
5 Freie Elektronen
5.1 Klassische Beschreibung

5.1.1 Metalle und ihre Eigenschaften

19+ 19+ 19+ 19+
18- 18- 18- 18-

19+ 19+ 19+ 19+
18- 18- 18- 18-

Abbildung 5.1: Metallische Bindung.

In diesem Kapitel soll in erster Linie der Versuch un-
ternommen werden, das Verhalten von Elektronen in
Metallen zu beschreiben. Die metallische Bindung
stellt zwar nur eine von 5 Grundtypen der Bindung
in Festkörpern dar, sie ist jedoch sehr weit verbrei-
tet: mehr als 2/3 der Elemente sind Metalle. Metalle
enthalten zwei Arten von Elektronen, zum einen die-
jenigen, welche in tief liegenden Orbitalen der kon-
stituierenden Atome sitzen und praktisch an den ent-
sprechenden Atomen lokalisiert sind. Daneben trägt
jedes Atom eine geringe Zahl (typischerweise 1-3)
Leitungselektronen bei, welche sich praktisch frei
durch das Material bewegen, dieses jedoch nicht ver-
lassen können.

Diese frei beweglichen Leitungselektronen sind für
die charakteristischen Eigenschaften der Metalle
verantwortlich, welche sie gegenüber den weiter ver-
breiteten nichtmetallischen Verbindungen auszeich-
nen. Zu diesen charakteristischen Eigenschaften ge-
hören die gute Leitfähigkeit für Elektrizität und Wär-
me, sowie der Glanz von metallischen Oberflächen.

Sowohl das klassische Modell (Kap. 5.1), wie auch
das quantenmechanische (Kap. 5.2) beschreiben die
Metalle im Wesentlichen über freie Elektronen, wel-
che in einen Potenzialtopf eingesperrt sind, des-
sen Ränder den Rändern des Kristalls entsprechen.
Dieses Modell der freien Elektronen eliminiert je-
de Wechselwirkung zwischen Elektronen mit Aus-
nahme des Pauli-Prinzips. Die Wechselwirkung der

Elektrische Leitfähigkeit

Metallglanz

Pyrit (FeS)

Cobaltin 
(CoAsS)

Wärmeleitfähigkeit

Abbildung 5.2: Beispiele von Metallen und metall-
typischen Eigenschaften.

Elektronen mit Atomrümpfen wird zunächst eben-
falls nicht berücksichtigt und erst in einer zweiten
Stufe (im Kapitel 6) als ein periodisches Potenzial
berücksichtigt, welches die gleiche Periode wie das
Gitter aufweist. Trotz dieser extremen Vereinfachun-
gen kann das Modell freier Elektronen erstaunlich
viele Aspekte der Metalle erklären.

5.1.2 Das Drude-Modell

Die klassische Theorie entstand drei Jahre nach
der Entdeckung des Elektrons durch J.J. Thomson
(1897). Im 19. JH hatte die kinetische Gastheorie
eine befriedigende Erklärung für viele bekannte Ef-
fekte im Bereich der Thermodynamik geliefert. Dies
mag ein Motiv gewesen sein dafür, dass P. Drude
die Elektronen in einem Metall als Gas modellier-
te1. Seine Annahme war, dass die äußersten Elektro-
nen jedes Atoms sich im Metall praktisch frei bewe-
gen können. Zu diesen Leitungselektronen tragen die
Atome, welche das Gitter bilden normalerweise ein
oder zwei Elektronen bei. Diese Elektronen sind im

1P. Drude, Annalen der Physik 1, 566 und 3, 369 (1900).
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5 Freie Elektronen

gesamten Kristall frei beweglich, wobei die positiv
geladenen Atomrümpfe ein Potenzial bilden.

+ + + + +

+ + + + +

+ + + + +

Atomrümpfe:
- klein
- statisch-

-
-

-

Valenzelektronen:
- ballistische Bewegung
- kurze Stöße

Abbildung 5.3: Das Drude-Modell des freien Elek-
tronengases.

Nach Drude verhalten sich diese Elektronen ähnlich
wie ungeladene Teilchen in einem klassischen Gas:

• Die Atomrümpfe sind klein und statisch.

• Die Elektronen sollen eine freie Weglänge zwi-
schen Stößen haben, welche vielen Gitterkon-
stanten entspricht.

• Zwischen den Stößen ist die Bewegung frei,
d.h. unabhängig von den anderen Elektronen
(unabhängige Elektronen) und von den Atom-
rümpfen (freie Elektronen). Sind äußere Felder
vorhanden, so beeinflussen diese die Bewegung
wie in der Mechanik diskutiert.

• Stöße finden im Drude-Modell vor allem mit
den Ionenrümpfen statt; Stöße zwischen Elek-
tronen sind sehr selten. Die Stöße werden als
kurz angenommen und die Geschwindigkeit der
Elektronen nach dem Stoß ist unabhängig von
der Geschwindigkeit vor dem Stoß, sondern
wird durch die Temperatur des Kristalls be-
stimmt.

5.1.3 Ergebnisse

Mit Hilfe dieses einfachen klassischen Modells kön-
nen unterschiedliche Aspekte der Phänomenolo-
gie von Metallen erklärt werden. Beispiele dafür
sind die Herleitung der qualitativen Aspekte des
Ohm’schen Gesetzes, oder die Beziehung zwischen
elektrischer und thermischer Leitfähigkeit. Wir dis-
kutieren diese Resultate jedoch nicht im Rahmen des

klassischen Modells, sondern erst nach der Einfüh-
rung des quantenmechanischen Modells.

Element Z n (1022/cm3) r (Å)
Li (78 K) 1 4.70 1.72
Na (5K) 1 2.65 2.08
K (5K) 1 1.40 2.57
Be 2 24.7 0.99
Mg 2 8.61 1.41
Al 3 18.1 1.1
Ga 3 15.4 1.16

Abbildung 5.4: Dichte des Elektronengases für ver-
schiedene Elemente.

Ein wesentlicher Unterschied zwischen dem Elek-
tronengas eines Metalls und einem echten Gas ist
die Dichte: Im Vergleich zu einem echten Gas ist
die Dichte des Elektronengases um rund einen Fak-
tor 1000 größer: Pro Leitungselektron steht lediglich
ein Volumen zur Verfügung das etwa einem Atom-
volumen entspricht. Für ein Atom mit Radius 2 Å
erhält man ein Volumen von ca. 3 ·10�29m3, entspre-
chend einer Teilchendichte von 3 ·1028m�3. Dies ist
eine typische Größenordnung (ca. 1�20 ·1028m�3).

Die positiv geladenen Atomrümpfe sind relativ klein
und füllen lediglich einen kleinen Teil des Raumes.
Bei Natrium umfasst das Volumen der Atomkerne
rund 15 % des gesamten Festkörpervolumens; bei
Edelmetallen wie Ag, Au steigt der Anteil. Sie sind
aber sehr viel schwerer als die Elektronen und blei-
ben unbeweglich auf ihren Plätzen.

5.1.4 Grenzen des Drude-Modells

Wie bei der Diskussion der Gitterschwingungen ge-
langt man aber auch bei den Elektronen im Rah-
men der klassischen Physik sehr bald an eine Gren-
ze, ab der ein wirkliches Verständnis nur mit Hilfe
der Quantenmechanik erreicht werden kann. Zu den
qualitativen Unterschieden zwischen den Voraussa-
gen der klassischen und der quantenmechanischen
Theorie gehört die Berechnung der Stöße, die ein
Elektron bei der Durchquerung des Kristalls erlei-
det. Im klassischen Bild würde man eine große An-
zahl Stöße mit den Gitteratomen erwarten. Experi-
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5 Freie Elektronen

mentell findet man, dass die Distanz, über die sich
die Elektronen frei bewegen können, von der Quali-
tät des Kristalls abhängt, sowie von der Temperatur.
Während in gewöhnlichen Metallen bei Raumtem-
peratur (z.B. Kupferdrähte) die Elektronen nach we-
nigen Gitterperioden gestreut werden und sich des-
halb insgesamt diffusionsartig bewegen, kann bei
tiefen Temperaturen und guten Kristallen die mitt-
lere freie Weglänge größer als die Kristalldimensi-
on werden. Aus experimentellen Daten ist bekannt,
dass die freie Weglänge bis zu einem Zentimeter be-
tragen kann. In diesem Fall bewegt sich somit das
Elektron ohne Streuung durch rund 108 atomare La-
gen; offenbar breiten sie sich dann ballistisch, also
ohne Streuung im Kristall aus.

Weitere experimentelle Befunde, die mit dem
Drude-Modell nicht erklärt werden konnten, wa-
ren die Temperaturabhängigkeit der elektrischen
und thermischen Leitfähigkeit. Außerdem sollten in
einem idealen Gas die Elektronen einen Beitrag
3/2RT zur spezifischen Wärme liefern; der experi-
mentell beobachtete Beitrag ist um rund 2 Größen-
ordnungen kleiner.

Ein klassisches Modell, welches (teilweise) erklä-
ren kann, welche Elemente metallischen Charakter
haben, wurde 1927 durch Herzfeld vorgeschlagen2.
Ein wirkliches Verständnis ist jedoch nur im Rahmen
einer quantenmechanischen Behandlung möglich.

