4 Gitterschwingungen und Phononen

Die Struktur eines Festkorpers ist dadurch definiert,
dass die Atome sich an der Stelle befinden, welche
die Gesamtenergie der Anordnung minimiert. Dies
ist deshalb die Position, die sie - abgesehen von
der quantenmechanischen Unschirfe - am absolu-
ten Nullpunkt einnehmen. Bei endlichen Tempera-
turen hingegen fiihren sie Schwingungsbewegungen
um diese Gleichgewichtspositionen durch und besit-
zen damit eine hohere Energie. In diesem Kapitel
werden diese mechanischen Schwingungen der Ato-
me diskutiert. Diese sind wichtig fiir das Verstindnis
von vielen Materialeigenschaften, wie z.B. die spe-
zifische Wiarme, Leitfdhigkeit fiir Elektrizitit, Schall
und Wirme, oder die Volumenausdehnung. Auch die
Supraleitung (Kap. 9) kann nur iiber die Schwin-
gungen der Gitteratome verstanden werden. Dariiber
hinaus beobachtet man den Effekt von Schwingun-
gen in der Wechselwirkung mit unterschiedlichen
Arten von Strahlung, wie z.B. infrarotem Licht oder
thermischen Neutronen.

4.1 Grundlagen

4.1.1 Gleichgewichtsumgebung

Die Position der Atome wird nicht mehr als fest an-
genommen, sondern wir betrachten die Position 7 ei-
nes Atoms jetzt als variabel. Dabei soll jedes Atom
eine Gleichgewichtsposition 7y haben, aber gegen-
iiber dieser Gleichgewichtsposition Auslenkungen X
erfahren, wobei diese im Mittel verschwinden, (X) =
0. Diese Auslenkungen sind klein im Vergleich zu
typischen Abstinden zwischen nichsten Nachbarn.

Wir diskutieren dies im Rahmen der Born-Oppen-
heimer Niherung, d.h. wir betrachten die Bewegung
der Kerne in einem effektiven Potenzial, welches
durch die Abhéngigkeit der elektronischen Energie
von den Kern-Koordinaten gegeben ist. Die riicktrei-
bende Kraft des Potenzials fiihrt dann zu einer Os-

zillationsbewegung. Das Potenzial ist gegeben durch
die Bindungsenergie des Systems, d.h. durch die ki-
netische Energie der Elektronen und die Coulomb-
Energie der Kerne und Elektronen.
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Abbildung 4.1: Potenzialverlauf und harmonische
Néherung.

Wir diskutieren zunichst ein eindimensionales Sy-
stem und entwickeln das Potenzial eines einzelnen
Atoms in der Umgebung seiner Ruhelage als

U=Uy+Ux+Ux>+...,

wobei x die Auslenkung aus der Ruhelage xg be-
zeichnet. Die Ruhelage ist aber gerade dadurch defi-
niert, dass die Energie minimal ist. Somit muss der
lineare Term verschwinden, U; = 0. Die Kraft, wel-
che auf das Atom wirkt, ist demnach in niedrigster
Ordnung

Diese Form entspricht dem Hooke’schen Gesetz. In
der Festkorperphysik wird dies als die harmonische
Naherung bezeichnet. Wir verwenden sie fiir den
groBiten Teil dieses Kapitels. Wenn die hoheren Ter-
me (Us,...) relevant werden, spricht man von an-
harmonischen Effekten. Diese werden in Kapitel 4.5
angesprochen.
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4.1.2 Die eindimensionale Kette
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Abbildung 4.2: Eindimensionale Kette.

Wir beginnen mit dem einfachsten moglichen Mo-
dell, einer eidimensionalen Kette, welche aus iden-
tischen Atomen besteht, welche durch identische
Wechselwirkungen aneinander gekoppelt sind. Die
interatomaren Kréfte sind nur von der Position der
direkten Nachbarn abhingig. x; beschreibt hier die
Auslenkung des s-ten Atoms aus der Ruhelage.

Durch die Federn wird die Kraft auf ein Atom abhén-
gig von der Position des Nachbaratoms. Die Bewe-
gungsgleichungen der einzelnen Atome sind deshalb
mit einander gekoppelt. Dann lautet die Bewegungs-
gleichung fiir das Atom an Position s

Mi; = C(xs-‘rl +X5—1 — 2xs)7

wobei C die Kraftkonstante und M die atomare Mas-
se beschreibt. Da ein Atom mehrere nichste Nach-
barn besitzt, wirkt die Auslenkung eines Atoms aus
der Ruhelage immer auch auf mehrere andere Ato-
me. Dies fiihrt dazu, dass die Auslenkung nicht auf
einem Atom lokalisiert bleiben kann. Mathematisch
hat man ein System von N gekoppelten Differenti-
algleichungen (pro Freiheitsgrad). Um diese zu 16-
sen, muss man die Eigenvektoren des Systems be-
stimmen. Diese werden als Eigenmoden bezeichnet.

Die Eigenmoden konnen als ebene Wellen geschrie-
ben werden, welche sich entlang der Kette ausbrei-
ten. Wir machen deshalb den Ansatz

X5 = Xoei(ksa—wt)‘

Hier ist k die Wellenzahl (mit Dimension m~1!), X,
die Amplitude und @ die Kreisfrequenz, a bezeich-
net den Abstand zwischen néchsten Nachbarn und sa
die Ruhelage des Atoms mit Index s.

4.1.3 Normalkoordinaten und
Dispersionsrelation

Die neu eingefithrten Eigenmoden beziehen sich
nicht mehr auf einzelne Atome, sondern auf die Ge-
samtheit der Atome. Sie zeichnen sich durch ihre
harmonische Zeitabhingigkeit aus und werden auch
als Normalkoordinaten bezeichnet. Offenbar ist

—ika

Xg_1 = Xg€ ka,

i
Xs+1 = Xs€
Durch Einsetzen von x; i, x5, Xsr1 in die Bewe-
gungsgleichung erhalten wir

—Mo’x;=C (eik“ + e ka _ 2) X;.

Wir dividieren durch —Mx; und ersetzen die Expo-
nentialfunktionen durch die trigonometrischen und
erhalten

C . ,ka

c
w? = ZM (1 —coska) = 4M sin 5

Daraus erhalten wir die Eigenfrequenz

w:2\/£
M

Jedes Wertepaar (k,®) charakterisiert eine Eigen-
mode der Gitterschwingung. Innerhalb der harmoni-
schen Niherung sind diese Schwingungen voneinan-
der unabhingig. In einem unendlichen Kristall sind
diese Werte kontinuierlich. In einem endlichen Kri-
stall gibt es 3N diskrete Moden, wobei N die Anzahl
der Einheitszellen des Kristalls darstellt.

. ka
sin —
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Abbildung 4.3: Dispersion der eindimensionalen
Kette.

Abb. 4.3 zeigt die Dispersionsrelation zwischen der
Wellenzahl k und der Schwingungsfrequenz . Fiir
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kleine Wellenzahlen, also grole Wellenldngen geht
die Frequenz gegen Null. Im linearen Bereich gilt:

C
0=~/ — |kal
M

d.h. die Frequenz ist direkt proportional zur Wellen-
zahl.

Die Phasendifferenz zwischen benachbarten Ato-
men betrigt e~ Fiir kleine Wellenzahlen ist somit
die Phasendifferenz klein, d.h. benachbarte Atome
schwingen hier praktisch in Phase

Anders sieht es beim Wellenvektor k = 7 /a aus. Hier
ist e~ = —1, d.h. benachbarte Atome schwingen in
Gegenphase. Die Wellenlinge A = 27 /k = 2a ent-
spricht der doppelten Linge der Einheitszelle, d.h.
iberndchste Nachbarn schwingen in Phase.

4.1.4 Brillouin-Zone

Wenn wir zu noch gréferen Wellenvektoren, al-
so kiirzeren Wellenldngen gehen, so wird der Un-
terschied zwischen den Auslenkungen benachbarter
Atome wieder kleiner. Dies duflert sich auch in der
Frequenz, wie man in der Dispersionsrelation erken-
nen kann. Offenbar ist die Frequenzabhéngigkeit pe-
riodisch in k, mit Periode 27 /a. Dies liegt daran,
dass wir die Auslenkung von Kernen, also diskreten
Punktpartikeln betrachten.

cos(5s) A

Abbildung 4.4: 2 Wellenzahlen, welche die gleiche
Auslenkungen ergeben.

XS
cos(-1.3s)

Da die Amplitude der Schwingung nur an den Kern-
orten definiert ist, ist es physikalisch nicht moglich,
Schwingungen zu unterscheiden, deren Wellenvek-
tor sich um 2n/a unterscheidet. Anders ausgedriickt:
die Position eines Atoms mit einer Phase von 5m/2
ist identisch zur Position mit einer Phase /2. Ein

solches Beispiel ist in Abb. 4.4 dargestellt: Die Wel-
lenvektoren der violetten und der griinen Kurve un-
terscheiden sich um 2n/a. Wie in Abb. 4.4 gezeigt,
erzeugen sie die gleichen atomaren Auslenkungen.
Diese Beziehung wird auch als Abtasttheorem oder
Nyquisttheorem bezeichnet. Es muss z.B. bei der Di-
gitalisierung von Messdaten beriicksichtigt werden.

e Xs
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Abbildung 4.5: Die 1. Brillouin-Zone enthilt die ge-
samte Information.

Bezogen auf die Dispersionsrelation der Gitter-
schwingungen bedeutet dies, dass nur der Bereich
zwischen —7/a < k < m/a betrachtet werden muss.
Bei der Einfiihrung des reziproken Gitters haben wir
diesen Bereich als die erste Brillouin-Zone kennen-
gelernt.
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Abbildung 4.6: Phononendispersion von Blei.

Die Dispersionsrelation der Gitterschwingungen
kann durch gleichzeitige Messung von Wellenvektor
und Frequenz, u.a. mit unelastischer Rontgenstreu-
ung gemessen werden. Abb. 4.6 zeigt als Beispiel
die Phononendispersion von Blei, welches in einem
fce-Gitter kristallisiert.

Die Dispersion von Kupfer sieht dhnlich aus. Da
Kupferatome leichter sind, sind die entsprechenden
Schwingungsfrequenzen jedoch hoher. Man erhélt
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Abbildung 4.7: Phononendispersion von Kupfer.
jeweils einen longitudinalen und zwei transversale

Aste, wobei die transversalen Schwingungen je nach
Ausbreitungsrichtung entartet sein konnen.

4.1.5 Gruppengeschwindigkeit und
Phasengeschwindigkeit

Die Beziehung zwischen Frequenz und Wellenzahl
ergibt direkt die Phasengeschwindigkeit

_ /<
M

sowie die Gruppengeschwindigkeit aus der Steigung

sin k—a
2

Q)

k
k / Y

Vp =

Fiir sehr kleine Wellenvektoren, d.h. sehr grofle Wel-
lenldingen geht die Frequenz linear gegen null. In
diesem Bereich gibt es keine Dispersion, d.h. die
Phasengeschwindigkeit und die Gruppengeschwin-
digkeit sind gleich und konstant,

C

T

da)_

VP:VG:E—CI

In diesem Bereich ist die Wellenlédnge sehr viel gro-
Ber als die Gitterkonstante, sodass die diskrete Natur
des Gitters hier keine Rolle spielt. Wir konnen die
Schwingungen der Kristalle in diesem Bereich des-
halb auch gut mit Hilfe eines kontinuierlichen Mo-
dells beschreiben.

Dies ist der Bereich der akustischen Wellen. Ty-
pische Schallgeschwindigkeiten in Festkorpern lie-
gen bei vy ~ 4000 m/sec. Mit einer typischen
Einheitszellen-GroBe von a ~ 5- 1071 m wird die

{000) (00D} q —  (¥azl2la]

Wellenlinge A, = 2a ~ 1077 m. Damit erhalten

wir eine maximale Schwingungsfrequenz V., ~
Vs/Amin = 4-10'2 Hz.

An den Grenzen der ersten Brillouin-Zone hinge-
gen, bei k = m/a, geht die Gruppengeschwindig-
keit gegen null, vg — 0, d.h. es wird keine Energie
mehr transportiert. Dies lédsst sich leicht verstehen
wenn wir beriicksichtigen, dass an diesem Punkt die
Bragg-Bedingung erfiillt ist: In der allgemeinen Be-
ziehung

2dsin@ = A
setzen wir d = a, 0 = /2 und erhalten

r=2"

2a T oder

k=2
a

A

Abbildung 4.8: Reflexion einer linearen Welle bei
der Bragg-Bedingung.

