5 Freie Elektronen

5.1 Klassische Beschreibung

5.1.1 Metalle und ihre Eigenschaften

Abbildung 5.1: Metallische Bindung.

In diesem Kapitel soll in erster Linie der Versuch un-
ternommen werden, das Verhalten von Elektronen in
Metallen zu beschreiben. Die metallische Bindung
stellt zwar nur eine von 5 Grundtypen der Bindung
in Festkorpern dar, sie ist jedoch sehr weit verbreitet:
mehr als 2/3 der Elemente sind Metalle.

Metalle enthalten zwei Arten von Elektronen. Die
meisten Elektronen sitzen in tief liegenden Orbita-
len der konstituierenden Atome, welche praktisch an
den entsprechenden Atomen lokalisiert sind. Dane-
ben trigt jedes Atom eine geringe Zahl (typischer-
weise 1-3) Leitungselektronen bei, welche sich prak-
tisch frei durch das Material bewegen, dieses jedoch
nicht verlassen konnen.

Diese frei beweglichen Leitungselektronen sind fiir
die charakteristischen Eigenschaften der Metalle
verantwortlich, welche sie gegeniiber den weiter ver-
breiteten nichtmetallischen Verbindungen auszeich-
nen. Zu diesen charakteristischen Eigenschaften ge-
horen die gute Leitfahigkeit fiir Elektrizitit und Wér-
me, sowie der Glanz von metallischen Oberflachen.

Sowohl das klassische Modell (Kap. 5.1), wie auch
das quantenmechanische (Kap. 5.2) beschreiben die
Metalle im Wesentlichen iiber freie Elektronen, wel-
che in einen Potenzialtopf eingesperrt sind, des-
sen Rinder den Rindern des Kristalls entsprechen.
Dieses Modell der freien Elektronen eliminiert je-
de Wechselwirkung zwischen Elektronen mit Aus-
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Abbildung 5.2: Beispiele von Metallen und metall-
typischen Eigenschaften.

nahme des Pauli-Prinzips. Die Wechselwirkung der
Elektronen mit Atomriimpfen wird zunichst eben-
falls nicht beriicksichtigt und erst in einer zweiten
Stufe (im Kapitel 6) als ein periodisches Potenzial
beriicksichtigt, welches die gleiche Periode wie das
Gitter aufweist. Trotz dieser extremen Vereinfachun-
gen kann das Modell freier Elektronen erstaunlich
viele Aspekte der Metalle erkldren.

5.1.2 Das Drude-Modell

Die klassische Theorie entstand drei Jahre nach
der Entdeckung des Elektrons durch J.J. Thomson
(1897). Im 19. JH hatte die kinetische Gastheorie
eine befriedigende Erkldrung fiir viele bekannte Ef-
fekte im Bereich der Thermodynamik geliefert. Dies
mag ein Motiv gewesen sein dafiir, dass P. Drude'
die Elektronen in einem Metall als Gas modellier-
te?. Seine Annahme war, dass die duBersten Elektro-
nen jedes Atoms sich im Metall praktisch frei be-
wegen konnen. Zu diesen Leitungselektronen tragen
die Atome, welche das Gitter bilden normalerweise

1Paul Drude (1863-1906)
2p. Drude, Annalen der Physik 1, 566 und 3, 369 (1900).
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5 Freie Elektronen

ein bis drei Elektronen bei. Diese Elektronen sind im
gesamten Kristall frei beweglich, wobei die positiv
geladenen Atomriimpfe ein Potenzial bilden.

Valenzelektronen:
- ballistische Bewegung

- kurze StoBe Atomriimpfe:

- klein
- statisch
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Abbildung 5.3: Das Drude-Modell des freien Elek-
tronengases.

Nach Drude verhalten sich diese Elektronen dhnlich
wie ungeladene Teilchen in einem klassischen Gas:

* Die Atomriimpfe sind klein und statisch.

* Die Elektronen sollen eine freie Weglinge zwi-
schen Stofen haben, welche vielen Gitterkon-
stanten entspricht.

» Zwischen den StoBen ist die Bewegung frei,
d.h. unabhingig von den anderen Elektronen
(unabhingige Elektronen) und von den Atom-
riimpfen (freie Elektronen). Sind duB3ere Felder
vorhanden, so beeinflussen diese die Bewegung
wie in der Mechanik und Elektrodynamik dis-
kutiert.

» StoBe finden im Drude-Modell vor allem mit
den Ionenriimpfen statt; Stoe zwischen Elek-
tronen sind sehr selten. Die Stofe werden als
kurz angenommen und die Geschwindigkeit der
Elektronen nach dem Stof ist unabhingig von
der Geschwindigkeit vor dem StoB, sondern
wird durch die Temperatur des Kristalls be-
stimmt.

5.1.3 Ergebnisse

Mit Hilfe dieses einfachen klassischen Modells kon-
nen unterschiedliche Aspekte der Phidnomenolo-
gie von Metallen erkldrt werden. Beispiele dafiir
sind die Herleitung der qualitativen Aspekte des
Ohm’schen Gesetzes, oder die Beziehung zwischen

elektrischer und thermischer Leitfahigkeit. Wir dis-
kutieren diese Resultate jedoch nicht im Rahmen des
klassischen Modells, sondern erst nach der Einfiih-
rung des quantenmechanischen Modells.

Element Z n(10%cm’ r(A)
Li78K) 1 470 1.72
Na(5K) 1  2.65 2.08
KGK) 1 140 2.57
Be 2 24.7 0.99
Mg 2 86l 1.41
Al 3 18.1 1.1
Ga 3 15.4 1.16

Tabelle 5.1: Anzahl Z freier Elektronen pro Atom,
Dichte n des Elektronengases und mitt-
lerer Abstand r zwischen den Leitungs-
elektronen fiir verschiedene Elemente.

Ein wesentlicher Unterschied zwischen dem Elek-
tronengas eines Metalls und einem echten Gas ist
die Dichte: Im Vergleich zu einem echten Gas ist die
Dichte des Elektronengases um rund einen Faktor
1000 groBer: Pro Leitungselektron steht lediglich ein
Volumen zur Verfiigung das etwa einem Atomvolu-
men entspricht. Fiir ein Atom mit Radius 2 A erhilt
man ein Volumen von ca. 3-10~2°m?, entsprechend
einer Teilchendichte von 3-10%m=3. Dies ist eine
typische GroBenordnung (ca. 1 —20- 108 m—3, sie-
he Tabelle 5.1). Im Vergleich dazu nimmt ein idea-
les Gas unter Normalbedingungen ein Volumen von
22,41 ein. Pro Atom steht somit ein Volumen von

22,4-1073
Vag = 23
6-10
zur Verfiigung.

m® =4-10"*m’

Die positiv geladenen Atomriimpfe sind relativ klein
und fiillen lediglich einen kleinen Teil des Raumes.
Bei Natrium umfasst das Volumen der Atomriimp-
fe rund 15 % des gesamten Festkorpervolumens; bei
Edelmetallen wie Ag und Au, wo auch kovalente Ef-
fekte zur Bindung beitragen, steigt der Anteil. Die
Kerne sind aber sehr viel schwerer als die Elektro-
nen und bleiben unbeweglich auf ihren Plétzen.

5.1.4 Grenzen des Drude-Modells

Wie bei der Diskussion der Gitterschwingungen ge-
langt man aber auch bei den Elektronen im Rah-
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5 Freie Elektronen

men der klassischen Physik sehr bald an eine Gren-
ze, ab der ein wirkliches Verstindnis nur mit Hilfe
der Quantenmechanik erreicht werden kann. Zu den
qualitativen Unterschieden zwischen den Voraussa-
gen der klassischen und der quantenmechanischen
Theorie gehort die Berechnung der StoBe, die ein
Elektron bei der Durchquerung des Kristalls erlei-
det. Im klassischen Bild wiirde man eine gro3e An-
zahl St6Be mit den Gitteratomen erwarten. Experi-
mentell findet man, dass die Distanz, iiber die sich
die Elektronen frei bewegen konnen, von der Quali-
tat des Kristalls abhingt, sowie von der Temperatur.
Wihrend in gewohnlichen Metallen bei Raumtem-
peratur (z.B. Kupferdrihte) die Elektronen nach we-
nigen Gitterperioden gestreut werden und sich des-
halb insgesamt diffusionsartig bewegen, kann bei
tiefen Temperaturen und guten Kristallen die mitt-
lere freie Wegldange groBer als die Kristalldimensi-
on werden. Aus experimentellen Daten ist bekannt,
dass die freie Weglénge bis zu einem Zentimeter be-
tragen kann. In diesem Fall bewegt sich somit das
Elektron ohne Streuung durch rund 10® atomare La-
gen; offenbar breiten sie sich dann ballistisch, also
ohne Streuung im Kristall aus.

Weitere experimentelle Befunde, die mit dem
Drude-Modell nicht erklirt werden konnten, waren

* Die Temperaturabhingigkeit der elektrischen
und thermischen Leitfahigkeit.

* In einem idealen Gas sollten die Elektronen
einen Beitrag 3/2RT zur spezifischen Wirme
liefern; der experimentell beobachtete Beitrag
ist um rund 2 Grofenordnungen kleiner.

Ein klassisches Modell, welches (teilweise) erkla-
ren kann, welche Elemente metallischen Charakter
haben, wurde 1927 durch Herzfeld vorgeschlagen?.
Ein wirkliches Verstidndnis ist jedoch nur im Rahmen
einer quantenmechanischen Behandlung moglich.

3Phys. Rev. 29, 701-705

5.2 Das quantenmechanische Modell

5.2.1 Das Sommerfeld-Modell

Die wichtigsten Beschriankungen des Drude Modells
konnen dadurch iiberwunden werden, dass man die
Elektronen als quantenmechanische Teilchen, d.h.
als Teilchen mit Wellencharakter behandelt. Ein ent-
sprechendes Modell wurde 1928 von Sommerfeld
vorgeschlagen, kurz nach der Entdeckung des Pauli-
Prinzips. Damit gelang es, die wichtigsten Inkonsi-
stenzen des Drude-Modells aufzuldsen.

Ein Festkorper umfasst rund 1020 miteinander wech-

selwirkende Teilchen. Natiirlich ist die exakte Be-
handlung eines solchen Systems nicht moglich. Das
Sommerfeld-Modell macht deshalb zunichst einige
drastische Vereinfachungen: es ldsst die Wechsel-
wirkungen zwischen den Elektronen wie auch von
Kernen zu Elektronen vollstindig weg und betrach-
tet zundchst nur freie und unabhingige Elektronen.
Ihre Zustinde sind somit auch nur Einelektronen-
Zustinde, die als Orbitale bezeichnet werden.

Vakuum Vakuum

Metall

Energie E

Ort x

Abbildung 5.4: Potenzial  fiir  Elektronen im
Sommerfeld-Modell.

Damit brauchen wir lediglich freie Elektronen in ei-
nem (unendlich ausgedehnten) Kristall zu betrach-
ten. Die Rinder des Kristalls sind Potenzialwinde.
Als Figenzustinde solcher freier Elektronen kann
man bekanntlich ebene Wellen verwenden; diese
sind allerdings im gesamten Raum nicht normier-
bar. Man kann zu normierbaren Funktionen gelan-
gen, indem man periodische Randbedingungen ein-
fiihrt. Die entsprechende Periode, welche grof3 ge-
gen die Gitterkonstante sein sollte, kann anschlie-
Bend gegen Unendlich gefiihrt werden.

Die Atomriimpfe bilden ein Hintergrundpotenzial.
Sie bestehen aus den Kernen plus den stark gebun-
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5 Freie Elektronen

denen Elektronen in den gefiillten Schalten. Je nach
Metall sind diese Riimpfe relativ klein und weit von-
einander entfernt, oder sie beriihren sich und bilden
teilweise kovalente Bindungen.

Das Sommerfeld’sche Modell der freien Elektronen
passt am besten auf die Alkalimetalle. Hier entspre-
chen die Atomriimpfe den abgeschlossenen Schalen
mit Edelgaskonfiguration, das eine Valenzelektron
im s-Orbital ist das freie Elektron, welches ein Lei-
tungsband mit s-Charakter bildet.

Abbildung 5.5: Aufbau des Planeten Jupiter.

