3 Bindungen im Festkorper

3.1 Grundlagen

3.1.1 Wechselwirkung und Bindungsenergie

Die Struktur eines Festkorpers ergibt sich aus der
Wechselwirkung zwischen den darin enthaltenen
Gitterbausteinen, also den Atomen, Ionen oder Mo-
lekiilen. Fiir die in Kapitel 2 besprochenen Gitterty-
pen spielen zunichst nur relative Distanzen eine Rol-
le. Die GroBe einer Einheitszelle wird hingegen di-
rekt von der Wechselwirkung zwischen den Bautei-
len des Gitters bestimmt: Man kann den Abstand be-
stimmen, indem man die Abstandsabhingigkeit der
Wechselwirkungsenergie berechnet und deren Mi-
nimum als Funktion des Abstandes bestimmt. Wie
immer verwenden wir die Born-Oppenheimer Nihe-
rung, d.h. wir betrachten die Position der Kerne als
klassische Grofen.
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Abbildung 3.1: Definition der Bindungsenergie.

Die Energie, die man benétigt, um einen Kristall
in seine neutralen Bestandteile (Atome oder Mo-
lekiile) zu zerlegen, wird als Bindungsenergie be-
zeichnet.

In einer klassischen Néherung kann man die Bin-
dungsenergie von Festkorpern diskutieren, indem
man abstoBende Wechselwirkungen zwischen posi-
tiv geladenen Atomriimpfen und zwischen Valenz-
elektronen betrachtet, welche eine Vergro3erung der
Abstinde bewirken, sowie anziehende Wechselwir-

kungen zwischen Valenzelektronen mit Atomriimp-
fen. Das Wechselspiel zwischen den unterschiedli-
chen Abstands- und Richtungsabhingigkeiten ergibt
die beobachtete Gleichgewichtsstruktur. Ein voll-
standiges Verstdndnis setzt jedoch quantenmechani-
sche Betrachtungen voraus.

Bindungsenergien werden meist in der Einheit eV
angegeben. Dabei entspricht 1eV/Atom
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3.1.2 Bindungstypen

Die Bestandteile eines Festkorpers konnen auf un-
terschiedliche Art zusammengehalten werden. Es
ist meist niitzlich, als Bestandteile Molekiile oder
Atomriimpfe und Valenzelektronen zu betrachten.
Die Wechselwirkungen konnen sich auf qualita-
tiv sehr unterschiedliche Weise bemerkbar machen.
Eine erste Klassifizierung unterscheidet fiinf Bin-
dungstypen

kovalente Bindung
ionische Bindung

van der Waals Bindung
metallische Bindung

* Wasserstoffbriicken

Eine grobe Orientierung tiber die wichtigsten Eigen-
schaften dieser Bindungstypen gibt Tabelle 3.1. Ioni-
sche und kovalente Bindungen ergeben die groften
Bindungsenergien und damit die starrsten Festkor-
per. Abbildung 3.2 zeigt eine bildliche Darstellung
der vier wichtigsten Bindungstypen.
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3 Bindungen im Festkorper

Typ Beispiel | Gitterkonstante in A Bindungsenergie in kJ/Mol | Konstituenten
ionisch NaCl 2.8 750 Nat, CI~
kovalent Diamant 710 C
metallisch Na 4.28 110 Na
van der Waals CH4 10 CHy4
Wasserstoffbriicken H,O 50 H,O

Tabelle 3.1: Einige Eigenschaften der wichtigsten Bindungstypen

Of\

Van der Waals (Ar)

Metallisch (Na)

lonisch (NaCl)

Kovalent (Diamant)

Abbildung 3.2: Bildliche Darstellung der vier wich-
tigsten Bindungsarten.