5.2 Das quantenmechanische Modell

5.2.1 Das Sommerfeld-Modell

Die wichtigsten Beschränkungen des Drude Modells
können dadurch überwunden werden, dass man die
Elektronen als quantenmechanische Teilchen, d.h.
als Teilchen mit Wellencharakter behandelt. Ein ent-
sprechendes Modell wurde 1928 von Sommerfeld
vorgeschlagen, kurz nach der Entdeckung des Pauli-
Prinzips. Damit gelang es, die wichtigsten Inkonsi-
stenzen des Drude-Modells aufzulösen.

Ein Festkörper umfasst rund 1020 miteinander wech-
selwirkende Teilchen. Natürlich ist die exakte Be-

2Phys. Rev. 29, 701-705

handlung eines solchen Systems nicht möglich. Wir
müssen deshalb zunächst einige drastische Vereinfa-
chungen durchführen: wir lassen Wechselwirkungen
zwischen den Elektronen wie auch von Kernen zu
Elektronen vorläufig vollständig weg und betrach-
ten zunächst nur freie und unabhängige Elektronen.
Ihre Zustände sind somit auch nur Einelektronen-
Zustände, die wir auch als Orbitale bezeichnen.

Ort x

En
er

gi
e 

E Metall

VakuumVakuum

Abbildung 5.5: Potenzial für Elektronen im
Sommerfeld-Modell.

Damit brauchen wir lediglich freie Elektronen in ei-
nem (unendlich ausgedehnten) Kristall zu betrach-
ten. Die Ränder des Kristalls sind Potenzialwände.
Als Eigenzustände solcher freier Elektronen kann
man bekanntlich ebene Wellen verwenden; diese
sind allerdings im gesamten Raum nicht normier-
bar. Man kann zu normierbaren Funktionen gelan-
gen, indem man periodische Randbedingungen ein-
führt. Die entsprechende Periode, welche groß ge-
gen die Gitterkonstante sein sollte, kann anschlie-
ßend gegen Unendlich geführt werden.

Die Atomrümpfe bilden ein Hintergrundpotenzial.
Sie bestehen aus den Kernen plus den stark gebun-
denen Elektronen in den gefüllten Schalten. Je nach
Metall sind diese Rümpfe relativ klein und weit von-
einander entfernt, oder sie berühren sich und bilden
teilweise kovalente Bindungen.

Das Sommerfeld’sche Modell der freien Elektronen
passt am besten auf die Alkalimetalle. Hier entspre-
chen die Atomrümpfe den abgeschlossenen Schalen
mit Edelgaskonfiguration, das eine Valenzelektron
im s-Orbital ist das freie Elektron, welches ein Lei-
tungsband mit s-Charakter bildet.

Wasserstoff, das leichteste und häufigste Element
des Universums, gehört zur gleichen Gruppe des Pe-
riodensystems wie die Alkaliatome. Gemäß theoreti-
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5 Freie Elektronen

Abbildung 5.6: Aufbau des Planeten Jupiter.

schen Vorhersagen sollte es bei hohen Drücken me-
tallisch werden. Man geht deshalb davon aus, dass
der Jupiter zu einem großen Teil aus metallischem
Wasserstoff besteht. Versuche, auf der Erde Was-
serstoff in die metallische Form zu bringen, haben
jedoch bisher keine eindeutigen Resultate geliefert.
Theoretische Vorhersagen gehen davon aus, dass da-
für Drücke im Bereich von 500 GPa (5 · 106 atm)
notwendig sind.

5.2.2 Das Teilchen im Potenzialtopf

Um die quantenmechanischen Zustandsfunktionen
der Elektronen im Kristall zu bestimmen, rekapitu-
lieren wir zunächst das Problem eines Teilchens in
einem eindimensionalen Potenzialtopf. Wie bei der
Diskussion der Phononen führen wir zunächst Rand-
bedingungen ein, welche in erster Linie dazu dienen,
die Zustände zu normieren und die Zustandsdichte
zu berechnen.

Das Potenzial verschwindet auf der Strecke [0,L]
und ist unendlich hoch außerhalb. Der Hamiltonope-
rator dieses Systems beinhaltet im Bereich [0,L] le-
diglich die kinetische Energie

H =
p2

2m
= � h̄2

2m
d2

dx2 .

Die Eigenfunktionen dieses Operators sind die ebe-
nen Wellen

Yk = eikx

x

V

0 L
1

4

9

h=2L

h=L

h=2L/3

Abbildung 5.7: Eindimensionaler Potentialtopf.

oder

Yk = a sinkx+b coskx

und die Eigenwerte sind

Ek =
h̄2k2

2m
=

p2

2m
.

Der Hamiltonoperator ist nur gültig für 0 < x < L.

Wir berücksichtigen das Potenzial über die Randbe-
dingung und verlangen, dassY(0) =Y(L) = 0. Damit
erhalten wir als Lösungen

Yn = A sin
⇣

np

x
L

⌘

und

En =
h̄2

2m

⇣np

L

⌘2
.

Wenn sich mehrere Elektronen in diesem Potenzial
befinden und wir deren elektrostatische Wechselwir-
kung zunächst vernachlässigen, so kann gemäß dem
Ausschließungsprinzip von Pauli jeder dieser Zu-
stände mit zwei Elektronen mit entgegen gesetztem
Spin besetzt werden. Das Gesamtsystem ist demnach
im Grundzustand wenn die niedrigsten N/2 Zustän-
de mit jeweils 2 Elektronen besetzt sind.

5.2.3 Drei Raumdimensionen

In Kristallen entspricht der Potenzialtopf der Rand-
bedingung, dass die Elektronen sich innerhalb des
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5 Freie Elektronen

Kristalls befinden müssen. Wir berücksichtigen dies
wiederum über periodische Randbedingungen

Y(x,y,z) = Y(x+L,y,z) = Y(x,y+L,z)
= Y(x,y,z+L),

wobei L groß gegenüber einer Einheitszelle sein soll.

Im dreidimensionalen Raum lautet der Hamilton-
operator für ein freies Elektron

H = � h̄2

2m

✓
d2

dx2 +
d2

dy2 +
d2

dz2

◆
.

Elektronen in einem Potenzialtopf mit Kantenlänge
L haben dann die Zustände

Yn = Asin
✓

2p

L
nxx

◆
sin

✓
2p

L
nyy

◆
sin

✓
2p

L
nzz

◆

und Energien

En =
h̄2k2

2m
=

h̄2

2m
�
k2

x + k2
y + k2

z
�

=
h̄2

2m

✓
2p

L

◆2 �
n2

x +n2
y +n2

z
�
. (5.1)

Alternativ können komplexe Zustände (ebene Wel-
len) verwendet werden:

Y~k(~r) = ei~k·~r ~k =
2p

L

0

@
nx
ny
nz

1

A . (5.2)

Da wir uns hier in einem endlichen Bereich (mit Vo-
lumen L3) befinden, sind diese Zustände normierbar
und die möglichen k-Werte diskret. Die Energie die-
ser Zustände ist die gleiche wie in (5.1). Der Impuls
eines Elektrons in diesem Zustand ist ~p = h̄~k und sei-
ne Geschwindigkeit~v = h̄~k/m. Wir verwenden diese
Zustände als Basisfunktionen für die Beschreibung
von Elektronen in einem Kristall der Kantenlänge L.

Nach Gl. (5.2) sind die Zustände gleichmäßig im
k�Raum verteilt. Die Energie steigt proportional
zum Quadrat des Impulses.

5.2.4 Fermi-Energie

Wir untersuchen nun die Frage, welche dieser Zu-
stände besetzt sind. Da Elektronen einen Spin ½ be-
sitzen, unterliegen sie der Fermi-Dirac Statistik und
jeder räumliche Zustand kann maximal von 2 Elek-
tronen mit entgegengesetztem Spin besetzt sein.

2ʌ/L

k

E

EF
Zustände leer

N Zustände 
besetzt

Fermi 
Energie

Abbildung 5.8: Links: Zustände im k-Raum; rechts:
Besetzung der Zustände bei T = 0.

Am absoluten Nullpunkt besetzen N Elektronen die
N/2 energetisch niedrigsten Zustände. Da die Ener-
gie (im Rahmen dieses Modells) nur vom Betrag des
Impulses abhängt, bilden diese Zustände im k-Raum
eine Kugel. Um die besetzten Zustände zu finden,
bestimmen wir zunächst die Zahl der Zustände im
Impulsraum.

Da wir periodische Randbedingungen angenommen
haben, ist der Impulsraum diskret, mit Einheitszellen
der Seitenlänge 2p/L. Die besetzten Zustände füllen
in diesem Raum eine Kugel, deren Radius wir mit
kF bezeichnen. Das Volumen dieser Kugel beträgt
k3

F4p/3.

Die Anzahl der Zustände in dieser Kugel, d.h. die
Zahl der besetzten Zustände, muss der Zahl der Elek-
tronen entsprechen. Wir setzen somit die Zahl der
Elektronen gleich der doppelten (Spin!) Zahl der
Moden. Diese berechnen wir, indem wir das gesamte
Volumen der Kugel durch das Volumen pro Zustand
dividieren,

N = 2
4p

3 k3
F� 2p

L

�3 =
V k3

F
3p

2 . (5.3)

Bei N Elektronen muss damit der Radius der Kugel

kF =
3

r
3p

2N
V
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sein. Die entsprechende Energie beträgt

EF =
h̄2

2m

✓
3p

2N
V

◆ 2
3

(5.4)

und wird als Fermi-Energie bezeichnet. Die Fermi-
Energie ist somit die Energie der Elektronen im
höchsten besetzten Einelektronenzustand. In der
Fermi Energie tritt die Anzahl Elektronen und das
Volumen nicht mehr unabhängig auf, sondern sie
hängt lediglich von der Dichte N/V der Elektronen
ab. Damit muss die Fermienergie mit der Dichte der
Elektronen zunehmen.

