
3 Bindungen im Festkörper

3.1 Grundlagen

3.1.1 Wechselwirkung und Bindungsenergie

Die Struktur eines Festkörpers ergibt sich aus der
Wechselwirkung zwischen den darin enthaltenen
Gitterbausteinen, also den Atomen, Ionen oder Mo-
lekülen. Für die in Kapitel 2 besprochenen Gitterty-
pen spielen zunächst nur relative Distanzen eine Rol-
le. Die Größe einer Einheitszelle wird hingegen di-
rekt von der Wechselwirkung zwischen den Bautei-
len des Gitters bestimmt: Man kann den Abstand be-
stimmen, indem man die Abstandsabhängigkeit der
Wechselwirkungsenergie berechnet und deren Mi-
nimum als Funktion des Abstandes bestimmt. Wie
immer verwenden wir die Born-Oppenheimer Nähe-
rung, d.h. wir betrachten die Position der Kerne als
klassische Größen.

Abstand

neutrale 
Bestandteile

getrennt
in Ruhe

G
es

am
te

ne
rg

ie

Bindungsenergie

Gleichgesichts-
abstand

Abbildung 3.1: Definition der Bindungsenergie.

Die Energie, die man benötigt, um einen Kristall
in seine neutralen Bestandteile (Atome oder Mo-
leküle) zu zerlegen, wird als Bindungsenergie be-
zeichnet.

In einer klassischen Näherung kann man die Bin-
dungsenergie von Festkörpern diskutieren, indem
man abstoßende Wechselwirkungen zwischen posi-
tiv geladenen Atomrümpfen und zwischen Valenz-
elektronen betrachtet, welche eine Vergrößerung der
Abstände bewirken, sowie anziehende Wechselwir-

kungen zwischen Valenzelektronen mit Atomrümp-
fen. Das Wechselspiel zwischen den unterschiedli-
chen Abstands- und Richtungsabhängigkeiten ergibt
die beobachtete Gleichgewichtsstruktur. Ein voll-
ständiges Verständnis setzt jedoch quantenmechani-
sche Betrachtungen voraus.

Bindungsenergien werden meist in der Einheit eV
angegeben. Dabei entspricht 1eV/Atom

1
eV

Atom
= 1,6 ·10�19 J

Atom

= 1,6 ·10�19 ·6 ·1023 J
Mol

= 96
kJ

Mol
.

3.1.2 Bindungstypen

Die Bestandteile eines Festkörpers können auf un-
terschiedliche Art zusammengehalten werden. Es
ist meist nützlich, als Bestandteile Moleküle oder
Atomrümpfe und Valenzelektronen zu betrachten.
Die Wechselwirkungen können sich auf qualita-
tiv sehr unterschiedliche Weise bemerkbar machen.
Eine erste Klassifizierung unterscheidet fünf Bin-
dungstypen

• kovalente Bindung

• ionische Bindung

• van der Waals Bindung

• metallische Bindung

• Wasserstoffbrücken

Eine grobe Orientierung über die wichtigsten Eigen-
schaften dieser Bindungstypen gibt Tabelle 3.1. Ioni-
sche und kovalente Bindungen ergeben die größten
Bindungsenergien und damit die starrsten Festkör-
per. Abbildung 3.2 zeigt eine bildliche Darstellung
der vier wichtigsten Bindungstypen.
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3 Bindungen im Festkörper

Typ Beispiel Gitterkonstante in Å Bindungsenergie in kJ/Mol Konstituenten
ionisch NaCl 2.8 750 Na+, Cl�

kovalent Diamant 710 C
metallisch Na 4.28 110 Na

van der Waals CH4 10 CH4
Wasserstoffbrücken H2O 50 H2O

Tabelle 3.1: Einige Eigenschaften der wichtigsten Bindungstypen

Van der Waals (Ar) Ionisch (NaCl)

Metallisch (Na) Kovalent (Diamant)

Na+ Na+

Na+
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Abbildung 3.2: Bildliche Darstellung der vier wich-
tigsten Bindungsarten.

Grob vereinfacht kann man sich vorstellen, dass
im Falle der van der Waals Bindung die neutra-
len Bestandteile (z.B. Argon im Festkörper) sich
gerade berühren und durch schwache Kräfte an-
einander gehalten werden. Bei der ionischen Bin-
dung sind die Bestandteile entgegengesetzt geladen
und werden durch Coulomb-Wechselwirkung ange-
zogen. Bei der metallischen Bindung sind die Atom-
rümpfe in ein “Bad” aus freien Elektronen einge-
lagert, welche sie zusammenhält. Im Falle der ko-
valenten Bindung existiert ein verstärkter Überlapp
zwischen den Elektronen der einzelnen Atome, wel-
cher zu einer starken, gerichteten Bindung führt.

3.1.3 Bindungsenergien: Übersicht

Die hier diskutierten unterschiedlichen Bindungsty-
pen sollten als idealisierte Modelle verstanden wer-
den. In der Natur kommen sie nicht in reiner Form
vor, sondern man findet Systeme, die sowohl kova-
lente wie auch metallische Bindungsanteile aufwei-

sen. Man spricht deshalb davon, dass in einem be-
stimmten Kristall der Charakter der Bindungen z.B.
überwiegend kovalent oder überwiegend ionisch sei.
Die van der Waals Wechselwirkung tritt immer auf,
ist aber schwächer als die anderen Bindungstypen.
Nur wenn andere Bindungstypen keine Rolle spie-
len, wie z.B. bei Edelgasen, wird der Einfluss der
van der Waals Wechselwirkung direkt beobachtbar.

Die Stärke des Zusammenhaltes kann durch die Bin-
dungsenergie charakterisiert werden, welche dem
Kristall zugeführt werden muss, um ihn in Atome
oder Moleküle zu zerlegen, welche durch unendlich
große Distanz getrennt sind. Ein Blick auf die Tabel-
le 3.2 der Bindungsenergien für die Elemente zeigt
die großen Unterschiede, die hier auftreten können.
Die Werte reichen von ca. 0,1 eV bei Edelgasen bis
zu 8,9 eV bei Wolfram. In der Tabelle fehlen außer-
dem die beiden leichtesten Elemente, H und He, wel-
che sehr schwierig zu verfestigen sind. Insbesondere
He wird nicht einmal bei der Temperatur 0 K zu ei-
nem Festkörper, außer man legt Druck an.

Die Tatsache, dass die Bindungsenergie stark von
der Gruppe (d.h. der Kolonne in der Tabelle) ab-
hängt, zeigt, dass die Erklärung und Berechnung
von Bindungseigenschaften nur mit Hilfe der Quan-
tenmechanik möglich ist. Die Unterschiede zwi-
schen den einzelnen Gruppen sind auf die unter-
schiedliche Affinität zu Valenzelektronen (eigenen
oder fremden) zurückzuführen. Schwere Übergangs-
metalle zeigen die höchsten Bindungsenergien. Die
Stärke der Bindungseneregie bedingt auch viele wei-
tere Materialparameter, wie z.B. den Schmelzpunkt
oder die Elastizität des Materials.
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3 Bindungen im Festkörper

Tabelle 3.2: Bindungsenergie der Elemente.

