
8 Magnetismus

Dieses Kapitel bringt eine kurze Zusammenfassung
unterschiedlicher magnetischer Eigenschaften von
kondensierter Materie, insbesondere von Festkör-
pern. Auch diese Eigenschaften sind im Rahmen
der klassischen Physik nicht erklärbar. Nach dem
Bohr–van Leeuwen Theorem1 wird die Energie ei-
nes dynamischen Systems, das sich nicht drehen
kann, von einem Magnetfeld nicht beeinflusst. Des-
halb ist im thermischen Gleichgewicht auch keine
Magnetisierung vorhanden. Die Erklärungsmodelle
benötigen deshalb einen quantenmechanischen An-
satz.

8.1 Diamagnetismus und
Paramagnetismus

Wir diskutieren zunächst diejenigen magnetischen
Phänomene, welche auf die Wechselwirkung von lo-
kalisierten Elektronen, wie z.B. einzelnen Atomen
oder Molekülen mit einem externen Magnetfeld zu-
rückgeführt werden können. In Kapitel 8.2 behan-
deln wir die Bewegung freier Elektronen in einem
Magnetfeld und ab Kapitel 8.3 wird die Wechselwir-
kung zwischen einzelnen magnetischen Momenten
berücksichtigt.

8.1.1 Phänomenologie

Bringt man Materie in ein Magnetfeld, so ändert die-
ses die Eigenschaften des Materials. Umgekehrt be-
einflusst das Material die magnetische Flussdichte:
Während die magnetische Flussdichte ~B im Vakuum
sich nur durch den konstanten Faktor µ0 vom Ma-
gnetfeld ~H unterscheidet, erhält man in einem Ma-
terial einen zusätzlichen Beitrag ~M, welcher als Ma-

1Niels Bohr, Dissertation 1911 und Hendrika Johanna van
Leeuwen, Dissertation 1919.

gnetisierung bezeichnet wird. Die Flussdichte

~B = µ0(~H + ~M) [B] = T =
Vs
m2

ergibt sich jetzt als Summe von ~H und der Magneti-
sierung ~M, wiederum mit dem Proportionalitätsfak-
tor

µ0 = 4p10�7 Vs
Am

.

M
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�m < 0
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Abbildung 8.1: Addition und Subtraktion von ex-
ternem Feld und Magnetisierung in
paramagnetischen und diamagneti-
schen Materialien.

In vielen Fällen ist die Magnetisierung proportional
zum angelegten Magnetfeld ~H, so dass

~B = µ0(~H + ~M) = µµ0~H = (1+ cm)µ0~H,

wobei die magnetische Suszeptibilität cm definiert
ist als das Verhältnis der Magnetisierung zum an-
gelegten Magnetfeld ~H, ~M = cm~H. Die Magnetisie-
rung kann als Dichte aus magnetischen Momenten
geschrieben werden,

~M =
1
V Â

i
~
µi,

wobei die Summe über das Volumen V läuft. Die
einzelnen Momente~

µi kann man sich als elementare
Kreisströme (Einheit: [µi] = Am2) vorstellen.
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8 Magnetismus

Cu! -9.6 . 10-6 
Ag! -25.2 . 10-6 
Sb! -70.9 . 10-6 

Bi! -156.0 . 10-6 
NaCl! -13.9 . 10-6 
SiO2! -29.6 . 10-6 
H2O! -7 . 10-6 
N2(g)! -6.75 . 10-9 

diamagnetisch paramagnetisch

Al! +20.85 . 10-6 
Pt! +257.4 . 10-6 
Mn! +883.0 . 10-6 
V! +340.0 . 10-6 
O2(g)! +1.9 . 10-6 
O2(fl)! +3.6 . 10-3 

Abbildung 8.2: Magnetische Suszeptibilität: nume-
rische Werte.

Ist die Suszeptibilität positiv, so spricht man von pa-
ramagnetischen Materialien, ist sie negativ, bezeich-
net man das Material als diamagnetisch.

Typische Suszeptibilitäten für diamagnetische Fest-
körper oder Flüssigkeiten (z. B. Wasser) liegen im
Bereich von 10�5 �10�4. Für Gase ist der Wert etwa
3 Größenordnungen kleiner, wie man aufgrund der
geringeren Dichte erwarten würde. Bei paramagne-
tischen Materialien liegt die Suszeptibilität im Be-
reich 10�5 �4 ·10�3.

Die Magnetisierung ändert im Magnetfeld die Ener-
gie des Systems; die potenzielle Energiedichte einer
Magnetisierung ist

Epot

V
= �~M ·~B. (8.1)

Deshalb wirkt auf magnetische Materialien in einem
inhomogenen Magnetfeld eine Kraftdichte

~f =
~F
V

= � 1
V

~—Epot = M~—|B|,

wobei wir angenommen haben, dass die Magnetisie-
rung homogen und parallel zum Feld orientiert sei.
Bei paramagnetischen Materialien (cm > 0) ist das
Vorzeichen von M · B positiv. Die Kraft wirkt dem-
nach in Richtung des positiven Gradienten. Bei dia-
magnetischen Materialien ist cm < 0 und auf die ent-
sprechenden Materialien wirkt eine Kraft in Rich-
tung des schwachen Feldes.

Nach Gleichung (8.1) kann die Magnetisierung auch
differentiell geschrieben werden, als die Ableitung
der magnetischen Energiedichte nach der Flussdich-
te.

8.1.2 Diamagnetismus

Die magnetischen Eigenschaften der Materie kön-
nen in drei Arten unterteilt werden: Diamagnetis-
mus, Paramagnetismus und Ferromagnetismus. In
freien Atomen treten nur Diamagnetismus und Para-
magnetismus auf. Sie beschreiben eine lineare Ände-
rung des lokalen Magnetfeldes aufgrund eines ver-
stärkenden Beitrags des Materials im Falle von Pa-
ramagnetismus, respektive eines entgegengesetzten
Beitrags im Falle des Diamagnetismus. Jedes Mate-
rial besitzt diamagnetische Eigenschaften, aber para-
magnetische Beiträge sind, falls sie existieren, mei-
stens stärker als die diamagnetischen.

Für Isolatoren mit gefüllten Schalen kann Diama-
gnetismus relativ leicht in einem klassischen Bild
erklärt werden, indem man das Larmor’sche2 Theo-
rem verwendet. Dieses sagt, dass sich die Bewegung
eines Systems im Magnetfeld durch eine konstante
Rotation von der Bewegung ohne Magnetfeld unter-
scheidet. Die Rotationsgeschwindigkeit ist propor-
tional zum Verhältnis von Ladung zu Masse und zur
Stärke des Magnetfeldes. Demnach kann der Ein-
fluss des Magnetfeldes auf gepaarte Elektronen in
erster Näherung so beschrieben werden, dass diese
eine zusätzliche Präzessionsbewegung um das äuße-
re Feld ausführen.

H diamagnetische
Abschirmung

Bd induzierte
Präzession

geschlossene Elektronenhülle
~kugelsymmetrische Elektronendichte

Abbildung 8.3: Diamagnetische Abschirmung.

Dies kann man sich klassisch so vorstellen, dass
durch das Einschalten des Magnetfeldes ein ringför-
miges elektrisches Feld ~—⇥~E erzeugt wird, welches
den Ringstrom bewirkt. Die Kreisgeschwindigkeit
dieses Ringstroms ist gegeben durch das Bohr’sche

2Joseph Larmor (1857 - 1942)

157



8 Magnetismus

Magneton:

w =
e

2m
B.

Um konkrete Zahlen zu erhalten, setzen wir B = 1T:

w(B = 1T) =
1,6 ·10�19

2 ·9,1 ·10�31
AsVs
kgm2

= 8,8 ·1010 Js
kgm2 = 8,8 ·1010s�1.

Dies entspricht einer Frequenz w/2p = 14 GHz.

Ein Elektron, das mit dieser Frequenz um den Kern
rotiert, erzeugt einen Kreisstrom

I = Ladung·Frequenz = �e
eB
2m

1
2p

.

Das zugehörige magnetische Moment µ3 beträgt

µ = phr2iI = �Zhr2ie2B
4m

,

wobei

hr2i = hx2i+ hy2i

das mittlere Abstandsquadrat des Elektrons vom
Kern in der xy Ebene senkrecht zum Magnetfeld dar-
stellt. Für eine kugelsymmetrische Ladungsvertei-
lung mit mittlerem Radius r0 können wir das Integral
berechnen aus

hr2
0i = hx2i+ hy2i+ hz2i

und

hx2i = hy2i = hz2i.

Somit wird

hr2i =
2
3
hr2

0i.

Damit erhält man für ein Material mit Elektronen-
dichte N eine Magnetisierung

M =
N
V

µ = �N
V

Zhr2
0i

e2B
6m

.

! ! He! -1.9! Li+! -0.7
F-! -9.4! Ne! -7.2! Na+! -6.1
Cl -! -24.2! Ar! -19.4! K+! -14.6
Br -! -34.5! Kr! -28! Rb+! -22.0
I -! -50.6! Xe! -43! Cs+! -35.1

Abbildung 8.4: Molare Suszeptibilitäten in Einhei-
ten von 10�6cm3/Mol.

Die entsprechende Volumensuszeptibilität beträgt
somit

cm =
M
H

= �µ0NZhr2
0i

e2

6m
.

Diese Formel ist in recht guter Übereinstimmung mit
den experimentell bei Edelgasen gefundenen Wer-
ten. Für die schwereren Edelgase nimmt die Suszep-
tibilität ungefähr mit der Kernladungszahl zu. Bei
den isoelektronischen Atomen / Ionen nimmt sie mit
der Kernladungszahl ab, da hierbei der Radius hr2

0i
der Elektronenschale kleiner wird.

8.1.3 Paramagnetismus freier Atome

Elementare magnetische Momente sind immer an
einen Drehimpuls eines geladenen Teilchens gekop-
pelt. Prinzipiell existieren drei Beiträge: Der Elek-
tronenspin S, der Bahndrehimpuls L der Elektronen,
sowie der Kernspin I. Für den Paramagnetismus we-
sentlich sind lediglich der Bahn- und Spindrehim-
puls der Elektronen.

P
m = -1 0 1

Abbildung 8.5: Vollständig gefüllte p-Schale.

Da Elektronenspins in vollständig gefüllten Schalen
paarweise antiparallel angeordnet sind, heben sich
deren magnetische Momente gegenseitig auf. Das
gleiche gilt für den Bahndrehimpuls von vollständig
gefüllten Schalen.

3Vorsicht! Das Symbol µ wird sowohl für die relative Suszep-
tibilität eines Materials wie auch für den Betrag des magne-
tischen Dipolmoments verwendet. Die beiden sind jedoch
nicht identisch!
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8 Magnetismus

Atome Moleküle

H N O O O

Abbildung 8.6: Teilweise gefüllte Schalen von Ato-
men und Molekülen.

Lediglich bei Atomen mit nur teilweise gefüllten
Schalen, sowie bei wenigen Molekülen bleibt ein
nicht verschwindender Beitrag zum Paramagnetis-
mus. Diese haben ein permanentes magnetisches
Moment pro Atom von

µ = g h̄J = �gµBJ,

wobei g das gyromagnetische Verhältnis, also das
Verhältnis zwischen magnetischem Moment und
Drehimpuls bezeichnet, J den gesamten Drehimpuls,
µB = eh/2m das Bohr’sche Magneton und g einen
Proportionalitätsfaktor der vom System abhängt. Für
den Spin eines freien Elektrons ist g = 2.0023, und
für Atome und Moleküle hängt der Wert davon ab,
wie die verschiedenen Drehimpuls-Quellen beitra-
gen. Der Wertebereich liegt zwischen etwa -50 und
+50, mit dem größten Teil der Werte im Bereich von
1-4.

S s1
s2

s3
s4

J
L

S

Abbildung 8.7: Addition von Drehimpulsen.

Grundsätzlich ist der gesamte elektronische Drehim-
puls ~J die Vektorsumme der Beiträge des Bahndreh-
impulses~L und des Spins ~S,

~J =~L+~S.

Diese sind gegeben als die Vektorsumme der Beiträ-
ge der einzelnen Elektronen,

~S = Â
i

~Si.

8.1.4 Hund’sche Regeln

Spin und Bahndrehimpuls für den Grundzustand
freier Atome kann man häufig berechnen, indem
man die Hund’schen Regeln benutzt. Für diese Re-
geln existieren Ausnahmen und sie können zwar be-
gründet, aber nicht bewiesen werden.

0. Hund’sche Regel

Volle Schalen und Unterschalen haben den Ge-
samtdrehimpuls Null.

Dies gilt für den Bahndrehimpuls ebenso wie für
den Spin, auch bei Atomen, bei denen die einzel-
nen Elektronen einen endlichen Bahndrehimpuls be-
sitzen.

