
4 Gitterschwingungen und Phononen

Die Struktur eines Festkörpers ist dadurch definiert,
dass die Atome sich an der Stelle befinden, welche
die Gesamtenergie der Anordnung minimiert. Dies
ist deshalb die Position, die sie - abgesehen von
der quantenmechanischen Unschärfe - am absolu-
ten Nullpunkt einnehmen. Bei endlichen Tempera-
turen hingegen führen sie Schwingungsbewegungen
um diese Gleichgewichtspositionen durch und besit-
zen damit eine höhere Energie.

Dieses Kapitel befasst sich mit mechanischen
Schwingungen der Atome um ihre Gleichgewichts-
lage. Diese sind wichtig für das Verständnis von
vielen Materialeigenschaften, wie z.B. die spezifi-
sche Wärme, Leitfähigkeit für Elektrizität, Schall
und Wärme, oder die Volumenausdehnung. Auch die
Supraleitung (Kap. 9) kann nur über die Schwin-
gungen der Gitteratome verstanden werden. Darüber
hinaus beobachtet man den Effekt von Schwingun-
gen in der Wechselwirkung mit unterschiedlichen
Arten von Strahlung, wie z.B. infrarotem Licht oder
thermischen Neutronen.

4.1 Grundlagen

4.1.1 Gleichgewichtsumgebung

Die Position der Atome wird nicht mehr als fest an-
genommen, sondern wir betrachten die Position~r ei-
nes Atoms jetzt als variabel. Dabei soll jedes Atom
eine Gleichgewichtsposition ~r0 haben, aber gegen-
über dieser Gleichgewichtsposition Auslenkungen~x
erfahren,

~r =~r0 +~x,

wobei diese im Mittel verschwinden, h~xi = 0. Diese
Auslenkungen sind klein im Vergleich zu typischen
Abständen zwischen nächsten Nachbarn.

Wir diskutieren dies im Rahmen der Born-Oppen-
heimer Näherung, d.h. wir betrachten die Bewegung

der Kerne in einem effektiven Potenzial, welches
durch die Abhängigkeit der elektronischen Energie
von den Kern-Koordinaten gegeben ist. Die rück-
treibende Kraft des Potenzials führt dann zu einer
Schwingung. Das Potenzial ist gegeben durch die
Bindungsenergie des Systems, d.h. durch die kine-
tische Energie der Elektronen und die Coulomb-
Energie der Kerne und Elektronen.

x

harmonische 
Näherung

U = U0 + U1x + U2x
2 + . . .

Potenzial

x0 = 0

U

Abbildung 4.1: Potenzialverlauf und harmonische
Näherung.

Wir diskutieren zunächst ein eindimensionales Sy-
stem und entwickeln das Potenzial eines einzelnen
Atoms in der Umgebung seiner Ruhelage als

U = U0 +U1x+U2x2 + . . . ,

wobei x die Auslenkung aus der Ruhelage x0 be-
zeichnet. Die Ruhelage ist aber gerade dadurch defi-
niert, dass die Energie minimal ist. Somit muss der
lineare Term verschwinden,

∂U
∂x

= U1 = 0.

Die Kraft, welche auf das Atom wirkt, ist demnach
in niedrigster Ordnung

F = �dU
dx

= �2xU2.

Diese Form entspricht dem Hooke’schen Gesetz. In
der Festkörperphysik wird dies als die harmonische
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4 Gitterschwingungen und Phononen

Näherung bezeichnet. Wir verwenden sie für den
größten Teil dieses Kapitels. Wenn die höheren Ter-
me (U3, . . .) relevant werden, spricht man von an-
harmonischen Effekten. Diese werden in Kapitel 4.5
angesprochen.

4.1.2 Die eindimensionale Kette

Auch bei Schwingungen hat die Periodizität des
Gitters einen entscheidenden Einfluss: die Atome
schwingen nicht unabhängig voneinander, sonder
sie führen kollektive Bewegungen durch, an denen
sämtliche Atome des Kristalls beteiligt sind. Inter-
essanterweise können diese Bewegungen jedoch in
sehr guter Näherung analytisch berechnet werden.

xs xs+1

a

xs-1

Abbildung 4.2: Eindimensionale Kette.

Das einfachste mögliche Modell für die Schwingung
von Atomen in einem Gitter ist das einer eidimen-
sionalen Kette, welche aus identischen Atomen be-
steht, welche durch identische Wechselwirkungen
aneinander gekoppelt sind. Die interatomaren Kräfte
sind nur vom Abstand zu den direkten Nachbarn ab-
hängig. xs beschreibt hier die Auslenkung des s-ten
Atoms aus der Ruhelage.

Durch die Federn wird die Kraft auf ein Atom abhän-
gig von der Position des Nachbaratoms. Die Bewe-
gungsgleichungen der einzelnen Atome sind deshalb
miteinander gekoppelt. Dann lautet die Bewegungs-
gleichung für das Atom an Position s

Mẍs = C(xs+1 + xs�1 �2xs),

wobei C die Kraftkonstante und M die atomare Mas-
se beschreibt. Da ein Atom mehrere nächste Nach-
barn besitzt, wirkt die Auslenkung eines Atoms aus
der Ruhelage immer auch auf mehrere andere Ato-
me. Dies führt dazu, dass die Auslenkung nicht auf
einem Atom lokalisiert bleiben kann. Mathematisch
hat man ein System von N gekoppelten Differenzi-
algleichungen (pro Freiheitsgrad). Um diese zu lö-
sen, muss man die Eigenvektoren des Systems be-
stimmen. Diese werden als Eigenmoden bezeichnet.

Aus der Translationssymmetrie des Systems folgt,
dass die Eigenfunktionen ebene Wellen sein müssen,
welche sich entlang der Kette ausbreiten. Ein sinn-
voller Ansatz ist damit

xs = X0ei(ksa�wt).

Hier ist k die Wellenzahl (mit Dimension [k] = m�1),
X0 die Amplitude und w die Kreisfrequenz, a be-
zeichnet den Abstand zwischen nächsten Nachbarn
und sa die Ruhelage des Atoms mit Index s.

4.1.3 Normalkoordinaten und
Dispersionsrelation

Die neu eingeführten Eigenmoden beziehen sich
nicht mehr auf einzelne Atome, sondern auf die Ge-
samtheit der Atome. Sie zeichnen sich durch ihre
harmonische Zeitabhängigkeit aus und werden auch
als Normalkoordinaten bezeichnet. Offenbar ist

xs�1 = xse�ika xs+1 = xseika.

Durch Einsetzen von xs�1, xs, xs+1 in die Bewe-
gungsgleichung erhalten wir

�Mw

2xs = C
⇣

eika + e�ika �2
⌘

xs.

= 2C (cos(ka)�1)xs

Wir dividieren durch �Mxs und erhalten

w

2 = 2
C
M

(1� cos(ka)) = 4
C
M

sin2 ka
2

.

Damit wird die Eigenfrequenz

w = 2

r
C
M

����sin
ka
2

���� .

Jedes Wertepaar (k,w) charakterisiert eine Eigen-
mode der Gitterschwingung. Innerhalb der harmoni-
schen Näherung sind die Schwingungen voneinan-
der unabhängig. In einem unendlichen Kristall sind
diese Werte kontinuierlich. In einem endlichen Kri-
stall gibt es 3N diskrete Moden, wobei N die Anzahl
der Einheitszellen des Kristalls darstellt.

Abb. 4.3 zeigt die Dispersionsrelation zwischen der
Wellenzahl k und der Schwingungsfrequenz w . Für
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Abbildung 4.3: Dispersion der eindimensionalen
Kette.

kleine Wellenzahlen, also große Wellenlängen geht
die Frequenz gegen Null. Im linearen Bereich gilt:

w ⇡
r

C
M

|ka|

d.h. die Frequenz ist direkt proportional zur Wellen-
zahl. Daraus folgt für die Schallgeschwindigkeit

vS =
dw

dk
=

w

k
= a

r
C
M

.

Die Phasendifferenz zwischen benachbarten Ato-
men beträgt e�ika. Für kleine Wellenzahlen ist somit
die Phasendifferenz klein, d.h. benachbarte Atome
schwingen hier praktisch in Phase

Anders sieht es beim Wellenvektor k = p/a aus. Hier
ist e�ika = �1, d.h. benachbarte Atome schwingen in
Gegenphase. Die Wellenlänge l = 2p/k = 2a ent-
spricht der doppelten Länge der Einheitszelle, d.h.
übernächste Nachbarn schwingen in Phase.

4.1.4 Brillouin-Zone

Mit weiter zunehmenden Wellenvektoren, also kür-
zeren Wellenlängen, wird der Unterschied zwischen
den Auslenkungen benachbarter Atome wieder klei-
ner. Dies äußert sich auch in der Frequenz, wie man
in der Dispersionsrelation (! Abb. 4.3) erkennen
kann. Offenbar ist die Frequenzabhängigkeit peri-
odisch in k, mit Periode 2p/a. Dies liegt daran, dass
die Auslenkung die Position von Kernen beschreibt,
also von diskreten Punktpartikeln.

Da die Amplitude der Schwingung nur an den Kern-
orten definiert ist, ist es physikalisch nicht möglich,

xs

cos(5s)

cos(�1, 3 s)

Ort s

Au
sl

en
ku

ng

Abbildung 4.4: 2 Schwingungen mit unterschiedli-
chen Wellenzahlen, welche die glei-
che Auslenkung der Atome ergeben.

Schwingungen zu unterscheiden, deren Wellenvek-
tor sich um 2p/a unterscheidet. Anders ausgedrückt:
die Position eines Atoms mit einer Phase von 5p/2
ist identisch zur Position mit einer Phase p/2. Ein
solches Beispiel ist in Abb. 4.4 dargestellt: Die Wel-
lenvektoren der violetten und der grünen Kurve un-
terscheiden sich um 2p/a. Wie in Abb. 4.4 gezeigt,
erzeugen sie die gleichen atomaren Auslenkungen.
Diese Beziehung wird auch als Abtasttheorem oder
Nyquist-Theorem bezeichnet. Es muss z.B. bei der
Digitalisierung von Messdaten berücksichtigt wer-
den.

tt

k
0-�/a �/a 2�/a

xsxs

äquivalent

Abbildung 4.5: Die 1. Brillouin-Zone enthält die ge-
samte Information.

Bezogen auf die Dispersionsrelation w(k) der Git-
terschwingungen bedeutet dies, dass nur der Bereich
zwischen �p/a < k < p/a betrachtet werden muss.
Wie bei der Einführung des reziproken Gitters in Ka-
pitel 2.5.6 diskutiert, wird dieser Bereich als erste
Brillouin-Zone bezeichnet.

Die Dispersionsrelation der Gitterschwingungen
w(~k) kann durch gleichzeitige Messung von Wel-
lenvektor ~k und Frequenz w , u.a. mit unelastischer
Röntgenstreuung gemessen werden. Abb. 4.6 zeigt
als Beispiel die Dispersionsrelationen von Blei, wel-
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Abbildung 4.6: Dispersionsrelationen von Blei.

ches in einem fcc-Gitter kristallisiert. In diesem,
wie auch in vielen anderen Fällen, enthält die Dar-
stellung mehrere Richtungen innerhalb der ersten
Brillouin-Zone.
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Abbildung 4.7: Dispersionsrelationen von Kupfer.

Die Dispersion von Kupfer (siehe Abb. 4.7) sieht
ähnlich aus. Beide Metalle kristallisieren in einem
fcc Gitter. Da Kupferatome leichter sind (mCu=63,5;
mPb=207,2), sind die entsprechenden Schwingungs-
frequenzen jedoch höher. Man erhält jeweils einen
longitudinalen und zwei transversale Äste, wobei die
transversalen Schwingungen je nach Ausbreitungs-
richtung entartet sein können.

4.1.5 Gruppengeschwindigkeit und
Phasengeschwindigkeit

Die Beziehung zwischen Frequenz und Wellenzahl
ergibt direkt die Phasengeschwindigkeit

vP =
w

k
= 2

r
C
M

����sin
ka
2

����/k,

sowie die Gruppengeschwindigkeit aus der Steigung

vG =
dw

dk
= a

r
C
M

����cos
ka
2

���� .
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Abbildung 4.8: Dispersion von Frequenz und Grup-
pengeschwindigkeit.

Abb. 4.8 zeigt den Verlauf für den Bereich 0 < k <
p/a. Für sehr kleine Wellenvektoren, d.h. sehr große
Wellenlängen geht die Frequenz linear gegen null. In
diesem Bereich sind die Phasengeschwindigkeit und
die Gruppengeschwindigkeit gleich und konstant,

vP(k ! 0) = vG(k ! 0) = a

r
C
M

.

In diesem Bereich ist die Wellenlänge sehr viel grö-
ßer als die Gitterkonstante, sodass die diskrete Natur
des Gitters hier keine Rolle spielt. Schwingungen in
diesem Bereich können auch gut mit Hilfe von kon-
tinuierlichen Modellen beschrieben werden, welche
die atomare Struktur der Materie nicht explizit be-
rücksichtigt (! Kap. 4.2). Wellen mit großen Wel-
lenlängen sind z.B. wichtig bei der Schallausbrei-
tung. Typische Schallgeschwindigkeiten in Festkör-
pern liegen bei vs ⇡ 4000 m/sec.

Mit einer typischen Einheitszellen-Größe von a ⇡
5 · 10�10 m wird die minimale Wellenlänge an den
Grenzen der ersten Brillouin-Zone, d.h. bei k = p/a,
lmin = 2a ⇡ 10�9 m. Dies entspricht der maximalen
Schwingungsfrequenz

nmax ⇡ vs

lmin
= 4 ·1012 Hz.

Am Rand der Brillouin-Zone geht die Gruppenge-
schwindigkeit gegen null,

vG(k =
p

a
) =

dw

dk

����
p

a

= 0,

d.h. es wird keine Energie mehr transportiert. Dies
lässt sich leicht verstehen wenn wir berücksichti-
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4 Gitterschwingungen und Phononen

gen, dass an diesem Punkt die Bragg-Bedingung er-
füllt ist: Die allgemeine Beziehung für die Bragg-
Bedingung

2d sinq = l

wird für d = a, q = p/2 zu

2a = l =
2p

k
oder k =

p

a
.

a

h

Abbildung 4.9: Reflexion einer linearen Welle bei
der Bragg-Bedingung.

Das bedeutet, dass die einfallende Welle am Gitter
sehr effizient reflektiert wird. Die einfallende Wel-
le und die reflektierte Welle bilden zusammen eine
stehende Welle, bei der die um eine Elementarzelle
getrennten Atome jeweils um 180� außer Phase sind.
Stehende Wellen transportieren aber keine Energie.

4.1.6 Transversalschwingungen

Die hier betrachtete Bewegung entlang der Kette ist
nicht die einzige Möglichkeit. Zusätzlich gibt es die
Möglichkeit, dass die Atome senkrecht zur Kette
ausgelenkt werden. Da ein Atom drei Freiheitsgrade
besitzt, gibt es pro Atom 3 Arten von Gitterschwin-
gungen, nämlich eine in Richtung der Kette und zwei
senkrecht dazu. Die bisher behandelte Schwingung
wird als longitudinal bezeichnet, die andern beiden
als transversal.

Das gleiche gilt in 3 Dimensionen. Dort haben
die beiden Transversalschwingungen im Allgemei-
nen unterschiedliche Dispersionsrelationen. In ei-
nem Kristall hängt die Ausbreitungsgeschwindigkeit
außerdem von der Ausbreitungsrichtung ab. In den
beiden Abbildungen 4.6 und 4.7 sind für Wellen-
vektoren in Richtung (1,1,0) jeweils zwei transver-
sale Äste erkennbar, während sie für die Richtungen
(1,0,0) und (1,1,1) jeweils entartet sind.