Das bedeutet, dass die einfallende Welle am Gitter
sehr effizient reflektiert wird. Die einfallende Wel-
le und die reflektierte Welle bilden zusammen eine
stehende Welle, bei der die um eine Elementarzelle
getrennten Atome jeweils um 180° auller Phase sind.

Die hier betrachtete Bewegung entlang der Kette ist
nicht die einzige Moglichkeit. Zusitzlich gibt es die
Moglichkeit, dass die Atome senkrecht zur Kette
ausgelenkt werden. Da ein Atom drei Freiheitsgrade
besitzt, gibt es pro Atom 3 Arten von Gitterschwin-
gungen, ndmlich eine in Richtung der Kette und zwei
senkrecht dazu. Die bisher behandelte Schwingung
wird als longitudinal bezeichnet, die andern beiden
als transversal.

Das gleiche gilt in 3 Dimensionen. Dort haben
die beiden Transversalschwingungen im Allgemei-
nen unterschiedliche Dispersionsrelationen. In ei-
nem Kristall hingt die Ausbreitungsgeschwindigkeit
auBerdem von der Ausbreitungsrichtung ab.
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Abbildung 4.9: Federmodell in 3D; longitudinale
und transversale Moden.

4.2 Kontinuumsmechanik

Um einen besseren Einblick in die Schallausbreitung
in anisotropen Medien zu erhalten, soll in diesem
Kapitel zunichst der kontinuierliche Grenzfall dis-
kutiert werden.

4.2.1 Spannung und Dehnung

Fiir den Ubergang zu dreidimensionalen Korpern be-
trachten wir zunéchst die klassische Kontinuumsme-
chanik. Man beschreibt die Veridnderung eines Volu-
menelementes unter dem Einfluss duflerer Krifte als
eine Kombination von Dehnung und Scherung.

Abbildung 4.10: Spannung = Kraft pro Fléiche.

Die duBleren Krifte auf das Volumenelement werden
jeweils auf die Flache normiert, auf die sie wirken.
Den Quotienten bezeichnet man als Spannung

dF
= 5=

Eine allgemeine Spannung kann zerlegt werden
in eine Normalspannung ¢ und eine Tangential-

N

S —.
m2

(Schub-) Spannung 7:

_dF, n

dA  dAT

Bei der Normalspannung kennzeichnet man die
Richtung mit einem Index, bei der Schubspannung

die Fliche mit einem Index, die Richtung mit einem
zweiten. An einem Wiirfel findet man somit

dF;
S=o0+71 !

Gx 9 ny GZ Txyv sza Tyz ) Tyx ) sz 9 sz~

Aus Symmetriegriinden gilt 7,5 = g4, so dass noch
drei unabhingige Schubspannungen bleiben.

Kein Korper ist absolut starr. Deshalb erzeugen
Spannungen Verformungen. Bei den elastischen Ver-
formungen unterscheidet man zwischen Dehnungen
€ (rechte Winkel bleiben erhalten) und Schiebungen
oder Scherungen 7, welche Winkeldnderungen im
Bogenmal beschreiben.

F

!
I

F

Abbildung 4.11: Dehnung = relative Lingenénde-
rung.

Eine Dehnung ist definiert als die relative Langenén-
derung
b=ty AL

o b

E =

4.2.2 Elastische Konstanten

Spannung und Dehnung sind voneinander abhingig.
In den weitaus meisten Korpern existiert zudem fiir
niedrige Spannungen ein Bereich, in dem eine li-
neare Beziehung gilt, welche fiir Federn als Hoo-
ke’sches Gesetz bekannt ist:
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wobei die Proportionalititskonstante £ als Elastizi-
tdtsmodul bezeichnet wird.

(Werk-)Stoff Elastizitatsmodul E in
GNm 2

FEis 9,9

Blei 17

Al (rein) 72

Glas 76

Gold 81
Messing (kaltverf.) 100
Kupfer (kaltverf.) 126
V2A-Stahl 195

Elastizitdtsmodule stellen wichtige technische Gro-
Ben dar und sind deshalb von vielen Materialien be-
stimmt worden. Fiir Metalle liegen sie im Bereich
von 10'" N/m?.

—
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Abbildung 4.12: Querdehnung.

Eine Normalspannung erzeugt nicht nur eine Lén-
genidnderung Af, sondern auch eine Querdehnung
€, = Ad/d. Diese Querdehnung &, ist proportional
zur Langsdehnung &€, es gilt €, = — 1€, mit der Quer-
dehnungszahl u.

’ (Werk-)Stoff ‘ Querdehnungszahl u ‘

Eis 0,33

Blei 0,44

Al (rein) 0,34
Glas 0,17

Gold 0,42
Messing (kaltverf.) 0,38
Kupfer (kaltverf.) 0,35
V2A-Stahl 0,28

Diese dimensionslose Zahl wurde liegt typischer-
weise im Bereich von ~0.3.

4.2.3 Scherung

In analoger Weise kann man Scherungen behandeln.

<&
D

F

Abbildung 4.13: Scherung.

Scherung ist definiert als die Winkeldnderung

1 AX

7

o =sin~

Scherung ist proportional zur Schubspannung 7:

und die Proportionalititskonstante G wird als Schub-

T=0q,

modul bezeichnet.

(Werk-)Stoff Schubmodul G in

GNm 2
Eis 3,7

Blei 55-7,5
Al (rein) 27
Glas 33
Gold 28
Messing (kaltverf.) 36
Kupfer (kaltverf.) 47
V2A-Stahl 80

Die Schubmodule von vielen Materialien sind ge-
messen worden. Sie sind von dhnlicher Groflenord-
nung wie die Elastizitits- und Kompressionsmodule,
aber immer etwas kleiner.
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4.2.4 Unelastisches Verhalten

Die elastischen Eigenschaften konnen fiir geringe
Auslenkungen mit Hilfe des verallgemeinerten Hoo-
ke’schen Gesetzes dargestellt werden, d.h. durch ei-
ne lineare Beziehung zwischen Spannung und Form-
dnderung. Dies ist allgemein der Fall in der Nihe des
Gleichgewichts, da man das lineare Kraftgesetz aus
dem ersten nicht verschwindenden Term der Taylor-
reihe erhilt. Fiir groere Auslenkungen wird die Re-
aktion nichtlinear; dies entspricht auf der Stufe der
Gitterschwingungen dem Auftreten anharmonischer
Effekte: in beiden Fillen spielen die Terme der Ord-
nung >2 in der Taylorreihe des Potenzials eine Rolle.

A
plastischer Bereich
(irreversibel)

Bruch

elastischer
Bereich

Hysterese

Spannung F/A

Dehnung AL/L

Abbildung 4.14: Elastische vs. plastische Verfor-
mung.

Wihrend die Einzelheiten differieren, findet man in
den meisten Materialien ein Verhalten, das qualita-
tiv etwa so aussieht: Das Hooke’sche Gesetz, d.h. ei-
ne lineare Beziehung zwischen Spannung und Deh-
nung, gilt fiir geringe Dehnungen.

Danach folgt ein elastisch-plastischer Bereich. In
diesem Bereich ist die Beziehung nichtlinear, der
Korper geht nach Abklingen der duBBeren Einwirkun-
gen jedoch in den urspriinglichen Zustand zuriick.
Fiir noch groBere Krifte folgt eine plastische Reak-
tion, also eine irreversible Verformung.

Auf mikroskopischer Ebene entsprechen elastische
Verformungen einer entsprechenden Verformung auf
atomarer Ebene, wihrend bei plastischen Verfor-

Metalle

QP99

Verformung@

pucre
QQQQQQQQ@

Abbildung 4.15: Mikroskopische Prozesse bei der
Verformung eines Metalls (links)
und Polymers (rechts).

Polymere

mungen Bindungen gebrochen werden. Welcher Art
diese Anderungen sind, hingt von der Art des Ma-
terials ab. Bei Metallen konnen die Atome relativ
leicht gegeneinander verschoben werden.

Bei kovalent gebundenen Materialien, wie z.B. Po-
lymeren, werden Bindungen nur schwer gebrochen.
Die Molekiile haben jedoch die Freiheit, um einzelne
Einfachbindungen zu rotieren und so ihre Form zu
dndern. Eine plastische Verformung fiihrt hier des-
halb zu einer Verstreckung der Molekiile.

4.2.5 Dehnungstensor

Fiir das Verstindnis der Gitterschwingungen kénnen
wir uns auf den elastischen Bereich beschrinken.
Hingegen miissen wir das obige Modell noch dahin-
gehend erweitern, dass die elastischen Konstanten in
einem kristallinen Material richtungsabhéngig sind.
Da die interatomaren Potenziale von der Richtung
abhiingen, erzeugen auch Spannungen unterschied-
liche Verformungen je nach der Richtung in der sie
beziiglich dem Kristallgitter wirken.

Um eine allgemeine Verformung zu beschreiben,
muss man jedem Punkt P des Korpers in seiner Ru-
helage einen Punkt P’ des deformierten Korpers zu-
ordnen. Der Vektor

()
@(r)=1 n@ |,
¢
der diese Translation beschreibt, hingt selber von
der Position 7 im Raum ab.
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=

Abbildung 4.16: Tensorielle Beschreibung der Ver-
formung.

Es ist sinnvoll, ihn in verschiedene Komponenten
aufzuteilen. Seit Helmholtz benutzt man dafiir ei-
ne Verschiebung (Translation), eine Rotation, und
drei orthogonale Dehnungen. Translation und Rota-
tion beziehen sich auf den gesamten Korper, sind al-
so nicht vom Ort 7 abhéngig und @ndern die elasti-
sche Energie des Systems nicht. Diese wird (in li-
nearer Ndherung) nur von der ersten Ableitung von i
bestimmt, welche als Dehnung beschrieben werden
kann. Diese wird durch den Dehnungs- oder Verzer-
rungstensor

1 1

€xx  3€xy 3€xz
S 1 1
e = 2 €xy €y 726z
76xz 7€z €

beschrieben. Dieser symmetrische Tensor besitzt 6
unabhingige Elemente. Die Diagonalelemente

dg dn s
— ey =——, €= ——
dx” 7 dy’ % dz
beschreiben, wie die Verschiebung parallel zur ent-

sprechenden Koordinate entlang der Achse zu-
nimmt. Die AuBlerdiagonalelemente

Cxx =

d& dn
T Ty T

dn  d¢
eyz = ezyzdiz—i_diy

dg _dt
Cy; = = =

@47 T dx

beschreiben die Zunahme der Verschiebung parallel
zu einer Richtung senkrecht zur Verschiebung. Die
Faktoren werden z.T. auch in die Definition der Ten-
sorelemente einbezogen. Der zugehorige antisym-
metrische Tensor beschreibt eine Rotation. Die Ele-
mente des Dehnungstensors sind dimensionslos und
in allen relevanten Fillen < 1.

Mit Hilfe dieses Tensors kann der Dehnungsanteil
der Verformung im linearen Bereich geschrieben
werden als

wobei die Verschiebung bei 7 = 0 als Translation be-
handelt wird.

Wie bei jedem symmetrischen Tensor zweiter Stu-
fe existiert ein ausgezeichnetes Koordinatensystem
in dem dieser Tensor diagonal wird. Die Diagonal-
elemente in dieser Form geben gerade die Dehnung
in Achsenrichtung an. Ein Punkt, der auf einer der
Hauptachsen liegt, bleibt also auch unter der Deh-
nung auf dieser Achse. Dies bedeutet insbesonde-
re, dass in diesem Koordinatensystem keine Scher-
dehnung auftritt; diese wird durch die AuBerdia-
gonalelemente beschrieben. Die Beschreibung einer
Verformung als Dehnung oder Scherung ist somit
abhiéngig vom Koordinatensystem. Die Spur dieses
Tensors, also die Summe der Diagonalelemente be-
schreibt gerade die relative Volumenédnderung. All-
gemein ist die Spur unabhingig von der Wahl des
Koordinatensystems, wie es fiir eine Volumeninde-
rung sein sollte. Der Tensor selber ist auch vom Ort
abhingig, stellt also ein Tensorfeld dar.