3.1.4 Das Wasserstoffmolekül

Wir betrachten zunächst nur die Kräfte, welche bei
der Wechselwirkung zwischen zwei Atomen auf-
treten. Das einfachste System, bei dem sich meh-
rere Teilchen zu einer bestimmten Struktur zusam-
menfinden, ist das Wasserstoffmolekül. Mit klassi-
scher Mechanik allein ist es schwierig einzusehen,
wie zwischen zwei neutralen Teilchen eine bindende
Wechselwirkung zustande kommen soll. Um dies zu
verstehen, müssen wir das Problem also quantenme-
chanisch analysieren.

Wir betrachten dazu zwei Wasserstoffatome A und
B, deren Elektronenhülle sich zum Teil überlagert.
Wie üblich verwenden wir die Born-Oppenheimer
Näherung: wir behandeln die Position der Kerne als
klassische Parameter. Die Elektronen bewegen sich
in einem Potenzial, welches durch die Coulomb-
Wechselwirkung mit den Kernen und den übrigen
Elektronen gegeben ist. Die Basis dieser Näherung

ist die sehr viel größere Masse der Kerne: beim Was-
serstoff sind sie 3 Größenordnungen schwerer als die
Elektronen, bei schwereren Atomen bis zu 5 Grö-
ßenordnungen. Ist die Energie pro Freiheitsgrad für
Kerne und Elektronen von der gleichen Größenord-
nung (Äquipartitionsprinzip), so bewegen sich somit
die Elektronen sehr viel schneller. Für die Wechsel-
wirkung mit den Kernen ist dann in erster Linie der
mittlere Aufenthaltsort relevant.

Die quantenmechanische Beschreibung benötigt in
der Born-Oppenheimer Näherung nur eine Zustands-
funktion für die Elektronen, in denen die Positionen
der Kerne als klassische Parameter auftauchen. Um
die Bewegung der Kerne zu diskutieren, werden wir
umgekehrt die gemittelte Gesamtenergie für unter-
schiedliche Kern-Konfigurationen berechnen. In die-
sem Potenzial kann man die Bewegung der Kerne als
harmonische Oszillatoren diskutieren (siehe Kap. 4).

Wir schreiben die Wellenfunktionen der beiden
Elektronen als YA und YB. Sind die beiden Atome
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3 Bindungen im Festkörper

ssB

S = <ssA|ssB>

ssA

Abbildung 3.3: Überlapp der Orbitale im H2-
Molekül.

räumlich gut getrennt, so kann die Zustandsfunktion
des Gesamtsystems in guter Näherung als das Pro-
dukt YA(1)YB(2) der beiden einzelnen Funktionen
geschrieben werden; hier sind die Koordinaten der
beiden Elektronen zum Index (1, 2) zusammenge-
fasst. Wir berücksichtigen an dieser Stelle nicht das
Pauliprinzip, nach dem der Zustand der beiden Elek-
tronen unter Vertauschung ihrer Koordinaten anti-
symmetrisch sein müsste. Den Hamiltonoperator des
Systems bezeichnen wir mit H . Dieser beinhaltet
neben den Hamiltonoperatoren der isolierten Atome
einen Kopplungsterm, der beschreibt, dass das Elek-
tron beide Kerne spürt.

Eine vollständige Analyse des molekularen Hamil-
tonoperators ist sehr aufwändig. Da wir an dieser
Stelle aber nicht ein quantitatives, sondern nur ein
qualitatives Verständnis anstreben, genügt uns ei-
ne relativ einfache Beschreibung. Wir suchen die
Eigenfunktion Y des gesamten Hamiltonoperators,
wobei wir nicht die explizite Darstellung des Ha-
miltonoperators verwenden, sondern lediglich die
(unbekannten) Matrixelemente in der Basis der
Grundzustands-Eigenfunktionen der einzelnen Ato-
me.

3.1.5 Energie

Als Ansatz für die Berechnung des molekularen Zu-
stands eines einzelnen Elektrons schreiben wir die-
sen als Linearkombination der beiden atomaren Zu-

stände:

Y = cAYA + cBYB.

Die beiden Basisfunktionen sind für endliche Ab-
stände nicht orthogonal sondern besitzen ein endli-
ches Überlappintegral

S = hYA|YBi.

S ist ein Maß für die Stärke der Wechselwirkung
zwischen den beiden Atomen: je näher die Atome
zusammen liegen, desto größer ist der Überlapp zwi-
schen den beiden Orbitalen. Aufgrund der Normie-
rung ist S  1. Die Energie von Y ist

E =
hY|H |Yi

hY|Yi

=
c2

AHAA + c2
BHBB +2cAcBHAB

c2
A + c2

B +2cAcBS
, (3.1)

wobei wir die Koeffizienten cA, cB und HAB als reell
angenommen haben. Hier stellen

Hxy = hYx|H |Yyi

dar und S wurde ebenfalls als reell angenommen.

Wir erweitern Gleichung (3.1) mit dem Nenner der
rechten Seite:

E (c2
A + c2

B +2cAcBS)

= c2
AHAA + c2

BHBB +2cAcBHAB.

Diese Gleichung können wir dazu benutzen, die
Energie zu minimieren und so den Eigenzustand zu
finden. Wir suchen zunächst das Minimum bezüg-
lich cA, indem wir danach ableiten:

cA(HAA �E )+ cB(HAB �E S) = 0.

Die Ableitung nach cB ergibt entsprechend

cA(HAB �E S)+ cB(HBB �E ) = 0.

In Matrixschreibweise entspricht das
✓

HAA �E HAB �E S
HAB �E S HAA �E

◆✓
cA
cB

◆
= 0,
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3 Bindungen im Festkörper

wenn wir benutzen, dass für identische Atome
HAA = HBB. Damit dieses Gleichungssystem lösbar
ist, muss die Determinante

(HAA �E )2 � (HAB �E S)2 = 0

verschwinden. Dies können wir als Gleichung für
die Energie verwenden,

E 2(1�S2)�2E (HAA +HABS)

+H 2
AA �H 2

AB = 0.

Die Lösungen dieser quadratischen Gleichung sind

E =
(HAA � HABS) ±

p
(HAA � HABS)2 � (H2

AA � H2
AB)(1 � S2)

1 � S2

=
(HAA � HABS) ±

p
H2

AA + H2
ABS2 � 2HAAHABS � H2

AA + H2
AB + H2

AAS2 � H2
ABS2

1 � S2

=
(HAA � HABS) ± (HAB � HAAS)

1 � S2

=
(HAA ⌥ HAB)(1 ± S)

1 � S2

oder

Es,as =
HAA ±HAB

1±S
.

3.1.6 Molekülorbitale

Die zugehörigen Eigenfunktionen sind

Ys =
YA +YBp

2(1+S)

Yas =
YA �YBp

2(1�S)
,

d.h. die symmetrische und antisymmetrische Linear-
kombination der beiden Atomorbitale.