~k

L

T1

T2

Abbildung 4.10: Federmodell in 3D; longitudinale
und transversale Moden.

4.2 Kontinuumsmechanik

Um einen besseren Einblick in die Schallausbreitung
in anisotropen Medien zu erhalten, soll in diesem
Kapitel zunächst der kontinuierliche Grenzfall dis-
kutiert werden.

4.2.1 Spannung und Dehnung

Für den Übergang zu dreidimensionalen Körpern be-
trachten wir zunächst die klassische Kontinuumsme-
chanik. Man beschreibt die Veränderung eines Volu-
menelementes unter dem Einfluss äußerer Kräfte als
eine Kombination von Verschiebung, Dehnung (Än-
derung der Längen) und Scherung (Änderung der
Winkel).

dF dFn

dFt
A

Abbildung 4.11: Spannung = Kraft pro Fläche.

Die äußeren Kräfte auf das Volumenelement werden
jeweils auf die Fläche normiert, auf die sie wirken.
Den Quotienten bezeichnet man als Spannung

S =
dF
dA

[S] =
N
m2 .
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Eine allgemeine Spannung kann zerlegt werden
in eine Normalspannung s und eine Tangential-
(Schub-) Spannung t:

S = s + t =
dFn

dA
+

dFt

dA
.

Bei der Normalspannung kennzeichnet man die
Richtung mit einem Index, bei der Schubspannung
die Fläche mit einem Index, die Richtung mit einem
zweiten. An einem Würfel findet man somit

sx,sy,sz txy,txz,tyz,tyx,tzx,tzy.

Aus Symmetriegründen gilt t

ab

= t

ba

, so dass noch
drei unabhängige Schubspannungen bleiben.

Kein Körper ist absolut starr. Deshalb erzeugen
Spannungen Verformungen. Bei den elastischen Ver-
formungen unterscheidet man zwischen Dehnungen
e (rechte Winkel bleiben erhalten) und Schiebungen
oder Scherungen g , welche Winkeländerungen be-
schreiben.

L

F

F

L+6L

Abbildung 4.12: Dehnung = relative Längenände-
rung.

Eine Dehnung ist definiert als die relative Längenän-
derung

e =
`� `0

`0
=

D`

`0
.

4.2.2 Elastische Konstanten

Spannung und Dehnung sind voneinander abhängig.
In den meisten Körpern existiert zudem für niedrige
Spannungen ein Bereich, in dem eine lineare Bezie-
hung gilt, welche für Federn als Hooke’sches Gesetz
bekannt ist:

s = Ee, [E] = Nm�2,

wobei die Proportionalitätskonstante E als Elastizi-
tätsmodul bezeichnet wird.

(Werk-)Stoff Elastizitätsmodul E in
GNm�2

Eis 9,9
Blei 17

Al (rein) 72
Glas 76
Gold 81

Messing (kaltverf.) 100
Kupfer (kaltverf.) 126

V2A-Stahl 195

Elastizitätsmodule stellen wichtige technische Grö-
ßen dar und sind deshalb von vielen Materialien be-
stimmt worden. Für Metalle liegen sie im Bereich
von 1011 N/m2.

`

d

~F

�d/2

�`

~F

Abbildung 4.13: Querdehnung: der blaue Körper
wird durch die Kraft ~F zum roten
Körper verformt.

Eine Normalspannung erzeugt nicht nur eine Län-
genänderung D`, sondern auch eine Querdehnung
eq = Dd/d. Diese Querdehnung eq ist proportional
zur Längsdehnung e , es gilt eq = �µe , mit der Quer-
dehnungszahl µ .

(Werk-)Stoff Querdehnungszahl µ

Eis 0,33
Blei 0,44

Al (rein) 0,34
Glas 0,17
Gold 0,42

Messing (kaltverf.) 0,38
Kupfer (kaltverf.) 0,35

V2A-Stahl 0,28
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Diese dimensionslose Zahl liegt typischerweise im
Bereich von ~0.3.

4.2.3 Scherung

~F

~F

�x

`

Abbildung 4.14: Scherung.

In analoger Weise kann man Scherungen behandeln.
Scherung ist definiert als die Winkeländerung

a = sin�1 Dx
`

.

Scherung ist proportional zur Schubspannung t:

t = Ga,

und die Proportionalitätskonstante G wird als Schub-
modul bezeichnet.

(Werk-)Stoff Schubmodul G in
GNm�2

Eis 3,7
Blei 5,5 - 7,5

Al (rein) 27
Glas 33
Gold 28

Messing (kaltverf.) 36
Kupfer (kaltverf.) 47

V2A-Stahl 80

Die Schubmodule von vielen Materialien sind ge-
messen worden. Sie sind von ähnlicher Größenord-
nung wie die Elastizitäts- und Kompressionsmodule,
aber immer etwas kleiner.

4.2.4 Unelastisches Verhalten

Die elastischen Eigenschaften können für geringe
Auslenkungen mit Hilfe des verallgemeinerten Hoo-
ke’schen Gesetzes dargestellt werden, d.h. durch ei-
ne lineare Beziehung zwischen Spannung und Form-
änderung. Dies ist allgemein der Fall in der Nähe des
Gleichgewichts, da man das lineare Kraftgesetz aus
dem ersten nicht verschwindenden Term der Taylor-
reihe erhält. Für größere Auslenkungen wird die Re-
aktion nichtlinear; dies entspricht auf der Stufe der
Gitterschwingungen dem Auftreten anharmonischer
Effekte: in beiden Fällen spielen die Terme der Ord-
nung >2 in der Taylorreihe des Potenzials eine Rolle.

Dehnung Δ ℓ / ℓ

Sp
an

nu
ng

 F
/A

Bruch

el
as

tis
ch

er
 B

er
ei

ch

plastischer Bereich 
(irreversibel)

Hysterese

Abbildung 4.15: Elastische vs. plastische Verfor-
mung.

Während die Einzelheiten differieren, findet man in
den meisten Materialien ein Verhalten, das qualita-
tiv etwa so aussieht: Das Hooke’sche Gesetz, d.h. ei-
ne lineare Beziehung zwischen Spannung und Deh-
nung, gilt für geringe Dehnungen.

Danach folgt ein elastisch-plastischer Bereich. In
diesem Bereich ist die Beziehung nichtlinear, der
Körper geht nach Abklingen der äußeren Einwirkun-
gen jedoch in den ursprünglichen Zustand zurück.
Für noch größere Kräfte folgt eine plastische Reak-
tion, also eine irreversible Verformung.

Auf mikroskopischer Ebene entsprechen elastische
Verformungen einer entsprechenden Verformung auf
atomarer Ebene, während bei plastischen Verfor-
mungen Bindungen gebrochen werden. Welcher Art
diese Änderungen sind, hängt von der Art des Ma-
terials ab. Bei Metallen können die Atome relativ
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plastische
Verformung

Metalle

Polymere

plastische 
Verformung

Abbildung 4.16: Mikroskopische Prozesse bei der
Verformung eines Metalls (links)
und Polymers (rechts).

leicht gegeneinander verschoben werden.

Bei kovalent gebundenen Materialien, wie z.B. Po-
lymeren, werden Bindungen nur schwer gebrochen.
Die Moleküle haben jedoch die Freiheit, um einzelne
Einfachbindungen zu rotieren und so ihre Form zu
ändern. Eine plastische Verformung führt hier des-
halb zu einer Verstreckung der Moleküle.

4.2.5 Dehnungstensor

Für das Verständnis der Gitterschwingungen ist nur
der elastische Bereich relevant. Hingegen muss das
obige Modell noch dahingehend erweitert werden,
dass die elastischen Konstanten in einem kristallinen
Material richtungsabhängig sind. Da die interatoma-
ren Potenziale von der Richtung abhängen, erzeugen
auch Spannungen unterschiedliche Verformungen je
nach der Richtung in der sie bezüglich dem Kristall-
gitter wirken.

Um eine allgemeine Verformung zu beschreiben,
muss jedem Punkt P des Körpers in seiner Ruhelage
ein Punkt P0 des deformierten Körpers zugeordnet
werden. Der Vektor

~u(~r) =

0

@
x (~r)
h(~r)
z (~r)

1

A ,

der diese Translation beschreibt, hängt selber von
der Position~r im Raum ab.

Es ist sinnvoll, ihn in verschiedene Komponenten
aufzuteilen. Seit Helmholtz benutzt man dafür ei-
ne Verschiebung (Translation), eine Rotation, und

P �

P

~u(~r)

~r

Abbildung 4.17: Tensorielle Beschreibung der Ver-
formung.

drei orthogonale Dehnungen. Translation und Rota-
tion beziehen sich auf den gesamten Körper, sind al-
so nicht vom Ort ~r abhängig und ändern die elasti-
sche Energie des Systems nicht. Diese wird (in li-
nearer Näherung) nur von der ersten Ableitung von~u
bestimmt, welche als Dehnung beschrieben werden
kann. Diese wird durch den Dehnungs- oder Verzer-
rungstensor

 !e =

0

@
exx

1
2 exy

1
2 exz

1
2 exy eyy

1
2 eyz

1
2 exz

1
2 eyz ezz

1

A

beschrieben. Dieser symmetrische Tensor besitzt 6
unabhängige Elemente. Die Diagonalelemente

exx =
dx

dx
, eyy =

dh

dy
, ezz =

dz

dz

beschreiben, wie die Verschiebung parallel zur ent-
sprechenden Koordinate entlang der Achse zu-
nimmt. Die Außerdiagonalelemente

exy = eyx =
dx

dy
+

dh

dx

eyz = ezy =
dh

dz
+

dz

dy

exz = ezx =
dx

dz
=

dz

dx

beschreiben die Zunahme der Verschiebung paral-
lel zu einer Richtung senkrecht zur Verschiebung.
Die Faktoren 1/2 werden z.T. auch in die Definition
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der Tensorelemente einbezogen. Der zugehörige an-
tisymmetrische Tensor beschreibt eine Rotation. Die
Elemente des Dehnungstensors sind dimensionslos
und in allen relevanten Fällen⌧ 1.

Mit Hilfe dieses Tensors kann der Dehnungsanteil
der Verformung im linearen Bereich geschrieben
werden als

~u(~r) = !e ·~r,

wobei die Verschiebung bei~r = 0 als Translation be-
handelt wird.

Wie bei jedem symmetrischen Tensor zweiter Stu-
fe existiert ein ausgezeichnetes Koordinatensystem
in dem dieser Tensor diagonal wird. Die Diagonal-
elemente in dieser Form geben gerade die Dehnung
in Achsenrichtung an. Ein Punkt, der auf einer der
Hauptachsen liegt, bleibt also auch unter der Deh-
nung auf dieser Achse. Dies bedeutet insbesonde-
re, dass in diesem Koordinatensystem keine Scher-
dehnung auftritt; diese wird durch die Außerdia-
gonalelemente beschrieben. Die Beschreibung einer
Verformung als Dehnung oder Scherung ist somit
abhängig vom Koordinatensystem. Die Spur dieses
Tensors, also die Summe der Diagonalelemente be-
schreibt gerade die relative Volumenänderung. All-
gemein ist die Spur unabhängig von der Wahl des
Koordinatensystems, wie es für eine Volumenände-
rung sein sollte. Der Tensor selber ist auch vom Ort
abhängig, stellt also ein Tensorfeld dar.

4.2.6 Spannungstensor

Neben dem Dehnungs-, resp. Verzerrungstensor be-
nötigen wir eine weitere wichtige Größe, den Span-
nungstensor  !s . Wie oben gezeigt, können in jeder
Achsenrichtung eine Zug- und zwei Scherspannun-
gen existieren. Insgesamt ergibt dies 9 Komponen-
ten eines Tensors zweiter Stufe. Aus der Bedingung,
dass der Körper statisch sein soll, ergeben sich drei
Symmetriebedingungen, nämlich, dass sxy = syx.
Die 6 verbleibenden Elemente bilden einen symme-
trischen Tensor

 !
s =

0

@
sxx sxy sxz
sxy syy syz
sxz syz szz

1

A .

Die Spur dieses Tensors gibt wiederum den isotro-
pen Anteil der äußeren Kraft an, also den hydrosta-
tischen Druck.

Die Erweiterung des Hooke’schen Gesetzes auf drei
Dimensionen ergibt eine lineare Beziehung zwi-
schen dem Spannungs- und dem Dehnungstensor.
Sie wird geschrieben als

 !
s =

 !
C · !e ,

wobei das verallgemeinerte Elastizitätsmodul
 !
C

einen Tensor vierter Stufe darstellt. Die 81 Elemente
eines Tensors vierter Stufe werden aber durch Sym-
metriebeziehungen stark reduziert. So enthalten ja
die Tensoren  !s und  !e nur je 6 unabhängige Ele-
mente.

Tabelle 4.1: Anzahl unabhängiger Tensorelemente
in Kristallen unterschiedlicher Symme-
trie.

Außerdem ist
 !
C selbst ein symmetrischer Tensor,

wodurch die maximale Anzahl unabhängiger Ele-
mente auf 21 absinkt. In einem Kristall mit Sym-
metrie sinkt die Zahl unabhängiger Elemente weiter,
wie in Tabelle 4.1 gezeigt. In einem kubischen Sy-
stem bleiben 3 unabhängige Elemente:

c11 = cxxxx = cyyyy = czzzz

c12 = cxxyy = cyyzz = czzxx

c44 = cxyxy = cyzyz = czxzx.

Man schreibt diese Elemente üblicherweise in der
Basis der 6 unabhängigen Elemente der Tensoren
zweiter Stufe.
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4.2.7 Wellenausbreitung in einem
anisotropen Kontinuum

Der elastische Tensor bestimmt die Wellenausbrei-
tung im Festkörper. Er ersetzt die skalare Kraftkon-
stante der 1-dimensionalen Bewegungsgleichung.
Dadurch wird die Auslenkung zu einem Vektor ~u =
(x ,h ,z ) und die Wellengleichung ebenfalls zu einer
Tensorgleichung. Für einen kubischen Kristall kann
die entsprechende Bewegungsgleichung geschrieben
werden als

r

∂

2
x

∂ t2 = C11
∂

2
x

∂x2 +C44

✓
∂

2
x

∂y2 +
∂

2
x

∂ z2

◆

+(C12 +C44)

✓
∂

2
h

∂x∂y
+

∂

2
z

∂x∂ z

◆

und analog für die Komponenten h und z.

Eine Lösung dafür erhalten wir durch den Ansatz ei-
ner ebenen Welle

x1 = x0ei(kx�Wt)

also einer Longitudinalwelle in x-Richtung. Für die
Geschwindigkeit dieser Welle erhält man

vl =

s
C11

r

,

analog zur eindimensionalen Welle. Die Geschwin-
digkeit ist jetzt gleich der Wurzel aus dem Quotien-
ten von Elastizitätsmodul und Dichte.

Für den Fall einer Transversalwelle in y-Richtung
wird die Geschwindigkeit zu

vt =

s
C44

r

.

Hier übernimmt also anstelle des Elements C11 das-
jenige Element des Elastizitätstensors die Funkti-
on der Kraftkonstanten, welche die Außerdiagonal-
elemente von Dehnungs- und Spannungstensor mit-
einander koppelt. Dies ist eine direkte Konsequenz
davon, dass eine Transversalwelle Scherspannungen
erzeugt, während bei einer reinen Longitudinalwelle
nur Schubspannungen auftreten.

Für jeden Wellenvektor existieren drei linear un-
abhängige Polarisationen, entsprechend drei Raum-
richtungen. Im allgemeinen sind die Ausbreitungs-
geschwindigkeiten der drei Polarisationen unter-
schiedlich.

