5 Freie Elektronen

5.1 Klassische Beschreibung

5.1.1 Metalle und ihre Eigenschaften

Abbildung 5.1: Metallische Bindung.

In diesem Kapitel soll in erster Linie der Versuch un-
ternommen werden, das Verhalten von Elektronen in
Metallen zu beschreiben. Die metallische Bindung
stellt zwar nur eine von 5 Grundtypen der Bindung
in Festkorpern dar, sie ist jedoch sehr weit verbrei-
tet: mehr als 2/3 der Elemente sind Metalle. Metalle
enthalten zwei Arten von Elektronen, zum einen die-
jenigen, welche in tief liegenden Orbitalen der kon-
stituierenden Atome sitzen und praktisch an den ent-
sprechenden Atomen lokalisiert sind. Daneben trigt
jedes Atom eine geringe Zahl (typischerweise 1-3)
Leitungselektronen bei, welche sich praktisch frei
durch das Material bewegen, dieses jedoch nicht ver-
lassen konnen.

Diese frei beweglichen Leitungselektronen sind fiir
die charakteristischen Eigenschaften der Metalle
verantwortlich, welche sie gegeniiber den weiter ver-
breiteten nichtmetallischen Verbindungen auszeich-
nen. Zu diesen charakteristischen Eigenschaften ge-
horen die gute Leitfahigkeit fiir Elektrizitiat und Wir-
me, sowie der Glanz von metallischen Oberfldchen.

Sowohl das klassische Modell (Kap. 5.1), wie auch
das quantenmechanische (Kap. 5.2) beschreiben die
Metalle im Wesentlichen iiber freie Elektronen, wel-
che in einen Potenzialtopf eingesperrt sind, des-
sen Rénder den Rindern des Kristalls entsprechen.
Dieses Modell der freien Elektronen eliminiert je-
de Wechselwirkung zwischen Elektronen mit Aus-
nahme des Pauli-Prinzips. Die Wechselwirkung der

~ Elektrische Leitfihigkeit
4 Metallglanz

Pyrit (FeS)

Cobaltin
(CoAsS)

Abbildung 5.2: Beispiele von Metallen und metall-
typischen Eigenschaften.

Elektronen mit Atomriimpfen wird zunichst eben-
falls nicht beriicksichtigt und erst in einer zweiten
Stufe (im Kapitel 6) als ein periodisches Potenzial
beriicksichtigt, welches die gleiche Periode wie das
Gitter aufweist. Trotz dieser extremen Vereinfachun-
gen kann das Modell freier Elektronen erstaunlich
viele Aspekte der Metalle erkliren.

5.1.2 Das Drude-Modell

Die klassische Theorie entstand drei Jahre nach
der Entdeckung des Elektrons durch J.J. Thomson
(1897). Im 19. JH hatte die kinetische Gastheorie
eine befriedigende Erkldrung fiir viele bekannte Ef-
fekte im Bereich der Thermodynamik geliefert. Dies
mag ein Motiv gewesen sein dafiir, dass P. Drude
die Elektronen in einem Metall als Gas modellier-
te!. Seine Annahme war, dass die duBersten Elektro-
nen jedes Atoms sich im Metall praktisch frei bewe-
gen konnen. Zu diesen Leitungselektronen tragen die
Atome, welche das Gitter bilden normalerweise ein
oder zwei Elektronen bei. Diese Elektronen sind im

P Drude, Annalen der Physik 1, 566 und 3, 369 (1900).
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5 Freie Elektronen

gesamten Kristall frei beweglich, wobei die positiv
geladenen Atomriimpfe ein Potenzial bilden.
Valenzelektronen:

- ballistische Bewegung

- kurze StoBe Atomriimpfe:

- klein
- statisch
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Abbildung 5.3: Das Drude-Modell des freien Elek-
tronengases.

Nach Drude verhalten sich diese Elektronen dhnlich
wie ungeladene Teilchen in einem klassischen Gas:

* Die Atomriimpfe sind klein und statisch.

* Die Elektronen sollen eine freie Wegliange zwi-
schen St68en haben, welche vielen Gitterkon-
stanten entspricht.

» Zwischen den StoBen ist die Bewegung frei,
d.h. unabhiéngig von den anderen Elektronen
(unabhingige Elektronen) und von den Atom-
riimpfen (freie Elektronen). Sind duflere Felder
vorhanden, so beeinflussen diese die Bewegung
wie in der Mechanik diskutiert.

» StoBe finden im Drude-Modell vor allem mit
den Ionenriimpfen statt; Stofe zwischen Elek-
tronen sind sehr selten. Die Stofle werden als
kurz angenommen und die Geschwindigkeit der
Elektronen nach dem Stof ist unabhingig von
der Geschwindigkeit vor dem Stof3, sondern
wird durch die Temperatur des Kristalls be-
stimmt.

5.1.3 Ergebnisse

Mit Hilfe dieses einfachen klassischen Modells kon-
nen unterschiedliche Aspekte der Phidnomenolo-
gie von Metallen erklidrt werden. Beispiele dafiir
sind die Herleitung der qualitativen Aspekte des
Ohm’schen Gesetzes, oder die Beziehung zwischen
elektrischer und thermischer Leitfahigkeit. Wir dis-
kutieren diese Resultate jedoch nicht im Rahmen des

klassischen Modells, sondern erst nach der Einfiih-
rung des quantenmechanischen Modells.

Element Z n(102%/cm3 r(A)
Li(78K) 1 4.70 1.72
Na(5K) 1  2.65 2.08
K (5K) 1 140 2.57
Be 2 247 0.99
Mg 2 8.1 1.41
Al 3 181 1.1
Ga 3 154 1.16

Abbildung 5.4: Dichte des Elektronengases fiir ver-
schiedene Elemente.

Ein wesentlicher Unterschied zwischen dem Elek-
tronengas eines Metalls und einem echten Gas ist
die Dichte: Im Vergleich zu einem echten Gas ist
die Dichte des Elektronengases um rund einen Fak-
tor 1000 groBer: Pro Leitungselektron steht lediglich
ein Volumen zur Verfiigung das etwa einem Atom-
volumen entspricht. Fiir ein Atom mit Radius 2 A
erhilt man ein Volumen von ca. 3-10~2°m?, entspre-
chend einer Teilchendichte von 3 - 10>®m™3. Dies ist
eine typische GroBenordnung (ca. 1 —20-102m—3).

Die positiv geladenen Atomriimpfe sind relativ klein
und fiillen lediglich einen kleinen Teil des Raumes.
Bei Natrium umfasst das Volumen der Atomkerne
rund 15 % des gesamten Festkorpervolumens; bei
Edelmetallen wie Ag, Au steigt der Anteil. Sie sind
aber sehr viel schwerer als die Elektronen und blei-
ben unbeweglich auf ihren Plétzen.

5.1.4 Grenzen des Drude-Modells

Wie bei der Diskussion der Gitterschwingungen ge-
langt man aber auch bei den Elektronen im Rah-
men der klassischen Physik sehr bald an eine Gren-
ze, ab der ein wirkliches Verstindnis nur mit Hilfe
der Quantenmechanik erreicht werden kann. Zu den
qualitativen Unterschieden zwischen den Voraussa-
gen der klassischen und der quantenmechanischen
Theorie gehort die Berechnung der Stofe, die ein
Elektron bei der Durchquerung des Kristalls erlei-
det. Im klassischen Bild wiirde man eine grofle An-
zahl Stofe mit den Gitteratomen erwarten. Experi-
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5 Freie Elektronen

mentell findet man, dass die Distanz, iiber die sich
die Elektronen frei bewegen konnen, von der Quali-
tit des Kristalls abhingt, sowie von der Temperatur.
Wihrend in gewohnlichen Metallen bei Raumtem-
peratur (z.B. Kupferdrihte) die Elektronen nach we-
nigen Gitterperioden gestreut werden und sich des-
halb insgesamt diffusionsartig bewegen, kann bei
tiefen Temperaturen und guten Kristallen die mitt-
lere freie Wegldange groBer als die Kristalldimensi-
on werden. Aus experimentellen Daten ist bekannt,
dass die freie Weglénge bis zu einem Zentimeter be-
tragen kann. In diesem Fall bewegt sich somit das
Elektron ohne Streuung durch rund 10® atomare La-
gen; offenbar breiten sie sich dann ballistisch, also
ohne Streuung im Kristall aus.

Weitere experimentelle Befunde, die mit dem
Drude-Modell nicht erkldrt werden konnten, wa-
ren die Temperaturabhingigkeit der elektrischen
und thermischen Leitfdhigkeit. AuBerdem sollten in
einem idealen Gas die Elektronen einen Beitrag
3/2RT zur spezifischen Wirme liefern; der experi-
mentell beobachtete Beitrag ist um rund 2 GréBen-
ordnungen kleiner.

Ein klassisches Modell, welches (teilweise) erkli-
ren kann, welche Elemente metallischen Charakter
haben, wurde 1927 durch Herzfeld vorgeschlagen?.
Ein wirkliches Verstdndnis ist jedoch nur im Rahmen
einer quantenmechanischen Behandlung moglich.

5.2 Das quantenmechanische Modell

5.2.1 Das Sommerfeld-Modell

Die wichtigsten Beschriankungen des Drude Modells
konnen dadurch iiberwunden werden, dass man die
Elektronen als quantenmechanische Teilchen, d.h.
als Teilchen mit Wellencharakter behandelt. Ein ent-
sprechendes Modell wurde 1928 von Sommerfeld
vorgeschlagen, kurz nach der Entdeckung des Pauli-
Prinzips. Damit gelang es, die wichtigsten Inkonsi-
stenzen des Drude-Modells aufzulosen.