Wasserstoff, das leichteste und hidufigste Element
des Universums, gehort zur gleichen Gruppe des Pe-
riodensystems wie die Alkaliatome. Gemél theoreti-
schen Vorhersagen sollte es bei hohen Driicken me-
tallisch werden. Man geht deshalb davon aus, dass
der Jupiter zu einem groBen Teil aus metallischem
Wasserstoff besteht. Versuche, auf der Erde Was-
serstoff in die metallische Form zu bringen, haben
jedoch bisher keine eindeutigen Resultate geliefert.
Theoretische Vorhersagen gehen davon aus, dass da-
fiir Driicke im Bereich von 500 GPa (5-10° atm)
notwendig sind.

5.2.2 Das Teilchen im Potenzialtopf

Um die quantenmechanischen Zustandsfunktionen
der Elektronen im Kristall zu bestimmen, rekapitu-
lieren wir zunéchst das Problem eines Teilchens in
einem eindimensionalen Potenzialtopf. Wie bei der
Diskussion der Phononen fiihren wir zundchst Rand-
bedingungen ein, welche in erster Linie dazu dienen,

die Zustinde zu normieren und die Zustandsdichte
zu berechnen.

7

-

Abbildung 5.6: Eindimensionaler Potentialtopf.

Das Potenzial verschwindet auf der Strecke [0,L]
und ist unendlich hoch auBerhalb. Der Hamiltonope-
rator dieses Systems beinhaltet im Bereich [0, L] le-
diglich die kinetische Energie

p2 hz d2

T 2m 2mdx?

Die Eigenfunktionen dieses Operators sind die ebe-
nen Wellen

W, — ¢k
oder

W, = asinkx+b coskx
und die Eigenwerte sind

21,2 2
gk:hk _p
2m

2m’

Das Potenzial kann am einfachsten iiber die Randbe-
dingung beriicksichtigt werden, dass

Yx<0)=¥Y(x>L)=0
sein muss. Damit sind die Losungen
¥, =Asin (nni)
L
und die entsprechende Energie

6= ("),
2m \ L
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5 Freie Elektronen

Die Amplitude A ergibt sich aus der Normierungs-
bedingung

L L
| 1w@Pax=1a%3 =1
0 2

ZuA = \/2/7

Wenn sich mehrere Elektronen in diesem Potenzial
befinden und wir deren elektrostatische Wechselwir-
kung zunichst vernachléssigen, so kann gemall dem
AusschlieBungsprinzip von Pauli jeder dieser Zu-
stande mit zwei Elektronen mit entgegen gesetztem
Spin besetzt werden. Das Gesamtsystem ist demnach
im Grundzustand wenn die niedrigsten N /2 Zustin-
de mit jeweils 2 Elektronen besetzt sind.

5.2.3 Drei Raumdimensionen

In Kristallen entspricht der Potenzialtopf der Rand-
bedingung, dass die Elektronen sich innerhalb des
Kristalls befinden miissen. Wir beriicksichtigen dies
wiederum iiber periodische Randbedingungen

¥(x,y,2) Y(x+L,y,z) =Y(x,y+L,z)

= Y(x,y,z+L),

wobei L grof3 gegeniiber einer Einheitszelle sein soll.

Im dreidimensionalen Raum lautet der Hamilton-
operator fiir ein freies Elektron

no(d>  d* 4
" 2m <d2 T T az ) |
Elektronen in einem Potenzialtopf mit Kantenlinge
L haben dann die Zustinde

. (2%m . (27 . (27
¥, =Asin <Lnxx> sin <Lnyy> sin <anz>

und Energien

o
W:%(kx—’_ky—i_kz)

n2 2m\?
= Zm(L) (n§+n§+n§). 5.1

é =

Alternativ konnen komplexe Zustinde (ebene Wel-
len) verwendet werden:

n
.2 x

Wi(R) = k=T (5.2)
n;

Da wir uns hier in einem endlichen Bereich (mit Vo-
lumen L?) befinden, sind diese Zustinde normierbar
und die moglichen k-Werte diskret. Die Energie die-
ser Zustinde ist die gleiche wie in (5.1). Der Impuls
eines Elektrons in diesem Zustand ist p = 7k und sei-
ne Geschwindigkeit ¥ = 7k /m. Wir verwenden diese
Zustdande als Basisfunktionen fiir die Beschreibung
von Elektronen in einem Kristall der Kantenldnge L.

Nach GI. (5.2) sind die Zustinde gleichmifBig im
k—Raum verteilt. Die Energie steigt proportional
zum Quadrat des Impulses.

5.2.4 Fermi-Kugel

Wir untersuchen nun die Frage, welche dieser Zu-
stinde besetzt sind. Da Elektronen einen Spin Y2 be-
sitzen, unterliegen sie der Fermi-Dirac Statistik und
jeder rdumliche Zustand kann maximal von 2 Elek-
tronen mit entgegengesetztem Spin besetzt sein.

EA
Zustinde leer
- ° - - EF Ferml.
Energie
1 2n/L N Zustiinde
. . . . besetzt
. . . .
k

Abbildung 5.7: Links: Zustdnde im k-Raum; rechts:
Besetzung der Zustidnde bei 7' = 0.

Am absoluten Nullpunkt besetzen N Elektronen die
N/2 energetisch niedrigsten Zustinde. Da die Ener-
gie (im Rahmen dieses Modells) nur vom Betrag
des Impulses abhiéngt, bilden diese Zustinde im k-
Raum eine Kugel. Um die besetzten Zustinde zu fin-
den, bestimmen wir zunéchst die Zahl, respektive die
Dichte der Zustidnde im Impulsraum.

Fiir periodische Randbedingungen ist der Impuls-
raum diskret, mit Einheitszellen der Seitenlinge
2m/L. Die besetzten Zustinde fiillen in diesem
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kz

Volumen pro Punkt
im k-Raum: (@)‘
L

Zustande mit k<kr

Kx

Abbildung 5.8: Fermikugel.

Raum eine Kugel, deren Radius wir mit kz bezeich-
nen. Das Volumen dieser Kugel betrigt k13p47r /3.

Die Anzahl der Zustdnde in dieser Kugel, d.h. die
Zahl der besetzten Zustidnde, muss der Zahl der Elek-
tronen entsprechen. Wir setzen somit die Zahl der
Elektronen gleich der doppelten (Spin!) Zahl der
Moden. Diese berechnen wir, indem wir das gesamte
Volumen der Kugel durch das Volumen pro Zustand
dividieren,

4z 3
Tk Vi

()* 37

N=2

(5.3)

Bei N Elektronen muss damit der Radius der Kugel

3 37[2N

kr=\=,

sein.

5.2.5 Fermi-Energie

Die Energie der Elektronen mit Impuls /kr betrigt

EF

2
h2 2 h2 2 3
_ kg <37r N> 5.4)

2m  2m\ V

und wird als Fermi-Energie bezeichnet. Die Fermi-
Energie ist somit die Energie der Elektronen im
hochsten besetzten Einelektronenzustand. In der
Fermi Energie tritt die Anzahl Elektronen und das
Volumen nicht mehr unabhéngig auf, sondern sie

hingt lediglich von der Dichte n = N/V der Elek-
tronen ab. Die Elektronendichte kann aus der Mas-
sendichte und der Atommasse berechnet werden:

N zZp

n——=— _—

v o AA
mit Ny der Avogadro-Zahl, p der Dichte des Materi-
als, Z der Zahl der freien Elektronen pro Atom und
A der Atommasse.

Element Z 0(10%2) fem? rs (A) Ts/a,
Li (78 K) 1 4,70 1,72 3,25
Na(5K) 1 2,65 2,08 3,93
K (5 K) 1 1,40 257 486
Rb(5K) 1 1.15 275 5,20
Cs(5K) 1 091 2,98 5,62
Cu 1 847 141 2,67
Ag 1 5.56 1,60 3,02
Au 1 5,90 1,59 3,01
Be 2 24,7 0,99 1,87
Mg 2 8.61 1.41 2,66
Ca 2 4,61 1,73 3,27
Sr 2 3,55 1.89 3,57
Ba 2 3,15 1,96 3,71
Nb 1 3,56 1,63 3,07
Fe 2 17,0 1,12 2,12
Mn (a) 2 16,5 1,13 2,14
Zn 2 13,2 1,22 2,30
Cd 2 9,27 1,37 2,59
Hg (78 K) 2 8,65 1.40 2,65
Al i 18,1 110 2,07
Ga 3 154 1,16 2,19
In 3 1.5 127 241
Tl 3 10,5 1,31 248
Sn 4 14,8 1,17 222
Pb 4 13,2 1,22 2,30
Bi 5 14.1 1.19 2,25
Sb 5 16.5 1,13 2,14

Tabelle 5.2: Dichte der freien Elektronen in Metal-
len.

Aus der Dichte n der freien Elektronen kann man
auch den mittleren Abstand r; zwischen ihnen be-
rechnen, analog zum Drude-Modell. Wenn man das
Volumen pro Elektron schreibt als

1 V 4rm 4
= 5=

n N

dann wir der Radius r; dieser Kugel zu

3 3
Fs =1\ -
g 47n
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5 Freie Elektronen

Tabelle 5.2 listet neben der Dichte der freien Elektro-
nen ebenso den Parameter r,. Dieser kann verglichen
werden mit dem Bohr-Radius ag ~ 0,5 A.

Wertig- Elektronenzahl- Fermi- Fermi-
keit dichte Energie Temperatur
[em™2] [eV] (]

Li 1 4,70 - 1032 4,72 54800
Rb 1 1,15 - 1022 1,85 21500
Cu 1 8,45 - 1022 7,00 81200
Au 1 5,90 - 1022 5,51 63900
Be 2 24,20 - 1022 14,14 164100
Zn 2 13,10 - 1032 9,39 109000
Al 3 18,06 - 1032 11,63 134900
Pb 4 13,20 - 1022 9,37 108 700

Tabelle 5.3: Beispiele von Fermi-Energien.

Nach Gleichung (5.4) sollte die Fermienergie mit
der Dichte der Elektronen zunehmen. Tabelle 5.3
zeigt, dass die experimentellen Werte dies bestiiti-
gen. Typische GroBenordnungen fiir die Elektronen-
zahldichte liegen bei 10* m 3, fiir die Fermienergie
bei 10 eV.

Héufig parametrisiert man die Fermi-Energie auch
tiber die Temperatur:

kpTr = éaF

Typische Werte fiir die Fermi-Temperatur liegen bei
10° K, also bei Temperaturen weit oberhalb des
Schmelzpunktes. Somit ist 7 < Tr immer eine sehr
gute Niherung.

Da die Fermienergie vom Volumen abhidngt, &7 o<
V23, steht das System unter einem effektiven
Druck, welcher als Ableitung der Energie nach dem
Volumen berechnet werden kann,

~dUu _2U
P==av =3v°
Dieser Fermidruck tritt auch bei anderen Fermionen
auf. Er ist z.B. dafiir verantwortlich, dass Neutronen-
sterne bis zu einer gewissen Grofle dem Gravitati-
onsdruck standhalten konnen.

Wenn wir den Impuls der Elektronen in eine
Geschwindigkeit umrechnen, erhalten wir fiir die
Geschwindigkeit der Elektronen an der Fermi-
Oberfldche

hkp  h 3/37°N
VFp — —— = — .

m m %4

Typische Werte liegen im Bereich von 10® m/s, also
bei 0.003 c. Allerdings sollte man dies nicht mit ei-
nem entsprechend schnellen Massentransport asso-
ziieren.

Insgesamt ist die kinetische Energie der Leitungs-
elektronen deutlich niedriger als die entsprechende
kinetische Energie in einem isolierten Atom. Diese
Absenkung der kinetischen Energie ist im Wesentli-
chen fiir die metallische Bindung verantwortlich.

5.2.6 Zustandsdichte

Eine wichtige GroBe ist die Zustandsdichte, d.h. die
Anzahl quantenmechanischer Zustinde in einem be-
stimmten Volumen. Da die Elektronen gleichmaBig
iber den ganzen Raum verteilt sind, ist die Zustands-
dichte im direkten (gewohnlichen) Raum konstant.
Im reziproken Raum (k-Raum) ist die Zustandsdich-
te ebenfalls konstant, wie in Kap. 5.2.4 gezeigt.

