4 Gitterschwingungen und Phononen

Die Struktur eines Festkorpers ist dadurch definiert,
dass die Atome sich an der Stelle befinden, welche
die Gesamtenergie der Anordnung minimiert. Dies
ist deshalb die Position, die sie - abgesehen von
der quantenmechanischen Unschirfe - am absolu-
ten Nullpunkt einnehmen. Bei endlichen Tempera-
turen hingegen fithren sie Schwingungsbewegungen
um diese Gleichgewichtspositionen durch und besit-
zen damit eine hohere Energie.

Dieses Kapitel befasst sich mit mechanischen
Schwingungen der Atome um ihre Gleichgewichts-
lage. Diese sind wichtig fiir das Verstindnis von
vielen Materialeigenschaften, wie z.B. die spezifi-
sche Wirme, Leitfihigkeit fiir Elektrizitit, Schall
und Wirme, oder die Volumenausdehnung. Auch die
Supraleitung (Kap. 9) kann nur iiber die Schwin-
gungen der Gitteratome verstanden werden. Dariiber
hinaus beobachtet man den Effekt von Schwingun-
gen in der Wechselwirkung mit unterschiedlichen
Arten von Strahlung, wie z.B. infrarotem Licht oder
thermischen Neutronen.

4.1 Grundlagen

4.1.1 Gleichgewichtsumgebung

Die Position der Atome wird nicht mehr als fest an-
genommen, sondern wir betrachten die Position 7 ei-
nes Atoms jetzt als variabel. Dabei soll jedes Atom
eine Gleichgewichtsposition 7, haben, aber gegen-
iiber dieser Gleichgewichtsposition Auslenkungen X
erfahren,

7:_'04-)_5,

wobei diese im Mittel verschwinden, (X) = 0. Diese
Auslenkungen sind klein im Vergleich zu typischen
Absténden zwischen nédchsten Nachbarn.

Wir diskutieren dies im Rahmen der Born-Oppen-
heimer Niherung, d.h. wir betrachten die Bewegung

der Kerne in einem effektiven Potenzial, welches
durch die Abhéngigkeit der elektronischen Energie
von den Kern-Koordinaten gegeben ist. Die riick-
treibende Kraft des Potenzials fiihrt dann zu einer
Schwingung. Das Potenzial ist gegeben durch die
Bindungsenergie des Systems, d.h. durch die kine-
tische Energie der Elektronen und die Coulomb-
Energie der Kerne und Elektronen.

harmonische
Néherung

U=Uy+ Uz +Usz® + ...

Potenzial

T
Xo=0 X

Abbildung 4.1: Potenzialverlauf und harmonische
Néherung.

Wir diskutieren zunéchst ein eindimensionales Sy-
stem und entwickeln das Potenzial eines einzelnen
Atoms in der Umgebung seiner Ruhelage als

U=Uy+Ux+Ux>+...,

wobei x die Auslenkung aus der Ruhelage x( be-
zeichnet. Die Ruhelage ist aber gerade dadurch defi-
niert, dass die Energie minimal ist. Somit muss der
lineare Term verschwinden,

v _

ox
Die Kraft, welche auf das Atom wirkt, ist demnach
in niedrigster Ordnung

Uy =0.

Diese Form entspricht dem Hooke’schen Gesetz. In
der Festkorperphysik wird dies als die harmonische
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4 Gitterschwingungen und Phononen

Niherung bezeichnet. Wir verwenden sie fiir den
groften Teil dieses Kapitels. Wenn die hoheren Ter-
me (Us,...) relevant werden, spricht man von an-
harmonischen Effekten. Diese werden in Kapitel 4.5
angesprochen.

4.1.2 Die eindimensionale Kette

Auch bei Schwingungen hat die Periodizitit des
Gitters einen entscheidenden Einfluss: die Atome
schwingen nicht unabhingig voneinander, sonder
sie fiihren kollektive Bewegungen durch, an denen
samtliche Atome des Kristalls beteiligt sind. Inter-
essanterweise konnen diese Bewegungen jedoch in
sehr guter Niherung analytisch berechnet werden.
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—
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Abbildung 4.2: Eindimensionale Kette.

Das einfachste mogliche Modell fiir die Schwingung
von Atomen in einem Gitter ist das einer eidimen-
sionalen Kette, welche aus identischen Atomen be-
steht, welche durch identische Wechselwirkungen
aneinander gekoppelt sind. Die interatomaren Krifte
sind nur vom Abstand zu den direkten Nachbarn ab-
hingig. x; beschreibt hier die Auslenkung des s-ten
Atoms aus der Ruhelage.

Durch die Federn wird die Kraft auf ein Atom abhén-
gig von der Position des Nachbaratoms. Die Bewe-
gungsgleichungen der einzelnen Atome sind deshalb
miteinander gekoppelt. Dann lautet die Bewegungs-
gleichung fiir das Atom an Position s

Mi; = C(xs+1 + X1 — 2xs)7

wobei C die Kraftkonstante und M die atomare Mas-
se beschreibt. Da ein Atom mehrere nichste Nach-
barn besitzt, wirkt die Auslenkung eines Atoms aus
der Ruhelage immer auch auf mehrere andere Ato-
me. Dies fiihrt dazu, dass die Auslenkung nicht auf
einem Atom lokalisiert bleiben kann. Mathematisch
hat man ein System von N gekoppelten Differenzi-
algleichungen (pro Freiheitsgrad). Um diese zu 16-
sen, muss man die Eigenvektoren des Systems be-
stimmen. Diese werden als Eigenmoden bezeichnet.

Aus der Translationssymmetrie des Systems folgt,
dass die Eigenfunktionen ebene Wellen sein miissen,
welche sich entlang der Kette ausbreiten. Ein sinn-
voller Ansatz ist damit

ksa—t)

Xy = Xoei(

Hier ist k die Wellenzahl (mit Dimension [k] =m™1),
Xo die Amplitude und @ die Kreisfrequenz, a be-
zeichnet den Abstand zwischen néchsten Nachbarn
und sa die Ruhelage des Atoms mit Index s.

4.1.3 Normalkoordinaten und
Dispersionsrelation

Die neu eingefithrten Eigenmoden beziehen sich
nicht mehr auf einzelne Atome, sondern auf die Ge-
samtheit der Atome. Sie zeichnen sich durch ihre
harmonische Zeitabhingigkeit aus und werden auch
als Normalkoordinaten bezeichnet. Offenbar ist

—ika

Xs_] = Xg€ ika

Xs+1 = Xs€

Durch Einsetzen von x,_j, X4, X541 in die Bewe-
gungsgleichung erhalten wir

—Mo*x;, = C (eik“ + e tka _ 2) Xs.

2C (cos(ka) — 1) x,

Wir dividieren durch —Mx, und erhalten

C k
— sin? —a.

C
2 _ — — e
0°=2—(1—cos(ka)) =4 >

Damit wird die Eigenfrequenz

Jedes Wertepaar (k,®) charakterisiert eine Eigen-
mode der Gitterschwingung. Innerhalb der harmoni-
schen Niherung sind die Schwingungen voneinan-
der unabhingig. In einem unendlichen Kristall sind
diese Werte kontinuierlich. In einem endlichen Kri-
stall gibt es 3N diskrete Moden, wobei N die Anzahl
der Einheitszellen des Kristalls darstellt.

Abb. 4.3 zeigt die Dispersionsrelation zwischen der
Wellenzahl £ und der Schwingungsfrequenz . Fiir
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Abbildung 4.3: Dispersion der
Kette.

eindimensionalen

kleine Wellenzahlen, also groB3e Wellenldngen geht
die Frequenz gegen Null. Im linearen Bereich gilt:

C
O~ [ — |kal
M

d.h. die Frequenz ist direkt proportional zur Wellen-
zahl. Daraus folgt fiir die Schallgeschwindigkeit

da)_a)

Tk k-

VS M
Die Phasendifferenz zwischen benachbarten Ato-
men betrigt e~'*. Fiir kleine Wellenzahlen ist somit
die Phasendifferenz klein, d.h. benachbarte Atome
schwingen hier praktisch in Phase

Anders sieht es beim Wellenvektor k = 7 /a aus. Hier
ist e*¢ = _1, d.h. benachbarte Atome schwingen in
Gegenphase. Die Wellenlinge A = 27 /k = 2a ent-
spricht der doppelten Linge der Einheitszelle, d.h.
iberndchste Nachbarn schwingen in Phase.

4.1.4 Brillouin-Zone

Mit weiter zunehmenden Wellenvektoren, also kiir-
zeren Wellenldngen, wird der Unterschied zwischen
den Auslenkungen benachbarter Atome wieder klei-
ner. Dies duBert sich auch in der Frequenz, wie man
in der Dispersionsrelation (— Abb. 4.3) erkennen
kann. Offenbar ist die Frequenzabhingigkeit peri-
odisch in k, mit Periode 27 /a. Dies liegt daran, dass
die Auslenkung die Position von Kernen beschreibt,
also von diskreten Punktpartikeln.

Da die Amplitude der Schwingung nur an den Kern-
orten definiert ist, ist es physikalisch nicht moglich,

Auslenkung

Abbildung 4.4: 2 Schwingungen mit unterschiedli-
chen Wellenzahlen, welche die glei-
che Auslenkung der Atome ergeben.

Schwingungen zu unterscheiden, deren Wellenvek-
tor sich um 27 /a unterscheidet. Anders ausgedriickt:
die Position eines Atoms mit einer Phase von 57/2
ist identisch zur Position mit einer Phase 7/2. Ein
solches Beispiel ist in Abb. 4.4 dargestellt: Die Wel-
lenvektoren der violetten und der griinen Kurve un-
terscheiden sich um 2n/a. Wie in Abb. 4.4 gezeigt,
erzeugen sie die gleichen atomaren Auslenkungen.
Diese Beziehung wird auch als Abtasttheorem oder
Nyquist-Theorem bezeichnet. Es muss z.B. bei der
Digitalisierung von Messdaten beriicksichtigt wer-

den.
) g ﬂ
_\ /. A;ent N\
\/ Kk
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Abbildung 4.5: Die 1. Brillouin-Zone enthilt die ge-
samte Information.

Bezogen auf die Dispersionsrelation (k) der Git-
terschwingungen bedeutet dies, dass nur der Bereich
zwischen —7/a < k < m/a betrachtet werden muss.
Wie bei der Einfiihrung des reziproken Gitters in Ka-
pitel 2.5.6 diskutiert, wird dieser Bereich als erste
Brillouin-Zone bezeichnet.

Die Dispersionsrelation der Gitterschwingungen
o(k) kann durch gleichzeitige Messung von Wel-
lenvektor £ und Frequenz , u.a. mit unelastischer
Rontgenstreuung gemessen werden. Abb. 4.6 zeigt

als Beispiel die Dispersionsrelationen von Blei, wel-
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Abbildung 4.6: Dispersionsrelationen von Blei.

ches in einem fcc-Gitter kristallisiert. In diesem,
wie auch in vielen anderen Fillen, enthilt die Dar-
stellung mehrere Richtungen innerhalb der ersten
Brillouin-Zone.
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Abbildung 4.7: Dispersionsrelationen von Kupfer.

Die Dispersion von Kupfer (siche Abb. 4.7) sieht
dhnlich aus. Beide Metalle kristallisieren in einem
fce Gitter. Da Kupferatome leichter sind (m¢,=63,5;
mpp=207,2), sind die entsprechenden Schwingungs-
frequenzen jedoch hoher. Man erhilt jeweils einen
longitudinalen und zwei transversale Aste, wobei die
transversalen Schwingungen je nach Ausbreitungs-
richtung entartet sein kdnnen.

4.1.5 Gruppengeschwindigkeit und
Phasengeschwindigkeit

Die Beziehung zwischen Frequenz und Wellenzahl
ergibt direkt die Phasengeschwindigkeit

_ /<
M

sowie die Gruppengeschwindigkeit aus der Steigung

()

VP:k

ka
in—| /k
sm2’/,

e = 39 _
T dk

C

M

ka
oS —

4 2

=
T
=
2
5
£
2
<
v
wv
oy
w c
[}
Q|
al
2
(]
k
’ 0 / an/
/a Wellenzahl @ Ti/a

Abbildung 4.8: Dispersion von Frequenz und Grup-
pengeschwindigkeit.

Abb. 4.8 zeigt den Verlauf fiir den Bereich 0 < k <
7t /a. Fiir sehr kleine Wellenvektoren, d.h. sehr grofie
Wellenlingen geht die Frequenz linear gegen null. In
diesem Bereich sind die Phasengeschwindigkeit und
die Gruppengeschwindigkeit gleich und konstant,

vp(k—0) =vg(k —0) = a\/g.

In diesem Bereich ist die Wellenldnge sehr viel gro-
Ber als die Gitterkonstante, sodass die diskrete Natur
des Gitters hier keine Rolle spielt. Schwingungen in
diesem Bereich konnen auch gut mit Hilfe von kon-
tinuierlichen Modellen beschrieben werden, welche
die atomare Struktur der Materie nicht explizit be-
riicksichtigt (— Kap. 4.2). Wellen mit groen Wel-
lenlidngen sind z.B. wichtig bei der Schallausbrei-
tung. Typische Schallgeschwindigkeiten in Festkor-
pern liegen bei vy ~ 4000 m/sec.

Mit einer typischen Einheitszellen-Grofie von a ~
5-107' m wird die minimale Wellenlinge an den
Grenzen der ersten Brillouin-Zone, d.h. bei k = 7 /a,
Amin = 2a ~ 10~° m. Dies entspricht der maximalen
Schwingungsfrequenz

Vinax ~ L =4. IOIZHZ.
Amirz
Am Rand der Brillouin-Zone geht die Gruppenge-
schwindigkeit gegen null,

=— =0
dk |z ’

d.h. es wird keine Energie mehr transportiert. Dies
lasst sich leicht verstehen wenn wir beriicksichti-
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gen, dass an diesem Punkt die Bragg-Bedingung er-
fiillt ist: Die allgemeine Beziehung fiir die Bragg-
Bedingung

2dsin@ = A

wird fird =a, 0 = /2 zu

2a:l:2—n oder k:E.
k a
a
(* ) o (® ) (* )
A

Abbildung 4.9: Reflexion einer linearen Welle bei
der Bragg-Bedingung.

Das bedeutet, dass die einfallende Welle am Gitter
sehr effizient reflektiert wird. Die einfallende Wel-
le und die reflektierte Welle bilden zusammen eine
stehende Welle, bei der die um eine Elementarzelle
getrennten Atome jeweils um 180° auBer Phase sind.
Stehende Wellen transportieren aber keine Energie.

4.1.6 Transversalschwingungen

Die hier betrachtete Bewegung entlang der Kette ist
nicht die einzige Moglichkeit. Zusitzlich gibt es die
Moglichkeit, dass die Atome senkrecht zur Kette
ausgelenkt werden. Da ein Atom drei Freiheitsgrade
besitzt, gibt es pro Atom 3 Arten von Gitterschwin-
gungen, ndmlich eine in Richtung der Kette und zwei
senkrecht dazu. Die bisher behandelte Schwingung
wird als longitudinal bezeichnet, die andern beiden
als transversal.

Das gleiche gilt in 3 Dimensionen. Dort haben
die beiden Transversalschwingungen im Allgemei-
nen unterschiedliche Dispersionsrelationen. In ei-
nem Kristall hingt die Ausbreitungsgeschwindigkeit
auBerdem von der Ausbreitungsrichtung ab. In den
beiden Abbildungen 4.6 und 4.7 sind fiir Wellen-
vektoren in Richtung (1,1,0) jeweils zwei transver-
sale Aste erkennbar, wihrend sie fiir die Richtungen
(1,0,0) und (1,1,1) jeweils entartet sind.
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Abbildung 4.10: Federmodell in 3D; longitudinale
und transversale Moden.

4.2 Kontinuumsmechanik

Um einen besseren Einblick in die Schallausbreitung
in anisotropen Medien zu erhalten, soll in diesem
Kapitel zunichst der kontinuierliche Grenzfall dis-
kutiert werden.