Abbildung 5.9: Beispiele von Fermi-Energien.

Abb. 5.9 zeigt, dass die experimentellen Werte dies
bestätigen. Typische Größenordnungen für die Elek-
tronenzahldichte liegen bei 1029 m�3, für die Fermi-
energie bei 10 eV.

Häufig parametrisiert man die Fermi-Energie auch
über die Temperatur:

kBTF = EF .

Typische Werte für die Fermi-Temperatur liegen bei
105 K, also bei Temperaturen weit oberhalb des
Schmelzpunktes. Somit ist T ⌧ TF immer eine sehr
gute Näherung.

Wenn wir den Impuls der Elektronen in eine
Geschwindigkeit umrechnen, erhalten wir für die
Geschwindigkeit der Elektronen an der Fermi-
Oberfläche

vF =
h̄kF

m
=

h̄
m

3

r
3p

2N
V

.

Typische Werte liegen im Bereich von 106 m/s, also
bei 0.003 c. Allerdings sollte man dies nicht mit ei-
nem entsprechend schnellen Massentransport asso-
ziieren.

Insgesamt ist die kinetische Energie der Leitungs-
elektronen deutlich niedriger, als die entsprechende
kinetische Energie in einem isolierten Atom. Diese
Absenkung der kinetischen Energie ist im Wesentli-
chen für die metallische Bindung verantwortlich.

5.2.5 Zustandsdichte

Eine wichtige Größe ist die Zustandsdichte, d.h. die
Anzahl quantenmechanischer Zustände in einem be-
stimmten Volumen. Da die Elektronen gleichmäßig
über den ganzen Raum verteilt sind, ist die Zustands-
dichte im gewöhnlichen Raum offenbar konstant.

Im reziproken Raum (k-Raum) haben wir gesehen,
dass die Zustandsdichte ebenfalls konstant ist, d.h.
die Anzahl Zustände pro Volumenelement ist kon-
stant.

Anders sieht es aus, wenn wir die Anzahl Zustän-
de als Funktion des Betrages des k-Vektors betrach-
ten. Für die Berechnung dieser Zustandsdichte be-
stimmen wir zunächst die Anzahl Zustände, deren
Wellenzahl kleiner als k ist. Laut Gl. (5.3) ist dies

Nk =
V k3

3p

2 .

Daraus können wir die Dichte der Zustände berech-
nen in der Umgebung eines Wellenvektors k, d.h. in
einer Kugelschale mit Radius k:

dNk

dk
=

k2V
p

2 .

Außerdem interessiert die Zustandsdichte im Ener-
gieraum. Mit

E =
h̄2k2

2m
,

resp. k2 = 2mE /h̄2 erhalten wir für die Anzahl Zu-
stände mit Energie kleiner als E

N(E ) = V
(2mE )3/2

3p

2h̄3

und daraus die Zustandsdichte im Energieraum

dN(E )

dE
=

d
dE

E 3/2V
(2m)3/2

3p

2h̄3

=

p
2V m3/2

p

2h̄3

p
E . (5.5)

102



5 Freie Elektronen

k

dN
dk V

k2 ʌ2

E

dN
dE E~

Abbildung 5.10: Zustandsdichte im k-Raum (links)
und im Energieraum (rechts).

Die Zustandsdichte steigt also proportional zur Wur-
zel aus der Energie; sie verschwindet beim Null-
punkt und ist proportional zum Volumen V des Kri-
stalls.

5.3 Thermodynamik des
Elektronengases

Im Drude-Modell hatte man angenommen, dass die
klassische Thermodynamik die Verteilung der elek-
tronischen Zustände beschreibt. Dies wäre aber nicht
mit dem Pauli-Prinzip vereinbar. Wird dieses be-
rücksichtigt, erhält man die Fermi-Dirac Statistik.

5.3.1 Besetzungswahrscheinlichkeit

Am absoluten Nullpunkt sind die Zustände bis zur
Fermienergie besetzt, die darüber liegenden leer. In
Wirklichkeit arbeiten wir aber immer bei endlicher
Temperatur und müssen deshalb thermische Anre-
gungen berücksichtigen. Wie wir oben gesehen ha-
ben, sind im Grundzustand die N/2 niedrigsten Zu-
stände mit jeweils zwei Elektronen mit entgegenge-
setztem Spin besetzt.

Dieses System kann zusätzliche Energie aufnehmen
wenn ein Elektron aus einem Niveau unterhalb der
Fermikante in eines oberhalb angeregt wird.

Wir bestimmen nun die Wahrscheinlichkeit, dass ein
Zustand mit gegebener Energie E bei einer Tempe-
ratur T besetzt ist. Dabei ist es nicht möglich, die
Elektronen einzeln zu betrachten, da die Besetzung
der Einelektronenzustände aufgrund des Pauliprin-
zips stark aneinander gekoppelt ist. Wir diskutieren

E

D(E)

EF

T=0

E

D(E)

EF

T>0

Abbildung 5.11: Besetzungswahrscheinlichkeit der
Zustände bei T = 0 (links) und T >
0 (rechts).

E�i

Abbildung 5.12: Beispiel eines N-Elektro nen zu
stands.

deshalb im Folgenden nicht 1-Elektronenzustände,
sondern N-Elektronenzustände.

Die Wahrscheinlichkeit, dass ein N-
Elektronenzustand mit Energie E besetzt ist,
beträgt

PN(E ) =
e�E /kBT

Â
a

e�E
a

/kBT .

Der Nenner ist aus der statistischen Thermodynamik
als Zustandssumme bekannt. Er kann geschrieben
werden als

Â
a

e�E
a

/kBT = e�F/kBT = e�(U�T S)/kBT ,

wobei F die Helmholtz’sche freie Energie, U die
innere Energie und S die Entropie des Systems
darstellt. Wir können deshalb die Besetzungswahr-
scheinlichkeit auch schreiben als

PN(E ) = e�E /kBT eF/kBT = e�(E �F)/kBT .

In der Praxis kennt man leider den N-
Elektronenzustand nicht. Experimentell zugänglich
ist hingegen die Besetzungswahrscheinlichkeit fi
für einen Einelektronenzustand i (Spin-Orbital).

Diese erhält man aus der obigen Verteilung durch
Summation über alle N-Elektronenzustände, in de-
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nen der Zustand i besetzt ist,

f N
i = Â

b

PN(E N
b

).

b läuft über alle Zustände, in denen das i-te Orbital
besetzt ist.

Der Zustand i ist entweder besetzt oder leer.
Wir können somit die Besetzungswahrscheinlichkeit
auch als die Differenz zwischen 1 und der Wahr-
scheinlichkeit für Nichtbesetzung bestimmen:

f N
i = 1�Â

g

PN(E N
g

),

wobei die Summe jetzt über diejenigen Zustände
läuft, bei denen der Zustand i nicht besetzt ist.

Wir verwenden hier ein Modell freier Elektronen.
Somit ist die Gesamtenergie des N-Elektronen Zu-
standes durch die Summe der Energien der besetzten
1-Elektronen Zustände gegeben. Wir drücken jetzt
die Energie E N

g

des N-Elektronenzustands mit lee-
rem Zustand i aus durch die Energie des entspre-
chenden N + 1-Elektronen Zustande,s in dem der
Zustand i besetzt, ist minus die Energie des entspre-
chenden Elektrons, E N

g

= E N+1
b

� ei. Damit wird

f N
i = 1�Â

b

PN(E N+1
b

� ei), (5.6)

wobei ei die Energie des Einelektronenzustands i
darstellt.

5.3.2 Die Fermi-Dirac Verteilung

Das Verhältnis der Besetzungswahrscheinlichkeiten
für den N-Elektronenzustand und den N +1 Elektro-
nenzustand beträgt

PN(E N+1
b

� ei)

PN+1(E
N+1

b

)
=

e�
E N+1

b

�ei�FN

kBT

e�
E N+1

b

�FN+1

kBT

= e
ei�µ

kBT ,

wobei

µ = FN+1 �FN

das chemische Potenzial darstellt, d.h. die Ableitung
der freien Energie nach der Teilchenzahl,

µ =
∂U
∂N

.

Die relative Wahrscheinlichkeit hängt also davon ab,
ob der Zustand i oberhalb oder unterhalb des chemi-
schen Potenzials liegt.

Daraus erhalten wir für den Summanden in (5.6)

PN(E N+1
b

� ei) = e
ei�µ

kBT PN+1(E
N+1

b

).

Wir setzen dieses Resultat in die Summe ein und er-
halten

f N
i = 1� e

ei�µ

kBT Â
b

PN+1(E
N+1

b

).

Diese Summe ist aber gerade die Besetzungswahr-
scheinlichkeit f N+1

i für den i-ten Zustand in einem
System mit N +1-Elektronen:

f N
i = 1� e

ei�µ

kBT f N+1
i .