Ea Eb

Es

Eas

Abbildung 3.4: Energie der Orbitale im H2-Molekül.

Die Wechselwirkung zwischen den beiden Atomen
führt also zu einer Aufspaltung der Energiezustän-
de, die ohne Wechselwirkung entartet sind. Das sym-
metrische Molekülorbital liegt energetisch unterhalb
der Atomorbitale, die antisymmetrische Linearkom-
bination oberhalb. Wie im Atom kann jedes dieser
Molekülorbitale mit maximal zwei Elektronen be-
setzt werden. Offensichtlich weist das neutrale Was-
serstoffmolekül, bei dem das bindende Orbital von
zwei Elektronen besetzt wird, die stabilste Konfigu-
ration auf.

^s

^a

^A ^B

Abbildung 3.5: Molekülorbitale im H2-Molekül.

Beim bindenden Molekülorbital Ys werden die bei-
den Atomorbitale mit dem gleichen Vorzeichen ad-
diert. Es entsteht deshalb zwischen den beiden Ato-
men eine positive Interferenz und die Elektronen-
dichte steigt in diesem Gebiet. Das antibindende Or-
bital Ya hingegen weist zwischen den beiden Kernen
eine Knotenebene auf; in dieser Ebene verschwindet
die Elektronendichte.

Treten mehr als 2 Atome in Wechselwirkung, so er-
geben sich weitere Aufspaltungen. Im Grenzfall ei-
nes unendlich großen Ensembles von Atomen ent-
steht eine kontinuierliche Verteilung der Energie der
Eigenzustände. Die Konsequenzen davon werden
wir im Rahmen des Bändermodells genauer disku-
tieren.

3.2 Paarwechselwirkungen

3.2.1 Kovalente Bindung

Das Überlappintegral und damit die Stärke der
Wechselwirkung nimmt mit abnehmendem Abstand
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Abbildung 3.6: Energie der Molekülorbitale im H2-
Molekül als Funktion des Abstan-
des.

zu. Das antisymmetrische Orbital liegt für alle Ab-
stände über den Atomorbitalen. Bringt man das Mo-
lekül in diesen Zustand, so kann es immer Energie
gewinnen, indem seine Kerne sich voneinander ent-
fernen - es fliegt somit auseinander. Man nennt die-
ses Orbital deshalb antibindend, im Gegensatz zum
tiefer liegenden bindenden Orbital. Bringt man ein
Molekül in diesen Zustand, so ist seine Energie nied-
riger als diejenige der freien Atome, sie bleiben des-
halb aneinander gebunden. Erst wenn der Abstand
unter den Gleichgewichtswert fällt, führt die Absto-
ßung zwischen den Kernen (und ev. zwischen den
geschlossenen Schalen) zu einer zusätzlichen absto-
ßenden Wechselwirkung, so dass die Gesamtenergie
wieder ansteigt.

Insgesamt kann das System seine Enregie erniedri-
gen, wenn jedes der beiden Atome in Elektron zur
Bindung beiträgt. Sind es mehr als 2 Elektronen
(z.B. bei gefüllten Schalen, wie z.B. den Edelgasen),
so müssen auch antibindende Orbitale belegt wer-
den. Dadurch erhöht sich die Gesamtenergie und ei-
ne Bindung findet nicht statt.

Solche Bindungen werden als kovalente Bindungen
bezeichnet. Sämtliche Moleküle werden durch ko-
valente Bindungen zusammengehalten. Das prototy-
pische Beispiel eines Kristalls, der in diesem Bin-
dungstyp kristallisiert, ist Diamant. Hier zeigt es
sich, dass diese Bindungsart stark gerichtet ist: jedes

Kohlenstoffatom hat vier nächste Nachbarn, welche
in tetraedrischer Anordnung angeordnet sind. Die re-
sultierende Kristallstruktur hat eine relativ niedrige
Raumfüllung von 0.34, gegenüber einer dichtesten
Kugelpackung mit 0.74. Dies zeigt, dass die Anzahl
möglicher Bindungen und damit die Richtung der
Bindungen bei diesem Bindungstyp wichtiger ist als
die Zahl der nächsten Nachbarn. Diese wird direkt
bestimmt durch die sp3 Hybridisierung am Kohlen-
stoff.

Abbildung 3.7: Karte der Elektronendichte in Ger-
manium.

Neben Diamant gibt es auch einige weitere Elemen-
te, welche diese Art von Bindung eingehen, insbe-
sondere die im Periodensystem direkt darunter lie-
genden Silizium und Germanium. Entsprechend ist
auch deren Struktur vom gleichen Typ. Kovalente
Bindungen in diesen Elementen führen aber nicht
zu lokalisierten Bindungselektronen wie in Molekü-
len, sondern die Elektronen sind hier zwar zwischen
den Atomen konzentriert, aber über den gesamten
Körper delokalisiert, wie die Halbleitereigenschaf-
ten von Si und Ge zeigen. Diamant ist zwar bei
Raumtemperatur ein ausgezeichneter Isolator, bei
hohen Temperaturen stellt er aber auch einen sehr
attraktiven Halbleiter dar.

3.2.2 Polare Bindungen

Bis hierher hatten wir angenommen, dass es sich
um zwei identische Atome handelt. Kovalente Bin-
dungen können aber auch bei ungleichen Partnern
entstehen. In diesem Fall sind auch die Koeffizien-
ten der Atomorbitale bei der Kombination zu Mo-
lekülorbitalen nicht mehr vom gleichen Betrag, wie
Abb. 3.8 zeigt. Das tiefer liegende Orbital ist domi-
niert durch das energetisch näher liegende Atomor-
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3 Bindungen im Festkörper

Abbildung 3.8: Energie und Form der Molekülorbi-
tale in einem polaren Molekül.

bital und auch die Elektronendichte ist auf diesem
Atom konzentriert.

Abbildung 3.9: Ladungsverteilung im Wassermole-
kül: negative Ladungsdichte ist blau,
positive grün.

Abb. 3.9 zeigt als Beispiel die Ladungsverteilung in
einem Wassermolekül. Hier werden die Bindungs-
elektronen näher zum Sauerstoff verschoben. Die-
ser erhält dadurch eine partiell negative Ladung, die
Wasserstoffatome eine positive Partialladung.

Beim antibindenden Orbital ist der größte Teil der
Elektronendichte auf dem energetisch höher liegen-
den Atom. Falls beide Atome je ein Elektron zur
Bindung beitragen, findet deshalb ein teilweiser La-
dungstransfer zum Atom mit der höheren Elektrone-
gativität statt.

Abbildung 3.10: Verlauf der Elektronegativität im
Periodensystem.

Elektronegativität ist ein relatives Maß für die Kraft,
mit der ein Atom ein gemeinsames Elektron an sich
bindet. Sie ist für kleine Atome auf der rechten Sei-
te des Periodensystems am höchsten, während große
Atome mit nur wenigen Elektronen in der äußersten
Schale diese leichter abgeben. Je nach Energieunter-
schied kann dieser Transfer vollständig sein. Dies ist
der Fall der ionischen Bindung.

