
4 Gitterschwingungen und Phononen

Die Struktur eines Festkörpers ist dadurch definiert,
dass die Atome sich an der Stelle befinden, welche
die Gesamtenergie der Anordnung minimiert. Dies
ist deshalb die Position, die sie - abgesehen von
der quantenmechanischen Unschärfe - am absolu-
ten Nullpunkt einnehmen. Bei endlichen Tempera-
turen hingegen führen sie Schwingungsbewegungen
um diese Gleichgewichtspositionen durch und besit-
zen damit eine höhere Energie. In diesem Kapitel
werden diese mechanischen Schwingungen der Ato-
me diskutiert. Diese sind wichtig für das Verständnis
von vielen Materialeigenschaften, wie z.B. die spe-
zifische Wärme, Leitfähigkeit für Elektrizität, Schall
und Wärme, oder die Volumenausdehnung. Auch die
Supraleitung (Kap. 9) kann nur über die Schwin-
gungen der Gitteratome verstanden werden. Darüber
hinaus beobachtet man den Effekt von Schwingun-
gen in der Wechselwirkung mit unterschiedlichen
Arten von Strahlung, wie z.B. infrarotem Licht oder
thermischen Neutronen.

4.1 Grundlagen

4.1.1 Gleichgewichtsumgebung

Die Position der Atome wird nicht mehr als fest an-
genommen, sondern wir betrachten die Position~r ei-
nes Atoms jetzt als variabel. Dabei soll jedes Atom
eine Gleichgewichtsposition ~r0 haben, aber gegen-
über dieser Gleichgewichtsposition Auslenkungen~x
erfahren, wobei diese im Mittel verschwinden, h~xi =
0. Diese Auslenkungen sind klein im Vergleich zu
typischen Abständen zwischen nächsten Nachbarn.

Wir diskutieren dies im Rahmen der Born-Oppen-
heimer Näherung, d.h. wir betrachten die Bewegung
der Kerne in einem effektiven Potenzial, welches
durch die Abhängigkeit der elektronischen Energie
von den Kern-Koordinaten gegeben ist. Die rücktrei-
bende Kraft des Potenzials führt dann zu einer Os-

zillationsbewegung. Das Potenzial ist gegeben durch
die Bindungsenergie des Systems, d.h. durch die ki-
netische Energie der Elektronen und die Coulomb-
Energie der Kerne und Elektronen.

x0 = 0 x

Potenzial

U
harmonische
Näherung U = U0 + U2 x

2

Abbildung 4.1: Potenzialverlauf und harmonische
Näherung.

Wir diskutieren zunächst ein eindimensionales Sy-
stem und entwickeln das Potenzial eines einzelnen
Atoms in der Umgebung seiner Ruhelage als

U = U0 +U1x+U2x2 + . . . ,

wobei x die Auslenkung aus der Ruhelage x0 be-
zeichnet. Die Ruhelage ist aber gerade dadurch defi-
niert, dass die Energie minimal ist. Somit muss der
lineare Term verschwinden, U1 = 0. Die Kraft, wel-
che auf das Atom wirkt, ist demnach in niedrigster
Ordnung

F = �dU
dx

= �2xU2.

Diese Form entspricht dem Hooke’schen Gesetz. In
der Festkörperphysik wird dies als die harmonische
Näherung bezeichnet. Wir verwenden sie für den
größten Teil dieses Kapitels. Wenn die höheren Ter-
me (U3, . . .) relevant werden, spricht man von an-
harmonischen Effekten. Diese werden in Kapitel 4.5
angesprochen.
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4.1.2 Die eindimensionale Kette

xs xs+1

a

xs-1

Abbildung 4.2: Eindimensionale Kette.

Wir beginnen mit dem einfachsten möglichen Mo-
dell, einer eidimensionalen Kette, welche aus iden-
tischen Atomen besteht, welche durch identische
Wechselwirkungen aneinander gekoppelt sind. Die
interatomaren Kräfte sind nur von der Position der
direkten Nachbarn abhängig. xs beschreibt hier die
Auslenkung des s-ten Atoms aus der Ruhelage.

Durch die Federn wird die Kraft auf ein Atom abhän-
gig von der Position des Nachbaratoms. Die Bewe-
gungsgleichungen der einzelnen Atome sind deshalb
mit einander gekoppelt. Dann lautet die Bewegungs-
gleichung für das Atom an Position s

Mẍs = C(xs+1 + xs�1 �2xs),

wobei C die Kraftkonstante und M die atomare Mas-
se beschreibt. Da ein Atom mehrere nächste Nach-
barn besitzt, wirkt die Auslenkung eines Atoms aus
der Ruhelage immer auch auf mehrere andere Ato-
me. Dies führt dazu, dass die Auslenkung nicht auf
einem Atom lokalisiert bleiben kann. Mathematisch
hat man ein System von N gekoppelten Differenti-
algleichungen (pro Freiheitsgrad). Um diese zu lö-
sen, muss man die Eigenvektoren des Systems be-
stimmen. Diese werden als Eigenmoden bezeichnet.

Die Eigenmoden können als ebene Wellen geschrie-
ben werden, welche sich entlang der Kette ausbrei-
ten. Wir machen deshalb den Ansatz

xs = X0ei(ksa�wt).

Hier ist k die Wellenzahl (mit Dimension m�1), X0
die Amplitude und w die Kreisfrequenz, a bezeich-
net den Abstand zwischen nächsten Nachbarn und sa
die Ruhelage des Atoms mit Index s.

4.1.3 Normalkoordinaten und
Dispersionsrelation

Die neu eingeführten Eigenmoden beziehen sich
nicht mehr auf einzelne Atome, sondern auf die Ge-
samtheit der Atome. Sie zeichnen sich durch ihre
harmonische Zeitabhängigkeit aus und werden auch
als Normalkoordinaten bezeichnet. Offenbar ist

xs�1 = xse�ika xs+1 = xseika.

Durch Einsetzen von xs�1, xs, xs+1 in die Bewe-
gungsgleichung erhalten wir

�Mw

2xs = C
⇣

eika + e�ika �2
⌘

xs.

Wir dividieren durch �Mxs und ersetzen die Expo-
nentialfunktionen durch die trigonometrischen und
erhalten

w

2 = 2
C
M

(1� coska) = 4
C
M

sin2 ka
2

.

Daraus erhalten wir die Eigenfrequenz

w = 2
r

C
M

����sin
ka
2

���� .

Jedes Wertepaar (k,w) charakterisiert eine Eigen-
mode der Gitterschwingung. Innerhalb der harmoni-
schen Näherung sind diese Schwingungen voneinan-
der unabhängig. In einem unendlichen Kristall sind
diese Werte kontinuierlich. In einem endlichen Kri-
stall gibt es 3N diskrete Moden, wobei N die Anzahl
der Einheitszellen des Kristalls darstellt.

xs

xs xs

0 π/a 2π/a

k

ω

-π/a

λ = a/2

Abbildung 4.3: Dispersion der eindimensionalen
Kette.

Abb. 4.3 zeigt die Dispersionsrelation zwischen der
Wellenzahl k und der Schwingungsfrequenz w . Für

66



4 Gitterschwingungen und Phononen

kleine Wellenzahlen, also große Wellenlängen geht
die Frequenz gegen Null. Im linearen Bereich gilt:

w ⇡
r

C
M

|ka|

d.h. die Frequenz ist direkt proportional zur Wellen-
zahl.

Die Phasendifferenz zwischen benachbarten Ato-
men beträgt e�ika. Für kleine Wellenzahlen ist somit
die Phasendifferenz klein, d.h. benachbarte Atome
schwingen hier praktisch in Phase

Anders sieht es beim Wellenvektor k = p/a aus. Hier
ist e�ika = �1, d.h. benachbarte Atome schwingen in
Gegenphase. Die Wellenlänge l = 2p/k = 2a ent-
spricht der doppelten Länge der Einheitszelle, d.h.
übernächste Nachbarn schwingen in Phase.

4.1.4 Brillouin-Zone

Wenn wir zu noch größeren Wellenvektoren, al-
so kürzeren Wellenlängen gehen, so wird der Un-
terschied zwischen den Auslenkungen benachbarter
Atome wieder kleiner. Dies äußert sich auch in der
Frequenz, wie man in der Dispersionsrelation erken-
nen kann. Offenbar ist die Frequenzabhängigkeit pe-
riodisch in k, mit Periode 2p/a. Dies liegt daran,
dass wir die Auslenkung von Kernen, also diskreten
Punktpartikeln betrachten.

cos(-1.3s)
xs

s

cos(5s)

Abbildung 4.4: 2 Wellenzahlen, welche die gleiche
Auslenkungen ergeben.

Da die Amplitude der Schwingung nur an den Kern-
orten definiert ist, ist es physikalisch nicht möglich,
Schwingungen zu unterscheiden, deren Wellenvek-
tor sich um 2p/a unterscheidet. Anders ausgedrückt:
die Position eines Atoms mit einer Phase von 5p/2
ist identisch zur Position mit einer Phase p/2. Ein

solches Beispiel ist in Abb. 4.4 dargestellt: Die Wel-
lenvektoren der violetten und der grünen Kurve un-
terscheiden sich um 2p/a. Wie in Abb. 4.4 gezeigt,
erzeugen sie die gleichen atomaren Auslenkungen.
Diese Beziehung wird auch als Abtasttheorem oder
Nyquisttheorem bezeichnet. Es muss z.B. bei der Di-
gitalisierung von Messdaten berücksichtigt werden.

tt

k
0-�/a �/a 2�/a

xsxs

äquivalent

Abbildung 4.5: Die 1. Brillouin-Zone enthält die ge-
samte Information.

Bezogen auf die Dispersionsrelation der Gitter-
schwingungen bedeutet dies, dass nur der Bereich
zwischen �p/a < k < p/a betrachtet werden muss.
Bei der Einführung des reziproken Gitters haben wir
diesen Bereich als die erste Brillouin-Zone kennen-
gelernt.

Abbildung 4.6: Phononendispersion von Blei.

Die Dispersionsrelation der Gitterschwingungen
kann durch gleichzeitige Messung von Wellenvektor
und Frequenz, u.a. mit unelastischer Röntgenstreu-
ung gemessen werden. Abb. 4.6 zeigt als Beispiel
die Phononendispersion von Blei, welches in einem
fcc-Gitter kristallisiert.

Die Dispersion von Kupfer sieht ähnlich aus. Da
Kupferatome leichter sind, sind die entsprechenden
Schwingungsfrequenzen jedoch höher. Man erhält
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Abbildung 4.7: Phononendispersion von Kupfer.

jeweils einen longitudinalen und zwei transversale
Äste, wobei die transversalen Schwingungen je nach
Ausbreitungsrichtung entartet sein können.

4.1.5 Gruppengeschwindigkeit und
Phasengeschwindigkeit

Die Beziehung zwischen Frequenz und Wellenzahl
ergibt direkt die Phasengeschwindigkeit

vP =
w

k
= 2

r
C
M

����sin
ka
2

����/k,

sowie die Gruppengeschwindigkeit aus der Steigung

vG =
dw

dk
= a

r
C
M

����cos
ka
2

���� .

Für sehr kleine Wellenvektoren, d.h. sehr große Wel-
lenlängen geht die Frequenz linear gegen null. In
diesem Bereich gibt es keine Dispersion, d.h. die
Phasengeschwindigkeit und die Gruppengeschwin-
digkeit sind gleich und konstant,

vP = vG =
dw

dk
= a

r
C
M

.

In diesem Bereich ist die Wellenlänge sehr viel grö-
ßer als die Gitterkonstante, sodass die diskrete Natur
des Gitters hier keine Rolle spielt. Wir können die
Schwingungen der Kristalle in diesem Bereich des-
halb auch gut mit Hilfe eines kontinuierlichen Mo-
dells beschreiben.

Dies ist der Bereich der akustischen Wellen. Ty-
pische Schallgeschwindigkeiten in Festkörpern lie-
gen bei vs ⇡ 4000 m/sec. Mit einer typischen
Einheitszellen-Größe von a ⇡ 5 · 10�10 m wird die

Wellenlänge lmin = 2a ⇡ 10�9 m. Damit erhalten
wir eine maximale Schwingungsfrequenz nmax ⇡
vs/lmin = 4 ·1012 Hz.