4.2.8 Abbildung von Schallwellen

Die Energieausbreitung, d.h. die Gruppengeschwin-
digkeit, ist in einem anisotropen Festkörper nicht
parallel zum Wellenvektor; dies ist nur der Fall,
wenn gewisse Symmetriebedingungen erfüllt sind.

Abbildung 4.18: Experimentell gemessene Wellen-
fronten in Si. Die drei Wellenfron-
ten entsprechen unterschiedlichen
Zeiten von 1,76, 2,04 und 2,42 µs.
[5]

Seit einigen Jahren kann man die Schallausbreitung
in einem Festkörper direkt sichtbar machen[5]. Dazu
regt man mit einem Laser oder einem piezoelektri-
schen Transducer an einer Stelle eines Kristalls kurz-
fristig akustische Schwingungen an und beobachtet
auf der Rückseite des Kristalls die dadurch induzier-
ten Auslenkungen. Abb. 4.18 zeigt als Beispiel ei-
ne solche Messung an Silizium. Man sieht deutlich,
wie die Anisotropie des Kristalls zu einer nichtsphä-
rischen Schallausbreitung führt.

Um dies zu verstehen, kann man zunächst sog.
„Langsamkeitsoberflächen“ betrachten, d.h. Ober-
flächen konstanter Frequenz im k-Raum. Die Grup-
pengeschwindigkeit ist gegeben als Ableitung nach
dem k-Vektor. Deshalb muss der entsprechende Vek-
tor senkrecht auf einer solchen Oberfläche stehen.
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Abbildung 4.19: Links: Oberfläche konstanter Fre-
quenz im k-Raum und zugehö-
rige Gruppengeschwindigkeitsvek-
toren. Rechts: Wellenfront und
Ausbreitungsrichtung.

Wie in der linken Hälfte von Abb. 4.19 gezeigt, ste-
hen diese Vektoren im Allgemeinen nicht parallel
zum Wellenvektor ~k; die Ausbreitungsrichtung ist
damit nicht parallel zum Wellenvektor.

Die rechte Hälfte von Abb. 4.19 stellt die Wellen-
front dar, welche dadurch zustande kommt, dass
man die Gruppengeschwindigkeitsvektoren verbin-
det. Diese Überschneidungen der Wellenfronten,
welche auch im experimentellen Bild beobachtet
werden konnten, sind eine Konsequenz der kristal-
linen Struktur; bei isotropen Festkörpern, wie z.B.
Glas, können sie nicht beobachtet werden.

Abbildung 4.20: Wellenfronten zu unterschiedlichen
Zeiten.

Um die Wellenfronten experimentell sichtbar zu ma-
chen, muss man zunächst eine kurze Störung an den
Kristall anlegen und die Wellen nachher zeitlich und
räumlich aufgelöst beobachten. Abb. 4.20 zeigt ein
Beispiel, bei dem die Messung mit Hilfe piezoelek-

trischer Transducer an Si durchgeführt. In der obe-
ren Zeile sieht man zunächst eine beinahe sphärische
Longitudinalwelle eintreffen, in der unteren Zeile ei-
ne deutlich nichtsphärische Transversalwelle.

4.2.9 Seismische Wellen

Sowohl longitudinale Druck- als auch transversale
Scherwellen spielen bei Erdbeben eine Rolle. Aller-
dings ist in diesem Fall das Medium im Wesentli-
chen isotrop.

Abbildung 4.21: Seismische Wellen.

Die sogenannten P- (Primär-) und S- (Sekundär-)
Wellen breiten sich im Volumen aus. P-Wellen sind
Longitudinalwellen (wie Schallwellen), S-Wellen
sind Schwerewellen. Love-Wellen sind Torsions-
wellen, welche sich an der Oberfläche ausbreiten.
Rayleigh-Wellen sind ebenfalls Oberflächenwellen,
sie gleichen aber Meereswellen.

Da der Elastizitätsmodul immer größer ist als das
Schermodul, erwarten wir für longitudinale Druck-
wellen eine höhere Ausbreitungsgeschwindigkeit als
für transversale Scherwellen.

Diese Erwartung wird durch experimentelle Befunde
gestützt: Die Primärwellen, welche als erste bei einer
Messstation eintreffen, sind Druckwellen, während
die später eintreffenden Sekundärwellen Scherwel-
len sind. Die höhere Schallgeschwindigkeit für Lon-
gitudinalwellen beobachtet man auch bei Kristallen.
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Abbildung 4.22: Primär- und Sekundärwellen bei
Erdbeben.

4.3 Schwingungen in diskreten
dreidimensionalen Systemen

Die Behandlung der Schwingungen mit Hilfe der
Kontinuumsmechanik ist möglich, solange die Wel-
lenlängen groß sind im Vergleich zur Größe der Ein-
heitszelle. Wir betrachten jetzt wieder diskrete Sy-
steme, erweitern die Diskussion aber auf drei Di-
mensionen. Bei N Atomen pro Einheitszelle erwar-
ten wir 3N Freiheitsgrade und damit 3N Eigenmo-
den. Dies können grundsätzlich in N longitudinale
und 2N transversale Moden aufgeteilt werden.

4.3.1 Richtungsabhängigkeit

xs-1 xs xs+1 xs+2 xs+3

Longitudinalwelle k

Abbildung 4.23: Longitudinalwelle.

In einem dreidimensionalen Gitter findet man im

Wesentlichen die gleiche Art von Schwingungen wie
bei der Kette. Allerdings werden hier nicht mehr
einzelne Atome ausgelenkt wie im eindimensiona-
len Fall, oder Volumenelemente wie im kontinuier-
lichen Fall, sondern ganze Netzebenen. Abb. 4.23
zeigt die Netzebenen senkrecht zur Ausbreitungs-
richtung. Für diese gilt, dass alle darin enthaltenen
Atome die gleiche Auslenkung zeigen. Im Fall von
Abb. 4.23 ist diese Auslenkung parallel zur Ausbrei-
tungsrichtung~k, d.h. es handelt sich um eine Longi-
tudinalwelle.

xs xs+1 xs+2 xs+3 xs+4

k

Abbildung 4.24: Transversalwelle.

Abb. 4.24 zeigt die entsprechende Situation für eine
Transversalwelle. Hier ist die Auslenkung parallel
zur Netzebene, senkrecht zur Ausbreitungsrichtung
~k. Die Eigenmoden des dreidimensionalen Gitters
bestehen aus der Auslenkung von Netzebenen ent-
weder parallel oder senkrecht zur Ausbreitungsrich-
tung. Allerdings stimmt dies nur dann exakt wenn
der Wellenvektor parallel zu einer Symmetrieachse
des Gitters liegt - beim kubischen Gitter beispiels-
weise entlang der (100), (110), oder (111) Richtung.
In diesem symmetrischen Fall steht der Wellenvek-
tor (z. B. ~k = [100]) jeweils senkrecht auf der ent-
sprechenden Netzebene (z. B. (100)). Wir behandeln
hier nur diesen Fall.

Wie im eindimensionalen Fall nehmen wir an, dass
die Kraft auf eine ausgelenkte Netzebene propor-
tional sei zur Auslenkung der Ebene gegenüber ih-
ren Nachbar-Ebenen. In diesem Fall können wir eine
harmonische Bewegungsgleichung hinschreiben,

M
d2xs

dt2 = C (xs+1 + xs�1 �2xs) ,

bei der die Masse M und die Kraftkonstante C beide
proportional sind zur Zahl der Atome in der Netze-

93



4 Gitterschwingungen und Phononen

bene. Somit kann die Gleichung durch die Zahl der
Atome dividiert werden und M und C sind dann pro
Atom zu rechnen, analog zum Kapitel 4.1. Damit
wird auch die Bewegungsgleichung wieder durch ei-
ne ebene Welle gelöst:

xs = x0ei(ksq�wt).

Hier stellt q den Abstand zwischen den Netzebenen
dar.

Kupfer

Wellenzahl k
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Abbildung 4.25: Dispersion von Kupfer: longitudi-
nale und transversale Zweige.

Im Allgemeinen gehören zu jedem Wellenvektor ei-
ne longitudinale und zwei transversale Moden, de-
ren Dispersion unterschiedlich sein kann. Abb. 4.25
zeigt als entsprechendes Beispiel die Dispersion von
Kupfer in (110) Richtung. Die Frequenz der trans-
versalen Moden liegt für große Wellenlängen immer
unterhalb der Frequenz der longitudinalen Moden,
wie im Fall kontinuierlicher Systeme.

Im Allgemeinen Fall bewegen sich die Gitterato-
me weder senkrecht noch parallel zur Ausbreitungs-
richtung, sondern besitzen sowohl longitudinale wie
auch transversale Komponenten. Dies führt auch
dazu, dass der Energietransport nicht in Richtung
des Wellenvektors läuft, wie bereits im Rahmen der
Kontinuumsmechanik diskutiert.

Für die folgende Diskussion werden wir longitudi-
nale Schwingungen diskutieren. Die Ergebnisse sind
jedoch direkt auf transversale Schwingungen über-
tragbar.

a

us vs

M1 M2C

Abbildung 4.26: 1D Kette mit 2 Atomen pro Ein-
heitszelle.

4.3.2 Zweiatomige Basis

Wir betrachten als nächstes den Fall von zwei un-
terschiedlichen Atomen pro Elementarzelle, wie in
Abb. 4.26 gezeigt. Dieser Fall hat keine Entspre-
chung im Kontinuums-Modell. Wir bezeichnen die
Auslenkung der blauen Atome (Masse M1) mit us
und die Auslenkung der roten Atome Masse M2) mit
vs, wobei s den Index der entsprechenden Elementar-
zelle darstellt. Jedes dieser Atome steht jeweils für
eine Netzebene.

Wie in Kapitel 4.1.2 sollen nur die Wechselwirkun-
gen zwischen nächsten Nachbarn eine Rolle spielen
(siehe Abb. 4.26). Für die beiden Atomsorten gelten
die Bewegungsgleichungen

M1üs = C (vs�1 + vs �2us)

M2v̈s = C (us+1 +us �2vs) . (4.1)

Die Kraftkonstante C ist abhängig von der “Feder”,
also vom interatomaren Potenzial; wir nehmen hier
an, dass beide Wechselwirkungen gleich seien.

Ein Lösungsansatz, der die Symmetrie des Problems
berücksichtigt, ist eine ebene Welle mit Wellenvek-
tor k und Frequenz w:

us = U0eiksae�iwt vs = V0eik(s+ 1
2 )ae�iwt .

Wir betrachten also eine Welle, bei der die beiden
Atomsorten unterschiedlich stark, jedoch mit der
gleichen Frequenz und dem gleichen Wellenvektor
ausgelenkt werden (sonst wäre es keine Welle). Die
Ortsabhängigkeit von vs berücksichtigt die Tatsache,
dass sich diese Atome in der Mitte der Einheitszel-
le befinden. Einsetzen in die Bewegungsgleichung
(4.1) ergibt
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�M1w

2U0 = 2CV0 cos
ka
2

�2CU0

�M2w

2V0 = 2CU0 cos
ka
2

�2CV0. (4.2)

Diese Gleichungen sind homogen und linear und wir
haben drei Unbekannte(w,U0,V0). Eine Lösung exi-
stiert nur dann, wenn die Determinante des Glei-
chungssystems verschwindet, d.h.

����
2C �M1w

2 �2C cos ka
2

�2C cos ka
2 2C �M2w

2

���� = 0

oder

M1M2w

4 �2C(M1 +M2)w
2

+4C2(1� cos2 ka
2

) = 0

Wir betrachten dies als eine quadratische Gleichung
für w

2 und ersetzen 1�cos2 ka
2 ! sin2 ka

2 . Die allge-
meine Lösung ist

w

2 = C
✓

1
M1

+
1

M2

◆
(4.3)

±C

s✓
1

M1
+

1
M2

◆2

� 4
M1M2

sin2 ka
2

.

Offenbar erhalten wir also 2 unterschiedliche Lösun-
gen, d.h. 2 unterschiedliche Frequenzen pro Wellen-
vektor!

4.3.3 Große Wellenlängen

Wir betrachten zunächst den Grenzfall großer Wel-
lenlängen, also ka ⌧ 1. Dann kann der Sinus durch
sein Argument ersetzt und die Wurzel entwickelt

werden:

w

2 ⇡ C
✓

1
M1

+
1

M2

◆

±C

s✓
1

M1
+

1
M2

◆2

� k2a2

M1M2

⇡ C
✓

1
M1

+
1

M2

◆

±C

"
1

M1
+

1
M2

�
k2a2

2M1M2
1

M1
+ 1

M2

#

= C
✓

1
M1

+
1

M2

◆
(4.4)

±C


1
M1

+
1

M2
� k2a2

2(M1 +M2)

�
.

Das negative Vorzeichen ergibt

w

2
a ⇡ C

2
k2a2

M1 +M2

oder

wa ⇡ ka

s
C

2(M1 +M2)
= k

a
2

s
C

(M1 +M2)/2
.

Dies entspricht genau dem Resultat das wir erwar-
ten würden, wenn beide Massen identisch wären, je-
weils mit der Masse (M1 + M2)/2. Die Amplituden
erhalten wir aus (4.2):

�M1w

2U0 = 2C(V0 �U0)

�M2w

2V0 = 2C(U0 �V0).

Für wa ! 0 verschwindet die linke Seite und die
Auslenkung der beiden Massen muss etwa identisch
sein, U0 ⇡ V0. Diese Schwingung entspricht somit
weitgehend dem Fall identischer Massen. In diesem
Grenzfall kleiner Wellenzahlen sind die beiden Mas-
sen praktisch in Phase, die Auslenkungen benach-
barter Atome (unterschiedlichen Typs) sind prak-
tisch gleich.

4.3.4 Optischer Ast

Der zweite Lösungsast ergibt sich aus dem positi-
ven Vorzeichen in Gl. (4.4). Für große Wellenlängen,
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d.h. ka ⌧ 1, kann der dritte Term unter der Wurzel
vernachlässigt werden und die Frequenz wird

w

2
o ⇡ 2C

✓
1

M1
+

1
M2

◆
.

Interessant ist, dass hier die Frequenz hoch ist, auch
für sehr kleine Wellenvektoren. Sie ist sogar höher
als die maximale Frequenz für eine einatomige Ba-
sis. Dies wird verständlich wenn man sich die Aus-
lenkungen ansieht. Setzt man in Gl. (4.2) die Lösung
für die Frequenz ein und cos(ka/2) ! 1, so findet
man

�M12C
✓

1
M1

+
1

M2

◆
U0 = 2C(V0 �U0)

�M22C
✓

1
M1

+
1

M2

◆
V0 = 2C(U0 �V0).

Division der beiden Gleichungen ergibt

U0

V0
= �M2

M1
,

d.h. die beiden Auslenkungen haben entgegenge-
setztes Vorzeichen. Das bedeutet, dass sich die bei-
den Atomsorten gegenphasig bewegen. Die Fre-
quenz ist gegeben durch die Kraftkonstante und die
reduzierte Masse für diese Bewegung. Wir haben
also wiederum eine stehende Welle vorliegen. Die
Wellenlänge dieser Schwingungen ist groß, da iden-
tische Atome praktisch in Phase schwingen. Trotz-
dem sind benachbarte Atome außer Phase, da es sich
um unterschiedliche Atomsorten handelt.

Diese Art von Schwingungen unterscheidet sich aber
wesentlich von den Schwingungen die wir aus dem
einatomigen Gitter kennen, insbesondere wenn die
beiden Atomsorten unterschiedlich geladene Ionen
darstellen: in diesem Fall wird im Kristall ein oszil-
lierendes elektrisches Dipolmoment angeregt. Die-
ser Schwingungstyp kann dadurch an optische Fel-
der ankoppeln und wird deshalb als optischer Ast
bezeichnet. Im Gegensatz dazu schwingen beim nie-
derfrequenten Ast die Atome einer Einheitszelle in
Phase, so dass durch die Auslenkung kein Dipolmo-
ment angeregt wird. Dieser Ast wird deshalb akusti-
scher Ast genannt.