1. Hund’sche Regel

Die Gesamtenergie des Systems ist für parallele
Spins kleiner als für antiparallele Spins. Dies ist ein
spezielles Beispiel für die erste Hund’sche Regel,
welche besagt:

Der Gesamtspin S nimmt den maximal mögli-
chen Wert an, die Spins ~Si der einzelnen Elek-
tronen stehen also möglichst parallel.

Wenn die Spins parallel stehen, so wird die Symme-
trie des Systems maximal.

2. Hund’sche Regel:

Der Bahndrehimpuls ist maximal, unter Beach-
tung der Regel 1.
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8 Magnetismus

Abbildung 8.8: Grundzustand bei teilweise gefüllter
d-Schale.

3. Hund’sche Regel:

Der Gesamtdrehimpuls ist für höchstens 50%
gefüllte Schalen minimal, J = |L � S| und für
>50% gefüllte Schalen maximal, J = L+S.

In Atomen mit teilweise gefüllter d-Schale kann der
Spin maximal 5/2, der Bahndrehimpuls 3 und der
Gesamtdrehimpuls maximal 4 erreichen. Die ent-
sprechenden Zustände werden durch Termsymbole
wie 4F3/2 beschrieben bei denen der obere Index die
Spin-Multiplizität 2S + 1 beschreibt, der Buchstabe
den Bahndrehimpuls nach dem Schema S, P, D, F, G,
H . . . und der untere Index den Gesamtdrehimpuls J.

Abbildung 8.9: Grundzustand bei teilweise gefüllter
f-Schale.

Bei Elementen mit teilweise gefüllter f-Schale er-
reicht der Spin maximal den Wert S = 7/2, der Bahn-
drehimpuls L = 6, und der Gesamtdrehimpuls J = 8.

8.1.5 Statistik im Magnetfeld

In einem Magnetfeld wird die Entartung dieser Zu-
stände bezüglich der magnetischen Quantenzahl mS,

resp. mJ aufgehoben. Für die magnetischen Eigen-
schaften eines Materials ist nicht nur der Grundzu-
stand relevant, sondern alle Zustände, die unter den
gegebenen Parametern besetzt sind.

B

B

E

Abbildung 8.10: Energie und Besetzungszahlen der
Spin-Zustände im Magnetfeld.

Für einen Spin J besitzen die Zustände mit der Quan-
tenzahl mJ im Magnetfeld die Energie

E = �~B ·~µ = �mJgµBB.

Bei einer endlichen Temperatur T ist für ein Ensem-
ble von identischen Spins 1/2 die Besetzungswahr-
scheinlichkeit

N± =
e± ~B·~µ

kBT

e
~B·~µ
kBT + e� ~B·~µ

kBT

.

Eine Größenordnung für diese Abhängigkeit erhält
man aus dem Betrag eines elementaren magneti-
schen Momentes:

µB = 5,8 ·10�5 eV
T

⇡ 0,93 ·10�23 J
T

und der Boltzmann-Konstanten

kB = 8,6 ·10�5 eV
K

= 1,38 ·10�23 J
K

.

Somit werden die thermische Energie kBT und die
Zeeman-Energie µBB bei B = 1 T und T = 1 K etwa
vergleichbar. Man muss somit zu sehr tiefen Tem-
peraturen und hohen Magnetfeldern gehen, bis ein
System vollständig polarisiert ist.

Für Systeme mit Drehimpuls J > 1/2 erhält man die
Magnetisierung als Funktion der Temperatur durch
Mittelung über die Besetzung aller Zustände. Die
Besetzung des Zustandes mit der Quantenzahl mJ ist
nach Boltzmann

pm =
e� gJ µBmJ B

kBT

ÂJ
mJ=�J e� gJ µBmJ B

kBT

160



8 Magnetismus
M

ag
ne

tis
ch

es
 M

om
en

t μ
 / 
μ B

B / T [T/K]
0 1 2 3 4

0

1

2

3

4

5

6

7
S=7/2 (Gd3+)

S=5/2 (Fe3+)

S=3/2 (Cr3+)

Abbildung 8.11: Brillouin-Funktion für unterschied-
liche Spins als Funktion der Ma-
gnetfeldstärke.

und der Erwartungswert für die z-Komponente ist
damit

hmJi = Â
mJ

mJ pm.

Aufsummieren dieser Reihe ergibt für die Magneti-
sierung

M =
N
V

gµBBJ

✓
gJµBJB

kBT

◆
.

Hier stellt

BJ(x) =
2J +1

2J
coth

✓
2J +1

2J
x
◆

� 1
2J

coth
✓

1
2J

x
◆

die Brillouin-Funktion dar und

x =
gJµBJB

kBT

das Verhältnis von magnetischer zu thermischer
Energie.

Bei hohen Temperaturen (x ⌧ 1) sind die un-
terschiedlichen Zustände fast gleich stark besetzt.

Die Besetzungszahldifferenz und die Magnetisie-
rung kann in diesem Bereich angenähert werden. Für
einen Spin ½ beträgt sie

~M =~
µ

(N+ �N�)

V
⇡~

µ

N
V

~B ·~µ
kBT

.

Für ein allgemeineres System mit Drehimpuls J wird
im Hochtemperaturbereich

cm =
M
H

=
N
V

p2
µ

2
B

3kBT
=

1
µ0

C
T

mit

p = g
p

J(J +1).

C wird als Curie-Konstante bezeichnet, während p
die Stärke des magnetischen Momentes über eine ef-
fektive Zahl Bohr’scher Magnetonen charakterisiert.

Gd(C2H5SO4)3 . 9H2O
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Abbildung 8.12: Kehrwert der magnetischen Sus-
zeptibilität als Funktion der Tempe-
ratur.

Diese indirekte Proportionalität der magnetischen
Suszeptibilität eines paramagnetischen Systems zur
Temperatur wird als Curie-Gesetz bezeichnet. Abb.
8.12 zeigt als Beispiel die Temperaturabhängigkeit
des Kehrwerts der Suszeptibilität eines Gadolinium-
salzes als Funktion der Temperatur.

8.1.6 Übersicht seltene Erden

Die größten Curie-Konstanten findet man allgemein
in Übergangsmetallen und vor allem seltenen Erden,
da deren teilweise gefüllte d-, respektive f-Schalen
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8 Magnetismus

Abbildung 8.13: Die Elemente mit der größten ma-
gnetischen Suszeptibilität.

große Bahndrehimpulse und große Gesamtspins er-
geben.

Die effektive Magnetonenzahl kann man hier aus der
Elektronenkonfiguration berechnen. Dabei müssen
jeweils die effektiven g-Faktoren, welche sich aus
der Kombination von Spin- und Bahndrehimpuls er-
geben, berücksichtigt werden: p = gJ

p
J(J +1).

Abbildung 8.14: Effektive Magnetonenzahlen für
die Lanthaniden.

Abb. 8.14 zeigt den Vergleich zwischen berech-
neten und gemessenen effektive Magnetonenzah-

len für seltene Erden. Man findet eine generell gu-
te Übereinstimmung zwischen Theorie und Experi-
ment. Der Maximalwert wird bei Dy3+ erreicht. Die
größten Abweichungen findet man bei Sm und Eu.
Diese sind darauf zurückzuführen, dass hier mehre-
re elektronische Zustände mit fast gleicher Energie
in der Nähe des Grundzustandes liegen. Die gemes-
sene Magnetisierung stammt somit nicht von einer
einzelnen elektronischen Konfiguration und die ver-
wendete Theorie ist deshalb nicht anwendbar.

8.1.7 Einfluss des Kristallfeldes

Bisher haben wir effektiv nur freie Ionen, respek-
tive Atome diskutiert. Befinden sie sich in einem
Kristallgitter, so besitzt der Hamiltonoperator nicht
mehr die Symmetrie des freien Raums, sondern es
treten zusätzliche Terme auf, welche die Wechsel-
wirkung mit Nachbaratomen beschreiben und des-
halb eine niedrigere Symmetrie aufweisen. Diese
Terme treten im Hamiltonoperator als Funktionen
des Ortsoperators auf, welcher nicht mit dem Dreh-
impulsoperator vertauscht. Die Eigenzustände sind
dann nicht mehr Eigenzustände des Drehimpulsope-
rators, d.h. der Erwartungswert des Drehimpulses für
diese Zustände verschwindet. Man sagt der Drehim-
puls sei gequencht.

z
xy

z
xy

z
xy

+ + +

+ + +

pz

px, py

Abbildung 8.15: Aufhebung der Entartung durch
asymmetrische Ladungsverteilung.

In diesen Systemen scheint der Bahndrehimpuls un-
terdrückt zu sein und die magnetischen Eigenschaf-
ten werden nur noch durch den Spins bestimmt.

Abb. 8.16 zeigt, dass für die Eisengruppe die Über-
einstimmung zwischen Theorie und Experiment
ganz gut wird, wenn man bei der Berechnung an-
stelle des Gesamt-Drehimpulses J nur den Spins S
berücksichtigt. Auch in Systemen mit gequenchtem
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8 Magnetismus

20 24 28

Abbildung 8.16: Effektive Magnetonenzahlen für
die Elemente der Eisengruppe.

Bahndrehimpuls findet man einen Beitrag des Bahn-
drehimpulses zum Paramagnetismus, der aber we-
sentlich schwächer ist als der oben diskutierte. Er be-
ruht darauf, dass der Drehimpulsoperator zwar keine
Diagonalelemente besitzt, aber er kann Außerdiago-
nalelemente zwischen dem Grundzustand und nied-
rig liegenden angeregten Zuständen haben.

H = V f(r) + Ekin

L
L

|s>

|o>
6

Abbildung 8.17: Zeeman-Wechselwirkung als Stö-
rung.

Dadurch wird die Zeemanwechselwirkung in der Ei-
genbasis des ungestörten Hamiltonoperators nicht-
diagonal und die Eigenfunktionen des gestörten Ha-
miltonoperators enthalten wieder einen Drehimpuls.
Die resultierende Suszeptibilität wird

c =
N|hs|µz|0i|2

DU
,

wobei hs| einen angeregten Zustand darstellt, |0i
den Grundzustand, µz die Komponente des magne-
tischen Dipolmoments in Feldrichtung, und DU ei-
ne Energiedifferenz. Für den Fall hoher Temperatur,
respektive niedriger Aufspaltungsenergie D ⌧ kBT
wird diese Energie zu kBT , im umgekehrten Fall zur
halben Aufspaltungsenergie D/2. Die Suszeptibilität

ist in diesem Fall nicht von der Temperatur abhän-
gig. Man spricht von Van Vleck’schem Paramagne-
tismus.

8.1.8 Freies Elektronengas

In Metallen würde man aufgrund der großen Zahl
von Elektronen zunächst einen starken Paramagne-
tismus erwarten. In Wirklichkeit findet man aber
einen relativ geringen Effekt. Diese Diskrepanz
hängt eng mit der Diskrepanz zusammen, die bei der
spezifischen Wärme (Kap. 5.3.5) gefunden wurde:
die meisten Elektronen können nicht in benachbarte
Zustände wechseln, da die Zustände bis zur Fermi-
energie vollständig besetzt sind.

Der Paramagnetismus von Metallen kann gut im
Modell freier Elektronen diskutiert werden. Dafür
betrachten wir an dieser Stelle nur den Einfluss des
Spins. Den Effekt des Magnetfeldes auf die Orbitale
diskutieren wir in Kapitel 8.2.

E

k

EF
B

EFermi

EZeeman

Abbildung 8.18: Verschiebung der Spinzustände von
freuen Elektronen im Magnetfeld.

Man stellt die unterschiedlichen Spinzustände gerne
als zwei Hälften eines Bandes dar. Durch die Wech-
selwirkung zwischen den magnetischen Momenten
der Elektronen und dem äußeren Magnetfeld werden
die beiden halben Bänder jeweils um eine Zeeman-
energie verschoben. Die Fermienergie ist aber für
beide Bandhälften gleich, so dass sich in der einen
Bandhälfte mehr Elektronen befinden, als in der an-
deren. Die Differenz ist in der Größenordnung des
Verhältnisses der magnetischen Energie µB zur Fer-
mienergie eF ,

DN
N

⇡ EZeemann

EFermi
=

µB
EF

.
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Damit wird die Magnetisierung

M =
DN
V

µ =
N
V

µ

2B
eF

und die Suszeptibilität

c =
M
H

=
N
V

µ0
µ

2

eF
,

also indirekt proportional zur Fermienergie und un-
abhängig von der Temperatur.

0.1 eV

Zustandsdichte

Energie

EF

Abbildung 8.19: Zustandsdichte und Ferminiveau
für die Subbänder von Ni.

Abb. 8.19 zeigt als Beispiel die berechneten Zu-
standsdichten für die beiden Spin-Bänder von
Nickel4.