An den Grenzen der ersten Brillouin-Zone hinge-
gen, bei k = p/a, geht die Gruppengeschwindig-
keit gegen null, vG ! 0, d.h. es wird keine Energie
mehr transportiert. Dies lässt sich leicht verstehen
wenn wir berücksichtigen, dass an diesem Punkt die
Bragg-Bedingung erfüllt ist: In der allgemeinen Be-
ziehung

2d sinq = l

setzen wir d = a, q = p/2 und erhalten

2a = l =
2p

k
oder k =

p

a
.

a

h

Abbildung 4.8: Reflexion einer linearen Welle bei
der Bragg-Bedingung.

Das bedeutet, dass die einfallende Welle am Gitter
sehr effizient reflektiert wird. Die einfallende Wel-
le und die reflektierte Welle bilden zusammen eine
stehende Welle, bei der die um eine Elementarzelle
getrennten Atome jeweils um 180� außer Phase sind.

Die hier betrachtete Bewegung entlang der Kette ist
nicht die einzige Möglichkeit. Zusätzlich gibt es die
Möglichkeit, dass die Atome senkrecht zur Kette
ausgelenkt werden. Da ein Atom drei Freiheitsgrade
besitzt, gibt es pro Atom 3 Arten von Gitterschwin-
gungen, nämlich eine in Richtung der Kette und zwei
senkrecht dazu. Die bisher behandelte Schwingung
wird als longitudinal bezeichnet, die andern beiden
als transversal.

Das gleiche gilt in 3 Dimensionen. Dort haben
die beiden Transversalschwingungen im Allgemei-
nen unterschiedliche Dispersionsrelationen. In ei-
nem Kristall hängt die Ausbreitungsgeschwindigkeit
außerdem von der Ausbreitungsrichtung ab.
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Abbildung 4.9: Federmodell in 3D; longitudinale
und transversale Moden.

4.2 Kontinuumsmechanik

Um einen besseren Einblick in die Schallausbreitung
in anisotropen Medien zu erhalten, soll in diesem
Kapitel zunächst der kontinuierliche Grenzfall dis-
kutiert werden.

4.2.1 Spannung und Dehnung

Für den Übergang zu dreidimensionalen Körpern be-
trachten wir zunächst die klassische Kontinuumsme-
chanik. Man beschreibt die Veränderung eines Volu-
menelementes unter dem Einfluss äußerer Kräfte als
eine Kombination von Dehnung und Scherung.

dF dFn

dFt
A

Abbildung 4.10: Spannung = Kraft pro Fläche.

Die äußeren Kräfte auf das Volumenelement werden
jeweils auf die Fläche normiert, auf die sie wirken.
Den Quotienten bezeichnet man als Spannung

S =
dF
dA

[S] =
N
m2 .

Eine allgemeine Spannung kann zerlegt werden
in eine Normalspannung s und eine Tangential-

(Schub-) Spannung t:

S = s + t =
dFn

dA
+

dFt

dA
.

Bei der Normalspannung kennzeichnet man die
Richtung mit einem Index, bei der Schubspannung
die Fläche mit einem Index, die Richtung mit einem
zweiten. An einem Würfel findet man somit

sx,sy,sz txy,txz,tyz,tyx,tzx,tzy.

Aus Symmetriegründen gilt t

ab

= t

ba

, so dass noch
drei unabhängige Schubspannungen bleiben.

Kein Körper ist absolut starr. Deshalb erzeugen
Spannungen Verformungen. Bei den elastischen Ver-
formungen unterscheidet man zwischen Dehnungen
e (rechte Winkel bleiben erhalten) und Schiebungen
oder Scherungen g , welche Winkeländerungen im
Bogenmaß beschreiben.

L

F

F

L+6L

Abbildung 4.11: Dehnung = relative Längenände-
rung.

Eine Dehnung ist definiert als die relative Längenän-
derung

e =
`� `0

`0
=

D`

`0
.

4.2.2 Elastische Konstanten

Spannung und Dehnung sind voneinander abhängig.
In den weitaus meisten Körpern existiert zudem für
niedrige Spannungen ein Bereich, in dem eine li-
neare Beziehung gilt, welche für Federn als Hoo-
ke’sches Gesetz bekannt ist:

s = Ee, [E] = Nm�2,
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wobei die Proportionalitätskonstante E als Elastizi-
tätsmodul bezeichnet wird.

(Werk-)Stoff Elastizitätsmodul E in
GNm�2

Eis 9,9
Blei 17

Al (rein) 72
Glas 76
Gold 81

Messing (kaltverf.) 100
Kupfer (kaltverf.) 126

V2A-Stahl 195

Elastizitätsmodule stellen wichtige technische Grö-
ßen dar und sind deshalb von vielen Materialien be-
stimmt worden. Für Metalle liegen sie im Bereich
von 1011 N/m2.

�`

`

�d/2

d

~F

~F

Abbildung 4.12: Querdehnung.

Eine Normalspannung erzeugt nicht nur eine Län-
genänderung D`, sondern auch eine Querdehnung
eq = Dd/d. Diese Querdehnung eq ist proportional
zur Längsdehnung e , es gilt eq = �µe , mit der Quer-
dehnungszahl µ .

(Werk-)Stoff Querdehnungszahl µ

Eis 0,33
Blei 0,44

Al (rein) 0,34
Glas 0,17
Gold 0,42

Messing (kaltverf.) 0,38
Kupfer (kaltverf.) 0,35

V2A-Stahl 0,28

Diese dimensionslose Zahl wurde liegt typischer-
weise im Bereich von ~0.3.

4.2.3 Scherung

~F

~F

�x

`

Abbildung 4.13: Scherung.

In analoger Weise kann man Scherungen behandeln.
Scherung ist definiert als die Winkeländerung

a = sin�1 Dx
`

.

Scherung ist proportional zur Schubspannung t:

t = Ga,

und die Proportionalitätskonstante G wird als Schub-
modul bezeichnet.

(Werk-)Stoff Schubmodul G in
GNm�2

Eis 3,7
Blei 5,5 - 7,5

Al (rein) 27
Glas 33
Gold 28

Messing (kaltverf.) 36
Kupfer (kaltverf.) 47

V2A-Stahl 80

Die Schubmodule von vielen Materialien sind ge-
messen worden. Sie sind von ähnlicher Größenord-
nung wie die Elastizitäts- und Kompressionsmodule,
aber immer etwas kleiner.
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4.2.4 Unelastisches Verhalten

Die elastischen Eigenschaften können für geringe
Auslenkungen mit Hilfe des verallgemeinerten Hoo-
ke’schen Gesetzes dargestellt werden, d.h. durch ei-
ne lineare Beziehung zwischen Spannung und Form-
änderung. Dies ist allgemein der Fall in der Nähe des
Gleichgewichts, da man das lineare Kraftgesetz aus
dem ersten nicht verschwindenden Term der Taylor-
reihe erhält. Für größere Auslenkungen wird die Re-
aktion nichtlinear; dies entspricht auf der Stufe der
Gitterschwingungen dem Auftreten anharmonischer
Effekte: in beiden Fällen spielen die Terme der Ord-
nung >2 in der Taylorreihe des Potenzials eine Rolle.

Dehnung 6L/L

elastischer
Bereich

plastischer Bereich
(irreversibel)

Bruch

Sp
an
nu
ng
F/
A

Hysterese

Abbildung 4.14: Elastische vs. plastische Verfor-
mung.

Während die Einzelheiten differieren, findet man in
den meisten Materialien ein Verhalten, das qualita-
tiv etwa so aussieht: Das Hooke’sche Gesetz, d.h. ei-
ne lineare Beziehung zwischen Spannung und Deh-
nung, gilt für geringe Dehnungen.

Danach folgt ein elastisch-plastischer Bereich. In
diesem Bereich ist die Beziehung nichtlinear, der
Körper geht nach Abklingen der äußeren Einwirkun-
gen jedoch in den ursprünglichen Zustand zurück.
Für noch größere Kräfte folgt eine plastische Reak-
tion, also eine irreversible Verformung.

Auf mikroskopischer Ebene entsprechen elastische
Verformungen einer entsprechenden Verformung auf
atomarer Ebene, während bei plastischen Verfor-

plastische
Verformung

Metalle

plastische
Verformung

Polymere

Abbildung 4.15: Mikroskopische Prozesse bei der
Verformung eines Metalls (links)
und Polymers (rechts).

mungen Bindungen gebrochen werden. Welcher Art
diese Änderungen sind, hängt von der Art des Ma-
terials ab. Bei Metallen können die Atome relativ
leicht gegeneinander verschoben werden.

Bei kovalent gebundenen Materialien, wie z.B. Po-
lymeren, werden Bindungen nur schwer gebrochen.
Die Moleküle haben jedoch die Freiheit, um einzelne
Einfachbindungen zu rotieren und so ihre Form zu
ändern. Eine plastische Verformung führt hier des-
halb zu einer Verstreckung der Moleküle.

4.2.5 Dehnungstensor

Für das Verständnis der Gitterschwingungen können
wir uns auf den elastischen Bereich beschränken.
Hingegen müssen wir das obige Modell noch dahin-
gehend erweitern, dass die elastischen Konstanten in
einem kristallinen Material richtungsabhängig sind.
Da die interatomaren Potenziale von der Richtung
abhängen, erzeugen auch Spannungen unterschied-
liche Verformungen je nach der Richtung in der sie
bezüglich dem Kristallgitter wirken.

Um eine allgemeine Verformung zu beschreiben,
muss man jedem Punkt P des Körpers in seiner Ru-
helage einen Punkt P0 des deformierten Körpers zu-
ordnen. Der Vektor

~u(~r) =

0

@
x (~r)
h(~r)
z (~r)

1

A ,

der diese Translation beschreibt, hängt selber von
der Position~r im Raum ab.
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P �

P

~u(~r)

~r

Abbildung 4.16: Tensorielle Beschreibung der Ver-
formung.

Es ist sinnvoll, ihn in verschiedene Komponenten
aufzuteilen. Seit Helmholtz benutzt man dafür ei-
ne Verschiebung (Translation), eine Rotation, und
drei orthogonale Dehnungen. Translation und Rota-
tion beziehen sich auf den gesamten Körper, sind al-
so nicht vom Ort ~r abhängig und ändern die elasti-
sche Energie des Systems nicht. Diese wird (in li-
nearer Näherung) nur von der ersten Ableitung von~u
bestimmt, welche als Dehnung beschrieben werden
kann. Diese wird durch den Dehnungs- oder Verzer-
rungstensor

 !e =

0

@
exx

1
2 exy

1
2 exz

1
2 exy eyy

1
2 eyz

1
2 exz

1
2 eyz ezz

1

A

beschrieben. Dieser symmetrische Tensor besitzt 6
unabhängige Elemente. Die Diagonalelemente

exx =
dx

dx
, eyy =

dh

dy
, ezz =

dz

dz

beschreiben, wie die Verschiebung parallel zur ent-
sprechenden Koordinate entlang der Achse zu-
nimmt. Die Außerdiagonalelemente

exy = eyx =
dx

dy
+

dh

dx

eyz = ezy =
dh

dz
+

dz

dy

exz = ezx =
dx

dz
=

dz

dx

beschreiben die Zunahme der Verschiebung parallel
zu einer Richtung senkrecht zur Verschiebung. Die
Faktoren werden z.T. auch in die Definition der Ten-
sorelemente einbezogen. Der zugehörige antisym-
metrische Tensor beschreibt eine Rotation. Die Ele-
mente des Dehnungstensors sind dimensionslos und
in allen relevanten Fällen⌧ 1.

Mit Hilfe dieses Tensors kann der Dehnungsanteil
der Verformung im linearen Bereich geschrieben
werden als

~u(~r) = !e ·~r,

wobei die Verschiebung bei~r = 0 als Translation be-
handelt wird.

Wie bei jedem symmetrischen Tensor zweiter Stu-
fe existiert ein ausgezeichnetes Koordinatensystem
in dem dieser Tensor diagonal wird. Die Diagonal-
elemente in dieser Form geben gerade die Dehnung
in Achsenrichtung an. Ein Punkt, der auf einer der
Hauptachsen liegt, bleibt also auch unter der Deh-
nung auf dieser Achse. Dies bedeutet insbesonde-
re, dass in diesem Koordinatensystem keine Scher-
dehnung auftritt; diese wird durch die Außerdia-
gonalelemente beschrieben. Die Beschreibung einer
Verformung als Dehnung oder Scherung ist somit
abhängig vom Koordinatensystem. Die Spur dieses
Tensors, also die Summe der Diagonalelemente be-
schreibt gerade die relative Volumenänderung. All-
gemein ist die Spur unabhängig von der Wahl des
Koordinatensystems, wie es für eine Volumenände-
rung sein sollte. Der Tensor selber ist auch vom Ort
abhängig, stellt also ein Tensorfeld dar.