M1
M2

M1

M2

0
0 k

ω

Abbildung 4.27: Auslenkung der Atome im akusti-
schen und optischen Ast.

4.3.5 Verhalten am Zonenrand

Der zweite Grenzfall ist derjenige kurzer Wellenlän-
gen, bei denen die Wellenzahl den Rand der ersten
Brillouin-Zone erreicht. Für k = p/a, d.h. l = a/2
ergibt sich aus (4.3)

w

2 = C
✓

1
M1

+
1

M2

◆

±C

s✓
1

M1
+

1
M2

◆2

� 4
M1M2

= C
✓

1
M1

+
1

M2

◆
±C

✓
1

M1
� 1

M2

◆

sodass

w

2 =
2C
M1

oder w

2 =
2C
M2

.

Sofern die beiden Massen unterschiedlich sind, er-
halten wir somit auch am Zonenrand zwei unter-
schiedliche Frequenzen. Die Amplituden ergeben
sich aus (4.2) für den Spezialfall ka ! p , d.h.
cos(ka/2) ! 0:

M1w

2U0 = 2CU0

M2w

2V0 = 2CV0.

Dies ergibt für w

2 = 2C/M1

2CU0 = 2CU0 2C
M2

M1
V0 = 2CV0
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oder

V0 = 0 , U0 = beliebig.

Für w

2 = 2C/M2 erhalten wir analog

U0 = 0 , V0 = beliebig.

k a
ʌ0

t

M1
M2

M1

M2

M1
M2

M1

M2

�/2
0

U0 = 0

V0 = 0

M2 > M1

Abbildung 4.28: Auslenkung der Atome im akusti-
schen und optischen Ast.

Offenbar schwingen die beiden Atomsorten hier un-
abhängig voneinander. Je eine Atomsorte wird nicht
ausgelenkt.
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Abbildung 4.29: Schwingungsamplituden für den
akustischen und den optischen
Zweig als Funktion der Wellenzahl.

Abb. 4.29 zeigt die Abhängigkeit der Schwingungs-
amplituden für den akustischen und den optischen
Zweig als Funktion der Wellenzahl. Bei großen Wel-
lenlängen sind die beiden Amplituden für den aku-
stischen Zweig gleich, im optischen Zweig sind sie
gegeben durch das Verhältnis M1/M2. Damit bleibt

der Schwerpunkt in Ruhe. Mit abnehmender Wellen-
länge divergiert das Amplitudenverhältnis. In der Fi-
gur ist U0/V0 gezeigt; hier divergiert der akustische
Zweig, während der optische Zweig gegen Null geht.
Betrachtet man das Verhältnis V0/U0 divergiert ent-
sprechende der optische Zweig.

k a

t

M2 = 4M1

M2 = M1M2 = 2M1

M2 = 4M1

0 ʌ/2 ʌ
0

Abbildung 4.30: Einfluss des Massenverhältnisses
auf den akustischen und optischen
Ast.

Aus den Dispersionsrelationen folgt, dass am Zonen-
rand der akustische Ast seine maximale Frequenz
erreicht, der optische Ast seine minimale Frequenz.
Zwischen den beiden Zweigen existiert eine Lücke,
d.h. ein Bereich in dem keine Schwingungsfrequen-
zen auftreten. Wie in Abb. 4.30 gezeigt, hängt die
Breite dieses “verbotenen” Bereichs von den unter-
schiedlichen Massen ab. Je größer der Unterschied
zwischen den Massen wird, desto weiter öffnet sich
die Lücke zwischen den beiden Bändern.

Wenn die beiden Massen identisch sind, verschwin-
det dieser verbotene Bereich, die beiden Äste berüh-
ren sich am Rand der Brillouin-Zone. Diese Situati-
on entspricht aber gerade dem Fall einer zweiatomi-
gen Basis, also einem nicht-primitiven Gitter.

Das bedeutet, dass die erste Brillouin-Zone eigent-
lich doppelt so groß ist, wenn man das primitive Git-
ter im direkten Raum betrachtet. Durch die Wahl ei-
nes nicht primitiven Gitters wird ein Teil des Kur-
venverlaufs gefaltet und erscheint als optischer Ast.

Außerhalb der Brillouinzone setzt sich das Muster
periodisch fort: w(~k + ~G) = w(~k).
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Abbildung 4.31: Faltung der Dispersionsrelation bei
Verdoppelung der Einheitszelle.

4.3.6 Beispiele
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Abbildung 4.32: Phononenspektrum für Kupfer.

Für eine einatomige Einheitszelle wie Kupfer fin-
det man drei akustische und keine optischen Mo-
den. Abb. 4.32 zeigt die entsprechenden Dispersi-
onskurven für drei unterschiedliche Richtungen im
k-Raum.

Ein typisches Beispiel für eine Elementarzelle mit
zwei unterschiedlichen Atomen ist KBr. Die ku-
bische Struktur führt zu einem relativ einfachen
Schwingungsspektrum mit der minimalen Anzahl
von Ästen: longitudinal und transversal akustisch,
longitudinal und transversal optisch. Die einzelnen
Äste zeigen allerdings einen etwas anderen Verlauf
als in der hier diskutierten, stark vereinfachten Theo-
rie. Insbesondere hängt der Verlauf von der Richtung
von ~k ab, da die Kräfte nicht isotrop sind. Außer-
dem liegen die Maxima der akustischen Äste und die
Minima der optischen Äste nicht immer am Rand
der Brillouinzone. Dies liegt einerseits daran, dass
das Gitter nicht primitiv ist, zum anderen an der Art
der Wechselwirkungen. Eine genaue Analyse der Di-
spersionskurven erlaubt dementsprechend ein gutes

Abbildung 4.33: Dispersion der Schwingungsmo-
den in KBr.

Verständnis der interatomaren Wechselwirkungen.
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Abbildung 4.34: Phononenspektrum für CuInS2.

Enthält die Elementarzelle N Atome, so gibt es
3N Freiheitsgrade und dementsprechend 3N Moden.
Dabei gibt es immer 3 akustische Moden. Es blei-
ben deshalb 3N �3 optische Moden. Abb. 4.34 zeigt
als Beispiel das Schwingungsspektrum von CuInS2.
Auf Grund der relativ großen Elementarzelle erhält
man eine große Zahl von optischen Schwingungen.

4.3.7 Messung

Eine Möglichkeit, die Schwingungsfrequenzen zu
messen, ist die resonante Anregung mit elektroma-
gnetischer Strahlung. Die entsprechenden Frequen-
zen liegen im Bereich bis 1013 Hz. Damit ist die mi-
nimale Wellenlänge etwa l = c/n = 3 · 108/1013 m
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= 30 µm. Diese Wellenlänge gehört zum infraroten
Bereich.

Abbildung 4.35: Prinzip der Infrarotspektroskopie.

Abb. 4.35 zeigt, wie mittels Infrarotspektroskopie
Schwingungsfrequenzen gemessen werden können.
Dafür wird ein Lichtstrahl (meist von einer breitban-
digen Lichtquelle) durch die Probe geschickt. Hinter
der Probe wird das Licht spektral aufgeteilt und die
transmittierte Leistung als Funktion der Wellenlän-
ge gemessen. Um Artefakte zu reduzieren, wir meist
mit einer Messung an einer bekannten Referenzzelle
verglichen.

ω

q
0 π 

a

Lichtgerade mit 
Steigung c

Abbildung 4.36: Vergleich der Dispersion von Pho-
tonen und Schwingungsmoden.

Die Wellenlängen von optischer oder infraroter
Strahlung (⇡ µm) sind sehr groß im Vergleich zur
Größe einer Einheitszelle (⇡ nm). Für Photonen gilt
allgemein die Dispersionsrelation w = kc, (für Bre-
chungsindex n = 1). Wie in Abb. 4.36 angedeutet, ist
damit die Phasengeschwindigkeit (d.h. die Steigung
der Kurve) bei Photonen sehr viel größer als bei
Gitterschwingungen, wo die Phasengeschwindigkeit
auf /5000 m/s beschränkt ist. Impulserhaltung bei
der Absorption oder Emission von Photonen kann
damit nur gewährleistet werden, wenn der Quasi-
Impuls der Schwingungen nahe bei 0 liegt. Somit
koppelt ein infrarotes Feld nur an Schwingungs-

moden mit k ⇡ 0 an. Außerdem muss diese Mode
ein elektrisches Dipolmoment besitzen. Es kommen
deshalb nur optische Moden mit k ⇡ 0 in Frage.

4.3.8 Inelastische Lichtstreuung

Photon 
�i

~ki

~kf
�f

Phonon ~k
�

Abbildung 4.37: Inelastische Lichtstreuung.

Photonen im sichtbaren Bereich können auch an
Gitterschwingungen gestreut werden, wie in Abb.
4.37 gezeigt. Dies wird als inelastische Lichtstreu-
ung bezeichnet. Bei diesen Prozessen wird Energie
und Impuls zwischen den Photonen und den Git-
terschwingungen ausgetauscht. Da für die einzelnen
Streuprozesse jeweils Energie und Impuls erhalten
bleiben müssen, ist es praktisch, die Gitterschwin-
gungen durch elementare Anregungsquanten zu be-
schreiben, welche jeweils eine Einheit Energie von
h̄w und Impuls h̄k enthalten. Diese Quasiteilchen
werden als Phononen bezeichnet (! Kap. 4.4.2).

Man unterscheidet unterschiedliche Arten von sol-
chen Streuprozessen:

• Raman1-Streuung = Streuung an bzw. Anre-
gung von optischen Phononen

• Brillouin2-Streuung = Streuung an bzw. Anre-
gung von akustischen Phononen

Bei einem solchen Streuprozess wird ein Photon mit
Wellenvektor~ki und Frequenz wi gestreut in den Zu-
stand (~k f , w f ), unter Erzeugung oder Vernichtung ei-
nes Phonons mit Wellenvektor ~k und Frequenz w .
Damit Energie und Impuls erhalten bleiben, muss

1Chandrasekhara Venkata Raman (1888-1970) Nobelpreis
1930

2Léon Nicolas Brillouin (1889 - 1969)
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gelten

~ki = ~k f +~k
wi = w f +w

Die Energien von Photonen (⇡eV) und Phononen
(⇡meV) unterscheiden sich um etwa 3 Größen-
ordnungen. Man benötigt deshalb eine relativ ho-
he Energieauflösung bei der Messung der gestreuten
Photonen, um die Energie der Phononen bestimmen
zu können.

Wellenzahl �̄ =
1

�

Abbildung 4.38: Brillouin-Spektrum von SbSi.

Abb. 4.38 zeigt ein mittels Brillouin-Streuung ge-
messenes Spektrum von SbSi. Hier wird mit einem
Laser angeregt und die Änderung der Energie der ge-
streuten Phononen gemessen. Die horizontale Achse
ist in Einheiten der Wellenzahl n̄ = 1/l = w/(2pc)
skaliert.

Abb. 4.39 zeigt ein Raman-Spektrum von Silizium.
Es kann jeweils die Erzeugung eines Phonons ge-
messen werden, oder die Vernichtung. Bei der Er-
zeugung eines Phonons wird jeweils die Energie des
einfallenden Photons reduziert. Dieser Prozess wird
als Stokes-Streuung bezeichnet. Bei der Vernichtung
eines Phonons wird die Energie des Photons entspre-
chend höher. Dieser Prozess wird als Anti-Stokes
Streuung bezeichnet.

Im Zentrum des Spektrums, d.h. bei w = 0, befindet
sich der sog. Rayleigh3-Peak. Hier wird die Energie

3John William Strutt = Lord Rayleigh (1842-1919) Nobelpreis
1904
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Abbildung 4.39: Raman-Streuung an Silizium.

der Photonen nicht geändert, es handelt sich also um
elastische Streuung. Damit sollte aus der Impulser-
haltung auch~k f =~ki folgen, also Vorwärtsstreuung.
Voraussetzung für die Impulserhaltung ist die Trans-
lationssymmetrie. Diese ist aber in realen Kristallen
nicht streng gültig, sondern durch Defekte etc. ge-
stört. Es tritt also auch elastisch gestreutes Licht im
abgelenkten Strahl auf: Dies ist der Rayleigh-Peak.
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Abbildung 4.40: Raman-Streuung an Germanium
mit unterschiedlichen Atommas-
sen.

Abb. 4.40 zeigt, wie sich die Raman-Linie als Funk-
tion der atomaren Massen verschiebt. Die gemesse-
ne Verschiebung passt relativ gut zur theoretischen
Erwartung, dass

w µ
r

C
M

,

dass sie also indirekt proportional zur Wurzel aus der
Atommasse sein sollte. Natürliches Germanium (OZ
= 32) hat eine Atommasse von 72,63.
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4.3.9 Inelastische Röntgen-Streuung

Phononen können durch inelastische Streuprozesse
von Röntgen-Photonen oder von Neutronen erzeugt,
resp. vernichtet werden. Dies kann durch inelasti-
sche Röntgenstreuung oder durch Neutronenstreu-
ung geschehen. Auf diese Weise wurde z.B. die Di-
spersionsrelationen von Abb. 4.33 bestimmt.

zum 
Detektor

einfalldender 
Strahl

elastisch 
gestreut

~k

~k�

~G

~K

Abbildung 4.41: Impulse beim inelastischen Streu-
prozess.

Die Impulserhaltung fordert für die Streuung

~k + ~G =~k0 ±~q,

wobei~k,~k0 die Wellenvektoren des einfallenden und
des gestreuten Teilchens (Photons oder Neutrons)
bezeichnen, ~G einen Gittervektor, und ~q den Wel-
lenvektor eines Phonons, welches beim Streuprozess
erzeugt wurde. Der Gittervektor kann immer so ge-
wählt werden, dass ~K in der ersten Brillouinzone
liegt. Das Vorzeichen ist positiv, wenn ein Phonon
erzeugt, negativ wenn eines vernichtet wird. Natür-
lich muss gleichzeitig die Energieerhaltung gewähr-
leistet sein, d.h. die Energie des Phonons muss vom
gestreuten Teilchen aufgenommen, resp. abgegeben
werden.

Die gleichzeitige Erhaltung von Impuls und Ener-
gie ist nicht mit allen Sonden leicht zu erreichen.
Die Frequenz eines Phonons liegt bei etwa 0 . . .1012

Hz, die Wellenlänge bei ⇡ 1 nm. Elektromagneti-
sche Wellen mit eine Wellenlänge von 1 nm (al-
so Röntgenstrahlung) besitzen eine Frequenz von
n = c/l = 3 · 1017 Hz; diese ist also um mehrere
Größenordnungen höher als die der Phononen. Bei

inelastischer Streuung mit Photonen ändert sich die
Frequenz um die Phononenfrequenz. Für die Mes-
sung dieser Verschiebung muss also eine sehr gerin-
ge Energieverschiebung gemessen werden.

Gemäß Gleichung (2.6) ist die Streuamplitude

F(D~k) µ
Z

dV n(~r)e�iD~k·~r.

Für zeitabhängige Strukturen mit

~r(t) =~r0 +~x(t),

wird dies zu

F(D~k, t) µ e�iwit
Z

dV n(~r(t))e�iD~k·~r(t),

mit wi der Frequenz der einfallenden Strahlung.
Wird die Auslenkung ~x(t) durch Gitterschwingun-
gen verursacht, kann sie geschrieben werden als

~x(t) = Â
q

~Xqe�i(~q·~r0�wqt).

Der Wellenvektor der Gitterschwingungen wird hier
mit ~q bezeichnet. Damit wird die Streuamplitude

F(D~k, t) µ e�iwit Â
m

e�iD~k~rm

� Â
m

Â
q

iD~k ·~Xqe�i(D~k⌥~q)·~rme�i(wi±wq)t .