4.2.1 Spannung und Dehnung

Fiir den Ubergang zu dreidimensionalen Korpern be-
trachten wir zunéchst die klassische Kontinuumsme-
chanik. Man beschreibt die Veridnderung eines Volu-
menelementes unter dem Einfluss duBerer Krifte als
eine Kombination von Verschiebung, Dehnung (An-
derung der Lingen) und Scherung (Anderung der
Winkel).

Abbildung 4.11: Spannung = Kraft pro Flache.

Die dufleren Krifte auf das Volumenelement werden
jeweils auf die Fliache normiert, auf die sie wirken.
Den Quotienten bezeichnet man als Spannung

N
m2’

dF

[ ———
dA

[S] =
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Eine allgemeine Spannung kann zerlegt werden
in eine Normalspannung ¢ und eine Tangential-
(Schub-) Spannung 7:
+ il

dA’
Bei der Normalspannung kennzeichnet man die
Richtung mit einem Index, bei der Schubspannung
die Fliche mit einem Index, die Richtung mit einem
zweiten. An einem Wiirfel findet man somit

dF,
S: =
o+T JA

Gxu Gyv GZ Txya TXZ) Tym Tyx: TZ,X? sz-

Aus Symmetriegriinden gilt 7,5 = Tg, s0 dass noch
drei unabhiangige Schubspannungen bleiben.

Kein Korper ist absolut starr. Deshalb erzeugen
Spannungen Verformungen. Bei den elastischen Ver-
formungen unterscheidet man zwischen Dehnungen
€ (rechte Winkel bleiben erhalten) und Schiebungen
oder Scherungen 7y, welche Winkeldnderungen be-
schreiben.

T JA‘FAL
gyl

Abbildung 4.12: Dehnung = relative Léangeninde-
rung.

Eine Dehnung ist definiert als die relative Langenén-
derung

(—ty A
b b

E =

4.2.2 Elastische Konstanten

Spannung und Dehnung sind voneinander abhingig.
In den meisten Korpern existiert zudem fiir niedrige
Spannungen ein Bereich, in dem eine lineare Bezie-
hung gilt, welche fiir Federn als Hooke’sches Gesetz
bekannt ist:

wobei die Proportionalititskonstante E als Elastizi-
tatsmodul bezeichnet wird.

(Werk-)Stoff Elastizitdtsmodul E in
GNm 2

Eis 9,9

Blei 17

Al (rein) 72

Glas 76

Gold 81
Messing (kaltverf.) 100
Kupfer (kaltverf.) 126
V2A-Stahl 195

Elastizititsmodule stellen wichtige technische Gro-
Ben dar und sind deshalb von vielen Materialien be-
stimmt worden. Fiir Metalle liegen sie im Bereich
von 10'" N/m?.

Ad/2 fﬁ
— [ ar

Jak]
d
Abbildung 4.13: Querdehnung: der blaue Korper

wird durch die Kraft F zum roten
Korper verformt.

Eine Normalspannung erzeugt nicht nur eine Lén-
genidnderung Af, sondern auch eine Querdehnung
€, = Ad/d. Diese Querdehnung &, ist proportional
zur Lingsdehnung &, es gilt &, = — €, mit der Quer-
dehnungszahl u.

’ (Werk-)Stoff ‘ Querdehnungszahl u ‘
Eis 0,33
Blei 0,44
Al (rein) 0,34
Glas 0,17
Gold 0,42
Messing (kaltverf.) 0,38
Kupfer (kaltverf.) 0,35
V2A-Stahl 0,28
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Diese dimensionslose Zahl liegt typischerweise im
Bereich von ~0.3.

4.2.3 Scherung

&

Abbildung 4.14: Scherung.

In analoger Weise kann man Scherungen behandeln.
Scherung ist definiert als die Winkeldnderung

1 Ax

o =sin~
Scherung ist proportional zur Schubspannung 7:
T=00q,

und die Proportionalititskonstante G wird als Schub-
modul bezeichnet.

(Werk-)Stoff Schubmodul G in

GNm 2
Eis 3,7

Blei 55-7,5
Al (rein) 27
Glas 33
Gold 28
Messing (kaltverf.) 36
Kupfer (kaltverf.) 47
V2A-Stahl 80

Die Schubmodule von vielen Materialien sind ge-
messen worden. Sie sind von dhnlicher Gréenord-
nung wie die Elastizitits- und Kompressionsmodule,
aber immer etwas kleiner.

4.2.4 Unelastisches Verhalten

Die elastischen Eigenschaften konnen fiir geringe
Auslenkungen mit Hilfe des verallgemeinerten Hoo-
ke’schen Gesetzes dargestellt werden, d.h. durch ei-
ne lineare Beziehung zwischen Spannung und Form-
dnderung. Dies ist allgemein der Fall in der Nihe des
Gleichgewichts, da man das lineare Kraftgesetz aus
dem ersten nicht verschwindenden Term der Taylor-
reihe erhilt. Fiir groere Auslenkungen wird die Re-
aktion nichtlinear; dies entspricht auf der Stufe der
Gitterschwingungen dem Auftreten anharmonischer
Effekte: in beiden Fillen spielen die Terme der Ord-
nung >2 in der Taylorreihe des Potenzials eine Rolle.

A
plastischer Bereich
(irreversibel) Bruch
<
~
[N
o)}
c
2 Hyst
= ysterese
©
Q
V)
DehnungA2/2

Abbildung 4.15: Elastische vs. plastische Verfor-
mung.

Waihrend die Einzelheiten differieren, findet man in
den meisten Materialien ein Verhalten, das qualita-
tiv etwa so aussieht: Das Hooke’sche Gesetz, d.h. ei-
ne lineare Beziehung zwischen Spannung und Deh-
nung, gilt fiir geringe Dehnungen.

Danach folgt ein elastisch-plastischer Bereich. In
diesem Bereich ist die Beziehung nichtlinear, der
Korper geht nach Abklingen der dueren Einwirkun-
gen jedoch in den urspriinglichen Zustand zuriick.
Fiir noch groBere Krifte folgt eine plastische Reak-
tion, also eine irreversible Verformung.

Auf mikroskopischer Ebene entsprechen elastische
Verformungen einer entsprechenden Verformung auf
atomarer Ebene, wihrend bei plastischen Verfor-
mungen Bindungen gebrochen werden. Welcher Art
diese Anderungen sind, hingt von der Art des Ma-
terials ab. Bei Metallen konnen die Atome relativ
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Abbildung 4.16: Mikroskopische Prozesse bei der
Verformung eines Metalls (links)
und Polymers (rechts).

leicht gegeneinander verschoben werden.

Bei kovalent gebundenen Materialien, wie z.B. Po-
lymeren, werden Bindungen nur schwer gebrochen.
Die Molekiile haben jedoch die Freiheit, um einzelne
Einfachbindungen zu rotieren und so ihre Form zu
andern. Eine plastische Verformung fiihrt hier des-
halb zu einer Verstreckung der Molekiile.

4.2.5 Dehnungstensor

Fiir das Verstdndnis der Gitterschwingungen ist nur
der elastische Bereich relevant. Hingegen muss das
obige Modell noch dahingehend erweitert werden,
dass die elastischen Konstanten in einem kristallinen
Material richtungsabhingig sind. Da die interatoma-
ren Potenziale von der Richtung abhiingen, erzeugen
auch Spannungen unterschiedliche Verformungen je
nach der Richtung in der sie beziiglich dem Kristall-
gitter wirken.

Um eine allgemeine Verformung zu beschreiben,
muss jedem Punkt P des Korpers in seiner Ruhelage
ein Punkt P’ des deformierten Korpers zugeordnet
werden. Der Vektor

&(7)
n(@)
(@)
der diese Translation beschreibt, hingt selber von
der Position 7 im Raum ab.

i(7)

)

Es ist sinnvoll, ihn in verschiedene Komponenten
aufzuteilen. Seit Helmholtz benutzt man dafiir ei-
ne Verschiebung (Translation), eine Rotation, und

=

Abbildung 4.17: Tensorielle Beschreibung der Ver-
formung.

drei orthogonale Dehnungen. Translation und Rota-
tion beziehen sich auf den gesamten Korper, sind al-
so nicht vom Ort 7 abhéngig und @ndern die elasti-
sche Energie des Systems nicht. Diese wird (in li-
nearer Ndherung) nur von der ersten Ableitung von i
bestimmt, welche als Dehnung beschrieben werden
kann. Diese wird durch den Dehnungs- oder Verzer-
rungstensor

1 1

€xx  36xy 73€xz
S 1 1
e = 2 €xy leyy 26z
5€xz 7€y €z

beschrieben. Dieser symmetrische Tensor besitzt 6
unabhingige Elemente. Die Diagonalelemente

d& dn d¢
—_—, Cyy — —. € = —
dx’ 7 dy’ % dz

Cxx =
beschreiben, wie die Verschiebung parallel zur ent-

sprechenden Koordinate entlang der Achse zu-
nimmt. Die AuBlerdiagonalelemente

dé dn
G T Ty T
dn  dg
@ = =ty
d§ _d¢
e = e = —_——= —
XZ X dZ dx
beschreiben die Zunahme der Verschiebung paral-

lel zu einer Richtung senkrecht zur Verschiebung.
Die Faktoren 1/2 werden z.T. auch in die Definition
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der Tensorelemente einbezogen. Der zugehorige an-
tisymmetrische Tensor beschreibt eine Rotation. Die
Elemente des Dehnungstensors sind dimensionslos
und in allen relevanten Fillen < 1.

Mit Hilfe dieses Tensors kann der Dehnungsanteil
der Verformung im linearen Bereich geschrieben
werden als

(7)

wobei die Verschiebung bei 7 = 0 als Translation be-
handelt wird.

—

u

=% 7

Wie bei jedem symmetrischen Tensor zweiter Stu-
fe existiert ein ausgezeichnetes Koordinatensystem
in dem dieser Tensor diagonal wird. Die Diagonal-
elemente in dieser Form geben gerade die Dehnung
in Achsenrichtung an. Ein Punkt, der auf einer der
Hauptachsen liegt, bleibt also auch unter der Deh-
nung auf dieser Achse. Dies bedeutet insbesonde-
re, dass in diesem Koordinatensystem keine Scher-
dehnung auftritt; diese wird durch die AuBerdia-
gonalelemente beschrieben. Die Beschreibung einer
Verformung als Dehnung oder Scherung ist somit
abhingig vom Koordinatensystem. Die Spur dieses
Tensors, also die Summe der Diagonalelemente be-
schreibt gerade die relative Volumenénderung. All-
gemein ist die Spur unabhingig von der Wahl des
Koordinatensystems, wie es fiir eine Volumeninde-
rung sein sollte. Der Tensor selber ist auch vom Ort
abhingig, stellt also ein Tensorfeld dar.

4.2.6 Spannungstensor

Neben dem Dehnungs-, resp. Verzerrungstensor be-
notigen wir eine weitere wichtige Gréfe, den Span-
nungstensor ‘6’. Wie oben gezeigt, konnen in jeder
Achsenrichtung eine Zug- und zwei Scherspannun-
gen existieren. Insgesamt ergibt dies 9 Komponen-
ten eines Tensors zweiter Stufe. Aus der Bedingung,
dass der Korper statisch sein soll, ergeben sich drei
Symmetriebedingungen, nidmlich, dass oy, = Oy,.
Die 6 verbleibenden Elemente bilden einen symme-
trischen Tensor

Oxx Oxy Ox;
? = O, Xy O Vy O, vz
Ox; Oy; Oz

Die Spur dieses Tensors gibt wiederum den isotro-
pen Anteil der duBeren Kraft an, also den hydrosta-
tischen Druck.

Die Erweiterung des Hooke’schen Gesetzes auf drei
Dimensionen ergibt eine lineare Beziehung zwi-
schen dem Spannungs- und dem Dehnungstensor.
Sie wird geschrieben als

&=,

wobei das verallgemeinerte Elastizitdtsmodul ?
einen Tensor vierter Stufe darstellt. Die 81 Elemente
eines Tensors vierter Stufe werden aber durch Sym-
metriebeziehungen stark reduziert. So enthalten ja
die Tensoren ‘@’ und ‘¢’ nur je 6 unabhingige Ele-
mente.

CRYSTAL SYSTEM POINT GROUPS ELASTIC CONSTANTS

Triclinic all 21
Monoclinic all 13
Orthorhombic all g
Tetragonal Cyy Conn Sy 7

Caus Dy, Dy Iy 6
Rhombohedral Sy 7

C} ) b 31 D ad 6
Hexagonal all 3
Cubic all 3

Tabelle 4.1: Anzahl unabhiingiger Tensorelemente
in Kristallen unterschiedlicher Symme-
trie.

Auflerdem ist ? selbst ein symmetrischer Tensor,
wodurch die maximale Anzahl unabhiingiger Ele-
mente auf 21 absinkt. In einem Kristall mit Sym-
metrie sinkt die Zahl unabhingiger Elemente weiter,
wie in Tabelle 4.1 gezeigt. In einem kubischen Sy-
stem bleiben 3 unabhingige Elemente:

11 Cxxxx = Cyyyy = Czzzz
€12 = Cxxyy = Cyyzz = Czzxx
C44 =  Cxyxy = Cyzyz = Coxzx-

Man schreibt diese Elemente iiblicherweise in der
Basis der 6 unabhédngigen Elemente der Tensoren
zweiter Stufe.
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4.2.7 Wellenausbreitung in einem
anisotropen Kontinuum

Der elastische Tensor bestimmt die Wellenausbrei-
tung im Festkorper. Er ersetzt die skalare Kraftkon-
stante der 1-dimensionalen Bewegungsgleichung.
Dadurch wird die Auslenkung zu einem Vektor ii =
(§,m, &) und die Wellengleichung ebenfalls zu einer
Tensorgleichung. Fiir einen kubischen Kristall kann
die entsprechende Bewegungsgleichung geschrieben
werden als

0%¢ 2% 0’E 9%
Por = C”axﬁc‘*‘*(ayﬁazz)
?2n 9%
+(Cr2+Cua) <8x8y + 8x8z>

und analog fiir die Komponenten n und .

Eine Losung dafiir erhalten wir durch den Ansatz ei-
ner ebenen Welle

él _ goei(kfot)

also einer Longitudinalwelle in x-Richtung. Fiir die
Geschwindigkeit dieser Welle erhélt man

Ci
V= ;
P

analog zur eindimensionalen Welle. Die Geschwin-
digkeit ist jetzt gleich der Wurzel aus dem Quotien-
ten von Elastizitdtsmodul und Dichte.

Fiir den Fall einer Transversalwelle in y-Richtung
wird die Geschwindigkeit zu

Cys4
P

Vy =

Hier tibernimmt also anstelle des Elements Cy; das-
jenige Element des Elastizititstensors die Funkti-
on der Kraftkonstanten, welche die AuBlerdiagonal-
elemente von Dehnungs- und Spannungstensor mit-
einander koppelt. Dies ist eine direkte Konsequenz
davon, dass eine Transversalwelle Scherspannungen
erzeugt, wihrend bei einer reinen Longitudinalwelle
nur Schubspannungen auftreten.

Fiir jeden Wellenvektor existieren drei linear un-
abhingige Polarisationen, entsprechend drei Raum-
richtungen. Im allgemeinen sind die Ausbreitungs-
geschwindigkeiten der drei Polarisationen unter-
schiedlich.

4.2.8 Abbildung von Schallwellen

Die Energieausbreitung, d.h. die Gruppengeschwin-
digkeit, ist in einem anisotropen Festkorper nicht
parallel zum Wellenvektor; dies ist nur der Fall,
wenn gewisse Symmetriebedingungen erfiillt sind.

Abbildung 4.18: Experimentell gemessene Wellen-
fronten in Si. Die drei Wellenfron-
ten entsprechen unterschiedlichen
Zeiten von 1,76, 2,04 und 2,42 ps.