Ein Festkorper umfasst rund 10?° miteinander wech-
selwirkende Teilchen. Natiirlich ist die exakte Be-

ZPhys. Rev. 29, 701-705

handlung eines solchen Systems nicht moglich. Wir
miissen deshalb zunichst einige drastische Vereinfa-
chungen durchfiihren: wir lassen Wechselwirkungen
zwischen den Elektronen wie auch von Kernen zu
Elektronen vorldufig vollstindig weg und betrach-
ten zunéchst nur freie und unabhéngige Elektronen.
Thre Zustinde sind somit auch nur Einelektronen-
Zustinde, die wir auch als Orbitale bezeichnen.

Vakuum Vakuum
Metall
w
@
(2]
@
c
w
Ortx
Abbildung 5.5: Potenzial  fiir  Elektronen im

Sommerfeld-Modell.

Damit brauchen wir lediglich freie Elektronen in ei-
nem (unendlich ausgedehnten) Kristall zu betrach-
ten. Die Rénder des Kristalls sind Potenzialwinde.
Als Eigenzustidnde solcher freier Elektronen kann
man bekanntlich ebene Wellen verwenden; diese
sind allerdings im gesamten Raum nicht normier-
bar. Man kann zu normierbaren Funktionen gelan-
gen, indem man periodische Randbedingungen ein-
fiihrt. Die entsprechende Periode, welche groB3 ge-
gen die Gitterkonstante sein sollte, kann anschlie-
Bend gegen Unendlich gefiihrt werden.

Die Atomriimpfe bilden ein Hintergrundpotenzial.
Sie bestehen aus den Kernen plus den stark gebun-
denen Elektronen in den gefiillten Schalten. Je nach
Metall sind diese Riimpfe relativ klein und weit von-
einander entfernt, oder sie beriihren sich und bilden
teilweise kovalente Bindungen.

Das Sommerfeld’sche Modell der freien Elektronen
passt am besten auf die Alkalimetalle. Hier entspre-
chen die Atomriimpfe den abgeschlossenen Schalen
mit Edelgaskonfiguration, das eine Valenzelektron
im s-Orbital ist das freie Elektron, welches ein Lei-
tungsband mit s-Charakter bildet.

Wasserstoff, das leichteste und hiufigste Element
des Universums, gehort zur gleichen Gruppe des Pe-
riodensystems wie die Alkaliatome. Geméf theoreti-
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5 Freie Elektronen

Abbildung 5.6: Aufbau des Planeten Jupiter.

schen Vorhersagen sollte es bei hohen Driicken me-
tallisch werden. Man geht deshalb davon aus, dass
der Jupiter zu einem grofen Teil aus metallischem
Wasserstoff besteht. Versuche, auf der Erde Was-
serstoff in die metallische Form zu bringen, haben
jedoch bisher keine eindeutigen Resultate geliefert.
Theoretische Vorhersagen gehen davon aus, dass da-
fiir Driicke im Bereich von 500 GPa (5 - 10° atm)
notwendig sind.

5.2.2 Das Teilchen im Potenzialtopf

Um die quantenmechanischen Zustandsfunktionen
der Elektronen im Kiristall zu bestimmen, rekapitu-
lieren wir zunéchst das Problem eines Teilchens in
einem eindimensionalen Potenzialtopf. Wie bei der
Diskussion der Phononen fithren wir zunédchst Rand-
bedingungen ein, welche in erster Linie dazu dienen,
die Zustidnde zu normieren und die Zustandsdichte
zu berechnen.

Das Potenzial verschwindet auf der Strecke [0,L]
und ist unendlich hoch auB3erhalb. Der Hamiltonope-
rator dieses Systems beinhaltet im Bereich [0, L] le-
diglich die kinetische Energie

p2 - h2 d2

2mdx?’

==
Die Eigenfunktionen dieses Operators sind die ebe-
nen Wellen

lPk — eikx

v

N

A=2L/3 V

A=L

A=2L

7 %x

Abbildung 5.7: Eindimensionaler Potentialtopf.

oder
Wi = asinkx+ b coskx

und die Eigenwerte sind

h2k2 2
Gt _P
2m

2m’
Der Hamiltonoperator ist nur giiltig fiir 0 < x < L.

Wir beriicksichtigen das Potenzial tiber die Randbe-
dingung und verlangen, dass ¥ (0) = ¥(L) = 0. Damit
erhalten wir als Losungen

¥, =Asin (nnf)
L

und

o Y AN

=)

Wenn sich mehrere Elektronen in diesem Potenzial
befinden und wir deren elektrostatische Wechselwir-
kung zunéchst vernachlédssigen, so kann geméaf dem
AusschlieBungsprinzip von Pauli jeder dieser Zu-
stainde mit zwei Elektronen mit entgegen gesetztem
Spin besetzt werden. Das Gesamtsystem ist demnach
im Grundzustand wenn die niedrigsten N /2 Zustin-
de mit jeweils 2 Elektronen besetzt sind.

5.2.3 Drei Raumdimensionen

In Kiristallen entspricht der Potenzialtopf der Rand-
bedingung, dass die Elektronen sich innerhalb des
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5 Freie Elektronen

Kristalls befinden miissen. Wir beriicksichtigen dies
wiederum iiber periodische Randbedingungen

¥(x,y,2) W(x+L,y,z) =¥(x,y+L,z)

= Y(x,y,z+L),

wobei L grof3 gegeniiber einer Einheitszelle sein soll.

Im dreidimensionalen Raum lautet der Hamilton-
operator fiir ein freies Elektron

A L R
“om <dxz Tartaz > :
Elektronen in einem Potenzialtopf mit Kantenlidnge
L haben dann die Zustinde

. (2% . (2% . (2%
Y, = Asin <Lnxx> sin (Lnyy> sin <anz>

und Energien

=

Rk

& = S—=-—(K+k+k
2m 2m( xR Z)
m2 [2m\>

Alternativ kdénnen komplexe Zustinde (ebene Wel-
len) verwendet werden:

n

z, o 27 *
%@zﬂ*k:f n, (5.2)

ng

Da wir uns hier in einem endlichen Bereich (mit Vo-
lumen L3) befinden, sind diese Zustinde normierbar
und die moglichen k-Werte diskret. Die Energie die-
ser Zustinde ist die gleiche wie in (5.1). Der Impuls
eines Elektrons in diesem Zustand ist p = 7k und sei-
ne Geschwindigkeit v = hk /m. Wir verwenden diese
Zustinde als Basisfunktionen fiir die Beschreibung
von Elektronen in einem Kristall der Kantenldnge L.

Nach GI. (5.2) sind die Zustdnde gleichmifBig im
k—Raum verteilt. Die Energie steigt proportional
zum Quadrat des Impulses.

5.2.4 Fermi-Energie

Wir untersuchen nun die Frage, welche dieser Zu-
stinde besetzt sind. Da Elektronen einen Spin %2 be-
sitzen, unterliegen sie der Fermi-Dirac Statistik und
jeder rdumliche Zustand kann maximal von 2 Elek-
tronen mit entgegengesetztem Spin besetzt sein.

EA
Zustiinde leer
. . . . Ep germl.
nergie
I 2n/L N Zustiinde
. . . . besetzt
L] L] L] L] k

Abbildung 5.8: Links: Zustidnde im k-Raum; rechts:
Besetzung der Zustidnde bei 7' = 0.

Am absoluten Nullpunkt besetzen N Elektronen die
N /2 energetisch niedrigsten Zustinde. Da die Ener-
gie (im Rahmen dieses Modells) nur vom Betrag des
Impulses abhingt, bilden diese Zustinde im k-Raum
eine Kugel. Um die besetzten Zustinde zu finden,
bestimmen wir zunichst die Zahl der Zustinde im
Impulsraum.

Da wir periodische Randbedingungen angenommen
haben, ist der Impulsraum diskret, mit Einheitszellen
der Seitenldnge 27/L. Die besetzten Zustinde fiillen
in diesem Raum eine Kugel, deren Radius wir mit
kr bezeichnen. Das Volumen dieser Kugel betrigt
kram/3.

Die Anzahl der Zustinde in dieser Kugel, d.h. die
Zahl der besetzten Zustinde, muss der Zahl der Elek-
tronen entsprechen. Wir setzen somit die Zahl der
Elektronen gleich der doppelten (Spin!) Zahl der
Moden. Diese berechnen wir, indem wir das gesamte
Volumen der Kugel durch das Volumen pro Zustand
dividieren,

4713
Thp _ Vig

()

N=2 (5.3)

Bei N Elektronen muss damit der Radius der Kugel

3 37T2N
%

krp =
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sein. Die entsprechende Energie betrigt

123N\
Ep = —
2m \%

54

und wird als Fermi-Energie bezeichnet. Die Fermi-
Energie ist somit die Energie der Elektronen im
hochsten besetzten FEinelektronenzustand. In der
Fermi Energie tritt die Anzahl Elektronen und das
Volumen nicht mehr unabhéngig auf, sondern sie
hingt lediglich von der Dichte N/V der Elektronen
ab. Damit muss die Fermienergie mit der Dichte der
Elektronen zunehmen.