3.2.3 Ionenpaare

Das typische Beispiel für ionische Kristalle sind die
Alkali-Halogenide: Hier wird ein Elektron von ei-
nem Alkali-Atom auf ein Halogen-Atom übertragen,
so dass die beiden einfach geladenen Ionen jeweils
Edelgaskonfiguration erreichen. Aufgrund der Elek-
tronenübertragung besitzen beide Atome eine elek-
trische Ladung und ziehen sich deshalb gegensei-
tig an. Wir diskutieren die Situation zunächst für
ein einzelnes Ionenpaar. Die Energie des Systems
kann konzeptionell auf verschiedene Prozesse ver-
teilt werden.

Na Na+ + e-

Ionisierung

+5,14 eV

Cl + e- Cl-

Elektronena!nität

-3,61 eV

Na+ Cl-+

Gas

Ionenbindung

-7,9 eV Na+ Cl-

Na+Cl-Na+

Cl-

Kristall

Abbildung 3.11: Energiebillanz bei der Bildung von
NaCl.

Wir betrachten hier nicht die Energie, die benötigt
wird, um Natrium und Chlor aus ihrer normalen
Form (Metall, resp. molekulares Gas) in atomare
Form überzuführen. In den ersten beiden in Abb.
3.11 dargestellten Schritten wird ein Elektron von
einem Natriumatom auf ein Chloratom übertragen.
Die gesamte Energie pro Ionenpaar, setzt sich zu-
sammen aus der Ionisierungsenergie des Natriums
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3 Bindungen im Festkörper

(5.14 eV) und der Elektronenaffinität des Chlora-
toms (-3.61 eV). Diese Beiträge zur Energie können
nur aus einer quantenmechanischen Berechnung er-
halten werden. Die positiven Ionen (Na+) sind je-
weils etwas kleiner als die entsprechenden neutralen
Atome, die negativen (Cl�) etwas größer.

Der größte Teil der Bindungsenergie (-7,9 eV im
Beispiel von NaCl) wird bei der Bildung des Kri-
stallgitters aus den gasförmigen Ionen frei. Diese
Energie kann in guter Näherung klassisch über die
Coulomb-Wechselwirkung zwischen den Ionen be-
rechnet werden. Je geringer der Abstand zwischen
den Ionen, desto mehr Energie wird frei. Die anzie-
hende Coulomb-Wechselwirkung ist wesentlich stär-
ker als die van der Waals Wechselwirkung, welche
hier vernachlässigt werden kann.

Die Tatsache, dass die entgegengesetzt geladenen Io-
nen sich nur bis auf einen Abstand von etwa 3Å nä-
hern, zeigt, dass auch eine abstoßende Wechselwir-
kung vorhanden ist, welche offenbar eine deutlich
stärkere Abstandsabhängigkeit aufweist. Diese Ab-
stoßung ist im Wesentlichen auf das Pauli-Prinzip
zurückzuführen, welches den Überlapp der Elektro-
nenzustände verhindert. Man verwendet für seine
Beschreibung gerne ein emprisches Potenzial und
schreibt die gesamte Wechselwirkung eines Ionen-
paars als Funktion des Abstandes ri j als

Ui j(ri j) = le�ri j/r ± 1
4pe0

q2

ri j
,

wobei q den Betrag der Ladungen bezeichnet. Das +
Zeichen gilt für gleiche Ladungen, das - Zeichen für
entgegengesetzte Ladungen.

Die hier gewählte exponentielle Abstandsabhängig-
keit wird als Born-Meyer Potenzial bezeichnet. Die
genaue Form hat keinen wesentlichen Einfluss auf
die Eigenschaften des Kristalls. Sie deutet aber an,
dass sich die Ionen bei kleinen Abständen fast wie
harte Kugeln verhalten, d.h. der Überlapp der Elek-
tronenhüllen bleibt sehr klein. Der Parameter r des
Born-Meyer Potenzials kann experimentell aus Mes-
sungen der Kompressibilität bestimmt werden; typi-
sche Werte sind rund 0.3 Å.
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Abbildung 3.12: Abstandsabhängigkeit der Energie
in KCl.

3.2.4 Pauli-Prinzip und
Austauschwechselwirkung

Die Abstoßung kann als eine Folge des Pauli-
Prinzips betrachtet werden: Dieses verlangt, dass
die Wellenfunktion zweier identischer Teilchen
antisymmetrisch sein muss. Für zwei Elektro-
nen mit parallelem Spin muss die Zweiteilchen-
Wellenfunktion deshalb antisymmetrisiert werden:

Y2(r1,r2) = u(r1)v(r2)�u(r2)v(r1),

wobei u,v Einelektronenfunktionen darstellen und
r1,r2 die Koordinaten der Elektronen. Für identische
Positionen verschwindet offenbar die Wellenfunkti-
on,

Y2(r1,r1) = u(r1)v(r1)�u(r1)v(r1) = 0,

d.h. die Wahrscheinlichkeit, zwei Elektronen am
gleichen Ort zu finden ist Null, was einer starken
Abstoßung entspricht. Die Kraft hängt ab vom Spin-
Zustand der Elektronen; sie existiert nur zwischen
Elektronen in identischen Quatenzuständen.

Die Stärke dieser effektiven Kraft kann man abschät-
zen, wenn man die elektronischen Zustände im He-
lium gedanklich aus Zuständen des Wasserstoffa-
toms zusammensetzt: Zwei Elektronen mit paralle-
lem Spin können nicht gleichzeitig im 1s Zustand
befinden; eines wird deshalb in den 2s Zustand an-
geregt. Dafür wird eine Energie von 21 eV benötigt.
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+
Gesamtspin 0
Elektronische Energie -80 eV

1sB1s?

1H 1H 2He

+
Gesamtspin 1
Elektronische Energie -59 eV

1sB2sB

Abbildung 3.13: Energiedifferenz und Pauli Prinzip.

Die effektive Energie der Pauli-Abstoßung beträgt
somit mindestens 21 eV.

In ionischen Kristallen kann man die Gleichge-
wichtsabstände in guter Näherung bestimmen, wenn
man die Ionen als (beinahe) harte Kugeln betrachtet
und jeder Ionensorte einen entsprechenden Ionenra-
dius zuordnet. Die Abstände werden dann durch die
Bedingung bestimmt, dass sich die Ionen gerade be-
rühren. In Tabelle 3.3 sind Ionenradien für Edelgas-
konfigurationen (gefüllte Schalen) gezeigt. Für an-
dere Ladungszustände findet man andere Radien. Je
höher die positive Ladungs eines Atoms, desto klei-
ner ist der Ionenradius.