Anders sieht es aus, wenn wir die Anzahl Zustin-
de als Funktion des Betrages des k-Vektors betrach-
ten. Fiir die Berechnung dieser Zustandsdichte be-
stimmen wir zunichst die Anzahl Zustinde, deren
Wellenzahl kleiner als k ist. Laut GI. (5.3) ist dies

Vi3

Ne= .
KT 32

Daraus konnen wir die Dichte der Zustédnde berech-
nen in der Umgebung eines Wellenvektors k, d.h. in
einer Kugelschale mit Radien k und k + dk:

dNe _ RV

dk w2’
AuBerdem interessiert die Zustandsdichte im Ener-
gieraum. Mit

h2k? 2mé&
E=—0" o kK= m2
2m h

erhalten wir fiir die Anzahl Zustinde mit Energie
kleiner als &

(2m&)3/?

N(&)=V
(6) 3m2h3
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und daraus die Zustandsdichte im Energieraum

dN(&) (2m)3? d 32
d¢ 3pp dE
\@Vm3/2
dAN(€)
d&€ 3/2
dN K2V i mginé\/?
dk 172/ 2R
|4l £

Abbildung 5.9: Zustandsdichte im k-Raum (links)
und im Energieraum (rechts).

Die Zustandsdichte steigt also proportional zur Wur-
zel aus der Energie; sie verschwindet beim Null-
punkt und ist proportional zum Volumen V des Kri-
stalls. Abb. 5.9 zeigt die entsprechenden Grofen.

5.3 Thermodynamik des
Elektronengases

Das Drude-Modell benutzt die klassische Thermo-
dynamik fiir die Berechnung der Geschwindigkeits-
verteilung der Elektronen. Dies wire aber nicht mit
dem Pauli-Prinzip vereinbar. Dies wird korrigiert
durch die Fermi-Dirac Statistik.

5.3.1 Besetzungswahrscheinlichkeit

Am absoluten Nullpunkt sind die Zustinde bis zur
Fermienergie mit jeweils zwei Elektronen mit ent-
gegengesetztem Spin besetzt, die dariiber liegenden
Zustinde sind leer. In Wirklichkeit befinden sich die
Elektronen jedoch immer bei endlicher Temperatur
und sind somit thermisch angeregt.

Dieses System kann zusétzliche Energie aufnehmen
wenn ein Elektron aus einem Niveau unterhalb der

E

E
Ey FEy

Abbildung 5.10: Besetzungswahrscheinlichkeit der
Zustinde bei T = 0 (links) und T >
0 (rechts).

T+ T4 TEL

£

Abbildung 5.11: Beispiel eines N-Elektronen Zu-
stands, mit unterschiedliche be-
setzten 1-Elektronenzustinden der
Energie &;.

Fermikante in eines oberhalb angeregt wird. Abb.
5.10 zeigt qualitativ diese Umverteilung.

Wir bestimmen nun die Wahrscheinlichkeit, dass ein
Zustand mit gegebener Energie & bei einer Tempera-
tur 7" besetzt ist. Dabei ist es nicht mdglich, die Elek-
tronen einzeln zu betrachten, da die Besetzung der
Einelektronenzustinde aufgrund des Pauliprinzips
stark aneinander gekoppelt ist. Wir diskutieren des-
halb im Folgenden nicht 1-Elektronenzusténde, son-
dern N-Elektronenzustinde. Abb. 5.11 zeigt einen
solchen Zustand, welcher als Produktzustand von
Einelektronenzustinden gegeben ist.

Die  Wahrscheinlichkeit, dass ein  N-Elek-
tronenzustand mit Energie & besetzt ist, betrdgt

o~ /ksT

Py = T e FaltaT (5.6)

Die Summe im Nenner lauft tiber alle moglichen Zu-
stiande. Sie ist aus der statistischen Thermodynamik

als Zustandssumme bekannt uns kann geschrieben
werden als

Zefga/kBT — e*F/kBT — e*(U*TS)/kBT7
o

wobei F die Helmholtz’sche freie Energie, U die
innere Energie und S die Entropie des Systems
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darstellt. Wir konnen deshalb die Besetzungswahr-
scheinlichkeit auch schreiben als

Py = o E k8T JF [ksT _ ,—~(E—F)/kaT
In der Praxis kennt man leider den N-Elek-
tronenzustand nicht. Experimentell zuginglich ist
hingegen die Besetzungswahrscheinlichkeit f; fiir
einen Einelektronenzustand i (Spin-Orbital).

Diesen berechnet man aus der Verteilung (5.6) durch
Summation iiber alle N-Elektronenzustinde, in de-
nen der Zustand i besetzt ist,

= ZPN(@@E,)'
B

B lauft tiber alle Zustidnde, in denen das i-te Orbital
besetzt ist.

Der Zustand i ist entweder besetzt oder leer. Somit
kann man die Besetzungswahrscheinlichkeit auch
als die Differenz zwischen 1 und der Wahrschein-
lichkeit fiir Nichtbesetzung schreiben:

N =1-Y P(a)).
Y

wobei die Summe jetzt iiber diejenigen Zustinde
lduft, bei denen der Zustand i nicht besetzt ist.

Im Modell freier Elektronen ist die Gesamtenergie
des N-Elektronen Zustandes durch die Summe der
Energien der besetzten 1-Elektronen Zustinde ge-
geben. Wir driicken jetzt die Energie <§’ij des N-
Elektronenzustands mit leerem Zustand i aus durch
die Energie des entsprechenden N -+ 1-Elektronen
Zustandes, in dem der Zustand i besetzt, ist mi-
nus die Energie des entsprechenden Elektrons, éa}{v =
gév +1 _ &, Damit wird

fr=1=) (& —e), (5.7)
g

wobei g die Energie des Einelektronenzustands i
darstellt.

5.3.2 Die Fermi-Dirac Verteilung

Das Verhiltnis der Besetzungswahrscheinlichkeiten
fiir den N-Elektronenzustand und den N + 1 Elektro-

nenzustand betrigt

rf’évﬂ—si—FN

PN —g) T e
! NN GNF Nl ekT  (5.8)
PN+1(£B ) I
e kpT
wobei

das chemische Potenzial darstellt, d.h. die Ableitung
der freien Energie nach der Teilchenzahl,

_Jdu
H=9n

Diese thermodynamische Zustandsvariable gibt an,
wie stark sich die Energie des Systems dndert, wenn
die Teilchenzahl N (hier: die Zahl der Elektronen)
um eins dndert. Die Besetzungswahrscheinlichkeit
hiingt also davon ab, ob der Zustand i oberhalb oder
unterhalb des chemischen Potenzials liegt.

Aus (5.8) erhalten wir fiir den Summanden in (5.7)

g1

PN(géerl —Ei) = €k137TPN+1 (gé\/+l)

Wir setzen dieses Resultat in die Summe ein und er-
halten

=1 ot ZPNH(éDéVH).
B

Diese Summe ist aber gerade die Besetzungswahr-
scheinlichkeit fiN *1 fiir den i-ten Zustand in einem
System mit N + 1-Elektronen:

&—U
N T £N+1
fir=1—eksT {77

Wir konnen diese Form vereinfachen, wenn wir an-
nehmen, dass die Besetzungswahrscheinlichkeit sich
durch die Verinderung der Elektronendichte um ein
Elektron (also relativ um ~ 10~23) nicht wesentlich
andert. Wir konnen dann fN*! ersetzen durch fiN .

1

Auflosen der Gleichung nach f ergibt

1

N _
fi= ele—1)/keT | 1°

Dies ist die Fermi-Dirac Verteilung, d.h. die Be-
satzungswahrscheinlichkeit fiir Fermionen in einem
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Zustand der Energie &. Der Term +1 im Nenner
stellt sicher, dass die Funktion nicht groBer als 1
wird, dass also kein Zustand mehr als einmal be-
setzt werden kann. Die Bose-Einstein Statistik un-
terscheidet sich durch ein Minus an dieser Stelle. In
diesem Fall kann die Besetzungswahrscheinlichkeit
sehr grof3 werden. Bei tiefen Temperaturen konden-
sieren Bosonen deshalb alle in den Grundzustand.
Solche Phidnomene sind fiir kollektive Quantenpha-
nomene verantwortlich, wie z.B. Supraleitung, Su-
prafluiditét oder Bose-Einstein Kondensation.

5.3.3 Eigenschaften der Fermi-Dirac
Verteilung

Da die Fermi-Temperatur sehr viel hoher ist als die
Raumtemperatur und fiir niedrige Temperaturen [ ~
kpTr, gilt meistens T < wkp. Wir betrachten die fol-
genden Grenzfille:

a) & — 0 : Die Exponentialfunktion geht gegen null
und fiN — 1.

b) & > u: Die Exponentialfunktion wird grof3 ge-
gen 1 und /N — e~ (&=)/ksT T diesem Bereich ni-
hert sich die Fermi-Dirac Verteilung der Boltzmann-
Verteilung an und fillt exponentiell gegen Null ab.

1
T emw/keT 1

4 N

Besetzungswahrscheinlichkeit f;
o
T

Energie Ei/,u

Abbildung 5.12: Fermi-Dirac Besetzungswahr-
scheinlichkeit bei verschiedenen
Temperaturen.

Bei der Temperatur O K macht die Fermi-Dirac Ver-
teilung einen abrupten Ubergang von 1 nach 0 an der
Fermikante : alle Zustinde unterhalb von &F sind be-
setzt, alle oberhalb sind leer. Bei hoheren Tempera-

turen wird Population aus der Ndhe der Fermikan-
te in energetisch hohere Zustidnde verschoben. Die
Breite dieses Ubergangsbereiches ist von der Gro-
Benordnung kpT. Das Zentrum des Ubergangsbe-
reichs wird durch das chemische Potenzial u be-
stimmt, welches am absoluten Nullpunkt der Fermi-
energie entspricht.

Im Gegensatz zur Fermienergie ist das chemische
Potenzial aber temperaturabhingig. Man kann die
Temperaturabhingigkeit berechnen, indem man aus
der Besetzungswahrscheinlichkeit die gesamte Elek-
tronenzahl berechnet:

1
N= Zf - Z ee—1)/keT 1"

Hier wurde der Index i fiir die Energie des Einelek-
tronenzustands weggelassen. Fiir eine feste Elektro-
nenzahl N kann man aus dieser Gleichung das che-
mische Potenzial p bestimmen. Dafiir entwickelt
man die Differenz der Besetzungswahrscheinlich-
keiten bei der Temperatur 7 und bei 7 = 0 K als
Taylorreihe um & = p. Daraus erhilt man fiir die
Temperaturabhingigkeit des chemischen Potenzials
in niedrigster Ordnung in T’

w(T) =& (1—’1’;<£>2+...>.

Fiir alle relevanten Temperaturen gilt T < Tr, so
dass hohere Terme in exzellenter Ndherung vernach-
lassigt werden konnen.

5.3.4 Die thermische Energie des
Elektronengases

GemiB der klassischen Drude-Theorie sollte die ki-
netische Energie der Elektronen wie bei Gasteil-
chen %NkBT sein. Damit sollte die Wirmekapazi-
tit also C,; ~ 3R/2 betragen, unabhéngig von der
Temperatur. Experimentell beobachtet man aber bei
Raumtemperatur einen Wert, der wesentlich niedri-
ger ist, von der Groenordnung <1% des klassischen
Wertes, und auBerdem temperaturabhéngig. Erst die
Fermi-Dirac Verteilung 16ste dieses Problem: Wéh-
rend in einem klassischen Gas eine Temperaturerho-
hung um AT die Energie jedes Teilchens um kAT /2
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erhoht, konnen die meisten Leitungselektronen kei-
ne Energie von der GroBenordnung kg7 aufnehmen,
da in diesem Bereich keine leeren Zustéinde zur Ver-
fiigung stehen. Lediglich in der Nihe der Fermikan-
te, in einem Bereich der Breite ~ kg7 um die Fermi-
Energie stehen teilweise gefiillte Zustinde zur Ver-
fiigung. Die Zahl der Elektronen in diesem Bereich
liegt in der GroBenordnung von 7'/Tr mal die Zahl
aller Elektronen. Da typische Werte fiir die Fermi-
Temperatur bei rund 10° K liegen betriigt dieses Ver-
hiltnis bei Raumtemperatur weniger als 1%. Die
gleiche Uberlegung sagt auch voraus, dass die spe-
zifische Wirme proportional zur Temperatur abneh-
men sollte.

Die Rechnung lédsst sich in der Tieftemperatur-
Néherung T < Tr auch exakter durchfithren. Wir
berechnen die gesamte Energie U der Elektronen als
Summe iiber die Energie aller besetzten Einelektro-
nenzustinde als

/wdeeD(e)f(e)
= /deD

wobei D(¢g) die Zustandsdichte und f(€) die Beset-
zungswahrscheinlichkeit bezeichnen.