4.2.6 Spannungstensor

Neben dem Dehnungs-, resp. Verzerrungstensor be-
nötigen wir eine weitere wichtige Größe, den Span-
nungstensor  !s . Wie oben gezeigt, können in je-
der Achsenrichtung eine Zug- und zwei Scherspan-
nungen existieren. Insgesamt erhalten wir damit die
9 Komponenten eines Tensors zweiter Stufe. Aus
der Bedingung, dass der Körper statisch sein soll,
ergeben sich drei Symmetriebedingungen, nämlich,
dass sxy = syx. Die 6 verbleibenden Elemente bilden
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einen symmetrischen Tensor

 !
s =

0

@
sxx sxy sxz
sxy syy syz
sxz syz szz

1

A .

Die Spur dieses Tensors gibt wiederum den isotro-
pen Anteil der äußeren Kraft an, also den hydrosta-
tischen Druck.

Die Erweiterung des Hooke’schen Gesetzes auf drei
Dimensionen ergibt eine lineare Beziehung zwi-
schen dem Spannungs- und dem Dehnungstensor.
Sie wird geschrieben als

 !
s =

 !
C · !e ,

wobei das verallgemeinerte Elastizitätsmodul
 !
C

einen Tensor vierter Stufe darstellt. Die 81 Elemente
eines Tensors vierter Stufe werden aber durch Sym-
metriebeziehungen stark reduziert. So enthalten ja
die Tensoren  !s und  !e nur je 6 unabhängige Ele-
mente.

Abbildung 4.17: Anzahl unabhängiger Tensorele-
mente in Kristallen unterschiedli-
cher Symmetrie.

Außerdem ist
 !
C selbst ein symmetrischer Tensor,

wodurch die maximale Anzahl unabhängiger Ele-
mente auf 21 absinkt. In einem Kristall mit Symme-
trie sinkt die Zahl unabhängiger Elemente weiter, bis
auf ein Minimum von 3 in einem kubischen System,
resp. 2 im isotropen Fall.

Man schreibt diese Elemente üblicherweise in der
Basis der 6 unabhängigen Elemente der Tensoren
zweiter Stufe. Abb. 4.18 zeigt am Beispiel des Ela-
stizitätstensors für einen kubischen Kristall die un-
abhängigen Tensorelemente.

Abbildung 4.18: Unabhängige Tensorelemente in
kubischen Systemen.

4.2.7 Wellenausbreitung in einem
anisotropen Kontinuum

Der elastische Tensor bestimmt die Wellenausbrei-
tung im Festkörper. Er ersetzt die skalare Kraftkon-
stante der 1-dimensionalen Bewegungsgleichung.
Dadurch wird die Auslenkung zu einem Vektor ~u =
(x ,h ,z ) und die Wellengleichung ebenfalls zu einer
Tensorgleichung. Für einen kubischen Kristall kann
sie geschrieben werden als

r

∂

2
x

∂ t2 = C11
∂

2
x

∂x2 +C44

✓
∂

2
x

∂y2 +
∂

2
x

∂ z2

◆

+(C12 +C44)

✓
∂

2
h

∂x∂y
+

∂

2
z

∂x∂ z

◆

und analog für die Komponenten h und z.

Eine Lösung dafür erhalten wir durch den Ansatz ei-
ner ebenen Welle

x1 = x0ei(kx�Wt)

also einer Longitudinalwelle in x-Richtung. Für die
Geschwindigkeit dieser Welle erhält man

vl =

s
C11

r

,

also das analoge zur eindimensionalen Welle: die
Geschwindigkeit ist jetzt gleich der Wurzel aus dem
Quotienten von Elastizitätsmodul und Dichte.

Für den Fall einer Transversalwelle in y-Richtung
wird die Geschwindigkeit zu

vt =

s
C44

r

.

Hier übernimmt also anstelle des Elements C11 das-
jenige Element des Elastizitätstensors die Funkti-
on der Kraftkonstanten, welche die Außerdiagonal-
elemente von Dehnungs- und Spannungstensor mit-
einander koppelt. Dies ist eine direkte Konsequenz
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davon, dass eine Transversalwelle Scherspannungen
erzeugt, während bei einer reinen Longitudinalwelle
nur Schubspannungen auftreten.

Für jeden Wellenvektor existieren drei linear un-
abhängige Polarisationen. Im allgemeinen sind die
Ausbreitungsgeschwindigkeiten der drei Polarisatio-
nen unterschiedlich.

4.2.8 Abbildung von Schallwellen

Die Energieausbreitung, d.h. die Gruppengeschwin-
digkeit, ist in einem anisotropen Festkörper nicht
parallel zum Wellenvektor; dies ist nur der Fall,
wenn gewisse Symmetriebedingungen erfüllt sind.

Abbildung 4.19: Experimentell gemessene Wellen-
fronten in Si.

Seit einigen Jahren kann man die Schallausbreitung
in einem Festkörper direkt sichtbar machen (J.P.
Wolfe, ’Acoustic wavefronts in crystalline solids’,
Physics Today September 1995, 34-40 (1995).). Da-
zu regt man mit einem Laser oder einem piezoelek-
trischen Transducer an einer Stelle eines Kristalls
kurzfristig akustische Schwingungen an und beob-
achtet auf der Rückseite des Kristalls die dadurch
induzierten Auslenkungen. Abb. 4.19 zeigt als Bei-
spiel eine solche Messung an Silizium. Man sieht
deutlich wie die Anisotropie des Kristalls zu einer
nichtsphärischen Schallausbreitung führt.

Um dies zu verstehen, kann man zunächst sog.
„Langsamkeitsoberflächen“ betrachten, d.h. Ober-
flächen konstanter Frequenz im k-Raum. Die Grup-
pengeschwindigkeit entspricht immer einem Vek-
tor, welcher senkrecht auf einer solchen Oberfläche

Abbildung 4.20: Wellenfronten und Ausbreitungs-
richtung. Links: Oberfläche kon-
stanter Frequenz im k-Raum.

steht. Wie in der linken Hälfte von Abb. 4.20 gezeigt,
stehen diese Vektoren im Allgemeinen nicht paral-
lel zum Wellenvektor~k; die Ausbreitungsrichtung ist
damit nicht parallel zum Wellenvektor.

Die rechte Hälfte von Abb. 4.20 stellt die Wellen-
front dar, welche dadurch zustande kommt, dass
man die Gruppengeschwindigkeitsvektoren verbin-
det. Diese Überschneidungen der Wellenfronten,
welche auch im experimentellen Bild beobachtet
werden konnten, sind eine Konsequenz der kristal-
linen Struktur; bei isotropen Festkörpern, wie z.B.
Glas, können sie nicht beobachtet werden.

Abbildung 4.21: Wellenfronten.

Um die Wellenfronten experimentell sichtbar zu ma-
chen, muss man zunächst eine kurze Störung an den
Kristall anlegen und die Wellen nachher zeitlich und
räumlich aufgelöst beobachten. In diesem Fall wur-
den die Beobachtungen mit Hilfe piezoelektrischer
Transducer an Si durchgeführt. In der oberen Zei-
le von Abb. 4.21 sieht man zunächst eine beinahe
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sphärische Longitudinalwelle eintreffen, in der unte-
ren Zeile eine deutlich nichtsphärische Transversal-
welle.

4.2.9 Seismische Wellen

Sowohl longitudinale Druck- als auch transversale
Scherwellen spielen bei Erdbeben eine Rolle.

Abbildung 4.22: Seismische Wellen.

Die sogenannten P- (Primär-) und S- (Sekundär-)
Wellen breiten sich im Volumen aus. P-Wellen sind
Longitudinalwellen (wie Schallwellen), S-Wellen
sind Schwerwellen. Love-Wellen sind Torsionswel-
len, welche sich an der Oberfläche ausbreiten.
Rayleigh-Wellen sind ebenfalls Oberflächenwellen,
sie gleichen aber Meereswellen.

Da der Elastizitätsmodul immer größer ist als das
Schermodul, erwarten wir für longitudinale Druck-
wellen eine höhere Ausbreitungsgeschwindigkeit als
für transversale Scherwellen.

Diese Erwartung wird durch experimentelle Befunde
gestützt: Die Primärwellen, welche als erste bei einer
Messstation eintreffen, sind Druckwellen, während
die später eintreffenden Sekundärwellen Scherwel-
len sind. Die höhere Schallgeschwindigkeit für Lon-
gitudinalwellen beobachtet man auch bei Kristallen.

4.3 Schwingungen in diskreten
Systemen

Die Behandlung der Schwingungen mit Hilfe der
Kontinuumsmechanik ist möglich, solange die Wel-
lenlängen groß sind im Vergleich zur Größe der Ein-

Entfernung zum Epizentrum / km
La

uf
ze

it 
/ m

in

Abbildung 4.23: Primär- und Sekundärwellen bei
Erdbeben.

heitszelle. Wir betrachten jetzt wieder diskrete Sy-
steme, erweitern die Diskussion aber auf drei Di-
mensionen. Bei N Atomen pro Einheitszelle erwar-
ten wir 3N Freiheitsgrade und damit 3N Eigenmo-
den (siehe Kap. 4.2). Dies können grundsätzlich in
N longitudinale und 2N transversale Moden aufge-
teilt werden. Allerdings sind die Eigenmoden in ani-
sotropen Festkörpern nicht exakt longitudinal, resp.
transversal. Diese Unterscheidung bleibt nur erhal-
ten, wenn die Ausbreitungsrichtung einer Richtung
hoher Symmetrie entspricht. Wir betrachten hier nur
diesen einfacheren Fall.

4.3.1 Richtungsabhängigkeit

In einem dreidimensionalen Gitter findet man im
Wesentlichen die gleiche Art von Schwingungen wie
bei der Kette. Allerdings werden hier nicht mehr
einzelne Atome ausgelenkt wie im eindimensiona-
len Fall, oder Volumenelemente wie im kontinuier-
lichen Fall, sondern ganze Netzebenen. Abb. 4.24
zeigt die Netzebenen senkrecht zur Ausbreitungs-
richtung. Für diese gilt, dass alle darin enthaltenen
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xs-1 xs xs+1 xs+2 xs+3

Longitudinalwelle k

Abbildung 4.24: Longitudinalwelle.

Atome die gleiche Auslenkung zeigen. Im Fall von
Abb. 4.24 ist diese Auslenkung parallel zur Ausbrei-
tungsrichtung~k, d.h. es handelt sich um eine Longi-
tudinalwelle.

xs

Transversalwelle

xs+1

xs xs

xs+2 xs+3 xs+4

k

Abbildung 4.25: Transversalwelle.

Abb. 4.24 zeigt die entsprechende Situation für eine
Transversalwelle. Hier ist die Auslenkung parallel
zur Netzeben, senkrecht zur Ausbreitungsrichtung
~k. Die Eigenmoden des dreidimensionalen Gitters
bestehen aus der Auslenkung von Netzebenen ent-
weder parallel oder senkrecht zur Ausbreitungsrich-
tung. Allerdings stimmt dies nur dann exakt wenn
der Wellenvektor parallel zu einer Symmetrieachse
des Gitters liegt - beim kubischen Gitter beispiels-
weise entlang der (100), (110), oder (111) Richtung.
In diesem symmetrischen Fall steht der Wellenvektor
(z. B. -~k = [100]) jeweils senkrecht auf der entspre-
chenden Netzebene (z. B. (100)). Wir behandeln hier
nur diesen Fall.

Wie im eindimensionalen Fall nehmen wir an, dass
die Kraft auf eine ausgelenkte Netzebene propor-
tional sei zur Auslenkung der Ebene gegenüber ih-
ren Nachbar-Ebenen. In diesem Fall können wir eine

harmonische Bewegungsgleichung hinschreiben,

M
d2xs

dt2 = C (xs+1 + xs�1 �2xs) ,

welche durch eine ebene Welle gelöst wird:

xs = x0ei(ksq�wt).