Hier bezeichnet der Index m die Atome der Einheits-
zelle. Der erste Term entspricht einer Welle bei der
gleichen Frequenz wie die einlaufende Welle, be-
schreibt also die elastische Streuung. Beim zweiten
Term ist die Frequenz der Welle um die Frequenz der
Gitterschwingung verschoben - dies entspricht der
inelastischen Streuung. Dieser liefert nur dann we-
sentliche Beiträge, wenn die Summe der Vektoren

D~k ±~q = ~G

einem Vektor des inversen Gitters entspricht. Aus-
gedrückt durch die Wellenvektoren von einlaufender
und gestreuter Welle, wird dies zu

~k f =~ki ±~q+ ~G.

Die Frequenzen der inelastisch gestreuten Kompo-
nenten sind

w f = wi ±w(~q).

Diese beiden Ausdrücken entsprechen der Erhaltung
von Impuls und Energie.
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4.3.10 Phononenspektroskopie mit
thermischen Neutronen

Neutronen mit einer Temperatur von 300 K (sog.
thermische Neutronen) hingegen besitzen eine Ener-
gie von kBT , entsprechend einer Frequenz n =
kBT/h = 0.7 ·1013 Hz. Der Impuls beträgt

p =
p

2mE =
p

2mkBT

=
p

2 ·1,7 ·10�27 ·4,1 ·10�21 mkg
s

= 3,7 ·10�24 mkg
s

.

Dies entspricht einer Wellenlänge von

l =
h
p

=
6,6 ·10�34

3,7 ·10�24 m = 0,18nm,

also gerade die richtige Größenordnung. Neutronen
sind deshalb für die Messung von Gitterschwingun-
gen ideal geeignet, da bei der Beugung von Neutro-
nen Energie und Impuls gleichzeitig erhalten werden
können.

Diese Beträge kann man vergleichen mit den Wel-
lenzahlen und Energien von optischen und akusti-
schen Phononen. Die Wellenlänge von thermischen
Neutronen entspricht offenbar einer typischen Git-
terkonstanten. Die Energien kann man abschätzen
aus der Schallgeschwindigkeit

vS =
dw

dk
⇡ w

k
.

Somit wird die maximale Frequenz

wmax ⇡ kmaxvS =
p

a
vS

⇡ 3
2 ·10�10 3000s�1 ⇡ 5 ·1013s�1.

Dies entspricht einer Energie von

Emax = h̄wmax ⇡ 5 ·1021 J ⇡ 30meV.

Dies liegt sehr nahe bei der thermischen Energie von

kBT ⇡ 1,4 ·10�23 ·300J ⇡ 26meV.

Monochromator

vom Reaktor

Probe

n

t
k

Analysator

k'

t'

Detektor

Abbildung 4.42: 3-Achsen Neutronenspektrometer.

Für eine solche Messung benutzt man z.B. ein sog.
Dreiachsenspektrometer. Abb. 4.42 zeigt schema-
tisch ein solches Spektrometer. Die drei Achsen ent-
sprechen (i) dem Monochromator, welcher Energie
und Impuls der einfallenden Neutronen bestimmt,
(ii) der Probe, wo die inelastische Streuung statt-
findet, sowie (iii) dem Analysator, wo Energie und
Impuls der gestreuten Neutronen gemessen werden.
Das Spektrum enthält pro Atom der Einheitszelle
jeweils drei Phononenäste, insgesamt also 3N. Die
ersten drei sind akustische Phononen, die weiteren
3N �3 optische.

Abbildung 4.43: Flugzeit-Spektrometer für Neutro-
nen.

Abb. 4.43 zeigt eine andere Möglichkeit, den Streu-
querschnitt als Funktion von Impuls- und Energie-
übertrag zu messen. Die beiden Chopper erzeu-
gen einen monochromatischen Neutronenstrahl. Der
Energieübertrag kann durch die Messung der An-
kunftszeit auf dem Detektor bestimmt werden. Der
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Impulsübertrag ist gegeben durch den Impulssatz

~k f =~ki + ~G±~K.

Die kinetische Energie der Neutronen ist

Ekin =
p2

2mN
=

h̄2~k2
N

2mN
.

Durch den Energieübertrag ändert die kinetische
Energie auf

h̄2~k f
2

2mN
=

h̄2~ki
2

2mN
± h̄w.

Diese Verschiebung wird jeweils als Funktion des
Wellenvektors gemessen, oder es wird bei bei festem
Wellenvektor der Energieübertrag gemessen.

4.4 Phononen und spezifische
Wärme

Der bisherige Teil des Kapitels behandelt die Di-
spersion, also die Beziehung zwischen Frequenz und
Wellenlänge der Gitterschwingungen. Das aktuel-
le Unterkapitel befasst sich mit der Amplitude der
Schwingung, sowie der Energie (Wärme), welche in
den Schwingungen gespeichert ist.

4.4.1 Spezifische Wärme

Die Wärmekapazität C eines Körpers ist definiert als
die Wärmemenge, welche notwendig ist, um seine
Temperatur um ein Grad zu erhöhen,

C =
dQ
dT

,

mit Q als Wärme. Bezogen auf die Masse m des Kör-
pers definiert man die spezifische Wärmekapazität

c =
C
m

=
dQ

mdT
.

Im Allgemeinen muss dabei spezifiziert werden, ob
der Druck oder die Temperatur konstant gehalten
wird, also ob es sich um Cp oder Cv handelt. Der
Unterschied ist für Festkörper jedoch sehr gering.
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Abbildung 4.44: Spezifische Wärme für unter-
schiedliche Stoffe.

Nach dem Gleichverteilungssatz der Thermodyna-
mik ist diese Energie gleichmäßig in allen Freiheits-
graden des Körpers verteilt. Es gilt für jeden Frei-
heitsgrad im thermischen Gleichgewicht

hEnergiei =
1
2

kBT.

Für kinetische Energie gilt damit

hmv2

2
i =

3
2

kBT.

Der Faktor 3 berücksichtigt, dass die Bewegung in
den 3 Raumrichtungen unabhängig ist und diese des-
halb einzeln zum Energieinhalt beitragen.

Bei einem harmonischen Oszillator sind die mittlere
kinetische und potentielle Energie gleich. Insgesamt
entspricht dies zwei Freiheitsgraden mit der jeweils
mittleren Energie von kBT/2 pro Raumrichtung. Für
die innere Energie U folgt daher:

U =
6
2

NkBT

und für die Wärmekapazität

CV =
∂U
∂T

= 3NkB = 3ñR

mit ñ der Anzahl Mol. Die spezifische Wärmekapa-
zität pro Mol wird damit

cV,m = 3R ⇡ 24,9
J

Mol ·K
.

Dies wird als Gesetz von Dulong-Petit4 bezeichnet.
4Pierre Louis Dulong (1785 – 1838) und Alexis Thérèse Petit

(1791 - 1820).
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Abbildung 4.45: Molare spezifische Wärme für Ele-
mente.

Wie Abb. 4.45 zeigt, ist dies eine brauchbare Nä-
herung für viele Elemente bei hohen Temperaturen.
Bei tiefen Temperaturen findet man jedoch erhebli-
che Abweichungen: in vielen Fällen sinkt die Wär-
mekapazität gegen Null. Um diesen Befund zu er-
klären, benötigt man eine quantenmechanische Be-
schreibung der Gitterschwingungen.

4.4.2 Phononen

Die Anregungen der Gitterschwingungen, also ihre
Amplituden, werden durch die Quantenstatistik be-
stimmt. Wir betrachten die gleichen Normalschwin-
gungen wie bisher, benutzen aber die Quantenme-
chanik, um ihre Anregungen zu berechnen.

Wie beim harmonischen Oszillator können die Git-
terschwingungen in diskrete Zustände angeregt wer-
den. Die Energie der entsprechenden Zustände be-
trägt

E =

✓
n+

1
2

◆
h̄w.

Die ganze Zahl n = 0,1, . . . indiziert die Anregung
dieser Mode. Man verwendet in diesem Zusammen-
hang gerne ein Teilchenbild, in dem ein Anregungs-
quant als Phonon bezeichnet wird. n bezeichnet dann
die Zahl der Phononen in der entsprechenden Mode.
Der Term 1/2 zeigt an, dass immer eine Nullpunkts-
energie existiert, d.h. die Energie im Grundzustand
ist höher als die reine potenzielle Energie. Neben der
Energie h̄w besitzen die Phononen einen Impuls h̄k,
und einen Spin S = 1, d.h. es handelt sich um Boso-
nen.

Zu jeder Eigenschwingung mit Wellenvektor~k und
Kreisfrequenz w gehört somit eine temperaturab-
hängige Zahl von Phononen. Gemäß der Beziehung
von de Broglie kann man den Phononen einen Im-
puls ~p = h̄~k zuordnen. Es ist aber wichtig zu rea-
lisieren, dass es sich hierbei nicht um einen physi-
kalischen Impuls der Gitteratome handelt. Ein Pho-
non besitzt keinen physikalischen Impuls, da Git-
terschwingungen nur Relativbewegungen darstellen.
Ein über p = èk definierter Impuls ist auch nicht ein-
deutig, denn~k0 =~k + ~G ist zu~k äquivalent.

Auslenkung
atomarer Impuls

Abbildung 4.46: Auslenkung und Impuls der Gitter-
atome.

Wie man sich leicht überzeugen kann, ist der physi-
kalische Impuls, d.h. die Summe über die Impulse al-
ler schwingenden Atome, für alle Anregungen gleich
null, außer wenn k = 0. Es ist aber trotzdem nütz-
lich, diese Größe als Impuls zu betrachten und man
bezeichnet sie häufig als Kristallimpuls. Auf diese
Weise kann man z.B. inelastische Streuung von Pho-
tonen erklären, bei denen die Impulserhaltung gilt,
sofern man den Kristallimpuls des gestreuten Phon-
ons berücksichtigt.

4.4.3 Energie pro Gitterschwingung

Der Energieinhalt eines Kristalls setzt sich aus unter-
schiedlichen Beiträgen zusammen. Einer dieser Bei-
träge ist die Energie der Gitterschwingungen. Diese
berechnen wir als Summe über alle Schwingungs-
freiheitsgrade. Alle Gitterschwingungen bei unter-
schiedlichen Wellenvektoren sind unabhängig von-
einander. Zunächst bestimmen wir deshalb den Ener-
gieinhalt einer einzelnen Gitterschwingung bei der
Temperatur T .

Die Energie einer Gitterschwingung ist quantisiert:

E (k) = (n+
1
2
)h̄w(k).
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Die Energie kann auch über die Auslenkung ausge-
drückt werden:

E (k) =
1
4

mw

2u2
0.

Dieser Ausdruck kann auch nach der Amplitude auf-
gelöst werden:

u2
0 =

4h̄
mw

(n+
1
2
).

Die Phononen ("Schallteilchen") im Kristall kön-
nen, ähnlich wie die Photonen bei der Schwarzkör-
perstrahlung, thermisch angeregt werden. Zu jeder
Eigenschwingung mit vorgegebenem Wellenvektor
und Frequenz gehört somit eine temperaturabhängi-
ge Zahl von Phononen. Phononen sind Bosonen, die
der Bose-Einstein-Statistik unterliegen.

0
0

k π/a

ω

Abbildung 4.47: Zwei unabhängige Phononenfrei-
heitsgrade.

Analog zur Herleitung des Planck’schen Strah-
lungsgesetzes geht man aus von der Boltzmann-
Verteilung, welche das Verhältnis der Besetzungs-
zahlen zweier benachbarter Zustände beschreibt:

Nn+1

Nn
= e�h̄w/kBT .

Die Besetzungswahrscheinlichkeit für den Zustand
mit n Phononen ist damit

pn =
Nn

Âs Ns
=

e�nh̄w/kBT

Âs e�sh̄w/kBT .

Für Besetzungswahrscheinlichkeiten gilt 0  pn  1
und Âs ps = 1. Daraus bestimmen wir den Erwar-
tungswert für n, also die mittlere Anregung:

hni = Â
s

s ps =
Âs sNs

Âs Ns
=

Âs se�sh̄w/kBT

Âs e�sh̄w/kBT .

Wir benutzen die Abkürzung x = e�h̄w/kBT , sodass

hni =
Âs sxs

Âs xs .

Der Nenner entspricht einer geometrischen Reihe:

Â
s

xs =
1

1� x
.

Der Zähler kann durch Ableitung in einen entspre-
chenden Ausdruck umgeformt werden:

Â
s

sxs = x
d
dx Â

s
xs = x

d
dx

✓
1

1� x

◆
=

x
(1� x)2 .

Damit ist die mittlere Anregung

hni =
Âs sxs

Âs xs =

x
(1�x)2

1
1�x

=
x

1� x

=
e�h̄w/kBT

1� e�h̄w/kBT =
1

eh̄w/kBT �1
.

1

hni =
x

1 � x

=
1

e��/kBT � 1

hni
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Abbildung 4.48: Erwartungswert der Phononenzahl
bei tiefer Temperatur.

Dies ist die Planck-Verteilung. Die mittlere Ener-
gie einer Gitterschwingung (oberhalb der Nullpunkt-
senergie) beträgt damit

hE i =
h̄w

eh̄w/kBT �1
.
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Für hohe Temperaturen, T � h̄w/kB können wir die
Exponentialfunktion entwickeln und erhalten

hni =
kBT
h̄w

,

d.h. die mittlere Phononenzahl ist - bei hohen Tem-
peraturen - proportional zur Temperatur. Dies ent-
spricht dem klassischen Resultat.

Für die mittlere Energie erhalten wir entsprechend

hE i = kBT,

in Übereinstimmung mit dem semiklassischen Äqui-
partitionsprinzip.

4.4.4 Zustandsdichte

Um die gesamte in Kristallschwingungen gespei-
cherte Energie zu berechnen, müssen wir über sämt-
liche Schwingungsfreiheitsgrade summieren. Wie
bereits erwähnt, gehören zu jedem Wellenvektor
3 Polarisationsfreiheitsgrade. Insgesamt müssen im
Kristall pro Atom 3 Schwingungsmoden existieren.

m = 3   

m = 2 

m = 1 
  

m = 0 
a

Abbildung 4.49: Schwingungsmoden in einer linea-
ren Kette.

Wir betrachten hier den kontinuierlichen Grenzfall,
in dem die Summe über alle Freiheitsgrade zu einem
Integral über eine kontinuierliche Verteilung wird.
Im Frequenzraum berechnet man die Energie als In-
tegral über alle Moden:

U =
Z

dw D
l

(w)
h̄w

eh̄w/kBT �1
.

Hier bezeichnet D
l

(w) die Zustandsdichte, also die
Anzahl Zustände deren Frequenz zwischen w und
w + dw liegt. Für die Berechnung dieser Größe
betrachten wir zunächst die Zustandsdichte im k-
Raum.

Die Anzahl der Schwingungsmoden ist abhängig
von den Randbedingungen. Abb. 4.49 zeigt den Fall
der festen Randbedingungen. Hier ist die Zahl der
unterscheidbaren Moden N �1, wenn man die fixen
Atome an den Enden der Kette mitrechnet.

Abbildung 4.50: Lineare Kette mit periodischen
Randbedingungen.

Meist verwendet man aber periodische Randbedin-
gungen, d.h. man verlangt, dass die Schwingungen
im direkten Raum periodisch sind, us = us+N , mit
einer Periode L = Na, wobei N � 1. Diese Periode
entspricht z.B. der Größe des Kristalls. Man ‘biegt’
also den Kristall in einer höheren Dimension zu ei-
nem Ring, wie in Abb. 4.50 gezeigt. Dies ist ein
nützliches Hilfsmittel, welches die mathematische
Behandlung vereinfacht, auch wenn es nicht der phy-
sikalischen Wirklichkeit entspricht.