Wertig- Elektronenzahl- Fermi- Fermi-
keit dichte Energie Temperatur
[em™] [eV] (x]

Li 1 4,70 - 1032 4,72 54800
Rb 1 1,15-10%2 1,85 21500
Cu 1 8,45 - 1022 7,00 . 81200
Au 1 5,90 - 1022 5,51 63900
Be 2 24,20 - 1022 14,14 164100
Zn 2 13,10 - 1032 9,39 109000
Al 3 18,06 - 1032 11,63 134900
Pb 4 13,20+ 1022 9,37 108700

Abbildung 5.9: Beispiele von Fermi-Energien.

Abb. 5.9 zeigt, dass die experimentellen Werte dies
bestatigen. Typische GroB3enordnungen fiir die Elek-
tronenzahldichte liegen bei 10%° m~3, fiir die Fermi-
energie bei 10 eV.

Hiufig parametrisiert man die Fermi-Energie auch
iber die Temperatur:

kgTp = &F.

Typische Werte fiir die Fermi-Temperatur liegen bei
10° K, also bei Temperaturen weit oberhalb des
Schmelzpunktes. Somit ist 7 < Tr immer eine sehr
gute Niherung.

Wenn wir den Impuls der Elektronen in eine
Geschwindigkeit umrechnen, erhalten wir fiir die
Geschwindigkeit der Elektronen an der Fermi-
Oberfliche

hkr  h 3/37EN
Vp= — = — .
m m %

Typische Werte liegen im Bereich von 10% m/s, also
bei 0.003 c. Allerdings sollte man dies nicht mit ei-
nem entsprechend schnellen Massentransport asso-
ziieren.

Insgesamt ist die kinetische Energie der Leitungs-
elektronen deutlich niedriger, als die entsprechende
kinetische Energie in einem isolierten Atom. Diese
Absenkung der kinetischen Energie ist im Wesentli-
chen fiir die metallische Bindung verantwortlich.

5.2.5 Zustandsdichte

Eine wichtige GroBe ist die Zustandsdichte, d.h. die
Anzahl quantenmechanischer Zustinde in einem be-
stimmten Volumen. Da die Elektronen gleichmifig
tiber den ganzen Raum verteilt sind, ist die Zustands-
dichte im gewohnlichen Raum offenbar konstant.

Im reziproken Raum (k-Raum) haben wir gesehen,
dass die Zustandsdichte ebenfalls konstant ist, d.h.
die Anzahl Zustinde pro Volumenelement ist kon-
stant.

Anders sieht es aus, wenn wir die Anzahl Zustin-
de als Funktion des Betrages des k-Vektors betrach-
ten. Fiir die Berechnung dieser Zustandsdichte be-
stimmen wir zundchst die Anzahl Zustidnde, deren
Wellenzahl kleiner als & ist. Laut GI. (5.3) ist dies

Vi3
3n2’
Daraus konnen wir die Dichte der Zustinde berech-

nen in der Umgebung eines Wellenvektors k, d.h. in
einer Kugelschale mit Radius k:

dNe _ KV
dk w2’
AuBerdem interessiert die Zustandsdichte im Ener-

gieraum. Mit

n* K
E=%5—,
2m
resp. k> = 2m & /h? erhalten wir fiir die Anzahl Zu-
stinde mit Energie kleiner als &
(2m&)3/?
3m2h’

und daraus die Zustandsdichte im Energieraum

Ne=

N(&) =

dN(&) _ i£3/zv(2m)3/2
d& d& 3n2n’
3/2
= miné\/% (5.5)
n’h
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Abbildung 5.10: Zustandsdichte im k-Raum (links)
und im Energieraum (rechts).

Die Zustandsdichte steigt also proportional zur Wur-
zel aus der Energie; sie verschwindet beim Null-
punkt und ist proportional zum Volumen V des Kri-
stalls.

5.3 Thermodynamik des
Elektronengases

Im Drude-Modell hatte man angenommen, dass die
klassische Thermodynamik die Verteilung der elek-
tronischen Zustinde beschreibt. Dies wire aber nicht
mit dem Pauli-Prinzip vereinbar. Wird dieses be-
riicksichtigt, erhilt man die Fermi-Dirac Statistik.

5.3.1 Besetzungswahrscheinlichkeit

Am absoluten Nullpunkt sind die Zustinde bis zur
Fermienergie besetzt, die dariiber liegenden leer. In
Wirklichkeit arbeiten wir aber immer bei endlicher
Temperatur und miissen deshalb thermische Anre-
gungen beriicksichtigen. Wie wir oben gesehen ha-
ben, sind im Grundzustand die N /2 niedrigsten Zu-
stinde mit jeweils zwei Elektronen mit entgegenge-
setztem Spin besetzt.

Dieses System kann zusitzliche Energie aufnehmen
wenn ein Elektron aus einem Niveau unterhalb der
Fermikante in eines oberhalb angeregt wird.

Wir bestimmen nun die Wahrscheinlichkeit, dass ein
Zustand mit gegebener Energie & bei einer Tempe-
ratur T besetzt ist. Dabei ist es nicht moglich, die
Elektronen einzeln zu betrachten, da die Besetzung
der Einelektronenzustinde aufgrund des Pauliprin-
zips stark aneinander gekoppelt ist. Wir diskutieren

D(

T>0

E E

Ey Ep
Abbildung 5.11: Besetzungswahrscheinlichkeit der

Zustiande bei T =0 (links) und T >
0 (rechts).

rTLETLELTEL

£

Abbildung 5.12: Beispiel eines N-Elektro nen zu
stands.

deshalb im Folgenden nicht 1-Elektronenzustinde,
sondern N-Elektronenzustinde.

Die Wahrscheinlichkeit, dass ein N-
Elektronenzustand mit Energie & besetzt ist,
betragt

o6 /ksT
PN(g) = Z(X e*ga/kBT ’
Der Nenner ist aus der statistischen Thermodynamik
als Zustandssumme bekannt. Er kann geschrieben
werden als

Zeféoa/kBT — e*F/kBT — e*(U*TS)/kBT’
o

wobei F die Helmholtz’sche freie Energie, U die
innere Energie und S die Entropie des Systems
darstellt. Wir konnen deshalb die Besetzungswahr-
scheinlichkeit auch schreiben als
PN(g) — e—éa/kBTeF/kBT — e—(g—F)/kBT.

In der Praxis kennt man leider den N-
Elektronenzustand nicht. Experimentell zuginglich
ist hingegen die Besetzungswahrscheinlichkeit f;
fiir einen Einelektronenzustand i (Spin-Orbital).

Diese erhélt man aus der obigen Verteilung durch
Summation iiber alle N-Elektronenzustinde, in de-
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nen der Zustand i besetzt ist,

fY =Y Pv(&).
B

@ lauft tiber alle Zustidnde, in denen das i-te Orbital
besetzt ist.

Der Zustand i ist entweder besetzt oder leer.
Wir kénnen somit die Besetzungswahrscheinlichkeit
auch als die Differenz zwischen 1 und der Wahr-
scheinlichkeit fiir Nichtbesetzung bestimmen:

ftNZl_ZPN(éajiv):
Y

wobei die Summe jetzt iiber diejenigen Zustinde
lauft, bei denen der Zustand i nicht besetzt ist.

Wir verwenden hier ein Modell freier Elektronen.
Somit ist die Gesamtenergie des N-Elektronen Zu-
standes durch die Summe der Energien der besetzten
1-Elektronen Zustidnde gegeben. Wir driicken jetzt
die Energie é’;{v des N-Elektronenzustands mit lee-
rem Zustand i aus durch die Energie des entspre-
chenden N + 1-Elektronen Zustande,s in dem der
Zustand i besetzt, ist minus die Energie des entspre-

chenden Elektrons, éaf,v = fév 1 €&;. Damit wird

f=1=Y Py(&g"" —&), (5.6)
B

wobei ¢ die Energie des Einelektronenzustands i
darstellt.

5.3.2 Die Fermi-Dirac Verteilung

Das Verhiltnis der Besetzungswahrscheinlichkeiten
fiir den N-Elektronenzustand und den N + 1 Elektro-
nenzustand betragt

oN+1_o_pN
N+1 B
PN(gB —81‘) e kpT S]é;#
= — e "B
-N+1 b
PN+1(5I§V+1) R0 e
e kgT
wobei
U= FN+1 _ N

das chemische Potenzial darstellt, d.h. die Ableitung
der freien Energie nach der Teilchenzahl,

_ U
H=9N

Die relative Wahrscheinlichkeit hangt also davon ab,
ob der Zustand i oberhalb oder unterhalb des chemi-
schen Potenzials liegt.

Daraus erhalten wir fiir den Summanden in (5.6)

&1
PN(éaév—H — 8,') = e T PN+1 (é@é\/-i-l)
Wir setzen dieses Resultat in die Summe ein und er-
halten

N = | —elst ZPNH(é"é\’H).
B

Diese Summe ist aber gerade die Besetzungswahr-
scheinlichkeit fiN *1 fiir den i-ten Zustand in einem
System mit N + 1-Elektronen:

N LN+
FY =1 —etat N

Wir konnen diese Form vereinfachen, wenn wir an-
nehmen, dass die Besetzungswahrscheinlichkeit sich
durch die Veridnderung der Elektronendichte um ein
Elektron (also relativ um ~ 10~23) nicht wesentlich
dndert. Wir konnen dann fl.N *+1 ersetzen durch fiN .
Auflosen der Gleichung nach fiN ergibt

N 1
0= et 1

Dies ist die Fermi-Dirac Verteilung, d.h. die Be-
satzungswahrscheinlichkeit fiir Fermionen in einem
Zustand der Energie g. Der Term +1 im Nenner
stellt sicher, dass die Funktion nicht grofer als 1
wird, dass also kein Zustand mehr als einmal be-
setzt werden kann. Die Bose-Einstein Statistik un-
terscheidet sich durch ein Minus an dieser Stelle. In
diesem Fall kann die Besetzungswahrscheinlichkeit
sehr grofl werden. Bei tiefen Temperaturen konden-
sieren Bosonen deshalb alle in den Grundzustand.
Solche Phidnomene sind fiir kollektive Quantenphi-
nomene verantwortlich, wie z.B. Supraleitung, Su-
prafluiditidt oder Bose-Einstein Kondensation.

