37: Abschätzung der zusätzlichen La-
dungsdichte.

und wird durch Elektronen von außerhalb des Berei-
ches aufgefüllt. Die positiv geladene Störung wird
somit durch die zusätzliche Elektronendichte teil-
weise kompensiert.

Die Anzahl zusätzlicher Elektronen, dnV kann als
Integral über die Zustandsdichte der zusätzlich be-
setzten Zustände berechnet werden. Die Dichte an
Zuständen als Funktion der Energie E nimmt mit der
Wurzel aus der Energie zu,

D(E ) =
3
2

N
r

E

EF
.

Die Fläche des roten Rechtecks kann damit berech-
net werden als Produkt aus Breite D(eF) und Höhe
eU ;

dn =
eUD(eF)

V
= eU

3
2

n0
1
eF

.

Hier bezeichnet n0 die Elektronendichte ohne die
Störung.

Da dn von U und U von dn abhängt, benötigen wir
eine selbstkonsistente Lösung. Diese erhalten wir
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Zustands-
dichte D(E)

Abbildung 5.38: Lokale Änderung von Potenzial
und Elektronendichte durch eine
zusätzliche Ladung bei~r0.

aus der Poisson-Gleichung: Die eingeschlossene La-
dung wirkt als Quelle des elektrischen Feldes,

—2U = � 1
e0

(r(r)�r0) =
edn
e0

= U
3e2n0

2e0 eF
= l

2U

mit

l

2 =
3e2n0

2e0 eF
.

Für eine isotrope Ladungsverteilung können wir den
Laplace-Operator in Kugelkoordinaten schreiben als

—2 =
∂

2U
∂ r2 +

2
r

∂

∂ r
.

Die Gleichung

—2U =
∂

2U
∂ r2 +

2
r

∂U
∂ r

= l

2U

hat die Lösung

U(r) = �e
r

e�l r = �e
r

e�r/rA . (5.20)

Die Abschirmung führt also dazu, dass die 1/r
Abhängigkeit der Coulomb-Wechselwirkung durch
einen zusätzlichen exponentiellen Term verstärkt
wird. Abb. 5.39 vergleicht die beiden Funktionen.
Somit fällt das Feld deutlich schneller ab (exponen-
tiell statt 1/r). Die Abschirmlänge beträgt

rA =

r
2e0 eF

3e2n0
=

r
e0

e2D(EF)
, (5.21)
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Abbildung 5.39: Vergleich des abgeschirmten mit
dem normalen Coulomb-Potenzial.

wobei

D(E ) = 2
D(E )

V
die Zustandsdichte pro Volumen bezeichnet. Da die
Fermienergie selber proportional ist zu n2/3

0 und die
Zustandsdichte zu n1/3

0 nimmt somit die Abschirm-
länge mit zunehmender Elektronendichte wie rA µ
n�1/6

0 ab.

Ein typischer Wert für die Abschirmlänge ist rA ⇡
0,55 Å bei einer Elektronendichte n0 = 8,5 ·
1028m�3, was dem Wert von Kupfer entspricht. In
Metallen ist die Abschirmung aufgrund der hohen
Elektronendichte besonders effektiv.

5.6.2 Metall-Isolator Übergang

Das Phänomen der Abschirmung kann auch als qua-
litatives Argument für die Unterscheidung zwischen
Metallen und Isolatoren genutzt werden. In Metallen
existieren frei bewegliche Elektronen, in Isolatoren
sind alle Elektronen lokal gebunden. Mit zunehmen-
der Lokalisierung der Elektronen nimmt ihre kine-
tische Energie zu. Dies kann dazu führen, dass sie
nicht mehr im Potenzial gebunden sind.

Um zu sehen, wann das geschieht, muss die Schrö-
dingergleichung für das Potenzial (5.20) gelöst wer-
den. Analytisch ist das nicht möglich, aber nume-
rische Methoden zeigen, dass gebundene Lösungen

existieren, falls rA > 0,84a0 ist, mit dem Bohr-
Radius a0.