Wir können diese Form vereinfachen, wenn wir an-
nehmen, dass die Besetzungswahrscheinlichkeit sich
durch die Veränderung der Elektronendichte um ein
Elektron (also relativ um ⇡ 10�23) nicht wesentlich
ändert. Wir können dann f N+1

i ersetzen durch f N
i .

Auflösen der Gleichung nach f N
i ergibt

f N
i =

1
e(ei�µ)/kBT +1

.

Dies ist die Fermi-Dirac Verteilung, d.h. die Be-
satzungswahrscheinlichkeit für Fermionen in einem
Zustand der Energie ei. Der Term +1 im Nenner
stellt sicher, dass die Funktion nicht größer als 1
wird, dass also kein Zustand mehr als einmal be-
setzt werden kann. Die Bose-Einstein Statistik un-
terscheidet sich durch ein Minus an dieser Stelle. In
diesem Fall kann die Besetzungswahrscheinlichkeit
sehr groß werden. Bei tiefen Temperaturen konden-
sieren Bosonen deshalb alle in den Grundzustand.
Solche Phänomene sind für kollektive Quantenphä-
nomene verantwortlich, wie z.B. Supraleitung, Su-
prafluidität oder Bose-Einstein Kondensation.
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5.3.3 Beispiele

Da die Fermi-Temperatur sehr viel höher ist als die
Raumtemperatur und für niedrige Temperaturen µ ⇡
kBTF , gilt meistens T ⌧ µkB. Wir betrachten die fol-
genden Grenzfälle:

a) ei ! 0 : Die Exponentialfunktion geht gegen null
und f N

i ! 1.

b) ei � µ: Die Exponentialfunktion wird groß ge-
gen 1 und f N

i ! e�(ei�µ)/kBT . In diesem Bereich nä-
hert sich die Fermi-Dirac Verteilung der Boltzmann-
Verteilung an und fällt exponentiell gegen Null ab.

kBT = µ

kBT = µ/10

�i/µEnergie

f i
Be

se
tz
un

gs
w
ah

rs
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Abbildung 5.13: Fermi-Dirac Besetzungswahr-
scheinlichkeit bei verschiedenen
Temperaturen.

Bei der Temperatur 0 K beschreibt sie einen abrup-
ten Übergang von der 1 nach 0 an der Fermikante.
Bei höheren Temperaturen wird Population aus der
Nähe der Fermikante in energetisch höhere Zustände
verschoben. Die Breite dieses Übergangsbereiches
ist von der Größenordnung kBT . Das Zentrum des
Übergang wird durch das chemische Potenzial µ be-
stimmt, welches am absoluten Nullpunkt der Fermi-
energie entspricht.

Im Gegensatz zur Fermienergie ist das chemische
Potenzial aber temperaturabhängig. Wir berechnen
diese Abhängigkeit, indem wir aus der Besetzungs-
wahrscheinlichkeit die gesamte Elektronenzahl be-
rechnen:

N = Â
i

fi = Â
i

1
e(ei�µ)/kBT +1

.

Für eine feste Elektronenzahl N können wir aus die-
ser Gleichung das chemische Potenzial µ bestim-
men. Dafür entwickelt man die Differenz der Be-
setzungswahrscheinlichkeiten bei der Temperatur T
und bei T = 0 K als Taylorreihe um E = µ . Daraus
erhält man für die Temperaturabhängigkeit des che-
mischen Potenzials in niedrigster Ordnung in T

µ(T ) = EF

 
1� p

2

12

✓
T
TF

◆2

+ . . .

!
.

Für alle relevanten Temperaturen gilt T ⌧ TF , so
dass höhere Terme in exzellenter Näherung vernach-
lässigt werden können.

5.3.4 Die thermische Energie des
Elektronengases

Gemäß der klassischen Drude-Theorie sollte die ki-
netische Energie der Elektronen wie bei Gasteil-
chen 3

2 NkBT sein. Damit sollte die Wärmekapazi-
tät also Cel ⇡ 3R/2 betragen, unabhängig von der
Temperatur. Experimentell beobachtet man aber bei
Raumtemperatur einen Wert, der wesentlich niedri-
ger ist, von der Größenordnung <1% des klassischen
Wertes, und außerdem temperaturabhängig. Erst die
Fermi-Dirac Verteilung löste dieses Problem: Wäh-
rend in einem klassischen Gas eine Temperaturerhö-
hung um DT die Energie jedes Teilchens um kBDT/2
erhöht, können die meisten Elektronen keine Ener-
gie von der Größenordnung kBT aufnehmen, da in
diesem Bereich keine leeren Zustände zur Verfügung
stehen. Lediglich in der Nähe der Fermikante, in ei-
nem Bereich der Breite ⇡ kBT um die Fermi-Energie
stehen teilweise gefüllte Zustände zur Verfügung.
Die Zahl der Elektronen in diesem Bereich liegt in
der Größenordnung von T/TF aller Elektronen. Da
typische Werte für die Fermi-Temperatur bei rund
105 K liegen beträgt dieses Verhältnis bei Raumtem-
peratur weniger als 1%. Die gleiche Überlegung sagt
auch voraus, dass die spezifische Wärme proportio-
nal zur Temperatur abnehmen sollte.

Die Rechnung lässt sich in der Tieftemperatur-
Näherung T ⌧ TF auch exakter durchführen. Wir
berechnen die gesamte Energie U der Elektronen als
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Summe über die Energie aller besetzten Einelektro-
nenzustände als

U =
Z •

0
de e D(e) f (e),

wobei D(e) die Zustandsdichte und f (e) die Beset-
zungswahrscheinlichkeit bezeichnen.

Änderung der Besetzungdf(�)

�
�F

� � �F

�

Änderung der Energie

Abbildung 5.14: Änderung der Besetzung und Än-
derung der Energie bei endlicher
Temperatur.

Die thermische Energie des Elektronengases bei der
Temperatur T beträgt demnach

UT = U(T )�U(0)

=
Z •

0
de e D(e) f (e)�

Z
eF

0
de e D(e)

= (
Z

eF

0
+

Z •

eF

)de e D(e) f (e)

�
Z

eF

0
de e D(e)

=
Z

eF

0
de e D(e) ( f (e)�1)

+
Z •

eF

de e D(e) f (e).

Das erste Integral beinhaltet die Energie, welche be-
nötigt wird, um die Elektronen aus den Zuständen
unterhalb der Fermikante zu entfernen, das zweite
Integral die Energie der Elektronen oberhalb der Fer-
mikante.

Die Anzahl Elektronen muss dabei konstant bleiben,

N = N(T ) = N(0) =
Z •

0
de D(e) f (e)

=
Z

eF

0
de D(e).

Wir multiplizieren diese Identität mit der Fermiener-
gie eF und erhalten

(
Z

eF

0
+

Z •

eF

)de eF D(e) f (e)

=
Z

eF

0
de eF D(e).

Wir addieren die rechte Seite zur thermischen Ener-
gie und subtrahieren die linke Seite und erhalten

UT =
Z

eF

0
de [e D(e) ( f (e)�1)

+eF D(e)� eF D(e) f (e)]

+
Z •

eF

de [e D(e) f (e)� eF D(e) f (e)]

=
Z

eF

0
de (e � eF)D(e) ( f (e)�1)

+
Z •

eF

de (e � eF)D(e) f (e).

Die entspricht einer Verschiebung des Energienull-
punktes. Das erste Integral bezeichnet die Energie,
welche benötigt wird, um die Elektronen aus einem
besetzten Zustand an die Fermikante anzuheben, das
zweite die Energie, welche zusätzlich aufgebracht
werden muss, um sie von der Fermikante in einen
leeren Zustand oberhalb zu bringen. Beide Beiträge
zur Energie sind positiv. Abb. 5.14 zeigt diesen Bei-
trag in der unteren Kurve.

5.3.5 Spezifische Wärme

Wir suchen nun die spezifische Wärme, also die
Änderung der inneren Energie pro Temperaturände-
rung. Der einzige Term in der obigen Gleichung, der
sich mit der Temperatur ändert, ist die Besetzungs-
wahrscheinlichkeit f(e). Wir erhalten deshalb

Cel =
dU
dT

=
Z •

0
de(e � eF)D(e)

d f (e)

dT
.

Da sich die Besetzungswahrscheinlichkeit nur in der
Nähe der Fermikante wesentlich ändert, verschwin-
det der Integrand für Energien weit von der Fermi-
energie. Wir können deshalb die Zustandsdichte in

106



5 Freie Elektronen

guter Näherung als konstant betrachten und aus dem
Integral herausziehen:

Cel = D(eF)
Z •

0
de(e � eF)

d f (e)

dT
.

Für die Berechnung der Änderung der Besetzungs-
wahrscheinlichkeit approximieren wir das chemi-
sche Potenzial durch die Fermienergie:

f =
1

e(e�eF )/kBT +1
.

Dies ist eine gute Näherung bei niedrigen Tempera-
turen. Damit wird die Ableitung nach der Tempera-
tur

d f
dT

=
e � eF

kBT 2
e(e�eF )/kBT

�
e(e�eF )/kBT +1

�2

und die Wärmekapazität

Cel = kBD(eF)
Z •

0
de

✓
e � eF

kBT

◆2

· e(e�eF )/kBT

�
e(e�eF )/kBT +1

�2 .