3.2.5 Van der Waals Bindung

Atome oder Moleküle können aber auch eine bin-
dende Wechselwirkung eingehen, bei der keine
Elektronen transferiert werden. Dies geschieht im-
mer dann, wenn die Bausteine schon gefüllte Elek-
tronenschalen aufweisen, sodass keine Elektronen
zur Verfügung stehen, welche geteilt werden könn-
ten und dadurch eine Bindung erzeugen könnten.
Von den Elementen gehören die Edelgasatome in
diese Klasse, aber auch Moleküle kristallisieren auf
diese Weise. In einem Kristall, der durch van der
Waals-Wechselwirkung zusammengehalten wird, ist
die Struktur und die elektronische Verteilung der Be-
standteile sehr ähnlich zu derjenigen der freien Be-
standteile. Dies ist ein wesentlicher Unterschied zu
allen anderen Bindungstypen.

Diese Art der Wechselwirkungen tritt auch in rea-
len (van der Waals-) Gasen auf und wird als van der

Waals Wechselwirkung, London-Wechselwirkung
oder induzierte Dipol-Dipol Wechselwirkung be-
zeichnet. Sie kann so verstanden werden, dass die
beiden Atome gegenseitig Dipole induzieren, wel-
che sich anziehen. Allerdings handelt es sich nicht
um statische Dipole, der Kristall besitzt kein glo-
bales Dipolmoment. In einem klassischen Bild (das
notwendigerweise unvollständig ist) müssten die
Atome oszillierende Dipolmomente besitzen. Wenn
diese in Phase oszillieren, stellt sich insgesamt eine
anziehende Wechselwirkung ein.

x� x�

R

Abbildung 3.14: Schwingung benachbarter Atome.

Um zu verstehen, wie die van der Waals Wechsel-
wirkung zustande kommt, betrachten wir ein einfa-
ches elektrostatisches Modell. Zwei Atome beste-
hen aus jeweils einem Kern und einer Elektronenhül-
le, die sich gegenüber dem Kern verschieben kann.
Die elektrostatische Anziehung zwischen Kern und
Elektronenhülle stellt eine rücktreibende Kraft dar,
welche zu einer oszillatorischen Bewegung führt.
Die Oszillationsfrequenz entspricht einer optischen
Resonanz mit Frequenz w0. Der Abstand zwischen
den beiden Atomen sei R und die Auslenkungen der
Elektronenhülle aus der Ruhelage seien x1 und x2. In
guter Näherung können die Positionen der Kerne als
konstant betrachtet werden.

Ohne die Wechselwirkung zwischen den Atomen ist
der Hamiltonoperator dieses Systems

H0 =
1

2m
p2

1 +
1
2

Cx2
1 +

1
2m

p2
2 +

1
2

Cx2
2,

wobei pi die zur Auslenkung xi konjugierten Impulse
darstellen. Die Kraftkonstante ergibt sich aus der Re-
sonanzfrequenz als C = mw

2
0 , wobei m die reduzierte

Masse (~Elektronenmasse) darstellt. Die zusätzliche
Coulomb Wechselwirkung zwischen den beiden Sy-
stemen ist

H1 =
q2

4pe0


1
R

+
1

R� x1 + x2
� 1

R� x1
� 1

R+ x2

�
,
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Einheit : Å

Tabelle 3.3: Ionenradien der Elemente.

wobei wir angenommen haben, dass die Ladung
des Kerns +q und diejenige der Elektronenhülle –q
sei. Hier stellen die beiden ersten (positiven) Terme
die Abstoßung zwischen den Kernen und zwischen
den Elektronen dar, die beiden negativen Terme die
Anziehung zwischen der Elektronenhülle des einen
Atoms und dem Kern des andern Atoms dar.

Für kleine Auslenkungen, x1,x2 ⌧ R kann dieser
Ausdruck entwickelt werden. Wir schreiben dafür

H1 =
q2

4pe0R

✓
1+

1
1� x1

R + x2
R

� 1
1� x1

R
� 1

1+ x2
R

◆
.

In erster Ordnung, d.h. für 1/(1 + e) ⇡ 1 � e , ver-
schwindet die Summe. In zweiter Ordnung, d.h. mit

1
1+ e

⇡ 1� e + e

2

erhält man

H1 ⇡ q2

4pe0R
1

R2

⇥
(x1 � x2)

2 � x2
1 � x2

2
⇤

= � q2

2pe0

x1x2

R3 .

Offenbar ist der Kopplungsterm proportional zum
Produkt der beiden Auslenkungen, d.h. er wird ma-
ximal wenn beide Elektronenhüllen in die gleiche
Richtung verschoben sind.

3.2.6 Energie

Der gesamte Hamiltonoperator ist die Summe

H = H0 +H1.
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des ungestörten Systems H0 und des Kopplungs-
terms H1. Dieser Operator kann diagonalisiert wer-
den, wenn wir symmetrieangepasste Koordinaten
verwenden

xs =
1p
2
(x1 + x2) xa =

1p
2
(x1 � x2)

und damit

x1 =
1p
2
(xs + xa) x2 =

1p
2
(xs � xa),

wobei s und a für symmetrische und antisymmetri-
sche Linearkombination stehen.

In diesen Koordinaten ist

H1 = � q2

2pe0R3 x1x2 = � q2

4pe0R3 (x2
s � x2

a).

Analog definieren wir für die Impulse der beiden
Elektronenhüllen:

ps =
1p
2
(p1 + p2) pa =

1p
2
(p1 � p2)

und damit

p1 =
1p
2
(ps + pa) p2 =

1p
2
(ps � pa).

Die kinetische Energie wird somit

Hkin =
1

2m
(p2

1 + p2
2) =

1
2m

(p2
S + p2

a).

Für den gesamten Hamiltonoperator erhalten wir in
den symmetrieangepassten Koordinaten

H = H0 +H1 =

=


1

2m
p2

S +
1
2

✓
C � q2

2pe0R3

◆
x2

s

�

+


1

2m
p2

a +
1
2

✓
C � q2

2pe0R3

◆
x2

a

�
.

Die beiden unabhängigen Schwingungen haben die
Frequenzen

w =

s
C
m

✓
1± q2

2pe0R3C

◆
.

Mit Hilfe der Taylor-Reihe

p
1± x = 1± x

2
� x2

8
+ . . .

erhalten wir für x = q2/(2pe0R3C) die Näherung

w ⇡ w0

"
1± 1

2
q2

2pe0R3C
� 1

8

✓
q2

2pe0R3C

◆2

+ . . .

#
.

En
er

gi
e

�0

R → ∞

Aufspaltung

1. Ordnung 2. Ordnung

Verschiebung

Abbildung 3.15: Energieverschiebung durch die
Kopplung.

Offenbar sind die Frequenzen der beiden Eigenmo-
den leicht verschoben. Die Verschiebung erster Ord-
nung ist für die beiden Frequenzen entgegengesetzt,
die Verschiebung zweiter Ordnung ist für beide zu
kleineren Frequenzen.

Im Schwingungsgrundzustand besitzt das Gesamtsy-
stem die Energie

h̄
2
(ws +wa).

Diese ist etwas geringer als die Grundzustandsener-
gie h̄w0 der beiden getrennten Atome, zwar um

DU = �h̄w0
1
8

✓
q2

2pe0R3C

◆2

= � A
R6 .