(5]

Seit einigen Jahren kann man die Schallausbreitung
in einem Festkorper direkt sichtbar machen[5]. Dazu
regt man mit einem Laser oder einem piezoelektri-
schen Transducer an einer Stelle eines Kristalls kurz-
fristig akustische Schwingungen an und beobachtet
auf der Riickseite des Kristalls die dadurch induzier-
ten Auslenkungen. Abb. 4.18 zeigt als Beispiel ei-
ne solche Messung an Silizium. Man sieht deutlich,
wie die Anisotropie des Kristalls zu einer nichtspha-
rischen Schallausbreitung fiihrt.

Um dies zu verstehen, kann man zunéchst sog.
,Langsamkeitsoberflichen“ betrachten, d.h. Ober-
flachen konstanter Frequenz im k-Raum. Die Grup-
pengeschwindigkeit ist gegeben als Ableitung nach
dem k-Vektor. Deshalb muss der entsprechende Vek-
tor senkrecht auf einer solchen Oberfliche stehen.
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' .

Abbildung 4.19: Links: Oberflache konstanter Fre-
quenz im k-Raum und zugeho-
rige Gruppengeschwindigkeitsvek-
toren. Rechts: Wellenfront und
Ausbreitungsrichtung.

Wie in der linken Hélfte von Abb. 4.19 gezeigt, ste-
hen diese Vektoren im Allgemeinen nicht parallel
zum Wellenvektor k; die Ausbreitungsrichtung ist
damit nicht parallel zum Wellenvektor.

Die rechte Hilfte von Abb. 4.19 stellt die Wellen-
front dar, welche dadurch zustande kommt, dass
man die Gruppengeschwindigkeitsvektoren verbin-
det. Diese Uberschneidungen der Wellenfronten,
welche auch im experimentellen Bild beobachtet
werden konnten, sind eine Konsequenz der kristal-
linen Struktur; bei isotropen Festkorpern, wie z.B.
Glas, konnen sie nicht beobachtet werden.

Abbildung 4.20: Wellenfronten zu unterschiedlichen
Zeiten.

Um die Wellenfronten experimentell sichtbar zu ma-
chen, muss man zunichst eine kurze Storung an den
Kristall anlegen und die Wellen nachher zeitlich und
rdumlich aufgelost beobachten. Abb. 4.20 zeigt ein
Beispiel, bei dem die Messung mit Hilfe piezoelek-

trischer Transducer an Si durchgefiihrt. In der obe-
ren Zeile sieht man zunichst eine beinahe sphérische
Longitudinalwelle eintreffen, in der unteren Zeile ei-
ne deutlich nichtsphirische Transversalwelle.

4.2.9 Seismische Wellen

Sowohl longitudinale Druck- als auch transversale
Scherwellen spielen bei Erdbeben eine Rolle. Aller-
dings ist in diesem Fall das Medium im Wesentli-
chen isotrop.

Abbildung 4.21: Seismische Wellen.

Die sogenannten P- (Primér-) und S- (Sekundir-)
Wellen breiten sich im Volumen aus. P-Wellen sind
Longitudinalwellen (wie Schallwellen), S-Wellen
sind Schwerewellen. Love-Wellen sind Torsions-
wellen, welche sich an der Oberfliche ausbreiten.
Rayleigh-Wellen sind ebenfalls Oberflichenwellen,
sie gleichen aber Meereswellen.

Da der Elastizititsmodul immer grofBer ist als das
Schermodul, erwarten wir fiir longitudinale Druck-
wellen eine hohere Ausbreitungsgeschwindigkeit als
fiir transversale Scherwellen.

Diese Erwartung wird durch experimentelle Befunde
gestiitzt: Die Primadrwellen, welche als erste bei einer
Messstation eintreffen, sind Druckwellen, wiahrend
die spiter eintreffenden Sekundiarwellen Scherwel-
len sind. Die hohere Schallgeschwindigkeit fiir Lon-
gitudinalwellen beobachtet man auch bei Kristallen.
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Abbildung 4.22: Primdr- und Sekundidrwellen bei
Erdbeben.

4.3 Schwingungen in diskreten
dreidimensionalen Systemen

Die Behandlung der Schwingungen mit Hilfe der
Kontinuumsmechanik ist méglich, solange die Wel-
lenldngen groB sind im Vergleich zur Grof3e der Ein-
heitszelle. Wir betrachten jetzt wieder diskrete Sy-
steme, erweitern die Diskussion aber auf drei Di-
mensionen. Bei N Atomen pro Einheitszelle erwar-
ten wir 3N Freiheitsgrade und damit 3N Eigenmo-
den. Dies konnen grundsitzlich in N longitudinale
und 2N transversale Moden aufgeteilt werden.

4.3.1 Richtungsabhiingigkeit

I k
Longitudinalwelle B —
Xs-1 Xs Ks+1 Ks+2 Xs+3|
e  — —

Abbildung 4.23: Longitudinalwelle.

In einem dreidimensionalen Gitter findet man

Wesentlichen die gleiche Art von Schwingungen wie
bei der Kette. Allerdings werden hier nicht mehr
einzelne Atome ausgelenkt wie im eindimensiona-
len Fall, oder Volumenelemente wie im kontinuier-
lichen Fall, sondern ganze Netzebenen. Abb. 4.23
zeigt die Netzebenen senkrecht zur Ausbreitungs-
richtung. Fiir diese gilt, dass alle darin enthaltenen
Atome die gleiche Auslenkung zeigen. Im Fall von
Abb. 4.23 ist diese Auslenkung parallel zur Ausbrei-
tungsrichtung k, d.h. es handelt sich um eine Longi-
tudinalwelle.

Abbildung 4.24: Transversalwelle.

Abb. 4.24 zeigt die entsprechende Situation fiir eine
Transversalwelle. Hier ist die Auslenkung parallel
zur Netzebene, senkrecht zur Ausbreitungsrichtung
k. Die Eigenmoden des dreidimensionalen Gitters
bestehen aus der Auslenkung von Netzebenen ent-
weder parallel oder senkrecht zur Ausbreitungsrich-
tung. Allerdings stimmt dies nur dann exakt wenn
der Wellenvektor parallel zu einer Symmetrieachse
des Gitters liegt - beim kubischen Gitter beispiels-
weise entlang der (100), (110), oder (111) Richtung.
In diesem symmetrischen Fall steht der Wellenvek-
tor (z. B. k= [100]) jeweils senkrecht auf der ent-
sprechenden Netzebene (z. B. (100)). Wir behandeln
hier nur diesen Fall.

Wie im eindimensionalen Fall nehmen wir an, dass
die Kraft auf eine ausgelenkte Netzebene propor-
tional sei zur Auslenkung der Ebene gegeniiber ih-
ren Nachbar-Ebenen. In diesem Fall knnen wir eine
harmonische Bewegungsgleichung hinschreiben,

d*x,
dr?
bei der die Masse M und die Kraftkonstante C beide

= C(strl + X1 — 2xs) >

im proportional sind zur Zahl der Atome in der Netze-
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bene. Somit kann die Gleichung durch die Zahl der
Atome dividiert werden und M und C sind dann pro
Atom zu rechnen, analog zum Kapitel 4.1. Damit
wird auch die Bewegungsgleichung wieder durch ei-
ne ebene Welle gelost:

Xy = ert(ksqfa)t)‘

Hier stellt ¢ den Abstand zwischen den Netzebenen
dar.

50

| Kupfer

A
<

w
(=]

=

Frequenz w [10'2s™]
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o
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Abbildung 4.25: Dispersion von Kupfer: longitudi-
nale und transversale Zweige.

Im Allgemeinen gehoren zu jedem Wellenvektor ei-
ne longitudinale und zwei transversale Moden, de-
ren Dispersion unterschiedlich sein kann. Abb. 4.25
zeigt als entsprechendes Beispiel die Dispersion von
Kupfer in (110) Richtung. Die Frequenz der trans-
versalen Moden liegt fiir groBe Wellenldngen immer
unterhalb der Frequenz der longitudinalen Moden,
wie im Fall kontinuierlicher Systeme.

Im Allgemeinen Fall bewegen sich die Gitterato-
me weder senkrecht noch parallel zur Ausbreitungs-
richtung, sondern besitzen sowohl longitudinale wie
auch transversale Komponenten. Dies fiihrt auch
dazu, dass der Energietransport nicht in Richtung
des Wellenvektors lduft, wie bereits im Rahmen der
Kontinuumsmechanik diskutiert.

Fiir die folgende Diskussion werden wir longitudi-
nale Schwingungen diskutieren. Die Ergebnisse sind
jedoch direkt auf transversale Schwingungen iiber-
tragbar.

M, C M,
Ug Vs

Abbildung 4.26: 1D Kette mit 2 Atomen pro FEin-
heitszelle.

4.3.2 Zweiatomige Basis

Wir betrachten als nichstes den Fall von zwei un-
terschiedlichen Atomen pro Elementarzelle, wie in
Abb. 4.26 gezeigt. Dieser Fall hat keine Entspre-
chung im Kontinuums-Modell. Wir bezeichnen die
Auslenkung der blauen Atome (Masse M|) mit u;
und die Auslenkung der roten Atome Masse M;) mit
vy, wobei s den Index der entsprechenden Elementar-
zelle darstellt. Jedes dieser Atome steht jeweils fiir
eine Netzebene.

Wie in Kapitel 4.1.2 sollen nur die Wechselwirkun-
gen zwischen nichsten Nachbarn eine Rolle spielen
(sieche Abb. 4.26). Fiir die beiden Atomsorten gelten
die Bewegungsgleichungen

Ml ’;is
MZ"}'S =

C (vg—1 +vs —2uy)

C(us+1 +us*2Vs)~ 4.1)

Die Kraftkonstante C ist abhéngig von der “Feder”,
also vom interatomaren Potenzial; wir nehmen hier
an, dass beide Wechselwirkungen gleich seien.

Ein Losungsansatz, der die Symmetrie des Problems
beriicksichtigt, ist eine ebene Welle mit Wellenvek-
tor k und Frequenz w:
u, = Uy piksa p—ion Ve = Vo eik(s-&-%)a o it
Wir betrachten also eine Welle, bei der die beiden
Atomsorten unterschiedlich stark, jedoch mit der
gleichen Frequenz und dem gleichen Wellenvektor
ausgelenkt werden (sonst wire es keine Welle). Die
Ortsabhédngigkeit von v, beriicksichtigt die Tatsache,
dass sich diese Atome in der Mitte der Einheitszel-
le befinden. Einsetzen in die Bewegungsgleichung
(4.1) ergibt
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k
— M, 0*U, 2CVy cos 3“ —2CU,

k
—My*V, 2CU, cos Ea 2V, (42)

Diese Gleichungen sind homogen und linear und wir
haben drei Unbekannte(w, Uy, Vp). Eine Losung exi-
stiert nur dann, wenn die Determinante des Glei-
chungssystems verschwindet, d.h.

2C — M, 0?
—2Ccos k—z"

k
—2Ccos 7“ —0
2C — Mrw?
oder

M1M2w4 — 2C(M1 +M2)a)2

ka
)

+4C?(1 — cos? 0

Wir betrachten dies als eine quadratische Gleichung

fiir ” und ersetzen 1 — cos? %“ — sin® %" Die allge-
meine Losung ist
1 1
2
o = C|—+— 4.3
(i +3:) 3)
11\ 4 ka
TCy/ | —+— ) — in? —.
\/(Ml + M2> MM, 2

Offenbar erhalten wir also 2 unterschiedliche Losun-
gen, d.h. 2 unterschiedliche Frequenzen pro Wellen-
vektor!

4.3.3 GrofBie Wellenlingen

Wir betrachten zunichst den Grenzfall gro3er Wel-
lenldngen, also ka < 1. Dann kann der Sinus durch
sein Argument ersetzt und die Wurzel entwickelt

werden:

1
M,

!
M,

Q

(o 3n)

2 2.2
oy ()
1 1
~ C(zwﬁMz)

! T
k) e
1 1 k2a?

= [1‘41+1V12 2<M11M2>} '

Das negative Vorzeichen ergibt
w2 ~ C k*a®
“T 2 My +M,

oder

o ~kay | C g€
TN 2My M) T2\ (M +Mo) )2

Dies entspricht genau dem Resultat das wir erwar-
ten wiirden, wenn beide Massen identisch wéren, je-
weils mit der Masse (M + M,)/2. Die Amplituden
erhalten wir aus (4.2):

—M, (1)2U0
—M2w2V0

2C(Vo — Up)
2C(Uy — V).

Fir w, — 0 verschwindet die linke Seite und die
Auslenkung der beiden Massen muss etwa identisch
sein, Uy ~ Vp. Diese Schwingung entspricht somit
weitgehend dem Fall identischer Massen. In diesem
Grenzfall kleiner Wellenzahlen sind die beiden Mas-
sen praktisch in Phase, die Auslenkungen benach-
barter Atome (unterschiedlichen Typs) sind prak-
tisch gleich.

4.3.4 Optischer Ast

Der zweite Losungsast ergibt sich aus dem positi-
ven Vorzeichen in Gl. (4.4). Fiir grole Wellenldangen,
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d.h. ka < 1, kann der dritte Term unter der Wurzel
vernachlédssigt werden und die Frequenz wird

).

Interessant ist, dass hier die Frequenz hoch ist, auch
fiir sehr kleine Wellenvektoren. Sie ist sogar hoher
als die maximale Frequenz fiir eine einatomige Ba-
sis. Dies wird verstidndlich wenn man sich die Aus-
lenkungen ansieht. Setzt man in Gl. (4.2) die Losung
fiir die Frequenz ein und cos(ka/2) — 1, so findet

1 1
74_7

a)OZ%ZC(M W’
1 2

man
M,2C ! + ! Uy = 2C(Vp—Up)
: My, M, 0 0 0
2 M, M, 0 0 0/

Division der beiden Gleichungen ergibt

Vo M’

d.h. die beiden Auslenkungen haben entgegenge-
setztes Vorzeichen. Das bedeutet, dass sich die bei-
den Atomsorten gegenphasig bewegen. Die Fre-
quenz ist gegeben durch die Kraftkonstante und die
reduzierte Masse fiir diese Bewegung. Wir haben
also wiederum eine stehende Welle vorliegen. Die
Wellenlidnge dieser Schwingungen ist grof3, da iden-
tische Atome praktisch in Phase schwingen. Trotz-
dem sind benachbarte Atome aufler Phase, da es sich
um unterschiedliche Atomsorten handelt.

Diese Art von Schwingungen unterscheidet sich aber
wesentlich von den Schwingungen die wir aus dem
einatomigen Gitter kennen, insbesondere wenn die
beiden Atomsorten unterschiedlich geladene Ionen
darstellen: in diesem Fall wird im Kristall ein oszil-
lierendes elektrisches Dipolmoment angeregt. Die-
ser Schwingungstyp kann dadurch an optische Fel-
der ankoppeln und wird deshalb als optischer Ast
bezeichnet. Im Gegensatz dazu schwingen beim nie-
derfrequenten Ast die Atome einer Einheitszelle in
Phase, so dass durch die Auslenkung kein Dipolmo-
ment angeregt wird. Dieser Ast wird deshalb akusti-
scher Ast genannt.

Abbildung 4.27: Auslenkung der Atome im akusti-
schen und optischen Ast.

4.3.5 Verhalten am Zonenrand

Der zweite Grenzfall ist derjenige kurzer Wellenldn-
gen, bei denen die Wellenzahl den Rand der ersten
Brillouin-Zone erreicht. Fiir k = w/a, d.h. A = a/2
ergibt sich aus (4.3)

1 1
2
w = C|—+—
<M1+M2)
1 1\> 4
+C[ | —+—) —
M, M, MM,
1 1 1 1
= C(—+—)2C(———
<M1+M2> <M1 MZ)
sodass
2
w2:£ oder a)zzz—c.
M, M,

Sofern die beiden Massen unterschiedlich sind, er-
halten wir somit auch am Zonenrand zwei unter-
schiedliche Frequenzen. Die Amplituden ergeben
sich aus (4.2) fiir den Spezialfall ka — &, d.h.
cos(ka/2) — 0:

M,0*Uy = 2CU,
Mr»*V, 2CVp.

Dies ergibt fiir ©*> = 2C/M;

M
2CU, = 2CU, 20#1/0 =20V,
1
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oder
V() = 0, Uo = beliebig.
Fiir ®* = 2C/M, erhalten wir analog

Uo = 0, Vo = beliebig.