Wir benutzen die Abkürzung x = (e � eF)/kBT und
de = dxkBT und erhalten

Cel = k2
BT D(eF)

Z •

�eF/kBT
dxx2 ex

(ex +1)2

= k2
BT D(eF)

Z •

�eF/kBT
dx

x2

ex +2+ e�x .

(5.7)
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Abbildung 5.15: Grafische Darstellung des Integran-
den in Gl. (5.7).

Der Integrand fällt für |x| � 1 exponentiell ab. Für
Temperaturen weit unterhalb der Fermitemperatur,
kBT ⌧ eF , d.h. im gesamten interessanten Bereich,
kann die untere Integrationsgrenze deshalb auf -•
gesetzt werden. Das resultierende Integral ist nicht
trivial, kann aber zu p

2/3 bestimmt werden. Damit
wird

Cel = k2
BT D(eF)

p

2

3
.

Die Zustandsdichte an der Fermikante erhalten wir
aus (5.5)

D(eF) =
dN(E )

dE

����
eF

=
p

eFV
(2m)3/2

2p

2h̄3

und (5.4)

eF =
h̄2

2m

✓
3p

2N
V

◆ 2
3

nach Erweiterung mit 1 als

D(eF) =
p

eFV
(2m)3/2

2p

2h̄3 e

�3/2
F

✓
h̄2

2m

◆ 3
2 3p

2N
V

=
3N
2eF

=
3N

2kBTF
,

sodass

Cel =
p

2

2
kBN

T
TF

(5.8)

wird. Offenbar wächst die die elektronische Wärme-
kapazität proportional zur Temperatur und erreicht
erst in der Nähe der Fermitemperatur den Wert von
Dulong-Petit. Bei Raumtemperatur ist die Wärmeka-
pazität somit um etwa das Verhältnis T/TF geringer.

5.3.6 Vergleich Elektronen / Phononen

Gemessen wird nie die elektronische Wärmekapa-
zität alleine, sondern die gesamte Wärmekapazität,
welche sich aus phononischem Teil und elektroni-
schem Teil zusammensetzt. Zwischen der Debye-
Temperatur und der Fermitemperatur dominiert so-
mit der phononische Anteil. Für Temperaturen unter-
halb der Debye-Temperatur erwarten wir eine Tem-
peraturabhängigkeit der Form

C = gT +AT 3 oder
C
T

= g +AT 2.
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Hier stellt g den elektronischen und A den phononi-
schen Anteil dar. Diese Beziehung stellt man gerne
in der in Abb. 5.16 gezeigten Form dar: das Verhält-
nis C/T wird gegen das Quadrat der absoluten Tem-
peratur aufgetragen.

Abbildung 5.16: Vergleich der Temperaturabhängig-
keit der Wärmekapazitäten des Iso-
lators KCl und des Metalls Cu.

In dieser Darstellung zeigt der Achsenabschnitt den
Beitrag der Elektronen, die Steigung den Beitrag der
Phononen. Der elektronische Beitrag sollte also für
sehr tiefe Temperaturen dominieren. Abb. 5.16 zeigt
dies für Cu. Da KCl keine freien Elektronen besitzt,
verschwindet hier der elektronische Beitrag zur spe-
zifischen Wärme: die entsprechende Kurve hat Ach-
senabschnitt Null.

f(E , t) =
1

e
��

kBT � 1
f(E , t) =

1

e
E�EF
kBT + 1

k

�(k) E(k)

k

Phononen Elektronen

Abbildung 5.17: Vergleich der Dispersion und Stati-
stik für Phononen und Elektronen.

Die unterschiedliche Temperaturabhängigkeit für
Elektronen und Phononen kann auf zwei funda-
mentale Unterschiede zwischen den beiden Arten
von Teilchen zurückgeführt werden. Zum einen sind
Phononen Quasiteilchen, welche erzeugt und ver-
nichtet werden können (Ruhemasse = 0), während
für Elektronen Teilchenzahlerhaltung gilt, da de-
ren Ruhemasse endlich ist. Zum andern unterlie-
gen Elektronen im Gegensatz zu Phononen dem
Pauli-Prinzip, da sie einen Spin h̄/2 besitzen, wäh-
rend Phononen Bosonen sind. Dies führt zu einer
unterschiedlichen Statistik (Fermi-Dirac vs. Bose-
Einstein).

5.3.7 Effektive Masse

Ein Vergleich der gemessenen und berechneten elek-
tronischen Wärmekapazität zeigt, dass die beobach-
teten Werte in der richtigen Größenordnung liegen,
aber nicht quantitativ exakt sind. Man beschreibt den
Unterschied gerne über eine Änderung der effekti-
ven Elektronenmasse.

Element! γth! γexp

  !  
!
Fe! 6.3! 50.1
Mn! 6.3 ! 167.1
Zn! 7.5! 5.8
Cd! 9.6! 7.1
Hg! 10.0! 20.9
Al! 9.2! 12.5
Ga! 10.0! 6.3
In! 12.1! 18.0
Tl! 13.0! 14.6
Sn! 13.8! 18.4
Pb! 15.0! 29.2
Bi! 18.0! 0.8
Sb! 16.3! 6.3

Element! γth! γexp

  !  
!
Li! 7.5! 17.5
Na! 10.9! 14.6
K! 16.7! 19.6
Rb! 19.2! 24.2
Cs! 22.1! 32.2
Cu! 5.0! 6.7
Ag! 6.3! 6.7
Au! 6.3! 6.7
Be! 5.0! 2.1
Mg! 10.0! 13.4
Ca! 15.0! 27.2
Sr! 18.0! 36.3
Ba! 19.6! 27.2
Nb! 6.7! 83.6

10�4J

Mol K2

10�4J

Mol K2

10�4J

Mol K2

10�4J

Mol K2

Abbildung 5.18: Vergleich der theoretischen und ex-
perimentellen Wärmekapazitäten
einiger Elemente.

Einige intermetallische Verbindungen von selte-
nen Erden und Actiniden (also Elementen mit f-
Elektronen) zeigen bei niedrigen Temperaturen ex-
trem hohe Wärmekapazitäten, welche einer effekti-
ven Elektronenmasse von rund 1000 me entsprechen.
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Abbildung 5.19: Gitterpotenzial für schwere Fer-
mionen.

Diese Verbindungen werden als schwere Fermionen
bezeichnet und bilden eine spezielle Klasse von Su-
praleitern, die “exotischen Supraleiter”. Die hohe
Masse kommt dadurch zustande, dass die Elektronen
in diesen Materialien nicht wirklich frei sind, son-
dern, dass die Wechselwirkung mit dem Gitter hier
eine wichtige Rolle spielt.

5.4 Elektrische Leitfähigkeit

5.4.1 Grundlagen

Die Fähigkeit, elektrischen Strom zu leiten, gehört
zu den charakteristischen Eigenschaften der Metal-
le. Sowohl die klassische Drude-Theorie wie auch
die quantenmechanische Theorie bieten einen An-
satz für die Erklärung dieses Phänomens. Wir disku-
tieren hier einen halbklassische Beschreibung, d.h.
wir verwenden klassische Bewegungsgleichungen,
berücksichtigen aber die Fermi-Dirac Verteilung.

Elektrischer Strom wird durch die freien Elektronen
getragen. Deren Reaktion auf das angelegte elek-
trische Feld bestimmt deshalb die Beziehung zwi-
schen Strom und Spannung, welche im Rahmen die-
ser Theorie mit dem Ohm’schen Gesetz überein-
stimmt. Die meisten freien Elektronen bewegen sich
mit einer relativ hohen Geschwindigkeit; die Fer-
migeschwindigkeit liegt bei rund 106 m/s. Da die
Verteilung der Geschwindigkeiten ohne ein äußeres
Feld isotrop ist, findet jedoch netto kein Ladungs-
transport statt.

Perfekte Metalle können prinzipiell Strom leiten
auch wenn kein elektrisches Feld anliegt. Reale Me-
talle weisen jedoch immer einen endlichen Wider-
stand auf – mit Ausnahme der Supraleiter, welche

nicht als normale Metalle beschrieben werden kön-
nen und in einem späteren Kapitel noch behandelt
werden.

Werden äußere Felder an ein Metall angelegt, so
bewirken diese auf die Elektronen eine zusätzliche
Kraft

~F = m
d~v
dt

= h̄
d~k
dt

= �e[~E +~v⇥~B].

Im Rahmen der klassischen Mechanik können wir
gleichzeitig die Geschwindigkeit schreiben als

~v =
d~r
dt

=
h̄~k
m

.

Diese Verhalten würde man auch quantenmecha-
nisch erhalten, wenn man damit ein Wellenpaket be-
schreibt.

Wir betrachten hier zunächst nur elektrische Felder,
welche offenbar zu einer gleichförmigen Beschleu-
nigung führen. Im Impulsraum erhalten wir

~k(t)�~k(0) = �e~Et/h̄,

d.h. einen Impuls, der linear mit der Zeit zunimmt.
Dies ist in einem Metall für einzelne Elektronen
nicht möglich, da es durch eine Impulsänderung in
einen Zustand übergehen würde, der bereits durch
ein anderes Elektron besetzt ist. Da die Felder auf
alle Elektronen wirken, wird jedoch die gesamte Fer-
mikugel verschoben um eine Distanz, welche linear
mit der Zeit wächst.