Eine vollständige Rechnung, welche den Überschuss
der einen Spinpolarisation über die andere in einem
Magnetfeld bestimmt, läuft völlig analog zur Be-
rechnung der Wärmekapazität, wo wir gefunden hat-
ten, dass ein Bruchteil T/TF aller Elektronen des
Bandes zur Wärmekapazität beiträgt. Man erhält bei
der Integration über das Band einen zusätzlichen
Faktor 3/2. Man muss aber zusätzlich auch den dia-
magnetischen Beitrag der freien Elektronen berück-
sichtigen. Dieser beträgt gerade -1/3 des paramagne-
tischen Beitrages. Somit wird

c ⇡ 3
2

✓
1� 1

3

◆
N
V

µ0
µ

2

eF
=

N
V

µ0
µ

2

eF
,

in Übereinstimmung mit der obigen Schätzung. So-
mit ist die Suszeptibilität temperaturunabhängig und

4Phys. Rev. B 7, 1096 (1973).

ist gegenüber einem System unabhängiger Elektro-
nen um den Faktor T/TF reduziert. Dies gilt aller-
dings nur solange die Temperatur klein ist gegenüber
der Fermitemperatur. Dies ist aber für feste Metalle
immer erfüllt.

8.1.9 Zusammenfassung und Überblick
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Abbildung 8.20: Temperaturabhängigkeit der ma-
gnetischen Suszeptibilität von Me-
tallen, normiert auf die Dichte der
Metalle.

Auch experimentell findet man für die meisten Me-
talle eine nur schwache Temperaturabhängigkeit.
Dies entspricht auch der Erwartung aus dem qua-
litativen Bild: der Überschuss der einen Spinpola-
risation ist direkt durch die Energie im Magnet-
feld gegeben. Ein vollständig polarisiertes System
hätte ein magnetisches Moment Nµ; aufgrund des
Pauli-Prinzips ist aber die Überschusspolarisation
gleich dem Verhältnis von magnetischer zu kineti-
scher Energie, µB/kBTF .

Damit können wir die wichtigsten Formen des Dia-
und Paramagnetismus zusammenfassen. In Metallen
und seltenen Erden mit gequenchtem Drehimpuls
ist der Paramagnetismus schwach und relativ wenig
temperaturabhängig (van Vleck’scher Paramagnetis-
mus). In freien Atomen mit ungepaarten Elektronen
oder einem nicht verschwindenden Bahndrehimpuls
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Abbildung 8.21: Vergleich der temperaturab-
hängigen Suszeptibilität von
unterschiedlichen Materialtypen.

ist er sehr viel größer und stark temperaturabhängig.
Der Diamagnetismus, der in allen Elementen auftritt,
hat ein negatives Vorzeichen, ist schwach und weit-
gehend unabhängig von der Temperatur.

8.2 Bahn-Quantisierung in einem
Magnetfeld

8.2.1 Kreisbahnen

Wie bereits bei der Diskussion von Bandstruktu-
ren erwähnt, bewegen sich freie Elektronen in ei-
nem Magnetfeld auf Kreis-, respektive Spiralbah-
nen. Dies folgt direkt aus der Bewegungsgleichung
(5.9)

h̄
d~k
dt

= q
d~r
dt

⇥~B. (8.2)

Somit steht die Lorentzkraft immer senkrecht auf
dem Magnetfeld und auf der Bewegungsrichtung.
Integriert ergibt dies

h̄~k = h̄~k0 +q~r ⇥~B, (8.3)

wobei~k0 eine Konstante darstellt, die für die folgen-
de Rechnung nicht berücksichtigt wird und auf das
Endresultat keinen Einfluss hat. Der zweite Term ist
überall senkrecht zum Magnetfeld und zur Position.

Diese Rechnung ist noch halbklassisch. Den Über-
gang zur Quantenmechanik findet man über die

^

r0

r

. B
k

Abbildung 8.22: Links: Kreisbahn senkrecht
zum Magnetfeld. Rechts: Bahn-
Quantisierung.

Bohr-Sommerfeld Quantisierung für eine stationäre
Bahn:

I
~p ·d~r = (n+ g)h, (8.4)

wobei n eine ganze Zahl ist und g eine Konstante,
die vom Teilchen abhängt und für Elektronen = 1/2
ist.

Der Impuls eines geladenen Teilchens in einem elek-
tromagnetischen Feld ist

~p = ~pkin +~pFeld = h̄~k +q~A.

Dabei ist ~pkin = h̄~k = m~v der kinetische Impuls.

Damit wird das Schleifenintegral (8.4)

h̄
I

~k ·d~r +q
I

~A ·d~r = (n+ g)h. (8.5)

Wir verwenden (8.3) mit k0 = 0, um den Impuls zu
eliminieren

h̄
I

~k ·d~r = q
I ⇣

~r ⇥~B
⌘

·d~r

= �q~B
I

~r ⇥d~r = �2qF,

wobei wir angenommen haben, dass das Magnetfeld
über die Schleife homogen sei. Für die Durchfüh-
rung des Integral berücksichtigt man, dass

I
~r ⇥d~r = 2p~nr2,

wobei ~n der Normalenvektor auf der Fläche ist. Das
Integral entspricht also gerade der doppelten einge-
schlossenen Fläche. F = pr2~B ·~n ist der gesamte ma-
gnetische Fluss durch die Schleife.
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8.2.2 Flussquanten

Das zweite Integral in (8.5) kann mit Hilfe des Sto-
kes’schen Satzes in ein Flächenintegral umgeformt
werden:

q
I

~A ·d~r = q
ZZ ⇣

~—⇥~A
⌘

·d~
s

= q
ZZ

~B ·d~
s = qF,

wobei d~
s ein Flächenelement darstellt, multipliziert

mit dem Normalenvektor. Damit wird das gesamte
Schleifenintegral

I
~p ·d~r = �qF = (n+ g)h,

d.h. die Bahn des Elektrons (q = �e, g = 1/2) ist so
quantisiert, dass der Fluss durch die Bahn

Fn = (n+
1
2
)
h
e

beträgt.

Abbildung 8.23: Quantisierung des magnetischen
Flusses und Bild eines Gitters von
Flussquanten.

Wir erhalten somit eine Reihe von “Elektronenbah-
nen", welche durch die Zahl n der durchgehenden
Flussquanten indiziert sind. Der Betrag eines sol-
chen Flussquants ist

F0 =
h
2e

=
6,63 ·10�34

2 ·1,66 ·10�19
Js
As

= 2,07 ·10�15 Tm2.

Solche Flussquanten sind bekannt bei Supraleitern
vom Typ II, wo sie auch direkt beobachtet werden
können (siehe Abb. 8.23).

Im Folgenden interessiert uns nicht nur die Bahn
im Ortsraum, sondern auch im reziproken (d.h. k�)
Raum. Aus der Bewegungsgleichung (8.2) wissen
wir, dass der k�Vektor senkrecht auf dem Ortsvek-
tor steht und dass die Länge eines Wegelementes Dr
zur Länge eines Wellenvektorelementes proportional
ist:

Dr =
h̄

eB
Dk.

Damit ist die Fläche Sn der Bahn im k�Raum pro-
portional zur Fläche An der Bahn im direkten Raum:

An =

✓
h̄

eB

◆2

Sn.

Wir vergleichen jetzt den magnetischen Fluss durch
die Bahn im direkten und im k�Raum. In einem ho-
mogenen Magnetfeld gilt für die Bahnen

Fn = (n+ g)
h
e

= BAn =
h̄2

e2B
Sn.

Für die Fläche der Bahn im k-Raum gilt damit

Sn = (n+ g)
h
e

e2B
h̄2 = (n+ g)

2peB
h̄

, (8.6)

d.h. die von der Bahn eingeschlossene Fläche ist pro-
portional zur Magnetfeldstärke. Der Radius wird da-
mit

kn =

r
(n+ g)

2eB
h̄

,

er wächst also für große n µ
p

n.

8.2.3 Landau-Zustände

Diese Zustände werden als Landau5-Niveaus be-
zeichnet. Wir berechnen die kinetische Energie

Ekin =
h̄2k2

2m⇤ ,

mit m⇤ als effektive Masse. Wir können den Impuls
durch die Beziehung zwischen Radius und Fläche im

5Lew Dawidowitsch Landau (1908 - 1968)
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k-Raum bestimmen, pk2
n = Sn. Damit wird die Ener-

gie

En = Ekin =
h̄2Sn

2pm⇤ =
h̄2

2pm⇤ (n+ g)
2peB

h̄

= h̄(n+
1
2
)

eB
m⇤ = (n+

1
2
)h̄wc

mit

wc =
eB
m⇤ .

Der niedrigste Zustand hat hier den Index 0, was
die Anzahl Flussquanten bezeichnet, die durch diese
Bahn laufen. Wie bei einem harmonischen Oszillator
finden wir eine unendliche Folge von äquidistanten
Energieniveaus.

kz

E

x

y

Abbildung 8.24: Energien und Bahnkurven von
Landau-Zuständen.

Bisher haben wir nur die zwei Dimensionen senk-
recht zum Magnetfeld berücksichtigt. In drei Dimen-
sionen kommt dazu ein Beitrag der kinetischen Ener-
gie entlang dem Magnetfeld,

E =
h̄2k2

z
2m⇤ +(n+

1
2
)h̄wc.

Elektronen in einem Magnetfeld werden deshalb
durch zwei Quantenzahlen charakterisiert: den Im-
puls parallel zur Feldrichtung und den Drehimpuls
in der gleichen Richtung.

Will man nur die Kreisbewegung senkrecht zum Ma-
gnetfeld beobachten, so kann man dünne Filme ver-
wenden, in denen sich die Elektronen (oder Löcher)
wie in einem zweidimensionalen System verhalten.
Auch in solchen 2D Systemen haben die Niveaus

aber eine endliche Breite, welche durch die Zahl der
Streuprozesse gegeben ist. Experimente, bei denen
man die Effekte der Quantisierung untersucht, fin-
den deshalb immer an sehr reinen Materialien bei
tiefer Temperatur statt, wo die Streuprozesse mini-
miert werden.

8.2.4 Entartung

Natürlich sind diese Bahnen stark entartet. Die Ent-
artung erhalten wir am besten über die Größe der
Bahn. Im direkten Raum wird die Bahn umso klei-
ner, je stärker das Magnetfeld ist, so dass eine grö-
ßere Zahl von Bahnen in der gleichen Fläche Platz
findet. Dies entspricht einem Anstieg der Entartung.

B 6= 0

kx

ky

n = 0 1 2
3

kx

kyB = 0

Abbildung 8.25: Landau-Zustände im k-Raum.

Das gleiche Resultat erhält man auch über eine ent-
sprechende Diskussion im k�Raum. Wie in der lin-
ken Seite von Abb. 8.25 für den Fall ohne Magnet-
feld gezeigt, steht im k�Raum pro Zustand eine
Fläche (in 2D) von dS = (2p/L)2 zur Verfügung.
Rechts ist die Situation im Magnetfeld gezeigt, wo
die stationären Zustände jetzt Kreise sind, deren Flä-
che Sn laut (8.6) µ (n+1/2) zunimmt. Der Flächen-
unterschied zwischen zwei Bahnen n und n + 1 ist
somit

DS = Sn+1 �Sn = 2p

eB
h̄

.

In dieser Fläche befinden sich

D =
DS
dS

=
2p

eB
h̄� 2p

L

�2 =
eB
h

L2

Zustände. Jedes Landau-Niveau ist somit D�fach
entartet. Die Energie der Zustände ist im Magnet-
feld somit nicht mehr kontinuierlich, sondern spaltet
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auf in eine Reihe von diskreten Niveaus. Damit va-
riiert unter anderem auch das Fermi-Niveau mit der
Stärke des Magnetfeldes. Diese Diskretisierung der
Energie ist eine direkte Konsequenz der effektiven
Verkleinerung des Volumens, in dem sich die Elek-
tronen aufhalten können.

8.2.5 Besetzung und Gesamtenergie

En
er

gi
e

0

EF

B1 B2 B3< <

n = 0

n = 1

Abbildung 8.26: Zustandsdichte von Landau-Zu-
ständen und Besetzung in unter-
schiedlichen Magnetfeldern B1 <
B2 < B3.

Abb. 8.26 zeigt, wie die Entartung eines Landau-
Niveaus mit der Stärke des Magnetfeldes zunimmt.
Somit können mit zunehmender Magnetfeldstärke
mehr Elektronen in einem Niveau untergebracht
werden. Gleichzeitig steigt die Energie des Zustan-
des mit der Feldstärke. Die Energie des Gesamtsy-
stems variiert deshalb mit der Magnetfeldstärke auf
eine nicht-monotone Weise.

Betrachten wir zunächst die Situation in einem sehr
starken Magnetfeld, so dass sämtliche N Elektronen
im niedrigsten Landau-Niveau (n = 0) Platz finden.
Das ist möglich, wenn das Magnetfeld größer wird
als

D =
eB
h

L2 > N ! B >
h
e

N
L2 .