4.2.6 Spannungstensor

Neben dem Dehnungs-, resp. Verzerrungstensor be-
ndtigen wir eine weitere wichtige GroBle, den Span-
nungstensor ‘6’. Wie oben gezeigt, konnen in je-
der Achsenrichtung eine Zug- und zwei Scherspan-
nungen existieren. Insgesamt erhalten wir damit die
9 Komponenten eines Tensors zweiter Stufe. Aus
der Bedingung, dass der Korper statisch sein soll,
ergeben sich drei Symmetriebedingungen, nimlich,
dass 0,y = 0y,. Die 6 verbleibenden Elemente bilden
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einen symmetrischen Tensor

Oxx Oxy Oy
F=( o o o
Ox; Oy; O

Die Spur dieses Tensors gibt wiederum den isotro-
pen Anteil der duBeren Kraft an, also den hydrosta-
tischen Druck.

Die Erweiterung des Hooke’schen Gesetzes auf drei
Dimensionen ergibt eine lineare Beziehung zwi-
schen dem Spannungs- und dem Dehnungstensor.
Sie wird geschrieben als

T="7 %,

wobei das verallgemeinerte Elastizitdtsmodul ?
einen Tensor vierter Stufe darstellt. Die 81 Elemente
eines Tensors vierter Stufe werden aber durch Sym-
metriebeziehungen stark reduziert. So enthalten ja
die Tensoren <§ und ‘¢’ nur je 6 unabhingige Ele-
mente.

ELASTIC CONSTANTS

CRYSTAL SYSTEM POINT GROUPS

Triclinic all 21
Monoclinic all 13
Orthorhombic all g
Tetragonal CplSi 7

Caus Dy, Dyys Iy 6
Rhombohedral yiiSg 7

C} Eh) D 31 D 32 6
Hexagonal all 5
Cubic all 3

Abbildung 4.17: Anzahl unabhingiger Tensorele-
mente in Kristallen unterschiedli-
cher Symmetrie.

AuBlerdem ist ? selbst ein symmetrischer Tensor,
wodurch die maximale Anzahl unabhéngiger Ele-
mente auf 21 absinkt. In einem Kristall mit Symme-
trie sinkt die Zahl unabhéngiger Elemente weiter, bis
auf ein Minimum von 3 in einem kubischen System,
resp. 2 im isotropen Fall.

Man schreibt diese Elemente iiblicherweise in der
Basis der 6 unabhiingigen Elemente der Tensoren
zweiter Stufe. Abb. 4.18 zeigt am Beispiel des Ela-
stizitédtstensors fiir einen kubischen Kristall die un-
abhingigen Tensorelemente.

C11 = Cxxxx = C}')’)U’ = Cazzns
Ci2 = Cxxyy e nyzz = Cozxxs
Caq = nyxy = Cyayz = Coxzx:

Abbildung 4.18: Unabhingige Tensorelemente in
kubischen Systemen.

4.2.7 Wellenausbreitung in einem
anisotropen Kontinuum

Der elastische Tensor bestimmt die Wellenausbrei-
tung im Festkorper. Er ersetzt die skalare Kraftkon-
stante der 1-dimensionalen Bewegungsgleichung.
Dadurch wird die Auslenkung zu einem Vektor ii =
(£,m,&) und die Wellengleichung ebenfalls zu einer
Tensorgleichung. Fiir einen kubischen Kristall kann
sie geschrieben werden als

92& 92&

26 I
Pon = (igga )

4+ Cys <ay2 + TZZ
a2n a2g>

+(C12+Cua) <8x8y 5

und analog fiir die Komponenten n und C.

Eine Losung dafiir erhalten wir durch den Ansatz ei-
ner ebenen Welle

él _ éoei(kx—szt)

also einer Longitudinalwelle in x-Richtung. Fiir die
Geschwindigkeit dieser Welle erhélt man

Ci
VI = )
P

also das analoge zur eindimensionalen Welle: die
Geschwindigkeit ist jetzt gleich der Wurzel aus dem
Quotienten von Elastizititsmodul und Dichte.

Fiir den Fall einer Transversalwelle in y-Richtung
wird die Geschwindigkeit zu

[ Cua
Vi =14/ —.
P

Hier tibernimmt also anstelle des Elements C;; das-
jenige Element des Elastizititstensors die Funkti-
on der Kraftkonstanten, welche die AufBlerdiagonal-
elemente von Dehnungs- und Spannungstensor mit-
einander koppelt. Dies ist eine direkte Konsequenz
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davon, dass eine Transversalwelle Scherspannungen
erzeugt, wihrend bei einer reinen Longitudinalwelle
nur Schubspannungen auftreten.

Fiir jeden Wellenvektor existieren drei linear un-
abhingige Polarisationen. Im allgemeinen sind die
Ausbreitungsgeschwindigkeiten der drei Polarisatio-
nen unterschiedlich.

4.2.8 Abbildung von Schallwellen

Die Energieausbreitung, d.h. die Gruppengeschwin-
digkeit, ist in einem anisotropen Festkorper nicht
parallel zum Wellenvektor; dies ist nur der Fall,
wenn gewisse Symmetriebedingungen erfiillt sind.

Abbildung 4.19: Experimentell gemessene Wellen-
fronten in Si.

Seit einigen Jahren kann man die Schallausbreitung
in einem Festkorper direkt sichtbar machen (J.P.
Wolfe, ’Acoustic wavefronts in crystalline solids’,
Physics Today September 1995, 34-40 (1995).). Da-
zu regt man mit einem Laser oder einem piezoelek-
trischen Transducer an einer Stelle eines Kristalls
kurzfristig akustische Schwingungen an und beob-
achtet auf der Riickseite des Kristalls die dadurch
induzierten Auslenkungen. Abb. 4.19 zeigt als Bei-
spiel eine solche Messung an Silizium. Man sieht
deutlich wie die Anisotropie des Kristalls zu einer
nichtsphérischen Schallausbreitung fiihrt.

Um dies zu verstehen, kann man zunichst sog.
,JLangsamkeitsoberflichen* betrachten, d.h. Ober-
flachen konstanter Frequenz im k-Raum. Die Grup-
pengeschwindigkeit entspricht immer einem Vek-
tor, welcher senkrecht auf einer solchen Oberfliche

'

Abbildung 4.20: Wellenfronten und Ausbreitungs-
richtung. Links: Oberfliche kon-
stanter Frequenz im k-Raum.

steht. Wie in der linken Hélfte von Abb. 4.20 gezeigt,
stehen diese Vektoren im Allgemeinen nicht paral-
lel zum Wellenvektor k; die Ausbreitungsrichtung ist
damit nicht parallel zum Wellenvektor.

Die rechte Hilfte von Abb. 4.20 stellt die Wellen-
front dar, welche dadurch zustande kommt, dass
man die Gruppengeschwindigkeitsvektoren verbin-
det. Diese Uberschneidungen der Wellenfronten,
welche auch im experimentellen Bild beobachtet
werden konnten, sind eine Konsequenz der kristal-
linen Struktur; bei isotropen Festkorpern, wie z.B.
Glas, konnen sie nicht beobachtet werden.

e) 215 s

Abbildung 4.21: Wellenfronten.

Um die Wellenfronten experimentell sichtbar zu ma-
chen, muss man zunichst eine kurze Storung an den
Kristall anlegen und die Wellen nachher zeitlich und
rdumlich aufgelost beobachten. In diesem Fall wur-
den die Beobachtungen mit Hilfe piezoelektrischer
Transducer an Si durchgefiihrt. In der oberen Zei-
le von Abb. 4.21 sieht man zunichst eine beinahe
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sphérische Longitudinalwelle eintreffen, in der unte-
ren Zeile eine deutlich nichtsphirische Transversal-
welle.

4.2.9 Seismische Wellen

Sowohl longitudinale Druck- als auch transversale
Scherwellen spielen bei Erdbeben eine Rolle.

Abbildung 4.22: Seismische Wellen.

Die sogenannten P- (Priméar-) und S- (Sekundir-)
Wellen breiten sich im Volumen aus. P-Wellen sind
Longitudinalwellen (wie Schallwellen), S-Wellen
sind Schwerwellen. Love-Wellen sind Torsionswel-
len, welche sich an der Oberfliche ausbreiten.
Rayleigh-Wellen sind ebenfalls Oberflaichenwellen,
sie gleichen aber Meereswellen.

Da der Elastizitdtsmodul immer grofer ist als das
Schermodul, erwarten wir fiir longitudinale Druck-
wellen eine hohere Ausbreitungsgeschwindigkeit als
fiir transversale Scherwellen.

Diese Erwartung wird durch experimentelle Befunde
gestiitzt: Die Primirwellen, welche als erste bei einer
Messstation eintreffen, sind Druckwellen, wéhrend
die spiter eintreffenden Sekundédrwellen Scherwel-
len sind. Die hohere Schallgeschwindigkeit fiir Lon-
gitudinalwellen beobachtet man auch bei Kristallen.

4.3 Schwingungen in diskreten
Systemen

Die Behandlung der Schwingungen mit Hilfe der
Kontinuumsmechanik ist méglich, solange die Wel-
lenldngen groB sind im Vergleich zur GroBe der Ein-

15
___.“.r ............ «—— Erste S-Welle
E 10— l & v :
~ ‘4.5 min k\&‘
B e s =7
g {
ey - o Z— Erste P-Welle
S ;
— s
&
s QS‘
0 T s T o T
0 1000 20000 3000 . 4000 - 5000

Entfernung zum Epizentrum / km

Abbildung 4.23: Primdr- und Sekundirwellen bei
Erdbeben.

heitszelle. Wir betrachten jetzt wieder diskrete Sy-
steme, erweitern die Diskussion aber auf drei Di-
mensionen. Bei N Atomen pro Einheitszelle erwar-
ten wir 3N Freiheitsgrade und damit 3N Eigenmo-
den (siehe Kap. 4.2). Dies konnen grundsitzlich in
N longitudinale und 2N transversale Moden aufge-
teilt werden. Allerdings sind die Eigenmoden in ani-
sotropen Festkorpern nicht exakt longitudinal, resp.
transversal. Diese Unterscheidung bleibt nur erhal-
ten, wenn die Ausbreitungsrichtung einer Richtung
hoher Symmetrie entspricht. Wir betrachten hier nur
diesen einfacheren Fall.

4.3.1 Richtungsabhiingigkeit

In einem dreidimensionalen Gitter findet man im
Wesentlichen die gleiche Art von Schwingungen wie
bei der Kette. Allerdings werden hier nicht mehr
einzelne Atome ausgelenkt wie im eindimensiona-
len Fall, oder Volumenelemente wie im kontinuier-
lichen Fall, sondern ganze Netzebenen. Abb. 4.24
zeigt die Netzebenen senkrecht zur Ausbreitungs-
richtung. Fiir diese gilt, dass alle darin enthaltenen
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I k
Longitudinalwelle —
Xs Ks+1 Ks+2 X543
e

Abbildung 4.24: Longitudinalwelle.

Atome die gleiche Auslenkung zeigen. Im Fall von
Abb. 4.24 ist diese Auslenkung parallel zur Ausbrei-
tungsrichtung k, d.h. es handelt sich um eine Longi-
tudinalwelle.

Transversalwelle

%sh’l

s q X1

Abbildung 4.25: Transversalwelle.

Abb. 4.24 zeigt die entsprechende Situation fiir eine
Transversalwelle. Hier ist die Auslenkung parallel
zur Netzeben, senkrecht zur Ausbreitungsrichtung
k. Die Eigenmoden des dreidimensionalen Gitters
bestehen aus der Auslenkung von Netzebenen ent-
weder parallel oder senkrecht zur Ausbreitungsrich-
tung. Allerdings stimmt dies nur dann exakt wenn
der Wellenvektor parallel zu einer Symmetrieachse
des Gitters liegt - beim kubischen Gitter beispiels-
weise entlang der (100), (110), oder (111) Richtung.
In diesem symmetrischen Fall steht der Wellenvektor
(z. B. k= [100]) jeweils senkrecht auf der entspre-
chenden Netzebene (z. B. (100)). Wir behandeln hier
nur diesen Fall.

Wie im eindimensionalen Fall nehmen wir an, dass
die Kraft auf eine ausgelenkte Netzebene propor-
tional sei zur Auslenkung der Ebene gegeniiber ih-
ren Nachbar-Ebenen. In diesem Fall konnen wir eine

harmonische Bewegungsgleichung hinschreiben,

d?x,
dr?

= C(-xs—i-l + X1 — zxs) ,

welche durch eine ebene Welle gelost wird:

X = eri(ksq—a)t)‘

Hier stellt ¢ den Abstand zwischen den Netzebenen
dar.

50
| Cu

) Lad $
e =] ==}

10-12 o (radiansfsec)

<

B.Z.

0
(4%40) < q (000}
Abbildung 4.26: Dispersion von Kupfer: longitudi-

nale und transversale Zweige.