In Wirklichkeit dauert die Beschleunigung der Elek-
tronen nicht beliebig lange, sondern nur bis die Elek-
tronen einen Stoß ausführen. Bei einem Stoß wird
kinetische Energie vom Elektron auf das Gitter über-
tragen. Im Rahmen dieses Modells wird dabei an-
genommen, dass die Geschwindigkeit des Elektrons
thermalisiert wird, d.h. sie kehrt zur Fermi-Dirac
Verteilung zurück. Wenn die Thermalisierung im
Mittel eine Zeit t beansprucht, erreichen die Elek-
tronen im Mittel einen Impuls, der sich um

d

~k = �e~Et

h̄
vom thermischen Gleichgewicht unterscheidet. Die
Fermikugel im k-Raum wird somit um diesen Betrag
gegenüber dem Ursprung verschoben.
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Fermikugel bei E=0
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Abbildung 5.20: Verschobene Fermikugel im elek-
trischen Feld.

Da die Geschwindigkeit der Elektronen direkt pro-
portional zum k-Vektor ist,

~v =
h̄~k
m

= �e~Et

m
,

können wir daraus die Stromdichte berechnen:

~j = n(�e)~v = ne2
t

~E/m.

Hier stellt n die Anzahl Leitungselektronen pro Vo-
lumeneinheit dar. Der Strom ist somit proportional
zur Feldstärke, wie im Ohm’schen Gesetz. Die Pro-
portionalitätskonstante ist die spezifische elektrische
Leitfähigkeit

s = ne2 t

m
; [s ] =

1
Wm

. (5.9)

Dieses Resultat ist identisch mit der Voraussage des
klassischen Modells.

Prinzipiell sind alle diese Größen anisotrop. Entspre-
chend wird die Leitfähigkeit im allgemeinen Fall
durch einen Tensor beschrieben. Wir beschränken
uns hier jedoch auf den isotropen Fall.

Element 77 K 273 K 373 K
Li 7.3 0.88 0.61
Na 17 3.2
K 18 4.1
Rb 14 2.8

Tabelle 5.1: Relaxationszeiten für einige Alkalime-
talle.

Offenbar ist die Leitfähigkeit proportional zur Zeit
zwischen zwei Stößen. In sehr sauberen Metallen
kann bei tiefen Temperaturen eine freie Weglänge
von bis zu 10 cm erreicht werden. Die Geschwin-
digkeit der Elektronen ist proportional zur Streuzeit
und kann unter diesen extremen Bedingungen meh-
rere Prozent der Lichtgeschwindigkeit erreichen.

5.4.2 Widerstand

Man kann zwei wichtige Beiträge zur Streuung von
Ladungsträgern unterscheiden, die Streuung an Pho-
nonen und die Streuung an Gitterfehlern, also Fehl-
stellen und Verunreinigungen. Die beiden Prozesse
tragen additiv zum spezifischen Widerstand bei,

r =
1
s

= rP +ri,

wobei rP den Beitrag der Phononen beschreibt und
ri den Beitrag der Gitterfehler. Diese Aufteilung
des spezifischen Widerstandes wird als Matthiesen3-
Regel bezeichnet.
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Abbildung 5.21: Tieftemperaturverhalten des spezi-
fischen Widerstandes.

Da die Phononen bei tiefen Temperaturen ver-
schwinden, bleibt dann nur noch der Beitrag der Kri-
stallfehler zurück. Dieser Beitrag ist je nach Probe
unterschiedlich. Abb. 5.21 zeigt den temperaturab-
hängigen Widerstand, welcher bei tiefen Temperatu-
ren in einen konstanten Wert übergeht. Über solche

3Nach Augustus Matthiessen (1831 - 1870)
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Messungen kann man die Konzentration von Verun-
reinigungen bestimmen.

Bei höheren Temperaturen treten auch “dynamische
Kristallfehler” auf, nämlich Phononen. Deren Bei-
trag zum elektrischen Widerstand wird am besten als
Emission oder Absorption eines Phonons durch ein
Elektron beschrieben. Sowohl Energie wie auch Im-
puls muss bei diesen Prozessen erhalten bleiben, d.h.

ek = ek0 ± h̄w(k � k0),

wobei k, k0 die Wellenzahlen des Elektrons vor und
nach dem Streuprozess bezeichnen, w(q) die Phono-
nenfrequenz.

An diesen Streuprozessen können praktisch nur
Elektronen in der Nähe der Fermikante teilnehmen,
da für die anderen keine freien Zustände zur Verfü-
gung stehen.

¡k

¡k'

t, k-k'

Abbildung 5.22: Elektron-Phonon Streuung.

Die Zahl solcher Streuprozesse kann bei hohen Tem-
peraturen als proportional zur Phononenzahl ange-
setzt werden, d.h. zu

hni =
1

eh̄w/kBT �1
.

Ist die Temperatur oberhalb der Debye-Temperatur,
h̄w ⌧ kBT , so wächst die Phononenzahl

hni ⇡ 1
1+ h̄w

kBT �1
=

kBT
h̄w

,

d.h. proportional zur Temperatur. Damit nimmt auch
die Anzahl Stöße und der elektrische Widerstand zu.

Bei Temperaturen in der Nähe der Debye-
Temperatur spielen Umklapp-Prozesse eine wichtige
Rolle. Dafür werden Phononen mit Energien in der
Größenordnung der halben Debye-Energie benötigt.
Deren Zahl nimmt mit abnehmender Temperatur
exponentiell ab.

EF

kBT

k
k’

Abbildung 5.23: Links: Elektron-Phonon Streuung.
Rechts: Streuprozess nahe bei der
Fermikante.

Bei Temperaturen deutlich unterhalb der Debye-
Temperatur sind werden Normal-Prozesse wichti-
ger als Umklapp-Prozesse. Im Rahmen des einfa-
chen Modells von Kapitel 4.4.8 können wir ab-
schätzen, dass die Zahl der Phononen mit Frequenz
w ⇡ kBT/h̄ mit T 2 abnimmt. Die Wahrscheinlich-
keit, dass solche Streuprozesse stattfinden, sinkt au-
ßerdem mit 1/T , da Phononen mit großer Wellen-
länge eine geringere Wahrscheinlichkeit für einen
Absorptions-/Emissionsprozess besitzen.

Die Energie eines Elektrons an der Fermikante (~10
eV) ist viel größer als die Energie des entsprechen-
den Phonons (⇡ kBT ⇡ 25 meV bei Raumtempe-
ratur). Für die Elektronen sind diese Streuprozes-
se somit beinahe elastisch, sie bleiben in der Nähe
der Fermikante. Dadurch wird der Streuwinkel bei
Normalprozessen gering, d.h. die Elektronen streuen
fast vollständig in Vorwärtsrichtung. Sie werden da-
durch nicht mehr vollständig thermalisiert, sondern
ihre Geschwindigkeit sinkt proportional zu 1�cosq ,
wobei q der Streuwinkel ist. Wie in Abb. 5.23 dar-
gestellt ist dieser proportional zur Wellenzahl kP der
Phononen, welche linear mit T abnimmt. Damit ist
die Geschwindigkeitsänderung pro Stoß proportio-
nal zu T 2. Insgesamt ergibt sich dadurch eine Ab-
nahme des elektrischen Widerstandes mit T 5. Dies
kann in Abb. 5.21 qualitativ überprüft werden.
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5.4.3 Der Hall-Effekt

In einem Magnetfeld muss in der Bewegungsglei-
chung auch die Lorentzkraft berücksichtigt werden:

~F = �e[~E +~v⇥~B].

Wir suchen nun die stationäre Verschiebung d

~k der
Fermikugel aus der Bewegungsgleichung für den
Impuls

h̄
dd

~k
dt

= h̄
d~k
dt

= m
d~v
dt

= �e[~E +~v⇥~B]� h̄
d

~k
t

= 0,

wobei t die Thermalisierungszeit (durch Stöße) des
Impulses darstellt.

Bz

Ex

Abbildung 5.24: Bewegung von Elektronen in ge-
kreuzten E/B Feldern.

Wir betrachten den Fall, wo ein Magnetfeld parallel
zur z-Achse angelegt ist, ~B = (0,0,B). Dann wird

~v⇥~B = (vyB,�vxB,0)

und die Bewegungsgleichungen für die drei Ge-
schwindigkeitskomponenten werden

m
✓

d
dt

+
1
t

◆
vx = �e(Ex +Bvy)

m
✓

d
dt

+
1
t

◆
vy = �e(Ey �Bvx)

m
✓

d
dt

+
1
t

◆
vz = �eEz.

Daraus können wir die stationären Geschwindigkei-
ten bestimmen:

vx = �et

m
Ex �wctvy

vy = �et

m
Ey +wctvx

vz = �et

m
Ez, (5.10)

wobei

wc =
eB
m

(5.11)

die Zyklotronfrequenz darstellt. Offenbar verlaufen
die Bahnen der Elektronen jetzt nicht mehr paral-
lel zum elektrischen Feld, sondern werden in der xy-
Ebene auf Kreisbahnen abgelenkt.

Bz

Ex

+ + + + + +

- - - - - -
Ey

Abbildung 5.25: Gleichgewichts-Ladungsverteilung
in gekreuzten E/B Feldern.