Abbildung 4.28: Auslenkung der Atome im akusti-
schen und optischen Ast.

Offenbar schwingen die beiden Atomsorten hier un-
abhingig voneinander. Je eine Atomsorte wird nicht
ausgelenkt.

V0—>0

akustischer

_

o

Amplitudenverhéltnis UyV,

-M, | M,

Abbildung 4.29: Schwingungsamplituden fiir den
akustischen und den optischen
Zweig als Funktion der Wellenzahl.

Abb. 4.29 zeigt die Abhédngigkeit der Schwingungs-
amplituden fiir den akustischen und den optischen
Zweig als Funktion der Wellenzahl. Bei grolen Wel-
lenldngen sind die beiden Amplituden fiir den aku-
stischen Zweig gleich, im optischen Zweig sind sie
gegeben durch das Verhiltnis M; /M,. Damit bleibt

der Schwerpunkt in Ruhe. Mit abnehmender Wellen-
lange divergiert das Amplitudenverhiltnis. In der Fi-
gur ist Uy/Vp gezeigt; hier divergiert der akustische
Zweig, wihrend der optische Zweig gegen Null geht.
Betrachtet man das Verhiltnis Vy /Uy divergiert ent-
sprechende der optische Zweig.

Mj =2Mq My =My
M, =4M,
w
Mj =4Mq
0 T T
0 /2 T
ka

Abbildung 4.30: Einfluss des Massenverhéltnisses
auf den akustischen und optischen
Ast.

Aus den Dispersionsrelationen folgt, dass am Zonen-
rand der akustische Ast seine maximale Frequenz
erreicht, der optische Ast seine minimale Frequenz.
Zwischen den beiden Zweigen existiert eine Liicke,
d.h. ein Bereich in dem keine Schwingungsfrequen-
zen auftreten. Wie in Abb. 4.30 gezeigt, hingt die
Breite dieses “verbotenen” Bereichs von den unter-
schiedlichen Massen ab. Je grofer der Unterschied
zwischen den Massen wird, desto weiter 6ffnet sich
die Liicke zwischen den beiden Béndern.

‘Wenn die beiden Massen identisch sind, verschwin-
det dieser verbotene Bereich, die beiden Aste beriih-
ren sich am Rand der Brillouin-Zone. Diese Situati-
on entspricht aber gerade dem Fall einer zweiatomi-
gen Basis, also einem nicht-primitiven Gitter.

Das bedeutet, dass die erste Brillouin-Zone eigent-
lich doppelt so grof ist, wenn man das primitive Git-
ter im direkten Raum betrachtet. Durch die Wahl ei-
nes nicht primitiven Gitters wird ein Teil des Kur-
venverlaufs gefaltet und erscheint als optischer Ast.

AulBlerhalb der Brillouinzone setzt sich das Muster
periodisch fort: w(k+ G) = w(k).
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Abbildung 4.31: Faltung der Dispersionsrelation bei
Verdoppelung der Einheitszelle.

4.3.6 Beispiele

-

Frequenz [THz]

o

Abbildung 4.32: Phononenspektrum fiir Kupfer.

Fiir eine einatomige Einheitszelle wie Kupfer fin-
det man drei akustische und keine optischen Mo-
den. Abb. 4.32 zeigt die entsprechenden Dispersi-
onskurven fiir drei unterschiedliche Richtungen im
k-Raum.

Ein typisches Beispiel fiir eine Elementarzelle mit
zwei unterschiedlichen Atomen ist KBr. Die ku-
bische Struktur fiihrt zu einem relativ einfachen
Schwingungsspektrum mit der minimalen Anzahl
von Asten: longitudinal und transversal akustisch,
longitudinal und transversal optisch. Die einzelnen
Aste zeigen allerdings einen etwas anderen Verlauf
als in der hier diskutierten, stark vereinfachten Theo-
rie. Insbesondere hingt der Verlauf von der Richtung
von k ab, da die Krifte nicht isotrop sind. Aufer-
dem liegen die Maxima der akustischen Aste und die
Minima der optischen Aste nicht immer am Rand
der Brillouinzone. Dies liegt einerseits daran, dass
das Gitter nicht primitiv ist, zum anderen an der Art
der Wechselwirkungen. Eine genaue Analyse der Di-
spersionskurven erlaubt dementsprechend ein gutes
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Abbildung 4.33: Dispersion der Schwingungsmo-
den in KBr.

Verstdndnis der interatomaren Wechselwirkungen.
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Abbildung 4.34: Phononenspektrum fiir CulnS,.

Enthiélt die Elementarzelle N Atome, so gibt es
3N Freiheitsgrade und dementsprechend 3N Moden.
Dabei gibt es immer 3 akustische Moden. Es blei-
ben deshalb 3N — 3 optische Moden. Abb. 4.34 zeigt
als Beispiel das Schwingungsspektrum von CulnS,.
Auf Grund der relativ groen Elementarzelle erhilt
man eine grofle Zahl von optischen Schwingungen.

4.3.7 Messung

Eine Moglichkeit, die Schwingungsfrequenzen zu
messen, ist die resonante Anregung mit elektroma-
gnetischer Strahlung. Die entsprechenden Frequen-
zen liegen im Bereich bis 10'? Hz. Damit ist die mi-
nimale Wellenlinge etwa A = ¢/v =3-10%/10"3 m
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= 30 um. Diese Wellenldnge gehort zum infraroten
Bereich.

Kontinuum- ‘
lichtquelle [\  Absorptionszelle Spektrograph
'—E) IReferenzzelle LQU

Photo-

Schreiber oder  d8tektor
Computerbildschirm

&M
L

Abbildung 4.35: Prinzip der Infrarotspektroskopie.

Abb. 4.35 zeigt, wie mittels Infrarotspektroskopie
Schwingungsfrequenzen gemessen werden konnen.
Dafiir wird ein Lichtstrahl (meist von einer breitban-
digen Lichtquelle) durch die Probe geschickt. Hinter
der Probe wird das Licht spektral aufgeteilt und die
transmittierte Leistung als Funktion der Wellenlén-
ge gemessen. Um Artefakte zu reduzieren, wir meist
mit einer Messung an einer bekannten Referenzzelle
verglichen.

Lichtgerade mit

W, Steigung ¢
1

Abbildung 4.36: Vergleich der Dispersion von Pho-
tonen und Schwingungsmoden.

Die Wellenldngen von optischer oder infraroter
Strahlung (= um) sind sehr grof} im Vergleich zur
GroBe einer Einheitszelle (= nm). Fiir Photonen gilt
allgemein die Dispersionsrelation @ = kc, (fiir Bre-
chungsindex n = 1). Wie in Abb. 4.36 angedeutet, ist
damit die Phasengeschwindigkeit (d.h. die Steigung
der Kurve) bei Photonen sehr viel grofer als bei
Gitterschwingungen, wo die Phasengeschwindigkeit
auf 5000 m/s beschrinkt ist. Impulserhaltung bei
der Absorption oder Emission von Photonen kann
damit nur gewdhrleistet werden, wenn der Quasi-
Impuls der Schwingungen nahe bei O liegt. Somit
koppelt ein infrarotes Feld nur an Schwingungs-

moden mit £ =~ 0 an. AuBlerdem muss diese Mode
ein elektrisches Dipolmoment besitzen. Es kommen
deshalb nur optische Moden mit k = 0 in Frage.

4.3.8 Inelastische Lichtstreuung

Abbildung 4.37: Inelastische Lichtstreuung.

Photonen im sichtbaren Bereich koénnen auch an
Gitterschwingungen gestreut werden, wie in Abb.
4.37 gezeigt. Dies wird als inelastische Lichtstreu-
ung bezeichnet. Bei diesen Prozessen wird Energie
und Impuls zwischen den Photonen und den Git-
terschwingungen ausgetauscht. Da fiir die einzelnen
Streuprozesse jeweils Energie und Impuls erhalten
bleiben miissen, ist es praktisch, die Gitterschwin-
gungen durch elementare Anregungsquanten zu be-
schreiben, welche jeweils eine Einheit Energie von
ho und Impuls %k enthalten. Diese Quasiteilchen
werden als Phononen bezeichnet (— Kap. 4.4.2).

Man unterscheidet unterschiedliche Arten von sol-
chen Streuprozessen:

» Raman'-Streuung = Streuung an bzw. Anre-
gung von optischen Phononen

* Brillouin?-Streuung = Streuung an bzw. Anre-
gung von akustischen Phononen

Bei einem solchen Streuprozess wird ein Photon mit
Wellenvektor k; und Frequenz @; gestreut in den Zu-
stand (% r, @), unter Erzeugung oder Vernichtung ei-
nes Phonons mit Wellenvektor £ und Frequenz .
Damit Energie und Impuls erhalten bleiben, muss

IChandrasekhara Venkata Raman (1888-1970) Nobelpreis
1930
2Léon Nicolas Brillouin (1889 - 1969)
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gelten
7(} = 7& r+ 76‘
O = Of+o

Die Energien von Photonen (=eV) und Phononen
(=meV) unterscheiden sich um etwa 3 GroBen-
ordnungen. Man bendtigt deshalb eine relativ ho-
he Energieauflosung bei der Messung der gestreuten
Photonen, um die Energie der Phononen bestimmen
zu konnen.

4 LN

AV/cn

-1,0 -0,5 o o 1,0

Wellenzahl v =

N

Abbildung 4.38: Brillouin-Spektrum von SbSi.

Abb. 4.38 zeigt ein mittels Brillouin-Streuung ge-
messenes Spektrum von SbSi. Hier wird mit einem
Laser angeregt und die Anderung der Energie der ge-
streuten Phononen gemessen. Die horizontale Achse
ist in Einheiten der Wellenzahl v = 1 /A = 0/ (27c¢)
skaliert.

Abb. 4.39 zeigt ein Raman-Spektrum von Silizium.
Es kann jeweils die Erzeugung eines Phonons ge-
messen werden, oder die Vernichtung. Bei der Er-
zeugung eines Phonons wird jeweils die Energie des
einfallenden Photons reduziert. Dieser Prozess wird
als Stokes-Streuung bezeichnet. Bei der Vernichtung
eines Phonons wird die Energie des Photons entspre-
chend hoher. Dieser Prozess wird als Anti-Stokes
Streuung bezeichnet.

Im Zentrum des Spektrums, d.h. bei @ = 0, befindet
sich der sog. Rayleigh3-Peak. Hier wird die Energie

3John William Strutt = Lord Rayleigh (1842-1919) Nobelpreis
1904

Stokes-Linie:
Phononen-Erzeugung
20K %
Z Anti-Stokes-Linien:
i Ph -
§ Z Verzir::%r:s:g
£ Z 700 K60 .
% { gi 20K
-16 -15 15 16

Ramanstreuung Av [THZ]

Abbildung 4.39: Raman-Streuung an Silizium.

der Photonen nicht geidndert, es handelt sich also um
elastische Streuung. Damit sollte aus der Impulser-
haltung auch %f =k folgen, also Vorwirtsstreuung.
Voraussetzung fiir die Impulserhaltung ist die Trans-
lationssymmetrie. Diese ist aber in realen Kristallen
nicht streng giiltig, sondern durch Defekte etc. ge-
stort. Es tritt also auch elastisch gestreutes Licht im
abgelenkten Strahl auf: Dies ist der Rayleigh-Peak.

natdirliches ,,
Ge
7%Ge ‘Ge Ge

Intensitat
|

295 295 300 305
Raman-Verschiebung [cm™]

Abbildung 4.40: Raman-Streuung an Germanium
mit unterschiedlichen Atommas-
sen.

Abb. 4.40 zeigt, wie sich die Raman-Linie als Funk-
tion der atomaren Massen verschiebt. Die gemesse-
ne Verschiebung passt relativ gut zur theoretischen
Erwartung, dass

C
o\ —,
M

dass sie also indirekt proportional zur Wurzel aus der
Atommasse sein sollte. Natiirliches Germanium (OZ
= 32) hat eine Atommasse von 72,63.
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4.3.9 Inelastische Rontgen-Streuung

Phononen kénnen durch inelastische Streuprozesse
von Rontgen-Photonen oder von Neutronen erzeugt,
resp. vernichtet werden. Dies kann durch inelasti-
sche Rontgenstreuung oder durch Neutronenstreu-
ung geschehen. Auf diese Weise wurde z.B. die Di-
spersionsrelationen von Abb. 4.33 bestimmt.

elastisch |~
gestreut

5 zum
—77 Detektor

einfalldender
Strahl

Abbildung 4.41: Impulse beim inelastischen Streu-
prozess.

Die Impulserhaltung fordert fiir die Streuung
k+G =k +3,

wobei 75, %' die Wellenvektoren des einfallenden und
des gestreuten Teilchens (Photons oder Neutrons)
bezeichnen, G einen Gittervektor, und ¢ den Wel-
lenvektor eines Phonons, welches beim Streuprozess
erzeugt wurde. Der Gittervektor kann immer so ge-
wihlt werden, dass K in der ersten Brillouinzone
liegt. Das Vorzeichen ist positiv, wenn ein Phonon
erzeugt, negativ wenn eines vernichtet wird. Natiir-
lich muss gleichzeitig die Energieerhaltung gewihr-
leistet sein, d.h. die Energie des Phonons muss vom
gestreuten Teilchen aufgenommen, resp. abgegeben
werden.

Die gleichzeitige Erhaltung von Impuls und Ener-
gie ist nicht mit allen Sonden leicht zu erreichen.
Die Frequenz eines Phonons liegt bei etwa 0...10'2
Hz, die Wellenldnge bei ~ 1 nm. Elektromagneti-
sche Wellen mit eine Wellenldnge von 1 nm (al-
so Rontgenstrahlung) besitzen eine Frequenz von
v =c/A = 3-10"7 Hz; diese ist also um mehrere
Groflenordnungen hoher als die der Phononen. Bei

inelastischer Streuung mit Photonen dndert sich die
Frequenz um die Phononenfrequenz. Fiir die Mes-
sung dieser Verschiebung muss also eine sehr gerin-
ge Energieverschiebung gemessen werden.

Gemil Gleichung (2.6) ist die Streuamplitude
F(AR) o / av n(R)e k7

Fiir zeitabhiingige Strukturen mit
F(t) =7+ X(1),

wird dies zu
F(Ak 1) oc &1 / AV n(#(t))e R0,

mit @; der Frequenz der einfallenden Strahlung.
Wird die Auslenkung X(7) durch Gitterschwingun-
gen verursacht, kann sie geschrieben werden als

%(1) = Y R0,
q

Der Wellenvektor der Gitterschwingungen wird hier
mit ¢ bezeichnet. Damit wird die Streuamplitude

F(Aié, l) o efia),'t ZefiAi{?m
m

- Z Z ink - }?qefi(AszZI)'Fm o i(oiwy)
m g

Hier bezeichnet der Index m die Atome der Einheits-
zelle. Der erste Term entspricht einer Welle bei der
gleichen Frequenz wie die einlaufende Welle, be-
schreibt also die elastische Streuung. Beim zweiten
Term ist die Frequenz der Welle um die Frequenz der
Gitterschwingung verschoben - dies entspricht der
inelastischen Streuung. Dieser liefert nur dann we-
sentliche Beitridge, wenn die Summe der Vektoren

Ak+G=0G
einem Vektor des inversen Gitters entspricht. Aus-

gedriickt durch die Wellenvektoren von einlaufender
und gestreuter Welle, wird dies zu

F—Titd+G.
Die Frequenzen der inelastisch gestreuten Kompo-
nenten sind

o5 = o + 0(g).

Diese beiden Ausdriicken entsprechen der Erhaltung
von Impuls und Energie.
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4.3.10 Phononenspektroskopie mit
thermischen Neutronen

Neutronen mit einer Temperatur von 300 K (sog.
thermische Neutronen) hingegen besitzen eine Ener-
gie von kgT, entsprechend einer Frequenz v =
kgT /h = 0.7 -10"3 Hz. Der Impuls betrigt

V2mé& = \/2mkgT
k
= V2.1,7-107-4,1.10-21 =8
S

= 3.7. 10_24m7kg
) S *

Dies entspricht einer Wellenldnge von

h  6,6-1073
= ; = 3’7.wm: 0,18 nm,
also gerade die richtige GréBenordnung. Neutronen
sind deshalb fiir die Messung von Gitterschwingun-
gen ideal geeignet, da bei der Beugung von Neutro-
nen Energie und Impuls gleichzeitig erhalten werden
konnen.