Im Allgemeinen gehdren zu jedem Wellenvektor ei-
ne longitudinale und zwei transversale Moden, deren
Dispersion unterschiedlich sein kann. Die Frequenz
der transversalen Moden liegt fiir grole Wellenlidn-
gen immer unterhalb der Frequenz der longitudina-
len Moden, wie im Fall kontinuierlicher Systeme.

Im Allgemeinen Fall bewegen sich die Gitterato-
me weder senkrecht noch parallel zur Ausbreitungs-
richtung, sondern besitzen sowohl longitudinale wie
auch transversale Komponenten. Dies fiihrt auch
dazu, dass der Energietransport nicht in Richtung
des Wellenvektors lduft, wie bereits im Rahmen der
Kontinuumsmechanik diskutiert.

Fiir die folgende Diskussion werden wir longitudi-
nale Schwingungen diskutieren. Die Ergebnisse sind
jedoch direkt auf transversale Schwingungen iiber-
tragbar.
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M, C M,
Us Vs

Abbildung 4.27: 1D Kette mit 2 Atomen pro Ein-
heitszelle.

4.3.2 Zweiatomige Basis

Wir betrachten als nédchstes den Fall von zwei un-
terschiedlichen Atomen pro Elementarzelle. Dieser
Fall hat keine Entsprechung im Kontinuums-Modell.
Wir bezeichnen die Auslenkung der blauen Atome
mit u; und die Auslenkung der roten Atome mit vy,
wobei s den Index der entsprechenden Elementarzel-
le darstellt. Die beiden Massen seien M; und M,.
Im dreidimensionalen Fall entsprechen die Atome
jeweils Netzebenen.

Wie in Kapitel 4.1.2 nehmen wir an, dass nur die
Wechselwirkungen zwischen nédchsten Nachbarn ei-
ne Rolle spielen (siehe Abb. 4.27). Fiir die beiden
Atomsorten gelten die Bewegungsgleichungen

Mliis
MZ‘.}.S =

C (vs+vs—1 —2uy)
C (Ust1 +us —2vy).

Die Kraftkonstante C ist abhingig von der ,,Feder®,
also vom interatomaren Potenzial, wir nehmen hier
an, dass beide Wechselwirkungen gleich seien.

Als Losungsansatz wihlen wir eine ebene Welle mit
Wellenvektor k und Frequenz ®:

Uy = UOeikSaefia)t Vg = Voeik(er%)aefia)t.

Wir betrachten also eine Welle, bei der die beiden
Atomsorten unterschiedlich stark, jedoch mit der
gleichen Frequenz und dem gleichen Wellenvektor
ausgelenkt werden (sonst wire es keine Welle). Die
Ortsabhiéngigkeit von v, beriicksichtigt die Tatsache,
dass sich diese Atome in der Mitte der Einheitszelle
befinden. Durch Einsetzen erhalten wir

k
MUy = 2CVOCOS§—2CU0

k
MoV = 2CU0cos7“—2CV0. (4.1

Diese Gleichungen sind homogen und linear und wir
haben drei Unbekannte(®, Uy, Vp). Eine Losung exi-
stiert nur dann, wenn die Determinante des Glei-
chungssystems verschwindet, d.h.

2C — M, @?
—2Ccos %“

—2Ccos %“

2C — Mr? =0

oder
M\Mro* —2C(M; + M) »*
k
+4C(1 —coszg) =0

Wir betrachten dies als eine quadratische Gleichung

fiir ” und ersetzen 1 — cos? %" — sin? %“ Die allge-

meine Losung ist
o - cf 4+ L
B My M,

L 1 N 1\> 4
—_— _— — st —.
M, M MM, 2

Offenbar erhalten wir also 2 unterschiedliche Losun-
gen, d.h. 2 unterschiedliche Frequenzen pro Wellen-
vektor!

4.2)

4.3.3 GrofBie Wellenlingen
Wir betrachten zunichst den Grenzfall groer Wel-

lenldngen, also ka < 1. Dann konnen wir die Fre-
quenz anndhern als

M, M,

Q

~ C 1 . 1
- My M
1 1 k2a2
Nl L 12M1M21
Ml M2 E—i_ﬁz
1 1
= C|l—+— 4.3
<M1+M2> 4.3)
1 1 k*a?
+C|—+—— .
|:Ml M, 2(M, +M2)]
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Fiir das negative Vorzeichen erhalten wir

a)zwg k2a2
“T 2 My +M,

oder

c

O, ~ ka O E—
“ 2(My + M)

2 C
2\ My M) /2

Dies entspricht genau dem Resultat das wir erwar-
ten wiirden, wenn beide Massen identisch wéren, je-
weils mit der Masse (M + M,)/2. Die Amplituden
erhalten wir aus (4.1):

—M, (DZU()
—Mz(i)ZVO

2C(Vo — Up)
2C(Uy — V).

Da w — 0 verschwindet die linke Seite und die
Auslenkung der beiden Massen muss etwa iden-
tisch sein, Uy ~ V. Diese Schwingung entspricht
somit weitgehend dem Fall identischer Massen. Bei
kleinen Wellenzahlen sind die beiden Massen prak-
tisch in Phase, die Auslenkungen benachbarter Ato-
me (unterschiedlichen Typs) sind praktisch gleich.

4.3.4 Optischer Ast

Der zweite Losungsast ergibt sich aus dem positiven
Vorzeichen in Gl. (4.3). Wir erhalten fiir grole Wel-
lenldngen, d.h. ka < 1,

Interessant ist, dass hier die Frequenz hoch ist, auch
fiir sehr kleine Wellenvektoren. Sie ist sogar hoher
als die maximale Frequenz fiir eine einatomige Ba-
sis. Dies wird verstidndlich wenn wir uns auch die
Auslenkungen anschauen. Wir setzen in Gl. (4.1) die
Losung fiir die Frequenz ein und cos(ka/2) — 1 und
erhalten

1 1
7_’_7

wg%2C<M Y
1 2

1 1
—M2C| —+— Uy = 2C(Vy—-U,
! <M1+Mz) o (Vo —Up)
w2c (v L\ v = aco-w)
) w tan ) = 0o— Vo).

Division der beiden Gleichungen ergibt

Uy M

Vo o M
d.h. die beiden Auslenkungen haben entgegenge-
setztes Vorzeichen. Das bedeutet, dass sich die bei-
den Atomsorten gegenphasig bewegen. Die Fre-
quenz ist gegeben durch die Kraftkonstante und die
reduzierte Masse fiir diese Bewegung. Wir haben
also wiederum eine stehende Welle vorliegen. Die
Wellenlidnge dieser Schwingungen ist grof3, da iden-
tische Atome praktisch in Phase schwingen. Trotz-
dem sind benachbarte Atome auBler Phase, da es sich
um unterschiedliche Atomsorten handelt.

N B

Abbildung 4.28: Auslenkung der Atome im akusti-
schen und optischen Ast.

Diese Art von Schwingungen unterscheidet sich aber
wesentlich von den Schwingungen die wir aus dem
einatomigen Gitter kennen, insbesondere wenn die
beiden Atomsorten unterschiedlich geladene Ionen
darstellen: in diesem Fall wird im Kristall ein oszil-
lierendes elektrisches Dipolmoment angeregt. Die-
ser Schwingungstyp kann dadurch an optische Fel-
der ankoppeln und wird deshalb als optischer Ast
bezeichnet. Im Gegensatz dazu wird der niederfre-
quente Ast akustischer Ast genannt.

4.3.5 Verhalten am Zonenrand

Als néchstes diskutieren wir die Losungen fiir k =
7/a, d.h. A = a/2. Dies entspricht dem Rand der er-
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a=M\/2

M, C M )
— p— \

Vg

Abbildung 4.29: Zweiatomige Basis am Rand der

Brillouinzone.

sten Brillouin-Zone. Fiir k = 7/a erhalten wir aus
4.2)

1 1
2
o = C|—+—
<M1+M2>
1 1\* 4
A e
M, M MM,
1 1 1 1
= Cl—+—)xC(——-—
<M1+Mz> (Ml M2>
sodass
2
w2:£ oder w2:2£
M, M,

Sofern die beiden Massen unterschiedlich sind, er-
halten wir somit auch am Zonenrand zwei unter-
schiedliche Frequenzen. Die Amplituden erhalten
wir, indem wir in (4.1) ka — 7 setzen:

M, a)2U0
M2w2V0

2CUy
2CV.

Dies ergibt fiir @ = 2C/M,
M

2CU, = 2CU, xﬁw:w%
1

oder
Vo =0, Uy = beliebig.
Fiir ©? = 2C/M, erhalten wir analog

U() = 0, V() = beliebig.

Offenbar schwingen die beiden Atomsorten hier un-
abhingig voneinander. Je eine Atomsorte wird nicht
ausgelenkt.

Aus den Dispersionsrelationen folgt, dass am Zonen-
rand der akustische Ast seine maximale Frequenz

Abbildung 4.30: Auslenkung der Atome im akusti-
schen und optischen Ast.

erreicht, der optische Ast seine minimale Frequenz.
Zwischen den beiden Zweigen existiert eine Liicke,
d.h. ein Bereich in dem keine Schwingungsfrequen-
zen auftreten. Dieser sogenannte “verbotene” Be-
reich hiingt von den unterschiedlichen Massen ab.

My =2Mj Mjp =My
M, =4M,
w
My =4Mq
0 T T
0 n/2 T
ka

Abbildung 4.31: Einfluss des Massenverhiltnisses
auf den akustischen und optischen
Ast.

Wenn die beiden Massen identisch sind, verschwin-
det dieser verbotene Bereich, die beiden Aste beriih-
ren sich am Rand der Brillouin-Zone. Diese Situati-
on entspricht aber gerade dem Fall einer zweiatomi-
gen Basis, also einem nicht-primitiven Gitter.

Das bedeutet, dass die erste Brillouin-Zone eigent-
lich doppelt so groB ist, wenn wir das primitive Git-
ter im direkten Raum betrachten. Durch die Wahl ei-
nes nicht primitiven Gitters wird ein Teil des Kur-
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Abbildung 4.32: Faltung der Dispersionsrelation bei
Verdoppelung der Einheitszelle.

venverlaufs gefaltet und erscheint als optischer Ast.
Je grofler der Unterschied zwischen den Massen
wird, desto weiter Offnet sich die Liicke zwischen
den beiden Bindern.

AuBerhalb der Brillouinzone setzt sich das Muster
periodisch fort: @(G+ G) = 0(q).

B
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Abbildung 4.33: Dispersion der Schwingungsmo-
den in KBr.

Ein typisches Beispiel ist KBr. Die kubische Struk-
tur fiithrt zu einem relativ einfachen Phononenspek-
trum mit der minimalen Anzahl von Asten: longi-
tudinal und transversal akustisch, longitudinal und
transversal optisch. Die vier Aste zeigen allerdings
einen etwas anderen Verlauf als in der hier diskutier-
ten, stark vereinfachten Theorie. Insbesondere héingt
der Verlauf von der Richtung von k ab, da die Krif-
te nicht isotrop sind. Aulerdem liegen die Maxima
der akustischen Aste und die Minima der optischen

Aste nicht immer am Rand der Brillouinzone. Dies
liegt einerseits daran, dass das Gitter nicht primitiv
ist, zum anderen an der Art der Wechselwirkungen.

4.3.6 Inelastische Streuung

Phononen kénnen durch inelastische Streuprozesse
erzeugt, resp. vernichtet werden. Dies kann durch in-
elastische Rontgenstreuung oder durch Neutronen-
streuung geschehen. Auf diese Weise werden die
Dispersionsrelationen wie z. B. diejenige von Abb.
4.33 bestimmt.

elastisch
gestreut

4

. zum
—77 Detektor

einfalldender
Strahl

Ay

Abbildung 4.34: Impulse beim inelastischen Streu-
prozess.

Die Impulserhaltung fordert fiir die Streuung
k+G =K +K,

wobei k, k' die Wellenvektoren des einfallenden und
des gestreuten Teilchens bezeichnen, G einen Git-
tervektor, und K den Wellenvektor eines Phonons,
welches beim Streuprozess erzeugt wurde. Der Git-
tervektor kann immer so gewihlt werden, dass K
in der ersten Brillouinzone liegt. Das Vorzeichen ist
positiv, wenn ein Phonon erzeugt, negativ wenn ei-
nes vernichtet wird. Natiirlich muss gleichzeitig die
Energieerhaltung gewihrleistet sein, d.h. die Energie
des Phonons muss vom gestreuten Teilchen aufge-
nommen, resp. abgegeben werden.