U =

ele— #)/kBT +1’

Die thermische Energie Ur des Elektronengases bei

der Temperatur 7 entspricht der Erhohung dieser

Energie bei einer Temperaturdnderung 7 : 0 — 7'
Ur = T)-U(0)

U(
= /wdggD(s)f(e)—/EFdeeD(e)
0 0

Das erste Integral wird in 2 Bereiche aufgeteilt:
EF o
Ur = | / + [NaeeD(e) f(e)
0 EF

- /OeF deeD(¢)

und die Terme mit den gleichen Integrationsgrenzen
werden zusammengefasst:

[ deente) (rie)-1)
+/Wd£8D(£)f(s).

Das erste Integral beinhaltet die Energie, welche be-
notigt wird, um die Elektronen aus den Zustdnden
unterhalb der Fermikante zu entfernen, das zweite
Integral die Energie der Elektronen oberhalb der Fer-
mikante, also in den Zustidnden, die bei 7 = 0 nicht
besetzt sind.

Die Anzahl Elektronen muss dabei konstant bleiben,

/ deD(e

N =

:/dsD

Diese Identitit kann mit der Fermienergie & multi-
pliziert werden:

([ +/ )de 5 D(e) £(€)

/ deepD(e

Wir addieren die rechte Seite zur thermischen Ener-
gie und subtrahieren die linke Seite und erhalten

[ aetente) (rie)- 1)
+er D(€) —&r D(g)f ()]
+ [ delenie) fle) - e Do) f(e)]

&F

_ /Oeng(g—st@) (f(e)—1)
+/:de(8 —ep)D(g) f(€).

Ur =

Die entspricht einer Verschiebung des Energienull-
punktes: die Energien werden jetzt relativ zur Fer-
mienergie berechnet.

Das erste Integral bezeichnet die Energie, welche be-
notigt wird, um die Elektronen aus einem besetzten
Zustand an die Fermikante anzuheben, das zweite
die Energie, welche zusitzlich aufgebracht werden
muss, um sie von der Fermikante in einen leeren Zu-
stand oberhalb zu bringen. Beide Beitridge zur Ener-
gie sind positiv. Abb. 5.13 zeigt diesen Beitrag in der
unteren Kurve.
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5.3.5 Spezifische Wirme

Wir suchen nun die spezifische Wirme, also die
Anderung der inneren Energie pro Temperaturinde-
rung. Der einzige Term in der obigen Gleichung, der
sich mit der Temperatur dndert, ist die Besetzungs-
wahrscheinlichkeit f(&). Wir erhalten deshalb

df(e)
dr -

dUu °
Cop=—= = de(e—¢€r)D(€
a == | dete—er)n(e)

Da sich die Besetzungswahrscheinlichkeit nur in der
Nihe der Fermikante wesentlich dndert, verschwin-
det der Integrand fiir Energien weit von der Fermi-
energie. Wir konnen deshalb die Zustandsdichte in
guter Nidherung durch den Wert an der Fermikante
ersetzen, D(€) — D(&r), und aus dem Integral her-
ausziehen:

df(e)

C. = D(gr) /Omde(e —€r) T 5.9

Fiir die Berechnung der Anderung der Besetzungs-
wahrscheinlichkeit approximieren wir das chemi-
sche Potenzial durch die Fermienergie:

1

f: e(&*SF)/kBT_i_ 1'

Dies ist eine gute Nédherung bei niedrigen Tempera-
turen. Damit wird die Ableitung nach der Tempera-
tur

df e—¢g  eleer)/ksT
dT — ksT? (gle—er)/ksT 4 1)

einsetzen in (5.9) ergibt die Wirmekapazitit

2
e E—E€F
C,, = kgD(¢g de
o = taler) [ ae (5

e—er)/kgT

e(
(e(S—SF)/kBT + 1)2 .

Abbildung 5.13 zeigt eine graphische Darstellung
des Integranden.

Anderung der Besetzun

df (e)

E—EFR

Anderung der Energie

3

Abbildung 5.13: Anderung der Besetzung und An-
derung der Energie bei endlicher
Temperatur.

Fiir die Integration verwendet man die Abkiirzung
X = (8 — EF)/kBT und de = dxkgT:

00 X

2 e
(ev+1)?
(oo} 2
dx—>
eXf+2+e

(5.10)

Chg = dxx

kxTD(er) /

7€F/kBT

= kiTD(gr) /

—SF//{BT

04

03

-10 -5 5 10
X

Abbildung 5.14: Grafische Darstellung des Integran-
den in GI. (5.10).

Der Integrand fillt fiir |x| > 1 exponentiell ab. Fiir
Temperaturen weit unterhalb der Fermitemperatur,
kgT < €p, d.h. im gesamten interessanten Bereich,
kann die untere Integrationsgrenze deshalb auf -oo
gesetzt werden. Das resultierende Integral ist nicht
trivial, kann aber bestimmt werden und hat den Be-
trag 1% /3. Damit wird
2
Ce[ = k%;TD(SF)%.
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Die Zustandsdichte an der Fermikante erhalten wir
aus (5.5)

(2m)3/?

Dier) = 2120

— V&V

und (5.4)

2
. n* (37N 3
P oam v

nach Erweiterung mit 1 als

3
2

(2m)3/2 -3/2 2 3m°N
D = &V —
(¢r) o T \om) v
oo W
N 28]7 N ZkBTF’
sodass
2 T
C, = 7kBNTTV (5.1

wird. Offenbar wichst die die elektronische Wirme-
kapazitit proportional zur Temperatur und erreicht
erst in der Nédhe der Fermitemperatur den Wert von
Dulong-Petit. Bei niedrigeren Temperaturen ist die
Wirmekapazitit somit um etwa das Verhiltnis 7' /T
geringer.

Gleichung (5.11) wird auch gerne als C,; = yT ge-
schrieben. Der theoretische Wert fiir die Proportio-
nalitdtskonstante y ist

ﬂzNAkIZQ B ﬂzNAkIZQ
26 2(R*/2m)(372n)2/3
2/3 2
m (ﬂ/3)h2 NAan—2/3

(5.12)

und hat die Einheit

[]—L
y_molKZ'

5.3.6 Vergleich Elektronen / Phononen

Gemessen wird nie die elektronische Wirmekapa-
zitédt alleine, sondern die gesamte Wéirmekapazitiit,
welche sich aus einem phononischen und einem

elektronischen Teil zusammensetzt. Zwischen der
Debye-Temperatur und der Fermitemperatur domi-
niert somit der phononische Anteil. Fiir Temperatu-
ren unterhalb der Debye-Temperatur erwarten wir ei-
ne Temperaturabhingigkeit der Form
3 ¢ 2

C=vyT+AT’ oder T= Y+AT”.
Hier stellt v den elektronischen und A den phononi-
schen Anteil dar. Diese Beziehung stellt man gerne
in der in Abb. 5.15 gezeigten Form dar: das Verhilt-
nis C/T wird gegen das Quadrat der absoluten Tem-
peratur aufgetragen.

5

IC T joule/maode - kelvin®)

0 5 10 15
T2 (kelvin® )

Abbildung 5.15: Vergleich der Temperaturabhéngig-
keit der Wirmekapazititen des Iso-
lators KCI und des Metalls Cu.

In dieser Darstellung zeigt der Achsenabschnitt den
Beitrag der Elektronen, die Steigung den Beitrag der
Phononen. Der elektronische Beitrag sollte also fiir
sehr tiefe Temperaturen dominieren. Abb. 5.15 zeigt
dies fiir Cu. Da KCl keine freien Elektronen besitzt,
verschwindet hier der elektronische Beitrag zur spe-
zifischen Wirme: die entsprechende Kurve hat Ach-
senabschnitt Null.

Die unterschiedliche Temperaturabhingigkeit fiir
Elektronen und Phononen kann auf zwei funda-
mentale Unterschiede zwischen den beiden Arten
von Teilchen zuriickgefiihrt werden. Zum einen sind
Phononen Quasiteilchen, welche erzeugt und ver-
nichtet werden konnen (Ruhemasse = 0), wihrend

135



5 Freie Elektronen

Phononen Elektronen
k k
(1) = 1 1
JED =" FE) = —=ep—
e*sT +1

Abbildung 5.16: Vergleich der Dispersion und Stati-
stik fiir Phononen und Elektronen.

fiir Elektronen Teilchenzahlerhaltung gilt, da deren
Ruhemasse endlich ist. Die unterschiedliche Ruhe-
masse fiihrt auch zu unterschiedlichen Dispersions-
relationen, wie in Abb. 5.16 dargestellt. Zum an-
dern unterliegen Elektronen im Gegensatz zu Pho-
nonen dem Pauli-Prinzip, da sie einen Spin 7i/2 be-
sitzen, wihrend Phononen Bosonen sind. Dies fiihrt
zu einer unterschiedlichen Statistik (Fermi-Dirac vs.
Bose-Einstein).

5.3.7 Effektive Masse

Element Yth

Yexp

Element vy Yexp

1074 1074 107%J 1074J

Mol K2 Mol K2 MolK2 Mol K2
Li 75 17.5 Fe 6.3 50.1
Na 10.9 14.6 Mn 6.3 167.1
K 16.7 19.6 Zn 7.5 5.8
Rb 19.2 24.2 Cd 9.6 71
Cs 221 322 Hg 10.0 20.9
Cu 5.0 6.7 Al 9.2 12.5
Ag 6.3 6.7 Ga 10.0 6.3
Au 6.3 6.7 In 12.1 18.0
Be 5.0 21 TI 13.0 14.6
Mg 10.0 13.4 Sn 13.8 18.4
Ca 15.0 27.2 Pb 15.0 29.2
Sr 18.0 36.3 Bi 18.0 0.8
Ba 19.6 27.2 Sb 16.3 6.3
Nb 6.7 83.6

Tabelle 5.4: Vergleich der theoretischen und expe-
rimentellen Wirmekapazititen einiger
Elemente.

Ein Vergleich der gemessenen und berechneten elek-
tronischen Wirmekapazitit (— Tab. 5.4) zeigt, dass

die beobachteten Werte in der richtigen Gréenord-
nung liegen, aber nicht quantitativ exakt sind. Dies
liegt zum einen daran, dass die Dichte der freien
Elektronen teilweise schwierig zu bestimmen ist. Ein
Beispiel dafiir sind die Ubergangsmetalle, wo an
der Fermikante sowohl die Elektronen aus den d-
Orbitalen, wie auch diejenigen aus den s-Orbitalen
beitragen.

e m*/m, ~ 200
1000} . *v—L‘-ﬁii_‘— .
800 “41
[ e s ! o L 1 ]
1000 b~ [ 0.2 04 06 08 1.0 1.2 14 16
g ¥
so0} -
[a\}
— [ CeCu,Si,
—i 600 1
g3
=t ‘
200 g
Ol J
2005, o
1 1 1 1 1 1 1 AT IO (SO LSO £
o 200 400 600 800 1000 120C
T2 [K?]

Abbildung 5.17: Wiarmekapazitdt als Funktion der
Temperatur fiir Metalle mit 4f und
5f Elektronen.

Wie Abb. 5.17 zeigt, gibt es viele Verbindungen, bei
denen das beobachtete Verhalten stark von der Er-
wartung abweicht. So steigt hier die Wirmekapazitit
bei tiefen Temperaturen wieder an.

Laut Gleichung (5.12) ist die Wirmekapazitit pro-
portional zur Masse der Elektronen. Deshalb be-
schreibt den Unterschied zwischen den experimen-
tellen und dem theoretischen Wert der Wirmekapa-
zitit gerne iiber eine Anderung der effektiven Elek-
tronenmasse. Einige intermetallische Verbindungen
von seltenen Erden und Actiniden (also Elementen
mit f-Elektronen) zeigen bei niedrigen Temperatu-
ren extrem hohe Wirmekapazitiiten, welche einer ef-
fektiven Elektronenmasse von rund 1000 m, entspre-
chen. Diese Anderungen der effektiven Masse kon-
nen im Rahmen des Bindermodells als Kopplung an
die Atomriimpfe teilweise erklidrt werden (— Kap.
6, Abb. 5.18).