Der Term N/L2 stellt eine zweidimensionale Elek-
tronendichte dar. Damit diese Bedingung erfüllt wer-
den kann, sind Felder von einigen T nötig, wenn man
einen Halbleiter mit relativ niedriger Ladungsträger-
dichte benutzt. So lange diese Bedingung erfüllt ist,

s=
2

Magnetfeld B
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Abbildung 8.27: Besetzung der Landau-Niveaus als
Funktion der Magnetfeldstärke.

sinkt die Energie des Gesamtsystems mit abnehmen-
der Stärke des Magnetfeldes.

Sinkt die Magnetfeldstärke unter diesen Wert, so
springt das Ferminiveau zum zweiten Landauniveau.
In Abb. 8.27 ist das bei einer (dimensionslosen) Ma-
gnetfeldstärke von 50 der Fall.

Die Gesamtenergie der Elektronen in vollständig ge-
füllten Landau Niveaus ist

Dh̄wc Â
n

(n+
1
2
) =

1
2

Dh̄wcs2,

wobei s die Zahl der vollständig besetzten Landau-
Niveaus bezeichnet und D die Anzahl Elektronen
pro Niveau, d.h. seine Entartung.

Bei nur teilweise gefüllten Niveaus kommt ein zu-
sätzlicher Beitrag dazu von

h̄wc

✓
s+

1
2

◆
(N � sD) .

Hier stellt sD die Anzahl Elektronen in den vollstän-
dig gefüllten Zuständen dar.

8.2.6 De Haas - van Alphén Effekt

Damit hängt die Gesamtenergie in nicht-monotoner
Weise von der Stärke des Magnetfeldes ab. In Abb.
8.28 zeigt die obere Kurve die Gesamtenergie, die
untere den Beitrag der vollständig gefüllten Zustän-
de an, und der graue Bereich die teilweise gefüllten
Zustände. Wenn die Energie gegen 1/B aufgetragen
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Abbildung 8.28: Gesamte Energie der besetzten
Landauzustände als Funktion der
Magnetfeldstärke.

wird, findet man ein periodisches Verhalten: jeweils
wenn

N
D

=
N

eBL2

h

= n,

mit N der Gesamtzahl der Elektronen eine ganze
Zahl n ergibt, sind n Schalen vollständig gefüllt. Wir
erwarten somit, dass die Gesamtenergie eine Peri-
odizität in 1/B zeigt.

Diese Quantisierung der Energieniveaus in einem
Magnetfeld hat mehrere direkt beobachtbare Konse-
quenzen. So kann man die Periodizität in der Magne-
tisierung beobachten. Diese ist gegeben durch die
Ableitung der freien Energie nach dem Magnetfeld

M = �dU
dB

.

µ = -dU/dB

M
ag

ne
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ie
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ng

100/B

Abbildung 8.29: Oszillatorische Abhängigkeit der
Magnetisierung von der inversen
Magnetfeldstärke.

Somit erwarten wir auch bei der Magnetisierung ei-
ne Periodizität in 1/B. Dies wird als der De Haas -

van Alphén Effekt bezeichnet: bringt man ein Me-
tall in ein starkes Magnetfeld, so ist das magnetische
Moment nicht eine monotone Funktion des äußeren
Magnetfeldes, sondern es enthält eine oszillierende
Komponente.

Magnetfeld B [T]
4,50 4,55 4,60

Abbildung 8.30: Gemessene Abhängigkeit der Ma-
gnetisierung von Gold von der in-
versen Magnetfeldstärke.

8.2.7 Quanten-Hall Effekt

Ein weiteres Resultat ist die nicht-monotone Verän-
derung des Hall-Widerstandes und des elektrischen
Widerstandes in Halbleiterkanälen.
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Abbildung 8.31: Messprinzip und Messresultate für
den ganzzahligen Quanten-Hall Ef-
fekt.

Beide zeigen, wie in Abb. 8.31 dargestellt, als Funk-
tion eines äußeren Potenzials, welches die Ladungs-
trägerdichte beeinflusst, aber auch als Funktion des
Magnetfeldes, ein deutlich nicht-monotones Ver-
halten. Dies ist wiederum auf die diskontinuierli-
che Änderung der Fermi-Fläche beim Füllen eines
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Landau-Niveaus zurückzuführen: die Elektronen an
der Fermi-Fläche sind für die meisten Eigenschaf-
ten eines Materials verantwortlich, da die tiefer lie-
genden nicht auf äußere Störungen reagieren kön-
nen. Wenn das System effektiv quantisiert ist und die
Landau-Niveaus vollständig gefüllt sind, so können
kleine Stöße keine Elektronen streuen.

8.3 Ferromagnetismus

Ferromagnetische Materialien zeigen auch ohne äu-
ßeres Magnetfeld eine Magnetisierung. Dabei han-
delt es sich um einen kooperativen Effekt, er ist also
auf die starke Wechselwirkung zwischen einzelnen
magnetischen Momenten zurückzuführen.

Abbildung 8.32: Festplatte als magnetischer Daten-
speicher und Bitmuster auf der
Festplatte.

Ferromagnetische Materialien haben eine enorme
technische Bedeutung, so z.B. in Elektromotoren,
Generatoren, aber auch in der magnetischen Daten-
speicherung.

8.3.1 Magnetische Ordnung

Im Falle des Diamagnetismus und des Paramagnetis-
mus hatten wir eine lineare Beziehung zwischen äu-
ßerem Magnetfeld und der Magnetisierung der Pro-
be angenommen. Ferromagnetische und verwandte
Materialien hingegen besitzen auch in Abwesenheit
eines äußeren Feldes eine nichtverschwindende Ma-
gnetisierung; würde man ein solches Material als Pa-
ramagnet beschreiben, so müsste man die Suszepti-

bilität unendlich werden:

c =
M
H

=
M
0

= • .

Ferromagnet

Antiferromagnet

Ferrimagnet

Abbildung 8.33: Unterschiedliche Arten magneti-
scher Ordnung.

Ferromagnetismus bedeutet, dass die atomaren ma-
gnetischen Momente im Festkörper parallel ausge-
richtet sind. Daneben gibt es andere Arten von spon-
taner magnetischer Ordnung, z.B. den Antiferroma-
gnetismus, bei dem die Momente entgegengesetzt
ausgerichtet sind. In diesem Fall verschwindet die
makroskopische Magnetisierung. Bei Ferrimagneten
sind identische magnetische Momente parallel aus-
gerichtet, aber jeweils antiparallel zu einem anderen
Typ magnetischer Momente. Die beiden Arten kom-
pensieren sich nicht vollständig, so dass diese Art
von Materialien ebenfalls eine endliche Magnetisie-
rung ergibt.

8.3.2 Austausch-Wechselwirkung

Das Auftreten einer Spontanmagnetisierung kann
man verstehen, wenn man die Kopplung der Spins
untereinander berücksichtigt. Die Grundlage für die-
se Kopplung ist die Austauschwechselwirkung, wel-
che im vierten Semester als Konsequenz des Pauli-
Prinzips eingeführt wurde. Diesen Effekt hatten wir
bei der Diskussion der Gitterenergie bereits ange-
troffen und aus der Diskussion des Wasserstoffa-
toms, respektive Moleküls gesehen, dass er einer ef-
fektiven Kopplung von mehreren eV entspricht.

Die Austauschwechselwirkung kann als eine Fol-
ge des Pauli-Prinzips betrachtet werden: Dieses ver-
langt, dass die Wellenfunktion zweier identischer
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Teilchen antisymmetrisch sein muss. Für zwei Elek-
tronen mit parallelem Spin muss die Zweiteilchen-
Wellenfunktion deshalb anti-symmetrisiert werden:

Y2(r1,r2) = u(r1)v(r2)�u(r2)v(r1),

wobei u, v Einelektronenfunktionen darstellen und
r1, r2 die Koordinaten der Elektronen. Für identische
Positionen verschwindet offenbar die Wellenfunkti-
on,

Y2(r1,r1) = u(r1)v(r1)�u(r1)v(r1) = 0,

d.h. die Wahrscheinlichkeit, zwei Elektronen am
gleichen Ort zu finden ist Null, was einer starken Ab-
stoßung entspricht. Diese Energie ist aber nur dann
vorhanden wenn die Spins der beiden Teilchen im
gleichen Zustand sind. Die Wechselwirkung ist des-
halb spin-abhängig, so dass eine effektive Kopplung
entsteht - die Austauschwechselwirkung. Sie kann in
der Form

HJ = �Jik~Si ·~Sk (8.7)

geschrieben werden. Hier bezeichnen ~Si,k den Spin
der beiden gekoppelten Elektronen und Jik die Stär-
ke der Wechselwirkung. Voraussetzung für die-
sen Ausdruck ist, dass die betreffenden Elektro-
nen räumlich getrennt sind, ihre Orbitale also nicht
zu stark überlappen, und dass auch die Spin-Bahn
Wechselwirkung vernachlässigt werden kann. Diese
Art der Wechselwirkung tritt im Wesentlichen zwi-
schen Atomen auf, welche teilweise gefüllte d- oder
f �Schalen aufweisen. Die Leitungselektronen von
Metallen tragen dazu nicht bei. Die Wechselwirkung
zwischen den lokalisierten magnetischen Momenten
und den freien Elektronen ist in bestimmten Fällen
sehr wichtig, geht aber weit über den Stoff hinaus,
der hier behandelt werden kann.

8.3.3 Molekularfeld-Näherung

Die starke Wechselwirkung zwischen der großen
Zahl von magnetischen Momenten in einem Ma-
gneten kann nicht exakt berücksichtigt werden. Man
verwendet dafür meistens eine sogenannte Moleku-
larfeldtheorie (englisch: mean-field theory). Dabei
wird die Wechselwirkung eines Zentrums mit der

Vielzahl von weiteren Zentren über ein effektives
Feld berücksichtigt, welche den mittleren Einfluss
der Zentren beschreibt. Dieses effektive Feld wird
als räumlich homogen betrachtet, so dass Fluktuatio-
nen nicht betrachtet werden. Eine vorhandene Ma-
gnetisierung M erzeugt auf einen darin enthaltenen
Spin ein effektives Magnetfeld

BE = lM,

wobei BE als Austauschmagnetfeld bezeichnet wird
und l eine Kopplungskonstante darstellt. Umgekehrt
ist die Magnetisierung durch die paramagnetische
Suszeptibilität cp und das lokale Magnetfeld Ba +
BE gegeben

µ0M = cp(Ba +BE).

Setzen wir den Ausdruck für das Austauschfeld ein,
so wird daraus

µ0M = cpBa + cplM

oder

M = Ba
cp

µ0 � cpl

.

Mit der paramagnetischen Suszeptibilität cp = C/T
wird daraus

M = Ba
C

T µ0 �Cl

.

Dieser Ausdruck zeigt, dass die lineare Beziehung
zwischen äußerem Magnetfeld und Magnetisierung
nur für hohe Temperaturen gilt, solange T µ0 > Cl .

8.3.4 Phasenübergang

Die formale Suszeptibilität ist

c =
µ0M
Ba

=
µ0C

T µ0 �Cl

=
C

T �Tc
.

Sie hat demnach eine Singularität bei

T = Tc =
Cl

µ0
. (8.8)

Diese Temperatur Tc wird als Curie-Temperatur be-
zeichnet und markiert das spontane Auftreten einer
Magnetisierung.
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Im Bereich oberhalb der Curie-Temperatur verhält
sich das Material paramagnetisch. Die Suszeptibili-
tät kann für kleine Felder geschrieben werden als

c =
C

T �Tc
.

Dies wird als Curie-Weiß Gesetz bezeichnet. Es
gilt relativ gut für Temperaturen weit oberhalb der
Curie-Temperatur. In der Nähe der Curie Tempera-
tur erhält man mit genaueren Rechnungen

c µ (T �Tc)
�1,33

d.h. der kritische Exponent sollte gleich 1.33 sein.
Experimentelle Daten sind in dieser Größenordnung.

g Tc in K
Fe 1,33 1043
Co 1,21 1388
Ni 1,35 627
Gd 1,3 292

CrO2 1,63 386
CrBr3 1,215 33

Tabelle 8.1: Kritischer Exponent und kritische Tem-
peratur für verschiedene Materialien.

Wir können den Ausdruck (8.8) für die kritische
Temperatur nach der Kopplungskonstante l auflö-
sen:

l =
Tcµ0

C
= 3kB

Tcµ0

Ng2(J(J +1))µ

2
B
.

Für Eisen (Tc = 1000 K, g=2, J=1) ergibt diese For-
mel l ~ 5000, was einem Austauschfeld von ca.
1000 T entspricht. Dies ist wesentlich mehr, als was
die Dipolwechselwirkung ergeben würde: dann wäre
l ⇡ 1. Diese Austauschwechselwirkung ist offenbar
wesentlich stärker als eine direkte magnetische, die
bei Eisen ca. 0.1 T entspricht.