Diese Betridge kann man vergleichen mit den Wel-
lenzahlen und Energien von optischen und akusti-
schen Phononen. Die Wellenlinge von thermischen
Neutronen entspricht offenbar einer typischen Git-
terkonstanten. Die Energien kann man abschitzen
aus der Schallgeschwindigkeit

do o

T

Somit wird die maximale Frequenz

T
kmaxvs = —vs
a

3 -1 ~ 13.—1

~
a)max ~

Q

Dies entspricht einer Energie von
Enax = hOpax =510 T ~ 30meV.
Dies liegt sehr nahe bei der thermischen Energie von

kgT ~1,4-1072%.300] ~ 26 meV.

vom Reaktor

Abbildung 4.42: 3-Achsen Neutronenspektrometer.

Fiir eine solche Messung benutzt man z.B. ein sog.
Dreiachsenspektrometer. Abb. 4.42 zeigt schema-
tisch ein solches Spektrometer. Die drei Achsen ent-
sprechen (i) dem Monochromator, welcher Energie
und Impuls der einfallenden Neutronen bestimmt,
(ii) der Probe, wo die inelastische Streuung statt-
findet, sowie (iii) dem Analysator, wo Energie und
Impuls der gestreuten Neutronen gemessen werden.
Das Spektrum enthilt pro Atom der Einheitszelle
jeweils drei Phononenéste, insgesamt also 3N. Die
ersten drei sind akustische Phononen, die weiteren
3N — 3 optische.

Blende

Geschwindigkeits-
selektor

l Detektor

Abbildung 4.43: Flugzeit-Spektrometer fiir Neutro-
nen.

00.00.00

Abb. 4.43 zeigt eine andere Moglichkeit, den Streu-
querschnitt als Funktion von Impuls- und Energie-
ibertrag zu messen. Die beiden Chopper erzeu-
gen einen monochromatischen Neutronenstrahl. Der
Energieiibertrag kann durch die Messung der An-
kunftszeit auf dem Detektor bestimmt werden. Der
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Impulsiibertrag ist gegeben durch den Impulssatz
75 = 751' + é + [? .
Die kinetische Energie der Neutronen ist

pZ _ hz%}zv

Epipy = — =
kin 2mN ZmN

Durch den Energieiibertrag dndert die kinetische
Energie auf

wEe ek

= Tho.
2mN 2mN

Diese Verschiebung wird jeweils als Funktion des
Wellenvektors gemessen, oder es wird bei bei festem
Wellenvektor der Energieiibertrag gemessen.

4.4 Phononen und spezifische
Wirme

Der bisherige Teil des Kapitels behandelt die Di-
spersion, also die Beziehung zwischen Frequenz und
Wellenldnge der Gitterschwingungen. Das aktuel-
le Unterkapitel befasst sich mit der Amplitude der
Schwingung, sowie der Energie (Wirme), welche in
den Schwingungen gespeichert ist.

4.4.1 Spezifische Wirme

Die Wirmekapazitit C eines Korpers ist definiert als
die Wirmemenge, welche notwendig ist, um seine
Temperatur um ein Grad zu erhéhen,

do
C=—
dT’
mit Q als Wirme. Bezogen auf die Masse m des Kor-
pers definiert man die spezifische Wirmekapazitit
C do
c=—=—.
m mdT
Im Allgemeinen muss dabei spezifiziert werden, ob
der Druck oder die Temperatur konstant gehalten
wird, also ob es sich um C, oder C, handelt. Der
Unterschied ist fiir Festkorper jedoch sehr gering.

Gold Eisen Alu Ziegel BetonlLuft Styro Holz Benzol Wasser- Eis Alko- Wasser
por dampf hol

Spezifische Warme [kJ/(kg K)]

Abbildung 4.44: Spezifische Wéirme
schiedliche Stoffe.

fir unter-

Nach dem Gleichverteilungssatz der Thermodyna-
mik ist diese Energie gleichmé@Big in allen Freiheits-
graden des Korpers verteilt. Es gilt fiir jeden Frei-
heitsgrad im thermischen Gleichgewicht

1
(Energie) = EkBT'

Fiir kinetische Energie gilt damit

mv2

3
—) = =kgT.
() = Sk
Der Faktor 3 beriicksichtigt, dass die Bewegung in
den 3 Raumrichtungen unabhingig ist und diese des-

halb einzeln zum Energieinhalt beitragen.

Bei einem harmonischen Oszillator sind die mittlere
kinetische und potentielle Energie gleich. Insgesamt
entspricht dies zwei Freiheitsgraden mit der jeweils
mittleren Energie von kg7 /2 pro Raumrichtung. Fiir
die innere Energie U folgt daher:

6
U = —NkgT
5VikB
und fiir die Warmekapazitit
U
Cy = — =3Nkp =3iiR
V= or B=o

mit 7 der Anzahl Mol. Die spezifische Wirmekapa-
zitét pro Mol wird damit

J
—3R~249—
Vo " Mol - K

Dies wird als Gesetz von Dulong-Petit* bezeichnet.

4Pierre Louis Dulong (1785 — 1838) und Alexis Thérese Petit
(1791 - 1820).
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Dulong-Petit
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Abbildung 4.45: Molare spezifische Wirme fiir Ele-
mente.

Wie Abb. 4.45 zeigt, ist dies eine brauchbare Na-
herung fiir viele Elemente bei hohen Temperaturen.
Bei tiefen Temperaturen findet man jedoch erhebli-
che Abweichungen: in vielen Féllen sinkt die Wiér-
mekapazitit gegen Null. Um diesen Befund zu er-
kldren, bendtigt man eine quantenmechanische Be-
schreibung der Gitterschwingungen.

4.4.2 Phononen

Die Anregungen der Gitterschwingungen, also ihre
Amplituden, werden durch die Quantenstatistik be-
stimmt. Wir betrachten die gleichen Normalschwin-
gungen wie bisher, benutzen aber die Quantenme-
chanik, um ihre Anregungen zu berechnen.

Wie beim harmonischen Oszillator kdnnen die Git-
terschwingungen in diskrete Zustinde angeregt wer-
den. Die Energie der entsprechenden Zustéinde be-
tragt

&= <n+;> ho.

Die ganze Zahl n = 0,1, ... indiziert die Anregung
dieser Mode. Man verwendet in diesem Zusammen-
hang gerne ein Teilchenbild, in dem ein Anregungs-
quant als Phonon bezeichnet wird. n bezeichnet dann
die Zahl der Phononen in der entsprechenden Mode.
Der Term 1/2 zeigt an, dass immer eine Nullpunkts-
energie existiert, d.h. die Energie im Grundzustand
ist hoher als die reine potenzielle Energie. Neben der
Energie i@ besitzen die Phononen einen Impuls 7k,
und einen Spin S = 1, d.h. es handelt sich um Boso-
nen.

Zu jeder Eigenschwingung mit Wellenvektor k und
Kreisfrequenz @ gehdrt somit eine temperaturab-
hingige Zahl von Phononen. Gemif3 der Beziehung
von de Broglie kann man den Phononen einen Im-
puls p = hk zuordnen. Es ist aber wichtig zu rea-
lisieren, dass es sich hierbei nicht um einen physi-
kalischen Impuls der Gitteratome handelt. Ein Pho-
non besitzt keinen physikalischen Impuls, da Git-
terschwingungen nur Relativbewegungen darstellen.
Ein iiber p = hk definierter Impuls ist auch nicht ein-
deutig, denn k' = k + G ist zu k dquivalent.

Auslenkung
atomarer Impuls

Abbildung 4.46: Auslenkung und Impuls der Gitter-
atome.

Wie man sich leicht tiberzeugen kann, ist der physi-
kalische Impuls, d.h. die Summe iiber die Impulse al-
ler schwingenden Atome, fiir alle Anregungen gleich
null, aufler wenn k = 0. Es ist aber trotzdem niitz-
lich, diese GroBe als Impuls zu betrachten und man
bezeichnet sie hdufig als Kristallimpuls. Auf diese
Weise kann man z.B. inelastische Streuung von Pho-
tonen erklédren, bei denen die Impulserhaltung gilt,
sofern man den Kristallimpuls des gestreuten Phon-
ons beriicksichtigt.

4.4.3 Energie pro Gitterschwingung

Der Energieinhalt eines Kristalls setzt sich aus unter-
schiedlichen Beitragen zusammen. Einer dieser Bei-
trige ist die Energie der Gitterschwingungen. Diese
berechnen wir als Summe {iiber alle Schwingungs-
freiheitsgrade. Alle Gitterschwingungen bei unter-
schiedlichen Wellenvektoren sind unabhingig von-
einander. Zunichst bestimmen wir deshalb den Ener-
gieinhalt einer einzelnen Gitterschwingung bei der
Temperatur 7.

Die Energie einer Gitterschwingung ist quantisiert:

Ek) = (n+ %)h(o(k).
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Die Energie kann auch iiber die Auslenkung ausge-
driickt werden:
1
& (k) = Zma)zu%.
Dieser Ausdruck kann auch nach der Amplitude auf-
gelost werden:

4 1

)

Die Phononen ("Schallteilchen") im Kristall kon-
nen, dhnlich wie die Photonen bei der Schwarzkor-
perstrahlung, thermisch angeregt werden. Zu jeder
Eigenschwingung mit vorgegebenem Wellenvektor
und Frequenz gehort somit eine temperaturabhingi-
ge Zahl von Phononen. Phononen sind Bosonen, die
der Bose-Einstein-Statistik unterliegen.

w

\

=

0

0 k n/a

Abbildung 4.47: Zwei unabhingige Phononenfrei-
heitsgrade.

Analog zur Herleitung des Planck’schen Strah-
lungsgesetzes geht man aus von der Boltzmann-
Verteilung, welche das Verhiltnis der Besetzungs-
zahlen zweier benachbarter Zustinde beschreibt:

NrH-l

Ny

— e*hw/kBT.

Die Besetzungswahrscheinlichkeit fiir den Zustand
mit » Phononen ist damit

N e—l’lh(x)/kBT
n
Zs N, Zs e—sho/kgT *

Pn

Fiir Besetzungswahrscheinlichkeiten gilt 0 < p, <1
und Y, ps = 1. Daraus bestimmen wir den Erwar-
tungswert fiir n, also die mittlere Anregung:

(n) =) sps= EosNy _ Egse el
Ps YN Y, e—sho/kgT

N

7h€l)/kBT

Wir benutzen die Abkiirzung x = e , sodass

XX
B sts ‘

Der Nenner entspricht einer geometrischen Reihe:

(n)
1
zs:xs =1

Der Zihler kann durch Ableitung in einen entspre-
chenden Ausdruck umgeformt werden:

s d _.d 1 X
;sx _xdx;xs_xdx(l—x> = 0

Damit ist die mittlere Anregung

_ Zssxs_(l—xx)z_ X
) = T T,

s
ZS X 1—x

e—hw/kBT 1

1 — e—h0/ksT ~— pho/kgT _ 1"

0.0+ ,
0 05 1 15

Temperatur ksT/Aw

Abbildung 4.48: Erwartungswert der Phononenzahl
bei tiefer Temperatur.

Dies ist die Planck-Verteilung. Die mittlere Ener-
gie einer Gitterschwingung (oberhalb der Nullpunkt-
senergie) betrigt damit

_ ho
- ehw/kBT _ 1 :

(€)
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Fiir hohe Temperaturen, T >> fi® /kg konnen wir die
Exponentialfunktion entwickeln und erhalten

 kgT
 ho’

(m)

d.h. die mittlere Phononenzahl ist - bei hohen Tem-
peraturen - proportional zur Temperatur. Dies ent-
spricht dem klassischen Resultat.

Fiir die mittlere Energie erhalten wir entsprechend
(&) = kpT,

in Ubereinstimmung mit dem semiklassischen Aqui-
partitionsprinzip.

4.4.4 Zustandsdichte

Um die gesamte in Kristallschwingungen gespei-
cherte Energie zu berechnen, miissen wir iiber samt-
liche Schwingungsfreiheitsgrade summieren. Wie
bereits erwihnt, gehdren zu jedem Wellenvektor
3 Polarisationsfreiheitsgrade. Insgesamt miissen im
Kristall pro Atom 3 Schwingungsmoden existieren.

m=3
m=2
m=1
Q © %m=0

Abbildung 4.49: Schwingungsmoden in einer linea-
ren Kette.

Wir betrachten hier den kontinuierlichen Grenzfall,
in dem die Summe iiber alle Freiheitsgrade zu einem
Integral iiber eine kontinuierliche Verteilung wird.
Im Frequenzraum berechnet man die Energie als In-
tegral iiber alle Moden:

ho

Hier bezeichnet D) (@) die Zustandsdichte, also die
Anzahl Zustinde deren Frequenz zwischen w und
® + do liegt. Fir die Berechnung dieser Grofie
betrachten wir zunichst die Zustandsdichte im k-
Raum.

Die Anzahl der Schwingungsmoden ist abhidngig
von den Randbedingungen. Abb. 4.49 zeigt den Fall
der festen Randbedingungen. Hier ist die Zahl der
unterscheidbaren Moden N — 1, wenn man die fixen
Atome an den Enden der Kette mitrechnet.

<

Abbildung 4.50: Lineare Kette mit periodischen
Randbedingungen.

Meist verwendet man aber periodische Randbedin-
gungen, d.h. man verlangt, dass die Schwingungen
im direkten Raum periodisch sind, u; = w1y, mit
einer Periode L = Na, wobei N > 1. Diese Periode
entspricht z.B. der Grofle des Kristalls. Man ‘biegt’
also den Kristall in einer hoheren Dimension zu ei-
nem Ring, wie in Abb. 4.50 gezeigt. Dies ist ein
niitzliches Hilfsmittel, welches die mathematische
Behandlung vereinfacht, auch wenn es nicht der phy-
sikalischen Wirklichkeit entspricht.

Pro Intervall Ak = 27/L existiert ein erlaubter k-
Wert; bis zu einem maximalen Wert &k sind es somit
k L
Z= = —k.
2n/L  2m
Die Zustandsdichte im Frequenzraum ist somit
dZ dzZ | dk L | dk
Dw)=2—=2—|—|=—|—
(@) do dk |dw T |dw
Der Faktor 2 und das Betragszeichen beriicksichti-

gen, dass negative und positive k-Werte die gleichen
Schwingungsfrequenzen aufweisen.
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LI @ Kristall

L>>a
.

periodische Randbedingungen

# Zustinde
mitk <k
max

Abbildung 4.51: Zustinde im k-Raum.

Im 3D reziproken Raum treten Wellenvektoren mit
den Komponenten

mit n,,, = 0,1,...N auf. Der Abstand zwischen 2
Werten betrigt somit wiederum Ak = 27 /L. Die Zu-
standsdichte (pro Polarisation) im k-Raum wird da-
mit

1 Vv
Dk)=———==—
(k) (2rx/L)3 83
mit V = L3 dem Volumen des betrachteten Kristalls.
Die Dichte (im k-Raum) ist somit konstant und pro-
portional zum Volumen des Kristalls.

Die gesamte Zahl von Zustinden, deren Wellenvek-
tor kleiner ist als k., ergibt sich damit aus der kon-
stanten Dichte, multipliziert mit dem Volumen einer
Kugel mit Radius k4, zu

ar 5 L\’ 4z 3
3 e =\ 2 ) 3 o
;3 vV

max6n2'

Die Zustandsdichte im Frequenzraum ist gegeben
durch die Ableitung nach w:

D(®) = dN(®) _dN(k) dk _ K dk

do dk do 2 dw

wobei der Index ., weggelassen wurde. Die Zu-

standsdichte und damit der Energieinhalt und die

spezifische Wirme konnen damit berechnet werden,
wenn die Dispersionsrelation @ (k) bekannt ist.