Da die Energie mit abnehmendem Abstand kleiner
wird, stellt dies einen bindenden Beitrag zur gesam-
ten Energie des Systems dar. Die anziehende Wech-
selwirkung ist indirekt proportional zur sechsten Po-
tenz des Abstandes. Da es sich um eine Änderung
der Nullpunktenergie handelt, sollte dieser induzier-
te Dipol nicht als schwingender Dipol verstanden
werden. Offensichtlich verschwindet die Wechsel-
wirkung im statischen Grenzfall, wo w0 ! 0, wie
auch im klassischen Grenzfall (h̄ ! 0).
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3.2.7 Lennard-Jones Potenzial

Wenn sich die Elektronendichteverteilungen zweier
identischer Atome mit gefüllten Elektronenschalen
überlappen, muss deshalb eines der beiden Elektro-
nen in ein höher gelegenes Orbital ausweichen. Weil
dafür eine hohe Energie aufgebracht werden muss,
entspricht dies einer starken abstoßenden Wechsel-
wirkung. Empirisch hat man für Edelgase ein Poten-
zial gefunden, das etwa mit R12 von der Distanz R
abhängt. Das gesamte Potenzial für die Wechselwir-
kung zwischen zwei Atomen kann damit geschrie-
ben werden als

U(R) = 4e

⇣
s

R

⌘12
�

⇣
s

R

⌘6
�
.

1.0 1.2 1.4 1.6 1.8

1

0

-1

U/¡
Lennard Jones Potenzial

(m/R)12

-(m/R)6

R/m

Abbildung 3.16: Abstandsabhängigkeit der Energi-
en im Lennard-Jones Potenzial.

Dieses Potenzial ist als Lennard-Jones Potenzial be-
kannt. Die genaue Form sollte nicht als Naturgesetz
betrachtet werden. Sie bildet jedoch die folgenden
wichtigen Punkte an:

• Bei großen Abständen variiert ist die Energie
proportional to R�6.

• Bei kurzen Distanzen ist das Potenzial stark ab-
stoßend.

• Der Parameter s bestimmt die Distanz bei der
das Potenzial zwischen anziehend und absto-
ßend wechselt, während e die Stärke der Wech-
selwirkung skaliert. Beide Parameter können in
der Gasphase gemessen werden.

Die folgende Tabelle zeigt diese Parameter für die
Edelgaskristalle

Ne Ar Kr Xe
e[meV] 3,1 10,4 14,0 20,0

s [Å] 2,74 3,4 3,65 3,98

Die Zunahme der Bindungsenergie mit der Masse
der Atome ist auf die höhere Polarisierbarkeit bei ei-
ner größeren Zahl von Elektronen zurückzuführen.

Verschiedene Materialparameter hängen direkt von
diesen Parmetern ab, wie z.B. die Bindungsenergie,
der Abstand zwischen nächsten Nachbarn, oder der
Schmelzpunkt:

Ne Ar Kr Xe
Abstand[Å] 3,13 3,76 4,01 4,35

Bindungsen. [ eV
Atom ] 0,02 0,08 0,12 0,17

Schmelzpunkt [K] 24 84 117 161

Der Bindungsabstand liegt dabei immer etwa 10 %
über dem Wert von s . Dies liegt daran, dass s

den Nulldurchgang des Potenzials angibt, das Mini-
mum liegt etwa 12,5 % höher. Die Bindungsenergie
liegt bei ⇡ 8e: jedes Atom hat mehrere Nachbarn,
im Festkröper tragen alle Paarwechselwirkungen zur
Gesamtenergie bei. Dies wird in Kapitel 3.3 disku-
tiert.

3.2.8 Metallische Bindung

In Metallen sind die Valenzelektronen weitgehend
delokalisiert und können sich frei durch den gesam-
ten Kristall bewegen; dies wird in Kapitel 5 und 6 ge-
nauer diskutiert. Typische Metalle zeigen deshalb ei-
ne hohe elektrische Leitfähigkeit. Die Bindung kann
im Wesentlichen so verstanden werden, dass die De-
lokalisierung der Elektronen ihre kinetische Energie
erniedrigt. Die Bindung ist, im Gegensatz zur kova-
lenten Bindung, nicht gerichtet, so dass die Metalle
häufig in dichtester Kugelpackung kristallisieren.

Die metallische Bindung ist schwächer als die ko-
valente oder ionische Bindung. Alkalimetalle haben
deshalb einen relativ niedrigen Schmelz- und Siede-
punkt, da hier lediglich die metallische Bindung eine
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Van der Waals Ionisch

Metallisch Kovalent

18+ 18+ 18+ 18+
18- 18- 18- 18-

18+ 18+ 18+ 18+
18- 18- 18- 18-

17+ 19+ 17+ 19+
18- 18- 18- 18-

19+ 17+ 19+ 17+
18- 18- 18- 18-

19+ 19+ 19+ 19+
18- 18- 18- 18-

19+ 19+ 19+ 19+
18- 18- 18- 18-

6+ 6+ 6+ 6+

6+ 6+ 6+ 6+

Abbildung 3.17: Schematische Darstellung von
Atomrümpfen und Valenzelektro-
nen für unterschiedliche Bindungs-
typen. Die Zahlen beziehen sich
auf Ar, KCl, Na und Diamant.

Rolle spielt. Bei den Übergangsmetallen hingegen
tragen auch die nur teilweise gefüllten d-Orbitale zur
Bindung bei. Deren Beitrag ist eher kovalenter Na-
tur und ergibt deshalb eine sehr viel stärkere Bin-
dung und dementsprechend höhere Schmelzpunkte.
Die Eigenschaften von Materialien mit delokalisier-
ten Elektronen, wie Metalle und Halbleiter werden
in den Kapiteln 5-7 im Detail diskutiert; hier wird
deshalb nicht darauf eingegangen.

Die hier diskutierte Klassifizierung von Bindungsty-
pen ist hilfreich. Wirkliche Materialien lassen sich
aber selten exakt einer dieser Kategorien zuordnen.
Stattdessen tragen im allgemeinen unterschiedliche
Bindungsarten bei, wie das Beispiel der Übergangs-
metalle zeigt: hier spielen kovalente wie auch metal-
lische Bindung eine Rolle.

Auch zwischen kovalenter und ionischer Bindung
findet man alle Übergangsformen. So kann man bei
binären Verbindungen einen kontinuierlichen Über-
gang von kovalenter zu ionischer Bindung beobach-
ten. Der relevante Parameter ist die Differenz der
Elektronegativitäten der beiden Partner. Elemente
wie z.B. Si, Ge sind naturgemäß nicht ionische ge-
bunden, aber Alkalihalogenide sind praktisch ideale
ionische Verbinungen. Als Beispiel ist RbF 96% io-
nisch.

Δ (Elektronegativität)

%
 io

ni
sc

he
r C

ha
ra

kt
er

Abbildung 3.18: Elektronegativität und ionischer
Charakter.