Die gleichzeitige Erhaltung von Impuls und Ener-
gie ist nicht mit allen Sonden leicht zu erreichen.
Die Frequenz eines Phonons liegt bei etwa 0...10'?
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Hz, die Wellenldnge bei ~ 1 nm. Elektromagneti-
sche Wellen mit eine Wellenldnge von 1 nm (al-
so Rontgenstrahlung) besitzen eine Frequenz von
v =c/A =3-10" Hz; diese ist also um mehrere
GroBenordnungen hoher als die der Phononen. Bei
inelastischer Streuung mit Photonen muss also eine

sehr geringe Energieverschiebung gemessen werden.

Inelastische Streuexperimente mit sichtbarem Licht
konnen Phononen erzeugen und vernichten, wobei
die Frequenz des Photons verschoben wird. Handelt
es sich um ein optisches Phonon, so spricht man von
Ramanstreuung, bei einem akustischen Phonon von
Brillouinstreuung. Bei sichtbarem Licht ist die Wel-
lenldnge sehr viel groBer als eine Einheitszelle und
damit der Impuls der Photonen sehr viel kleiner als
der kleinste Kristallimpuls. Deshalb erhilt man da-
mit keine Richtungsinformation.

4.3.7 Phononenspektroskopie mit
thermischen Neutronen

Neutronen mit einer Temperatur von 300 K (sog.
thermische Neutronen) hingegen besitzen eine Ener-
gie von kgT, entsprechend einer Frequenz v =
kgT /h = 0.7 - 10'3 Hz. Der Impuls betrigt

p V2mé& = \/2mkyT
kg

V2-1,7-10-27-4,1.10-21 =8
S

024 mkg‘
S

3,71

Dies entspricht einer Wellenlidnge von

h  6,6-107%

371020

=0,18nm,

also gerade die richtige GroBenordnung. Neutronen
sind deshalb fiir die Messung von Gitterschwingun-
gen ideal geeignet, da bei der Beugung von Neutro-
nen Energie und Impuls gleichzeitig erhalten werden
konnen.

Fiir eine solche Messung benutzt man z.B. ein sog.
Dreiachsenspektrometer. Abb. 4.35 zeigt schema-
tisch ein solches Spektrometer. Die drei Achsen ent-
sprechen dem Monochromator, welcher Energie und

vom Reaktor

Abbildung 4.35: 3-Achsen Neutronenspektrometer.

Impuls der einfallenden Neutronen bestimmt, der
Probe, wo die inelastische Streuung stattfindet, so-
wie dem Analysator, wo Energie und Impuls der ge-
streuten Neutronen gemessen werden. Das Spektrum
enthélt pro Atom der Einheitszelle jeweils drei Pho-
noneniste. Die ersten drei sind akustische Phononen,
die weiteren optische.

4.4 Phononen und spezifische
Wirme

Bisher haben wir die Dispersion, also die Bezie-
hung zwischen Frequenz und Wellenldnge der Git-
terschwingungen diskutiert. Jetzt werden wir uns mit
der Amplitude der Schwingung beschiftigen, sowie
mit der Energie, welche in den Schwingungen ge-
speichert ist.

Aus der klassischen statistischen Mechanik erwarten
wir, dass die spezifische Wirme unabhiingig von der
Temperatur bei rund 3R ~ 25 J/(Mol K) liegen soll-
te - das ‘Gesetz’ von Dulong-Petit. Experimentell
findet man héufig bei hohen Temperaturen ein Ver-
halten, das dieser Voraussage etwa entspricht. Bei
niedrigen Temperaturen hingegen fallt die Wirme-
kapazitit gegen Null ab - in krassem Widerspruch
zu Dulong-Petit. Um diesen Befund zu erkliren, be-
notigen wir eine quantenmechanische Beschreibung
der Gitterschwingungen.
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4 Gitterschwingungen und Phononen

4.4.1 Phononen

Die Anregungen der Gitterschwingungen, also ihre
Amplituden, werden durch die Quantenstatistik be-
stimmt. Wir betrachten die gleichen Normalschwin-
gungen wie bisher, benutzen aber die Quantenme-
chanik, um ihre Anregungen zu berechnen.

Wie beim harmonischen Oszillator kdonnen die Git-
terschwingungen in diskrete Zustdnde angeregt wer-
den. Die Energie der entsprechenden Zustéinde be-

tragt
1
&= (n + > ho.

2

Die ganze Zahl n indiziert die Anregung dieser Mo-
de. Man verwendet in diesem Zusammenhang ger-
ne ein Teilchenbild, in dem ein Anregungsquant
als Phonon bezeichnet wird. n bezeichnet dann die
Zahl der Phononen in der entsprechenden Mode. Der
Term 1/2 zeigt an, dass immer eine Nullpunktsener-
gie existiert, d.h. die Energie im Grundzustand ist
hoher als die reine potenzielle Energie. Neben der
Energie 7o besitzen die Phononen einen Impuls 7k,
und einen Spin § = 1, d.h. es handelt sich um Boso-
nen.

Zu jeder Eigenschwingung mit Wellenvektor k und
Kreisfrequenz @ gehort somit eine temperaturabhén-
gige Zahl von Phononen. Geméf3 der Beziehung von
de Broglie kann man den Phononen einen Impuls
P = Ik zuordnen. Es ist aber wichtig zu realisieren,
dass es sich hierbei nicht um einen physikalischen
Impuls der Gitteratome handelt.

Auslenkung
atomarer Impuls

Abbildung 4.36: Auslenkung und Impuls der Gitter-
atome.

Wie man sich leicht iiberzeugen kann, ist dieser fiir
alle Anregungen gleich null, auBer wenn k£ = 0. Es
ist aber trotzdem niitzlich, diese Grofe als Impuls
zu betrachten und man bezeichnet sie hiufig als Kri-

stallimpuls. Auf diese Weise kann man z.B. inelasti-
sche Streuung von Photonen erklédren, bei denen die
Impulserhaltung gilt, sofern man den Kristallimpuls
des gestreuten Phonons beriicksichtigt.

4.4.2 Energie pro Gitterschwingung

Der Energieinhalt eines Kristalls setzt sich aus unter-
schiedlichen Beitrdgen zusammen. Einer dieser Bei-
trige ist die Energie der Gitterschwingungen. Diese
berechnen wir als Summe iiber alle Schwingungs-
freiheitsgrade. Alle Gitterschwingungen bei unter-
schiedlichen Wellenvektoren sind unabhiéngig von-
einander. Zunéchst bestimmen wir deshalb den Ener-
gieinhalt einer einzelnen Gitterschwingung bei der
Temperatur 7.

w

\
' 4

=

0

0 m/a

Abbildung 4.37: Zwei unabhingige Phononenfrei-
heitsgrade.

Analog zur Herleitung des Planck’schen Strah-
lungsgesetzes gehen wir aus von der Boltzmann-
Verteilung, welche das Verhiltnis der Besetzungs-
zahlen zweier benachbarter Zusténde beschreibt:

Nn+1

Ny
Die Besetzungswahrscheinlichkeit fiir den Zustand
mit » Phononen ist damit
= ZSNY - Z_g efsha)/kBT .

_ e*h(l)/kBT.

efnhﬂ)/kBT

Pn

Fiir Besetzungswahrscheinlichkeiten gilt 0 < p, <1
und Y ps = 1. Daraus bestimmen wir den Erwar-
tungswert fiir n, also die mittlere Anregung:

Z — 255Ny _ Zsseimw/kBT
=P T LN T e el

{n)
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Wir benutzen die Abkiirzung x = e "@/kT  sodass
Y sxf
(n) = Z—.
Lx
Der Nenner entspricht einer geometrischen Reihe:
1
sz = .
s I—x

Der Zihler kann durch Ableitung in einen entspre-
chenden Ausdruck umgeformt werden:

s . d _ .4 _
zs:sx —xdxzs:xg—xdx< )_

Damit ist die mittlere Anregung

1

1—x

X

(1—x7

X

<n> = ZS S-X:A = (1—)6)2 g X
x5 1 1—x
Ls I—x
e—h(l)/kBT 1

1 — e—ho/ksT ~— pho/kgT _ 1"

0.0+~

05
Temperatur ksT/Aw

Abbildung 4.38: Erwartungswert der Phononenzahl
bei tiefer Temperatur.

Dies ist die Planck-Verteilung. Die mittlere Ener-
gie einer Gitterschwingung (oberhalb der Nullpunkt-
senergie) betrigt damit

J10)

(€)= eho/ksT _ 1"

Fiir hohe Temperaturen, T >> ho/kp konnen wir die
Exponentialfunktion entwickeln und erhalten

kT
 ho’

{n)

d.h. die mittlere Phononenzahl ist - bei hohen Tem-
peraturen - proportional zur Temperatur.

Fiir die mittlere Energie erhalten wir entsprechend
(&) =kgT,

in Ubereinstimmung mit dem semiklassischen Aqui-
partitionsprinzip.

4.4.3 Zustandsdichte

Um die gesamte in Kristallschwingungen gespei-
cherte Energie zu berechnen, miissen wir iiber samt-
liche Schwingungsfreiheitsgrade summieren. Wie
bereits erwihnt, gehdren zu jedem Wellenvektor
3 Polarisationsfreiheitsgrade. Insgesamt miissen im
Kiristall pro Atom 3 Schwingungsmoden existieren.

Wir betrachten hier den kontinuierlichen Grenzfall,
in dem die Summe iiber alle Freiheitsgrade zu einem
Integral iiber eine kontinuierliche Verteilung wird.
Im Frequenzraum schreiben wir fiir die Energie

ho
U:/dek(w)m,
wobei D; () die Zustandsdichte bezeichnet, also
die Anzahl Zustinde deren Frequenz zwischen @
und ® + do liegt. Fiir die Berechnung dieser Gro-
Be betrachten wir zunichst die Zustandsdichte im k-
Raum.

Dazu fithrt man periodische Randbedingungen ein,
d.h. man verlangt, dass die Schwingungen im direk-
ten Raum periodisch sind, u; = ugp, mit einer Peri-
ode L = Na, wobei N > 1 und wir alle drei Richtun-
gen als gleichwertig betrachten. Diese Periode ent-
spricht z.B. der Grofe des Kristalls. Man ‘biegt’ al-
so den Kristall in einer hoheren Dimension zu einem
Ring. Dies ist ein niitzliches Hilfsmittel, welches die
mathematische Behandlung vereinfacht, auch wenn
es nicht der physikalischen Wirklichkeit entspricht.
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LI @ Kristall

L>>a
.

periodische Randbedingungen

# Zustande

mit k < k]mlx
3
N= 4T ()

Abbildung 4.39: Zustinde im k-Raum.

Dies bedeutet, dass im reziproken Raum nur Wellen-
vektoren mit Ky, , = +2n, . /L mit ny . =0, 1, ....
N vorkommen konnen. Die Zustandsdichte (pro Po-
larisation) im k-Raum wird damit

1 Vv
Dk)=—F==-—=
(k) (2n/L)® 8m3
mit V = L? dem Volumen des betrachteten Kristalls.
Die Dichte (im k-Raum) ist somit konstant und pro-
portional zum Volumen des Kristalls.

Die gesamte Zahl von Zustdnden, deren Wellenvek-
tor kleiner ist als &y, ergibt sich damit aus der kon-
stanten Dichte multipliziert mit dem Volumen einer
Kugel mit Radius &, zu

4 L\’4n
R e e
\%4
= ks
max g2

Die Zustandsdichte im Frequenzraum erhalten wir
durch Ableitung nach ®:

kK dk

_ dN(w) dN(k) dk
a - 2m2do’

do dk do

D()

wobei wir den Index ., nicht mehr geschrieben
haben. Wir konnen also die Zustandsdichte und da-
mit den Energieinhalt und die spezifische Wirme be-
rechnen, wenn wir die Dispersionsrelation (k) ken-
nen.

4.4.4 Debye-Modell

Ein besonders einfaches und erfolgreiches Modell
fiir die Zustandsdichte ist dasjenige von Debye. Es
beruht auf der Annahme einer konstanten Schallge-
schwindigkeit vy, was fiir die Dispersionsrelation

w
ow=vik oder k= —
Vs
und damit
dk 1
do vy
ergibt.
Tw
e .
o5
0 : >
0 m/2a n/a

k

Abbildung 4.40: Vereinfachte Dispersion im Debye-
Modell.