Pro Intervall Dk = 2p/L existiert ein erlaubter k-
Wert; bis zu einem maximalen Wert k sind es somit

Z =
k

2p/L
=

L
2p

k.

Die Zustandsdichte im Frequenzraum ist somit

D(w) = 2
dZ
dw

= 2
dZ
dk

����
dk
dw

���� =
L
p

����
dk
dw

���� .

Der Faktor 2 und das Betragszeichen berücksichti-
gen, dass negative und positive k-Werte die gleichen
Schwingungsfrequenzen aufweisen.
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N= kmax4�
3

3

2�
L( )3

# Zustände
mit k < kmax

kmax

L Kristall
periodische RandbedingungenL >> a

2�/L

Abbildung 4.51: Zustände im k-Raum.

Im 3D reziproken Raum treten Wellenvektoren mit
den Komponenten

kx,y,z = ±
2nx,y,zp

L
mit nx,y,z = 0,1, ....N auf. Der Abstand zwischen 2
Werten beträgt somit wiederum Dk = 2p/L. Die Zu-
standsdichte (pro Polarisation) im k-Raum wird da-
mit

D(k) =
1

(2p/L)3 =
V

8p

3

mit V = L3 dem Volumen des betrachteten Kristalls.
Die Dichte (im k-Raum) ist somit konstant und pro-
portional zum Volumen des Kristalls.

Die gesamte Zahl von Zuständen, deren Wellenvek-
tor kleiner ist als kmax, ergibt sich damit aus der kon-
stanten Dichte, multipliziert mit dem Volumen einer
Kugel mit Radius kmax zu

N(kmax) = D(k)
4p

3
k3

max =

✓
L

2p

◆3 4p

3
k3

max

= k3
max

V
6p

2 .

Die Zustandsdichte im Frequenzraum ist gegeben
durch die Ableitung nach w:

D(w) =
dN(w)

dw

=
dN(k)

dk
dk
dw

= V
k2

2p

2
dk
dw

, (4.5)

wobei der Index .max weggelassen wurde. Die Zu-
standsdichte und damit der Energieinhalt und die
spezifische Wärme können damit berechnet werden,
wenn die Dispersionsrelation w(k) bekannt ist.

4.4.5 Debye-Modell

Die Dispersionsrelationen können experimentell be-
stimmt werden, oder sie können berechnet werden.
Ein besonders einfaches und erfolgreiches Modell
für die Zustandsdichte ist dasjenige von Debye5. Es
beruht auf der Annahme einer konstanten Schallge-
schwindigkeit vs, was für die Dispersionsrelation

w = vsk oder k =
w

vs

und damit
dk
dw

=
1
vs

ergibt.

0 π/2a π/ak

ω

De
bye

0

Abbildung 4.52: Vereinfachte Dispersion im Debye-
Modell.

Wie in Abb. 4.52 gezeigt, ist dies eine gute Näherung
für akustische Phononen und kleine Wellenvektoren,
wo die Schallgeschwindigkeit konstant ist. Abwei-
chungen sind zu erwarten, wenn kurze Wellenlängen
und optische Phononen relevant sind.

Mit dieser Näherung wird die Zustandsdichte

D(w) = V
k2

2p

2
dk
dw

= V
w

2

2p

2v3
s
, (4.6)

Die Zustandsdichte wächst somit quadratisch mit der
Frequenz. Im Debye-Modell wird außerdem ange-
nommen, dass vs und damit die Zustandsdichte im
k-Raum isotrop sei.

Wie bereits bei der klassischen Behandlung der Git-
terschwingungen diskutiert, gibt es aber einen ma-
ximalen Wert für den Wellenvektor, der physika-
lisch sinnvoll ist, und der dem Rand der ersten Bril-
louinzone entspricht. An diesem Punkt sinkt die Zu-
standsdichte auf 0. Die Form der Brillouinzone wird

5Peter Debye (1884 – 1966) Nobelpreis 1936
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im Debye Modell durch eine Kugel ersetzt, wobei
der Radius kD der Kugel so gewählt wird, dass die
Zahl der Moden innerhalb dieser Kugel der Zahl
der Moden im Kristall entspricht, d.h. (ohne Berück-
sichtigung der Polarisation) gleich der Anzahl N der
Atome im Kristall:

N =

✓
L

2p

◆3 4p

3
k3

D =
(LkD)3

6p

2

sodass

kD =
3
p

6p

2N
L

=
3

r
6p

2N
V

,

wobei V = L3 das Kristallvolumen darstellt. Die zu-
gehörige Grenzfrequenz beträgt

wD = vs
3

r
6p

2N
V

.

Diese ist somit (sinnvollerweise) nur von der Dichte
N/V (Zahl der Atome pro Volumen) abhängig, und
nicht von der Anzahl Zellen oder dem Kristallvolu-
men.

ω

Debye

ωD

D(ω)

Abbildung 4.53: Zustandsdichte im Debye-Modell.

Im Debye-Modell ist die Zustandsdichte also

D(w) =

(
V w

2

2p

2v3
s

für w < wD

0 für w > wD
.

Die gesamte Energie der Gitterschwingungen erhal-
ten wir durch Integration über sämtliche Frequenzen
als

U =
Z

dw D(w)hE (w)i

=
Z

dw D(w)hn(w)ih̄w

=
Z

wD

0
dw V

w

2

2p

2v3
s

h̄w

eh̄w/kBT �1
. (4.7)

Im Rahmen des Debye-Modells nehmen wir außer-
dem an, dass die Schallgeschwindigkeit vs nicht von
der Polarisation abhängt. Dann können wir die ge-
samte Energie erhalten, indem wir den Ausdruck
(4.7) mit der Anzahl 3 der Polarisationsfreiheitsgra-
de multiplizieren.

U =
3V h̄

2p

2v3
s

Z
wD

0
dw

w

3

eh̄w/kBT �1
.

Die Integration wird übersichtlicher, wenn man das
Verhältnis aus Phononen-Energie h̄w zu thermischer
Energie kBT substituiert als

x =
h̄w

kBT
oder w = x

kBT
h̄

und

dw = dx
kBT

h̄
.

Damit wird das Integral

Z
wD

0
dw

w

3

eh̄w/kBT �1
=

✓
kBT

h̄

◆4 Z xD

0
dx

x3

ex �1

und die Energie

U =
3V k4

BT 4

2p

2v3
s h̄3

Z xD

0
dx

x3

ex �1
. (4.8)

4.4.6 Debye-Temperatur

Die obere Integrationsgrenze

xD =
h̄wD

kBT
=

q

T

bezeichnet das Verhältnis aus der Debye-Energie
h̄wD und der thermischen Energie. Hier bezeichnet
q die Debye-Temperatur

q =
h̄wD

kB
=

h̄vs

kB

3

r
6p

2N
V

, (4.9)

d.h. das Temperaturäquivalent der Debye-Frequenz.
Unterhalb dieser Temperatur machen sich bei der
spezifischen Wärme Quanteneffekte bemerkbar. Für
Temperaturen oberhalb der Debye-Temperatur sind
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Tabelle 4.2: Debye-Temperatur der Elemente.

alle Moden angeregt, da ja oberhalb der Debye-
Frequenz keine Moden existieren.

Gemäß Gleichung (4.9) ist die Debye-Temperatur
proportional zur Schallgeschwindigkeit des Mate-
rials und somit höher für harte Materialien. Wie
in Tabelle 4.2 gezeigt, haben Metalle Debye-
Temperaturen, die nahe bei der Raumtemperatur lie-
gen. Das Maximum wird erreicht beim Diamant,
während die Edelgase, welche Van der Waals Kri-
stalle bilden und damit relativ weich sind, eine re-
lativ niedrige Debye-Temperatur haben. Das gleiche
gilt für die Alkalimetalle, welche sehr weich sind.

Mit dieser Definition wird

xD =
q

T
=

h̄vs

kBT
3

r
6p

2N
V

oder
✓

q

T

◆3

=

✓
h̄vs

kBT

◆3 6p

2N
V

.

Einsetzen dieses Ausdrucks in (4.8) ergibt die ge-
speicherte Energie

U = 9kBT N
✓

T
q

◆3 Z xD

0
dx

x3

ex �1
, (4.10)

wobei x = h̄w/kBT .

4.4.7 Spezifische Wärme im Debye-Modell

Praktisch misst man nie den gesamten Energiein-
halt, sondern die Änderung der Temperatur pro zu-
geführte Energieeinheit, resp. die spezifische Wär-
me, d.h. die Änderung der Energie pro Temperatur-
einheit. Der Ausgangspunkt ist der Ausdruck (4.8)
für die thermische Energie,

U =
3V h̄

2p

2v3
s

Z
wD

0
dw

w

3

eh̄w/kBT �1
.
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Damit wird

CV =
dU
dT

=
d

dT
3V h̄

2p

2v3
s

Z
wD

0
dw

w

3

eh̄w/kBT �1

=
3V h̄2

2p

2v3
s kBT 2

Z
wD

0
dw

w

4 eh̄w/kBT

�
eh̄w/kBT �1

�2 .

Mit Hilfe von

w = x
kBT

h̄
dw = dx

kBT
h̄

und (4.9), resp.

q

3 =

✓
h̄vs

kB

◆3 6p

2N
V

erhält man

CV =
3V h̄2

2p

2v3
s kBT 2

✓
kBT

h̄

◆5 Z xD

0
dx

x4 ex

(ex �1)2

=
3V kB

2p

2

✓
kB

vsh̄

◆3

T 3
Z xD

0
dx

x4 ex

(ex �1)2

= 9kBN
✓

T
q

◆3 Z xD

0
dx

x4 ex

(ex �1)2 .

Für hohe Temperaturen (d.h. kleines x) kann die Ex-
ponentialfunktion genähert werden als ex ⇡ 1 + x
(im Nenner), respektive 1 im Zähler. Damit wird die
Wärmekapaziät

CV ⇡ 9kBN
✓

T
q

◆3 Z xD

0
dxx2

= 3kBN
✓

T
q

◆3

x3
D = 3kBN.

Bezogen auf ein Mol, d.h. N ! NL erhält man

cV = 3R ⇡ 25
J

MolK
.

Dies entspricht auch dem Resultat der klassischen
Mechanik, unabhängig vom Material.

Tatsächlich findet man experimentell für viele Ma-
terialien einen Wert in dieser Größenordnung, so-
fern die Temperatur genügend hoch ist. Abb. 4.54
zeigt den Verlauf für Germanium und Silizium. Ab
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Abbildung 4.54: Temperaturabhängigkeit der spezi-
fischen Wärme im Debye-Modell
und im Experiment.

etwa 300 K sind alle Gitterschwingungen vollstän-
dig angeregt und die Quantisierung spielt keine Rol-
le mehr.

Für tiefere Temperaturen T < q hingegen fällt die
spezifische Wärme stark ab und geht gegen Null, wie
in Abb. 4.54 gezeigt. Dies ist ein Effekt der Quanten-
mechanik, der durch das Debye-Modell gut reprodu-
ziert wird.

Abbildung 4.55: Temperaturabhängigkeit der spezi-
fischen Wärme für verschiedene
Materialien.

Viele Materialien zeigen eine Temperaturabhängig-
keit der spezifischen Wärme, welche recht gut mit
dem Debye-Modell übereinstimmt. Abb. 4.55 fasst
eine große Zahl von Messdaten zusammen. Die Kur-
ven I wurden hier der Übersichtlichkeit halber in
horizontaler Richtung, die Kurven III in vertikaler
Richtung verschoben. Wie Abb. 4.55 zeigt, nähert
sich die Molwärme für hohe Temperaturen dem klas-
sischen Wert an. Für niedrige Temperaturen erhält
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man aber wesentlich tiefere Werte, welche für T ! 0
gegen Null gehen.

4.4.8 Das T3 Gesetz

Für kleine Temperaturen, T ⌧ q oder x � 1 kann der
Ausdruck (4.10) für die Energie U weiter vereinfacht
werden, indem man die obere Grenze xD = q/T des
Integrals gegen unendlich gehen lässt: für x � 1
wird der Integrand wegen der Exponentialfunktion
sehr klein und der Fehler, der durch die erweiterte
Integrationsgrenze entsteht, vernachlässigbar. Damit
wird aus (4.10)

U = 9kBT N
✓

T
q

◆3 Z •

0
dx

x3

ex �1
.

Für die Integration hilft die Summenformel für die
geometrische Reihe

Â
s

1
as =

1
a�1

mit a = ex. Damit wird

Z •

0
dx

x3

ex �1
=

Z •

0
dxx3 Â

s
e�sx

= Â
s

Z •

0
dxx3e�sx.

Für das Integral findet man in einer Tabelle

Z •

0
dxxmeax = eax

m

Â
r=0

(�1)rm!xm�r

(m� r)!ar+1 .

Für m = 3,a = �s erhalten wir

Z •

0
dxx3e�sx = e�sx

3

Â
r=0

(�1)r6x3�r

(3� r)!(�s)r+1 .

An der oberen Grenze des Integrals (x ! •) ver-
schwindet die Exponentialfunktion. An der unteren
Grenze (x = 0) verschwinden alle Terme in der Sum-
me, außer r = 3. Damit wird

Z •

0
dxx3e�sx =

6
s4

und
Z •

0
dx

x3

ex �1
= 6Â

s

1
s4 =

p

4

15
,

wobei für die Summe wiederum auf eine For-
melsammlung verwiesen werden muss.

Damit wird die Energie

U =
3p

4

5
kBT N

✓
T
q

◆3

und die Wärmekapazität

cV =
dU
dT

=
12p

4

5
kBN

✓
T
q

◆3

= 234kBN
✓

T
q

◆3

.

Diese Form ist als Debye’sches T 3 Gesetz oder De-
bye’sche T 3 Näherung bekannt. Es kann qualita-
tiv leicht interpretiert werden: bei einer Temperatur
T sind diejenigen Moden aktiviert, deren Schwin-
gungsfrequenz kleiner sind als kBT/h̄ (! 4.4.9).

Festes Argon

Abbildung 4.56: Wärmekapazität von festem Argon
bei tiefer Temperatur.

Ein schönes Beispiel für dieses T 3 Verhalten wird
von Argon geliefert, wie in Abb. 4.56 gezeigt. Die
gute Übereinstimmung mag zunächst erstaunen, ist
das Modell doch relativ einfach. So widerspricht z.B.
die Annahme einer konstanten Schallgeschwindig-
keit der Tatsache, dass die Schallgeschwindigkeit an
der Oberfläche der Brillouin-Zone gegen Null geht.
Die Moden in diesem Bereich sind aber gerade die
mit den höchsten Energien und deshalb bei tiefen
Temperaturen praktisch nicht mehr angeregt. Der
Temperaturbereich, der hier gezeigt wird, liegt um
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mehr als eine Größenordnung unterhalb der Debye-
Temperatur von Argon (qAr = 92K). Das Debye’sche
T 3-Gesetz ist oft gut für T < QD/50 anwendbar,
denn bei tiefen Temperaturen werden nur langwel-
lige akustische Phononen angeregt.

4.4.9 Vereinfachtes Modell

Man kann das T 3 Gesetz auch mit Hilfe eines noch
einfacheren Modells herleiten. Dazu nimmt man an,
dass alle Moden, deren Phononenenergie klein ist
gegenüber der thermischen Energie, h̄w < kBT voll-
ständig angeregt sind, alle Moden mit höherer Ener-
gie gar nicht. Für eine Dispersionsrelation w = vsk
bedeutet dies für die Wellenvektoren: Alle Moden
mit Wellenvektor

k < kT =
kBT
h̄vs

sind vollständig angeregt, alle kurzwelligeren (d.h.
höherfrequenten) Moden gar nicht. Die maximale
Wellenzahl ist proportional zur Frequenz und damit
zur Temperatur.