Hier stellt q den Abstand zwischen den Netzebenen
dar.

Abbildung 4.26: Dispersion von Kupfer: longitudi-
nale und transversale Zweige.

Im Allgemeinen gehören zu jedem Wellenvektor ei-
ne longitudinale und zwei transversale Moden, deren
Dispersion unterschiedlich sein kann. Die Frequenz
der transversalen Moden liegt für große Wellenlän-
gen immer unterhalb der Frequenz der longitudina-
len Moden, wie im Fall kontinuierlicher Systeme.

Im Allgemeinen Fall bewegen sich die Gitterato-
me weder senkrecht noch parallel zur Ausbreitungs-
richtung, sondern besitzen sowohl longitudinale wie
auch transversale Komponenten. Dies führt auch
dazu, dass der Energietransport nicht in Richtung
des Wellenvektors läuft, wie bereits im Rahmen der
Kontinuumsmechanik diskutiert.

Für die folgende Diskussion werden wir longitudi-
nale Schwingungen diskutieren. Die Ergebnisse sind
jedoch direkt auf transversale Schwingungen über-
tragbar.
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a

us vs

M1 M2C

Abbildung 4.27: 1D Kette mit 2 Atomen pro Ein-
heitszelle.

4.3.2 Zweiatomige Basis

Wir betrachten als nächstes den Fall von zwei un-
terschiedlichen Atomen pro Elementarzelle. Dieser
Fall hat keine Entsprechung im Kontinuums-Modell.
Wir bezeichnen die Auslenkung der blauen Atome
mit us und die Auslenkung der roten Atome mit vs,
wobei s den Index der entsprechenden Elementarzel-
le darstellt. Die beiden Massen seien M1 und M2.
Im dreidimensionalen Fall entsprechen die Atome
jeweils Netzebenen.

Wie in Kapitel 4.1.2 nehmen wir an, dass nur die
Wechselwirkungen zwischen nächsten Nachbarn ei-
ne Rolle spielen (siehe Abb. 4.27). Für die beiden
Atomsorten gelten die Bewegungsgleichungen

M1üs = C (vs + vs�1 �2us)

M2v̈s = C (us+1 +us �2vs) .

Die Kraftkonstante C ist abhängig von der „Feder“,
also vom interatomaren Potenzial; wir nehmen hier
an, dass beide Wechselwirkungen gleich seien.

Als Lösungsansatz wählen wir eine ebene Welle mit
Wellenvektor k und Frequenz w:

us = U0eiksae�iwt vs = V0eik(s+ 1
2 )ae�iwt .

Wir betrachten also eine Welle, bei der die beiden
Atomsorten unterschiedlich stark, jedoch mit der
gleichen Frequenz und dem gleichen Wellenvektor
ausgelenkt werden (sonst wäre es keine Welle). Die
Ortsabhängigkeit von vs berücksichtigt die Tatsache,
dass sich diese Atome in der Mitte der Einheitszelle
befinden. Durch Einsetzen erhalten wir

�M1w

2U0 = 2CV0 cos
ka
2

�2CU0

�M2w

2V0 = 2CU0 cos
ka
2

�2CV0. (4.1)

Diese Gleichungen sind homogen und linear und wir
haben drei Unbekannte(w,U0,V0). Eine Lösung exi-
stiert nur dann, wenn die Determinante des Glei-
chungssystems verschwindet, d.h.

����
2C �M1w

2 �2C cos ka
2

�2C cos ka
2 2C �M2w

2

���� = 0

oder

M1M2w

4 �2C(M1 +M2)w
2

+4C2(1� cos2 ka
2

) = 0

Wir betrachten dies als eine quadratische Gleichung
für w

2 und ersetzen 1�cos2 ka
2 ! sin2 ka

2 . Die allge-
meine Lösung ist

w

2 = C
✓

1
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+
1

M2

◆
(4.2)

±C

s✓
1
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+

1
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◆2

� 4
M1M2

sin2 ka
2

.

Offenbar erhalten wir also 2 unterschiedliche Lösun-
gen, d.h. 2 unterschiedliche Frequenzen pro Wellen-
vektor!

4.3.3 Große Wellenlängen

Wir betrachten zunächst den Grenzfall großer Wel-
lenlängen, also ka ⌧ 1. Dann können wir die Fre-
quenz annähern als
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Für das negative Vorzeichen erhalten wir

w

2
a ⇡ C

2
k2a2

M1 +M2

oder

wa ⇡ ka

s
C

2(M1 +M2)
= k

a
2

s
C

(M1 +M2)/2
.

Dies entspricht genau dem Resultat das wir erwar-
ten würden, wenn beide Massen identisch wären, je-
weils mit der Masse (M1 + M2)/2. Die Amplituden
erhalten wir aus (4.1):

�M1w

2U0 = 2C(V0 �U0)

�M2w

2V0 = 2C(U0 �V0).

Da w ! 0 verschwindet die linke Seite und die
Auslenkung der beiden Massen muss etwa iden-
tisch sein, U0 ⇡ V0. Diese Schwingung entspricht
somit weitgehend dem Fall identischer Massen. Bei
kleinen Wellenzahlen sind die beiden Massen prak-
tisch in Phase, die Auslenkungen benachbarter Ato-
me (unterschiedlichen Typs) sind praktisch gleich.

4.3.4 Optischer Ast

Der zweite Lösungsast ergibt sich aus dem positiven
Vorzeichen in Gl. (4.3). Wir erhalten für große Wel-
lenlängen, d.h. ka ⌧ 1,

w

2
0 ⇡ 2C

✓
1

M1
+

1
M2

◆
.

Interessant ist, dass hier die Frequenz hoch ist, auch
für sehr kleine Wellenvektoren. Sie ist sogar höher
als die maximale Frequenz für eine einatomige Ba-
sis. Dies wird verständlich wenn wir uns auch die
Auslenkungen anschauen. Wir setzen in Gl. (4.1) die
Lösung für die Frequenz ein und cos(ka/2) ! 1 und
erhalten

�M12C
✓

1
M1

+
1

M2

◆
U0 = 2C(V0 �U0)

�M22C
✓

1
M1

+
1

M2

◆
V0 = 2C(U0 �V0).

Division der beiden Gleichungen ergibt
U0

V0
= �M2

M1
,

d.h. die beiden Auslenkungen haben entgegenge-
setztes Vorzeichen. Das bedeutet, dass sich die bei-
den Atomsorten gegenphasig bewegen. Die Fre-
quenz ist gegeben durch die Kraftkonstante und die
reduzierte Masse für diese Bewegung. Wir haben
also wiederum eine stehende Welle vorliegen. Die
Wellenlänge dieser Schwingungen ist groß, da iden-
tische Atome praktisch in Phase schwingen. Trotz-
dem sind benachbarte Atome außer Phase, da es sich
um unterschiedliche Atomsorten handelt.

M1
M2

M1

M2

0
0 k

ω

Abbildung 4.28: Auslenkung der Atome im akusti-
schen und optischen Ast.

Diese Art von Schwingungen unterscheidet sich aber
wesentlich von den Schwingungen die wir aus dem
einatomigen Gitter kennen, insbesondere wenn die
beiden Atomsorten unterschiedlich geladene Ionen
darstellen: in diesem Fall wird im Kristall ein oszil-
lierendes elektrisches Dipolmoment angeregt. Die-
ser Schwingungstyp kann dadurch an optische Fel-
der ankoppeln und wird deshalb als optischer Ast
bezeichnet. Im Gegensatz dazu wird der niederfre-
quente Ast akustischer Ast genannt.

4.3.5 Verhalten am Zonenrand

Als nächstes diskutieren wir die Lösungen für k =
p/a, d.h. l = a/2. Dies entspricht dem Rand der er-
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a = �/2

us vs

CM1 M2

Abbildung 4.29: Zweiatomige Basis am Rand der
Brillouinzone.

sten Brillouin-Zone. Für k = p/a erhalten wir aus
(4.2)
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sodass

w

2 =
2C
M1

oder w

2 =
2C
M2

.

Sofern die beiden Massen unterschiedlich sind, er-
halten wir somit auch am Zonenrand zwei unter-
schiedliche Frequenzen. Die Amplituden erhalten
wir, indem wir in (4.1) ka ! p setzen:

M1w

2U0 = 2CU0

M2w

2V0 = 2CV0.

Dies ergibt für w

2 = 2C/M1

2CU0 = 2CU0 2C
M2

M1
V0 = 2CV0

oder

V0 = 0 , U0 = beliebig.

Für w

2 = 2C/M2 erhalten wir analog

U0 = 0 , V0 = beliebig.

Offenbar schwingen die beiden Atomsorten hier un-
abhängig voneinander. Je eine Atomsorte wird nicht
ausgelenkt.

Aus den Dispersionsrelationen folgt, dass am Zonen-
rand der akustische Ast seine maximale Frequenz

k a
ʌ0

t

M1
M2

M1

M2

M1
M2

M1

M2

�/2
0

U0 = 0

V0 = 0

M2 > M1

Abbildung 4.30: Auslenkung der Atome im akusti-
schen und optischen Ast.

erreicht, der optische Ast seine minimale Frequenz.
Zwischen den beiden Zweigen existiert eine Lücke,
d.h. ein Bereich in dem keine Schwingungsfrequen-
zen auftreten. Dieser sogenannte “verbotene” Be-
reich hängt von den unterschiedlichen Massen ab.

k a

t

M2 = 4M1

M2 = M1M2 = 2M1

M2 = 4M1

0 ʌ/2 ʌ
0

Abbildung 4.31: Einfluss des Massenverhältnisses
auf den akustischen und optischen
Ast.

Wenn die beiden Massen identisch sind, verschwin-
det dieser verbotene Bereich, die beiden Äste berüh-
ren sich am Rand der Brillouin-Zone. Diese Situati-
on entspricht aber gerade dem Fall einer zweiatomi-
gen Basis, also einem nicht-primitiven Gitter.

Das bedeutet, dass die erste Brillouin-Zone eigent-
lich doppelt so groß ist, wenn wir das primitive Git-
ter im direkten Raum betrachten. Durch die Wahl ei-
nes nicht primitiven Gitters wird ein Teil des Kur-

79



4 Gitterschwingungen und Phononen

0

M2 = M1

a

a

Fr
eq
ue
nz

t

Wellenvektor k a
0 ʌ/2 ʌ 3ʌ/2 2ʌ

Abbildung 4.32: Faltung der Dispersionsrelation bei
Verdoppelung der Einheitszelle.

venverlaufs gefaltet und erscheint als optischer Ast.
Je größer der Unterschied zwischen den Massen
wird, desto weiter öffnet sich die Lücke zwischen
den beiden Bändern.

Außerhalb der Brillouinzone setzt sich das Muster
periodisch fort: w(~q+ ~G) = w(~q).

Abbildung 4.33: Dispersion der Schwingungsmo-
den in KBr.

Ein typisches Beispiel ist KBr. Die kubische Struk-
tur führt zu einem relativ einfachen Phononenspek-
trum mit der minimalen Anzahl von Ästen: longi-
tudinal und transversal akustisch, longitudinal und
transversal optisch. Die vier Äste zeigen allerdings
einen etwas anderen Verlauf als in der hier diskutier-
ten, stark vereinfachten Theorie. Insbesondere hängt
der Verlauf von der Richtung von~k ab, da die Kräf-
te nicht isotrop sind. Außerdem liegen die Maxima
der akustischen Äste und die Minima der optischen

Äste nicht immer am Rand der Brillouinzone. Dies
liegt einerseits daran, dass das Gitter nicht primitiv
ist, zum anderen an der Art der Wechselwirkungen.

4.3.6 Inelastische Streuung

Phononen können durch inelastische Streuprozesse
erzeugt, resp. vernichtet werden. Dies kann durch in-
elastische Röntgenstreuung oder durch Neutronen-
streuung geschehen. Auf diese Weise werden die
Dispersionsrelationen wie z. B. diejenige von Abb.
4.33 bestimmt.

zum 
Detektor

einfalldender 
Strahl

elastisch 
gestreut

~k

~k�

~G

~K

Abbildung 4.34: Impulse beim inelastischen Streu-
prozess.