104



5 Freie Elektronen

5.3.3 Beispiele

Da die Fermi-Temperatur sehr viel hoher ist als die
Raumtemperatur und fiir niedrige Temperaturen [ ~
kpTF, gilt meistens 7' < pkg. Wir betrachten die fol-
genden Grenzfille:

a) & — 0 : Die Exponentialfunktion geht gegen null
und fiN — 1.

b) & > u: Die Exponentialfunktion wird grof3 ge-
gen 1 und [N — e~ (&= W/ksT T diesem Bereich ni-
hert sich die Fermi-Dirac Verteilung der Boltzmann-
Verteilung an und fillt exponentiell gegen Null ab.

1

] f_N - - X
s elei—n)/ksT 4 1

Besetzungswahrscheinlichkeit f;

0,0 T T T T T T T T T T
0,0 05 1,0

Energie 87;/,u

Abbildung 5.13: Fermi-Dirac Besetzungswahr-
scheinlichkeit bei verschiedenen
Temperaturen.

Bei der Temperatur 0 K beschreibt sie einen abrup-
ten Ubergang von der 1 nach 0 an der Fermikante.
Bei hoheren Temperaturen wird Population aus der
Nihe der Fermikante in energetisch hohere Zustinde
verschoben. Die Breite dieses Ubergangsbereiches
ist von der GroBenordnung kgT. Das Zentrum des
Ubergang wird durch das chemische Potenzial i be-
stimmt, welches am absoluten Nullpunkt der Fermi-
energie entspricht.

Im Gegensatz zur Fermienergie ist das chemische
Potenzial aber temperaturabhiingig. Wir berechnen
diese Abhingigkeit, indem wir aus der Besetzungs-
wahrscheinlichkeit die gesamte Elektronenzahl be-
rechnen:

1
N= Zf = Z pCETE

Fiir eine feste Elektronenzahl N konnen wir aus die-
ser Gleichung das chemische Potenzial y bestim-
men. Dafiir entwickelt man die Differenz der Be-
setzungswahrscheinlichkeiten bei der Temperatur T
und bei T = 0 K als Taylorreihe um & = p. Daraus
erhélt man fiir die Temperaturabhéngigkeit des che-
mischen Potenzials in niedrigster Ordnung in T

w(T) = &f (1—71r;<TTF>2+...>.

Fiir alle relevanten Temperaturen gilt 7 < TF, so
dass hohere Terme in exzellenter Ndherung vernach-
lassigt werden kdnnen.

5.3.4 Die thermische Energie des
Elektronengases

GemilB der klassischen Drude-Theorie sollte die ki-
netische Energie der Elektronen wie bei Gasteil-
chen %NkBT sein. Damit sollte die Wirmekapazi-
tit also C,; ~ 3R/2 betragen, unabhéngig von der
Temperatur. Experimentell beobachtet man aber bei
Raumtemperatur einen Wert, der wesentlich niedri-
ger ist, von der Groflenordnung <1% des klassischen
Wertes, und auBBerdem temperaturabhingig. Erst die
Fermi-Dirac Verteilung 16ste dieses Problem: Wih-
rend in einem klassischen Gas eine Temperaturerhd-
hung um AT die Energie jedes Teilchens um kgAT /2
erhoht, konnen die meisten Elektronen keine Ener-
gie von der GroBenordnung kg7 aufnehmen, da in
diesem Bereich keine leeren Zusténde zur Verfiigung
stehen. Lediglich in der Ndhe der Fermikante, in ei-
nem Bereich der Breite &~ kgT um die Fermi-Energie
stehen teilweise gefiillte Zustinde zur Verfiigung.
Die Zahl der Elektronen in diesem Bereich liegt in
der GroBenordnung von T /T aller Elektronen. Da
typische Werte fiir die Fermi-Temperatur bei rund
10° K liegen betrigt dieses Verhiltnis bei Raumtem-
peratur weniger als 1%. Die gleiche Uberlegung sagt
auch voraus, dass die spezifische Wirme proportio-
nal zur Temperatur abnehmen sollte.

Die Rechnung lédsst sich in der Tieftemperatur-
Naherung T < Ty auch exakter durchfithren. Wir
berechnen die gesamte Energie U der Elektronen als
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Summe iiber die Energie aller besetzten Einelektro-
nenzustinde als

U= /OwdeeD(e)f(e),

wobei D(¢g) die Zustandsdichte und f(€) die Beset-
zungswahrscheinlichkeit bezeichnen.

df (e) Anderung der Besetzun
E—€¢EF
£

4 r

Anderung der Energie

3

Abbildung 5.14: Anderung der Besetzung und An-
derung der Energie bei endlicher
Temperatur.

Die thermische Energie des Elektronengases bei der
Temperatur 7" betrigt demnach

Ur = U(T)-U(0)
= /mdesD(e)f(s)—/SFdeeD(e)

- /+/ \deeD(e) f(e)
/ deeD(e

_ /0 deeD(e) (f(€)—1)
+/wde£D(e)f(8).

Das erste Integral beinhaltet die Energie, welche be-
notigt wird, um die Elektronen aus den Zustdnden
unterhalb der Fermikante zu entfernen, das zweite
Integral die Energie der Elektronen oberhalb der Fer-
mikante.

Die Anzahl Elektronen muss dabei konstant bleiben,

/ deD(e

N =

:/deD

Wir multiplizieren diese Identitdt mit der Fermiener-
gie €7 und erhalten

([ +/ )de ey D(e) £(€)

/ deepD(e

Wir addieren die rechte Seite zur thermischen Ener-
gie und subtrahieren die linke Seite und erhalten

o= " deleD(e) (f(e) - 1)
+erD(g) —er D(€) f(€)]
+ ) de [eD(g) f(e) —er D(€) f(€)]
_ 0’” de (e —er)D(e) (f(e) — 1)

+/:d8 (e—¢€r)D(e) f(e).

Die entspricht einer Verschiebung des Energienull-
punktes. Das erste Integral bezeichnet die Energie,
welche benotigt wird, um die Elektronen aus einem
besetzten Zustand an die Fermikante anzuheben, das
zweite die Energie, welche zusitzlich aufgebracht
werden muss, um sie von der Fermikante in einen
leeren Zustand oberhalb zu bringen. Beide Beitrige
zur Energie sind positiv. Abb. 5.14 zeigt diesen Bei-
trag in der unteren Kurve.

5.3.5 Spezifische Wirme

Wir suchen nun die spezifische Wirme, also die
Anderung der inneren Energie pro Temperaturinde-
rung. Der einzige Term in der obigen Gleichung, der
sich mit der Temperatur @ndert, ist die Besetzungs-
wahrscheinlichkeit f(g). Wir erhalten deshalb

d—l; = /Ooods(e—ep)D(e)dZS).

Da sich die Besetzungswahrscheinlichkeit nur in der
Nihe der Fermikante wesentlich dndert, verschwin-
det der Integrand fiir Energien weit von der Fermi-
energie. Wir konnen deshalb die Zustandsdichte in
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guter Niherung als konstant betrachten und aus dem
Integral herausziehen:

Co = D(eF) /Omde(s - 8F)d§(T8).

Fiir die Berechnung der Anderung der Besetzungs-
wahrscheinlichkeit approximieren wir das chemi-
sche Potenzial durch die Fermienergie:

1

f= ele—er)/ksT 1 1"

Dies ist eine gute Ndherung bei niedrigen Tempera-
turen. Damit wird die Ableitung nach der Tempera-
tur

df e—g  eleer)/ksT
dT kBT2 (e(S—EF)/kBT+1)2

und die Wirmekapazitit

2
e E—EF
. = kgD d
C[ B (SF)/O 8<kBT>

e—¢erp)/kgT

o
. (e(e_gF)/kBT + 1)2 .

Wir benutzen die Abkiirzung x = (¢ — €¢) /kgT und
de = dxkgT und erhalten

o0 X

2 e
(e*+1)

oo x2

C, = dxx

kT D(gr) /

—SF/kBT

= k3TD(gr) /

dx ——.
—SF/kBT ex+2+eix
(5.7

04

03

Abbildung 5.15: Grafische Darstellung des Integran-
den in GI. (5.7).

Der Integrand fillt fiir [x| > 1 exponentiell ab. Fiir
Temperaturen weit unterhalb der Fermitemperatur,
kpT < €p, d.h. im gesamten interessanten Bereich,
kann die untere Integrationsgrenze deshalb auf -oo
gesetzt werden. Das resultierende Integral ist nicht
trivial, kann aber zu 72 /3 bestimmt werden. Damit
wird
2
Cu = kgTD(sF)%.