8.3.5 Temperaturabhängigkeit

Wenn wir anstelle der Curie-Näherung für hohe
Temperaturen den vollständigen Ausdruck

M =
N
V

µ

e
Bµ

kBT � e� Bµ

kBT

e
Bµ

kBT + e� Bµ

kBT
=

N
V

µ tanh
Bµ

kBT

benutzen und berücksichtigen, dass ohne äußeres
Magnetfeld, Ba = 0, B = BE = lM, erhalten wir
einen Ausdruck für die spontane Magnetisierung als
Funktion der Temperatur:

M =
N
V

µ tanh
µlM
kBT

.

Dieser Ausdruck kann nicht analytisch nach der Ma-
gnetisierung aufgelöst werden. Wir können jedoch
einen Überblick über die selbstkonsistenten Lösun-
gen erhalten, wenn wir die folgenden reduzierten Va-
riablen für Magnetisierung und Temperatur einfüh-
ren:

m =
MV
Nµ

t =
kBT

Nµ

2
l

.

Damit wird

m = tanh
m
t
. (8.9)

Offensichtlich ist m = 0 immer eine Lösung.

m

tanh mm

1

0
0

tanh
m

t < 1

tanh
m

t > 1

Abbildung 8.34: Grafische Lösung von Gleichung
(8.9).

Für t > 1 ist dies die einzige Lösung. Für t < 1 wird
diese Lösung allerdings instabil. Dafür erhält man
zusätzliche Lösungen 0 < m < 1, wobei m rasch ge-
gen 1 ansteigt. Offenbar ist t = 1 die kritische Tem-
peratur, d.h.

Tc =
Nµ

2
l

V kB
.

Die zweite, nichttriviale Lösung entspricht der Sät-
tigungsmagnetisierung des Systems, also derjenigen
Magnetisierung, die erreicht wird, wenn alle magne-
tischen Momente parallel ausgerichtet sind.

Wie in Abb. 8.35 dargestellt, ist die Sättigungs-
magnetisierung beim absoluten Nullpunkt maximal
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Abbildung 8.35: Sättigungsmagnetisierung von Ni
als Funktion der Temperatur.

Abbildung 8.36: Sättigungsmagnetisierung ver-
schiedener Stoffe in Gauß.

(m = 1) und sinkt bis zum Phasenübergang kontinu-
ierlich ab.

Typische Werte für die Sättigungsmagnetisierung
MS liegen bei einigen 100 bis etwa 2000 G. Spezielle
Legierungen, welche in der Tabelle nicht aufgeführt
sind, erreichen noch etwas höhere Werte.

8.3.6 Magnetonenzahl

Die Größe der Sättigungsmagnetisierung kann über
eine effektive Magnetonenzahl

nB =
Ms(T = 0)V

NµB

parametrisiert werden. Ms(T = 0) stellt hier die Sät-
tigungsmagnetisierung am absoluten Nullpunkt dar,
N die Teilchendichte und µB das Bohr’sche Magne-
ton. Die experimentell gefundene Zahl ist meistens
nicht eine ganze Zahl.

Dass diese Zahlen gebrochen sind ist z.T. darauf
zurückzuführen, dass es sich nicht um reine Ferro-
magneten handelt, sondern um Ferrimagneten oder
andere Kopplungsmechanismen. Auch bei rein fer-
romagnetischer Kopplung können aber gebrochene
Magnetonenzahlen auftreten.

T > Tc

EF

4s 3d↓ 3d↑

0,54 Elektronen
0,27 Löcher

4,73 Elektronen

T = 0

EF

4s 3d↓ 3d↑

0,54 Elektronen

0,54 Löcher

4,46 
Elektronen

5 
Elektronen

Abbildung 8.37: Teilweise gefüllte überlappende
Bänder in Nickel.

Dies kann auch eine Folge der Bandstruktur sein,
wenn die Fermikante mehrere Bänder schneidet. Im
Fall von Nickel ist das 3d Band zu rund 95% ge-
füllt. Oberhalb der Curietemperatur (linke Seite in
Abb. 8.37) sind beide Subbänder gleich stark gefüllt
und die Magnetisierung verschwindet. Am absolu-
ten Nullpunkt (rechte Seite in Abb. 8.37) hebt die
Austauschwechselwirkung die Entartung der Spin-
zustände auf, so dass das eine Subband vollständig
gefüllt ist. Der Magnetismus kommt durch die Be-
setzungszahldifferenz zustande, also z.B. durch die
0.54 Löcher pro Atom im 3d Subband. Der Beitrag
des 4s Bandes ist klein und kann vernachlässigt wer-
den.

8.3.7 Angeregte Zustände

Im Grundzustand eines unendlichen ferromagneti-
schen Kristalls sind somit sämtliche Spins parallel
angeordnet.

Angeregte Zustände entsprechen Beimischungen
von Spins mit entgegengesetzter Orientierung.

Während der Grundzustand (alle Spins parallel)
nicht entartet ist, erhält man für N Spins N Zustän-
de, die um eine doppelte Wechselwirkung darüber
liegen.
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angeregte Zustände

Grundzustand

Abbildung 8.38: Angeregte Spinzustände.

Abbildung 8.39: Entartung der angeregten Spinzu-
stände.

Allerdings sind dies nicht die energetisch günstig-
sten Zustände; es ist günstiger, die Spin-Anregung
über mehrere Spins zu verteilen, d.h. eine Li-
nearkombination dieser Zustände zu bilden. Aus-
gangspunkt für die Beschreibung dieser Anregungen
ist die quantenmechanische Form der Austausch-
Wechselwirkung

Ui j = �J~Si ·~S j,

wobei J die Kopplungskonstante bezeichnet und ~Si,
~S j die Drehimpulsoperatoren der gekoppelten Spins.
Offenbar ist die Energie eines Spins abhängig von
seiner Orientierung gegenüber dem benachbarten
Spin - völlig analog zur Orientierung in einem ex-
ternen Magnetfeld.

Um den zugehörigen Zustand zu finden, betrach-
ten wir eine lineare Kette von Spins, die nur durch
Wechselwirkungen zwischen nächsten Nachbarn ge-
koppelt sind. Für den Spin p erhält man damit die
Bewegungsgleichung

d~Sp

dt
= 2

J
h̄
(~Sp ⇥~Sp+1 +~Sp ⇥~Sp�1),

d.h. der Spin führt eine Art Larmorpräzession im
Feld seiner Nachbarn durch.

Diese Bewegungsgleichung ist nichtlinear und hat
deshalb keine geschlossene Lösung. Man erhält aber
Näherungslösungen, wenn man postuliert, dass die
Auslenkung aus der Gleichgewichtslage (d.h. von
der z-Achse) klein sei. Die z-Komponente ist dem-
nach für alle Spins konstant, Sa

z = S. In diesem

Abbildung 8.40: Verteilung der Anregung.

Be
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ng

Abbildung 8.41: Links: Präzession im Feld des
Nachbarspins. Rechts: Ortsabhän-
gige Anregung.

Grenzfall erhält man eine vereinfachte Bewegungs-
gleichung

dSp
x

dt
= 2

JS
h̄

(2Sp
y �Sp�1

y �Sp+1
y ),

dSp
y

dt
= �2

JS
h̄

(2Sp
x �Sp�1

x �Sp+1
x )

dSp
z

dt
= 0.

Offenbar ist also die zeitliche Ableitung der
x�Komponente proportional zur zweiten Ableitung
der y�Komponente und umgekehrt. Wir erhalten al-
so eine Wellengleichung; allerdings ist hier die zwei-
te räumliche Ableitung proportional zur ersten zeitli-
chen Ableitung, im Gegensatz zur üblichen Wellen-
gleichung, wo auf der linken Seite die zweite zeitli-
che Ableitung steht.

8.3.8 Spinwellen

Wir setzen deshalb die Lösung als eine ebene Welle
an,

Sp
x = uei(pka�wt)

Sp
y = �iSp

x ,

wobei p den Index des Spins darstellt, a die Gitter-
konstante und k und w den Wellenvektor und die
Frequenz. Einsetzen in die Bewegungsgleichung er-
gibt

dSp
x

dt
= Sp

x (�iw) = Sp
x 2J

S
h̄
(�i)[2� (eika +e�ika)].
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Grundzustand

Spinwelle

Abbildung 8.42: Grundzustand und Anregung als
Spinwelle.

Daraus erhalten wir die Dispersionsrelation

h̄w = 4JS(1� cos(ka)).

k

E

Abbildung 8.43: Dispersionsrelation der Spinwelle.

Für große Wellenlängen, d.h. ka«1 kann coska ge-
nähert werden durch

coska ⇡ 1� k2a2

2
,

so dass die Dispersionsrelation sich vereinfacht zu

h̄w = 2JSk2a2. (8.10)

Die Frequenz ist somit proportional zum Quadrat des
Wellenvektors, im Gegensatz zur Situation der Pho-
nonen, wo die Frequenz linear mit dem Wellenvektor
wächst.

Wie bei den Phononen sind diese Anregungen im
Fall der Spinwellen quantisiert, wobei die Energie
der Zustände

En =

✓
n+

1
2

◆
h̄wk

ist. Elementare Anregungen dieser Spinwellen wer-
den als Magnonen bezeichnet.

Impuls aq/2π

En
er

gi
eü

be
rt

ra
g 

(Δ
E)

 in
 e

V
Abbildung 8.44: Dispersionsrelation der Spinwelle.

Abb. 8.44 zeigt, dass man dieses Verhalten auch mit
magnetischer Neutronenstreuung messen kann6: Die
Neutronen können durch die Spin-Spin Wechselwir-
kung Magnonen anregen. Die Proportionalitätskon-
stante 2JSa2 beträgt für Fe, Co, Ni 0.28, 0.5, und
0.36 eV Å2. Die Energie von Magnonen mit kurzen
Wellenlängen kann also recht erheblich sein, was ei-
ne direkte Folge der enormen Austauschenergie ist.

8.3.9 Beispiele

Das hier diskutierte Modell ist natürlich stark ver-
einfacht. So wurde insbesondere die Anisotropie der
Wechselwirkungen nicht berücksichtigt, ein externes
Magnetfeld oder der Effekt der Oberfläche (siehe da-
zu auch Kap. 8.5). Die Dynamik des vollständigen
Systems ist aber nicht mehr analytisch lösbar, sie
kann nur noch numerisch simuliert werden.

Abb. 8.45 zeigt als Beispiel eine Spinwelle in ei-
ner ferromagnetischen Permalloy (Ni0,8Fe0,2) Nano-
struktur der Dimension 500 x 125 x 3 nm, welche
mit “OOMMF” simuliert wurde7. Diese Rechnun-
gen können überprüft werden, indem man die Spin-
wellen mit Mikrowellen anregt und ihre Resonanz-
frequenz misst.

6R. N. Sinclair and B. N. Brockhouse. Phys. Rev. 120, 1638
(1960).

7Als Animation verfügbar unter
http://www.ctcms.nist.gov/~rdm/std4/spec4.html
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Abbildung 8.45: Simulierte Spinwelle in einer fer-
romagnetischen Ni0,8Fe0,2 Nano-
struktur der Dimension 500 x 125
x 3 nm.

Bulk mode

Longitudinale Moden Transversale Mode

4

1 2 3 4

5

Abbildung 8.46: Gemessenes FMR Spektrum und
Simulierte Spin-Wellen.

Abb. 8.46 zeigt als Beispiel ein solches gemes-
senes FMR Spektrum: hier wurde die Absorpti-
on einer monochromatischen Mikrowelle gemessen,
während die Stärke eines homogenen externen Ma-
gnetfeld variiert wurde. Die Resonanzen 1, 2 und 3
entsprechen Spinwellen, bei denen der k-Vektor par-
allel zur Achse des Permalloy Streifens liegt. Reso-
nanz 4 ist die uniforme Anregung (k = 0), und Reso-
nanz 5 entspricht einer Spinwelle, deren Wellenvek-
tor senkrecht zur Achse liegt.

8.3.10 Thermische Anregung von
Magnonen

Wie bei den Phononen ist die mittlere thermische
Anregung der Magnonen

hnki =
1

e
h̄w

kBT �1
.

Da pro Wellenvektor nur ein Polarisationszustand
existiert, ist die Anzahl Zustände in einer Kugel mit

Radius k

N(k) =

✓
1

2p

◆3 4p

3
k3.

Wir lösen die Dispersionsrelation (8.10) für große
Wellenlängen auf nach dem Wellenvektor

k2 =
h̄w

2JSa2

und schreiben damit die Anzahl Zustände im Fre-
quenzraum

N(w) =

✓
1

2p

◆2 2
3

✓
h̄w

2JSa2

◆ 3
2

.
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Abbildung 8.47: Sättigungsmagnetisierung als
Funktion der Temperatur und
Bloch’sches T 3/2-Gesetz.

Die Zustandsdichte D(w) der Magnonen wird damit

D(w) =
dN(w)

dw

=
1

4p

2

✓
h̄

2JSa2

◆ 3
2 p

w.

Die Zahl der bei einer bestimmten Temperatur ange-
regten Magnonen erhält man aus

Â
k

nk =
Z •

0
hnkiD(w)dw

=
1

4p

2

✓
h̄

2JSa2

◆ 3
2 Z •

0

p
w

eh̄w/kBT �1
dw.