N(kpax) = D(k)

, (4.5)

4.4.5 Debye-Modell

Die Dispersionsrelationen kdnnen experimentell be-
stimmt werden, oder sie konnen berechnet werden.
Ein besonders einfaches und erfolgreiches Modell
fiir die Zustandsdichte ist dasjenige von Debye>. Es
beruht auf der Annahme einer konstanten Schallge-
schwindigkeit vy, was fiir die Dispersionsrelation

(0]
ow=vk oder k=—
Vs
und damit
dk_ 1
do v,
ergibt.
W
e,
o
0 T >
0 mi/2a k m/a
Abbildung 4.52: Vereinfachte Dispersion im Debye-
Modell.

Wie in Abb. 4.52 gezeigt, ist dies eine gute Ndherung
fiir akustische Phononen und kleine Wellenvektoren,
wo die Schallgeschwindigkeit konstant ist. Abwei-
chungen sind zu erwarten, wenn kurze Wellenldngen
und optische Phononen relevant sind.

Mit dieser Nédherung wird die Zustandsdichte
K dk w?
D(w)=V =

e
Die Zustandsdichte wichst somit quadratisch mit der
Frequenz. Im Debye-Modell wird aulerdem ange-
nommen, dass vg und damit die Zustandsdichte im
k-Raum isotrop sei.

(4.6)

Wie bereits bei der klassischen Behandlung der Git-
terschwingungen diskutiert, gibt es aber einen ma-
ximalen Wert fiir den Wellenvektor, der physika-
lisch sinnvoll ist, und der dem Rand der ersten Bril-
louinzone entspricht. An diesem Punkt sinkt die Zu-
standsdichte auf 0. Die Form der Brillouinzone wird

SPeter Debye (1884 — 1966) Nobelpreis 1936
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im Debye Modell durch eine Kugel ersetzt, wobei
der Radius kp der Kugel so gewihlt wird, dass die
Zahl der Moden innerhalb dieser Kugel der Zahl
der Moden im Kristall entspricht, d.h. (ohne Beriick-
sichtigung der Polarisation) gleich der Anzahl N der
Atome im Kristall:

N— <L >3477k3 _ (Lkp)®

o) 3P en2

sodass

B V6r2iN B \3/67r2N

k
D L % )

wobei V = L3 das Kristallvolumen darstellt. Die zu-
gehorige Grenzfrequenz betrigt

3/ 672N
S V .
Diese ist somit (sinnvollerweise) nur von der Dichte
N/V (Zahl der Atome pro Volumen) abhéngig, und

nicht von der Anzahl Zellen oder dem Kristallvolu-
men.

Wp =V

Abbildung 4.53: Zustandsdichte im Debye-Modell.

Im Debye-Modell ist die Zustandsdichte also

V-2 firw< o
D((!)) _ { 212y} D

0 fura)>a)D'

Die gesamte Energie der Gitterschwingungen erhal-
ten wir durch Integration iiber simtliche Frequenzen
als

v ho
0 271-2‘}3 eho/kgT _ 1~

“.7

Im Rahmen des Debye-Modells nehmen wir auf3er-
dem an, dass die Schallgeschwindigkeit vy nicht von
der Polarisation abhingt. Dann konnen wir die ge-
samte Energie erhalten, indem wir den Ausdruck
(4.7) mit der Anzahl 3 der Polarisationsfreiheitsgra-
de multiplizieren.

3Vh v w?
v= 272y3 /0 do eho/ksT 1"

Die Integration wird tibersichtlicher, wenn man das
Verhiltnis aus Phononen-Energie i@ zu thermischer
Energie kgT substituiert als

x—h—w odera)—ka—T
 kgT T h
und
kgT
do =dx—.
0] x 5

Damit wird das Integral

wp 0]
do

3 kBT 4/XD x3
S dx
0 eho/ksT 1 h 0 e —1

und die Energie

_ 3VigT* /”’ x (4.8)
0 .

= x .
22031 et —1

4.4.6 Debye-Temperatur

Die obere Integrationsgrenze

hiwp 6
Xp=— = —
P ke T
bezeichnet das Verhiltnis aus der Debye-Energie
hwp und der thermischen Energie. Hier bezeichnet
0 die Debye-Temperatur

G_hwp_@3 672N
kg kg v

4.9)

d.h. das Temperaturdquivalent der Debye-Frequenz.
Unterhalb dieser Temperatur machen sich bei der
spezifischen Wirme Quanteneffekte bemerkbar. Fiir
Temperaturen oberhalb der Debye-Temperatur sind
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Li Be B C N 0 F Ne
344 1440 2230 75
0.85 | 2.00 0.27 | 1.29
Na Mg Al Si P S Cl Ar
158 400 Tieftemperaturgrenze von 8, in Kelvin 428 645 92
1.41 | 1.56 Wirmeleitzahl bei 300 K, in W cm- ! K-! 2.37 | 1.48

K Ca Sc Ti Vv Cr Mn Fe Co

Ni Cu Zn Ga Ge As Se Br Kr

91 230 360. | 420 380 630 410 470 445 450 343 327 320 374 282 90 72
1.02 016 { 0.22 } 0.31 | 0.94 | 0.08 | 0.80 | 1.00 | 0.91 | 4.01 | 1.16 J 0.41 J0.60 | 0.50 ] 0.02
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Snw | Sb Te I Xe
56 147 §280 | 291 }275 |450 600 §480 {274 225 J209 §108 §200 j211 153 64
0.58 017 | 023 | 0.54 | 1.38 | 051 | 1.17 |1.50 | 0.72 | 4.29 | 0.97 | 0.82 | 0.67 | 0.24 ]| 0.02

Cs Ba La 3 | Hf Ta w Re Os Ir

38 1107 § 142 § 25201240 §400 ¥ 430 500 §420
0.36 0.14 | 0.23 | 0.58 | 1.74 | 0.48 | 0.88 | 1.47

240 165 719 } 785 §105 119
072 | 3.17 0.46 | 0.35 | 0.08

Fr Ra Ac

Ce Pr Nd Pm Sm Eu

0.11 ]| 0.12 ] 0.16 0.13

Gd Tb Dy Ho Er Tm Yb Lu

200 210 120§ 210
011 | 0.11§ 0.11 J 0.16 | 0.14 | 0.17 | 0.35 | 0.16

Th Pa u Np Pu Am

163 207
0.54 0.28 | 0.06 | 0.07

Cm Bk cf Es Fm Md No Lr

Tabelle 4.2: Debye-Temperatur der Elemente.

alle Moden angeregt, da ja oberhalb der Debye-
Frequenz keine Moden existieren.

Gemal Gleichung (4.9) ist die Debye-Temperatur
proportional zur Schallgeschwindigkeit des Mate-
rials und somit hoher fiir harte Materialien. Wie
in Tabelle 4.2 gezeigt, haben Metalle Debye-
Temperaturen, die nahe bei der Raumtemperatur lie-
gen. Das Maximum wird erreicht beim Diamant,
wihrend die Edelgase, welche Van der Waals Kiri-
stalle bilden und damit relativ weich sind, eine re-
lativ niedrige Debye-Temperatur haben. Das gleiche
gilt fiir die Alkalimetalle, welche sehr weich sind.

Mit dieser Definition wird

N _Q_hvs367r2N
D=7 TtV TV
0\ (v, \’ 6N
T)  \kgT 7

oder

Einsetzen dieses Ausdrucks in (4.8) ergibt die ge-
speicherte Energie

T\® [* 3
U:9kBTN(6> /Ddx X (4.10)
0

e —1’

wobei x =i /kpT .

4.4.7 Spezifische Wirme im Debye-Modell

Praktisch misst man nie den gesamten Energiein-
halt, sondern die Anderung der Temperatur pro zu-
gefithrte Energieeinheit, resp. die spezifische Wir-
me, d.h. die Anderung der Energie pro Temperatur-
einheit. Der Ausgangspunkt ist der Ausdruck (4.8)
fiir die thermische Energie,

_ 3Vh o w’
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Damit wird
o = W, o
V' dr — ar2mv Jo eho/ksT _
3Vh2 wp w4 eh(l)/kBT
- 2ntvikpT? /0 (eho/ksT — 1)2'
Mit Hilfe von
kgT kgT
=x—dw=dx—
T T

und (4.9), resp.

g _ () 6TN
=%

erhilt man

3Vi? kgT\> [ xer
Cv = 23,72 / dx 2
2023k T2\ 0 ) Jo e 1)

3 X 4 x
_ 3Vk23<k3> T3/Ddx x"e i
2r vsh 0 (er—1)
T\> @ xte
= 9kgN | — / dx——.
’ <9) 0 (e —1)°

Fiir hohe Temperaturen (d.h. kleines x) kann die Ex-
ponentialfunktion genihert werden als e¢* =~ 1+ x
(im Nenner), respektive 1 im Zihler. Damit wird die
Wirmekapaziit

3
T D
9kgN () / dxx?
0 0
3

T
= 3kgN (9) x3, = 3kgN.

Q

Cy

Bezogen auf ein Mol, d.h. N — N erhélt man

J

R~?2 .
3 5MolK

Cy =

Dies entspricht auch dem Resultat der klassischen
Mechanik, unabhéngig vom Material.

Tatsdchlich findet man experimentell fiir viele Ma-
terialien einen Wert in dieser Groflenordnung, so-
fern die Temperatur geniigend hoch ist. Abb. 4.54
zeigt den Verlauf fiir Germanium und Silizium. Ab

Theorie 3R Experiment

spezifische Warmekapazitat

1
00

T T T T > 2 oo -
0 0.2 04 0.6 0.8 1 Temperatur in K

reduzierte Temperatur T/6

Abbildung 4.54: Temperaturabhédngigkeit der spezi-
fischen Wirme im Debye-Modell
und im Experiment.

etwa 300 K sind alle Gitterschwingungen vollstdn-
dig angeregt und die Quantisierung spielt keine Rol-
le mehr.

Fiir tiefere Temperaturen 7 < 0 hingegen fillt die
spezifische Wirme stark ab und geht gegen Null, wie
in Abb. 4.54 gezeigt. Dies ist ein Effekt der Quanten-
mechanik, der durch das Debye-Modell gut reprodu-
ziert wird.

/8
02 0L 06 08 10 12 14 16 1B 20 22 24 28
T T T T T T T T T T T T T T
o | Cd Na K8 S = e
Ha | &80
Tl 3”@ - s og & v

it
T T B, Ag, KCL, 20, NaCl, Cu, AL, Cafy, ©

2l
2
u =g
T
o
= wn
R LI L

w -~

C¥n (I und IT)
[ )

|1 SO T T T OO T I
12 146 15 18 20 22 24 2E
L]

L1 148 ) LA
0 02 &L 06 08 10

Abbildung 4.55: Temperaturabhéngigkeit der spezi-
fischen Wirme fiir verschiedene
Materialien.

Viele Materialien zeigen eine Temperaturabhéngig-
keit der spezifischen Warme, welche recht gut mit
dem Debye-Modell iibereinstimmt. Abb. 4.55 fasst
eine grofle Zahl von Messdaten zusammen. Die Kur-
ven I wurden hier der Ubersichtlichkeit halber in
horizontaler Richtung, die Kurven III in vertikaler
Richtung verschoben. Wie Abb. 4.55 zeigt, ndhert
sich die Molwérme fiir hohe Temperaturen dem klas-
sischen Wert an. Fiir niedrige Temperaturen erhilt

110



4 Gitterschwingungen und Phononen

man aber wesentlich tiefere Werte, welche fiir 7 — 0
gegen Null gehen.

4.4.8 Das T° Gesetz

Fiir kleine Temperaturen, 7’ < 0 oder x >> 1 kann der
Ausdruck (4.10) fiir die Energie U weiter vereinfacht
werden, indem man die obere Grenze xp = 6 /T des
Integrals gegen unendlich gehen ldsst: fiir x > 1
wird der Integrand wegen der Exponentialfunktion
sehr klein und der Fehler, der durch die erweiterte
Integrationsgrenze entsteht, vernachlédssigbar. Damit
wird aus (4.10)

U= 9kBTN< )/dx

Fiir die Integration hilft die Summenformel fiir die
geometrische Reihe

X1

1 1

N i
~a a—1

mit a = ¢*. Damit wird

/oo dx x = /w dxx3Ze*“
0 e —1 0 r
= Z/ dxx3e™~.
S 0

Fiir das Integral findet man in einer Tabelle

) mx" "
ax
/ dxx"e™ = ¢ Z —r'ar“
Fiir m = 3,a = —s erhalten wir
oo 3 (_1)r6x37r
d 3 —sx — X .
/0 xx’e e ;)—(3—r)!(—s)’“

An der oberen Grenze des Integrals (x — o) ver-
schwindet die Exponentialfunktion. An der unteren
Grenze (x = 0) verschwinden alle Terme in der Sum-
me, auBBer r = 3. Damit wird

6
/ dxxS —sx _

und
X 1 T
d =6) - ="
/o Yo ~ s+ 15’

wobei fiir die Summe wiederum auf eine For-
melsammlung verwiesen werden muss.

Damit wird die Energie

3t T 3
U= —kgTN

und die Wirmekapazitit

T\’ T\
keN (=) =234ksN (=) .
¥ (i5) =20 ()

Diese Form ist als Debye’sches T3 Gesetz oder De-
bye’sche T3 Niherung bekannt. Es kann qualita-
tiv leicht interpretiert werden: bei einer Temperatur
T sind diejenigen Moden aktiviert, deren Schwin-
gungsfrequenz kleiner sind als kg7 /i (— 4.4.9).

av 127
dT 5

Ccy —

2223

d
s
@

FesJes ArTon

889

ezifische Warme in mJ Mol ! Grad !

Sp

444

Abbildung 4.56: Wirmekapazitiit von festem Argon
bei tiefer Temperatur.

Ein schones Beispiel fiir dieses 73 Verhalten wird
von Argon geliefert, wie in Abb. 4.56 gezeigt. Die
gute Ubereinstimmung mag zunichst erstaunen, ist
das Modell doch relativ einfach. So widerspricht z.B.
die Annahme einer konstanten Schallgeschwindig-
keit der Tatsache, dass die Schallgeschwindigkeit an
der Oberfldache der Brillouin-Zone gegen Null geht.
Die Moden in diesem Bereich sind aber gerade die
mit den hochsten Energien und deshalb bei tiefen
Temperaturen praktisch nicht mehr angeregt. Der
Temperaturbereich, der hier gezeigt wird, liegt um
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mehr als eine GroBenordnung unterhalb der Debye-
Temperatur von Argon (04, = 92K). Das Debye’sche
T3-Gesetz ist oft gut fir T < ®p/50 anwendbar,
denn bei tiefen Temperaturen werden nur langwel-
lige akustische Phononen angeregt.

4.4.9 Vereinfachtes Modell

Man kann das T Gesetz auch mit Hilfe eines noch
einfacheren Modells herleiten. Dazu nimmt man an,
dass alle Moden, deren Phononenenergie klein ist
gegeniiber der thermischen Energie, 7@ < kgT voll-
standig angeregt sind, alle Moden mit hoherer Ener-
gie gar nicht. Fiir eine Dispersionsrelation @ = v k
bedeutet dies fiir die Wellenvektoren: Alle Moden
mit Wellenvektor

kgT
hvy

sind vollstindig angeregt, alle kurzwelligeren (d.h.
hoherfrequenten) Moden gar nicht. Die maximale
Wellenzahl ist proportional zur Frequenz und damit
zur Temperatur.

k<kr=

Wie wir bereits diskutiert hatten, ist die Zahl der Mo-
den, deren Wellenzahl kleiner ist als ein Maximal-
wert kr gegeben durch die Zahl der Punkte im In-
nern der entsprechenden Kugel im reziproken Raum
und damit zur dritten Potenz von k7. Bei Temperatu-
ren weit oberhalb der Debye-Temperatur 6 sind alle
Moden vollstindig angeregt; die Zahl der angeregten
Moden betrigt dann 3N und die Energie entspricht
dem klassischen Grenzwert 3NkgT . Bei Temperatu-
ren unterhalb der Debye-Temperatur sollte die Zahl
der angeregten Moden mit (7'/60)* abnehmen. Damit
betrigt die Energie in diesem Modell

3
T
U =3NkgT <9) .

Die spezifische Wirme wird damit

dU T\’
=Y Nk (2
T NB(9>

Die T3-Abhingigkeit spiegelt also einfach wieder,
dass die Anzahl der Moden in einer Kugel des k-
Raumes proportional zur dritten Potenz des Radius
dieser Kugel ist.