Die Impulserhaltung fordert für die Streuung

~k + ~G =~k0 ±~K,

wobei~k,~k0 die Wellenvektoren des einfallenden und
des gestreuten Teilchens bezeichnen, ~G einen Git-
tervektor, und ~K den Wellenvektor eines Phonons,
welches beim Streuprozess erzeugt wurde. Der Git-
tervektor kann immer so gewählt werden, dass ~K
in der ersten Brillouinzone liegt. Das Vorzeichen ist
positiv, wenn ein Phonon erzeugt, negativ wenn ei-
nes vernichtet wird. Natürlich muss gleichzeitig die
Energieerhaltung gewährleistet sein, d.h. die Energie
des Phonons muss vom gestreuten Teilchen aufge-
nommen, resp. abgegeben werden.

Die gleichzeitige Erhaltung von Impuls und Ener-
gie ist nicht mit allen Sonden leicht zu erreichen.
Die Frequenz eines Phonons liegt bei etwa 0 . . .1012
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Hz, die Wellenlänge bei ⇡ 1 nm. Elektromagneti-
sche Wellen mit eine Wellenlänge von 1 nm (al-
so Röntgenstrahlung) besitzen eine Frequenz von
n = c/l = 3 · 1017 Hz; diese ist also um mehrere
Größenordnungen höher als die der Phononen. Bei
inelastischer Streuung mit Photonen muss also eine
sehr geringe Energieverschiebung gemessen werden.

Inelastische Streuexperimente mit sichtbarem Licht
können Phononen erzeugen und vernichten, wobei
die Frequenz des Photons verschoben wird. Handelt
es sich um ein optisches Phonon, so spricht man von
Ramanstreuung, bei einem akustischen Phonon von
Brillouinstreuung. Bei sichtbarem Licht ist die Wel-
lenlänge sehr viel größer als eine Einheitszelle und
damit der Impuls der Photonen sehr viel kleiner als
der kleinste Kristallimpuls. Deshalb erhält man da-
mit keine Richtungsinformation.

4.3.7 Phononenspektroskopie mit
thermischen Neutronen

Neutronen mit einer Temperatur von 300 K (sog.
thermische Neutronen) hingegen besitzen eine Ener-
gie von kBT , entsprechend einer Frequenz n =
kBT/h = 0.7 ·1013 Hz. Der Impuls beträgt

p =
p

2mE =
p

2mkBT

=
p

2 ·1,7 ·10�27 ·4,1 ·10�21 mkg
s

= 3,7 ·10�24 mkg
s

.

Dies entspricht einer Wellenlänge von

l =
h
p

=
6,6 ·10�34

3,7 ·10�24 m = 0,18nm,

also gerade die richtige Größenordnung. Neutronen
sind deshalb für die Messung von Gitterschwingun-
gen ideal geeignet, da bei der Beugung von Neutro-
nen Energie und Impuls gleichzeitig erhalten werden
können.

Für eine solche Messung benutzt man z.B. ein sog.
Dreiachsenspektrometer. Abb. 4.35 zeigt schema-
tisch ein solches Spektrometer. Die drei Achsen ent-
sprechen dem Monochromator, welcher Energie und

Monochromator

vom Reaktor

Probe

n

t
k

Analysator

k'

t'

Detektor

Abbildung 4.35: 3-Achsen Neutronenspektrometer.

Impuls der einfallenden Neutronen bestimmt, der
Probe, wo die inelastische Streuung stattfindet, so-
wie dem Analysator, wo Energie und Impuls der ge-
streuten Neutronen gemessen werden. Das Spektrum
enthält pro Atom der Einheitszelle jeweils drei Pho-
nonenäste. Die ersten drei sind akustische Phononen,
die weiteren optische.

4.4 Phononen und spezifische
Wärme

Bisher haben wir die Dispersion, also die Bezie-
hung zwischen Frequenz und Wellenlänge der Git-
terschwingungen diskutiert. Jetzt werden wir uns mit
der Amplitude der Schwingung beschäftigen, sowie
mit der Energie, welche in den Schwingungen ge-
speichert ist.

Aus der klassischen statistischen Mechanik erwarten
wir, dass die spezifische Wärme unabhängig von der
Temperatur bei rund 3R ⇡ 25 J/(Mol K) liegen soll-
te - das ‘Gesetz’ von Dulong-Petit. Experimentell
findet man häufig bei hohen Temperaturen ein Ver-
halten, das dieser Voraussage etwa entspricht. Bei
niedrigen Temperaturen hingegen fällt die Wärme-
kapazität gegen Null ab - in krassem Widerspruch
zu Dulong-Petit. Um diesen Befund zu erklären, be-
nötigen wir eine quantenmechanische Beschreibung
der Gitterschwingungen.
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4.4.1 Phononen

Die Anregungen der Gitterschwingungen, also ihre
Amplituden, werden durch die Quantenstatistik be-
stimmt. Wir betrachten die gleichen Normalschwin-
gungen wie bisher, benutzen aber die Quantenme-
chanik, um ihre Anregungen zu berechnen.

Wie beim harmonischen Oszillator können die Git-
terschwingungen in diskrete Zustände angeregt wer-
den. Die Energie der entsprechenden Zustände be-
trägt

E =

✓
n+

1
2

◆
h̄w.

Die ganze Zahl n indiziert die Anregung dieser Mo-
de. Man verwendet in diesem Zusammenhang ger-
ne ein Teilchenbild, in dem ein Anregungsquant
als Phonon bezeichnet wird. n bezeichnet dann die
Zahl der Phononen in der entsprechenden Mode. Der
Term 1/2 zeigt an, dass immer eine Nullpunktsener-
gie existiert, d.h. die Energie im Grundzustand ist
höher als die reine potenzielle Energie. Neben der
Energie h̄w besitzen die Phononen einen Impuls h̄k,
und einen Spin S = 1, d.h. es handelt sich um Boso-
nen.

Zu jeder Eigenschwingung mit Wellenvektor~k und
Kreisfrequenz w gehört somit eine temperaturabhän-
gige Zahl von Phononen. Gemäß der Beziehung von
de Broglie kann man den Phononen einen Impuls
~p = h̄~k zuordnen. Es ist aber wichtig zu realisieren,
dass es sich hierbei nicht um einen physikalischen
Impuls der Gitteratome handelt.

Auslenkung
atomarer Impuls

Abbildung 4.36: Auslenkung und Impuls der Gitter-
atome.

Wie man sich leicht überzeugen kann, ist dieser für
alle Anregungen gleich null, außer wenn k = 0. Es
ist aber trotzdem nützlich, diese Größe als Impuls
zu betrachten und man bezeichnet sie häufig als Kri-

stallimpuls. Auf diese Weise kann man z.B. inelasti-
sche Streuung von Photonen erklären, bei denen die
Impulserhaltung gilt, sofern man den Kristallimpuls
des gestreuten Phonons berücksichtigt.

4.4.2 Energie pro Gitterschwingung

Der Energieinhalt eines Kristalls setzt sich aus unter-
schiedlichen Beiträgen zusammen. Einer dieser Bei-
träge ist die Energie der Gitterschwingungen. Diese
berechnen wir als Summe über alle Schwingungs-
freiheitsgrade. Alle Gitterschwingungen bei unter-
schiedlichen Wellenvektoren sind unabhängig von-
einander. Zunächst bestimmen wir deshalb den Ener-
gieinhalt einer einzelnen Gitterschwingung bei der
Temperatur T .

0
0

k π/a

ω

Abbildung 4.37: Zwei unabhängige Phononenfrei-
heitsgrade.

Analog zur Herleitung des Planck’schen Strah-
lungsgesetzes gehen wir aus von der Boltzmann-
Verteilung, welche das Verhältnis der Besetzungs-
zahlen zweier benachbarter Zustände beschreibt:

Nn+1

Nn
= e�h̄w/kBT .

Die Besetzungswahrscheinlichkeit für den Zustand
mit n Phononen ist damit

pn =
Nn

Âs Ns
=

e�nh̄w/kBT

Âs e�sh̄w/kBT .

Für Besetzungswahrscheinlichkeiten gilt 0  pn  1
und Âs ps = 1. Daraus bestimmen wir den Erwar-
tungswert für n, also die mittlere Anregung:

hni = Â
s

s ps =
Âs sNs

Âs Ns
=

Âs se�sh̄w/kBT

Âs e�sh̄w/kBT .
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Wir benutzen die Abkürzung x = e�h̄w/kBT , sodass

hni =
Âs sxs

Âs xs .

Der Nenner entspricht einer geometrischen Reihe:

Â
s

xs =
1

1� x
.

Der Zähler kann durch Ableitung in einen entspre-
chenden Ausdruck umgeformt werden:

Â
s

sxs = x
d
dx Â

s
xs = x

d
dx

✓
1

1� x

◆
=

x
(1� x)2 .

Damit ist die mittlere Anregung

hni =
Âs sxs

Âs xs =

x
(1�x)2

1
1�x

=
x

1� x

=
e�h̄w/kBT

1� e�h̄w/kBT =
1

eh̄w/kBT �1
.

1

hni =
x

1 � x

=
1

e��/kBT � 1

hni

Temperatur kBT/ℏω

klassi
sch

er W
ert
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Abbildung 4.38: Erwartungswert der Phononenzahl
bei tiefer Temperatur.

Dies ist die Planck-Verteilung. Die mittlere Ener-
gie einer Gitterschwingung (oberhalb der Nullpunkt-
senergie) beträgt damit

hE i =
h̄w

eh̄w/kBT �1
.

Für hohe Temperaturen, T � h̄w/kB können wir die
Exponentialfunktion entwickeln und erhalten

hni =
kBT
h̄w

,

d.h. die mittlere Phononenzahl ist - bei hohen Tem-
peraturen - proportional zur Temperatur.

Für die mittlere Energie erhalten wir entsprechend

hE i = kBT,

in Übereinstimmung mit dem semiklassischen Äqui-
partitionsprinzip.

4.4.3 Zustandsdichte

Um die gesamte in Kristallschwingungen gespei-
cherte Energie zu berechnen, müssen wir über sämt-
liche Schwingungsfreiheitsgrade summieren. Wie
bereits erwähnt, gehören zu jedem Wellenvektor
3 Polarisationsfreiheitsgrade. Insgesamt müssen im
Kristall pro Atom 3 Schwingungsmoden existieren.

Wir betrachten hier den kontinuierlichen Grenzfall,
in dem die Summe über alle Freiheitsgrade zu einem
Integral über eine kontinuierliche Verteilung wird.
Im Frequenzraum schreiben wir für die Energie

U =
Z

dw D
l

(w)
h̄w

eh̄w/kBT �1
,

wobei D
l

(w) die Zustandsdichte bezeichnet, also
die Anzahl Zustände deren Frequenz zwischen w

und w + dw liegt. Für die Berechnung dieser Grö-
ße betrachten wir zunächst die Zustandsdichte im k-
Raum.

Dazu führt man periodische Randbedingungen ein,
d.h. man verlangt, dass die Schwingungen im direk-
ten Raum periodisch sind, us = us+N , mit einer Peri-
ode L = Na, wobei N � 1 und wir alle drei Richtun-
gen als gleichwertig betrachten. Diese Periode ent-
spricht z.B. der Größe des Kristalls. Man ‘biegt’ al-
so den Kristall in einer höheren Dimension zu einem
Ring. Dies ist ein nützliches Hilfsmittel, welches die
mathematische Behandlung vereinfacht, auch wenn
es nicht der physikalischen Wirklichkeit entspricht.
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N= kmax4�
3

3

2�
L( )3

# Zustände
mit k < kmax

kmax

L Kristall
periodische RandbedingungenL >> a

2�/L

Abbildung 4.39: Zustände im k-Raum.

Dies bedeutet, dass im reziproken Raum nur Wellen-
vektoren mit kx,y,z = ±2nx,y,zp/L mit nx,y,z = 0, 1, ....
N vorkommen können. Die Zustandsdichte (pro Po-
larisation) im k-Raum wird damit

D(k) =
1

(2p/L)3 =
V

8p

3

mit V = L3 dem Volumen des betrachteten Kristalls.
Die Dichte (im k-Raum) ist somit konstant und pro-
portional zum Volumen des Kristalls.

Die gesamte Zahl von Zuständen, deren Wellenvek-
tor kleiner ist als kmax, ergibt sich damit aus der kon-
stanten Dichte multipliziert mit dem Volumen einer
Kugel mit Radius kmax zu

N(kmax) = D(k)
4p

3
k3

max =

✓
L

2p

◆3 4p

3
k3

max

= k3
max

V
6p

2 .