Das definitive Integral erhält man aus einer Tabelle
und wir finden

Â
k

nk = 0,0587
✓

kBT
2JSa2

◆ 3
2

.

176



8 Magnetismus

Jedes angeregte Magneton reduziert die Sättigungs-
magnetisierung. Diese Reduktion vergleichen wir
mit der maximalen Magnetisierung M0 = NS/V bei
0 K, wobei wir schreiben N/V = Q/a3, mit Q der
Anzahl äquivalenter Atome pro Einheitszelle, also
Q = 1,2,4 für ein sc, bcc, fcc Gitter. Dann wird die
relative Reduktion

DM
M0

=
0,0587

QS

✓
kBT
2JS

◆ 3
2

.

Dieses Resultat ist als Bloch’sches T 3/2 Gesetz be-
kannt.

Die Beschreibung der Spinwellen als Magnonen
kann am direktesten über magnetische Neutronen-
beugung überprüft werden. Neutronen haben ver-
gleichbar starke Wechselwirkungen mit Elektronen
wie mit Kernen. Die Wechselwirkung ist spinabhän-
gig und kann deshalb, bei inelastischer Streuung Ma-
gnonen erzeugen oder vernichten. Durch gleichzeiti-
ge Messung der Energie- und Impulsänderung der
gestreuten Neutronen findet man die Dispersionsre-
lation.

8.4 Antiferromagnetismus und
Ferrimagnetismus

8.4.1 Antiferromagnetische Kopplung

Das Austauschintegral J, welches die Kopplung
(8.7) zwischen den Spins bestimmt, kann positi-
ves oder negatives Vorzeichen haben. Bei negati-
vem Vorzeichen ist eine antiparallele Orientierung
der Spins energetisch bevorzugt.

ferromagnetisch

antiferromagnetisch

J > 0

J < 0

Abbildung 8.48: Ferromagnetische und antiferroma-
gnetische Kopplung.

Das Auftreten von antiferromagnetisch geordneten
Zuständen kann ebenfalls im Rahmen der Mole-
kularfeldnäherung diskutiert werden. Wir betrach-
ten eine lineare Spinkette . . .ABABA . . ., welche
aus zwei unterschiedlichen Spins A und B besteht.
Die beiden unterschiedlichen Gitter seien für sich
ferromagnetisch geordnet. Wir berücksichtigen nur
Kopplungen zwischen nächsten Nachbarn und be-
schreiben sie über ein Austauschfeld: die B-Spins
erzeugen ein Austauschfeld BA am Ort der A-Spins
und umgekehrt:

BA = �lMB BB = �lMA.

Eine antiferromagnetische Wechselwirkung ent-
spricht l > 0. Die Energie des Systems ist dann

U = �(BAMA +BBMB) = 2lMBMA.

Sie wird minimal, wenn die beiden Spins entgegen-
gesetzt polarisiert sind, MB = �MA.

8.4.2 Antiferromagnetische Ordnung

In den eindimensionalen Ketten hat jeder Spin zwei
Wechselwirkungen mit nächsten Nachbarn. Als Re-
sultat erhalten wir bei antiferromagnetischer Kopp-
lung alternierende Orientierungen der Spins. In drei
Dimensionen hängt die Anzahl der Wechselwirkun-
gen von der Art des Gitters ab, und damit auch die
resultierende Ordnung.

scbcc

Abbildung 8.49: Antiferromagnetische Ordnung im
bcc und sc Gitter.

Abb. 8.49 zeigt als Beispiel antiferromagnetisch ge-
ordnete Zustände in zwei kubischen Gittern. Alle
Spins auf den (0, 0, 0) Gitterplätzen sind parallel ge-
ordnet. Ihre nächsten Nachbarn, welche ein identi-
sches Gitter bilden, aber um (½, ½, ½) verschoben
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sind, sind unter sich ebenfalls parallel geordnet, aber
dem ersten Untergitter entgegengesetzt ausgerichtet.
Auf diese Weise sind alle Wechselwirkungen zwi-
schen nächsten Nachbarn antiferromagnetisch. Im
zweiten Beispiel bilden die Spins ein einfach kubi-
sches Gitter. Hier sind wiederum Wechselwirkungen
zwischen nächsten Nachbarn antiferromagnetisch.

Während ferromagnetische Kopplungen auch in
dreidimensionalen Gittern immer eine eindeutige
Ordnung ergeben (d.h. parallele Orientierung der
Spins) ist dies bei antiferromagnetischer Kopplung
nicht der Fall. Als Beispiel betrachten wir ein hexa-
gonales Gitter in zwei Dimensionen. Wir nehmen an,
dass nächste Nachbarn antiferromagnetisch gekop-
pelt sind, während alle übrigen Wechselwirkungen
verschwinden.

Frustration

Abbildung 8.50: Frustrierte antiferromagnetische
Ordnung im hexagonalen Gitter.

In diesem Fall ist es nicht möglich, sämtliche Spins
paarweise antiparallel anzuordnen. Diese Situation
wird als Frustration bezeichnet. Die resultierende
Magnetisierung hängt deshalb von sämtlichen auf-
tretenden Wechselwirkungen ab, und es existieren
mehrere energetisch identische Grundzustände.

8.4.3 Beispiel: MnO

In MnO sind alle Spins in einer Netzebene paral-
lel orientiert, während aufeinander folgende Netze-
benen antiparallel orientiert sind. Die Netzebenen
sind die 111-Ebenen und die Richtung senkrecht da-
zu ist die antiferromagnetische Achse. Der Wechsel
der Spins zwischen Netzebenen führt zu einer Ver-
doppelung der Größe der Einheitszelle: Da Spins an
aufeinanderfolgenden Ecken der Einheitszelle ent-
gegengesetzt orientiert sind, wiederholt sich das Git-

Abbildung 8.51: Antiferromagnetische Ordnung in
MnO. Es sind nur die Mn2+-Ionen
dargestellt.

ter bei Berücksichtigung des Spins erst nach der dop-
pelten Distanz im Vergleich zum rein geometrischen
Gitter. Neutronenbeugung, die auf den Spin emp-
findlich ist, findet deshalb in diesem Material eine
doppelt so große Einheitszelle wie die Röntgenbeu-
gung, welche die ‘chemische’ Einheitszelle sieht.
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80 K : antiferromagnetisch
a0 = 8.85 Å

Streuwinkel / Grad

293 K : paramagnetisch
a0 = 4.43 Å

Abbildung 8.52: Magnetische Neutronen-Beugung
gemessen an MnO2. Oben: antifer-
romagnetische Ordnung bei 80 K.
Unten: paramagnetische Ordnung
bei 293 K.

Da antiferromagnetische Ordnung ähnlich wie ferro-
magnetische Ordnung erst unterhalb einer bestimm-
ten Temperatur auftritt, kann man diesen Unter-
schied auch mit Neutronenbeugung allein, bei un-
terschiedlichen Temperaturen beobachten. In Abb.
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8.52 ist als Beispiel das Neutronen-Beugungsmuster
von MnO2 dargestellt, welche in der NaCl Struk-
tur kristallisiert. Bei 80 K ist das Material antifer-
romagnetisch geordnet. Dadurch treten zusätzliche
Beugungsmaxima auf gegenüber der ungeordneten
Hochtemperaturstruktur. Die Gitterkonstante beträgt
in diesem Fall 8.85 Å, also rund das Doppelte des
Hochtemperaturwertes.

8.4.4 Ferrimagnetismus

Antiferromagnetische Wechselwirkungen müssen
aber nicht immer zu einem Verschwinden der Ma-
gnetisierung führen. Das wichtigste Beispiel ist Ma-
gnetit, mit der Formel Fe3O4 = FeO·Fe2O3: Die
beiden dreiwertigen Eisenionen (Ferriionen) haben
Spin 5/2 und sollten damit zusammen 2 ⇥ 5 = 10
Bohr’sche Magnetonen zur gesamten Magnetisie-
rung beitragen; das Ferroion (Fe2+) mit Spin 2 sollte
4 Magnetonen beitragen.

S = 5/2

S = 2

A Site
tetraedrisch

B Site
oktaedrisch

Abbildung 8.53: Struktur und magnetische Ordnung
in Fe2O3.

Der Spin der dreiwertigen Eisenatome ist aber anti-
parallel orientiert, so dass effektiv nur das zweiwer-
tige Eisen zur Magnetisierung beiträgt; der experi-
mentelle Wert für die Magnetisierung entspricht 4.1
Bohr’schen Magnetonen. In diesem Material existie-
ren also sowohl ferromagnetische wie antiferroma-
gnetische Kopplungen, was insgesamt zu einem fer-
romagnetischen Verhalten führt. Genauer: Eines der
beiden Fe3+ ist mit dem Fe2+ ferromagnetisch ge-
koppelt und tauscht mit diesem ein Elektron aus. So-
mit bilden sie 2 parallele Spins von Fe2.5+. Der Spin
des zweiten Fe3+ ist entgegengesetzt orientiert. Man
bezeichnet dieses Verhalten als Ferrimagnetismus.

8.4.5 Suszeptibilität

Wir berechnen nun die Suszeptibilität für ein Sy-
stem mit 2 unterschiedlichen Spins, welche sich
in einem äußeren Feld Ba befinden und durch ei-
ne Kopplungkonstante l aneinander gekoppelt sind.
In Analogie zum ferromagnetischen Fall nehmen
wir an, dass die Magnetisierung der Komponente
A proportional ist zur paramagnetischen Suszepti-
bilität cp und zum gesamten Feld Ba � lMB, wel-
ches wir als Summe von äußerem Feld Ba und Aus-
tauschfeld �lMB schreiben. Hierbei wird angenom-
men, dass die Austauschwechselwirkung zwischen
gleichen Spins (A � A, B � B) zu einer parallelen
Orientierung innerhalb der entsprechenden Unter-
gitter führt. Antiferromagnetische Wechselwirkung
entspricht einer positiven Kopplungskonstanten l >
0. Damit wird

µ0MA = cp(Ba �lMB)

µ0MB = cp(Ba �lMA).

Wir eliminieren MB und erhalten

µ0MA = cpBa �l

c

2
p

µ0
Ba +l

2 c

2
p

µ0
MA.

Auflösen nach MA ergibt

MA = Ba
cp

µ0

1� l cp
µ0

1�
⇣

l cp
µ0

⌘2 = Ba
cp

µ0

1

1+ l cp
µ0

= Ba
cp

µ0 +l cp
,

d.h. eine effektive Suszeptibilität, welche von der
paramagnetische Suszeptibilität cp und der Kopp-
lungskonstanten l abhängt.

8.4.6 Temperaturabhängigkeit für T>Tc

Mit dem Ausdruck cp = C/T für die paramagneti-
sche Suszeptibilität erhalten wir

MA = Ba
C/T

µ0 +lC/T
= Ba

C

µ0

⇣
T + lC

µ0

⌘ .
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Um diesen Ausdruck zu vereinfachen, definieren wir
die Néel8 Temperatur

TN =
lC
µ0

.

Den Ausdruck für die Magnetisierung kann man da-
mit auch schreiben als

MA = Ba
C
µ0

1
T +TN

=
Ba

l

TN

T +TN
.

Mit

MB =
cp

µ0
(Ba �lMA)

=
cp

µ0
Ba

✓
1� TN

T +TN

◆

=
C

T µ0
Ba

T
T +TN

=
C
µ0

Ba
1

T +TN
= MA

wird die Suszeptibilität

c =
µ0

2
MA +MB

BA
=

C
T +TN

.

Dieser Ausdruck gilt oberhalb der Néel Temperatur.
Offenbar tritt hier keine eigentliche Singularität auf,
die Suszeptibilität bleibt endlich.

Paramagnetismus Ferromagnetismus Antiferromagnetismus

Curie-Gesetz

Su
sz

ep
tib

ili
tä

t χ

Temperatur T0

� =
C

T

Curie-Weiß-Gesetz
(T>Tc)

Temperatur T0

� =
C

T � Tc

Tc

(T>TN)

Temperatur T0��

TN

� =
C

T + �

Abbildung 8.54: Temperaturabhängigkeit der Sus-
zeptibilität für unterschiedliche
magnetische Ordnung.

Wir können die paramagnetische Suszeptibilität für
reine Paramagneten, Ferromagneten oberhalb der

8Louis Eugène Felix Néel (1904 - 2000)

Curie-Temperatur, sowie Antiferromagneten ober-
halb der Néel Temperatur vergleichen. Das Verhal-
ten ist offenbar immer das gleiche, doch ist der Ur-
sprung der Temperaturskala verschoben: im Falle
des reinen Paramagneten, d.h. beim Curie Gesetz,
ist die Referenztemperatur der absolute Nullpunkt;
beim Ferromagneten ist die Referenztemperatur die
Curie-Temperatur. Beim Antiferromagneten ist die
Referenz die Néel Temperatur TN . Die Temperatur,
bei der die Suszeptibilität divergiert, ist jedoch nicht
TN , sondern �TN , also eine Temperatur, die nie er-
reicht wird.