Wir betrachten nun den Fall, dass ein Strom ent-
lang der x-Achse fließt, d.h. wir setzen vy = vz = 0.
Aus der obigen Gleichung sehen wir, dass der Strom
in x-Richtung durch das Magnetfeld in y-Richtung
abgelenkt wird. Wir können somit nur dann eine
verschwindende Bewegung in y-Richtung erhalten,
wenn diese Lorentzkraft durch eine entgegengerich-
tete Coulomb-Kraft, d.h. durch ein elektrisches Feld
kompensiert wird. Gemäß Gleichung (5.10) bedingt
dies für den stationären Fall, dass

vx = �e
t

m
Ex (5.12)

und

0 = �e
t

m
Ey +wctvx.

Diese Gleichung lösen wir auf nach Ey auf:

Ey = wcvx
m
e

und setzen für vx den stationären Wert (5.12) ein:

Ey = �e
t

m
Exwc

m
e

= �twcEx.

Wenn wir den Ausdruck (5.11) für die Zyklotronfre-
quenz verwenden, entspricht dies

Ey = �ExB
et

m
. (5.13)

Es entsteht also eine Spannung, welche senkrecht
auf der Richtung des Stroms und dem magnetischen
Feld liegt.

112



5 Freie Elektronen

5.4.4 Hall Konstante

Als Hall-Konstante

RH =
Ey

jxB

bezeichnet man das Verhältnis der Spannung zum
Produkt aus Stromdichte jx und Magnetfeldstärke B.
Wir schreiben die Stromdichte als das Produkt aus
Driftgeschwindigkeit vx und Ladungsdichte �en und
erhalten

jx = �envx =
ne2

t

m
Ex.

Mit der Beziehung (5.13) zwischen Ex und Ey erhal-
ten wir

RH =
�ExetB/m

(ne2
t/m)ExB

= � 1
ne

,

d.h. sie entspricht der inversen Ladungsdichte und ist
für freie Elektronen negativ. Je niedriger die Dich-
te der Ladungsträger, desto größer ist also die Hall-
Konstante und damit die Hall Spannung Ey. Dies
kann man qualitativ so verstehen, dass der gleiche
Strom bei niedriger Ladungsträgerdichte nur durch
eine höhere Geschwindigkeit und damit durch eine
höhere Lorentzkraft erreicht wird.

Metall

Li
Na
K
Rb
Cs
Cu
Ag
Au
Be
Mg
In
Al

# Valenz-
elektronen

1
1
1
1
1
1
1
1
2
2
3
3

-1
RHne
0.8
1.2
1.1
1.0
0.9
1.5
1.3
1.5
-0.2
-0.4
-0.3
-0.3

Abbildung 5.26: Beispiele von Hall-Konstanten.

Abb. 5.26 zeigt einige Hall Konstanten bei tiefen
Temperaturen, jeweils als Verhältnis aus der La-
dungsdichte zur gemessenen Hall konstanten. Offen-
bar passt diese einfache Theorie recht gut für die Al-
kalimetalle, weniger gut für die Edelmetalle, und für
die letzten vier Elemente gar nicht.

Die Messung der Hall-Konstante dient deshalb auch
zur experimentellen Bestimmung der Ladungsträ-
gerkonzentration. Eine andere Anwendung ist die

Messung der Magnetfeldstärke. Dafür muss der Sen-
sor zuerst kalibriert werden, da die Ladungsträger-
dichte herstellungsmässig und temperaturabhängig
schwankt.

Die Hall Konstante hat auch das gleiche Vorzeichen
wie die Ladung der beweglichen Teilchen (welche
wir hier als �e angenommen haben). Sie kann somit
auch Auskunft geben über das Vorzeichen der La-
dung der Ladungsträger. Wir haben hier angenom-
men, dass es sich um Elektronen, also negative Teil-
chen, handelt, und erhalten wie gezeigt eine negati-
ve Konstante. Wenn es sich um Löcher, also positive
Ladungsträger handelt, so wird auch die Konstante
positiv. Diese Art der Leitung werden wir später dis-
kutieren.

5.5 Wärmeleitung in Metallen

Die Tatsache, dass Metalle sich bei niedrigen Tem-
peraturen sehr kalt und bei hohen Temperaturen sehr
heiß (im Vergleich zu anderen Materialien) anfühlen
zeigt, dass sie gute Wärmeleiter sind. Wärmeüber-
tragung spielt nicht nur technisch eine wichtige Rol-
le, sie ist auch ein guter Test für das Verständnis der
entsprechenden Materialien.

5.5.1 Ansatz

Die Wärmeleitfähigkeit einer Probe wird gemessen,
indem man sie thermisch isoliert, auf der einen Sei-
te heizt, und auf der anderen Seite die Tempera-
tur misst. Die Wärmeleitfähigkeit ist dann definiert
als der Koeffizient zwischen Temperaturgradient —T
und Wärmestromdichte

j
s

= �K —T.

Wie in Kapitel 4 gehen wir aus vom Ausdruck

K = 1/3Cv`

für die Wärmeleitung K eines idealen Gases mit
Wärmekapazität C, Geschwindigkeit v und mittlerer
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freier Weglänge `. Wir benutzen den Ausdruck (5.8)
für die elektronische Wärmekapazität

Cel =
p

2

2
kBn

T
TF

.

Wir hatten bereits im Rahmen der Theorie der spe-
zifischen Wärme gesehen, dass nur die Elektronen
in der Nähe der Fermikante durch Stöße Energie
mit dem Gitter austauschen. Wir erwarten deshalb
auch, dass diese den dominanten Beitrag zur Wär-
meleitfähigkeit geben. Dementsprechend setzen wir
für die Geschwindigkeit die Fermigeschwindigkeit
vF ein und für die mittlere freie Weglänge entspre-
chend ` = vF t . Damit wird die Wärmeleitfähigkeit

K =
1
3

p

2

2
kBn

T
TF

v2
Ft.

Wir schreiben die Fermi-Geschwindigkeit vF als
Funktion der Fermi-Energie

v2
F =

2eF

m
=

2kBTF

m
.

Damit wird die Wärmeleitfähigkeit

K =
p

2

3
k2

BnT t

m
. (5.14)

5.5.2 Temperaturabhängigkeit

T

K

Too

endlicher
Wert

Too

Abbildung 5.27: Verhalten der Wärmeleitfähigkeit
bei tiefen Temperaturen.

Die Wärmeleitfähigkeit sollte also proportional zur
Temperatur und zur mittleren Stoßzeit t sein. Diese
ist stark temperaturabhängig und diese Abhängigkeit
überwiegt bei Temperaturen über 20 K.

Die Wärmeleitfähigkeit enthält, wie im Kapitel 4 ge-
zeigt, außerdem Beiträge der Phononen. Im allge-
meinen überwiegt der Beitrag der Elektronen, insbe-
sondere in “guten” Metallen. Metalle sind deshalb

bessere Wärmeleiter als ionische Kristalle. In ver-
unreinigten Metallen und ungeordneten Legierungen
nimmt der elektronische Beitrag zur Wärmeleitung
stark ab, während der Beitrag der Phononen relativ
konstant bleibt und deshalb vergleichbar und in Iso-
latoren dominant werden kann.
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Abbildung 5.28: Temperaturabhängigkeit der Wär-
meleitfähigkeit von Kupfer.

Abb. 5.28 zeigt als Beispiel die Wärmeleitfähigkeit
von Kupfer als Funktion der Temperatur. Sie geht of-
fenbar durch ein Maximum, wie wir es für den Fall
freier Elektronen erwarten. Das Verhalten ist somit
qualitativ ähnlich wie bei der Wärmeleitung durch
Phononen, doch sinkt die Wärmeleitfähigkeit bei tie-
fen Temperaturen nicht mit T 3, sondern mit T ab.

5.5.3 Vergleich elektrische / thermische
Leitfähigkeit

Man kann diese thermische Wärmeleitfähigkeit
(5.14) mit der elektrischen Leitfähigkeit (5.9)

s =
ne2

t

m

vergleichen. Man sieht aus der obigen Behandlung,
dass sie die gleiche Tendenz zeigen sollten: Beide
sind proportional zur Ladungsträgerdichte n und zur
mittleren Stoßzeit t. Das Verhältnis zwischen den
beiden Werten,

K
s

=
p

2k2
BT

3e2
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sollte direkt proportional zur Temperatur T sein.
Diese Beziehung wird als Wiedemann-Franz4 Ge-
setz bezeichnet. Dividiert man auch durch die Tem-
peratur, berechnet also

L =
K

sT
=

p

2k2
B

3e2 = 2,45 ·10�8 WW
K2 ,

so erhält man eine materialunabhängige Konstante
L, welche als Lorenz-Zahl bezeichnet wird. Damit
kann man das Wiedemann-Franz Gesetz als

K
s

= LT

schreiben.

Abbildung 5.29: Wärmeleitfähigkeit und Lorenz-
zahl.

Abb. 5.29 zeigt einige Werte für die thermische Leit-
fähigkeit und die Lorenz-Zahl. Sie liegen im Be-
reich 2.3 < L < 2.6 · 10�8 WW/K2, stimmen also
recht gut mit dem theoretischen Wert überein, was
als Bestätigung des Modells des freien Elektronen-
gases betrachtet werden kann. Das theoretische Re-
sultat hängt allerdings davon ab, dass die Stoßzeit t
für die beiden Prozesse die gleiche sein soll. Dies ist
nicht zwingend der Fall und führt deshalb zu Abwei-
chungen vom Wiedemann-Franz Gesetz.