Dies ist offensichtlich eine gute Nédherung fiir kleine
Wellenvektoren, wo die Schallgeschwindigkeit kon-
stant ist. Wir erwarten Abweichungen wenn kurze
Wellenlidngen relevant sind.

Mit dieser Ndherung wird die Zustandsdichte

K odk o?

D(@)=V——=V_——,
2n2do 2m2y3

4.4
Die Zustandsdichte wichst somit quadratisch mit der
Frequenz. Im Debye-Modell wird aulerdem ange-
nommen, dass v, und damit die Zustandsdichte im k-
Raum isotrop sei. Wie wir bereits bei der klassischen
Diskussion der Gitterschwingungen gesehen hatten,
gibt es aber einen maximalen Wert fiir den Wellen-
vektor, der physikalisch sinnvoll ist, und der dem
Rand der ersten Brillouinzone entspricht. An diesem
Punkt sinkt die Zustandsdichte auf 0. Die Form der
Brillouinzone wird im Debye Modell durch eine Ku-
gel ersetzt, wobei der Radius kp der Kugel so ge-
wihlt wird, dass die Zahl der Moden innerhalb die-
ser Kugel der Zahl der Moden im Kristall entspricht,
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d.h. (ohne Beriicksichtigung der Polarisation) gleich
der Anzahl N der Atome im Kristall:

(LN 4 5 (Lkp)’
“\2n) 3P e6n?
sodass
V6n2N \3/6712N
kD: p— 5
L \%

wobei V = L3 das Kristallvolumen darstellt. Die zu-
gehorige Grenzfrequenz betréigt

Diese ist somit (sinnvollerweise) nur von der Dichte
N/V (Zahl der Atome pro Volumen) abhingig, und
nicht von der Anzahl Zellen oder dem Kristallvolu-
men.

Abbildung 4.41: Zustandsdichte im Debye-Modell.

Im Debye-Modell ist die Zustandsdichte also gege-
ben durch

D(w) = {

Die gesamte Energie der Gitterschwingungen erhal-
ten wir durch Integration iiber samtliche Frequenzen
als

_@*
272v}

Vv
0

fiir o < wp

fiir(l)>(1)D.

how

®p
dOV 507 olsT — 1

0

Im Rahmen des Debye-Modells nehmen wir aul3er-
dem an, dass die Schallgeschwindigkeit vy nicht von

der Polarisation abhingt. Dann kdnnen wir die ge-
samte Energie erhalten, indem wir mit der Anzahl 3
der Polarisationsfreiheitsgrade multiplizieren.

p
/ do
0

Wir substituieren fiir das Verhéltnis aus Phononen-
Energie zu thermischer Energie

3Vh 3

- 273

(O]
ehw/kBT _ l !

hi kgT
x:kB—a} odera):xBT
und
kgT
do=dx—.
h

Damit wird die gesamte Energie

xp
/ dx
0

4.4.5 Debye-Temperatur

3

e —1

_ 3VikgT?

=35 4.5
220313 )

Die obere Integrationsgrenze

h(l)D_Q

DT T T

bezeichnet das Verhiltnis aus der Debye-Energie
hwp und der thermischen Energie. Hier bezeichnet
0 die Debye-Temperatur

_hap vy s[6n°N

=P —
kp kg |7

d.h. als Temperaturdquivalent der Debye-Frequenz.
Diese gibt die Temperatur an, unterhalb derer sich
bei der spezifischen Warme Quanteneffekte bemerk-
bar machen. Fiir Temperaturen oberhalb der Debye-
Temperatur sind alle Moden angeregt, da ja oberhalb
der Debye-Frequenz keine Moden existieren.

Sie ist proportional zur Schallgeschwindigkeit des
Materials und somit hoher fiir harte Materialien. Ty-
pische Metalle haben Debye Temperaturen, die nahe
bei der Raumtemperatur liegen. Das Maximum wird
erreicht beim Diamant, wihrend die Edelgase, wel-
che Van der Waals Kristalle bilden, eine relativ nied-
rige Debye-Temperatur haben. Das gleiche gilt fiir
die Alkalimetalle, welche sehr weich sind.
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Li Be B C N 0 F Ne
344 1440 2230 75
0.85 | 2.00 0.27 | 1.29
Na Mg Al Si P S Cl Ar
158 400 Tieftemperaturgrenze von 8, in Kelvin 428 645 92
1.41 | 1.56 Wirmeleitzahl bei 300K, in W cm- ! K-! 2.37 | 1.48

K Ca Sc Ti v Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

91 230 360. | 420 §380 {630 410§ 470 445 450 343 327 320 374 282 90 72
1.02 0.16 | 0.22 } 0.31 ] 0.94 | 0.08 | 0.80 | 1.00 | 0.91 | 4.01 | 1.16 ] 0.41 | 0.60 | 0.50 | 0.02
Rb Sr Y Zr Nb Mo | Tc Ru Rh Pd Ag Cd In Snw |Sb Te I Xe
56 147 3280 | 291 {275 450 600 §480 {274 225 209 §108 §200 j211 153 64
0.58 017 1023 | 0.54 | 1.38 | 051 | 1.17 | 1.50 | 0.72 | 4.29 | 0.97 | 0.82 | 0.67 | 0.24 | 0.02
Cs Ba La 3 | Hf Ta w Re Os Ir Pt Au Hg TI Pb Bi Po At Rn

38 110 142§ 252: § 240 §400 § 430 | 500 ‘§420° | 240 165 1719 §785 3105 119
0.36 0.14 | 023 | 058 | 1.74 | 048 | 0.88 |1.47 | 0.72 | 3.17 0.46 | 0.35 | 0.08

Fr Ra Ac

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

3 200 210 : 120 {210
0.11 | 0.12 ] 0.16 0.13 011 J 0.11] 011 J0.16 J0.14 | 0.17] 0.35 | 0.16

Th Pa U Np Pu Am Cm Bk Ccf Es Fm Md No Lr

163 207
0.54 0.28 | 0.06 | 0.07

Tabelle 4.1: Debye-Temperatur der Elemente.

Mit dieser Definition wird die Anderung der Energie pro Temperatureinheit:
0 7w 361N dUu d 3Vh [ o’
XD = = = cy = —— = —— do————
r kgTV 'V dT  dT 273 Jo eho/ksT 1
oder 3VH? wp w* "0/ksT
 2m2v3kpT? /0 (eho/ksT — 1)2

(=1

0

(9)3 B (hvs >3 6m°N

? N kgT \% ' T 3 "XD X
5 9kgN < ) / dxx* ¢

Wir substituieren diesen Ausdruck in (4.5) und er- 0

halten Fiir hohe Temperaturen (d.h. kleines x) konnen wir

T\> [ X3 diesen Ausdruck annidhern durch
U =9kpgTN (9) / dx T (4.6)
0 e’ — 3
T XD
%N () / dxx?
0 0
3

T
= 3kgN <9> x3, = 3kgN.

Q

wobei x = hiw /kpT . v

4.4.6 Spezifische Wirme im Debye-Modell
Praktisch misst man nie den gesamten Energieinhalt, Bezogen auf ein Mol erhalten wir
sondern die Anderung der Temperatur pro zugefiihr- j

te Energieeinheit, resp. die spezifische Wérme, d.h. cv 3R= 24,94@-
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Dies entspricht auch dem Resultat der klassischen
Mechanik, unabhiingig vom Material.

Theorie 3R Experiment

Co [J/MolK]
<

-l

spezifische Warmekapazitat

o
Temperatur inK

0 02 04 06 08
reduzierte Temperatur T/6

Abbildung 4.42: Temperaturabhéngigkeit der spezi-
fischen Wirme im Debye-Modell
und im Experiment.

Tatsédchlich findet man experimentell fiir viele Mate-
rialien einen Wert in dieser Gro3enordnung, wie in
Abb. 4.42 fiir Germanium und Silizium gezeigt. In
diesem Bereich sind alle Gitterschwingungen voll-
stindig angeregt und die Quantisierung spielt keine
Rolle mehr.

Fiir tiefere Temperaturen 7 < 0 hingegen fillt die
spezifische Wirme stark ab und geht gegen Null.
Dies ist ein Effekt der Quantenmechanik, der durch
das Debye-Modell gut reproduziert wird.

T/@
L 0 12 W 6 18 20 22 24 26
T T T T T T T T T T
g M K o o e
M
6 - o a v

2l
1
w - w

C¥n (Iund IT)
(]

L1 (LT S [ DR
0L G 08 0 12 14 15 8 20 22 24 2f

74:]

L1
0 02

Abbildung 4.43: Temperaturabhéngigkeit der spezi-
fischen Wiarme fiir verschiedene
Materialien.

Viele Materialien zeigen eine Temperaturabhingig-
keit der spezifischen Wirme, welche recht gut mit
dem Debye-Modell iibereinstimmt. Die Kurven I
wurden hier der Ubersichtlichkeit halber in horizon-

taler Richtung, die Kurven III in vertikaler Richtung
verschoben. Wie Abb. 4.43 zeigt, nihert sich die
Molwirme fiir hohe Temperaturen dem klassischen
Wert an. Fiir niedrige Temperaturen erhélt man aber
wesentlich tiefere Werte, welche fiir T — 0 gegen
Null gehen.

4.4.7 Das T3 Gesetz

Fiir kleine Temperaturen, 7 < 6 oder x > 1 finden
wir eine gute Niherung fiir die Energie indem wir
die obere Grenze des Integrals xp = 0/T gegen un-
endlich gehen lassen: fiir x > 1 wird der Integrand
wegen der Exponentialfunktion sehr klein und der
Fehler, den wir durch die erweiterte Integrations-
grenze machen, vernachldssigbar. Wir erhalten aus
(4.6)

U= 9kBTN< )/dx

Fiir die Integration benutzen wir, dass

1 1

1

~a a-—1

I

indem wir setzen a = ¢*. Damit wird

“ x3 _ “ 3 —5X
/deex_l = /dex Ze

N

oo

s /0

Fiir das Integral finden wir in einer Tabelle

oo m m'x
n ax
/0 dxx"e ; T
Fiir m = 3,a = —s erhalten wir
I 3 (_1)r6x3—r
d 3 —sx X )
/0 xx’e e rg‘)—@—r)!(—s)’“

An der oberen Grenze des Integrals (co) verschwin-
den alle Terme. An der unteren Grenze (x = 0) ver-
schwinden ebenfalls alle Terme aufler » = 3. Damit
wird

/w dxx3e ™ = g
0 st
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und
d —_=—
/0 ¥ ;s“ 15

wobei fiir die Summe wiederum auf eine For-
melsammlung verwiesen werden muss.

)3
T
(]

3
X _6
e —1

Damit wird die Energie
3n4
U=—kTN| =

(5

und die Wirmekapazitit

T

127*
5

_dU _
==

3 7\ 3

Ccy =234 kBN — .
) = (5)
Diese Form ist als Debye’sches T3 Gesetz oder De-
bye’sche 7° Niherung bekannt. Es kann qualita-
tiv leicht interpretiert werden: bei einer Temperatur
T sind diejenigen Moden aktiviert, deren Schwin-
gungsfrequenz kleiner sind als kgT /Fi.

2223
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d
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Abbildung 4.44: Wirmekapazitit von festem Argon
bei tiefer Temperatur.

Ein schones Beispiel fiir dieses 73 Verhalten wird
von Argon geliefert. Die gute Ubereinstimmung
mag zunidchst erstaunen, ist das Modell doch rela-
tiv einfach. So widerspricht z.B. die Annahme ei-
ner konstanten Schallgeschwindigkeit der Tatsache,
dass die Schallgeschwindigkeit an der Oberfliache
der Brillouin-Zone gegen Null geht. Die Moden in
diesem Bereich sind aber gerade die mit den hoch-
sten Energien und deshalb bei tiefen Temperaturen
praktisch nicht mehr angeregt. Der Temperaturbe-
reich, der hier gezeigt wird, liegt um mehr als ei-
ne GroBenordnung unterhalb der Debye-Temperatur
von Argon (04, = 92K).

4.4.8 Vereinfachtes Modell

Man kann das 73 Gesetz auch mit Hilfe eines noch
einfacheren Modells herleiten. Dazu nimmt man an,
dass alle Moden, deren Phononenenergie klein ist
gegeniiber der thermischen Energie, i < kgT voll-
standig angeregt sind, alle Moden mit héherer Ener-
gie gar nicht. Fiir eine Dispersionsrelation @ = vk
bedeutet dies fiir die Wellenvektoren: Alle Moden
mit Wellenvektor

kpT

k<kr= P

sind vollstindig angeregt, alle kurzwelligeren (d.h.
hoherfrequenten) Moden gar nicht. Die maximale
Wellenzahl ist proportional zur Frequenz und damit
zur Temperatur.