Laut Gleichung (5.21) ist die Abschirmlänge eine
Funktion der Zustandsdichte an der Fermikante. Die
Fermienergie kann geschrieben werden als

EF =
h̄2

2m
(3p

2n)2/3 =
a0e2

8e0
32/3

p

1/3n2/3

Hier wurde der Bohr’sche Radius

a0 =
4pe0h̄2

me2

verwendet. Damit wird (5.21) zu

r2
A =

2
3

e0

e2n
a0e2

8e0
32/3

p

1/3n2/3

=
32/3

p

1/3

12
a0

n1/3 ⇡ 1
4

a0

n1/3 .

Der kritische Wert ist somit

r2
A = (0,84a0)

2 =
1
4

a0

n1/3 .

Aufgelöst nach der kritischen Dichte erhält man

n =

✓
1

a0 4 ·0,842

◆3

=

✓
1

a0 2,8

◆3

=
1

22a3
0
.

Für einen Isolator muss somit gelten, dass die Elek-
tronendichte n kleiner sein muss als

n <
0,045

a3
0

.

Für ein kubisch primitives Gitter mit einem freien
Elektron pro Einheitszelle muss die Kantenlänge der
Einheitszelle a > 2,8a0 sein, damit ein Isolator vor-
liegt.

Die Elektronendichte kann auf verschiedene Weisen
variiert werden, z.B. durch Anwendung von Druck,
Temperatur oder Magnetfeldern, oder durch Dotie-
rung. Damit ist es möglich, ein System von einem
isolierenden in einen leitenden Zustand zu bringen.
So gibt es Hinweise, dass Wasserstoff unter hohem
Druck die kritische Dichte erreicht und metallisch
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Abbildung 5.40: Metall-Isolator Übergang in Silizi-
um durch Dotierung mit Phosphor.

wird. Dies Art von Phasenübergängen wird auch als
Mott9-Übergang bezeichnet.

Abb. 5.40 zeigt für den Fall von Silizium, wie eine
zunehmende Dotierung mit Phosphor die Ladungs-
trägerdichte so stark erhöht, dass das System vom
Isolator zum Metall wird.

5.6.3 Quantisierte elektronische
Anregungszustände

+

+

+

+

+

+

Abbildung 5.41: Elektronengas.

Da die Valenz-Elektronen in einem Metall frei be-
weglich sind, können sie auch zum Schwingen ange-
regt werden. Wir diskutieren hier kollektive Schwin-
gungen der Elektronen. Wird ein einzelnes Elektron
um die Distanz x aus der Ruhelage ausgelenkt, so er-
zeugt es einen elektrischen Dipol der Größe p(x) =

9Sir Nevill Francis Mott (1905 - 1996)

ex. Wird ein Elektronengas der Dichte n ausgelenkt,
so entsteht eine elektronische Polarisation

P(x) = nex.

Diese Polarisation entspricht einem zusätzlichen
elektrischen Feld

E(x) =
1

ee0
P(x) =

ne
ee0

x.

Dieses elektrische Feld wirkt als Kraft auf die Elek-
tronen. Wir erhalten die Bewegungsgleichung

meẍ = �eE(x) = �ne2

ee0
x.

Dies entspricht einem harmonischen Oszillator

ẍ = �w

2
px,

wobei die Plasmafrequenz wp gegeben ist durch

wp =

s
ne2

meee0
.

Quantenmechanisch sind die Energiezustände eines
harmonischen Oszillators gegeben als

En = (n+
1
2
)h̄wp.

Da die Plasmafrequenz ein Maß für die Elektronen-
dichte ist, bietet sich ihre Messung als interessante
Methode zur Bestimmung der Elektronendichte an.
Allerdings sind die Plasmonen in vielen Systemen
stark gedämpft (z.B. durch Inter-Band Übergänge),
dass sie gar nicht beobachtet werden können.

Typische Werte für die Plasmafrequenz liegen im
Bereich von einigen (3-20) eV.