Die Zustandsdichte im Frequenzraum erhalten wir
durch Ableitung nach w:

D(w) =
dN(w)

dw

=
dN(k)

dk
dk
dw

= V
k2

2p

2
dk
dw

,

wobei wir den Index .max nicht mehr geschrieben
haben. Wir können also die Zustandsdichte und da-
mit den Energieinhalt und die spezifische Wärme be-
rechnen, wenn wir die Dispersionsrelation w(k) ken-
nen.

4.4.4 Debye-Modell

Ein besonders einfaches und erfolgreiches Modell
für die Zustandsdichte ist dasjenige von Debye. Es
beruht auf der Annahme einer konstanten Schallge-
schwindigkeit vs, was für die Dispersionsrelation

w = vsk oder k =
w

vs

und damit

dk
dw

=
1
vs

ergibt.

0 π/2a π/ak

ω

De
bye

0

Abbildung 4.40: Vereinfachte Dispersion im Debye-
Modell.

Dies ist offensichtlich eine gute Näherung für kleine
Wellenvektoren, wo die Schallgeschwindigkeit kon-
stant ist. Wir erwarten Abweichungen wenn kurze
Wellenlängen relevant sind.

Mit dieser Näherung wird die Zustandsdichte

D(w) = V
k2

2p

2
dk
dw

= V
w

2

2p

2v3
s
, (4.4)

Die Zustandsdichte wächst somit quadratisch mit der
Frequenz. Im Debye-Modell wird außerdem ange-
nommen, dass vs und damit die Zustandsdichte im k-
Raum isotrop sei. Wie wir bereits bei der klassischen
Diskussion der Gitterschwingungen gesehen hatten,
gibt es aber einen maximalen Wert für den Wellen-
vektor, der physikalisch sinnvoll ist, und der dem
Rand der ersten Brillouinzone entspricht. An diesem
Punkt sinkt die Zustandsdichte auf 0. Die Form der
Brillouinzone wird im Debye Modell durch eine Ku-
gel ersetzt, wobei der Radius kD der Kugel so ge-
wählt wird, dass die Zahl der Moden innerhalb die-
ser Kugel der Zahl der Moden im Kristall entspricht,
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d.h. (ohne Berücksichtigung der Polarisation) gleich
der Anzahl N der Atome im Kristall:

N =

✓
L

2p

◆3 4p

3
k3

D =
(LkD)3

6p

2

sodass

kD =
3
p

6p

2N
L

=
3

r
6p

2N
V

,

wobei V = L3 das Kristallvolumen darstellt. Die zu-
gehörige Grenzfrequenz beträgt

wD = vs
3

r
6p

2N
V

.

Diese ist somit (sinnvollerweise) nur von der Dichte
N/V (Zahl der Atome pro Volumen) abhängig, und
nicht von der Anzahl Zellen oder dem Kristallvolu-
men.

ω

Debye

ωD

D(ω)

Abbildung 4.41: Zustandsdichte im Debye-Modell.

Im Debye-Modell ist die Zustandsdichte also gege-
ben durch

D(w) =

(
V w

2

2p

2v3
s

für w < wD

0 für w > wD
.

Die gesamte Energie der Gitterschwingungen erhal-
ten wir durch Integration über sämtliche Frequenzen
als

U =
Z

dw D(w)hE (w)i

=
Z

dw D(w)hn(w)ih̄w

=
Z

wD

0
dw V

w

2

2p

2v3
s

h̄w

eh̄w/kBT �1
.

Im Rahmen des Debye-Modells nehmen wir außer-
dem an, dass die Schallgeschwindigkeit vs nicht von

der Polarisation abhängt. Dann können wir die ge-
samte Energie erhalten, indem wir mit der Anzahl 3
der Polarisationsfreiheitsgrade multiplizieren.

U =
3V h̄

2p

2v3
s

Z
wD

0
dw

w

3

eh̄w/kBT �1
.

Wir substituieren für das Verhältnis aus Phononen-
Energie zu thermischer Energie

x =
h̄w

kBT
oder w = x

kBT
h̄

und

dw = dx
kBT

h̄
.

Damit wird die gesamte Energie

U =
3V k4

BT 4

2p

2v3
s h̄3

Z xD

0
dx

x3

ex �1
. (4.5)

4.4.5 Debye-Temperatur

Die obere Integrationsgrenze

xD =
h̄wD

kBT
=

q

T

bezeichnet das Verhältnis aus der Debye-Energie
h̄wD und der thermischen Energie. Hier bezeichnet
q die Debye-Temperatur

q =
h̄wD

kB
=

h̄vs

kB

3

r
6p

2N
V

,

d.h. als Temperaturäquivalent der Debye-Frequenz.
Diese gibt die Temperatur an, unterhalb derer sich
bei der spezifischen Wärme Quanteneffekte bemerk-
bar machen. Für Temperaturen oberhalb der Debye-
Temperatur sind alle Moden angeregt, da ja oberhalb
der Debye-Frequenz keine Moden existieren.

Sie ist proportional zur Schallgeschwindigkeit des
Materials und somit höher für harte Materialien. Ty-
pische Metalle haben Debye Temperaturen, die nahe
bei der Raumtemperatur liegen. Das Maximum wird
erreicht beim Diamant, während die Edelgase, wel-
che Van der Waals Kristalle bilden, eine relativ nied-
rige Debye-Temperatur haben. Das gleiche gilt für
die Alkalimetalle, welche sehr weich sind.
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Tabelle 4.1: Debye-Temperatur der Elemente.

Mit dieser Definition wird

xD =
q

T
=

h̄vs

kBT
3

r
6p

2N
V

oder
✓

q

T

◆3

=

✓
h̄vs

kBT

◆3 6p

2N
V

.

Wir substituieren diesen Ausdruck in (4.5) und er-
halten

U = 9kBT N
✓

T
q

◆3 Z xD

0
dx

x3

ex �1
, (4.6)

wobei x = h̄w/kBT .

4.4.6 Spezifische Wärme im Debye-Modell

Praktisch misst man nie den gesamten Energieinhalt,
sondern die Änderung der Temperatur pro zugeführ-
te Energieeinheit, resp. die spezifische Wärme, d.h.

die Änderung der Energie pro Temperatureinheit:

cV =
dU
dT

=
d

dT
3V h̄

2p

2v3
s

Z
wD

0
dw

w

3

eh̄w/kBT �1

=
3V h̄2

2p

2v3
s kBT 2

Z
wD

0
dw

w

4 eh̄w/kBT

�
eh̄w/kBT �1

�2

= 9kBN
✓

T
q

◆3 Z xD

0
dxx4 ex

(ex �1)2 .

Für hohe Temperaturen (d.h. kleines x) können wir
diesen Ausdruck annähern durch

cV ⇡ 9kBN
✓

T
q

◆3 Z xD

0
dxx2

= 3kBN
✓

T
q

◆3

x3
D = 3kBN.

Bezogen auf ein Mol erhalten wir

cV = 3R = 24,94
J

MolK
.
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Dies entspricht auch dem Resultat der klassischen
Mechanik, unabhängig vom Material.
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Abbildung 4.42: Temperaturabhängigkeit der spezi-
fischen Wärme im Debye-Modell
und im Experiment.

Tatsächlich findet man experimentell für viele Mate-
rialien einen Wert in dieser Größenordnung, wie in
Abb. 4.42 für Germanium und Silizium gezeigt. In
diesem Bereich sind alle Gitterschwingungen voll-
ständig angeregt und die Quantisierung spielt keine
Rolle mehr.

Für tiefere Temperaturen T < q hingegen fällt die
spezifische Wärme stark ab und geht gegen Null.
Dies ist ein Effekt der Quantenmechanik, der durch
das Debye-Modell gut reproduziert wird.

Abbildung 4.43: Temperaturabhängigkeit der spezi-
fischen Wärme für verschiedene
Materialien.

Viele Materialien zeigen eine Temperaturabhängig-
keit der spezifischen Wärme, welche recht gut mit
dem Debye-Modell übereinstimmt. Die Kurven I
wurden hier der Übersichtlichkeit halber in horizon-

taler Richtung, die Kurven III in vertikaler Richtung
verschoben. Wie Abb. 4.43 zeigt, nähert sich die
Molwärme für hohe Temperaturen dem klassischen
Wert an. Für niedrige Temperaturen erhält man aber
wesentlich tiefere Werte, welche für T ! 0 gegen
Null gehen.

4.4.7 Das T3 Gesetz

Für kleine Temperaturen, T ⌧ q oder x � 1 finden
wir eine gute Näherung für die Energie indem wir
die obere Grenze des Integrals xD = q/T gegen un-
endlich gehen lassen: für x � 1 wird der Integrand
wegen der Exponentialfunktion sehr klein und der
Fehler, den wir durch die erweiterte Integrations-
grenze machen, vernachlässigbar. Wir erhalten aus
(4.6)

U = 9kBT N
✓

T
q

◆3 Z •

0
dx

x3

ex �1
.

Für die Integration benutzen wir, dass

Â
s

1
as =

1
a�1

,

indem wir setzen a = ex. Damit wird

Z •

0
dx

x3

ex �1
=

Z •

0
dxx3 Â

s
e�sx

= Â
s

Z •

0
dxx3e�sx.

Für das Integral finden wir in einer Tabelle
Z •

0
dxxmeax = eax

m

Â
r=0

(�1)rm!xm�r

(m� r)!ar+1 .

Für m = 3,a = �s erhalten wir
Z •

0
dxx3e�sx = e�sx

3

Â
r=0

(�1)r6x3�r

(3� r)!(�s)r+1 .

An der oberen Grenze des Integrals (•) verschwin-
den alle Terme. An der unteren Grenze (x = 0) ver-
schwinden ebenfalls alle Terme außer r = 3. Damit
wird

Z •

0
dxx3e�sx =

6
s4
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und
Z •

0
dx

x3

ex �1
= 6Â

s

1
s4 =

p

4

15
,

wobei für die Summe wiederum auf eine For-
melsammlung verwiesen werden muss.

Damit wird die Energie

U =
3p

4

5
kBT N

✓
T
q

◆3

und die Wärmekapazität

cV =
dU
dT

=
12p

4

5
kBN

✓
T
q

◆3

= 234kBN
✓

T
q

◆3

.

Diese Form ist als Debye’sches T 3 Gesetz oder De-
bye’sche T 3 Näherung bekannt. Es kann qualita-
tiv leicht interpretiert werden: bei einer Temperatur
T sind diejenigen Moden aktiviert, deren Schwin-
gungsfrequenz kleiner sind als kBT/h̄.

Festes Argon

Abbildung 4.44: Wärmekapazität von festem Argon
bei tiefer Temperatur.

Ein schönes Beispiel für dieses T 3 Verhalten wird
von Argon geliefert. Die gute Übereinstimmung
mag zunächst erstaunen, ist das Modell doch rela-
tiv einfach. So widerspricht z.B. die Annahme ei-
ner konstanten Schallgeschwindigkeit der Tatsache,
dass die Schallgeschwindigkeit an der Oberfläche
der Brillouin-Zone gegen Null geht. Die Moden in
diesem Bereich sind aber gerade die mit den höch-
sten Energien und deshalb bei tiefen Temperaturen
praktisch nicht mehr angeregt. Der Temperaturbe-
reich, der hier gezeigt wird, liegt um mehr als ei-
ne Größenordnung unterhalb der Debye-Temperatur
von Argon (qAr = 92K).

4.4.8 Vereinfachtes Modell

Man kann das T 3 Gesetz auch mit Hilfe eines noch
einfacheren Modells herleiten. Dazu nimmt man an,
dass alle Moden, deren Phononenenergie klein ist
gegenüber der thermischen Energie, h̄w < kBT voll-
ständig angeregt sind, alle Moden mit höherer Ener-
gie gar nicht. Für eine Dispersionsrelation w = vsk
bedeutet dies für die Wellenvektoren: Alle Moden
mit Wellenvektor

k < kT =
kBT
h̄vs

sind vollständig angeregt, alle kurzwelligeren (d.h.
höherfrequenten) Moden gar nicht. Die maximale
Wellenzahl ist proportional zur Frequenz und damit
zur Temperatur.