4.4.10 Das Einstein-Modell

Im Debye-Modell hatten wir angenommen, dass die
Zustandsdichte im k-Raum konstant sei. Einstein®
hat ein noch einfacheres Modell aufgestellt, wo al-
le Phononen die gleiche Energie haben.

D(w)

Einstein

Debye

1))

Abbildung 4.57: Vergleich der Zustandsdichten in
den Modellen von Einstein und De-
bye.

Hier ist die Zustandsdichte also eine 5-Funktion. Die
Energie wird dann

3Nhw

Damit wird die Wirmekapazitit

dU
v our

h 2 hco/kBT
— 3Nk (“’) @
kgT (eha)/kBT _ 1)

Auch hier kann man eine reduzierte Temperatur
©®, = i /kp einfiihren und erhélt

0, 2 e®/T
Cy = 3R <T> 7(e®e/T B 1)2 .

Wir betrachten zunidchst den Grenzfall kgT > hw,
d.h. T > ©,. Dann kann die Exponentialfunktion
entwickelt werden und wir erhalten

3R

Mol’

d.h. das klassische Dulong-Petit’sche Gesetz. Bei
hohen Temperaturen ergibt die Einstein’sche Ni-
herung also das gleiche Resultat wie die Debye-
Néherung.

4.12)

Cy = 3NkB =

6 Albert Einstein (1879 - 1955) Nobelpreis 1921

112



4 Gitterschwingungen und Phononen

Bei tiefen Temperaturen, kT < i@, kann die 1 in
(4.11) gegeniiber der Exponentialfunktion vernach-
lassigt werden. Wir erhalten

I _
Cy < —e h(l)/kBT’

T2

also einen exponentiellen Abfall.

Debye
Einstein

spezifische Wirmekapazitit in J/(Mol K)

I I I I L
02 04 0.6 0.8 1

reduzierte Temperatur T/

Abbildung 4.58: Temperaturabhédngigkeit der spezi-
fischen Wirme in den Modellen
von Einstein und Debye.

Bei tiefen Temperaturen passen die experimentellen
Resultate besser auf die Theorie von Debye, da die
Zustandsdichte der Phononen niedriger Energie bes-
ser durch die Debye-Theorie beschrieben wird.

< L[] Lo~
S s S =

£ | Daten: Diamant - T

w 4 T t

O . .

= },)‘ ‘Elnsteln-ModeII

S 3 7
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2 2
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X

9] ,‘9‘1

5 o
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=

Reduzierte Temperatur T/0.

Abbildung 4.59: Vergleich der Zustandsdichten in
den Modellen von Einstein und De-
bye.

Das Einstein Modell ist besser geeignet fiir die Be-
schreibung optischer Phononen, wo die Zustands-
dichte stiarker auf eine Frequenz konzentriert ist.
Abb. 4.59 vergleicht als Beispiel die Vorhersage des
Einstein-Modells mit den Daten fiir Diamant.

4.4.11 Reale Zustandsdichten

Die einfachen Modelle, die wir bisher diskutiert ha-
ben, konnen die Realitiit nicht exakt wiedergeben.
Die wirklichen Zustandsdichten enthalten z.B. im-
mer Singularititen: wenn die Gruppengeschwindig-
keit gegen null geht, v, = dw/dk — 0, wie z.B. mei-
stens am Rand der Brillouin-Zone, dann geht nach
Gleichung (4.5) die Zustandsdichte gegen unend-
lich:

K1

—— oo,
272 vy

kK dk

Dlo) =V 5w =

2{w)

(& ]
Abbildung 4.60: Reale Zustandsdichte.

Beim Modell der linearen Kette, z.B., ist die Disper-
sionsrelation

Die Zustandsdichte wird dann (in 1D)

de 1 M 1
do do/dk \ Cacos’’

Offenbar erhdlt man eine Divergenz z.B. an der
Zonengrenze, wo k — 7/a, d.h. wo die Gruppen-
geschwindigkeit verschwindet. Diese Divergenzen
werden als Van Howe’ Singularititen bezeichnet.

D(w) <

In drei Dimensionen erhilt man die Zustandsdichte
wiederum am einfachsten im k-Raum. Da hier die
Zustandsdichte konstant ist, benotigt man lediglich
das Volumen zwischen den beiden Flichen mit Fre-
quenz @ und w+d . Es ist fiir jeden Zweig der Dis-
persionsrelation einzeln auszurechnen.

7Léon Charles Van Hove (1924 - 1990)
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w+dw

w
1
V/ m=V_G

k

X

Abbildung 4.61: Abstand zwischen Iso-Frequenz-
flachen.

Der Abstand im k-Raum zwischen den beiden Iso-
frequenzflichen bei @ und w + dw betragt
dk 1
do v
Damit wird die Zustandsdichte
Vv 1
D(w) = @/dswg,

wobei dS, das Flichenelement darstellt und v die
Gruppengeschwindigkeit fiir die entsprechende Fre-
quenz.

Flachenelement

Abbildung 4.62: Isofrequenzfliche in 3D.

Das Integral 14uft tiber die gesamte Isofrequenzfla-
che (— Abb. 4.62). Die Gruppengeschwindigkeit
kann an den Réndern der BZ =0 werden. Dann wird
der Integrand singulédr (van Hove-Singularitit). Die-
ses Ergebnis wird auch bei den elektronischen Bén-
dern gebraucht.

Auch in drei Dimensionen hat die Zustandsdichte of-
fenbar immer dann Singularititen, wenn die Grup-
pengeschwindigkeit gegen Null geht, wie z.B. im
obigen Modell an der Grenze der Brillouin-Zone.
Solche Fille treten in realen Systemen recht hiufig
auf.

4.4.12 Beispiele und Diskussion
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Abbildung 4.63: Dispersion und Zustandsdichte fiir
Si und Ge.

Abb. 4.63 zeigt als Beispiel die Dispersionsrelatio-
nen fiir Si und Ge. Die Projektion der Linien auf
die vertikale Achse ergibt die Zustandsdichte. Offen-
sichtlich tritt bei den optischen Phononen eine sehr
hohe Zustandsdichte auf. Die beiden Zustandsdich-
ten sehen sehr dhnlich aus, da die beiden Materiali-
en die gleiche Struktur besitzen. Ge hat die grofe-
re Atommasse und deshalb die niedrigeren Schwin-
gungsfrequenzen.

D(w) D(v) = 2m D(w) D(y) = 21 D(w)
\

Ag NaCl Diamant | \|

wp _ ! f VD;: T NB

Frequenz w [s7] Frequenz v [HZ] Frequenz v [HZ]

Abbildung 4.64: Zustandsdichten fiir Silber, Koch-
salz und Diamant.

Abb. 4.64 zeigt drei weitere Beispiele von Zustands-
dichten typischer Festkorper. Diamant besitzt offen-
bar eine sehr hohe Zustandsdichte bei den hoch-
sten Frequenzen. Einstein hatte sein Modell anhand
dieses Systems untersucht; hier ist die Ubereinstim-
mung mit am Besten.

Der Grund fiir den guten Erfolg des Debye Modells
bei tiefen Temperaturen trotz dieser grolen Differen-
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zen in der Zustandsdichte liegt darin, dass die Moden
im Bereich der Divergenzen bei tiefen Temperaturen
kaum mehr angeregt werden.

# Phononen pro Frequenzeinheit

300D(w)<n> D(w)<n>
T/6=0.1 30D(w)<n> T/6=3
T/6=0.3
3D(w)

Abbildung 4.65: Anregungsdichte bei unterschiedli-
chen Temperaturen.

Die abnehmende Bedeutung der Phononen hoher
Frequenz sieht man z.B., wenn man die Anzahl Pho-
nonen pro Frequenzintervall betrachtet. Diese erhilt
man als Produkt aus Zustandsdichte D(®) und Be-
setzungszahl (n). Abb. 4.65 zeigt diese Grofen fiir
das Debye-Modell. Es zeigt, dass mit abnehmen-
der Temperatur die maximale Zahl der Phononen
pro Frequenzintervall bei immer tieferen Frequenzen
auftritt.

4.5 Anharmonische Effekte

4.5.1 Potenzial

Bisher haben wir im Potenzial der Atompositionen
nur den quadratischen Term beriicksichtigt. Dies hat
eine Reihe von Konsequenzen fiir die Resultate:

* Wir erhalten harmonische Wellen, die Eigen-
funktionen des Hamiltonoperators sind. Es gibt
keine Wechselwirkungen zwischen den Moden.

* Das Volumen des Kristalls ist nicht temperatur-
abhingig, d.h. der Warmeausdehnungskoeffizi-
ent verschwindet.

* Die elastischen Konstanten sind nicht abhéngig
von Druck und Temperatur und sind identisch
fiir adiabatische oder isotherme Bedingungen.

* Die spezifische Wiarme néhert sich fiir hohe
Temperaturen dem klassischen Wert an.

Wi

Abbildung 4.66: Anharmonisches Potenzial.

Echte Potenziale sind aber nie iiber den ganzen Be-
reich harmonisch. Abb. 4.66 zeigt ein typisches Po-
tenzial. In der Nihe des Minimums kann es als
Taylor-Reihe entwickelt werden:

1L, 1 3

Ux)=Up+ zupx” — —u3x’ +...

2 6
Wihrend die harmonische Niherung in der Néhe des
Gleichgewichts, d.h. fiir kleine Auslenkungen x, eine
gute Niherung darstellt, findet man fiir hohere An-
regungen immer eine Abweichung. Typischerweise
wird das Potenzial dann fiir kleinere Absténde stei-
ler, fiir groBere flacher. Somit verschiebt sich die
mittlere Aufenthaltswahrscheinlichkeit nach aufien.

Die oben erwihnten Punkte werden alle ungiiltig:

* Anharmonische Terme koppeln die Phononen.
So konnen z.B. 2 Phononen addiert werden zu
einem hoher-energetischen Phonon, s = @, +
1.

» Korper dehnen sich mit zunehmender Tempe-
ratur aus (Wiarmeausdehnung).

* Die elastischen Konstanten werden abhingig
von Druck und Temperatur.

4.5.2 Wirmeausdehnung

Tatsédchlich zeigen die meisten Festkorper eine Wr-
meausdehnung, d.h. das Volumen nimmt mit der
Temperatur zu.
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Abbildung 4.67: Wirmeausdehnung von festem Ar-
gon.

Die Wirmeausdehnung ist proportional zum Term
dritter Ordnung des Potenzials, dem niedrigsten
Term, welcher die Symmetrie des Potenzials stort:
er sorgt dafiir, dass bei hoher angeregten Zustinden
der Schwerpunkt bei grofleren Distanzen liegt. Abb.
4.67 zeigt als Beispiel die Warmeausdehnung von
festem Argon. Der Effekt soll hier nicht quantitativ
diskutiert werden; es sollen aber einige Aspekte der
Symmetrie diskutiert werden.

Das Potenzial und damit der Warmeausdehnungs-
koeffizient ist in Kristallen im allgemeinen aniso-
trop. Eine Kugel wird durch eine Temperaturerho-
hung deshalb in ein Ellipsoid verformt.

Warmeausdehnung 4¥——/

%ﬁ’d%(h)

Volumenelement

Abbildung 4.68: Wirmeausdehnung.

Ein Punkt (x,y,z) geht durch die Erwidrmung in den
Punkt (x + dx,y + dy,z + dz) iiber, wobei die Ver-

schiebung (dx,dy,dz) gegeben ist durch

d dx Bii Bz Bz X
a7 dy | =1 B2 B Bz || »
dz Biz B B3 z

und der symmetrische (B12 = B21) Tensor () den
linearen Wirmeausdehnungskoeffizienten darstellt.
Wie tiblich lisst sich dieser Tensor in einem Koordi-
natensystem schreiben, in dem er diagonal wird. Die
entsprechenden Richtungen sind gegeben durch die
Symmetrie des Kristalls und die Diagonalelemente
heifen Hauptausdehnungskoeffizienten f3;.

Falls in einem Kristall Symmetrieachsen vorhanden
sind, miissen die Hauptachsen entlang der Symme-
trieachsen orientiert sein.

Gt

Abbildung 4.69: Orientierung der Hauptwerte bei
Symmetrie.

Ist die Zihligkeit dieser Achsen > 2, so miissen
die Hauptwerte senkrecht zu dieser Achse identisch
sein. In einem kubischen Kristall sind die drei Ko-
effizienten deshalb aus Symmetriegriinden identisch
und die Wirmeausdehnung isotrop.

Tabelle. 4.3 zeigt einige Wéirmeausdehnungsko-
effizienten fiir axial symmetrische wie auch fiir
nichtaxiale Systeme.

Fiir praktische Anwendungen ist es oft ausreichend,
von einer linearen Ausdehnung auszugehen. Eine
Linge ¢ dndert sich damit mit der Temperatur 7 wie

UT) =Lo(1+ ap(T —Tp)).

Hier stellt ¢y die Referenzlinge bei der Temperatur
Ty dar. Der lineare Ausdehnungskoeffizient a, ist so-
mit

1 d¢

OCp — %ﬁ
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Kristall Symmetrie b1 Bit -
B B Ba
NaCl kub. 40 - —
CaFy kub. 19 — —
Cd hexag. 17 49 =
Zn hexag. i4 55 —
Kalkspat trigonal —6 26 —
Quarz trigonal 19 9 -
Kunststoff * axial (Deoh) 79,8 73,5 —
Aragonit rhomb. 10 16 33
Chrysoberyll thomb. 6,0 6,0 5,2

* Polystyrol, auf die funffache Linge verstreckt.

Tabelle 4.3: Thermische Ausdehnungskoeffizienten
fiir unterschiedliche Materialien. Ein-
heiten: 107 0K~

Dehnt sich der Korper in alle 3 Richtungen gleich
stark aus, so @ndert sich das Volumen um

V—Vo AV ((+A0P -3
Vo v B
_ L+38A- -85t
3 T

Die relative Anderung des Volumens entspricht so-
mit dem dreifachen der Anderung der Liingen.

Die temperaturabhingige Ausdehnung kann als Mit-
tel iiber die Besetzung der Zustinde berechnet wer-
den:

f-l-wxe—U(x)/kBde

oo

- [F= oUW kT g

(x)

Fiir ein harmonisches Potenzial gilt aus Symmetrie-
griinden (x) = 0, unabhingig von der Temperatur.
Bei einem anharmonischen Potenzial hingegen wird
fiir niedrige Temperaturen

lu

<X> = *%kBT.
2uj3
Dies entspricht einem linearen Wiarmeausdehnungs-
koeffizienten proportional zu u3, d.h. zum Koeffizi-
ent dritter Ordnung im Potenzial, also zum ersten

nichtharmonischen Term.

4.6 Wirmeleitung

Wirme ist nicht ortsgebunden, sondern sie breitet
sich diffusionsartig aus, bis alle miteinander in Kon-
takt stehenden Bereiche eines Systems die gleiche
Temperatur aufweisen (— 0°" Hauptsatz der Ther-
modynamik). Obwohl die mikroskopische Ursache
dafiir als zuféllige Bewegung atomarer Teilchen ver-
standen werden kann, erfolgt der makroskopische
Transport gerichtet und deterministisch.