5.6.4 Messung der Plasmafrequenz

Die Plasmonenfrequenzen können gemessen wer-
den, indem man die entsprechende Probe mit Elek-
tronen bestrahlt. Diese stoßen mit den freien Elek-
tronen der Probe und regen dadurch Plasmonen an.
Dadurch verlieren die Elektronen des Strahls Ener-
gie.
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Abbildung 5.42: Prinzip der Messung von Plasmo-
nenenergien.
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Abbildung 5.43: Apparatur für die Messung von
Plasmonenenergien.

Für die Messung des Energieverlustes in der Probe
benötigt man ein hochauflösendes Elektronenspek-
trometer, welches die kinetische Energie der trans-
mittierten Elektronen misst. Abb. 5.43 zeigt den ent-
sprechenden Messaufbau.

Abb. 5.44 zeigt ein typisches Verlustspektrum, wel-
ches an einem dünnen Aluminiumfilm gemessen
wurde. In diesem Fall wurden die zurückgestreuten
Elektronen analysiert. Man findet Resonanzen, wel-
che der Erzeugung von n = 1,2, ... Plasmonen ent-
sprechen. Die Resonanzen sind überdies aufgespal-
ten: an der Oberfläche ist die Plasmonenfrequenz ge-
ringer als im Volumen.

Tabelle 5.8 vergleicht einige gemessene und berech-
nete Plasmonenenergien. Die Übereinstimmung ist

Al

Energieverlust / eV

Volumen-
plasmonOberflächen-

plasmon

Abbildung 5.44: Plasmonenspektrum von Alumini-
um mit Aufspaltung der Resonan-
zen.

Gemessen Berechnet
Li 7,12 8,02
Na 5,71 5,95
K 3,72 4,29

Mg 10,6 10,9
Al 15,3 15,8

Tabelle 5.8: Plasmonenenergien in eV.

relativ gut. Die Plasmafrequenzen nehmen mit der
Elektronendichte zu: Al (3 Valenzelektronen) hat ei-
ne deutlich höhere Plasmafrequenz als die Alkaliato-
me (1 Valenzelektron). Bei den Alkaliatomen nimmt
die Elektronendichte mit zunehmendem Atomge-
wicht ab. Deshalb ist die Plasmonenfrequenz von K
niedriger als die von Na und Li.

5.6.5 Elektromagnetische Wellen in
Metallen

Elektromagnetische Wellen in einem freien Elektro-
nengas können beschrieben werden über eine Di-
spersionsrelation

e(w)w2 = c2k2. (5.22)

Hier ist e(w) die dielektrische Funktion

e(w) = e•

 
1�

w

2
p

w

2

!
.

Hier stellt e• den Grenzwert für hohe Frequenzen
dar, w � wp, welcher durch die gebundenen Elek-
tronen dominiert wird. Einsetzen in (5.22) ergibt die
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Dispersionsrelation

w

2 �w

2
p =

c2k2

e•

für die elektromagnetischen Wellen im Material. Je
nachdem, ob die Frequenz w höher oder niedriger
ist als die Plasmafrequenz ist der linke Seite positiv
oder negativ. Im negativen Fall wird der Wellenvek-
tor imaginär, d.h. das Licht wird vollständig absor-
biert. Langwellige Wellen werden deshalb in Metal-
len absorbiert.
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Abbildung 5.45: Dispersion für elektromagnetische
Wellen in einem Metall mit der
Plasmafrequenz wp.

Für Frequenzen oberhalb der Plasmafrequenz erhält
man normale Ausbreitung, mit der Dispersionsrela-
tion

w =
q

w

2
p + c2k2.

Abb. 5.45 vergleicht diese Dispersionsrelation mit
derjenigen einer Lichtwelle im Vakuum. Für große
Wellenlängen geht die Frequenz gegen einen endli-
chen Wert, die Plasmafrequenz wp, für hohe Wellen-
zahlen nähert sich die Frequenz der einer entspre-
chenden Lichtwelle im freien Raum. Wellen mit Fre-
quenzen unterhalb der Plasmafrequenz können sich
in Metallen nicht ausbreiten (verbotener Frequenz-
bereich).