Bei solchen Verbindungen spricht man hdufig von
“schweren Fermionen”. Sie haben verschiedene in-
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Abbildung 5.18: Gitterpotenzial fiir schwere Fer-
mionen.

teressante Eigenschaften. So bilden sie eine speziel-
le Klasse von Supraleitern, die “exotischen Supralei-
ter”.

5.4 Elektrische Leitfihigkeit

5.4.1 Grundlagen

Die Fiahigkeit, elektrischen Strom zu leiten, gehort
zu den charakteristischen Eigenschaften der Metal-
le. Sowohl die klassische Drude-Theorie wie auch
die quantenmechanische Theorie bieten einen An-
satz fiir die Erkldrung dieses Phianomens. Wir disku-
tieren hier einen halbklassische Beschreibung, d.h.
wir verwenden klassische Bewegungsgleichungen,
beriicksichtigen aber die Fermi-Dirac Verteilung.

Elektrischer Strom wird durch die freien Elektronen
getragen. Deren Reaktion auf das angelegte elek-
trische Feld bestimmt deshalb die Beziehung zwi-
schen Strom und Spannung, welche im Rahmen die-
ser Theorie mit dem Ohm’schen Gesetz iiberein-
stimmt. Die meisten freien Elektronen bewegen sich
mit einer relativ hohen Geschwindigkeit; die Fer-
migeschwindigkeit liegt bei rund 10® m/s. Da die
Verteilung der Geschwindigkeiten ohne ein dufleres
Feld isotrop ist, findet jedoch netto kein Ladungs-
transport statt.

Perfekte Metalle konnen prinzipiell Strom leiten
auch wenn kein elektrisches Feld anliegt. Reale Me-
talle weisen jedoch immer einen endlichen Wider-
stand auf — mit Ausnahme der Supraleiter, welche
nicht als normale Metalle beschrieben werden kon-
nen und in einem spéteren Kapitel noch behandelt
werden.

Werden #dullere Felder an ein Metall angelegt, so
bewirken diese auf die Elektronen eine zusitzliche

Kraft

Fom® —pdk_

—h— — —¢[E+V x B|.
g g = elE VB

(5.13)
Im Rahmen der klassischen Mechanik kénnen wir
gleichzeitig die Geschwindigkeit schreiben als

. dF  hk

V= —=—.

dt m

Diese Verhalten wiirde man auch quantenmecha-
nisch erhalten, wenn man damit ein Wellenpaket be-
schreibt.

Wir betrachten hier zunéchst nur elektrische Felder,
welche offenbar zu einer gleichférmigen Beschleu-
nigung fiihren. Im Impulsraum erhalten wir

d.h. einen Impuls, der linear mit der Zeit zunimmt.
Dies ist in einem Metall fiir einzelne Elektronen
nicht moglich, da es durch eine Impulsinderung in
einen Zustand iibergehen wiirde, der bereits durch
ein anderes Elektron besetzt ist. Da die Felder auf
alle Elektronen wirken, wird jedoch die gesamte Fer-
mikugel verschoben um eine Distanz, welche linear
mit der Zeit wichst. Fiir das gesamte System von N
Elektronen wird der Impuls damit

p= Zfﬁé — —NeEt

In Wirklichkeit dauert die Beschleunigung der Elek-
tronen nicht beliebig lange, sondern nur bis die Elek-
tronen einen Stof ausfithren. Bei einem Stofl wird
kinetische Energie vom Elektron auf das Gitter iiber-
tragen. Im Rahmen dieses Modells wird dabei an-
genommen, dass die Geschwindigkeit des Elektrons
thermalisiert wird, d.h. sie kehrt zur Fermi-Dirac
Verteilung zuriick. Wenn die Thermalisierung im
Mittel eine Zeit t beansprucht, erreichen die Elek-
tronen im Mittel einen Impuls, der sich um

vom thermischen Gleichgewicht unterscheidet. Die
Fermikugel im k-Raum wird somit um diesen Betrag
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Fermikugel bei E>0

Fermikugel bei E=0

Abbildung 5.19: Verschobene Fermikugel im elek-
trischen Feld.

gegeniiber dem Ursprung verschoben und der resul-
tierende Gesamtimpuls wird

p= Zhic‘n = —NeET
n

Da die Geschwindigkeit der Elektronen direkt pro-
portional zum k-Vektor ist,

. ik eET

V= —=——,
m m

konnen wir daraus die Stromdichte berechnen:

j=n(—e)v = ne*tE /m.

Hier stellt n die Anzahl Leitungselektronen pro Vo-
lumeneinheit dar. Der Strom ist somit proportional
zur Feldstirke, wie im Ohm’schen Gesetz. Die Pro-
portionalititskonstante ist die spezifische elektrische
Leitfahigkeit

2 T 1
= —: = — .14
o =ne (o] om (5.14)
und der Kehrwert
1 m
= — = = Q
p=o=->5 [p]=Qm

ist der spezifische elektrische Widerstand. Dieses
Resultat ist identisch mit der Voraussage des klas-
sischen Modells.

Prinzipiell sind alle diese Grofen anisotrop. Entspre-
chend wird die Leitfdhigkeit im allgemeinen Fall
durch einen Tensor beschrieben. Wir beschrinken
uns hier jedoch auf den isotropen Fall.

Element | 77K | 273K | 373K |

Li 7.3 0.88 0.61
Na 17 3.2
K 18 4.1
Rb 14 2.8

Tabelle 5.5: Relaxationszeiten fiir einige Alkalime-
talle in Einheiten von 10714 s,

Offenbar ist die Leitfdhigkeit proportional zur Zeit
zwischen zwei StoBen. In sehr sauberen Metallen
kann bei tiefen Temperaturen eine freie Weglinge
von bis zu 10 cm erreicht werden. Die Geschwindig-
keit der Elektronen kann unter diesen extremen Be-
dingungen mehrere Prozent der Lichtgeschwindig-
keit erreichen.

5.4.2 Widerstand

Man kann zwei wichtige Beitrdge zur Streuung von
Ladungstrigern unterscheiden, die Streuung an Pho-
nonen und die Streuung an Gitterfehlern, also Fehl-
stellen und Verunreinigungen. Die beiden Prozesse
tragen additiv zum spezifischen Widerstand bei,

1

p=5=PrTpi
wobei pp den Beitrag der Phononen beschreibt und
p; den Beitrag der Gitterfehler. Diese Aufteilung
des spezifischen Widerstandes wird als Matthiesen®-
Regel bezeichnet. Dementsprechend kann man die
Relaxationszeiten 7 unterteilen:
1 1 1

+

T TDefekt

)

TPhonon

wobei Tpefext die Zeit bis zur Streuung an einem De-
fekt bezeichnet und Tpponon die Zeit bis zur Streuung
an einem Phonon. Die letztere ist stark von der Tem-
peratur abhingig, die erstere nicht. Deshalb wird
der Widerstand bei Raumtemperatur hauptsédchlich
durch Streuung an Phononen verursacht, wéhrend
bei tiefen Temperaturen Sto3e mit Gitterfehlern und
Fremdatomen dominieren.

4Nach Augustus Matthiessen (1831 - 1870)
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Abbildung 5.20: Tieftemperaturverhalten des spezi-
fischen Widerstandes.

Da die Phononen bei tiefen Temperaturen ver-
schwinden, bleibt dann nur noch der Beitrag der Kri-
stallfehler zuriick. Dieser Beitrag ist je nach Probe
unterschiedlich. Abb. 5.20 zeigt den temperaturab-
hingigen Widerstand, welcher bei tiefen Temperatu-
ren in einen konstanten Wert iibergeht.
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Abbildung 5.21: Tieftemperaturverhalten des spezi-
fischen Widerstandes fiir zwei un-
terschiedliche Proben aus Kalium.

Abb. 5.21 zeigt 2 Datensitze, welche an unterschied-
lichen Proben von Kalium gemessen wurden. Im
Tieftemperaturbereich tragen vor allem Gitterfehler
bei, welche bei den beiden Proben in unterschiedli-
chem MaBe vorhanden sind. Uber solche Messungen
kann man die Konzentration von Verunreinigungen

bestimmen. Typische Widerstandswerte fiir Fremda-
tome liegen bei etwa 1076 Qcm pro Atom-% Verun-
reinigung.

5.4.3 Streuung an Phononen

Bei hoheren Temperaturen treten auch “dynamische
Kristallfehler” auf, nimlich Phononen. Deren Bei-
trag zum elektrischen Widerstand wird am besten als
Emission oder Absorption eines Phonons durch ein
Elektron beschrieben. Sowohl Energie wie auch Im-
puls muss bei diesen Prozessen erhalten bleiben, d.h.

& =&y Thok—k),

wobei k, k' die Wellenzahlen des Elektrons vor und
nach dem Streuprozess bezeichnen, ®(q) die Phono-
nenfrequenz.

An diesen Streuprozessen konnen praktisch nur
Elektronen in der Nihe der Fermikante teilnehmen,
da fiir die anderen keine freien Zustinde zur Verfii-

gung stehen.
E‘y
o, k-k'

c)ey'\/\/\>

Abbildung 5.22: Elektron-Phonon Streuung.

Die Zahl solcher Streuprozesse kann bei hohen Tem-
peraturen als proportional zur Phononenzahl ange-
setzt werden, d.h. zu

1
(n) = eho/ksT _ 1"

Ist die Temperatur oberhalb der Debye-Temperatur,
hw < kgT, so wichst die Phononenzahl

<> 1 kgT
n) ~ = = ,
l—i—kg—“}—l ho

d.h. proportional zur Temperatur. Damit nimmt auch
die Anzahl St68e und der elektrische Widerstand o<
T zu.
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Abbildung 5.23: Umklapp-Streuprozess.

5.4.4 Temperaturabhéingigkeit

Bei Temperaturen in der Nidhe der Debye-
Temperatur spielen Umklapp-Prozesse (G # 0)
eine wichtige Rolle. Abb. 5.23 zeigt schematisch die
Streuung eines Elektrons von einem Zustand nahe
der Fermikante. Unter Erzeugung eines Phonons
und eines Gittervektors streut das Elektron praktisch
auf die entgegengesetzte Seite der Fermifldche.
Der fiir eine Riickwirtsstreuung erforderliche
Phononenimpuls muss bei weitem nicht so grof3
sein wie bei einem Normal-Prozess. Dafiir werden
Phononen mit Energien in der GrofSenordnung
der halben Debye-Energie benotigt. Deren Zahl
nimmt mit abnehmender Temperatur exponen-
tiell ab. Umklapp-Prozesse sind bei “mittleren”
Temperaturen relevant.

Abbildung 5.24: Streuprozess nahe bei der Fermi-
kante.

Bei Temperaturen deutlich unterhalb der Debye-
Temperatur sind werden Normal-Prozesse wichti-
ger als Umklapp-Prozesse. Im Rahmen des einfa-
chen Modells von Kapitel 4.4.9 konnen wir ab-
schitzen, dass die Zahl der Phononen mit Frequenz

® =~ kgT /h mit T> abnimmt. Die Wahrscheinlich-
keit, dass solche Streuprozesse stattfinden, sinkt au-
Berdem mit 1/7, da Phononen mit groBer Wellen-
lange eine geringere Wahrscheinlichkeit fiir einen
Absorptions-/Emissionsprozess besitzen.

Die Energie eines Elektrons an der Fermikante (~10
eV) ist viel groBer als die Energie des entsprechen-
den Phonons (= kgT ~ 25 meV bei Raumtempe-
ratur). Fiir die Elektronen sind diese Streuprozes-
se somit beinahe elastisch, sie bleiben in der Nihe
der Fermikante. Dadurch wird der Streuwinkel bei
Normalprozessen gering, d.h. die Elektronen streu-
en fast vollstindig in Vorwértsrichtung. Sie wer-
den dadurch nicht mehr vollstindig thermalisiert,
sondern ihre Geschwindigkeit sinkt proportional zu
1 —cos o, wobei « der Streuwinkel ist. Wie in Abb.
5.24 dargestellt, ist dieser proportional zur Wellen-
zahl kp der Phononen, welche linear mit 7 abnimmt.
Damit ist die Geschwindigkeitsinderung pro Stof3
proportional zu 72. Insgesamt ergibt sich dadurch ei-
ne Abnahme des elektrischen Widerstandes mit 7.
Dies kann in Abb. 5.20 qualitativ iiberpriift werden.

o
w

® Au O=175K
O Na 202K
& Cu 33K

0,21 iAI 395K b

Ni 472K

e
—_
T

Reduzierter Widerstand R/Re

(=}

| |
0,1 0,2 0,3 0,4
Reduzierte Temperatur 7/0

o

Abbildung 5.25: Temperaturabhédngigkeit des spezi-
fischen Widerstandes fiir verschie-
dene Metalle.