3.2.9 Wasserstoffbrücken

Wasserstoffatome zeigen bei bestimmten Verbindun-
gen eine besondere Art von Bindungen. Mit seinem
einzelnen Elektron kann es nicht nur mit einem Part-
ner eine kovalente Bindung eingehen. Statt dessen
geht es eine sehr stark polare Bindung ein, bei der
das Elektron größtenteils an den stärker elektrone-
gativen Partner (F, O oder N) abgegeben wird, wäh-
rend das verbleibende Proton sich gleichzeitig an ein
weiteres Atom bindet, welches ein freies Elektronen-
paar ausweist. Diese Art der Bindung wird als Was-
serstoffbrücke bezeichnet. Wasserstoffkerne (=Pro-
tonen) können solche Bindungen leichter eingehen
als andere Kerne, da ihr geringes Gewicht sie be-
weglicher macht und da sie keine Rumpfelektronen
besitzen.

Abbildung 3.19: Wasserstoffbrücken in Eis.

H-Brücken sind sehr wichtig für die besondere
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Struktur von Eis oder die hohe Verdampfungswär-
me von Wasser. Die Wasserstoffbrücken führen da-
zu, dass ein Sauerstoff tetraedrisch von vier Was-
serstoffatomen umgeben ist, wobei zwei der Bin-
dungen lang sind (=H-Brücken), zwei kurz (=kova-
lent). Die Wasserstoffatome befinden sich in einem
(meist asymmetrischen) Doppelminimumpotenzial
und können leicht von einem zum anderen Sau-
erstoff wechseln. Wasserstoffbrücken werden dann
gebildet, wenn der Wasserstoff an einen Sauerstoff
oder einen Stickstoff gebunden ist und sich ein wei-
teres Sauerstoff oder Stickstoffatom mit einem freien
Elektronenpaar in der Nähe befindet.

Die Wasserstoffbrücken sind auch für die hohen
Schmelz- und Siedepunkte von Wasser verantwort-
lich: Bei einem Molekulargewicht von 18 siedet
Wasser bei +100�C. Als Vergleich kann man Ne-
on betrachten, welches ein Atomgewicht von 20 auf-
weist und bei �246�C verdampft.

Abbildung 3.20: Wasserstoffbrücken in DNA Mole-
külen.

Wasserstoffbrücken spielen aber auch in der Bio-
logie eine große Rolle. So werden z.B. die bei-
den Stränge des DNS-Moleküls durch Wasserstoff-
brücken zusammengehalten. Das Basenpaar Gua-
nin/Cytosin kann 3 Wasserstoffbrücken bilden, das
Basenpaar Adenin/Thymin nur zwei. Dies ist ein we-
sentlicher Grund für die Ausbildung der Paare. Auch
bei der Proteinfaltung spielen Wasserstoffbrücken
eine wichtige Rolle.

3.3 Gitterenergie

Bisher haben wir nur Paar-Wechselwirkungen be-
trachtet, also Wechselwirkungen zwischen Paaren
von Atomen. Die Struktur eines Kristalls wird je-
doch nicht nur durch die Paar-Wechselwirkung be-
stimmt, sondern durch die Minimierung der Gesam-
tenergie des Systems. Wir müssen deshalb nicht nur
einzelne Paare betrachten, sondern auch das gesamte
Gitter. Zum Glück findet man, dass sich die Eigen-
schaften des Gitters in vielen Fällen auf die Paar-
wechselwirkungen zurückführen lassen. Dies gilt
insbesondere bei der van der Waals und bei der ioni-
schen Bindung. Diese beiden werden im Folgenden
diskutiert.

Bei Metallen kann man die Gitterenergie nicht in
Paarwechselwirkungen zerlegen. Sie werden des-
halb hier nicht diskutiert. Ebenfalls nicht diskutiert
werden hier kovalent gebundene Kristalle. Deren
Gitterenergie ist vom Betrag her vergleichbar mit
derjenigen von ionischen Kristallen. Während die io-
nischen Kristalle möglichst dicht gepackt sind, findet
man bei kovalenten Kristallen offenere Strukturen,
damit die ausgprägte Richtungsabhängigkeit der ko-
valenten Bindung befriedigt werden kann.

3.3.1 Van der Waals

Die Gitterenergie erhält man dementsprechend, in-
dem man über alle möglichen Paarwechselwirkun-
gen summiert. Im Falle der van der Waals Moleküle
fällt die Stärke der Wechselwirkung

Ui j(R) = 4e

⇣
s

R

⌘12
�

⇣
s

R

⌘6
�

mit der sechsten Potenz des Abstandes ab, sodass
fast nur die Wechselwirkung zwischen nächsten
Nachbarn eine Rolle spielt.

Wir betrachten als Beispiel die fcc Struktur. Hier
besitzt jedes Atom 12 nächste Nachbarn im Ab-
stand a/

p
2. Von der Stelle (0,0,0) aus sind dies

die Positionen (±1/2,±1/2,0), (±1/2,0,±1/2),
(0,±1/2,±1/2). In der zweiten Schale mit Ab-
stand a befinden sich 6 Nachbarn an den Positionen
(±100) , (0,±1,0), (0,0,±1).
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a

Abbildung 3.21: Nächste Nachbarn im fcc Gitter.

Für die Berechnung der Gitterenergie schreiben wir
für Ri j = pi jR, so dass pi j den Abstand in Einheiten
des Abstandes R zwischen nächsten Nachbarn dar-
stellt. Für die nächsten Nachbarn ist damit die anzie-
hende Wechselwirkungsenergie µ 12/R6 und für die
zweitnächsten Nachbarn µ 6/(

p
2R)6 = 6/(8R)6.

Eine Summierung über alle Paarwechselwirkungen
ergibt für diese Struktur

Â
j

1
R6

i j
=

1
R6 Â
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1
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=
1
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12+

6
8

+
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+
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6
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�

=
1

R6 14,45.

Analog erhält man

Â
j

1
R12

i j
=

1
R12 12,13.

Bei der abstoßenden Wechselwirkung spielen so-
mit praktisch nur die nächsten Nachbarn eine Rol-
le, während bei der anziehenden Wechselwirkung
auch etwas entferntere Schalen eine Rolle spielen.
Die Gesamtenergie wird damit

U(R) =
1
2 Â

i j
Ui j(Ri j)

= 2Ne


12,13

⇣
s

R

⌘12
�14,45

⇣
s

R

⌘6
�
,

wobei N die Anzahl der Gitteratome darstellt.
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Abbildung 3.22: Gitterenergie als Funktion des Ab-
standes.

Die Gitterenergie verhält sich als Funktion des Ab-
standes zwischen nächsten Nachbarn qualitativ iden-
tisch zur Paar-Wechselwirkung. Allerdings sind die
Achsen durch die Gittersumme umskaliert und das
Minimum leicht verschoben worden.

Den Gleichgewichtsabstand R0 erhält man aus der
Minimierung der Gitterenergie bezüglich des Ab-
standes:

dU
dR

����
R0

= 0

= �2Ne


12 ·12,13

s

12

R13 �6 ·14,45
s

6

R7

�

145,56s

6 = 86,7R6
0.