5.7 Elektron-Phonon
Wechselwirkung

5.7.1 Grundlagen

Die bisher verwendete Born-Oppenheimer Nähe-
rung vernachlässigt Wechselwirkungen zwischen
Elektronen und Kernen. Einige der vernachlässigten
Terme haben wir bereits berücksichtigt, z.B. indem
wir die Streuung von Elektronen an Phononen als
Beitrag zum elektrischen Widerstand diskutiert ha-
ben. Eine Wechselwirkung kommt dadurch zustan-
de, dass Phononen das Kerngitter verzerren und die
Elektronen deshalb ein Potenzial spüren, welches
nicht mehr die ideale Periodizität aufweist. Phono-
nen können deshalb absorbiert oder gestreut werden.
Die Wechselwirkung kann mit akustischen Phono-
nen oder mit optischen Phononen geschehen. Man
unterscheidet

• Fröhlich-Wechselwirkung

• Deformationspotenzial-Wechselwirkung

• Piezoelektrische Wechselwirkung.

Elektronen-Phononen Wechselwirkungen spielen in
Halbleitern (vor allem binären und ternären) eine
wichtige Rolle, sowie in Supraleitern, wo sie für die
Bildung der Cooper-Paare verantwortlich sind.

5.7.2 Polaronen

Auch in dielektrischen Festkörpern spielen
Elektron-Phonon Wechselwirkungen eine Rolle.
Dass es eine Wechselwirkung zwischen Elektronen
und Phononen geben sollte, vermutete Lev Landau
schon 1933, kurz nachdem das Konzept von Phono-
nen entwickelt worden war. Man kann diesen Effekt
auch über ein neues Quasiteilchen beschreiben, das
Polaron. Dabei handelt es sich um ein Elektron,
welches an eine Gitter-Deformation gekoppelt ist.
Diese Kopplung führt zu einer höheren effektiven
Masse des Elektrons.

In einem ionischen Kristall, wie z.B. KCl erzeugt ein
Elektron eine Gitterverzerrung: die positiven Ionen
werden in Richtung auf das Elektron verschoben, die
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Abbildung 5.46: Gitterverzerrung durch Wechsel-
wirkung mit Elektron.

negativen davon weg. Ein Resultat dieser Wechsel-
wirkung ist, dass die effektive Masse des Elektrons
steigt: wird es bewegt, so bewegt sich die Gitterver-
zerrung mit. Die Kombination aus Ladung und Git-
terverzerrung (oder Ladung und Phonon) wird als
Polaron bezeichnet.

Kopplungskonstante
Masse
Bandmasse (starres G.)

Abbildung 5.47: Effektive Masse von Leitungsband-
Elektronen in Isolatoren.

Die effektive Masse eines Leitungselektrons in KCl
wächst dadurch um einen Faktor 2.5 im Vergleich
zum Fall eines starren Gitters.

Abbildung 5.48: Effektive Masse von Leitungsband-
Elektronen in Halbleitern mit teil-
weise kovalenten Bindungen.

Bei Materialien mit stärker kovalentem Charakter,
wie z.B. dem Halbleiter GaAs, ist die Gitterverzer-
rung durch die Leitungselektronen schwächer und
damit die Kopplungskonstante kleiner.

5.7.3 Cooper Paare

Die Verzerrung, welche die Elektronen im Gitter er-
zeugen, wirkt wiederum auf andere Elektronen und
kann dazu führen, dass zwischen (weit voneinander
entfernten) Elektronen eine effektive Anziehungs-
kraft zustande kommt. Dadurch kommt es zur Bil-
dung von sogenannten Cooper Paaren, welche für
die Supraleitung verantwortlich sind. Dies wird im
Kapitel 9 genauer diskutiert.
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