Die Zustandsdichte an der Fermikante erhalten wir
aus (5.5)

m)3/
NE)| gy 2

D(ep) =
( F) o 27f2h3

und (5.4)

2
. n* (37N 3
T om Vv

nach Erweiterung mit 1 als

3
(2m)3/2 8,3/2 ( flz ) 2 37[?2N

D(¢g = &V —
(&) Fr ey F \om %
_ 3N _ 3N
N 2SF N 2kBTF’
sodass
2
T T
= —kgN— 5.8
Cel D) BNTF ( )

wird. Offenbar wichst die die elektronische Wirme-
kapazitdt proportional zur Temperatur und erreicht
erst in der Nédhe der Fermitemperatur den Wert von
Dulong-Petit. Bei Raumtemperatur ist die Wiarmeka-
pazitit somit um etwa das Verhéltnis T /Tr geringer.

5.3.6 Vergleich Elektronen / Phononen

Gemessen wird nie die elektronische Warmekapa-
zitdt alleine, sondern die gesamte Warmekapazitit,
welche sich aus phononischem Teil und elektroni-
schem Teil zusammensetzt. Zwischen der Debye-
Temperatur und der Fermitemperatur dominiert so-
mit der phononische Anteil. Fiir Temperaturen unter-
halb der Debye-Temperatur erwarten wir eine Tem-
peraturabhingigkeit der Form

c
C=yT+AT> oder ?:y—i—ATz.
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Hier stellt ¥ den elektronischen und A den phononi-
schen Anteil dar. Diese Beziehung stellt man gerne
in der in Abb. 5.16 gezeigten Form dar: das Verhilt-
nis C/T wird gegen das Quadrat der absoluten Tem-
peratur aufgetragen.

5

1C T joule/maode - kelvin®)

10 15
T2 (kelvin® )

<
LA

Abbildung 5.16: Vergleich der Temperaturabhéngig-
keit der Wirmekapazititen des Iso-
lators KCl1 und des Metalls Cu.

In dieser Darstellung zeigt der Achsenabschnitt den
Beitrag der Elektronen, die Steigung den Beitrag der
Phononen. Der elektronische Beitrag sollte also fiir
sehr tiefe Temperaturen dominieren. Abb. 5.16 zeigt
dies fiir Cu. Da KCl keine freien Elektronen besitzt,
verschwindet hier der elektronische Beitrag zur spe-
zifischen Wirme: die entsprechende Kurve hat Ach-
senabschnitt Null.

Phononen Elektronen
w (k) E(k)
k k
R — L
b)) = 7 F(E,t) = -
(,krsiT 1 f(E1) eg’;;j,_; 1

Abbildung 5.17: Vergleich der Dispersion und Stati-
stik fiir Phononen und Elektronen.

Die unterschiedliche Temperaturabhédngigkeit fiir
Elektronen und Phononen kann auf zwei funda-
mentale Unterschiede zwischen den beiden Arten
von Teilchen zuriickgefiihrt werden. Zum einen sind
Phononen Quasiteilchen, welche erzeugt und ver-
nichtet werden konnen (Ruhemasse = 0), wihrend
fiir Elektronen Teilchenzahlerhaltung gilt, da de-
ren Ruhemasse endlich ist. Zum andern unterlie-
gen Elektronen im Gegensatz zu Phononen dem
Pauli-Prinzip, da sie einen Spin 7/2 besitzen, wih-
rend Phononen Bosonen sind. Dies fiihrt zu einer
unterschiedlichen Statistik (Fermi-Dirac vs. Bose-
Einstein).

5.3.7 Effektive Masse

Ein Vergleich der gemessenen und berechneten elek-
tronischen Wirmekapazitit zeigt, dass die beobach-
teten Werte in der richtigen Groflenordnung liegen,
aber nicht quantitativ exakt sind. Man beschreibt den
Unterschied gerne iiber eine Anderung der effekti-
ven Elektronenmasse.

Element Yth Yexp Element Yth Yexp

1074 1074J 1074J 107%J

MolK2 Mol K2 Mol K2 Mol K2
Li 7.5 17.5 Fe 6.3 50.1
Na 109 14.6 Mn 63 167.1
K 16.7 19.6 7n 7.5 5.8
Rb 19.2 24.2 Cd 9.6 7.1
Cs 22.1 322 Hg 10.0 209
Cu 50 6.7 Al 9.2 125
Ag 6.3 6.7 Ga 10.0 6.3
Au 6.3 6.7 In 12.1 18.0
Be 50 21 Tl 13.0 14.6
Mg 10.0 134 Sn 13.8 184
Ca 15.0 27.2 Pb 15.0 29.2
Sr 18.0 363 Bi 18.0 0.8
Ba 19.6 272 Sb 163 6.3
Nb 6.7 83.6

Abbildung 5.18: Vergleich der theoretischen und ex-
perimentellen Wirmekapazititen
einiger Elemente.

Einige intermetallische Verbindungen von selte-
nen Erden und Actiniden (also Elementen mit f-
Elektronen) zeigen bei niedrigen Temperaturen ex-
trem hohe Wirmekapazititen, welche einer effekti-
ven Elektronenmasse von rund 1000 m, entsprechen.

108



5 Freie Elektronen

Abbildung 5.19: Gitterpotenzial fiir schwere Fer-
mionen.

Diese Verbindungen werden als schwere Fermionen
bezeichnet und bilden eine spezielle Klasse von Su-
praleitern, die “exotischen Supraleiter”. Die hohe
Masse kommt dadurch zustande, dass die Elektronen
in diesen Materialien nicht wirklich frei sind, son-
dern, dass die Wechselwirkung mit dem Gitter hier
eine wichtige Rolle spielt.

5.4 Elektrische Leitfahigkeit

5.4.1 Grundlagen

Die Fihigkeit, elektrischen Strom zu leiten, gehort
zu den charakteristischen Eigenschaften der Metal-
le. Sowohl die klassische Drude-Theorie wie auch
die quantenmechanische Theorie bieten einen An-
satz fiir die Erklidrung dieses Phianomens. Wir disku-
tieren hier einen halbklassische Beschreibung, d.h.
wir verwenden klassische Bewegungsgleichungen,
beriicksichtigen aber die Fermi-Dirac Verteilung.

Elektrischer Strom wird durch die freien Elektronen
getragen. Deren Reaktion auf das angelegte elek-
trische Feld bestimmt deshalb die Beziehung zwi-
schen Strom und Spannung, welche im Rahmen die-
ser Theorie mit dem Ohm’schen Gesetz iiberein-
stimmt. Die meisten freien Elektronen bewegen sich
mit einer relativ hohen Geschwindigkeit; die Fer-
migeschwindigkeit liegt bei rund 10° m/s. Da die
Verteilung der Geschwindigkeiten ohne ein dulleres
Feld isotrop ist, findet jedoch netto kein Ladungs-
transport statt.

Perfekte Metalle konnen prinzipiell Strom leiten
auch wenn kein elektrisches Feld anliegt. Reale Me-
talle weisen jedoch immer einen endlichen Wider-
stand auf — mit Ausnahme der Supraleiter, welche

nicht als normale Metalle beschrieben werden kon-
nen und in einem spéteren Kapitel noch behandelt
werden.

Werden duflere Felder an ein Metall angelegt, so
bewirken diese auf die Elektronen eine zusitzliche
Kraft
L dv _dk
= —_— = h— =
m dt dt
Im Rahmen der klassischen Mechanik konnen wir
gleichzeitig die Geschwindigkeit schreiben als

—e|E +V x BJ.

. dF_ hk
V=—=—.

dt m
Diese Verhalten wiirde man auch quantenmecha-
nisch erhalten, wenn man damit ein Wellenpaket be-

schreibt.

Wir betrachten hier zunichst nur elektrische Felder,
welche offenbar zu einer gleichférmigen Beschleu-
nigung fiithren. Im Impulsraum erhalten wir

k(t) —k(0) = —eEt /h

d.h. einen Impuls, der linear mit der Zeit zunimmt.
Dies ist in einem Metall fiir einzelne Elektronen
nicht moglich, da es durch eine Impulsinderung in
einen Zustand iibergehen wiirde, der bereits durch
ein anderes Elektron besetzt ist. Da die Felder auf
alle Elektronen wirken, wird jedoch die gesamte Fer-
mikugel verschoben um eine Distanz, welche linear
mit der Zeit wichst.

In Wirklichkeit dauert die Beschleunigung der Elek-
tronen nicht beliebig lange, sondern nur bis die Elek-
tronen einen Stof} ausfithren. Bei einem Stof} wird
kinetische Energie vom Elektron auf das Gitter iiber-
tragen. Im Rahmen dieses Modells wird dabei an-
genommen, dass die Geschwindigkeit des Elektrons
thermalisiert wird, d.h. sie kehrt zur Fermi-Dirac
Verteilung zuriick. Wenn die Thermalisierung im
Mittel eine Zeit t beansprucht, erreichen die Elek-
tronen im Mittel einen Impuls, der sich um

/]

vom thermischen Gleichgewicht unterscheidet. Die
Fermikugel im k-Raum wird somit um diesen Betrag
gegeniiber dem Ursprung verschoben.

Sk =—
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Fermikugel bei E>O’_

Fermikugel bei E=0

Abbildung 5.20: Verschobene Fermikugel im elek-
trischen Feld.

Da die Geschwindigkeit der Elektronen direkt pro-
portional zum k-Vektor ist,

o hk eET

V=—=——,
m m

konnen wir daraus die Stromdichte berechnen:

n(—e)v = ne’tE /m.