Daraus folgt, dass der Gleichgewichtsabstand R0 =
1,09s sein sollte. Da sich der Parameter s aus Mes-
sungen in der Gasphase bestimmen lässt, kann die-
se Vorhersage experimentell überprüft werden. Tat-
sächlich liegen die Gitterkonstanten für alle Edelga-
se im Bereich von 1.09 .. 1.14 s .

Indem man diesen Gleichgewichtsabstand in das Po-
tenzial einsetzt, erhält man die Bindungsenergie U =
�8,6Ne . Die Energieskala e kann man wiederum
aus Messdaten der Gasphase entnehmen, aber auch
aus Messungen am Festkörper, z.B. über die Kom-
pressibilität

k = � 1
V

∂V
∂ p

.

Dabei ändert sich die Energie bei einer Volumenän-
derung um

dU = �pdV.
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Daraus folgt

∂ p
∂V

= �∂

2U
∂V 2

und

1
k

= V
∂

2U
∂V 2 .

Bei dieser Rechnung ist die Nullpunktsenergie der
Bewegung der Atome noch nicht berücksichtigt,
welche insbesondere bei den leichten Atomen eine
signifikante Reduktion der Bindungsenergie von bis
zu 28% ergeben.

3.3.2 Ionische Bindung

Im Falle der ionischen Bindung gehen wir aus von
der Paarwechselwirkung

Ui j = le�pi jR/r +
1

4pe0

qiq j

pi jR
.

Da der Abstoßungsterm exponentiell mit der Di-
stanz abfällt kann er für alle Paare außer den näch-
sten Nachbarn vernachlässigt werden. Dieser Teil
der Gittersumme wird damit für das i-te Ion

Ui = zle�R/r ,

wobei z die Zahl der nächsten Nachbarn beschreibt.

Beim Coulomb Term schreiben wir die Summe als

UC = � 1
4pe0

ae2

R
,

wobei die Madelung-Konstante1

a = �Â
j

qiq j

pi j

eine Summe über alle Atome des Gitters darstellt.
qi, j sind jetzt die Ladungen in Einheiten der Ele-
mentarladung. Sie hängt nur von den relativen Ko-
ordinaten pi j ab und kann deshalb für einen be-
stimmten Gittertyp berechnet werden, unabhängig
davon, durch welche Atome dieses Gitter gebildet

1Nach Erwin Madelung (1881 - 1972).

wird. Unterschiedliche Substanzen, welche im glei-
chen Gittertyp kristallisieren, besitzen somit die glei-
che Madelung-Konstante. Die Unterschiede in der
Gitterenergie sind (in dieser Näherung) lediglich auf
die unterschiedlichen Abstände R zurückzuführen.

Die Gitterkonstante a, resp. der Abstand R wird be-
stimmt durch die Minimierung der Energie bezüg-
lich R. Der Gleichgewichtsabstand R0 ist bestimmt
durch

∂U
∂R

����
R0

= 0 = �zl

e�R0/r

r

+a

1
4pe0

e2

R2
0

oder

zl4pe0R2
0e�R0/r = rae2.

Diese Gleichung kann man nach dem Gleichge-
wichtsabstand R0 auflösen. Wir können daraus auch
den exponentiellen Term aus der Abstoßungsenergie
ausrechnen:

zle�R0/r =
rae2

zl4pe0R2
0

= �UC
r

R0
.

Damit erhalten wir auch die Gesamtenergie:

Utot = � Nae2

4pe0R0
(1� r

R0
).

Die Energie ist somit proportional zur Madelung-
Konstante, und diese muss positiv sein, damit das
Gitter stabil ist.

3.3.3 Berechnung der
Madelung-Konstanten

+ - + - + -

a=R

Abbildung 3.23: Berechnung der Madelung-Kon-
stanten.

Im eindimensionalen Fall kann die Madelung-
Konstante relativ einfach berechnet werden. Wir
summieren über eine alternierende Kette mit kon-
stantem Abstand und erhalten

a = 2(1� 1
2

+
1
3

� 1
4

. . .).
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3 Bindungen im Festkörper

Für die Berechnung der Summe kann man die Rei-
henentwicklung

ln(1+ x) = x� x2

2
+

x3

3
� x4

4
+ . . .

verwenden und erhält

a = 2 ln2

In drei Dimensionen ist die analytische Berechnung
der Summe im Allgemeinen sehr schwierig. Wir be-
trachten als Beispiel zunächst das Natriumchlorid.
Wir können entweder ein Na+ oder ein Cl�-Ion als
Referenz benutzen und wählen Na+. Jedes Na+ Ion
ist von 6 Cl� Ionen in oktaedrischer Anordnung um-
geben, wobei der Abstand die Hälfte der Gitterkon-
stante beträgt.

Schale ±pij # Nachbarn Yi
1
pij

1 +1 6 6
2 - 2 12 -2.49
3 + 3 8 2.13
4 -2 6 -0.87
5 + 5 24 9.87
6 - 6 24 0.07
7 - 8 12 -4.17
8 +3 30 5.83

Abbildung 3.24: Beiträge der Schalen zur Made-
lung-Konstanten.

Diese tragen somit einen Beitrag 6 zur Madelung-
Konstante bei. Die zweitnächsten Nachbarn sind
wieder Na+ Ionen: 12 sitzen im

p
2-fachen Ab-

stand. Bis zu dieser Koordinationshülle gerechnet ist
die Madelung-Konstante deshalb 6-12/

p
2 ⇡ �2,49.

Die nächsten beiden Hüllen bestehen aus 8 Cl� Io-
nen im Abstand

p
3 und 6 Na Ionen im Abstand 2.

Die Konvergenz ist offenbar sehr langsam.

Eine etwas bessere Konvergenz erhält man durch
Aufsummieren über die Beiträge von entgegenge-
setzten Ionenpaaren. Auch hier muss man jedoch
über viele Tausend Ionenpaare summieren, bis die
Schwankungen gering werden. Generell sind die Ab-
weichungen bei der Berechnung von Energien endli-
cher Kristalle physikalisch leicht interpretierbar: sie
entsprechen der Energie von Oberflächenladungen.

1.8

1.75

1.7

1.65

1.6

1.7476

# Ionenpaare
10000 20000

Abbildung 3.25: Konvergenz bei der Berechnung
der Madelung-Konstanten.

Diese Technik kann man verfeinern und anstelle von
Ionenpaaren andere neutrale Einheiten aufsummie-
ren, welche die Oberflächenladungen verkleinern.
Der Vorteil bei der Verwendung von neutralen Ein-
heiten liegt darin, dass deren Potenzial eine kürze-
re Reichweite hat, so dass die Konvergenz schneller
ist. Eine weitere Methode ist diejenige von Ewald,
bei der man kurzreichweitige Beiträge im direk-
ten Raum aufsummiert, langreichweitige im rezipro-
ken Raum. Dort erscheinen langreichweitige, d.h.
langsam variierende Beiträge, in der Nähe des Ur-
sprungs, so dass die Integrationsgrenzen eng gesetzt
werden können.

Für unterschiedliche Gittertypen erhält man die Wer-
te

NaCl ZnS CsCl CaF2

1,7476 1,6381 1,7627 5,0388
.
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