Wie wir bereits diskutiert hatten, ist die Zahl der Mo-
den, deren Wellenzahl kleiner ist als ein Maximal-
wert kT gegeben durch die Zahl der Punkte im In-
nern der entsprechenden Kugel im reziproken Raum
und damit zur dritten Potenz von kT . Bei Temperatu-
ren weit oberhalb der Debye-Temperatur q sind alle
Moden vollständig angeregt; die Zahl der angeregten
Moden beträgt dann 3N und die Energie entspricht
dem klassischen Grenzwert 3NkBT . Bei Temperatu-
ren unterhalb der Debye-Temperatur sollte die Zahl
der angeregten Moden mit (T/q)3 abnehmen. Damit
beträgt die Energie in diesem Modell

U = 3NkBT
✓

T
q

◆3

.

Die spezifische Wärme wird damit

cV =
dU
dT

= 12NkB

✓
T
q

◆3

.

Die T 3-Abhängigkeit spiegelt also einfach wieder,
dass die Anzahl der Moden in einer Kugel des k-
Raumes proportional zur dritten Potenz des Radius
dieser Kugel ist.

4.4.9 Das Einstein-Modell

Im Debye-Modell hatten wir angenommen, dass die
Zustandsdichte im k-Raum konstant sei. Einstein hat
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Abbildung 4.45: Vergleich der Zustandsdichten in
den Modellen von Einstein und De-
bye.

ein noch einfacheres Modell aufgestellt, wo alle Pho-
nonen die gleiche Energie haben.

Hier ist die Zustandsdichte also eine d-Funktion. Die
Energie wird dann

U = 3Nhnih̄w =
3Nh̄w

eh̄w/kBT �1
.

Damit wird die Wärmekapazität

cV =
dU
dT

= 3NkB

✓
h̄w

kBT

◆2 eh̄w/kBT

�
eh̄w/kBT �1

�2 . (4.7)

Wir betrachten zunächst den Grenzfall kBT � h̄w .
Dann kann die Exponentialfunktion entwickelt wer-
den und wir erhalten

cV = 3NkB =
3R

Mol
,

d.h. das klassische Dulong-Petit’sche Gesetz. Bei
hohen Temperaturen ergibt die Einstein’sche Nä-
herung also das gleiche Resultat wie die Debye-
Näherung.

Bei tiefen Temperaturen, kBT ⌧ h̄w , kann die 1 in
(4.7) gegenüber der Exponentialfunktion vernach-
lässigt werden. Wir erhalten

cV µ 1
T 2 e�h̄w/kBT ,

also einen exponentiellen Abfall.

Bei tiefen Temperaturen passen die experimentel-
len Resultate besser auf die Theorie von Debye, da
die Zustandsdichte der Phononen niedriger Energie
besser durch die Debye-Theorie beschrieben wird.
Das Einstein Modell ist besser geeignet für die Be-
schreibung optischer Phononen, wo die Zustands-
dichte stärker auf eine Frequenz konzentriert ist.
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Abbildung 4.46: Temperaturabhängigkeit der spezi-
fischen Wärme in den Modellen
von Einstein und Debye.

4.4.10 Reale Zustandsdichten

Die einfachen Modelle, die wir bisher diskutiert ha-
ben, können die Realität nicht exakt wiedergeben.
Die wirklichen Zustandsdichten enthalten z.B. im-
mer Singularitäten.

Abbildung 4.47: Reale Zustandsdichte.

Wie diese zustande kommen, kann man bereits an-
hand des einfachen Modells der linearen Kette dis-
kutieren, welches am Anfang dieses Kapitels einge-
führt wurde. Dort lautete die Dispersionsrelation

w = 2
r

C
M

����sin
ka
2

���� .

Die Zustandsdichte wird dann (in 1D)

D(w) µ dk
dw

=
1

dw/dk
=

r
M
C

1
acos ka

2
.

Offenbar erhält man eine Divergenz z.B. an der
Zonengrenze, wo k ! p/a, d.h. wo die Gruppen-
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geschwindigkeit verschwindet. Diese Divergenzen
werden als Van Howe Singularitäten bezeichnet.

In drei Dimensionen erhält man die Zustandsdichte
wiederum am einfachsten im k-Raum. Da hier die
Zustandsdichte konstant ist, benötigt man lediglich
das Volumen zwischen den beiden Flächen mit Fre-
quenz w und w +dw .

kx

kz

vG
1

t
t+dt

dk/dt �

Abbildung 4.48: Abstand zwischen Iso-Frequenz-
flächen.

Der Abstand zwischen den beiden Isofrequenzflä-
chen bei w und w +dw beträgt

dk
dw

=
1

vG
.

Damit wird die Zustandsdichte

D(w) =
V

8p

3

Z
dS

w

1
vG

,

wobei dS
w

das Flächenelement darstellt und vG die
Gruppengeschwindigkeit für die entsprechende Fre-
quenz. Das Integral läuft über die gesamte Isofre-
quenzfläche.

Flächenelement

Abbildung 4.49: Iso-Frequenzfläche in 3D.

Auch in drei Dimensionen hat die Zustandsdichte of-
fenbar immer dann Singularitäten, wenn die Grup-
pengeschwindigkeit gegen Null geht, wie z.B. im

obigen Modell an der Grenze der Brillouin-Zone.
Solche Fälle treten in realen Systemen recht häufig
auf.

4.4.11 Beispiele und Diskussion

Si

Ge

Abbildung 4.50: Dispersion und Zustandsdichte für
Si und Ge.

Abb. 4.50 zeigt als Beispiel die Dispersionsrelatio-
nen für Si und Ge. Die Projektion der Linien auf
die vertikale Achse ergibt die Zustandsdichte. Offen-
sichtlich tritt bei den optischen Phononen eine sehr
hohe Zustandsdichte auf. Die beiden Zustandsdich-
ten sehen sehr ähnlich aus, da die beiden Materiali-
en die gleiche Struktur besitzen. Ge hat die größe-
re Atommasse und deshalb die niedrigeren Schwin-
gungsfrequenzen.

Ag NaCl Diamant

Abbildung 4.51: Zustandsdichten für Silber, Koch-
salz und Diamant.

Abb. 4.51 zeigt drei weitere Beispiele von Zustands-
dichten typischer Festkörper. Diamant besitzt offen-
bar eine sehr hohe Zustandsdichte bei den höch-
sten Frequenzen. Einstein hatte sein Modell anhand
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dieses Systems untersucht; hier ist die Übereinstim-
mung mit am Besten.

Der Grund für den guten Erfolg des Debye Modells
bei tiefen Temperaturen trotz dieser großen Differen-
zen in der Zustandsdichte liegt darin, dass die Moden
im Bereich der Divergenzen bei tiefen Temperaturen
kaum mehr angeregt werden.

30D(t)<n>
T/e=0.3

300D(t)<n>
T/e=0.1

0.2 0.4 0.6 0.8 10 tt

3D(t)

# Phononen pro Frequenzeinheit

D(t)<n>
T/e=3

Abbildung 4.52: Anregungsdichte bei unterschiedli-
chen Temperaturen.

Die abnehmende Bedeutung der Phononen hoher
Frequenz sieht man z.B., wenn man die Anzahl Pho-
nonen pro Frequenzinterval betrachtet. Diese erhält
man als Produkt aus Zustandsdichte D(w) und Be-
setzungszahl hni. Abb. 4.52 zeigt diese Größen für
das Debye-Modell. Es zeigt, dass mit abnehmender
Temperatur die maximale Zahl der Phononen pro
Frequenzinterval bei immer tieferen Frequenzen auf-
tritt.

4.5 Anharmonische Effekte

4.5.1 Potenzial

Bisher haben wir im Potenzial der Atompositionen
nur den quadratischen Term berücksichtigt. Dies hat
eine Reihe von Konsequenzen für die Resultate:

• Wir erhalten harmonische Wellen, die Eigen-
funktionen des Hamiltonoperators sind. Es gibt
keine Wechselwirkungen zwischen den Moden.

• Das Volumen des Kristalls ist nicht temperatur-
abhängig, d.h. der Wärmeausdehnungskoeffizi-
ent verschwindet.

• Die elastischen Konstanten sind nicht abhängig
von Druck und Temperatur und sind identisch
für adiabatische oder isotherme Bedingungen.

• Die spezifische Wärme nähert sich für hohe
Temperaturen dem klassischen Wert an.

Abbildung 4.53: Anharmonisches Potenzial.

Echte Potenziale sind aber nie über den ganzen Be-
reich harmonisch. Während die harmonische Nähe-
rung in der Nähe des Gleichgewichts, d.h. für klei-
ne Auslenkungen, eine gute Näherung darstellt, fin-
det man für höhere Anregungen immer eine Abwei-
chung. Typischerweise wird das Potenzial dann für
kleinere Abstände steiler, für größere flacher. Somit
verschiebt sich die mittlere Aufenthaltswahrschein-
lichkeit nach außen.

Die oben erwähnten Punkte werden alle ungültig:

• Anharmonische Terme koppeln die Phononen.
So können z.B. 2 Phononen addiert werden zu
einem höher-energetischen Phonon, w3 = w2 +
w1.

• Körper dehnen sich mit zunehmender Tempe-
ratur aus (Wärmeausdehnung).

• Die elastischen Konstanten werden abhängig
von Druck und Temperatur.

4.5.2 Wärmeausdehnung

Die Wärmeausdehnung ist proportional zum Term
dritter Ordnung des Potenzials, dem niedrigsten
Term, welcher die Symmetrie des Potenzials stört:
er sorgt dafür, dass bei höher angeregten Zuständen
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festes Argon
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Abbildung 4.54: Wärmeausdehnung von festem Ar-
gon.

der Schwerpunkt bei größeren Distanzen liegt. Abb.
4.54 zeigt als Beispiel die Wärmeausdehnung von
festem Argon. Der Effekt soll hier nicht quantitativ
diskutiert werden; es sollen aber einige Aspekte der
Symmetrie diskutiert werden.

Das Potenzial und damit der Wärmeausdehnungs-
koeffizient ist in Kristallen im allgemeinen aniso-
trop. Eine Kugel wird durch eine Temperaturerhö-
hung deshalb in ein Ellipsoid verformt.

(x, y, z)

Volumenelement

(dx, dy, dz)

Wärmeausdehnung

Abbildung 4.55: Wärmeausdehnung.

Ein Punkt (x,y,z) geht durch die Erwärmung in den
Punkt (x + dx,y + dy,z + dz) über, wobei die Ver-
schiebung (dx,dy,dz) gegeben ist durch

d
dT

0

@
dx
dy
dz

1

A =

0

@
b11 b12 b13
b12 b22 b23
b13 b23 b33

1

A ·

0

@
x
y
z

1

A

und der symmetrische (b12 = b21) Tensor (b ) den
linearen Wärmeausdehnungskoeffizienten darstellt.
Wie üblich lässt sich dieser Tensor in einem Koordi-
natensystem schreiben, in dem er diagonal wird. Die
entsprechenden Richtungen sind gegeben durch die
Symmetrie des Kristalls und die Diagonalelemente
heißen Hauptausdehnungskoeffizienten bi.

Falls in einem Kristall Symmetrieachsen vorhanden
sind, müssen die Hauptachsen entlang der Symme-
trieachsen orientiert sein.

��

��

�||

C3

Abbildung 4.56: Orientierung der Hauptwerte bei
Symmetrie.

Ist die Zähligkeit dieser Achsen > 2, so müssen
die Hauptwerte senkrecht zu dieser Achse identisch
sein. In einem kubischen Kristall sind die drei Ko-
effizienten deshalb aus Symmetriegründen identisch
und die Wärmeausdehnung isotrop.

Abbildung 4.57: Thermische Ausdehnungskoeffizi-
enten für unterschiedliche MAte-
rialien. Einheiten: 10�6 K�1.

Abb. 4.57 zeigt einige Wärmeausdehnungskoeffizi-
enten für axial symmetrische wie auch für nichtaxia-
le Systeme.
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4.6 Wärmeleitung

4.6.1 Grundlagen

heisses 
Ende

kaltes 
Ende

Abbildung 4.58: Gasmodell der Wärmeleitung:
Energietransport ohne Massen-
transport.