4nach Gustav Heinrich Wiedemann (1826 - 1899) und Ru-
dolph Franz (1826 - 1902)
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Abbildung 5.30: Temperaturabhängigkeit der Lo-
renzzahl.

Abb. 5.30 vergleicht die Temperaturabhängigkeit der
Lorenzzahl für einige Elemente mit dem theoretisch
temperaturunabhängigen Wert.

5.5.4 Thermoelektrische Effekte

Das verwendete Modell geht davon aus, dass Elek-
tronen bei Stößen thermalisieren, d.h. dass ihre Ener-
gieverteilung sich an die lokale Temperatur anpasst.
Da heissere Elektronen eine (geringfügig) höhere
Geschwindigkeit haben als kalte, ist der Transport
von Elektronen zwischen zwei Punkten unterschied-
licher Temperatur asymmetrisch: es fließen mehr
Elektronen vom heissen zum kalten Punkt als umge-
kehrt, bis der thermische Gradient durch einen elek-
trischen Gradienten ausgeglichen wird. Ein Tempe-
raturgradient erzeugt deshalb eine Spannungsdiffe-
renz

~E = Q~—T [Q] =
V
K

.

Dieser sogenannte thermoelektrische Effekt (auch
Seebeck-Effekt genannt) unterscheidet sich zwi-
schen verschiedenen Metallen.

Er kann z.B. gemessen werden, indem man die En-
den von zwei unterschiedlichen Metallen kontaktiert
und die Kontaktpunkte auf unterschiedliche Tempe-
raturen bringt und die resultierende Spannung misst.
Typische thermoelektrische Koeffizienten liegen im
Bereich von Q ⇡ µV/K. Der Effekt kann prinzipiell
zur Stromerzeugung genutzt werden, hat aber einen
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Abbildung 5.31: Anordnung zur Messung von Ther-
mospannungen und temperaturab-
hängige Thermospannungen, nor-
miert auf die Werte bei 0�C.

relativ niedrigen Wirkungsgrad. Eine wichtige An-
wendung liegt in der Messung von Temperaturen
(Thermoelemente).

5.6 Plasmonen

5.6.1 Quantisierte elektronische
Anregungszustände

+

+

+

+

+

+

Abbildung 5.32: Elektronengas.

Da die Valenz-Elektronen in einem Metall frei be-
weglich sind, können sie auch zum Schwingen ange-
regt werden. Wir diskutieren hier kollektive Schwin-
gungen der Elektronen. Wird ein einzelnes Elektron
um die Distanz x aus der Ruhelage ausgelenkt, so er-
zeugt es einen elektrischen Dipol der Größe p(x) =
ex. Wird ein Elektronengas der Dichte n ausgelenkt,

so entsteht eine elektronische Polarisation

P(x) = nex.

Diese Polarisation entspricht einem zusätzlichen
elektrischen Feld

E(x) =
1

ee0
P(x) =

ne
ee0

x.

Dieses elektrische Feld wirkt als Kraft auf die Elek-
tronen. Wir erhalten die Bewegungsgleichung

meẍ = �eE(x) = �ne2

ee0
x.

Dies entspricht einem harmonischen Oszillator

ẍ = �w

2
px,

wobei die Plasmafrequenz wp gegeben ist durch

wp =

s
ne2

meee0
.

Quantenmechanisch sind die Energiezustände eines
harmonischen Oszillators gegeben als

En = (n+
1
2
)h̄wp.

Da die Plasmafrequenz ein Maß für die Elektronen-
dichte ist, bietet sich ihre Messung als interessante
Methode zur Bestimmung der Elektronendichte an.
Allerdings sind die Plasmonen in vielen Systemen
stark gedämpft (z.B. durch Inter-Band Übergänge),
dass sie gar nicht beobachtet werden können.

Typische Werte für die Plasmafrequenz liegen im
Bereich von einigen (3-20) eV.

5.6.2 Messung

Die Plasmonenfrequenzen können gemessen wer-
den, indem man die entsprechende Probe mit Elek-
tronen bestrahlt. Diese stoßen mit den freien Elek-
tronen der Probe und regen dadurch Plasmonen an.
Dadurch verlieren die Elektronen des Strahls Ener-
gie.
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e-Strahl
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Abbildung 5.33: Prinzip der Messung von Plasmo-
nenenergien.

Spektrometer
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Detektor

Abbildung 5.34: Apparatur für die Messung von
Plasmonenenergien.

Für die Messung des Energieverlustes in der Probe
benötigt man ein hochauflösendes Elektronenspek-
trometer, welches die kinetische Energie der trans-
mittierten Elektronen misst.

Abb. 5.35 zeigt ein typisches Verlustspektrum, wel-
ches an einem dünnen Aluminiumfilm gemessen
wurde. In diesem Fall wurden die zurückgestreuten
Elektronen analysiert. Man findet Resonanzen, wel-
che der Erzeugung von n = 1, 2, ... Plasmonen ent-
sprechen. Die Resonanzen sind überdies aufgespal-
ten: an der Oberfläche ist die Plasmonenfrequenz ge-
ringer als im Volumen.

Die gemessenen Plasmonenenergie stimmen relativ
gut mit den berechneten überein. Sie nehmen mit

Al

Energieverlust / eV

Volumen-
plasmonOber!ächen-

plasmon

Abbildung 5.35: Plasmonenspektrum von Alumini-
um mit Aufspaltung der Resonan-
zen.

Gemessen Berechnet
Li 7,12 8,02
Na 5,71 5,95
K 3,72 4,29

Mg 10,6 10,9
Al 15,3 15,8

Tabelle 5.2: Plasmonenenergien in eV

der Elektronendichte zu: Al (3 Valenzelektronen)
hat eine deutlich höhere Plasmonenfrequenz als die
Alkaliatome (1 Valenzelektron). Bei den Alkaliato-
men nimmt die Elektronendichte mit zunehmendem
Atomgewicht ab. Deshalb ist die Plasmonenfrequenz
von K niedriger als die von Na und Li.

5.7 Elektron-Phonon
Wechselwirkung

5.7.1 Grundlagen

Die bisher verwendete Born-Oppenheimer Nähe-
rung vernachlässigt Wechselwirkungen zwischen
Elektronen und Kernen. Einige der vernachlässigten
Terme haben wir bereits berücksichtigt, z.B. indem
wir die Streuung von Elektronen an Phononen als
Beitrag zum elektrischen Widerstand diskutiert ha-
ben. Eine Wechselwirkung kommt dadurch zustan-
de, dass Phononen das Kerngitter verzerren und die
Elektronen deshalb ein Potenzial spüren, welches
nicht mehr die ideale Periodizität aufweist. Phono-
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nen können deshalb absorbiert oder gestreut werden.
Die Wechselwirkung kann mit akustischen Phono-
nen oder mit optischen Phononen geschehen. Man
unterscheidet

• Fröhlich-Wechselwirkung

• Deformationspotenzial-Wechselwirkung

• Piezoelektrische Wechselwirkung.

Elektronen-Phononen Wechselwirkungen spielen in
Halbleitern (vor allem binären und ternären) eine
wichtige Rolle, sowie in Supraleitern, wo sie für die
Bildung der Cooper-Paare verantwortlich sind.

5.7.2 Polaronen

Auch in dielektrischen Festkörpern spielen
Elektron-Phonon Wechselwirkungen eine Rol-
le.

K+

K+

K+

K+

K+

K+Cl-

Cl- Cl-

Cl-

Cl-

Cl-

Elektron

Abbildung 5.36: Gitterverzerrung durch Wechsel-
wirkung mit Elektron.

In einem ionischen Kristall, wie z.B. KCl erzeugt ein
Elektron eine Gitterverzerrung: die positiven Ionen
werden in Richtung auf das Elektron verschoben, die
negativen davon weg. Ein Resultat dieser Wechsel-
wirkung ist, dass die effektive Masse des Elektrons
steigt: wird es bewegt, so bewegt sich die Gitterver-
zerrung mit. Die Kombination aus Ladung und Git-
terverzerrung (oder Ladung und Phonon) wird gerne
als Polaron bezeichnet.

Die effektive Masse eines Leitungselektrons in KCl
wächst dadurch um einen Faktor 2.5 im Vergleich
zum Fall eines starren Gitters.

Bei Materialien mit stärker kovalentem Charakter,
wie z.B. dem Halbleiter GaAs, ist die Gitterverzer-
rung durch die Leitungselektronen schwächer und
damit die Kopplungskonstante kleiner.

Kopplungskonstante
Masse
Bandmasse (starres G.)

Abbildung 5.37: Effektive Masse von Leitungsband-
Elektronen in Isolatoren.

Abbildung 5.38: Effektive Masse von Leitungsband-
Elektronen in Halbleitern mit teil-
weise kovalenten Bindungen.

5.7.3 Cooper Paare

Die Verzerrung, welche die Elektronen im Gitter er-
zeugen, wirkt wiederum auf andere Elektronen und
kann dazu führen, dass zwischen (weit voneinander
entfernten) Elektronen eine effektive Anziehungs-
kraft zustande kommt. Dadurch kommt es zur Bil-
dung von sogenannten Cooper Paaren, welche für
die Supraleitung verantwortlich sind. Dies wird im
Kapitel 9 genauer diskutiert.
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