Abb. 5.25 zeigt die Temperaturabhéngigkeit des
elektrischen Widerstandes fiir verschiedene Metal-
le. Dabei sind Temperatur und Widerstand auf die
Debye-Temperatur reduziert. Im oberen Bereich ist
das Verhalten linear, im Tieftemperaturbereich o< T°.
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5.4.5 Der Hall-Effekt

In einem Magnetfeld muss in der Bewegungsglei-
chung auch die Lorentzkraft beriicksichtigt werden:
F = —e[E+VxB].

Wir suchen nun die stationédre Verschiebung 8k der

Fermikugel aus der Bewegungsgleichung fiir den
Impuls
Aok dk_ d7
a ar Mar
.8k
= —e¢[E+VxB]—-h— =0,

wobei T die Thermalisierungszeit (durch Stofe) des
Impulses darstellt.

E,
® 2 Bz g ® ® ®
A 9 5 0
® ® ® ® ® ®

Abbildung 5.26: Bewegung von Elektronen in ge-
kreuzten E /B Feldern.

Wir betrachten den Fall, wo ein Magnetfeld parallel
zur z-Achse angelegt ist, B = (0,0, B). Dann wird
¥ x B = (v,B,—v,B,0)

und die Bewegungsgleichungen fiir die drei Ge-
schwindigkeitskomponenten werden

d 1

m E—’—; Vy —e(E,+ Bvy)
d 1

m <dt + T> vy —e(E, — Bv,)
d 1

m E+; Vz —EEZ.

Daraus konnen wir die stationdren Geschwindigkei-
ten bestimmen:

et
vy = ——E—@1v,
m
et
vy = ——E,+@1Tv,
m
et
v, = ——E, (5.15)
m

wobei
. eB

. =

(5.16)
m

die Zyklotronfrequenz darstellt. Offenbar verlaufen
die Bahnen der Elektronen jetzt nicht mehr parallel
zum elektrischen Feld, sondern werden in der xy-
Ebene abgelenkt. Der Ablenkwinkel ist durch das
Produkt w, T aus Zyklotronfrequenz und StoBzeit ge-
geben. Dies wird als Hall’>-Effekt bezeichnet.

EX
® ® Bz ® ® ® ®
¥ ¥ ¥ ¥ ¥ ¥
E) _ﬂ : %_ ) 4_ :
® ® ® ® ® ®

Abbildung 5.27: Gleichgewichts-Ladungsverteilung
in gekreuzten E /B Feldern.

Wir betrachten nun den Fall, dass ein Strom ent-
lang der x-Achse flieBt, d.h. wir setzen vy, = v, = 0.
Aus der obigen Gleichung sehen wir, dass der Strom
in x-Richtung durch das Magnetfeld in y-Richtung
abgelenkt wird. Wir kénnen somit nur dann eine
verschwindende Bewegung in y-Richtung erhalten,
wenn diese Lorentzkraft durch eine entgegengerich-
tete Coulomb-Kraft, d.h. durch ein elektrisches Feld
kompensiert wird. Gemaf Gleichung (5.15) bedingt
dies fiir den stationéren Fall, dass

T
vy = —e—E, (5.17)
m
und
T
0=—e—E,+ ®:Tvy.
m
Auflosen nach Ey ergibt
m
E, = wov,—.
e
Mit dem stationidren Wert von v, (5.17) wird daraus
T m
E, = —e—E,0,— = —T0.E,.
m e

Wenn wir den Ausdruck (5.16) fiir die Zyklotronfre-
quenz verwenden, entspricht dies

E,= —EB. (5.18)
m

SEdwin Herbert Hall (1855 - 1938)
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Es entsteht also eine Spannung, welche senkrecht
auf der Richtung des Stroms und dem magnetischen
Feld liegt.

5.4.6 Hall-Konstante

Als Hall-Konstante

E

Ry = 7y

JxB
bezeichnet man das Verhiltnis der Spannung zum
Produkt aus Stromdichte j, und Magnetfeldstirke B.
Wir schreiben die Stromdichte als das Produkt aus
Driftgeschwindigkeit v, und Ladungsdichte —en und
erhalten

ne*t

Jjx=—envy = ——E,.
m

Mit der Beziehung (5.18) zwischen E, und E), erhal-
ten wir

—E eTB/m 1

Re = (ne®t/m)EB~  ne’

d.h. sie entspricht der inversen Ladungsdichte und ist
fiir freie Elektronen negativ. Je niedriger die Dich-
te der Ladungstriger, desto grofer ist also die Hall-
Konstante und damit die Hall Spannung E,. Dies
kann man qualitativ so verstehen, dass der glei-
che Strom bei niedriger Ladungstrigerdichte nur
durch eine hohere Geschwindigkeit und damit durch
eine hohere Lorentzkraft erreicht wird. Die Hall-
Konstante ist eine Moglichkeit, die Ladungstriger-
konzentration n experimentell zu bestimmen. Sie ist
unabhingig von B und fiir freie Elektronen immer
negativ.

Tabelle 5.6 zeigt einige Hall-Konstanten bei tiefen
Temperaturen, jeweils als Verhiltnis aus der La-
dungsdichte zur gemessenen Hall-Konstanten. Of-
fenbar passt diese einfache Theorie recht gut fiir die
Alkalimetalle, weniger gut fiir die Edelmetalle, und
fiir die letzten vier Elemente gar nicht.

Die Messung der Hall-Konstante (— Abb. 5.28)
dient deshalb auch zur experimentellen Bestimmung
der Ladungstriagerkonzentration.

Eine andere Anwendung des Hall-Effekts ist die
Messung der Magnetfeldstirke, z.B. iiber Gleichung

=Y

# Valenz-
elektronen

=~
=

=]

e

Sl O
Fonhinbomivg

>
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Tabelle 5.6: Beispiele von Hall-Konstanten.

Oberflachenkanal Hallspannungssonde

Quelle Senke

Tor

Potenzialsonden

Abbildung 5.28: Messanordnung fiir die Messung
von Hall-Spannungen.

(5.18). Dafiir muss der Sensor zuerst kalibriert wer-
den, da die Ladungstrigerdichte und die StoBzeit
herstellungsmissig und temperaturabhingig variie-
ren.

Die Hall Konstante hat auch das gleiche Vorzeichen
wie die Ladung der beweglichen Teilchen. Sie kann
somit auch Auskunft geben iiber das Vorzeichen der
Ladung der Ladungstriger. Wir haben hier ange-
nommen, dass es sich um Elektronen, also negative
Teilchen, handelt, und erhalten wie gezeigt eine ne-
gative Konstante. Wenn es sich um Locher, also po-
sitive Ladungstriger handelt, so wird auch die Kon-
stante positiv. Diese Art der Leitung wird in Kapitel
7 behandelt.

5.4.7 Der Quanten-Hall-Effekt

Eine besondere Art des Hall-Widerstandes tritt
auf bei tiefen Temperaturen in zweidimensionalen
Elektronensystemen. In diesem Fall ist der Hall-
Widerstand nicht mehr proportional zum Magnet-
feld, sondern er nimmt in Stufen zu.

Wie in Abb. 5.29 gezeigt, betrifft dies sowohl den
longitudinalen Widerstand, also den Spannungsver-
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Hall Widerstand pxy, [kQ]

I

C‘ﬁ R 5 6
Magnetfeld B [T]
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Widerstand pxx [Q]

Abbildung 5.29: Hall ~ Widerstand  von  Al-
GaAs/GaAs bei T=8 mK als
Funktion der Magnetfeldstirke.

lust iiber der Probe dividiert durch den Strom, wie
auch den Hallwiderstand, also die Spannung senk-
recht zur Probe dividiert durch den Strom. Der lon-
gitudinale Widerstand verschwindet, auler fiir be-
stimmte Werte des Feldes, wihrend der transversa-
le Widerstand bei diesen Werten stufenférmig zu-
nimmt. Die Plateauwerte zwischen den Stufen sind
unabhingig von der Probe oder den Materialeigen-
schaften. Ihre Werte sind
PH = h Rl, ieN.

i
Die Klitzing®-Konstante Rg hat den Wert

h 663107

S 0~ 25,812807kQ
e (1,60-10-19)

Ry =

und wird inzwischen zur Norm-Definition des elek-
trischen Widerstandes verwendet.

Dieser Effekt wird auch als integraler Quanten-
Hall-Effekt (QHE) bezeichnet, weil die Nenner gan-
ze Zahlen sind. Dementsprechend findet man auch
einen gebrochenzahligen, fraktionalen oder fraktio-
nierten QHE, bei dem die Nenner die Form von Brii-
chen annehmen. Beide Fille konnen durch die Bil-
dung von Zustinden erkldrt werden, bei denen die

SKlaus von Klitzing (*1943) Nobelpreis 1985

Flussquanten und Elektronen Quasiteilchen bilden,
wobei beim gebrochenzahligen QHE mehrere Elek-
tronen beteiligt sind.

5.5 Wirmeleitung in Metallen

Die Tatsache, dass Metalle sich bei niedrigen Tem-
peraturen sehr kalt und bei hohen Temperaturen sehr
heifl (im Vergleich zu anderen Materialien) anfiihlen
zeigt, dass sie gute Wirmeleiter sind. Warmeiiber-
tragung spielt nicht nur technisch eine wichtige Rol-
le, sie ist auch ein guter Test fiir das Verstidndnis der
entsprechenden Materialien.

5.5.1 Ansatz

Die Wirmeleitfahigkeit einer Probe wird gemessen,
indem man sie thermisch isoliert, auf der einen Sei-
te heizt, und auf der anderen Seite die Temperatur
misst. Wie in Kapitel 4 ist auch hier der Ansatz aus
der kinetischen Gastheorie

A= %CV@
fiir die Warmeleitung A eines idealen Gases mit
Wirmekapazitit C, Geschwindigkeit v und mittler-
er freier Weglidnge ¢. Wir benutzen den Ausdruck
(5.11) fiir die elektronische Warmekapazitit

2

Cu = Zan;;.
Wir hatten bereits im Rahmen der Theorie der spe-
zifischen Warme gesehen, dass nur die Elektronen
in der Nihe der Fermikante durch St6Be Energie
mit dem Gitter austauschen. Diese sollten auch den
dominanten Beitrag zur Wirmeleitfahigkeit liefern.
Dementsprechend setzen wir fiir die Geschwindig-
keit die Fermigeschwindigkeit vz ein und fiir die
mittlere freie Wegldnge das Produkt aus Fermi-
Geschwindigkeit und StoBzeit, £ = vy . Damit wird
die Wirmeleitfdahigkeit
%Cel v%: T
1n> T

= 2 a2t
37 BT VF

A/ =
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Die Fermi-Geschwindigkeit vg ist eine Funktion der
Fermi-Energie

2_28F_2kBTF
FE T T

Damit wird die Wirmeleitfahigkeit

_ m?kgnTt
3 om

A

(5.19)

5.5.2 Temperaturabhéingigkeit

Die Wirmeleitfidhigkeit sollte also proportional zur
Temperatur und zur mittleren StoBzeit 7 sein. Die
StoBzeit ist stark temperaturabhiingig und diese Ab-
hingigkeit tiberwiegt bei Temperaturen iiber 20 K.

endlicher
A / Wert

Abbildung 5.30: Verhalten der Wirmeleitfahigkeit
bei tiefen Temperaturen.

Abb. 5.30 zeigt qualitativ das erwartete Verhalten fiir
die freie Weglidnge, die Wirmekapazitit und deren
Produkt. Bei tiefen Temperaturen wird die StoBzeit
konstant und die Temperaturabhéngigkeit der Wiér-
meleitung wird durch die Wirmekapazitit bestimmt,
welche o< T ist.

Abb. 5.31 zeigt als Beispiel die Warmeleitfahigkeit
von Kupfer als Funktion der Temperatur. Sie geht
offenbar durch ein Maximum, wie wir es fiir den Fall
freier Elektronen erwarten. Das Verhalten ist somit
qualitativ dhnlich wie bei der Wirmeleitung durch
Phononen, doch nimmt die Wirmeleitfahigkeit bei
tiefen Temperaturen nicht mit 73, sondern mit T ab.