Material TN in K q in K
MnO 116 610
MnS 160 528
MnTe 307 690
MnF2 67 82
FeF2 79 117
FeCl2 24 48
FeO 198 570

CoCl2 25 38
CoO 291 330
NiCl2 50 68
NiO 525 ⇡2000
Cr 308

Abbildung 8.55: Kennzahlen für antiferromagneti-
sche Kristalle.

Experimentell findet man eine etwas andere Tempe-
ratur, welche mit q bezeichnet wird. Sie weicht bis
zu einem Faktor 5 von der Néel-Temperatur ab.

8.4.7 Der antiferromagnetische Zustand

Bei der Néel-Temperatur erreicht die Suszeptibili-
tät ihren Maximalwert. Dieser Punkt zeigt auch bei
der spezifischen Wärme und dem Wärmeausdeh-
nungskoeffizienten scharfe Maxima. Unterhalb die-
ser Temperatur sind die Spins bevorzugt antiparallel
geordnet. In diesem Bereich hängt die Suszeptibili-
tät von der Richtung des Feldes bezüglich der Achse
der antiferromagnetischen Kopplung ab.

Ist das Feld parallel zur Achse, so verschwindet die
Suszeptibilität am absoluten Nullpunkt: hier ist die
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Abbildung 8.56: Anisotrope Suszeptibilität als
Funktion der Temperatur.

antiferromagnetische Ordnung perfekt. Mit zuneh-
mender Temperatur wächst die Suszeptibilität bis
zur Néel Temperatur monoton. Liegt das Feld senk-
recht zur Achse, so wird die Suszeptibilität tempera-
turunabhängig

c? =
1
l

.

Antiferromagnetische Verbindungen, wie z.B.
MnF2, zeigen deshalb unterhalb der Néel Tempera-
tur, also in einem antiferromagnetisch geordneten
Zustand, anisotropen Paramagnetismus.

Natürlich existieren auch in diesem geordneten Zu-
stand thermisch aktivierte Anregungen, d.h. Magno-
nen. Aufgrund des unterschiedlichen Vorzeichens
der Kopplungskonstanten erhält man in diesem Fall
eine andere Dispersionsrelation als bei Ferromagne-
ten: Für große Wellenlängen ist die Energie propor-
tional zum Wellenvektor.

Abb. 8.57 zeigt als Beispiel Dispersionsrelation
der Magnonen im kubischen Antiferromagneten
RbMnF3, welche mit magnetischer Neutronenbeu-
gung bestimmt wurde. Im Gegensatz zum Ferroma-
gneten ist hier die Dispersion bei großen Wellenlän-
gen linear, w µ k.

8.4.8 Messung mit Kernspinresonanz

Eine andere Möglichkeit, die internen Felder zu
messen, welche nicht nur die relative Ordnung,
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Abbildung 8.57: Magnonendispersion in RbMnF3.

sondern auch die absolute Feldstärken liefert, ist
die Kernspinresonanz9. Die Resonanzfrequenz der
Kernspins ist proportional zur lokalen Feldstärke am
Ort des Kerns. Eine Messung der Larmorfrequenz
ergibt somit ein sehr präzises Maß für die lokale
Feldstärke.
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19F NMR Frequenz

Molekularfeld-Theorie

Abbildung 8.58: Resonanzfrequenz der 19F Kern-
spins in MnF2 als Funktion der
Temperatur.

Abb. 8.58 zeigt als Beispiel die Temperaturabhän-
gigkeit der Resonanzfrequenz der 19F Kernspins in
MnF2 ohne ein äußeres Magnetfeld. Das experimen-
tell beobachtete Verhalten weicht deutlich von der
Voraussage der Molekularfeld-Theorie ab.

Um das kritische Verhalten in der Nähe der Néel-
Temperatur genauer zu untersuchen, wurde in Abb.

9P. Heller and G. B. Benedek, Phys. Rev. Lett. 8, 428 (1962).
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Abbildung 8.59: Resonanzfrequenz der 19F Kern-
spins in MnF2 als Funktion der
Temperatur.

8.59 nur dieser Bereich dargestellt, wobei die drit-
te Potenz der Larmorfrequenz gegen die Tempera-
tur aufgetragen wurde. Die Daten liegen mit hoher
Präzision auf einer Geraden, welche die Temperatu-
rachse bei TN = 67,336 K schneidet. Somit ist das
Feld µ (TN �T )1/3.

8.4.9 Helikale Spinordnung

Neben der diskutierten ferromagnetischen und anti-
ferromagnetischen Ordnung existieren weitere Arten
magnetischer Ordnung, wie z.B. die verkippte an-
tiferromagnetische Ordnung oder die helikale Spin-
ordnung.

Abbildung 8.60: Helikale Spinordnung.

Bei der helikalen Spinordnung dreht sich der Spin-
vektor als Funktion der Distanz, mit einer Periode
von einigen nm. Diese Art der Spinordnung tritt nur
in Systemen auf, welche kein Inversionszentrum be-
sitzen.

Abbildung 8.61: Helikale Spinordnung in
Fe0.5Cr0.5Si.

Abb. 8.61 zeigt ein Beispiel von helikaler Spin-
ordnung, für das Material Fe0.5Cr0.5Si. Die
Orientierung wurde mittels Transmissions-
Elektronenmikroskopie gemessen10. Eine Farbe
entspricht einer Orientierung des Spinvektors (siehe
Abb. 8.60), die Variation der Richtung erfolgt
senkrecht zu den Streifen.

8.5 Magnetische Domänen

8.5.1 Phänomenologie

Obwohl die ferromagnetische Kopplung eine paral-
lele Orientierung der magnetischen Momente bevor-
zugt, sind in einem Ferromagneten nicht alle Mo-
mente parallel orientiert. Die spontane Polarisierung
des ferromagnetischen Materials entsteht zunächst
nur lokal, d.h. die Momente orientieren sich auf ei-
ner Skala von µm parallel zueinander.

Abbildung 8.62: Magnetische Domänen.

Es entstehen Bereiche, in denen die Momente alle
in die gleiche Richtung orientiert sind. Diese ma-
10M. Uchida, Y. Onose, Y. Matsui, and Y. Tokura, Science 311,

359 (2006).
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gnetischen Domänen werden auch als Weiß’sche11

Bezirke bezeichnet und sind die größten magnetisch
homogenen Bereiche. Auf einer größeren Skala tre-
ten alle Orientierungen gleichwertig auf, sofern kein
äußeres Magnetfeld eine Orientierung selektiert.

Abbildung 8.63: Weiß’sche Bezirke beobachtet im
Polarisationsmikroskop.

Weiß’sche Bezirke kann man u.a. im Polarisations-
mikroskop beobachten. Je nach Art des Kristallgit-
ters gibt es verschiedene mögliche Vorzugsorientie-
rungen für die Domänen. In einem kubischen Mate-
rial z.B. gibt es vier äquivalente Orientierungen, in
einem hexagonalen sechs.

Die Existenz von magnetischen Domänen hat im
Wesentlichen 3 Ursachen: Entropie, dipolare Wech-
selwirkung und Oberflächeneffekte. Die Entropie
spielt deshalb eine Rolle, weil zwei Domänen mit
entgegengesetzer Spin-Orientierung zwar eine höhe-
re innere Energie besitzen, aber auch eine höhere
Entropie: die Domänengrenze kann an sehr vielen
Orten auftreten. Gibt es N solche Orte, so ist die
Entropie des angeregten Zustandes S = kB lnN und
die freie Energie

F = E0 + J �T S = E0 + J �T kB lnN.

Hier ist E0 die Energie des geordneten Grundzustan-
des und J die Energieerhöhung durch die Domänen-
grenze. Offensichtlich wird F < E0 für genügend
großes N, d.h. der geordnete Grundzustand ist ther-
modynamisch instabil.

Der zweite Grund für die Domänenbildung ist
die Dipol-Dipol Kopplung zwischen den magneti-
schen Momenten. Diese ist zwar schwächer als die
Austausch-Wechselwirkung, aber sie fällt langsamer
11Pierre Weiß 1865-1940

ab. Deshalb kann sie bei großen Domänen dominie-
ren. Je nach relativer Lage der Momente oder Do-
mänen kann die Dipol-Dipol Kopplung positiv oder
negativ sein. Dreht man die Orientierung einer Do-
mäne, so sinkt die Dipol-Dipol Energie für die Kopp-
lung zwischen den Domänen. Gleichzeitig steigt die
Austauschenergie, aber diese betrifft nur die weni-
gen Spins an der Domänengrenze.

8.5.2 Magnetische Feldenergie

Die dritte Ursache ist die endlichen Größe des Kri-
stalls und die Maxwell-Gleichungen, welche verlan-
gen, dass magnetische Feldlinien geschlossen sind:
Besteht ein Kristall endlicher Größe aus nur einer
Domäne, so muss außerhalb des Kristalls ein Ma-
gnetfeld vorhanden sein. Mit diesem Feld ist eine
magnetische Energie verbunden,

Um =
1
2

Z
dV ~B · ~H,

welche bei der Energiebillanz des Gesamtsystems
berücksichtigt werden muss. Die Energie wächst so-
mit quadratisch mit der Stärke des Feldes und line-
ar mit dem Volumen. Die Energie des Systems kann
deshalb verringert werden, wenn das äußere Feld
verkleinert wird. Dies kann durch Domänenbildung
geschehen, wie in Abb. 8.64 skizziert.

Abbildung 8.64: Reduktion der magnetischen Feld-
energie durch Domänenbildung.

Mehrere Domänen mit entgegen gesetzter Ausrich-
tung der magnetischen Momente verringern die
Energie des äußeren Feldes um die Anzahl der Do-
mänen.
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Abbildung 8.65: Oberflächennahe Domänen.

Eine noch größere Reduktion der Feldenergie ist
möglich, wenn an allen Oberflächen Domänen gebil-
det werden, die parallel zur Oberfläche ausgerichtet
sind. Dies ist auch in Abb. 8.69 erkennbar, wo sich
an der Oberfläche eine komplexere Domänenstruk-
tur abzeichnet.

Während die Domänen die Energie des externen Fel-
des verringern, vergrößern sie die Energie der Aus-
tauschwechselwirkung. Die resultierende Domänen-
größe ist deshalb ein Gleichgewicht zwischen die-
sen Effekten. Da die magnetische Energie nicht im
Kristall sondern im Volumen außerhalb des Materi-
als lokalisiert ist, ist Domänenbildung primär an der
Oberfläche günstig. Hier sind deshalb die Domänen
kleiner als im Volumen des Materials.

8.5.3 Domänenwände

Die Austauschenergie ist offenbar in den Bereichen
zwischen den Domänen lokalisiert, wo die Spins
nicht parallel orientiert sind. Sie kann deshalb ver-
ringert werden, wenn diese Übergangsbereiche mög-
lichst groß werden, so dass die Momente lokal fast
parallel sind.

�

U = �JS2 cos �

Abbildung 8.66: Wechselwirkungsenergie im Be-
reich der Domänenwand.

Die Paar-Wechselwirkungsenergie nimmt quadra-
tisch mit dem Winkel j zwischen den Spins zu

Ui j µ �cosj ⇡ �1+
j

2

2
.

Wir diskutieren im Folgenden nur den winkelabhän-
gigen Term

Ui j = JS2
j

2.

Hier stellt J das Austauschintegral und S die Spin-
Quantenzahl dar. Für kleine Winkel j nimmt die
Wechselwirkungsenergie pro Spin-Paar quadratisch
zu mit dem Winkel ji j µ p/N zwischen benachbar-
ten Spins und nimmt damit quadratisch ab mit der
Anzahl N der Elementarzellen, über die die Domä-
nenwand delokalisiert ist:

Ui j =
JS2

p

2

N2 .

Die gesamte Austauschenergie eines solchen Über-
gangsbereichs erhält man durch Multiplikation mit
der Anzahl N der Elementarzellen in der Domänen-
wand:

Uex = N
JS2

p

2

N2 =
JS2

p

2

N
.

Sie nimmt also linear mit der Anzahl der beteiligten
Zellen ab.

Dicke ~ 300a in Fe

Abbildung 8.67: Änderung der Spin-Orientierung
im Bereich der Bloch-Wand.

Man findet deshalb zwischen den Domänen Über-
gangsbereiche, in denen sich die Momente konti-
nuierlich drehen. Diese Bereiche werden als Bloch-
wände bezeichnet. Je breiter sie sind, desto niedriger
ist die Austauschenergie des Systems.

184



8 Magnetismus

8.5.4 Anisotropie

Während die ferromagnetische Kopplung einen
möglichst langsamen Übergang zwischen den Do-
mänen bevorzugt, gibt es auch einen Effekt, der da-
gegen wirkt. Es handelt sich um die Anisotropieener-
gie. Im Gegensatz zu freien Atomen, wo die Aus-
tauschwechselwirkung als skalare Kopplung µ~Si ·~S j
beschrieben werden kann, ist sie im Festkörper rich-
tungsabhängig:

Ui j =�~Si ·
 !
J ·~S j,

wobei
 !
J ein Tensor ist.