Wie wir bereits diskutiert hatten, ist die Zahl der Mo-
den, deren Wellenzahl kleiner ist als ein Maximal-
wert kT gegeben durch die Zahl der Punkte im In-
nern der entsprechenden Kugel im reziproken Raum
und damit zur dritten Potenz von kT . Bei Temperatu-
ren weit oberhalb der Debye-Temperatur q sind alle
Moden vollständig angeregt; die Zahl der angeregten
Moden beträgt dann 3N und die Energie entspricht
dem klassischen Grenzwert 3NkBT . Bei Temperatu-
ren unterhalb der Debye-Temperatur sollte die Zahl
der angeregten Moden mit (T/q)3 abnehmen. Damit
beträgt die Energie in diesem Modell

U = 3NkBT
✓

T
q

◆3

.

Die spezifische Wärme wird damit

cV =
dU
dT

= 12NkB

✓
T
q

◆3

.

Die T 3-Abhängigkeit spiegelt also einfach wieder,
dass die Anzahl der Moden in einer Kugel des k-
Raumes proportional zur dritten Potenz des Radius
dieser Kugel ist.

4.4.10 Das Einstein-Modell

Im Debye-Modell hatten wir angenommen, dass die
Zustandsdichte im k-Raum konstant sei. Einstein6

hat ein noch einfacheres Modell aufgestellt, wo al-
le Phononen die gleiche Energie haben.

Debye

D(tt)

tt

ttD

Ei
ns
te
in

Abbildung 4.57: Vergleich der Zustandsdichten in
den Modellen von Einstein und De-
bye.

Hier ist die Zustandsdichte also eine d-Funktion. Die
Energie wird dann

U = 3Nhnih̄w =
3Nh̄w

eh̄w/kBT �1
.

Damit wird die Wärmekapazität

cV =
dU
dT

= 3NkB

✓
h̄w

kBT

◆2 eh̄w/kBT

�
eh̄w/kBT �1

�2 . (4.11)

Auch hier kann man eine reduzierte Temperatur
Qe = h̄w/kB einführen und erhält

cV = 3R
✓

Qe

T

◆2 eQe/T

�
eQe/T �1

�2 . (4.12)

Wir betrachten zunächst den Grenzfall kBT � h̄w ,
d.h. T � Qe. Dann kann die Exponentialfunktion
entwickelt werden und wir erhalten

cV = 3NkB =
3R

Mol
,

d.h. das klassische Dulong-Petit’sche Gesetz. Bei
hohen Temperaturen ergibt die Einstein’sche Nä-
herung also das gleiche Resultat wie die Debye-
Näherung.

6Albert Einstein (1879 - 1955) Nobelpreis 1921
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Bei tiefen Temperaturen, kBT ⌧ h̄w , kann die 1 in
(4.11) gegenüber der Exponentialfunktion vernach-
lässigt werden. Wir erhalten

cV µ 1
T 2 e�h̄w/kBT ,

also einen exponentiellen Abfall.
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Abbildung 4.58: Temperaturabhängigkeit der spezi-
fischen Wärme in den Modellen
von Einstein und Debye.

Bei tiefen Temperaturen passen die experimentellen
Resultate besser auf die Theorie von Debye, da die
Zustandsdichte der Phononen niedriger Energie bes-
ser durch die Debye-Theorie beschrieben wird.

Reduzierte Temperatur T/ΘeW
är

em
ek

ap
az

itä
t C

p 
[c

al
/(m

ol
 K

)]

Einstein-Modell
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Abbildung 4.59: Vergleich der Zustandsdichten in
den Modellen von Einstein und De-
bye.

Das Einstein Modell ist besser geeignet für die Be-
schreibung optischer Phononen, wo die Zustands-
dichte stärker auf eine Frequenz konzentriert ist.
Abb. 4.59 vergleicht als Beispiel die Vorhersage des
Einstein-Modells mit den Daten für Diamant.

4.4.11 Reale Zustandsdichten

Die einfachen Modelle, die wir bisher diskutiert ha-
ben, können die Realität nicht exakt wiedergeben.
Die wirklichen Zustandsdichten enthalten z.B. im-
mer Singularitäten: wenn die Gruppengeschwindig-
keit gegen null geht, vg = dw/dk ! 0, wie z.B. mei-
stens am Rand der Brillouin-Zone, dann geht nach
Gleichung (4.5) die Zustandsdichte gegen unend-
lich:

D(w) = V
k2

2p

2
dk
dw

= V
k2

2p

2
1
vg

! •.

Abbildung 4.60: Reale Zustandsdichte.

Beim Modell der linearen Kette, z.B., ist die Disper-
sionsrelation

w = 2

r
C
M

����sin
ka
2

���� .

Die Zustandsdichte wird dann (in 1D)

D(w) µ dk
dw

=
1

dw/dk
=

r
M
C

1
acos ka

2
.

Offenbar erhält man eine Divergenz z.B. an der
Zonengrenze, wo k ! p/a, d.h. wo die Gruppen-
geschwindigkeit verschwindet. Diese Divergenzen
werden als Van Howe7 Singularitäten bezeichnet.

In drei Dimensionen erhält man die Zustandsdichte
wiederum am einfachsten im k-Raum. Da hier die
Zustandsdichte konstant ist, benötigt man lediglich
das Volumen zwischen den beiden Flächen mit Fre-
quenz w und w +dw . Es ist für jeden Zweig der Dis-
persionsrelation einzeln auszurechnen.

7Léon Charles Van Hove (1924 - 1990)
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Abbildung 4.61: Abstand zwischen Iso-Frequenz-
flächen.

Der Abstand im k-Raum zwischen den beiden Iso-
frequenzflächen bei w und w +dw beträgt

dk
dw

=
1

vG
.

Damit wird die Zustandsdichte

D(w) =
V

8p

3

Z
dS

w

1
vG

,

wobei dS
w

das Flächenelement darstellt und vG die
Gruppengeschwindigkeit für die entsprechende Fre-
quenz.

Flächenelement

Abbildung 4.62: Isofrequenzfläche in 3D.

Das Integral läuft über die gesamte Isofrequenzflä-
che (! Abb. 4.62). Die Gruppengeschwindigkeit
kann an den Rändern der BZ =0 werden. Dann wird
der Integrand singulär (van Hove-Singularität). Die-
ses Ergebnis wird auch bei den elektronischen Bän-
dern gebraucht.

Auch in drei Dimensionen hat die Zustandsdichte of-
fenbar immer dann Singularitäten, wenn die Grup-
pengeschwindigkeit gegen Null geht, wie z.B. im
obigen Modell an der Grenze der Brillouin-Zone.
Solche Fälle treten in realen Systemen recht häufig
auf.

4.4.12 Beispiele und Diskussion

Si

Ge

Abbildung 4.63: Dispersion und Zustandsdichte für
Si und Ge.

Abb. 4.63 zeigt als Beispiel die Dispersionsrelatio-
nen für Si und Ge. Die Projektion der Linien auf
die vertikale Achse ergibt die Zustandsdichte. Offen-
sichtlich tritt bei den optischen Phononen eine sehr
hohe Zustandsdichte auf. Die beiden Zustandsdich-
ten sehen sehr ähnlich aus, da die beiden Materiali-
en die gleiche Struktur besitzen. Ge hat die größe-
re Atommasse und deshalb die niedrigeren Schwin-
gungsfrequenzen.

Ag NaCl Diamant

Frequenz ν [Hz]Frequenz ω [s-1]

D(ω) D(ν) = 2π D(ω)

ωD νD

D(ν) = 2π D(ω)

Frequenz ν [Hz]

νD

Abbildung 4.64: Zustandsdichten für Silber, Koch-
salz und Diamant.

Abb. 4.64 zeigt drei weitere Beispiele von Zustands-
dichten typischer Festkörper. Diamant besitzt offen-
bar eine sehr hohe Zustandsdichte bei den höch-
sten Frequenzen. Einstein hatte sein Modell anhand
dieses Systems untersucht; hier ist die Übereinstim-
mung mit am Besten.

Der Grund für den guten Erfolg des Debye Modells
bei tiefen Temperaturen trotz dieser großen Differen-
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zen in der Zustandsdichte liegt darin, dass die Moden
im Bereich der Divergenzen bei tiefen Temperaturen
kaum mehr angeregt werden.

30D(t)<n>
T/e=0.3

300D(t)<n>
T/e=0.1

0.2 0.4 0.6 0.8 10 tt

3D(t)

# Phononen pro Frequenzeinheit

D(t)<n>
T/e=3

Abbildung 4.65: Anregungsdichte bei unterschiedli-
chen Temperaturen.

Die abnehmende Bedeutung der Phononen hoher
Frequenz sieht man z.B., wenn man die Anzahl Pho-
nonen pro Frequenzintervall betrachtet. Diese erhält
man als Produkt aus Zustandsdichte D(w) und Be-
setzungszahl hni. Abb. 4.65 zeigt diese Größen für
das Debye-Modell. Es zeigt, dass mit abnehmen-
der Temperatur die maximale Zahl der Phononen
pro Frequenzintervall bei immer tieferen Frequenzen
auftritt.

4.5 Anharmonische Effekte

4.5.1 Potenzial

Bisher haben wir im Potenzial der Atompositionen
nur den quadratischen Term berücksichtigt. Dies hat
eine Reihe von Konsequenzen für die Resultate:

• Wir erhalten harmonische Wellen, die Eigen-
funktionen des Hamiltonoperators sind. Es gibt
keine Wechselwirkungen zwischen den Moden.

• Das Volumen des Kristalls ist nicht temperatur-
abhängig, d.h. der Wärmeausdehnungskoeffizi-
ent verschwindet.

• Die elastischen Konstanten sind nicht abhängig
von Druck und Temperatur und sind identisch
für adiabatische oder isotherme Bedingungen.

• Die spezifische Wärme nähert sich für hohe
Temperaturen dem klassischen Wert an.

Abbildung 4.66: Anharmonisches Potenzial.

Echte Potenziale sind aber nie über den ganzen Be-
reich harmonisch. Abb. 4.66 zeigt ein typisches Po-
tenzial. In der Nähe des Minimums kann es als
Taylor-Reihe entwickelt werden:

U(x) = U0 +
1
2

u2x2 � 1
6

u3x3 + . . .

Während die harmonische Näherung in der Nähe des
Gleichgewichts, d.h. für kleine Auslenkungen x, eine
gute Näherung darstellt, findet man für höhere An-
regungen immer eine Abweichung. Typischerweise
wird das Potenzial dann für kleinere Abstände stei-
ler, für größere flacher. Somit verschiebt sich die
mittlere Aufenthaltswahrscheinlichkeit nach außen.

Die oben erwähnten Punkte werden alle ungültig:

• Anharmonische Terme koppeln die Phononen.
So können z.B. 2 Phononen addiert werden zu
einem höher-energetischen Phonon, w3 = w2 +
w1.

• Körper dehnen sich mit zunehmender Tempe-
ratur aus (Wärmeausdehnung).

• Die elastischen Konstanten werden abhängig
von Druck und Temperatur.

4.5.2 Wärmeausdehnung

Tatsächlich zeigen die meisten Festkörper eine Wär-
meausdehnung, d.h. das Volumen nimmt mit der
Temperatur zu.
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Abbildung 4.67: Wärmeausdehnung von festem Ar-
gon.

Die Wärmeausdehnung ist proportional zum Term
dritter Ordnung des Potenzials, dem niedrigsten
Term, welcher die Symmetrie des Potenzials stört:
er sorgt dafür, dass bei höher angeregten Zuständen
der Schwerpunkt bei größeren Distanzen liegt. Abb.
4.67 zeigt als Beispiel die Wärmeausdehnung von
festem Argon. Der Effekt soll hier nicht quantitativ
diskutiert werden; es sollen aber einige Aspekte der
Symmetrie diskutiert werden.

Das Potenzial und damit der Wärmeausdehnungs-
koeffizient ist in Kristallen im allgemeinen aniso-
trop. Eine Kugel wird durch eine Temperaturerhö-
hung deshalb in ein Ellipsoid verformt.

(x, y, z)

Volumenelement

(dx, dy, dz)

Wärmeausdehnung

Abbildung 4.68: Wärmeausdehnung.

Ein Punkt (x,y,z) geht durch die Erwärmung in den
Punkt (x + dx,y + dy,z + dz) über, wobei die Ver-

schiebung (dx,dy,dz) gegeben ist durch

d
dT

0

@
dx
dy
dz

1

A =

0

@
b11 b12 b13
b12 b22 b23
b13 b23 b33

1

A ·

0

@
x
y
z

1

A

und der symmetrische (b12 = b21) Tensor (b ) den
linearen Wärmeausdehnungskoeffizienten darstellt.
Wie üblich lässt sich dieser Tensor in einem Koordi-
natensystem schreiben, in dem er diagonal wird. Die
entsprechenden Richtungen sind gegeben durch die
Symmetrie des Kristalls und die Diagonalelemente
heißen Hauptausdehnungskoeffizienten bi.

Falls in einem Kristall Symmetrieachsen vorhanden
sind, müssen die Hauptachsen entlang der Symme-
trieachsen orientiert sein.

��

��

�||

C3

Abbildung 4.69: Orientierung der Hauptwerte bei
Symmetrie.

Ist die Zähligkeit dieser Achsen > 2, so müssen
die Hauptwerte senkrecht zu dieser Achse identisch
sein. In einem kubischen Kristall sind die drei Ko-
effizienten deshalb aus Symmetriegründen identisch
und die Wärmeausdehnung isotrop.

Tabelle. 4.3 zeigt einige Wärmeausdehnungsko-
effizienten für axial symmetrische wie auch für
nichtaxiale Systeme.

Für praktische Anwendungen ist es oft ausreichend,
von einer linearen Ausdehnung auszugehen. Eine
Länge ` ändert sich damit mit der Temperatur T wie

`(T ) = `0(1+aP(T �T0)).

Hier stellt `0 die Referenzlänge bei der Temperatur
T0 dar. Der lineare Ausdehnungskoeffizient ap ist so-
mit

ap =
1
`0

∂`

∂T
.
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Tabelle 4.3: Thermische Ausdehnungskoeffizienten
für unterschiedliche Materialien. Ein-
heiten: 10�6 K�1.

Dehnt sich der Körper in alle 3 Richtungen gleich
stark aus, so ändert sich das Volumen um

V �V0

V0
=

DV
V

=
(`+D`)3 � `3

`3

=
`3 +3`2D`+ · · ·� `3

`3 ⇡ 3
d`

`
.

Die relative Änderung des Volumens entspricht so-
mit dem dreifachen der Änderung der Längen.

Die temperaturabhängige Ausdehnung kann als Mit-
tel über die Besetzung der Zustände berechnet wer-
den:

hxi =

R +•
�• xe�U(x)/kBT dx
R +•
�• e�U(x)/kBT dx

.

Für ein harmonisches Potenzial gilt aus Symmetrie-
gründen hxi = 0, unabhängig von der Temperatur.
Bei einem anharmonischen Potenzial hingegen wird
für niedrige Temperaturen

hxi =
1
2

u3

u2
2

kBT.

Dies entspricht einem linearen Wärmeausdehnungs-
koeffizienten proportional zu u3, d.h. zum Koeffizi-
ent dritter Ordnung im Potenzial, also zum ersten
nichtharmonischen Term.

4.6 Wärmeleitung

Wärme ist nicht ortsgebunden, sondern sie breitet
sich diffusionsartig aus, bis alle miteinander in Kon-
takt stehenden Bereiche eines Systems die gleiche
Temperatur aufweisen (! 0ter Hauptsatz der Ther-
modynamik). Obwohl die mikroskopische Ursache
dafür als zufällige Bewegung atomarer Teilchen ver-
standen werden kann, erfolgt der makroskopische
Transport gerichtet und deterministisch.