Wir betrachten Transport von Wärme ohne Massen-
transport. Dies kommt dadurch zustande, dass an ei-
nem Ende eines geschlossenen Behälters (resp. Fest-
körpers) die Teilchen erwärmt werden, am anderen
Ende gekühlt. Dadurch bewegen sich gleich viele
Teilchen nach links wie nach rechts, so dass kein
Massentransport stattfindet. Die Teilchen, welche
sich nach rechts bewegen, haben jedoch im Durch-
schnitt die höhere Energie, so dass ein Energietrans-
port nach rechts stattfindet.

Wir betrachten in diesem Kapitel nur die Wärmelei-
tung in Isolatoren. In Metallen liefern die Elektronen
den wichtigsten Beitrag zur Wärmeleitung. Da die-
ser in Isolatoren entfällt, dominiert in diesem Fall der
Beitrag der Gitterschwingungen.

Die Wärmeleitung durch Gitterschwingungen kann
im Rahmen eines Modells beschrieben werden, wel-
ches an die kinetische Gastheorie angelehnt ist. Die
Phononen stellen Atome des Gases dar. Ausgangs-
punkt ist eine lineare Beziehung zwischen der Wär-
mestromdichte ~j und dem Temperaturgradienten:

~j = �K~—T.

Gemäß der kinetischen Gastheorie ist der Wärme-
leitkoeffizient K gegeben durch

K =
1
3

Cv`,

wobei C die spezifische Wärme der Phononen ist, v
deren Geschwindigkeit, und ` die mittlere freie Weg-
länge. Diese wird in erster Linie bestimmt durch die
Streuung an Kristallfehlern und anderen Phononen.

T1 T2
H2O

Phononen(T1)
Phononen(T2)

T

T1

T2

empirische Temperaturverteilung

Abbildung 4.59: Temperaturverteilung.

4.6.2 Stöße von Phononen

Ein wirklicher Wärmetransport durch Phononen
kann nur stattfinden, wenn die Phononen selber ein
thermisches Gleichgewicht mit den übrigen Frei-
heitsgraden erreichen. Gleichzeitig begrenzen Stöße
die freie Weglänge der Phononen und reduzieren da-
mit die Wärmeleitfähigkeit.

k,tt k',tt

Kristallfehler

Abbildung 4.60: Streuung eines Phonons an einem
Gitterfehler.

Wechselwirkungen finden z.B. statt, wenn das Git-
ter nicht ideal ist. Man bezeichnet dies als Stöße der
Phononen mit Gitterfehlern. Solche Prozesse können
qualitativ leicht verstanden werden, in Analogie zur
Optik: ein Gitterfehler ändert den Wellenwiderstand,
d.h. die Brechzahl des Mediums. An solchen Stellen
werden Wellen (teilweise) reflektiert.

Die Stöße der Phononen mit statischen Gitterfehlern
führen nicht zu einer Änderung der Energie, die Fre-
quenz des einlaufenden und auslaufenden Phonons
sind identisch. Sie bewirken deshalb keine Thermali-
sierung der Energie. Interessanterweise führen auch
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Dreiphononenprozesse,

~k1 +~k2 =~k3,

bei denen die Impulserhaltung gilt, nicht zu einem
thermischen Gleichgewicht oder einem Wärmewi-
derstand.

Das Gleichgewicht mit dem Gitter wird erst erreicht
durch die so genannten Umklapp-Prozesse, wo

~k1 +~k2 =~k3 + ~G,

und ~G einen Vektor des reziproken Gitters darstellt.

k1,tt1

k2,tt2

k3,tt3

Brillouinzone

Abbildung 4.61: Umklappprozess.

Dies geschieht immer dann, wenn der resultieren-
de Wellenvektor aus der ersten Brillouin-Zone her-
ausragt. Wie wir gesehen haben, sind solche Wel-
lenvektoren physikalisch ohne Bedeutung und der
Impuls ist immer nur modulo eines Vektors des re-
ziproken Gitters definiert. Reicht die Summe von
zwei Wellenvektoren einlaufender Phononen über
die Brillouinzone hinaus, so entspricht der physika-
lische Impuls des resultierenden Phonons nicht die-
ser mathematischen Summe, sondern einem Wellen-
vektor innerhalb der Brillouinzone, welcher sich von
der Summe um einen Gittervektor -~G unterscheidet.
Prozesse, bei denen ~G = 0 ist werden N- oder Nor-
malprozesse genannt.

Offensichtlich können solche Prozesse im Rahmen
des einfachen Modells, welches wir zu Beginn die-
ses Kapitel diskutiert hatten, nicht stattfinden, da
bei einer monotonen Beziehung w(k) die Energie
nicht erhalten bliebe. Solche Umklappprozesse kön-
nen jedoch auftreten, wenn anharmonische Terme
verschiedene Phononenzweige koppeln. Die Wahr-
scheinlichkeit für das Auftreten solcher Prozesse ist
deshalb stark systemabhängig. Es ist jedoch mög-
lich, einige allgemeine Aussagen über die Tempera-
turabhängigkeit zu machen.

4.6.3 Freie Weglänge

Bei hohen Temperaturen dominiert die Phonon-
Phonon Streuung, wobei nur U-Prozesse wesent-
lich beitragen. Diese finden nur dann statt, wenn
der resultierende Wellenvektor |~k1 +~k2| länger ist
als der Radius der ersten Brillouin-Zone. Phononen,
die diese Bedingung erfüllen, haben relativ hohe
Energien von der Größenordnung kBq/2. Bei nied-
rigen Temperaturen sind nur wenige solche Phono-
nen vorhanden. Ihre Zahl nimmt gemäß Boltzmann
mit exp(�q/2T ) ab. Wir erwarten deshalb, dass die
inverse mittlere freie Weglänge in diesem Bereich
proportional zur Anzahl Phononen ist, deren Ener-
gie größer ist als die halbe Debye-Energie:

1
`

µ h#PhononenmitEnergie >
kBq

2
i

⇡ D
⇣

wD

2

⌘ 1
eh̄wD/2kBT �1

,

und damit

` µ eh̄wD/2kBT �1
D

�
wD
2

�

oder, mit der Debye-Temperatur q und der Zustands-
dichte D(w) aus Gl. (4.4)

q =
h̄wD

kB
und D

⇣
wD

2

⌘
µ w

2
D µ q

2

wird die freie Weglänge

` µ eq/2T �1
q

2 .

Für hohe Temperaturen T � q wird die mittlere freie
Weglänge damit indirekt proportional zur Tempera-
tur, ` µ 1/T . Da in diesem Bereich die Wärmekapa-
zität nicht stark variiert, erwartet man eine Wärme-
leitfähigkeit K µ 1/T . Für einfache Kristalle findet
man auch tatsächlich eine Temperaturabhängigkeit
der Wärmeleitfähigkeit, welche proportional zu 1/T
läuft. Wenn die Kristalle komplexer werden, und ins-
besondere unterschiedliche Atome enthalten, wird
das Phononenspektrum komplizierter und das hier
verwendete einfache Modell reicht für eine korrek-
te Beschreibung nicht mehr aus.

94



4 Gitterschwingungen und Phononen

Temperatur T

`
Fr

ei
e 

W
eg

lä
ng

e

� 1

T

` � e�/T

Abbildung 4.62: Temperaturabhängigkeit der freien
Weglänge.
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Abbildung 4.63: Temperaturabhängigkeit der freien
Weglänge.

Unterhalb der Debye-Temperatur (T ⌧ q ) wächst
die mittlere freie Weglänge exponentiell mit 1/T ,

` µ eq/T .

Dies ist in Abb. 4.63 für einige einfache Beispie-
le gezeigt. Die exponentielle Zunahme gilt solan-
ge Phonon-Phonon Streuung den dominanten Bei-
trag darstellt. Wenn der Beitrag der Kristallfehler
dominant wird, wird die freie Weglänge temperatur-
unabhängig. Streuprozesse finden dann nur noch an
Kristallfehlern und an der Oberfläche statt, wo eben-
falls Kristallfehler vorhanden sind. Bei gut polier-
ten Oberflächen können Phononen aber elastisch ge-
streut werden, sodass die mittlere freie Weglänge
groß gegenüber den Kristalldimensionen wird. Pho-
nonen breiten sich dann ballistisch, also ohne Streu-
ung im Kristall aus.

Die 1/T Abhängigkeit stimmt ebenfalls nicht bei
amorphen Materialien, wie z.B. Quarzglas. In die-
sem Fall ist schon das Konzept eines Phonons et-
was fragwürdig, da die Bindungsstärke von Atom zu
Atom variiert und die mittlere freie Weglänge auf-
grund der hohen Defektdichte praktisch nur noch ei-
ner Bindungslänge entspricht. In diesem Fall domi-
niert die Streuung an statischen Gitterfehlern über
die Phononen-Phononen Streuung und unsere obi-
gen Annahmen stimmen nicht mehr.

4.6.4 Wärmeleitkoeffizient
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Abbildung 4.64: Beiträge zur Wärmeleitung.

Zur Wärmeleitfähigkeit trägt neben der freien Weg-
länge vor allem auch die Wärmekapazität bei. Da
diese bei niedrigen Temperaturen abnimmt, wird
auch die Wärmeleitfähigkeit wieder geringer.

Temperatur

Abbildung 4.65: Temperaturabhängigkeit des Wär-
meleitkoeffizienten.

Typischerweise findet man deshalb ein Maximum

95



4 Gitterschwingungen und Phononen

der Wärmeleitfähigkeit.

Temperatur T / K

W
är

m
el

ei
tk

oe
!

zi
en

t K
 / 

W
m

 -1
K-1

Umklappprozesse

1,33 mm × 0,91 mm

7LiF

10

102

103

104

1 2 5 10 20 50 100

Probenober#äche
7,55 mm × 6,97 mm

Abbildung 4.66: Temperaturabhängigkeit des Wär-
meleitkoeffizienten in unterschied-
lichen Proben.

Wird die freie Weglänge vergleichbar mit den Di-
mensionen der Probe, so wird die Phononenaus-
breitung ballistisch und die Wärmeleitung abhängig
von den Dimensionen der Probe. Abb. 4.66 zeigt
ein Beispiel, bei dem die mittlere freie Weglänge
durch tiefe Temperaturen und einen guten Kristall
erhöht wurde. Darüber hinaus wurde der Probenkri-
stall isotopenrein gemacht, um Streuprozesse auf-
grund der statistischen Massenverteilung zu reduzie-
ren. Die Tatsache, dass die beiden Kristalle unter-
schiedliche Wärmeleitkoeffizienten aufweisen, deu-
tet darauf hin, dass die mittlere freie Weglänge grö-
ßer ist als die Dimensionen des Kristalls. Deshalb
werden im kleineren Kristall die Phononen rascher
gestreut.

4.6.5 Isotopeneffekte

Ein Beitrag zur Streuung kann auch die Isotopenver-
teilung sein: unterschiedliche Massen der Gitterato-
me wirken für Phononen genau wie Gitterfehler und
führen zu Streuung. Diese Effekte können recht groß
sein, auch bei geringen Anteilen ‘falscher’ Isotope.
In Diamant, z.B., wo in natürlicher Häufigkeit ca.
1% der Atome 13C Isotope sind, kann die Wärme-
leitfähigkeit nochmals um > 50 % gesteigert wer-
den wenn die Diamanten aus isotopenreinem Koh-
lenstoff erzeugt werden.

Abb. 4.67 zeigt als ähnliches Beispiel Daten von
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Abbildung 4.67: Temperaturabhängigkeit des Wär-
meleitkoeffizienten in Proben. mit
unterschiedlicher Isotopenzusam-
mensetzung.

Germanium in unterschiedlichen Zusammensetzun-
gen. Im Bereich der maximalen Leitfähigkeit leitet
die isotopenreine Probe etwa doppelt so gut wie die
Probe natürlicher Häufigkeit.

Die Wärmeleitfähigkeit hängt nicht nur von der frei-
en Weglänge ab, sondern auch von der Wärmekapa-
zität. Bei tiefen Temperaturen, wo die freie Weglän-
ge temperatur-unabhängig wird, erwarten wir somit
ein ähnliches Verhalten wie bei der Wärmekapazität,
die mit der dritten Potenz der Temperatur abnimmt,
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Abb. 4.67 zeigt dieses Verhalten für zwei unter-
schiedliche Germaniumkristalle. Insbesondere beim
reinen 74Ge Kristall, wo Streuprozesse an Fehlstel-
len selten sind, passt diese Beziehung sehr gut.
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