J
Hier stellt n die Anzahl Leitungselektronen pro Vo-
lumeneinheit dar. Der Strom ist somit proportional
zur Feldstirke, wie im Ohm’schen Gesetz. Die Pro-
portionalititskonstante ist die spezifische elektrische
Leitfahigkeit

2T 1

o= —; o= —. 5.9
" o] Qm (59)
Dieses Resultat ist identisch mit der Voraussage des

klassischen Modells.

Prinzipiell sind alle diese Groflen anisotrop. Entspre-
chend wird die Leitfdhigkeit im allgemeinen Fall
durch einen Tensor beschrieben. Wir beschrinken
uns hier jedoch auf den isotropen Fall.

Element | 77K | 273K | 373K |

Li 7.3 0.88 0.61
Na 17 3.2
K 18 4.1
Rb 14 2.8

Tabelle 5.1: Relaxationszeiten fiir einige Alkalime-
talle.

Offenbar ist die Leitfdhigkeit proportional zur Zeit
zwischen zwei Stofen. In sehr sauberen Metallen
kann bei tiefen Temperaturen eine freie Weglidnge
von bis zu 10 cm erreicht werden. Die Geschwin-
digkeit der Elektronen ist proportional zur Streuzeit
und kann unter diesen extremen Bedingungen meh-
rere Prozent der Lichtgeschwindigkeit erreichen.

5.4.2 Widerstand

Man kann zwei wichtige Beitrdge zur Streuung von
Ladungstrigern unterscheiden, die Streuung an Pho-
nonen und die Streuung an Gitterfehlern, also Fehl-
stellen und Verunreinigungen. Die beiden Prozesse
tragen additiv zum spezifischen Widerstand bei,

1
p= o PP+ pi,
wobei pp den Beitrag der Phononen beschreibt und
p; den Beitrag der Gitterfehler. Diese Aufteilung
des spezifischen Widerstandes wird als Matthiesen?-

Regel bezeichnet.

€ 5oL
a 20
S
=
©
g
2 10
T
2
= |
N Restwiderstand
o
wv
I | I | I
OO 10 20

Temperatur T [K]

Abbildung 5.21: Tieftemperaturverhalten des spezi-
fischen Widerstandes.

Da die Phononen bei tiefen Temperaturen ver-
schwinden, bleibt dann nur noch der Beitrag der Kri-
stallfehler zuriick. Dieser Beitrag ist je nach Probe
unterschiedlich. Abb. 5.21 zeigt den temperaturab-
hingigen Widerstand, welcher bei tiefen Temperatu-
ren in einen konstanten Wert iibergeht. Uber solche

3Nach Augustus Matthiessen (1831 - 1870)
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Messungen kann man die Konzentration von Verun-
reinigungen bestimmen.

Bei hoheren Temperaturen treten auch “dynamische
Kristallfehler” auf, ndmlich Phononen. Deren Bei-
trag zum elektrischen Widerstand wird am besten als
Emission oder Absorption eines Phonons durch ein
Elektron beschrieben. Sowohl Energie wie auch Im-
puls muss bei diesen Prozessen erhalten bleiben, d.h.

& =&y Lho(k—Kk),

wobei k, k' die Wellenzahlen des Elektrons vor und
nach dem Streuprozess bezeichnen, ®(q) die Phono-
nenfrequenz.

An diesen Streuprozessen konnen praktisch nur
Elektronen in der Nihe der Fermikante teilnehmen,
da fiir die anderen keine freien Zustinde zur Verfii-

gung stehen.
ﬁ(y
w, k-k'

y\/\/h

Abbildung 5.22: Elektron-Phonon Streuung.

Die Zahl solcher Streuprozesse kann bei hohen Tem-
peraturen als proportional zur Phononenzahl ange-
setzt werden, d.h. zu

1
<n> - ehw/kBT -1 '

Ist die Temperatur oberhalb der Debye-Temperatur,
hw < kgT, so wichst die Phononenzahl

1 kT
~~ h =
1+kB—“}—1 ho

{m)

)

d.h. proportional zur Temperatur. Damit nimmt auch
die Anzahl St68e und der elektrische Widerstand zu.

Bei Temperaturen in der Nidhe der Debye-
Temperatur spielen Umklapp-Prozesse eine wichtige
Rolle. Dafiir werden Phononen mit Energien in der
GroBenordnung der halben Debye-Energie benétigt.
Deren Zahl nimmt mit abnehmender Temperatur
exponentiell ab.

Abbildung 5.23: Links: Elektron-Phonon Streuung.
Rechts: Streuprozess nahe bei der
Fermikante.

Bei Temperaturen deutlich unterhalb der Debye-
Temperatur sind werden Normal-Prozesse wichti-
ger als Umklapp-Prozesse. Im Rahmen des einfa-
chen Modells von Kapitel 4.4.8 konnen wir ab-
schitzen, dass die Zahl der Phononen mit Frequenz
® = kT /h mit T? abnimmt. Die Wahrscheinlich-
keit, dass solche Streuprozesse stattfinden, sinkt au-
Berdem mit 1/7, da Phononen mit grofier Wellen-
lange eine geringere Wahrscheinlichkeit fiir einen
Absorptions-/Emissionsprozess besitzen.

Die Energie eines Elektrons an der Fermikante (~10
eV) ist viel groBer als die Energie des entsprechen-
den Phonons (= kgT ~ 25 meV bei Raumtempe-
ratur). Fiir die Elektronen sind diese Streuprozes-
se somit beinahe elastisch, sie bleiben in der Néhe
der Fermikante. Dadurch wird der Streuwinkel bei
Normalprozessen gering, d.h. die Elektronen streuen
fast vollstindig in Vorwirtsrichtung. Sie werden da-
durch nicht mehr vollstindig thermalisiert, sondern
ihre Geschwindigkeit sinkt proportional zu 1 —cos 0,
wobei 0 der Streuwinkel ist. Wie in Abb. 5.23 dar-
gestellt ist dieser proportional zur Wellenzahl kp der
Phononen, welche linear mit 7 abnimmt. Damit ist
die Geschwindigkeitsinderung pro Sto3 proportio-
nal zu T?2. Insgesamt ergibt sich dadurch eine Ab-
nahme des elektrischen Widerstandes mit 7°. Dies
kann in Abb. 5.21 qualitativ iiberpriift werden.
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5.4.3 Der Hall-Effekt

In einem Magnetfeld muss in der Bewegungsglei-
chung auch die Lorentzkraft beriicksichtigt werden:
F = —e[E +7VxB.

Wir suchen nun die stationédre Verschiebung 8k der
Fermikugel aus der Bewegungsgleichung fiir den
Impuls

Aok dk _ dv
a ar Mar
. L8k
= —¢[E4+VxB]—h— =0,

wobei T die Thermalisierungszeit (durch Stofle) des
Impulses darstellt.

E

X

® ®Bz® ® ® ®

® ® ® ® ® ®

Abbildung 5.24: Bewegung von Elektronen in ge-
kreuzten E /B Feldern.

Wir betrachten den Fall, wo ein Magnetfeld parallel
zur z-Achse angelegt ist, B = (0,0, B). Dann wird
¥ x B = (vB, —v,B,0)

und die Bewegungsgleichungen fiir die drei Ge-
schwindigkeitskomponenten werden

d 1

m E—i_; ve = —e(Ey+Bvy)
d 1

m(dt+1>vy = —e(E,—Bvy)
d 1

m E—i—; v, = —ek,.

Daraus konnen wir die stationdren Geschwindigkei-
ten bestimmen:

et
vy = ——E —@1v,
m
et
vy = _ZEy—i_wCWx
et
v, = ——E, (5.10)
m

wobei

_eB

o, = (5.11)

m

die Zyklotronfrequenz darstellt. Offenbar verlaufen
die Bahnen der Elektronen jetzt nicht mehr paral-
lel zum elektrischen Feld, sondern werden in der xy-
Ebene auf Kreisbahnen abgelenkt.

EX
& ® Bz ® ® ® ®
¥ + + ¥ + +
El|l -0 -9 _5 -9
® ® ® ® ® ®

Abbildung 5.25: Gleichgewichts-Ladungsverteilung
in gekreuzten E /B Feldern.

Wir betrachten nun den Fall, dass ein Strom ent-
lang der x-Achse flieBt, d.h. wir setzen vy, = v, = 0.
Aus der obigen Gleichung sehen wir, dass der Strom
in x-Richtung durch das Magnetfeld in y-Richtung
abgelenkt wird. Wir konnen somit nur dann eine
verschwindende Bewegung in y-Richtung erhalten,
wenn diese Lorentzkraft durch eine entgegengerich-
tete Coulomb-Kraft, d.h. durch ein elektrisches Feld
kompensiert wird. Gemal Gleichung (5.10) bedingt
dies fiir den stationiren Fall, dass

T
vy =—e—E; (5.12)
m
und
T
0=—e—E,+ ®:Tvy.
m
Diese Gleichung 16sen wir auf nach E, auf:
Ey = 0oy e
= Vy—
y cVx e
und setzen fiir v, den stationdren Wert (5.12) ein:

T m
E,=—e—E.0.— = —TO.E,.
m e

Wenn wir den Ausdruck (5.11) fiir die Zyklotronfre-
quenz verwenden, entspricht dies

E, = —EB. (5.13)
m

Es entsteht also eine Spannung, welche senkrecht

auf der Richtung des Stroms und dem magnetischen

Feld liegt.
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5.4.4 Hall Konstante

Als Hall-Konstante
E,
Ry = 7}
JxB
bezeichnet man das Verhiltnis der Spannung zum
Produkt aus Stromdichte j, und Magnetfeldstirke B.
Wir schreiben die Stromdichte als das Produkt aus
Driftgeschwindigkeit v, und Ladungsdichte —en und
erhalten

ne*t

Jjx = —envy = —E,.
m

Mit der Beziehung (5.13) zwischen E, und E), erhal-
ten wir

—E,etB/m 1

Ry= o = ——

(ne?t/m)E,B ne’
d.h. sie entspricht der inversen Ladungsdichte und ist
fiir freie Elektronen negativ. Je niedriger die Dich-
te der Ladungstréger, desto grofler ist also die Hall-
Konstante und damit die Hall Spannung E,. Dies
kann man qualitativ so verstehen, dass der gleiche
Strom bei niedriger Ladungstriagerdichte nur durch
eine hohere Geschwindigkeit und damit durch eine

hohere Lorentzkraft erreicht wird.