Wie wir bereits diskutiert hatten, ist die Zahl der Mo-
den, deren Wellenzahl kleiner ist als ein Maximal-
wert kr gegeben durch die Zahl der Punkte im In-
nern der entsprechenden Kugel im reziproken Raum
und damit zur dritten Potenz von k7. Bei Temperatu-
ren weit oberhalb der Debye-Temperatur 6 sind alle
Moden vollstindig angeregt; die Zahl der angeregten
Moden betrigt dann 3N und die Energie entspricht
dem klassischen Grenzwert 3NkgT . Bei Temperatu-
ren unterhalb der Debye-Temperatur sollte die Zahl
der angeregten Moden mit (7'/6)* abnehmen. Damit
betrigt die Energie in diesem Modell

3
T
U =3NkgT (9) .

Die spezifische Wéarme wird damit

) 3
Die T3-Abhingigkeit spiegelt also einfach wieder,
dass die Anzahl der Moden in einer Kugel des k-

Raumes proportional zur dritten Potenz des Radius
dieser Kugel ist.

dUu

T AT

T

Cy 9

= 12Nk3(

4.4.9 Das Einstein-Modell

Im Debye-Modell hatten wir angenommen, dass die
Zustandsdichte im k-Raum konstant sei. Einstein hat
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D(w)

Einstein

Debye

Abbildung 4.45: Vergleich der Zustandsdichten in
den Modellen von Einstein und De-
bye.

ein noch einfacheres Modell aufgestellt, wo alle Pho-
nonen die gleiche Energie haben.

Hier ist die Zustandsdichte also eine d-Funktion. Die
Energie wird dann

3Nho

Damit wird die Wirmekapazitit

dU ho\? oMkt
B (ehw/kBT _ 1)

Wir betrachten zundchst den Grenzfall kT > h®.
Dann kann die Exponentialfunktion entwickelt wer-
den und wir erhalten

3R

Mol

d.h. das klassische Dulong-Petit’sche Gesetz. Bei
hohen Temperaturen ergibt die Einstein’sche Na-
herung also das gleiche Resultat wie die Debye-
Néherung.

Cy = 3NkB =

Bei tiefen Temperaturen, kT < i@, kann die 1 in
(4.7) gegeniiber der Exponentialfunktion vernach-
lassigt werden. Wir erhalten

1
CV o ﬁefflw/kBT7
also einen exponentiellen Abfall.

Bei tiefen Temperaturen passen die experimentel-
len Resultate besser auf die Theorie von Debye, da
die Zustandsdichte der Phononen niedriger Energie
besser durch die Debye-Theorie beschrieben wird.
Das Einstein Modell ist besser geeignet fiir die Be-
schreibung optischer Phononen, wo die Zustands-
dichte stirker auf eine Frequenz konzentriert ist.

Debye
Einstein

spezifische Wirmekapazitit in J/(Mol K)

I I I I L
02 04 0.6 08 1

reduzierte Temperatur T/0

Abbildung 4.46: Temperaturabhéngigkeit der spezi-
fischen Wirme in den Modellen
von Einstein und Debye.

4.4.10 Reale Zustandsdichten

Die einfachen Modelle, die wir bisher diskutiert ha-
ben, konnen die Realitdt nicht exakt wiedergeben.
Die wirklichen Zustandsdichten enthalten z.B. im-
mer Singularititen.

2w}

W

Abbildung 4.47: Reale Zustandsdichte.

Wie diese zustande kommen, kann man bereits an-
hand des einfachen Modells der linearen Kette dis-
kutieren, welches am Anfang dieses Kapitels einge-
fithrt wurde. Dort lautete die Dispersionsrelation

Die Zustandsdichte wird dann (in 1D)

de 1 M 1
do do/dk \ Cacos’’

Offenbar erhilt man eine Divergenz z.B. an der
Zonengrenze, wo k — m/a, d.h. wo die Gruppen-

D(w) =<
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geschwindigkeit verschwindet. Diese Divergenzen
werden als Van Howe Singularititen bezeichnet.

In drei Dimensionen erhilt man die Zustandsdichte
wiederum am einfachsten im k-Raum. Da hier die
Zustandsdichte konstant ist, benétigt man lediglich
das Volumen zwischen den beiden Flichen mit Fre-
quenz @ und @ + d ®.

k,
w+dw
0]
1
\Ad . .

ky
Abbildung 4.48: Abstand zwischen Iso-Frequenz-
flachen.

Der Abstand zwischen den beiden Isofrequenzfli-
chen bei @ und @ + dw betrigt
a1
do - VG '
Damit wird die Zustandsdichte
1% 1
D() / dSp—,
VG

Y
wobei dS, das Flichenelement darstellt und vg die
Gruppengeschwindigkeit fiir die entsprechende Fre-
quenz. Das Integral lduft tiber die gesamte Isofre-
quenzfliche.

Flachenelement

Abbildung 4.49: Iso-Frequenzflache in 3D.

Auch in drei Dimensionen hat die Zustandsdichte of-
fenbar immer dann Singularitdten, wenn die Grup-
pengeschwindigkeit gegen Null geht, wie z.B. im

obigen Modell an der Grenze der Brillouin-Zone.
Solche Fille treten in realen Systemen recht hiufig
auf.

4.4.11 Beispiele und Diskussion
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Abbildung 4.50: Dispersion und Zustandsdichte fiir
Si und Ge.

Abb. 4.50 zeigt als Beispiel die Dispersionsrelatio-
nen fiir Si und Ge. Die Projektion der Linien auf
die vertikale Achse ergibt die Zustandsdichte. Offen-
sichtlich tritt bei den optischen Phononen eine sehr
hohe Zustandsdichte auf. Die beiden Zustandsdich-
ten sehen sehr dhnlich aus, da die beiden Materiali-
en die gleiche Struktur besitzen. Ge hat die grofe-
re Atommasse und deshalb die niedrigeren Schwin-
gungsfrequenzen.

NaCl

Ag Diamant
(] *Dia \

A D wi ’[) w2
\
b |
0 i 2 3108 I LR

Abbildung 4.51: Zustandsdichten fiir Silber, Koch-
salz und Diamant.

n

Abb. 4.51 zeigt drei weitere Beispiele von Zustands-
dichten typischer Festkorper. Diamant besitzt offen-
bar eine sehr hohe Zustandsdichte bei den hoch-
sten Frequenzen. Einstein hatte sein Modell anhand
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dieses Systems untersucht; hier ist die Ubereinstim-
mung mit am Besten.

Der Grund fiir den guten Erfolg des Debye Modells
bei tiefen Temperaturen trotz dieser gro3en Differen-
zen in der Zustandsdichte liegt darin, dass die Moden
im Bereich der Divergenzen bei tiefen Temperaturen
kaum mehr angeregt werden.

# Phononen pro Frequenzeinheit

300D(w)<n> D(w)<n>
T/6=0.1 30D(w)<n> T/0=3
T/6=0.3
3D(w)
LIS L L L L L O R A
0 0.2 04 0.6 0.8 1

Abbildung 4.52: Anregungsdichte bei unterschiedli-
chen Temperaturen.

Die abnehmende Bedeutung der Phononen hoher
Frequenz sieht man z.B., wenn man die Anzahl Pho-
nonen pro Frequenzinterval betrachtet. Diese erhélt
man als Produkt aus Zustandsdichte D(®) und Be-
setzungszahl (n). Abb. 4.52 zeigt diese GroBen fiir
das Debye-Modell. Es zeigt, dass mit abnehmender
Temperatur die maximale Zahl der Phononen pro
Frequenzinterval bei immer tieferen Frequenzen auf-
tritt.

4.5 Anharmonische Effekte

4.5.1 Potenzial

Bisher haben wir im Potenzial der Atompositionen
nur den quadratischen Term beriicksichtigt. Dies hat
eine Reihe von Konsequenzen fiir die Resultate:

e Wir erhalten harmonische Wellen, die Eigen-
funktionen des Hamiltonoperators sind. Es gibt
keine Wechselwirkungen zwischen den Moden.

* Das Volumen des Kristalls ist nicht temperatur-
abhingig, d.h. der Wirmeausdehnungskoeffizi-
ent verschwindet.

* Die elastischen Konstanten sind nicht abhidngig
von Druck und Temperatur und sind identisch
fiir adiabatische oder isotherme Bedingungen.

Die spezifische Wirme nihert sich fiir hohe
Temperaturen dem klassischen Wert an.

Wi

Abbildung 4.53: Anharmonisches Potenzial.

Echte Potenziale sind aber nie iiber den ganzen Be-
reich harmonisch. Wihrend die harmonische Nihe-
rung in der Nihe des Gleichgewichts, d.h. fiir klei-
ne Auslenkungen, eine gute Ndherung darstellt, fin-
det man fiir hohere Anregungen immer eine Abwei-
chung. Typischerweise wird das Potenzial dann fiir
kleinere Absténde steiler, fiir groBere flacher. Somit
verschiebt sich die mittlere Aufenthaltswahrschein-
lichkeit nach aufen.

Die oben erwihnten Punkte werden alle ungiiltig:

* Anharmonische Terme koppeln die Phononen.
So konnen z.B. 2 Phononen addiert werden zu
einem hoher-energetischen Phonon, @z = @, +
.

» Korper dehnen sich mit zunehmender Tempe-
ratur aus (Warmeausdehnung).

* Die elastischen Konstanten werden abhingig
von Druck und Temperatur.

4.5.2 Wirmeausdehnung

Die Wirmeausdehnung ist proportional zum Term
dritter Ordnung des Potenzials, dem niedrigsten
Term, welcher die Symmetrie des Potenzials stort:
er sorgt dafiir, dass bei hoher angeregten Zustidnden
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Abbildung 4.54: Wirmeausdehnung von festem Ar-

gon.

der Schwerpunkt bei grofleren Distanzen liegt. Abb.
4.54 zeigt als Beispiel die Warmeausdehnung von
festem Argon. Der Effekt soll hier nicht quantitativ
diskutiert werden; es sollen aber einige Aspekte der
Symmetrie diskutiert werden.

und der symmetrische (812 = B»1) Tensor () den
linearen Wirmeausdehnungskoeffizienten darstellt.
Wie iiblich lédsst sich dieser Tensor in einem Koordi-
natensystem schreiben, in dem er diagonal wird. Die
entsprechenden Richtungen sind gegeben durch die
Symmetrie des Kristalls und die Diagonalelemente
heiBen Hauptausdehnungskoeffizienten f3;.

Falls in einem Kristall Symmetrieachsen vorhanden
sind, miissen die Hauptachsen entlang der Symme-
trieachsen orientiert sein.

Cs 1

Das Potenzial und damit der Warmeausdehnungs-

koeffizient ist in Kristallen im allgemeinen aniso-
trop. Eine Kugel wird durch eine Temperaturerhd-
hung deshalb in ein Ellipsoid verformt.

Warmeausdehnung

%ﬁy dy, dz)

Volumenelement

Abbildung 4.55: Wiarmeausdehnung.

Ein Punkt (x,y,z) geht durch die Erwdrmung in den
Punkt (x + dx,y + dy,z+ dz) iiber, wobei die Ver-

Abbildung 4.56: Orientierung der Hauptwerte bei
Symmetrie.

Ist die Zidhligkeit dieser Achsen > 2, so miissen
die Hauptwerte senkrecht zu dieser Achse identisch
sein. In einem kubischen Kristall sind die drei Ko-
effizienten deshalb aus Symmetriegriinden identisch
und die Wirmeausdehnung isotrop.

Kristall Symmetrie b1 Bil -
B B2 Pz
NaCl kub. 40 - =
CaFsq kub. 19 — —
cd hexag. 17 49 =
Zn hexag. 14 55 —
Kalkspat trigonal —6 26 —
Quarz trigonal 19 9 —
Kunststoff * axial (Dooh) 79,8 73,5 —
Aragonit rhomb. 10 16 33
Chrysoberyll rhomb. 6,0 6,0 5,2

schiebung (dx,dy,dz) gegeben ist durch

d

dT

dx
dy
dz

B
Br2
B3

B2
B2z
B3

Bi3
B23
B33

* Polystyrol, auf die fimffache Linge verstreckt.

Abbildung 4.57: Thermische Ausdehnungskoeffizi-
enten fiir unterschiedliche MAte-
rialien. Einheiten: 107 °K~!.