Abbildung 8.68: Ursprung der Anisotropie der
Austausch-Wechselwirkung.

Diese Richtungsabhängigkeit liegt u.a. an der Spin-
Bahn Wechselwirkung: Wie in Abb. 8.68 gezeigt,
ändert sich bei der Reorientierung des Spins auch die
Orientierung des Orbitals und damit die Stärke der
Wechselwirkung. Dies führt dazu, dass die Domänen
sich bevorzugt in bestimmte Richtungen orientieren,
die durch die Kristallstruktur vorgegeben sind.

Abbildung 8.69: Ferromagnetische Domänen in ei-
nem Ni-Plättchen.

Abb. 8.69 zeigt diesen Effekt am Beispiel eines
Nickelplättchens, wo alle Domänen parallel zu den
Diagonalen orientiert sind.

Ba / Gauß Ba / Gauß

Abbildung 8.70: Asymmetrische Magnetisierungs-
kurven in Fe und Ni.

Abb. 8.7012 vergleicht Eisen und Nickel: Eisen
wird in [100]-Richtung am leichtesten magnetisiert,
Nickel in [111]-Richtung.

8.5.5 Dicke der Blochwände

In den Blochwänden ist die Magnetisierung nicht in
der Richtung orientiert, in der die Austauschkopp-
lung maximiert und damit die Gesamtenergie mini-
miert wird. Dadurch ist die Energie der Blochwände
auch ohne Betrachtung der Rotation höher als die der
Domänen selbst. Die Anisotropieenergie ist deshalb
proportional zur Dicke der Blochwände,

Uaniso = KNa3,

wobei K die Anisotropiekonstante ist. Die Aus-
tauschenergie ist indirekt proportional zur Dicke.
Die gesamte Energie beträgt somit

U = Uaniso +Uex = NKa3 +
JS2

p

2

N
.

Sie wird minimal wenn

dU
dN

= Ka3� JS2
p

2

N2 = 0,

d.h. für

N =

r
JS2

p

2

Ka3 .

12Kittel
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Für Eisen erhält man N ⇡ 300. Diese Domänenwän-
de oder Blochwände sind deshalb stabil, d.h. sie be-
sitzen eine Breite, die nur von Materialkonstanten
abhängt. Sie stellen deshalb auch eine Art von Teil-
chen dar, welche sich aufgrund von äußeren Feldern
durch das Material bewegen können. Solche Quasi-
teilchen, welche die Lösung einer nichtlinearen Wel-
lengleichung darstellen und lokalisierte Wellen bil-
den, werden als Solitonen bezeichnet.

8.5.6 Verhalten im Magnetfeld

Die unterschiedliche Orientierung der Domänen
führt dazu, dass die Magnetisierung des Materials in
der Abwesenheit eines äußeren Feldes kleiner ist als
die Magnetisierung der einzelnen Domänen. Dies ist
auch der wichtigste Grund dafür, dass die beobachte-
te Magnetisierung kleiner ist als die oben errechne-
te Sättigungsmagnetisierung. Die Sättigungsmagne-
tisierung ist die Magnetisierung einer einzelnen Do-
mäne, während die beobachtete Magnetisierung dem
makroskopischen Mittelwert entspricht.

0.1 Ms

Abbildung 8.71: Domänen im Magnetfeld.

Legt man ein äußeres Feld an, so werden diejenigen
Domänen, welche parallel zum äußeren Feld orien-
tiert sind, energetisch bevorzugt, sie wachsen des-
halb auf Kosten derjenigen Domänen, die antiparal-
lel orientiert sind. Erst wenn ein genügend großes
äußeres Feld anliegt werden alle Domänen parallel
zu diesem Feld ausgerichtet und die Magnetisierung
des Kristalls erreicht die Sättigungsmagnetisierung.

Diese Umorientierung der Domänen geschieht über
eine Wanderung der Blochwände zwischen den ein-
zelnen Domänen und, bei höheren Feldstärken, über
eine Drehung der Magnetisierung innerhalb der Do-
mänen.

im äußeren Feld

Stärke des Magnetfeldes

Abbildung 8.72: Wandern von Domänen im Ma-
gnetfeld.

13.12.12 16:17 

Page 1 of 1http://upload.wikimedia.org/wikipedia/commons/b/b1/Barkhausen_jumps.svg

Abbildung 8.73: Sprunghafte Änderung der Magne-
tisierung.

Die Wanderung der Domänenwände ist meist nicht
vollständig kontinuierlich, da Fehlstellen im Mate-
rial sie aufhalten können. Diesen Effekt kann man
auch akustisch hörbar machen. Dazu bringt man
ein geeignetes magnetisches Material in eine Induk-
tionsspule, welche Änderungen des magnetischen
Flusses in Spannungen umsetzt. Jedes mal wenn ei-
ne Domäne umklappt, wird in der Spule ein Span-
nungspuls induziert, der als Knacken hörbar wird.
Dieser Effekt wird als Barkhausen13-Effekt bezeich-
net.

8.5.7 Hysterese

Da für die Verschiebung der Domänenwände Ener-
gie nötig ist, um innere Widerstände zu überwinden,
ist dieser Prozess nicht reversibel und geschieht in
Form einer Hysterese.

13Heinrich Georg Barkhausen (1881 - 1956)
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B = µ0(H + M)

B = µ0(H + M)

H

Rotation von 
Domänen

Irreversibel

Reversibel

H
-Hc

Abbildung 8.74: Links: magnetische Hysterese.
Rechts: Reversibles vs. irreversi-
bles Verhalten.

Orientiert man alle Domänen durch ein äußeres Feld
und fährt dieses anschließend auf Null zurück, so
bleibt eine Magnetisierung zurück, die Remanenz-
magnetisierung. Erst wenn man das Feld auf einen
negativen Wert bringt, das Koerzitivfeld Hc, so ver-
schwindet die Magnetisierung.

Der Betrag des Koerzitivfeldes hat für technische
Anwendungen eine wichtige Bedeutung. Für Per-
manentmagnete, die in kleinen äußeren Feldern ih-
re Magnetisierung behalten sollen, soll es möglichst
groß sein. Bei Transformatoren hingegen, wo bei je-
dem Ummagnetisierungszyklus elektrische Energie
von der Größe der Hysterese in Wärme umgewan-
delt wird, soll das Koerzitivfeld möglichst klein sein.
Sein Wert lässt sich über Kristallfehler und die mi-
krokristalline Struktur kontrollieren.

Remanenz und Koerzitivfeld
! Br/T! Hc / A/m
C-Stahl! 1! 3600
Cr-Stahl! 0.95! 5000
AlNiCo Stahl! 1.25! 44000
Co-Stahl! 0.95! 19000
seltene Erden! 0.9! 700000

Abbildung 8.75: Remanenz und Koerzitivfeld von
magnetische Materialien.

Gute Permanentmagnete haben hohe Koerzitivfeld-
stärken und hohe Remanenzen. Die Remanenzfel-
der liegen in der Größenordnung von 1 T, während
die Koerzitivfelder von einigen 1000 bis zu einigen
100000 A/m gehen können; sie liegen damit nahe bei

der Sättigungsmagnetisierung. Die höchsten Werte
erzielt man mit seltenen Erden, da diese eine große
Zahl ungepaarter Elektronen enthalten.

Koerzitivfeld Hc  [A/m]
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NiFe
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Fe(Si)

CoFe

Fe FeCoVCr

Weichmagnete Hartmagnete

Abbildung 8.76: Übersicht über die magnetischen
Eigenschaften unterschiedlicher
Werkstoffe.

Während die Sättigungsfeldstärken alle im Bereich
von 1 T liegen, können die Koerzitivfelder über vie-
le Größenordnungen variieren. Man beachte die lo-
garithmische Skala für die horizontale Achse in Abb.
8.76!

Die Fläche der Hysterese im B � H Diagramm
hat die Einheit einer Energiedichte; sie entspricht
der Energie, welche in einem Zyklus des äußeren
H�Feldes im Material deponiert wird. Bei Transfor-
matoren finden viele solche Zyklen statt. Man ver-
sucht deshalb die Hysteresen für solche Anwendun-
gen möglichst gering zu machen. Materialien, wel-
che diese Bedingung erfüllen, werden als magne-
tisch weich bezeichnet; sie zeichnen sich dadurch
aus, dass die Magnetisierung nach Entfernung des
äußeren Feldes wieder verschwindet. Für solche An-
wendungen sind z.B. Ferrite gut geeignet, da sie
schon bei geringen Koerzitivfeldern umpolarisiert
werden.

8.5.8 Magnetische Nanostrukturen

Zu den wichtigsten Anwendungen ferromagneti-
scher Materialien gehören heute magnetische Da-
tenspeicher. Dabei werden binäre Daten so gespei-
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chert, dass in einem kleinen Bereich die magneti-
sche Ordnung ausgerichtet wird. Um auf einer ge-
gebenen Fläche möglichst viele Daten speichern zu
können, verwendet man Materialien, die es erlauben,
möglichst kleine Bereiche homogen zu magnetisie-
ren. Geeignete Partikel mit Dimensionen von 10-100
nm sind magnetisch homogen, d.h. sie bestehen aus
einer einzigen Domäne.

Da solche Partikel sich wie ein Teilchen mit großem
Spin verhalten, spricht man bei einem Ensemble oft
von Super-Paramagnetismus. Auch in der Geologie
und Geophysik spielen magnetische Nanopartikel ei-
ne wichtige Rolle, da sie in geologischen Formatio-
nen Informationen über die Geschichte des Erdma-
gnetfeldes speichern.

magnetische 
Spitze

Weg der Spitze

Probe
magnetische Domänen

Abbildung 8.77: Links: Prinzip der magnetischen
Kraftmikroskopie. Rechts: Struktu-
ren auf einer Festplatte.

Magnetische Strukturen im Bereich von wenigen
Nanometern zu untersuchen und abzubilden, erfor-
dert spezifische experimentelle Techniken. Eine die-
ser Techniken ist die magnetische Kraftmikroskopie:
Hier wird die Spitze eines Raster-Sonden Mikro-
skops ferromagnetisch gemacht und über die Ober-
fläche geführt. Je nach Magnetisierung der Probeno-
berfläche ändert die Kraft, welche auf die Spitze
wirkt, und die resultierende Auslenkung kann als
Kraftfeld dargestellt werden. In Abb. 8.77 wurden
die Strukturen einer magnetischen Festplatte darge-
stellt.

Magnetische Nanopartikel findet man auch in vie-
len geologischen Formationen. Sie können genutzt
werden, um die zeitliche Veränderung des Erd-
Magnetfeldes über geologische Zeiträume zu verfol-
gen.

8.5.9 Biomagnetismus

Magnetfelder werden auch von Lebewesen erzeugt
und verwendet.

Abbildung 8.78: Magneto-Cardiogramm.

Abb. 8.78 zeigt als Beispiel die Magnetfelder, wel-
che vom Herzen erzeugt werden14. Die Farben co-
dieren die Stärke des Feldes als Funktion des Ortes,
die Kurven zeigen die zeitliche Abhängigkeit an ver-
schiedenen Orten.

Verschiedene Bakterien und Tiere nutzen magneti-
sche Nanopartikel, um Magnetfelder zu messen. Sie
können sich dadurch z.B. im Erdmagnetfeld orien-
tieren. Bei den Nanopartikeln handelt es sich typi-
scherweise um Magnetit.

Abbildung 8.79: Magnetische Nanopartikel in ma-
gnetotaktischen Bakterien.

Zugvögel verfügen über einen (oder mehrere) ‘Ma-
gnetkompasse’, mit denen sie sich orientieren. Die-
se sind offenbar mindestens teilweise mit Hilfe von
magnetischen Molekülen realisiert.

14A. Weis, Europhys. News 43, 20–23 (2012)
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8 Magnetismus

8.5.10 Magnetostriktion

Die Ausrichtung der magnetischen Momente kann
auch Auswirkungen auf die Form des Materials ha-
ben. Bei piezoelektrischen Materialien konnte die
Form mit Hilfe eines angelegten elektrischen Feldes
verändert werden.

positive Magnetostriktion

ohne Feld

mit Feld Eisen

negative Magnetostriktion

ohne Feld

mit Feld

Nickel

Abbildung 8.80: Magnetostriktion.

Ähnlich kann mit Hilfe von magnetischen Feldern
die Form von magnetischen Materialien geändert
werden. Dieser Effekt wird als Magnetostriktion be-
zeichnet. Bei positiver Magnetostriktion (z.B. Fe)
verlängert sich das Material beim Anlegen eines
Feldes; bei negativer Magnetostriktion (z.B. Nickel)
verkürzt und verbreitert sich das Material.
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