Die Wirmeleitfahigkeit enthilt, wie im Kapitel 4 ge-
zeigt, auBerdem Beitrige der Phononen. Im allge-
meinen iiberwiegt der Beitrag der Elektronen, insbe-
sondere in “guten” Metallen. Metalle sind deshalb
bessere Wirmeleiter als dielektrische Materialien,

8

W
(=

-
o

Wiirmeleitfihigkeit / W em! K-!
[N
=]

| L I 1 | I
40 60
Temperatur /K

o

o
N
o

Abbildung 5.31: Temperaturabhédngigkeit der Wir-
meleitfihigkeit von Kupfer.

wie z.B. ionische Kristalle. In verunreinigten Metal-
len und ungeordneten Legierungen nimmt der elek-
tronische Beitrag zur Wérmeleitung stark ab, wéh-
rend der Beitrag der Phononen relativ konstant bleibt
und deshalb vergleichbar und in Isolatoren dominant
werden kann.

5.5.3 Vergleich elektrische / thermische
Leitfihigkeit

Man kann die thermische Wirmeleitfahigkeit (5.19)
mit der elektrischen Leitfahigkeit (5.14)

vergleichen. Man sieht aus der obigen Behandlung,
dass sie die gleiche Tendenz zeigen sollten: Beide
sind proportional zur Ladungstriagerdichte n und zur
mittleren StoBzeit t. Das Verhiltnis zwischen den
beiden Werten,

A wkET

o 3
sollte direkt proportional zur Temperatur 7 sein.
Diese Beziehung wird als Wiedemann-Franz’ Ge-
setz bezeichnet. Dividiert man auch durch die Tem-
peratur, berechnet also

_i_nzk%; g WQ
oT  3e? K2’

=2,45-10"

Tnach Gustav Heinrich Wiedemann (1826 - 1899) und Ru-
dolph Franz (1826 - 1902)
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so erhilt man eine materlalunab'héinglge .Konstant-e T e Kupfer 14
L, welche als Lorenz-Zahl bezeichnet wird. Damit T e —
kann man das Wiedemann-Franz Gesetz als 2 otk 13 —
b <
A = A0S
Z_IT .
o < 109 g
schreiben. ZE 108 3
&
L-108 Watt Q/K? L-108 Waut Q/K? o |

107

10

!
100

1000

Metall 0°C 100°C  Metall 0°C 100°C
Ag 2,31 2,37 Pb 2,47 2,56
Au 2,35 2,40 Pt 2,51 2,60
Cd 2,42 243 Sn 2,52 2,49
Cu 2,23 2,33 w 3,04 3,20
Mo 2,61 2,79 Zn 2,31 2,33

Tabelle 5.7: Gemessene Werte fiir die Lorenzzahl
bei unterschiedlichen Metallen.

Tabelle 5.7 zeigt einige Werte fiir die Lorenz-Zahl.
Sie liegen im Bereich 2.3 < L < 2.6- 1078 W/K?,
stimmen also recht gut mit dem theoretischen Wert
iberein, was als Bestitigung des Modells des freien
Elektronengases betrachtet werden kann.

o~
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O 401
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4]
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T T T T
100 200 300 400
Temperatur T/ K

Abbildung 5.32: Temperaturabhéngigkeit der Lo-
renzzahl.

Abb. 5.32 vergleicht die Temperaturabhéingigkeit der
Lorenzzahl fiir einige Elemente mit dem theoretisch
temperaturunabhiingigen Wert.

Das theoretische Resultat hingt allerdings davon ab,
dass die StoBzeit T fiir die beiden Prozesse die glei-
che sein soll. Dies ist nicht zwingend der Fall und
fiihrt deshalb zu Abweichungen vom Wiedemann-
Franz Gesetz. Mit sinkender Temperatur durchlauft
die Lorenz-Zahl oft ein Minimum. Abb. 5.33 zeigt
als Beispiel die Daten fiir Kupfer. Der Grund dafiir

Temperatur T [K]

Abbildung 5.33: Temperaturabhéngigkeit von elek-
trischer und thermischer Leitfahig-
keit von Kupfer, sowie der Lorenz-
zahl.

sind die unterschiedlichen Stof3zeiten beim elektri-
schen und thermischen Transport.

5.5.4 Thermoelektrische Effekte

Das verwendete Modell geht davon aus, dass Elek-
tronen bei Stofen thermalisieren, d.h. dass ihre Ener-
gieverteilung sich an die lokale Temperatur anpasst.
Da heissere Elektronen eine (geringfiigig) hohe-
re Geschwindigkeit haben als kalte, ist der Trans-
port von Elektronen zwischen zwei Punkten unter-
schiedlicher Temperatur asymmetrisch: Elektronen,
die vom heissen zum kalten Punkt flie3en, haben ei-
ne hohere Geschwindigkeit als diejenigen in umge-
kehrter Richtung. Damit erfolgt netto ein Ladungs-
transport in Richtung zum kalten Ende. Dieser hilt
an, bis der thermische Gradient durch einen elektri-
schen Gradienten ausgeglichen wird. Ein Tempera-
turgradient erzeugt deshalb eine Spannungsdifferenz

Dieser sogenannte thermoelektrische Effekt (auch
Seebeck®-Effekt genannt) unterscheidet sich zwi-
schen verschiedenen Metallen.

Er kann z.B. gemessen werden, indem man die En-
den von zwei unterschiedlichen Metallen kontaktiert

8Thomas Johann Seebeck (1770 — 1831)
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Material B
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Abbildung 5.34: Anordnung zur Messung von Ther-
mospannungen und temperaturab-
hingige Thermospannungen, nor-
miert auf die Werte bei 0°C.

und die Kontaktpunkte auf unterschiedliche Tempe-
raturen bringt und die resultierende Spannung misst.
Typische thermoelektrische Koeffizienten liegen im
Bereich von Q ~ uV/K. Abb. 5.34 zeigt das Mess-
prinzip und die Thermospannungen als Funktion der
Temperatur fiir drei unterschiedliche Kombinationen
von Metallen.

20F T T T T ]

Seebeck Koeff. [uV/K]

1000 1500 2000 2500
Temperatur [K]

0 500

Abbildung 5.35: Seebeck-Koeffizienten unter-
schiedlicher Metalle als Funktion
der Temperatur.

Prinzipiell ist die Kopplung zwischen elektrischem
und thermischem Transport eine Materialeigen-
schaft. Allerdings ist sie als absolute Grofe schwie-
rig zu messen. Man verwendet deshalb Paare von
Metallen, wie in Abb. 5.34 gezeigt. Vergleicht man

Paare mit einem festen Referenzmaterial (meist Pla-
tin), so lassen sich aber die Werte fiir einzelne Mate-
rialien bestimmen. Abb. 5.35 zeigt die thermoelek-
trischen Koeffizienten einiger Metalle als Funkti-
on der Temperatur. Typische Werte fiir Metalle sind
1073...1075V/K. Wesentlich groBere Werte, im Be-
reich von mV/K findet man bei Halbleitern.

Der Effekt kann prinzipiell zur Stromerzeugung ge-
nutzt werden, hat aber einen relativ niedrigen Wir-
kungsgrad. Eine wichtige Anwendung liegt in der
Messung von Temperaturen (Thermoelemente).

5.6 Kollektive Phanomene

Das Modell des freien Elektronengases geht, wie zu
Beginn des Kapitels erwéhnt, davon aus, dass zwi-
schen den Elektronen keine Wechselwirkungen exi-
stieren. Dieses Modell der freien und unabhédngigen
Elektronen funktioniert erstaunlich gut. Dieses Un-
terkapitel befasst sich mit der Frage, weshalb das
funktioniert und wo die Grenzen liegen.

5.6.1 Abgeschirmte
Coulomb-Wechselwirkung

Einer der Griinde fiir den Erfolg des Modells der un-
abhingigen Elektronen ist, dass die elektrostatische
Wechselwirkung zwischen zwei Elektronen von den
anderen weitgehend abgeschirmt wird. Das gleiche
gilt fiir positive Ladungen. In beiden Fillen kann der
Effekt iiber eine Anderung in der Abstandsabhiingig-
keit der Coulomb-Wechselwirkung beschrieben wer-
den.

Wird eine positive Ladung in die Leitungselektronen
eingebracht, so verschieben sich die Elektronen in
Richtung dieser Ladung.

Die zusitzliche Ladungsdichte, welche diesen Ab-
schirmeffekt bewirkt, kann tiber die Thomas-Fermi
Niéherung berechnet werden. Dazu betrachtet man
die Umgebung der positiven Ladung im Energie-
raum. Hier werden simtliche Zustinde um die Ener-
gie —eU abgesenkt, wobei U das Zusatzpotenzial der
Storung darstellt. Dadurch gelangt der in Abb. 5.37
rot eingezeichnete Bereich unter die Fermienergie
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Abbildung 5.36: Abschirmung einer positiven La-
dung durch die Leitungselektronen.

Energieabsenkung - e U

Leitungselektronen fiillen
Fermi-See bins E = E,

(Thomas-Fermi Niiherung)
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Abbildung 5.37: Abschitzung der zusitzlichen La-
dungsdichte.

und wird durch Elektronen von au3erhalb des Berei-
ches aufgefiillt. Die positiv geladene Storung wird
somit durch die zusitzliche Elektronendichte teil-
weise kompensiert.

Die Anzahl zusitzlicher Elektronen, 6nV kann als
Integral tiber die Zustandsdichte der zusitzlich be-
setzten Zustinde berechnet werden. Die Dichte an
Zustinden als Funktion der Energie & nimmt mit der
Waurzel aus der Energie zu,

6=/

Die Fliache des roten Rechtecks kann damit berech-
net werden als Produkt aus Breite D(&r) und Hohe
eU,;

. eU D(SF) 3

=eU—-ny—.
\% ¢ 2n08F

on

Hier bezeichnet ny die Elektronendichte ohne die
Storung.

Da én von U und U von 6n abhingt, bendtigen wir
eine selbstkonsistente Losung. Diese erhalten wir

w
2
o
o
0
|
~~ 5‘1)(77 - Fo) Zustands-
ro t dichte D(E)

Ortr

Abbildung 5.38: Lokale Anderung von Potenzial
und Elektronendichte durch eine
zusitzliche Ladung bei 7.

aus der Poisson-Gleichung: Die eingeschlossene La-
dung wirkt als Quelle des elektrischen Feldes,

1 eodn

VU = ——(p(r)— = —
=P =po) =<

_ U3€2n0:7LZU
28081:
mit
212_382710
C 2eep

Fiir eine isotrope Ladungsverteilung konnen wir den
Laplace-Operator in Kugelkoordinaten schreiben als

U 20
92 ror
Die Gleichung

V2

’U 290U
277
\Y U_WJF——

hat die Losung

=AU

U(r)= _Cehr— i,
r r

(5.20)

Die Abschirmung fiihrt also dazu, dass die 1/r
Abhingigkeit der Coulomb-Wechselwirkung durch
einen zusitzlichen exponentiellen Term verstarkt
wird. Abb. 5.39 vergleicht die beiden Funktionen.
Somit fillt das Feld deutlich schneller ab (exponen-
tiell statt 1/r). Die Abschirmlinge betrigt

_ 2&0Ep &
"N\ 3en, P (E)’

(5.21)
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Abbildung 5.39: Vergleich des abgeschirmten mit
dem normalen Coulomb-Potenzial.

die Zustandsdichte pro Volumen bezeichnet. Da die

Fermienergie selber proportional ist zu n(z)/ 3 und die
1/3

Zustandsdichte zu n;’~ nimmt somit die Abschirm-
linge mit zunehmender Elektronendichte wie ry o<

n51/6 ab.

Ein typischer Wert fiir die Abschirmlinge ist r4 ~
0,55 A bei einer Elektronendichte ny = 8,5 -
10m~3, was dem Wert von Kupfer entspricht. In
Metallen ist die Abschirmung aufgrund der hohen
Elektronendichte besonders effektiv.

5.6.2 Metall-Isolator Ubergang

Das Phinomen der Abschirmung kann auch als qua-
litatives Argument fiir die Unterscheidung zwischen
Metallen und Isolatoren genutzt werden. In Metallen
existieren frei bewegliche Elektronen, in Isolatoren
sind alle Elektronen lokal gebunden. Mit zunehmen-
der Lokalisierung der Elektronen nimmt ihre kine-
tische Energie zu. Dies kann dazu fiihren, dass sie
nicht mehr im Potenzial gebunden sind.