Abb. 4.57 zeigt einige Wirmeausdehnungskoeffizi-
enten fiir axial symmetrische wie auch fiir nichtaxia-
le Systeme.
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4.6 Wirmeleitung

4.6.1 Grundlagen

kaltes
Ende

heisses

-~ | ~
Ende \/\‘ /l* N

Abbildung 4.58: Gasmodell der
Energietransport
transport.

Wirmeleitung:
ohne Massen-

Wir betrachten Transport von Wirme ohne Massen-
transport. Dies kommt dadurch zustande, dass an ei-
nem Ende eines geschlossenen Behilters (resp. Fest-
korpers) die Teilchen erwédrmt werden, am anderen
Ende gekiihlt. Dadurch bewegen sich gleich viele
Teilchen nach links wie nach rechts, so dass kein
Massentransport stattfindet. Die Teilchen, welche
sich nach rechts bewegen, haben jedoch im Durch-
schnitt die hohere Energie, so dass ein Energietrans-
port nach rechts stattfindet.

Wir betrachten in diesem Kapitel nur die Wirmelei-
tung in Isolatoren. In Metallen liefern die Elektronen
den wichtigsten Beitrag zur Wirmeleitung. Da die-
ser in Isolatoren entfillt, dominiert in diesem Fall der
Beitrag der Gitterschwingungen.

Die Wirmeleitung durch Gitterschwingungen kann
im Rahmen eines Modells beschrieben werden, wel-
ches an die kinetische Gastheorie angelehnt ist. Die
Phononen stellen Atome des Gases dar. Ausgangs-
punkt ist eine lineare Beziehung zwischen der Wir-
mestromdichte j und dem Temperaturgradienten:

j=—KVT.

Gemail der kinetischen Gastheorie ist der Wirme-
leitkoeffizient K gegeben durch

1
K= ngﬁ,

wobei C die spezifische Wirme der Phononen ist, v
deren Geschwindigkeit, und ¢ die mittlere freie Weg-
lange. Diese wird in erster Linie bestimmt durch die
Streuung an Kristallfehlern und anderen Phononen.

empirische Temperaturverteilung

Abbildung 4.59: Temperaturverteilung.

4.6.2 Stofe von Phononen

Ein wirklicher Wérmetransport durch Phononen
kann nur stattfinden, wenn die Phononen selber ein
thermisches Gleichgewicht mit den iibrigen Frei-
heitsgraden erreichen. Gleichzeitig begrenzen Stof3e
die freie Weglinge der Phononen und reduzieren da-
mit die Wirmeleitfahigkeit.

Abbildung 4.60: Streuung eines Phonons an einem
Gitterfehler.

Wechselwirkungen finden z.B. statt, wenn das Git-
ter nicht ideal ist. Man bezeichnet dies als Stofe der
Phononen mit Gitterfehlern. Solche Prozesse kénnen
qualitativ leicht verstanden werden, in Analogie zur
Optik: ein Gitterfehler andert den Wellenwiderstand,
d.h. die Brechzahl des Mediums. An solchen Stellen
werden Wellen (teilweise) reflektiert.

Die StoBe der Phononen mit statischen Gitterfehlern
fithren nicht zu einer Anderung der Energie, die Fre-
quenz des einlaufenden und auslaufenden Phonons
sind identisch. Sie bewirken deshalb keine Thermali-
sierung der Energie. Interessanterweise fithren auch
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Dreiphononenprozesse,
ki +ky = ks,

bei denen die Impulserhaltung gilt, nicht zu einem
thermischen Gleichgewicht oder einem Wirmewi-
derstand.

Das Gleichgewicht mit dem Gitter wird erst erreicht
durch die so genannten Umklapp-Prozesse, wo

zl +%2 =%3+é,

und G einen Vektor des reziproken Gitters darstellt.

o

k,,0,

Brillouinzone

k5,0,

,W\/W

Abbildung 4.61: Umklappprozess.

Dies geschieht immer dann, wenn der resultieren-
de Wellenvektor aus der ersten Brillouin-Zone her-
ausragt. Wie wir gesehen haben, sind solche Wel-
lenvektoren physikalisch ohne Bedeutung und der
Impuls ist immer nur modulo eines Vektors des re-
ziproken Gitters definiert. Reicht die Summe von
zwei Wellenvektoren einlaufender Phononen iiber
die Brillouinzone hinaus, so entspricht der physika-
lische Impuls des resultierenden Phonons nicht die-
ser mathematischen Summe, sondern einem Wellen-
vektor innerhalb der Brillouinzone, welcher sich von
der Summe um einen Gittervektor -G unterscheidet.
Prozesse, bei denen G = 0 ist werden N- oder Nor-
malprozesse genannt.

Offensichtlich konnen solche Prozesse im Rahmen
des einfachen Modells, welches wir zu Beginn die-
ses Kapitel diskutiert hatten, nicht stattfinden, da
bei einer monotonen Beziehung w(k) die Energie
nicht erhalten bliebe. Solche Umklappprozesse kon-
nen jedoch auftreten, wenn anharmonische Terme
verschiedene Phononenzweige koppeln. Die Wahr-
scheinlichkeit fiir das Auftreten solcher Prozesse ist
deshalb stark systemabhingig. Es ist jedoch mog-
lich, einige allgemeine Aussagen iiber die Tempera-
turabhingigkeit zu machen.

4.6.3 Freie Weglinge

Bei hohen Temperaturen dominiert die Phonon-
Phonon Streuung, wobei nur U-Prozesse wesent-
lich beitragen. Diese finden nur dann statt, wenn
der resultierende Wellenvektor |k; + k| linger ist
als der Radius der ersten Brillouin-Zone. Phononen,
die diese Bedingung erfiillen, haben relativ hohe
Energien von der GroBenordnung kz6 /2. Bei nied-
rigen Temperaturen sind nur wenige solche Phono-
nen vorhanden. Thre Zahl nimmt gemil3 Boltzmann
mit exp(—0/2T) ab. Wir erwarten deshalb, dass die
inverse mittlere freie Weglidnge in diesem Bereich
proportional zur Anzahl Phononen ist, deren Ener-
gie grofer ist als die halbe Debye-Energie:

1 kp6
— o (#PhononenmitEnergie > BT)
p 1
D (7) eh(DD/szT _ 1 ’
und damit
E eh(L)D/ZkBT _ 1
D(%)

oder, mit der Debye-Temperatur 8 und der Zustands-
dichte D(w) aus Gl. (4.4)

6==" und D(22)=wpxo
ks 2 D
wird die freie Wegldnge
eG/ZT -1

Fiir hohe Temperaturen 7" > 6 wird die mittlere freie
Wegldange damit indirekt proportional zur Tempera-
tur, £ < 1/T. Da in diesem Bereich die Wirmekapa-
zitdt nicht stark variiert, erwartet man eine Warme-
leitfdhigkeit K o< 1/T. Fiir einfache Kristalle findet
man auch tatsdchlich eine Temperaturabhédngigkeit
der Wirmeleitfihigkeit, welche proportional zu 1/T
lauft. Wenn die Kristalle komplexer werden, und ins-
besondere unterschiedliche Atome enthalten, wird
das Phononenspektrum komplizierter und das hier
verwendete einfache Modell reicht fiir eine korrek-
te Beschreibung nicht mehr aus.
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Abbildung 4.62: Temperaturabhédngigkeit der freien
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Abbildung 4.63: Temperaturabhéngigkeit der freien
Weglédnge.

Unterhalb der Debye-Temperatur (7 < 6) wichst
die mittlere freie Weglénge exponentiell mit 1/7,

fo< /T,

Dies ist in Abb. 4.63 fiir einige einfache Beispie-
le gezeigt. Die exponentielle Zunahme gilt solan-
ge Phonon-Phonon Streuung den dominanten Bei-
trag darstellt. Wenn der Beitrag der Kristallfehler
dominant wird, wird die freie Wegldnge temperatur-
unabhiingig. Streuprozesse finden dann nur noch an
Kristallfehlern und an der Oberfldche statt, wo eben-
falls Kristallfehler vorhanden sind. Bei gut polier-
ten Oberflichen konnen Phononen aber elastisch ge-
streut werden, sodass die mittlere freie Weglinge
grof} gegeniiber den Kristalldimensionen wird. Pho-
nonen breiten sich dann ballistisch, also ohne Streu-
ung im Kristall aus.

Die 1/T Abhingigkeit stimmt ebenfalls nicht bei
amorphen Materialien, wie z.B. Quarzglas. In die-
sem Fall ist schon das Konzept eines Phonons et-
was fragwiirdig, da die Bindungsstirke von Atom zu
Atom variiert und die mittlere freie Wegldnge auf-
grund der hohen Defektdichte praktisch nur noch ei-
ner Bindungslidnge entspricht. In diesem Fall domi-
niert die Streuung an statischen Gitterfehlern tiber
die Phononen-Phononen Streuung und unsere obi-
gen Annahmen stimmen nicht mehr.

4.6.4 Wirmeleitkoeffizient

kinetische Gastheorie

K= %Cvf

freie Weglange £
Warmekapazitat C
Warmeleitfahigkeit K

Temperatur
Abbildung 4.64: Beitriage zur Wirmeleitung.

Zur Wirmeleitfahigkeit triagt neben der freien Weg-
lange vor allem auch die Wirmekapazitit bei. Da
diese bei niedrigen Temperaturen abnimmt, wird
auch die Wirmeleitfihigkeit wieder geringer.
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Abbildung 4.65: Temperaturabhingigkeit des Wir-
meleitkoeffizienten.

Typischerweise findet man deshalb ein Maximum
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der Wirmeleitfihigkeit.

Probenoberflache

Warmeleitkoeffizient K/ Wm-1K-!

5 570 20 50 700
Temperatur T/K

Abbildung 4.66: Temperaturabhingigkeit des Wir-
meleitkoeffizienten in unterschied-
lichen Proben.

Wird die freie Weglidnge vergleichbar mit den Di-
mensionen der Probe, so wird die Phononenaus-
breitung ballistisch und die Wirmeleitung abhéngig
von den Dimensionen der Probe. Abb. 4.66 zeigt
ein Beispiel, bei dem die mittlere freie Weglinge
durch tiefe Temperaturen und einen guten Kristall
erhoht wurde. Dariiber hinaus wurde der Probenkri-
stall isotopenrein gemacht, um Streuprozesse auf-
grund der statistischen Massenverteilung zu reduzie-
ren. Die Tatsache, dass die beiden Kristalle unter-
schiedliche Wirmeleitkoeffizienten aufweisen, deu-
tet darauf hin, dass die mittlere freie Weglidnge gro-
Ber ist als die Dimensionen des Kristalls. Deshalb
werden im kleineren Kristall die Phononen rascher
gestreut.

4.6.5 Isotopeneffekte

Ein Beitrag zur Streuung kann auch die Isotopenver-
teilung sein: unterschiedliche Massen der Gitterato-
me wirken fiir Phononen genau wie Gitterfehler und
fiihren zu Streuung. Diese Effekte konnen recht grof3
sein, auch bei geringen Anteilen ‘falscher’ Isotope.
In Diamant, z.B., wo in natiirlicher Hiufigkeit ca.
1% der Atome '*C Isotope sind, kann die Wirme-
leitfahigkeit nochmals um > 50 % gesteigert wer-
den wenn die Diamanten aus isotopenreinem Koh-
lenstoff erzeugt werden.

Abb. 4.67 zeigt als dhnliches Beispiel Daten von

74Ge

1000
nat. Ge

K/Wm-K"

100
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Abbildung 4.67: Temperaturabhéngigkeit des Wir-
meleitkoeffizienten in Proben. mit
unterschiedlicher Isotopenzusam-
mensetzung.

Germanium in unterschiedlichen Zusammensetzun-
gen. Im Bereich der maximalen Leitfdhigkeit leitet
die isotopenreine Probe etwa doppelt so gut wie die
Probe natiirlicher Haufigkeit.

Die Wirmeleitfahigkeit hdangt nicht nur von der frei-
en Weglinge ab, sondern auch von der Wiarmekapa-
zitiat. Bei tiefen Temperaturen, wo die freie Weglén-
ge temperatur-unabhiingig wird, erwarten wir somit
ein dhnliches Verhalten wie bei der Warmekapazitit,
die mit der dritten Potenz der Temperatur abnimmt,

()

Abb. 4.67 zeigt dieses Verhalten fiir zwei unter-
schiedliche Germaniumkristalle. Insbesondere beim
reinen "*Ge Kristall, wo Streuprozesse an Fehlstel-
len selten sind, passt diese Beziehung sehr gut.
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