Metall # Valenz- -1
elektronen Ryne
Li 1 0.8
Na 1 12
K 1 1.1
Rb 1 1.0
Cs 1 0.9
Cu 1 1.5
Ag 1 13
Au 1 1.5
Be 2 -0.2
Mg 2 0.4
In 3 -03
Al 3 -0.3

Abbildung 5.26: Beispiele von Hall-Konstanten.

Abb. 5.26 zeigt einige Hall Konstanten bei tiefen
Temperaturen, jeweils als Verhiltnis aus der La-
dungsdichte zur gemessenen Hall konstanten. Offen-
bar passt diese einfache Theorie recht gut fiir die Al-
kalimetalle, weniger gut fiir die Edelmetalle, und fiir
die letzten vier Elemente gar nicht.

Die Messung der Hall-Konstante dient deshalb auch
zur experimentellen Bestimmung der Ladungstri-
gerkonzentration. Fine andere Anwendung ist die

Messung der Magnetfeldstédrke. Dafiir muss der Sen-
sor zuerst kalibriert werden, da die Ladungstriger-
dichte herstellungsmissig und temperaturabhingig
schwankt.

Die Hall Konstante hat auch das gleiche Vorzeichen
wie die Ladung der beweglichen Teilchen (welche
wir hier als —e angenommen haben). Sie kann somit
auch Auskunft geben iiber das Vorzeichen der La-
dung der Ladungstriager. Wir haben hier angenom-
men, dass es sich um Elektronen, also negative Teil-
chen, handelt, und erhalten wie gezeigt eine negati-
ve Konstante. Wenn es sich um Locher, also positive
Ladungstriger handelt, so wird auch die Konstante
positiv. Diese Art der Leitung werden wir spiter dis-
kutieren.

5.5 Wirmeleitung in Metallen

Die Tatsache, dass Metalle sich bei niedrigen Tem-
peraturen sehr kalt und bei hohen Temperaturen sehr
heil (im Vergleich zu anderen Materialien) anfiihlen
zeigt, dass sie gute Wirmeleiter sind. Wirmeiiber-
tragung spielt nicht nur technisch eine wichtige Rol-
le, sie ist auch ein guter Test fiir das Verstidndnis der
entsprechenden Materialien.

5.5.1 Ansatz

Die Wirmeleitfahigkeit einer Probe wird gemessen,
indem man sie thermisch isoliert, auf der einen Sei-
te heizt, und auf der anderen Seite die Tempera-
tur misst. Die Wirmeleitfahigkeit ist dann definiert
als der Koeffizient zwischen Temperaturgradient VT
und Wirmestromdichte

jo=—KVT.

Wie in Kapitel 4 gehen wir aus vom Ausdruck
K=1/3Cw

fir die Wiarmeleitung K eines idealen Gases mit
Wirmekapazitit C, Geschwindigkeit v und mittlerer

113



5 Freie Elektronen

freier Weglidnge ¢. Wir benutzen den Ausdruck (5.8)
fiir die elektronische Wirmekapazitét
. T

=" g
Cel > BnTF

Wir hatten bereits im Rahmen der Theorie der spe-
zifischen Warme gesehen, dass nur die Elektronen
in der Nihe der Fermikante durch St68e Energie
mit dem Gitter austauschen. Wir erwarten deshalb
auch, dass diese den dominanten Beitrag zur Wir-
meleitfahigkeit geben. Dementsprechend setzen wir
fiir die Geschwindigkeit die Fermigeschwindigkeit
vr ein und fiir die mittlere freie Weglidnge entspre-
chend ¢ = vr 7. Damit wird die Wirmeleitfahigkeit
1z T

K= - —kgn—v>T.
3 BT VF

Wir schreiben die Fermi-Geschwindigkeit vy als
Funktion der Fermi-Energie
281: . ZkBTF

Vi = :
m m

Damit wird die Wirmeleitfahigkeit

n? kanTt

3 m

) (5.14)

5.5.2 Temperaturabhéngigkeit

K endlicher
<~ Wert
T T
Tt

T

Abbildung 5.27: Verhalten der Wirmeleitfihigkeit
bei tiefen Temperaturen.

Die Wirmeleitfahigkeit sollte also proportional zur
Temperatur und zur mittleren Stofzeit T sein. Diese
ist stark temperaturabhéngig und diese Abhéangigkeit
tiberwiegt bei Temperaturen tiber 20 K.

Die Wirmeleitfahigkeit enthilt, wie im Kapitel 4 ge-
zeigt, auBerdem Beitrige der Phononen. Im allge-
meinen tiberwiegt der Beitrag der Elektronen, insbe-
sondere in “guten” Metallen. Metalle sind deshalb

bessere Wirmeleiter als ionische Kristalle. In ver-
unreinigten Metallen und ungeordneten Legierungen
nimmt der elektronische Beitrag zur Wirmeleitung
stark ab, wihrend der Beitrag der Phononen relativ
konstant bleibt und deshalb vergleichbar und in Iso-
latoren dominant werden kann.

50

8

W
(=]

-
o

Wirmeleitfihigkeit / W cm™! K-!
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Abbildung 5.28: Temperaturabhiéngigkeit der Wir-
meleitfahigkeit von Kupfer.

Abb. 5.28 zeigt als Beispiel die Wirmeleitfahigkeit
von Kupfer als Funktion der Temperatur. Sie geht of-
fenbar durch ein Maximum, wie wir es fiir den Fall
freier Elektronen erwarten. Das Verhalten ist somit
qualitativ @hnlich wie bei der Wirmeleitung durch
Phononen, doch sinkt die Warmeleitfahigkeit bei tie-
fen Temperaturen nicht mit 73, sondern mit 7 ab.

5.5.3 Vergleich elektrische / thermische
Leitfiahigkeit

Man kann diese thermische Wirmeleitfahigkeit
(5.14) mit der elektrischen Leitfdhigkeit (5.9)

vergleichen. Man sieht aus der obigen Behandlung,
dass sie die gleiche Tendenz zeigen sollten: Beide
sind proportional zur Ladungstrigerdichte n und zur
mittleren StoBzeit t. Das Verhiltnis zwischen den
beiden Werten,

K  wkgT

o 3e
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sollte direkt proportional zur Temperatur 7 sein.
Diese Beziehung wird als Wiedemann-Franz* Ge-
setz bezeichnet. Dividiert man auch durch die Tem-
peratur, berechnet also

K 7%k wQ

= —=""B_245.1078 -

ol  3é? ’ K2’
so erhilt man eine materialunabhingige Konstante
L, welche als Lorenz-Zahl bezeichnet wird. Damit
kann man das Wiedemann-Franz Gesetz als

K

—=ILT

(e}

schreiben.
273K ITIK
ELEMENT K kieT K kleT
(watt/cem-K)  (watt-ohm/K?)  {wattjcm-K) (watt-ochm/K?]

Li 071 222 % 107¢ 0.73 243 % 10°°®
Na 1.38 112
K 1.0 223
Rb 0.6 242
Cu 385 220 382 229
Ag 4.18 231 417 238
Au 3l 232 31 2.36
Be 23 2.30 1.7 242
Mg 1.5 2.14 15 2.25
Nb 0.52 - 290 054 278
Fe 0.80 261 0.73 288
Zn 1.13 228 1.1 230
Cd Lo 249 1.0
Al 2.38 2.14 2.30 2.19
In 0.88 258 0.80 2.60
Tl 0.5 275 045 275
Sn 0.64 2.48 0.60 2.54
Fb 0.38 2.64 0.35 253
Bi 0.09 .53 0.08 335
Sb 018 2.57 0.17 269

Source: G. W, C. Kaye and T. H. Laby, Table of Fhysical and Chemical Constants, Longmans
Green, London, 1966,

Abbildung 5.29: Wirmeleitfahigkeit und Lorenz-
zahl.

Abb. 5.29 zeigt einige Werte fiir die thermische Leit-
fahigkeit und die Lorenz-Zahl. Sie liegen im Be-
reich 2.3 < L < 2.6-10~% WQ/K2, stimmen also
recht gut mit dem theoretischen Wert iiberein, was
als Bestitigung des Modells des freien Elektronen-
gases betrachtet werden kann. Das theoretische Re-
sultat hiingt allerdings davon ab, dass die StoBzeit T
fiir die beiden Prozesse die gleiche sein soll. Dies ist
nicht zwingend der Fall und fiihrt deshalb zu Abwei-
chungen vom Wiedemann-Franz Gesetz.

4nach Gustav Heinrich Wiedemann (1826 - 1899) und Ru-
dolph Franz (1826 - 1902)

o
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Abbildung 5.30: Temperaturabhédngigkeit der Lo-
renzzahl.