4.6.1 Grundlagen

Wärmeenergie kann durch Strahlung, Leitung oder
Strömung (Konvektion) transportiert werden; hier
wird nur die Wärmeleitung behandelt. Diese erfolgt
nur in Materie, ist aber nicht mit deren makroskopi-
scher Bewegung verbunden, sondern nur mit Ener-
gieübertragung durch Stöße. Dieses Kapitel behan-
delt nur die Wärmeleitung in Isolatoren. In Metallen
liefern die Elektronen den wichtigsten Beitrag zur
Wärmeleitung. Da dieser in Isolatoren entfällt, do-
miniert in diesem Fall der Beitrag der Gitterschwin-
gungen.

Abbildung 4.70: Wärmeleitung.

Wärmetransport tritt dann auf, wenn die Temperatur
nicht homogen ist. Er ist so gerichtet, dass er zu ei-
ner Verringerung des Temperaturgefälles führt. Da-
bei werden wir zwischen stationären und nichtsta-
tionären Problemen unterscheiden. Stationäre Pro-
bleme werden durch inhomogene Randbedingungen
charakterisiert, nichtstationäre durch eine inhomo-
gene Anfangsbedingung. Inhomogene Randbedin-
gungen können durch Wärmequellen wie z. B. Heiz-
drähte erzeugt werden.
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heisses 
Ende

kaltes 
Ende

Abbildung 4.71: Gasmodell der Wärmeleitung:
Energietransport ohne Massen-
transport.

Bei der Wärmeleitung in einem Festkörper findet ein
Transport von Wärme ohne Massentransport statt.
Dies kommt dadurch zustande, dass an einem En-
de eines geschlossenen Behälters (resp. Festkörpers)
die Teilchen erwärmt werden, am anderen Ende ge-
kühlt (! Abb. 4.71). Dadurch bewegen sich gleich
viele Teilchen nach links wie nach rechts, so dass
kein Massentransport stattfindet. Die Teilchen, wel-
che sich nach rechts bewegen, haben jedoch im
Durchschnitt die höhere Energie, so dass ein Ener-
gietransport nach rechts stattfindet.

4.6.2 Wärmeleitfähigkeit

Die transportierte Wärmemenge ist

Q = C DT

mit der Wärmekapazität C und der Temperaturdiffe-
renz DT .

kaltes Reservoirheißes Reservoir

Ort

Te
m

pe
ra

tu
r

T1 = 100 oC

A

`

T1 = 0 oC

Abbildung 4.72: Wärme wird über einen Stab zwi-
schen 2 Wärmereservoiren übertra-
gen.

In einem 1D Wärmeleiter mit Querschnittsfläche A

und Länge ` (! Abb. 4.72) kann man den Wärme-
strom I = dQ/dt schreiben als

I µ lA
T2 �T1

`
.

In 3 Dimensionen, in differenzieller Form, wird dies
zu

~j = �l

~—T.

Hier ist die Wärmestromdichte ~j die transportierte
Wärmemenge pro Zeit und Querschnittsfläche:

j =
Q

At

=
C DT
At

.

Tabelle 4.4: Wärmeleitkoeffizienten für unterschied-
liche Materialien.

Hier stellt

l [l ] =
W

mK

den spezifischen Wärmeleitfähigkeitskoeffizienten
des Materials dar. Sein Kehrwert ist der spezifische
Wärmewiderstand. Tabelle 4.4 zeigt einige typische
Werte für unterschiedliche Materialien. Daraus sieht
man unter anderem, dass Metalle weitaus bessere
Wärmeleiter sind als Isolatoren. Dort spielen offen-
sichtlich weitere Prozesse eine Rolle als die hier dis-
kutierten Gitterschwingungen.

Die Wärmeleitung durch Gitterschwingungen kann
im Rahmen eines Modells beschrieben werden, wel-
ches an die kinetische Gastheorie angelehnt ist. Die
Phononen stellen Atome des Gases dar. Gemäß der
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kinetischen Gastheorie ist der Wärmeleitkoeffizient
l gegeben durch

l =
1
3

Cv`,

wobei C die spezifische Wärme der Phononen ist, v
deren Geschwindigkeit, und ` die mittlere freie Weg-
länge. Diese wird in erster Linie bestimmt durch die
Streuung an Kristallfehlern und anderen Phononen.

a parallel zur optischen Achse

λ

Abbildung 4.73: Freie Weglängen `, berechnet aus
den Wärmeleitkoeffizienten l .

4.6.3 Stöße von Phononen

Ein wirklicher Wärmetransport durch Phononen
kann nur stattfinden, wenn die Phononen selber ein
thermisches Gleichgewicht mit den übrigen Frei-
heitsgraden erreichen. Gleichzeitig begrenzen Stöße
die freie Weglänge der Phononen und reduzieren da-
mit die Wärmeleitfähigkeit.

k,tt k',tt

Kristallfehler

Abbildung 4.74: Streuung eines Phonons an einem
Gitterfehler.

Wechselwirkungen finden z.B. statt, wenn das Git-
ter nicht ideal ist. Man bezeichnet dies als Stöße der
Phononen mit Gitterfehlern. Solche Prozesse können
qualitativ leicht verstanden werden, in Analogie zur
Optik: ein Gitterfehler ändert den Wellenwiderstand,
d.h. die Brechzahl des Mediums. An solchen Stellen
werden Wellen (teilweise) reflektiert.

Die Stöße der Phononen mit statischen Gitterfehlern
führen nicht zu einer Änderung der Energie, die Fre-
quenz des einlaufenden und auslaufenden Phonons
sind identisch. Sie bewirken deshalb keine Thermali-
sierung der Energie. Interessanterweise führen auch
Dreiphononenprozesse,

~k1 +~k2 =~k3,

bei denen die Impulserhaltung gilt, nicht zu einem
thermischen Gleichgewicht oder einem Wärmewi-
derstand.

Das Gleichgewicht mit dem Gitter wird erst erreicht
durch die so genannten Umklapp-Prozesse, wo

~k1 +~k2 =~k3 =~k0
3 + ~G,

und ~G einen Vektor des reziproken Gitters darstellt.

Brillouinzone

~G

~k1

~k2
�2

�1

�3
~k3

~k�
3

Abbildung 4.75: Umklapp-Prozess.

Dies geschieht immer dann, wenn der resultierende
Wellenvektor ~k3 aus der ersten Brillouin-Zone her-
ausragt. Wie in Kap. 4.1.4 diskutiert, sind solche
Wellenvektoren physikalisch ohne Bedeutung und
der Impuls ist immer nur modulo eines Vektors des
reziproken Gitters definiert. Reicht die Summe von
zwei Wellenvektoren einlaufender Phononen über
die Brillouinzone hinaus, so entspricht der physikali-
sche Impuls des resultierenden Phonons nicht dieser
mathematischen Summe, sondern einem Wellenvek-
tor~k0

3 =~k3 � ~G innerhalb der Brillouinzone, welcher
sich von der Summe um einen Gittervektor -~G un-
terscheidet. Prozesse, bei denen ~G = 0 ist, werden
N- oder Normalprozesse genannt.

Umklapp-Prozesse Prozesse können im Rahmen des
einfachen Modells, welches wir zu Beginn dieses
Kapitel diskutiert hatten, nicht stattfinden, da bei ei-
ner monotonen Beziehung w(k) die Energie nicht
erhalten bliebe. Solche Umklapp-Prozesse können
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jedoch auftreten, wenn anharmonische Terme ver-
schiedene Phononenzweige koppeln. Die Wahr-
scheinlichkeit für das Auftreten solcher Prozesse ist
deshalb stark systemabhängig. Es ist jedoch mög-
lich, einige allgemeine Aussagen über die Tempera-
turabhängigkeit zu machen.

4.6.4 Freie Weglänge

Bei hohen Temperaturen wird die freie Weglänge vor
allem durch die Phonon-Phonon Streuung begrenzt,
wobei nur U-Prozesse wesentlich beitragen. Diese
finden nur dann statt, wenn der resultierende Wel-
lenvektor~k3 = |~k1 +~k2| länger ist als der Radius der
ersten Brillouin-Zone. Phononen, die diese Bedin-
gung erfüllen, haben relativ hohe Energien von der
Größenordnung kBq/2. Bei niedrigen Temperaturen
sind nur wenige solche Phononen vorhanden. Ihre
Zahl nimmt gemäß Boltzmann mit exp(�q/2T ) ab:

hni =
1

eh̄wD/2kBT �1
⇡ e�h̄wD/2kBT = e�QD/2T .

Die inverse mittlere freie Weglänge sollte in diesem
Bereich proportional zur Anzahl Phononen sein, de-
ren Energie größer ist als die halbe Debye-Energie:

1
`

µ h#PhononenmitEnergie >
kBq

2
i

⇡ D
⇣

wD

2

⌘ 1
eh̄wD/2kBT �1

,

und damit

` µ eh̄wD/2kBT �1
D

�
wD
2

�

oder, mit der Debye-Temperatur q und der Zustands-
dichte D(w) aus Gl. (4.6)

q =
h̄wD

kB
und D

⇣
wD

2

⌘
µ w

2
D µ q

2

wird die freie Weglänge

` µ eq/2T �1
q

2 .

Temperatur T

`
Fr

ei
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Abbildung 4.76: Temperaturabhängigkeit der freien
Weglänge.
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Abbildung 4.77: Temperaturabhängigkeit der freien
Weglänge.

Für hohe Temperaturen T � q wird die mittlere freie
Weglänge damit indirekt proportional zur Tempera-
tur, ` µ 1/T . Da in diesem Bereich die Wärmekapa-
zität nicht stark variiert, erwartet man eine Wärme-
leitfähigkeit l µ 1/T .

Unterhalb der Debye-Temperatur (T ⌧ q ) wächst
die mittlere freie Weglänge exponentiell mit 1/T ,

` µ eq/T .

Dies ist in Abb. 4.77 für einige einfache Beispie-
le gezeigt. Die exponentielle Zunahme gilt solan-
ge Phonon-Phonon Streuung den dominanten Bei-
trag darstellt. Wenn der Beitrag der Kristallfehler do-
minant wird, wird die freie Weglänge temperatur-
unabhängig. Die entspricht dem horizontalen Be-
reich der Kurve in Abb. 4.77 für q/T > 30. Streu-
prozesse finden dann nur noch an Kristallfehlern und
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an der Oberfläche statt, wo ebenfalls Kristallfehler
vorhanden sind. Bei gut polierten Oberflächen kön-
nen Phononen aber elastisch gestreut werden, sodass
die mittlere freie Weglänge groß gegenüber den Kri-
stalldimensionen wird. Phononen breiten sich dann
ballistisch, also ohne Streuung im Kristall aus.

Die 1/T Abhängigkeit stimmt ebenfalls nicht bei
amorphen Materialien, wie z.B. Quarzglas. In die-
sem Fall ist schon das Konzept eines Phonons et-
was fragwürdig, da die Bindungsstärke von Atom zu
Atom variiert und die mittlere freie Weglänge auf-
grund der hohen Defektdichte praktisch nur noch ei-
ner Bindungslänge entspricht. In diesem Fall domi-
niert die Streuung an statischen Gitterfehlern über
die Phononen-Phononen Streuung und unsere obi-
gen Annahmen stimmen nicht mehr.

4.6.5 Wärmeleitkoeffizient
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Abbildung 4.78: Beiträge zur Wärmeleitung.

Zur Wärmeleitfähigkeit trägt neben der freien Weg-
länge vor allem auch die Wärmekapazität C bei.
Nach der kinetischen Gastheorie kann der Wärme-
leitkoeffizient l geschrieben werden als das Produkt

l =
1
3

Cv`,

Da bei niedrigen Temperaturen, T ⌧ q die Wärme-
kapazität abnimmt, C µ T 3, wird auch die Wärme-
leitfähigkeit wieder geringer, wie in Abb. 4.78 ge-
zeigt.

Bei Temperaturen oberhalb der Debye-Temperatur
ist die Wärmekapazität C ⇡ 3R konstant und trägt
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Abbildung 4.79: Temperaturabhängigkeit des Wär-
meleitkoeffizienten.

nicht mehr zur Temperaturabhängigkeit bei, wäh-
rend die freie Weglänge abnimmt. Typischerweise
findet man deshalb ein Maximum der Wärmeleit-
fähigkeit, wie in Abb.4.79 für drei Beispiele dar-
gestellt. Für einfache Kristalle findet man bei ho-
hen Temperaturen tatsächlich eine Proportionalität
zu 1/T , wie in diesem einfachen Modell erwartet.
Wenn die Kristalle komplexer werden, und insbe-
sondere unterschiedliche Atome enthalten, wird das
Phononenspektrum komplizierter und das hier ver-
wendete einfache Modell reicht für eine korrekte Be-
schreibung nicht mehr aus.
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Abbildung 4.80: Temperaturabhängigkeit des Wär-
meleitkoeffizienten in unterschied-
lichen Proben.

Wird die freie Weglänge vergleichbar mit den Di-
mensionen der Probe, so wird die Phononenaus-
breitung ballistisch und die Wärmeleitung abhängig
von den Dimensionen der Probe. Abb. 4.80 zeigt
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ein Beispiel, bei dem die mittlere freie Weglänge
durch tiefe Temperaturen und einen guten Kristall
erhöht wurde. Darüber hinaus wurde der Probenkri-
stall isotopenrein gemacht, um Streuprozesse auf-
grund der statistischen Massenverteilung zu reduzie-
ren. Die Tatsache, dass die beiden Kristalle unter-
schiedliche Wärmeleitkoeffizienten aufweisen, deu-
tet darauf hin, dass die mittlere freie Weglänge grö-
ßer ist als die Dimensionen des Kristalls. Deshalb
werden im kleineren Kristall die Phononen rascher
gestreut.

4.6.6 Isotopeneffekte

Ein Beitrag zur Streuung kann auch die Isotopenver-
teilung sein: unterschiedliche Massen der Gitterato-
me wirken für Phononen genau wie Gitterfehler und
führen zu Streuung. Diese Effekte können recht groß
sein, auch bei geringen Anteilen ‘falscher’ Isotope.
In Diamant, z.B., wo in natürlicher Häufigkeit ca.
1% der Atome 13C Isotope sind, kann die Wärme-
leitfähigkeit nochmals um > 50 % gesteigert wer-
den wenn die Diamanten aus isotopenreinem Koh-
lenstoff erzeugt werden.

Temperatur in K
10 100

100

1000
nat. Ge

74Ge

K 
/ W

m
-1

K-1

Abbildung 4.81: Temperaturabhängigkeit des Wär-
meleitkoeffizienten in Proben mit
unterschiedlicher Isotopenzusam-
mensetzung.

Abb. 4.81 zeigt als ähnliches Beispiel Daten von
Germanium in unterschiedlichen Zusammensetzun-
gen. Im Bereich der maximalen Leitfähigkeit leitet
die isotopenreine Probe etwa doppelt so gut wie die
Probe natürlicher Häufigkeit.

Die Wärmeleitfähigkeit hängt nicht nur von der frei-
en Weglänge ab, sondern auch von der Wärmekapa-

zität. Bei tiefen Temperaturen, wo die freie Weglän-
ge Temperatur-unabhängig wird, erwarten wir somit
ein ähnliches Verhalten wie bei der Wärmekapazität,
die mit der dritten Potenz der Temperatur abnimmt,
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.

Abb. 4.81 zeigt dieses Verhalten für zwei unter-
schiedliche Germaniumkristalle. Insbesondere beim
reinen 74Ge Kristall, wo Streuprozesse an Fehlstel-
len selten sind, passt diese Beziehung sehr gut.
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