Um zu sehen, wann das geschieht, muss die Schro-
dingergleichung fiir das Potenzial (5.20) gelost wer-
den. Analytisch ist das nicht mdglich, aber nume-
rische Methoden zeigen, dass gebundene Losungen

existieren, falls r4 > 0,84aq ist, mit dem Bohr-
Radius ay.

Laut Gleichung (5.21) ist die Abschirmlidnge eine
Funktion der Zustandsdichte an der Fermikante. Die
Fermienergie kann geschrieben werden als

hl

(3n%n)?3 = aoe” 323l /3,2/3
m &0

Ep =

Hier wurde der Bohr’sche Radius

47I80h2
apg = 5

me

verwendet. Damit wird (5.21) zu

2 80 aoez 2/3 1

2 & o€ 303 1/3,0/3

3¢e2n 8¢ e

32/371'1/3 a 1 ap
12 a3 43

Der kritische Wert ist somit

1 a
r3 = (0,84a9)* = an—%.

Aufgelost nach der kritischen Dichte erhélt man

1 . 1\ 1
n—= _— = = .
ap4-0,842 ap2,8 2243

Fiir einen Isolator muss somit gelten, dass die Elek-
tronendichte n kleiner sein muss als

0,045
<

T
ay

Fiir ein kubisch primitives Gitter mit einem freien
Elektron pro Einheitszelle muss die Kantenldnge der
Einheitszelle a > 2,8 ag sein, damit ein Isolator vor-
liegt.

Die Elektronendichte kann auf verschiedene Weisen
variiert werden, z.B. durch Anwendung von Druck,
Temperatur oder Magnetfeldern, oder durch Dotie-
rung. Damit ist es moglich, ein System von einem
isolierenden in einen leitenden Zustand zu bringen.
So gibt es Hinweise, dass Wasserstoff unter hohem
Druck die kritische Dichte erreicht und metallisch
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Abbildung 5.40: Metall-Isolator Ubergang in Silizi-
um durch Dotierung mit Phosphor.

wird. Dies Art von Phaseniibergiingen wird auch als
Mott’-Ubergang bezeichnet.

Abb. 5.40 zeigt fiir den Fall von Silizium, wie eine
zunehmende Dotierung mit Phosphor die Ladungs-
trigerdichte so stark erhoht, dass das System vom
Isolator zum Metall wird.

5.6.3 Quantisierte elektronische
Anregungszustiinde

Abbildung 5.41: Elektronengas.

Da die Valenz-Elektronen in einem Metall frei be-
weglich sind, kdnnen sie auch zum Schwingen ange-
regt werden. Wir diskutieren hier kollektive Schwin-
gungen der Elektronen. Wird ein einzelnes Elektron
um die Distanz x aus der Ruhelage ausgelenkt, so er-
zeugt es einen elektrischen Dipol der GroBe p(x) =

9Sir Nevill Francis Mott (1905 - 1996)

ex. Wird ein Elektronengas der Dichte n ausgelenkt,
so entsteht eine elektronische Polarisation

P(x) =nex.
Diese Polarisation entspricht einem zusitzlichen
elektrischen Feld

1 ne
E(x) = —P(x) = —nx.
E& E&
Dieses elektrische Feld wirkt als Kraft auf die Elek-
tronen. Wir erhalten die Bewegungsgleichung

nez

mex = —eE(x) = —8—&)x.

Dies entspricht einem harmonischen Oszillator
X=—-mw;x,

wobei die Plasmafrequenz ), gegeben ist durch

ne?
m.EE)

o, =

Quantenmechanisch sind die Energiezustinde eines
harmonischen Oszillators gegeben als

1
gn = (I’L+ E)ha)p

Da die Plasmafrequenz ein Mal fiir die Elektronen-
dichte ist, bietet sich ihre Messung als interessante
Methode zur Bestimmung der Elektronendichte an.
Allerdings sind die Plasmonen in vielen Systemen
stark gedampft (z.B. durch Inter-Band Ubergiinge),
dass sie gar nicht beobachtet werden konnen.

Typische Werte fiir die Plasmafrequenz liegen im
Bereich von einigen (3-20) eV.

5.6.4 Messung der Plasmafrequenz

Die Plasmonenfrequenzen kdnnen gemessen wer-
den, indem man die entsprechende Probe mit Elek-
tronen bestrahlt. Diese stolen mit den freien Elek-
tronen der Probe und regen dadurch Plasmonen an.
Dadurch verlieren die Elektronen des Strahls Ener-

gie.
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Abbildung 5.42: Prinzip der Messung von Plasmo-
nenenergien.
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Abbildung 5.43: Apparatur fiir die Messung von
Plasmonenenergien.

Fiir die Messung des Energieverlustes in der Probe
bendtigt man ein hochauflosendes Elektronenspek-
trometer, welches die kinetische Energie der trans-
mittierten Elektronen misst. Abb. 5.43 zeigt den ent-
sprechenden Messaufbau.

Abb. 5.44 zeigt ein typisches Verlustspektrum, wel-
ches an einem diinnen Aluminiumfilm gemessen
wurde. In diesem Fall wurden die zuriickgestreuten
Elektronen analysiert. Man findet Resonanzen, wel-
che der Erzeugung von n = 1,2,... Plasmonen ent-
sprechen. Die Resonanzen sind iiberdies aufgespal-
ten: an der Oberfldche ist die Plasmonenfrequenz ge-
ringer als im Volumen.

Tabelle 5.8 vergleicht einige gemessene und berech-
nete Plasmonenenergien. Die Ubereinstimmung ist

Al Volumen-
Oberflachen- plasmon

8 plasmon

10~

| 1 | | 1
0 20 40 60 80 100 120

Energieverlust / eV

Abbildung 5.44: Plasmonenspektrum von Alumini-
um mit Aufspaltung der Resonan-
zen.

’ ‘ Gemessen | Berechnet

Li 7.12 8,02
Na | 5,71 5,95
K 3,72 4,29
Mg | 10,6 10,9
Al 15,3 15,8

Tabelle 5.8: Plasmonenenergien in eV.

relativ gut. Die Plasmafrequenzen nehmen mit der
Elektronendichte zu: Al (3 Valenzelektronen) hat ei-
ne deutlich hohere Plasmafrequenz als die Alkaliato-
me (1 Valenzelektron). Bei den Alkaliatomen nimmt
die Elektronendichte mit zunehmendem Atomge-
wicht ab. Deshalb ist die Plasmonenfrequenz von K
niedriger als die von Na und Li.

5.6.5 Elektromagnetische Wellen in
Metallen

Elektromagnetische Wellen in einem freien Elektro-
nengas konnen beschrieben werden iiber eine Di-
spersionsrelation

k2

g(w)o* =c (5.22)

Hier ist €(®) die dielektrische Funktion

(o) = € <1—Z))’E) .

Hier stellt €. den Grenzwert fiir hohe Frequenzen
dar, ® > ®,, welcher durch die gebundenen Elek-
tronen dominiert wird. Einsetzen in (5.22) ergibt die
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Dispersionsrelation

2,2
c°k

o —w, =
800

fiir die elektromagnetischen Wellen im Material. Je
nachdem, ob die Frequenz @ hoher oder niedriger
ist als die Plasmafrequenz ist der linke Seite positiv
oder negativ. Im negativen Fall wird der Wellenvek-
tor imaginér, d.h. das Licht wird vollstindig absor-
biert. Langwellige Wellen werden deshalb in Metal-
len absorbiert.
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Abbildung 5.45: Dispersion fiir elektromagnetische
Wellen in einem Metall mit der
Plasmafrequenz @),.

Fiir Frequenzen oberhalb der Plasmafrequenz erhilt
man normale Ausbreitung, mit der Dispersionsrela-
tion

= ,/a)§+c2k2.

Abb. 5.45 vergleicht diese Dispersionsrelation mit
derjenigen einer Lichtwelle im Vakuum. Fiir grof3e
Wellenlidngen geht die Frequenz gegen einen endli-
chen Wert, die Plasmafrequenz ), fiir hohe Wellen-
zahlen ndhert sich die Frequenz der einer entspre-
chenden Lichtwelle im freien Raum. Wellen mit Fre-
quenzen unterhalb der Plasmafrequenz konnen sich
in Metallen nicht ausbreiten (verbotener Frequenz-
bereich).

5.7 Elektron-Phonon
Wechselwirkung

5.7.1 Grundlagen

Die bisher verwendete Born-Oppenheimer Néihe-
rung vernachlédssigt Wechselwirkungen zwischen
Elektronen und Kernen. Einige der vernachlidssigten
Terme haben wir bereits beriicksichtigt, z.B. indem
wir die Streuung von Elektronen an Phononen als
Beitrag zum elektrischen Widerstand diskutiert ha-
ben. Eine Wechselwirkung kommt dadurch zustan-
de, dass Phononen das Kerngitter verzerren und die
Elektronen deshalb ein Potenzial spiiren, welches
nicht mehr die ideale Periodizitit aufweist. Phono-
nen konnen deshalb absorbiert oder gestreut werden.
Die Wechselwirkung kann mit akustischen Phono-
nen oder mit optischen Phononen geschehen. Man
unterscheidet

* Frohlich-Wechselwirkung
* Deformationspotenzial-Wechselwirkung
* Piezoelektrische Wechselwirkung.

Elektronen-Phononen Wechselwirkungen spielen in
Halbleitern (vor allem binidren und terniren) eine
wichtige Rolle, sowie in Supraleitern, wo sie fiir die
Bildung der Cooper-Paare verantwortlich sind.

5.7.2 Polaronen

Auch in dielektrischen Festkorpern spielen
Elektron-Phonon Wechselwirkungen eine Rolle.
Dass es eine Wechselwirkung zwischen Elektronen
und Phononen geben sollte, vermutete Lev Landau
schon 1933, kurz nachdem das Konzept von Phono-
nen entwickelt worden war. Man kann diesen Effekt
auch iiber ein neues Quasiteilchen beschreiben, das
Polaron. Dabei handelt es sich um ein Elektron,
welches an eine Gitter-Deformation gekoppelt ist.
Diese Kopplung fiihrt zu einer hoheren effektiven
Masse des Elektrons.

In einem ionischen Kristall, wie z.B. KCl erzeugt ein
Elektron eine Gitterverzerrung: die positiven Ionen
werden in Richtung auf das Elektron verschoben, die
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Abbildung 5.46: Gitterverzerrung durch Wechsel-
wirkung mit Elektron.

negativen davon weg. Ein Resultat dieser Wechsel-
wirkung ist, dass die effektive Masse des Elektrons
steigt: wird es bewegt, so bewegt sich die Gitterver-
zerrung mit. Die Kombination aus Ladung und Git-
terverzerrung (oder Ladung und Phonon) wird als
Polaron bezeichnet.

Crystal KCl KBr AgCl AgBr

@ 3.97 3.52 2.00 1.69
Kopplungskonstante . ,, 125 093 051 033
Masse m'/m 050 043 035 024
Bandmasse (starres G.) my/m’ 2.5 2.2 1.5 1.4

Abbildung 5.47: Effektive Masse von Leitungsband-
Elektronen in Isolatoren.

Die effektive Masse eines Leitungselektrons in KCI
wichst dadurch um einen Faktor 2.5 im Vergleich
zum Fall eines starren Gitters.

Zn0O PbS InSb GaAs
a 085 016 0014 0.6
Molm — — — 0014  —
m/m — —_ 0.014 =
Mmpafm” — = -

Abbildung 5.48: Effektive Masse von Leitungsband-
Elektronen in Halbleitern mit teil-
weise kovalenten Bindungen.

Bei Materialien mit stdrker kovalentem Charakter,
wie z.B. dem Halbleiter GaAs, ist die Gitterverzer-
rung durch die Leitungselektronen schwécher und
damit die Kopplungskonstante kleiner.

5.7.3 Cooper Paare

Die Verzerrung, welche die Elektronen im Gitter er-
zeugen, wirkt wiederum auf andere Elektronen und
kann dazu fiithren, dass zwischen (weit voneinander
entfernten) Elektronen eine effektive Anziehungs-
kraft zustande kommt. Dadurch kommt es zur Bil-
dung von sogenannten Cooper Paaren, welche fiir
die Supraleitung verantwortlich sind. Dies wird im
Kapitel 9 genauer diskutiert.

152