Abb. 5.30 vergleicht die Temperaturabhingigkeit der
Lorenzzahl fiir einige Elemente mit dem theoretisch
temperaturunabhiingigen Wert.

5.5.4 Thermoelektrische Effekte

Das verwendete Modell geht davon aus, dass Elek-
tronen bei Stoen thermalisieren, d.h. dass ihre Ener-
gieverteilung sich an die lokale Temperatur anpasst.
Da heissere Elektronen eine (geringfiigig) hohere
Geschwindigkeit haben als kalte, ist der Transport
von Elektronen zwischen zwei Punkten unterschied-
licher Temperatur asymmetrisch: es flieBen mehr
Elektronen vom heissen zum kalten Punkt als umge-
kehrt, bis der thermische Gradient durch einen elek-
trischen Gradienten ausgeglichen wird. Ein Tempe-
raturgradient erzeugt deshalb eine Spannungsdiffe-
renz

Dieser sogenannte thermoelektrische Effekt (auch
Seebeck-Effekt genannt) unterscheidet sich zwi-
schen verschiedenen Metallen.

Er kann z.B. gemessen werden, indem man die En-
den von zwei unterschiedlichen Metallen kontaktiert
und die Kontaktpunkte auf unterschiedliche Tempe-
raturen bringt und die resultierende Spannung misst.
Typische thermoelektrische Koeffizienten liegen im
Bereich von Q ~ uV/K. Der Effekt kann prinzipiell
zur Stromerzeugung genutzt werden, hat aber einen
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Material B

Material A
Thermospannung / mV
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Abbildung 5.31: Anordnung zur Messung von Ther-
mospannungen und temperaturab-
hingige Thermospannungen, nor-
miert auf die Werte bei 0°C.

relativ niedrigen Wirkungsgrad. Eine wichtige An-
wendung liegt in der Messung von Temperaturen
(Thermoelemente).

5.6 Plasmonen

5.6.1 Quantisierte elektronische

Anregungszustinde
° .oo.. ...o..o o.. b
OO
B re®.
’:. ... :. ..0..o
N AR

Abbildung 5.32: Elektronengas.

Da die Valenz-Elektronen in einem Metall frei be-
weglich sind, konnen sie auch zum Schwingen ange-
regt werden. Wir diskutieren hier kollektive Schwin-
gungen der Elektronen. Wird ein einzelnes Elektron
um die Distanz x aus der Ruhelage ausgelenkt, so er-
zeugt es einen elektrischen Dipol der GroBe p(x) =
ex. Wird ein Elektronengas der Dichte n ausgelenkt,

so entsteht eine elektronische Polarisation
P(x) =nex.

Diese Polarisation entspricht einem zusitzlichen
elektrischen Feld
E(x) = ——P(x) = ¢
x)=—P(x)=—nx.
EH
Dieses elektrische Feld wirkt als Kraft auf die Elek-
tronen. Wir erhalten die Bewegungsgleichung

I’l€2

mex = —eE(x) = —e—gox.

Dies entspricht einem harmonischen Oszillator

. 2
X =—w,x,

wobei die Plasmafrequenz w), gegeben ist durch

ne?

®, = .
P m.€€

Quantenmechanisch sind die Energiezustinde eines
harmonischen Oszillators gegeben als

& = (n+ %)ha)p.
Da die Plasmafrequenz ein MaB fiir die Elektronen-
dichte ist, bietet sich ihre Messung als interessante
Methode zur Bestimmung der Elektronendichte an.
Allerdings sind die Plasmonen in vielen Systemen
stark gedampft (z.B. durch Inter-Band Uberginge),
dass sie gar nicht beobachtet werden konnen.

Typische Werte fiir die Plasmafrequenz liegen im
Bereich von einigen (3-20) eV.

5.6.2 Messung

Die Plasmonenfrequenzen konnen gemessen wer-
den, indem man die entsprechende Probe mit Elek-
tronen bestrahlt. Diese stolen mit den freien Elek-
tronen der Probe und regen dadurch Plasmonen an.
Dadurch verlieren die Elektronen des Strahls Ener-

gie.
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e-Strahl
~ 10 keV
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Abbildung 5.33: Prinzip der Messung von Plasmo-
nenenergien.
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Abbildung 5.34: Apparatur fiir die Messung von
Plasmonenenergien.

Fiir die Messung des Energieverlustes in der Probe
benotigt man ein hochauflésendes Elektronenspek-
trometer, welches die kinetische Energie der trans-
mittierten Elektronen misst.

Abb. 5.35 zeigt ein typisches Verlustspektrum, wel-
ches an einem diinnen Aluminiumfilm gemessen
wurde. In diesem Fall wurden die zuriickgestreuten
Elektronen analysiert. Man findet Resonanzen, wel-
che der Erzeugung von n = 1, 2, ... Plasmonen ent-
sprechen. Die Resonanzen sind iiberdies aufgespal-
ten: an der Oberflidche ist die Plasmonenfrequenz ge-
ringer als im Volumen.

Die gemessenen Plasmonenenergie stimmen relativ
gut mit den berechneten iiberein. Sie nehmen mit

Volumen-

101 AI Oberflachen- p|asmon

8- plasmon

| | | | |
0 20 40 60 80 100 120

Energieverlust / eV

Abbildung 5.35: Plasmonenspektrum von Alumini-
um mit Aufspaltung der Resonan-
zen.

’ ‘ Gemessen | Berechnet

Li 7.12 8,02
Na | 5,71 5,95
K 3,72 429
Mg | 10,6 10,9
Al 153 15.8

Tabelle 5.2: Plasmonenenergien in eV

der Elektronendichte zu: Al (3 Valenzelektronen)
hat eine deutlich hohere Plasmonenfrequenz als die
Alkaliatome (1 Valenzelektron). Bei den Alkaliato-
men nimmt die Elektronendichte mit zunehmendem
Atomgewicht ab. Deshalb ist die Plasmonenfrequenz
von K niedriger als die von Na und Li.

5.7 Elektron-Phonon
Wechselwirkung

5.7.1 Grundlagen

Die bisher verwendete Born-Oppenheimer Nihe-
rung vernachlédssigt Wechselwirkungen zwischen
Elektronen und Kernen. Einige der vernachlissigten
Terme haben wir bereits beriicksichtigt, z.B. indem
wir die Streuung von Elektronen an Phononen als
Beitrag zum elektrischen Widerstand diskutiert ha-
ben. Eine Wechselwirkung kommt dadurch zustan-
de, dass Phononen das Kerngitter verzerren und die
Elektronen deshalb ein Potenzial spiiren, welches
nicht mehr die ideale Periodizitit aufweist. Phono-
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nen konnen deshalb absorbiert oder gestreut werden.
Die Wechselwirkung kann mit akustischen Phono-
nen oder mit optischen Phononen geschehen. Man
unterscheidet

* Frohlich-Wechselwirkung
* Deformationspotenzial-Wechselwirkung
* Piezoelektrische Wechselwirkung.

Elektronen-Phononen Wechselwirkungen spielen in
Halbleitern (vor allem biniren und terniren) eine
wichtige Rolle, sowie in Supraleitern, wo sie fiir die
Bildung der Cooper-Paare verantwortlich sind.

5.7.2 Polaronen

Auch in dielektrischen Festkorpern spielen
Elektron-Phonon Wechselwirkungen eine Rol-
le.

2090
3

£
® @ @

Abbildung 5.36: Gitterverzerrung durch Wechsel-
wirkung mit Elektron.

In einem ionischen Kiristall, wie z.B. KCl erzeugt ein
Elektron eine Gitterverzerrung: die positiven Ionen
werden in Richtung auf das Elektron verschoben, die
negativen davon weg. Ein Resultat dieser Wechsel-
wirkung ist, dass die effektive Masse des Elektrons
steigt: wird es bewegt, so bewegt sich die Gitterver-
zerrung mit. Die Kombination aus Ladung und Git-
terverzerrung (oder Ladung und Phonon) wird gerne
als Polaron bezeichnet.

Die effektive Masse eines Leitungselektrons in KC1
wichst dadurch um einen Faktor 2.5 im Vergleich
zum Fall eines starren Gitters.

Bei Materialien mit stirker kovalentem Charakter,
wie z.B. dem Halbleiter GaAs, ist die Gitterverzer-
rung durch die Leitungselektronen schwécher und
damit die Kopplungskonstante kleiner.

Crystal KCl KBr AgCl AgBr

a 397 352 200 169
Kopplungskonstante . 125 093 051 033
Masse mfm 050 043 035 024
Bandmasse (starres G.)  mp./m’ 2.5 22 1.5 1.4

Abbildung 5.37: Effektive Masse von Leitungsband-
Elektronen in Isolatoren.

Zn0O PbS InSh GaAs
P 085 016 0014  0.06
m;ol/m = — 0.014 —
m/m e — 0.014 =
mogm’  — - 1.0 =

Abbildung 5.38: Effektive Masse von Leitungsband-
Elektronen in Halbleitern mit teil-
weise kovalenten Bindungen.

5.7.3 Cooper Paare

Die Verzerrung, welche die Elektronen im Gitter er-
zeugen, wirkt wiederum auf andere Elektronen und
kann dazu fiihren, dass zwischen (weit voneinander
entfernten) Elektronen eine effektive Anziehungs-
kraft zustande kommt. Dadurch kommt es zur Bil-
dung von sogenannten Cooper Paaren, welche fiir
die Supraleitung verantwortlich sind. Dies wird im
Kapitel 9 genauer diskutiert.
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