4.6.1 Grundlagen

Wirmeenergie kann durch Strahlung, Leitung oder
Stromung (Konvektion) transportiert werden; hier
wird nur die Wirmeleitung behandelt. Diese erfolgt
nur in Materie, ist aber nicht mit deren makroskopi-
scher Bewegung verbunden, sondern nur mit Ener-
gieiibertragung durch Sté8e. Dieses Kapitel behan-
delt nur die Wirmeleitung in Isolatoren. In Metallen
liefern die Elektronen den wichtigsten Beitrag zur
Wirmeleitung. Da dieser in Isolatoren entfillt, do-
miniert in diesem Fall der Beitrag der Gitterschwin-
gungen.

schr heill kalt

O O('EOOOOOOGO

000%n 0000000
o%po 000000
000000000000

Abbildung 4.70: Wirmeleitung.

Wirmetransport tritt dann auf, wenn die Temperatur
nicht homogen ist. Er ist so gerichtet, dass er zu ei-
ner Verringerung des Temperaturgefilles fiihrt. Da-
bei werden wir zwischen stationidren und nichtsta-
tiondren Problemen unterscheiden. Stationédre Pro-
bleme werden durch inhomogene Randbedingungen
charakterisiert, nichtstationire durch eine inhomo-
gene Anfangsbedingung. Inhomogene Randbedin-
gungen konnen durch Wirmequellen wie z. B. Heiz-
drihte erzeugt werden.
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heisses
Ende

AL~

kaltes
Ende

Abbildung 4.71: Gasmodell der Wairmeleitung:
Energietransport ohne Massen-
transport.

Bei der Wirmeleitung in einem Festkorper findet ein
Transport von Wirme ohne Massentransport statt.
Dies kommt dadurch zustande, dass an einem En-
de eines geschlossenen Behilters (resp. Festkorpers)
die Teilchen erwidrmt werden, am anderen Ende ge-
kiihlt (— Abb. 4.71). Dadurch bewegen sich gleich
viele Teilchen nach links wie nach rechts, so dass
kein Massentransport stattfindet. Die Teilchen, wel-
che sich nach rechts bewegen, haben jedoch im
Durchschnitt die hohere Energie, so dass ein Ener-
gietransport nach rechts stattfindet.

4.6.2 Wirmeleitfihigkeit

Die transportierte Wiarmemenge ist
Q=CAT

mit der Warmekapazitit C und der Temperaturdiffe-
renz AT.

heiBBes Reservoir kaltes Reservoir

Temperatur

Ort
Abbildung 4.72: Wirme wird iiber einen Stab zwi-

schen 2 Wirmereservoiren iibertra-
gen.

In einem 1D Wirmeleiter mit Querschnittsfliche A

und Linge ¢ (— Abb. 4.72) kann man den Warme-
strom I = dQ/dt schreiben als

-1

I AA
14

In 3 Dimensionen, in differenzieller Form, wird dies
zu

j=—AVT.

Hier ist die Warmestromdichte f die transportierte
Wirmemenge pro Zeit und Querschnittsfliche:

O CAT
I AT AT
Material AIW/(m-K)
Aluminium 237
Beton 0,19-1,3
Blei 353
Eis 0,592
Eisen 80,4
Glas 0,7-09
Gold 318
Holz (Eiche) 0,15
Holz (Kiefer) 0,11
Kupfer 401
Luft (27 °C) 0,026
Silber 429
Stahl 46
Wasser (27 °C) 0,609

Tabelle 4.4: Wirmeleitkoeffizienten fiir unterschied-
liche Materialien.

Hier stellt

W

M= —

den spezifischen Wirmeleitfihigkeitskoeffizienten
des Materials dar. Sein Kehrwert ist der spezifische
Wirmewiderstand. Tabelle 4.4 zeigt einige typische
Werte fiir unterschiedliche Materialien. Daraus sieht
man unter anderem, dass Metalle weitaus bessere
Wirmeleiter sind als Isolatoren. Dort spielen offen-
sichtlich weitere Prozesse eine Rolle als die hier dis-
kutierten Gitterschwingungen.

Die Wirmeleitung durch Gitterschwingungen kann
im Rahmen eines Modells beschrieben werden, wel-
ches an die kinetische Gastheorie angelehnt ist. Die
Phononen stellen Atome des Gases dar. Geméal der
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kinetischen Gastheorie ist der Wirmeleitkoeffizient
A gegeben durch

1
A« = gCVﬁ,

wobei C die spezifische Wirme der Phononen ist, v
deren Geschwindigkeit, und ¢ die mittlere freic Weg-
lange. Diese wird in erster Linie bestimmt durch die
Streuung an Kristallfehlern und anderen Phononen.

Kristall T:°C | C JemPK™! A Wem 'K £, inA
Quarz" 0 2,00 0.13 10
190 0.55 0.50 540
NaCl 0 1.88 0,07 23
190 1.00 0,27 | 100
aparallel zur optischen Achse

Abbildung 4.73: Freie Weglidngen ¢, berechnet aus
den Wirmeleitkoeffizienten A.

4.6.3 StoBe von Phononen

Ein wirklicher Wéirmetransport durch Phononen
kann nur stattfinden, wenn die Phononen selber ein
thermisches Gleichgewicht mit den iibrigen Frei-
heitsgraden erreichen. Gleichzeitig begrenzen Stofe
die freie Wegldange der Phononen und reduzieren da-
mit die Warmeleitfahigkeit.

° ° ° ° °
° ° ° ° °
k’w M ,0)
° ° R . °
Kristallfehler
L) L) L) L] L)

Abbildung 4.74: Streuung eines Phonons an einem
Gitterfehler.

Wechselwirkungen finden z.B. statt, wenn das Git-
ter nicht ideal ist. Man bezeichnet dies als St6e der
Phononen mit Gitterfehlern. Solche Prozesse konnen
qualitativ leicht verstanden werden, in Analogie zur
Optik: ein Gitterfehler andert den Wellenwiderstand,
d.h. die Brechzahl des Mediums. An solchen Stellen
werden Wellen (teilweise) reflektiert.

Die Stoe der Phononen mit statischen Gitterfehlern
fithren nicht zu einer Anderung der Energie, die Fre-
quenz des einlaufenden und auslaufenden Phonons
sind identisch. Sie bewirken deshalb keine Thermali-
sierung der Energie. Interessanterweise fithren auch
Dreiphononenprozesse,

7€’l +7€)2 = 7537

bei denen die Impulserhaltung gilt, nicht zu einem
thermischen Gleichgewicht oder einem Wirmewi-
derstand.

Das Gleichgewicht mit dem Gitter wird erst erreicht
durch die so genannten Umklapp-Prozesse, wo

7€1+7$2:§3:%§+é,

und G einen Vektor des reziproken Gitters darstellt.

. Brillouinzone
ki,

Ey w2

Abbildung 4.75: Umklapp-Prozess.

Dies geschieht immer dann, wenn der resultierende
Wellenvektor %3 aus der ersten Brillouin-Zone her-
ausragt. Wie in Kap. 4.1.4 diskutiert, sind solche
Wellenvektoren physikalisch ohne Bedeutung und
der Impuls ist immer nur modulo eines Vektors des
reziproken Gitters definiert. Reicht die Summe von
zwei Wellenvektoren einlaufender Phononen iiber
die Brillouinzone hinaus, so entspricht der physikali-
sche Impuls des resultierenden Phonons nicht dieser
mathematischen Summe, sondern einem Wellenvek-
tor 75’3 = 753 — G innerhalb der Brillouinzone, welcher
sich von der Summe um einen Gittervektor -G un-
terscheidet. Prozesse, bei denen G=0 ist, werden
N- oder Normalprozesse genannt.

Umklapp-Prozesse Prozesse konnen im Rahmen des
einfachen Modells, welches wir zu Beginn dieses
Kapitel diskutiert hatten, nicht stattfinden, da bei ei-
ner monotonen Beziehung w(k) die Energie nicht
erhalten bliebe. Solche Umklapp-Prozesse konnen
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jedoch auftreten, wenn anharmonische Terme ver-
schiedene Phononenzweige koppeln. Die Wahr-
scheinlichkeit fiir das Auftreten solcher Prozesse ist
deshalb stark systemabhingig. Es ist jedoch mog-
lich, einige allgemeine Aussagen iiber die Tempera-
turabhingigkeit zu machen.

4.6.4 Freie Weglinge

Bei hohen Temperaturen wird die freie Weglinge vor
allem durch die Phonon-Phonon Streuung begrenzt,
wobei nur U-Prozesse wesentlich beitragen. Diese
finden nur dann statt, wenn der resultierende Wel-
lenvektor k3 = \76'1 —i—%\ ldnger ist als der Radius der
ersten Brillouin-Zone. Phononen, die diese Bedin-
gung erfiillen, haben relativ hohe Energien von der
GroBenordnung kg6 /2. Bei niedrigen Temperaturen
sind nur wenige solche Phononen vorhanden. IThre
Zahl nimmt gemiB Boltzmann mit exp(—6/2T) ab:

1 _ _
<n> — ~e th/QkBT —e @D/ZT‘
ehCl)D/szT _ 1

Die inverse mittlere freie Wegldnge sollte in diesem
Bereich proportional zur Anzahl Phononen sein, de-
ren Energie grofer ist als die halbe Debye-Energie:

% o (#PhononenmitEnergie > ¥>
= 2(%) g
und damit

b(%)

oder, mit der Debye-Temperatur 8 und der Zustands-
dichte D(w) aus Gl. (4.6)

®p
QZE und D<7>°<w12)°<92
wird die freie Weglinge
. 69/2T -1
92

S
&
0/T

S 0 e
[@))]
()
= 1
v X —
$ T
L >

Temperatur T

Abbildung 4.76: Temperaturabhéngigkeit der freien

Weglédnge.
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Abbildung 4.77: Temperaturabhédngigkeit der freien
Wegléinge.

Fiir hohe Temperaturen 7' >> 0 wird die mittlere freie
Weglinge damit indirekt proportional zur Tempera-
tur, £ o< 1/T. Da in diesem Bereich die Wirmekapa-
zitdt nicht stark variiert, erwartet man eine Wirme-
leitfahigkeit A o< 1/T.

Unterhalb der Debye-Temperatur (7T < 6) wichst
die mittlere freie Weglinge exponentiell mit 1/7,

foc /T,

Dies ist in Abb. 4.77 fiir einige einfache Beispie-
le gezeigt. Die exponentielle Zunahme gilt solan-
ge Phonon-Phonon Streuung den dominanten Bei-
trag darstellt. Wenn der Beitrag der Kristallfehler do-
minant wird, wird die freie Weglidnge temperatur-
unabhingig. Die entspricht dem horizontalen Be-
reich der Kurve in Abb. 4.77 fiir 6/T > 30. Streu-
prozesse finden dann nur noch an Kristallfehlern und
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an der Oberflache statt, wo ebenfalls Kristallfehler
vorhanden sind. Bei gut polierten Oberflachen kon-
nen Phononen aber elastisch gestreut werden, sodass
die mittlere freie Weglinge grof3 gegeniiber den Kri-
stalldimensionen wird. Phononen breiten sich dann
ballistisch, also ohne Streuung im Kristall aus.

Die 1/T Abhingigkeit stimmt ebenfalls nicht bei
amorphen Materialien, wie z.B. Quarzglas. In die-
sem Fall ist schon das Konzept eines Phonons et-
was fragwiirdig, da die Bindungsstirke von Atom zu
Atom variiert und die mittlere freie Weglidnge auf-
grund der hohen Defektdichte praktisch nur noch ei-
ner Bindungslinge entspricht. In diesem Fall domi-
niert die Streuung an statischen Gitterfehlern iiber
die Phononen-Phononen Streuung und unsere obi-
gen Annahmen stimmen nicht mehr.

4.6.5 Wirmeleitkoeffizient

) C kinetische Tastheorie
= K=-Cul
-

(O] Ac_fw K
2NE
< 88

[}
o EE
O © :C
E==

Temperatur

Abbildung 4.78: Beitrige zur Wirmeleitung.

Zur Wiarmeleitfahigkeit triagt neben der freien Weg-
linge vor allem auch die Wirmekapazitit C bei.
Nach der kinetischen Gastheorie kann der Wirme-
leitkoeffizient A geschrieben werden als das Produkt

1
A« = gCVE,

Da bei niedrigen Temperaturen, 7 < 6 die Wirme-
kapazitit abnimmt, C o< T3, wird auch die Wirme-
leitfahigkeit wieder geringer, wie in Abb. 4.78 ge-
zeigt.

Bei Temperaturen oberhalb der Debye-Temperatur
ist die Wérmekapazitit C ~ 3R konstant und trigt
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Abbildung 4.79: Temperaturabhéngigkeit des Wiér-
meleitkoeffizienten.

nicht mehr zur Temperaturabhéngigkeit bei, wih-
rend die freie Wegliange abnimmt. Typischerweise
findet man deshalb ein Maximum der Wéirmeleit-
fahigkeit, wie in Abb.4.79 fiir drei Beispiele dar-
gestellt. Fir einfache Kristalle findet man bei ho-
hen Temperaturen tatsdchlich eine Proportionalitit
zu 1/T, wie in diesem einfachen Modell erwartet.
Wenn die Kristalle komplexer werden, und insbe-
sondere unterschiedliche Atome enthalten, wird das
Phononenspektrum komplizierter und das hier ver-
wendete einfache Modell reicht fiir eine korrekte Be-
schreibung nicht mehr aus.

Probenoberflache

104

103

102

Warmeleitkoeffizient K/ Wm-1K-1

10

3 510 20 50700

Temperatur T/K

Abbildung 4.80: Temperaturabhéngigkeit des Wiér-
meleitkoeffizienten in unterschied-
lichen Proben.

Wird die freie Wegldnge vergleichbar mit den Di-
mensionen der Probe, so wird die Phononenaus-
breitung ballistisch und die Wirmeleitung abhéngig
von den Dimensionen der Probe. Abb. 4.80 zeigt
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ein Beispiel, bei dem die mittlere freie Weglidnge
durch tiefe Temperaturen und einen guten Kristall
erhoht wurde. Dariiber hinaus wurde der Probenkri-
stall isotopenrein gemacht, um Streuprozesse auf-
grund der statistischen Massenverteilung zu reduzie-
ren. Die Tatsache, dass die beiden Kristalle unter-
schiedliche Wirmeleitkoeffizienten aufweisen, deu-
tet darauf hin, dass die mittlere freie Weglidnge gro-
Ber ist als die Dimensionen des Kristalls. Deshalb
werden im kleineren Kristall die Phononen rascher
gestreut.

4.6.6 Isotopeneffekte

Ein Beitrag zur Streuung kann auch die Isotopenver-
teilung sein: unterschiedliche Massen der Gitterato-
me wirken fiir Phononen genau wie Gitterfehler und
fiihren zu Streuung. Diese Effekte konnen recht grof3
sein, auch bei geringen Anteilen ‘falscher’ Isotope.
In Diamant, z.B., wo in natiirlicher Haufigkeit ca.
1% der Atome '3C Isotope sind, kann die Wirme-
leitfahigkeit nochmals um > 50 % gesteigert wer-
den wenn die Diamanten aus isotopenreinem Koh-
lenstoff erzeugt werden.

A

74Ge

10004
nat. Ge

K/Wm-K?

100+

10 00
Temperatur in K

Abbildung 4.81: Temperaturabhéngigkeit des Wiér-
meleitkoeffizienten in Proben mit
unterschiedlicher Isotopenzusam-
mensetzung.

Abb. 4.81 zeigt als dhnliches Beispiel Daten von
Germanium in unterschiedlichen Zusammensetzun-
gen. Im Bereich der maximalen Leitfdhigkeit leitet
die isotopenreine Probe etwa doppelt so gut wie die
Probe natiirlicher Haufigkeit.

Die Wirmeleitfahigkeit hingt nicht nur von der frei-
en Weglidnge ab, sondern auch von der Wirmekapa-

zitét. Bei tiefen Temperaturen, wo die freie Weglédn-
ge Temperatur-unabhéngig wird, erwarten wir somit
ein dhnliches Verhalten wie bei der Warmekapazitit,
die mit der dritten Potenz der Temperatur abnimmt,

()

Abb. 4.81 zeigt dieses Verhalten fiir zwei unter-
schiedliche Germaniumkristalle. Insbesondere beim
reinen "*Ge Kristall, wo Streuprozesse an Fehlstel-
len selten sind, passt diese Beziehung sehr gut.
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