Grob vereinfacht kann man sich vorstellen, dass
im Falle der van der Waals Bindung die neutra-
len Bestandteile (z.B. Argon im Festkorper) sich
gerade berithren und durch schwache Krifte an-
einander gehalten werden. Bei der ionischen Bin-
dung sind die Bestandteile entgegengesetzt geladen
und werden durch Coulomb-Wechselwirkung ange-
zogen. Bei der metallischen Bindung sind die Atom-
rimpfe in ein “Bad” aus freien Elektronen einge-
lagert, welche sie zusammenhilt. Im Falle der ko-
valenten Bindung existiert ein verstirkter Uberlapp
zwischen den Elektronen der einzelnen Atome, wel-
cher zu einer starken, gerichteten Bindung fiihrt.

3.1.3 Bindungsenergien: Ubersicht

Die hier diskutierten unterschiedlichen Bindungsty-
pen sollten als idealisierte Modelle verstanden wer-
den. In der Natur kommen sie nicht in reiner Form
vor, sondern man findet Systeme, die sowohl kova-
lente wie auch metallische Bindungsanteile aufwei-

sen. Man spricht deshalb davon, dass in einem be-
stimmten Kristall der Charakter der Bindungen z.B.
iiberwiegend kovalent oder iiberwiegend ionisch sei.
Die van der Waals Wechselwirkung tritt immer auf,
ist aber schwicher als die anderen Bindungstypen.
Nur wenn andere Bindungstypen keine Rolle spie-
len, wie z.B. bei Edelgasen, wird der Einfluss der
van der Waals Wechselwirkung direkt beobachtbar.

Die Stirke des Zusammenhaltes kann durch die Bin-
dungsenergie charakterisiert werden, welche dem
Kristall zugefiihrt werden muss, um ihn in Atome
oder Molekiile zu zerlegen, welche durch unendlich
groBBe Distanz getrennt sind. Ein Blick auf die Tabel-
le 3.2 der Bindungsenergien fiir die Elemente zeigt
die groBen Unterschiede, die hier auftreten kénnen.
Die Werte reichen von ca. 0,1 eV bei Edelgasen bis
zu 8,9 eV bei Wolfram. In der Tabelle fehlen auBer-
dem die beiden leichtesten Elemente, H und He, wel-
che sehr schwierig zu verfestigen sind. Insbesondere
He wird nicht einmal bei der Temperatur O K zu ei-
nem Festkorper, auler man legt Druck an.

Die Tatsache, dass die Bindungsenergie stark von
der Gruppe (d.h. der Kolonne in der Tabelle) ab-
hingt, zeigt, dass die Erkldrung und Berechnung
von Bindungseigenschaften nur mit Hilfe der Quan-
tenmechanik moglich ist. Die Unterschiede zwi-
schen den einzelnen Gruppen sind auf die unter-
schiedliche Affinitit zu Valenzelektronen (eigenen
oder fremden) zuriickzufiihren. Schwere Ubergangs-
metalle zeigen die hochsten Bindungsenergien. Die
Stéarke der Bindungseneregie bedingt auch viele wei-
tere Materialparameter, wie z.B. den Schmelzpunkt
oder die Elastizitit des Materials.
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Tabelle 3.2: Bindungsenergie der Elemente.

3.1.4 Das Wasserstoffmolekiil

Wir betrachten zunichst nur die Krifte, welche bei
der Wechselwirkung zwischen zwei Atomen auf-
treten. Das einfachste System, bei dem sich meh-
rere Teilchen zu einer bestimmten Struktur zusam-
menfinden, ist das Wasserstoffmolekiil. Mit klassi-
scher Mechanik allein ist es schwierig einzusehen,
wie zwischen zwei neutralen Teilchen eine bindende
Wechselwirkung zustande kommen soll. Um dies zu
verstehen, miissen wir das Problem also quantenme-
chanisch analysieren.

Wir betrachten dazu zwei Wasserstoffatome A und
B, deren Elektronenhiille sich zum Teil iiberlagert.
Wie iiblich verwenden wir die Born-Oppenheimer
Niaherung: wir behandeln die Position der Kerne als
klassische Parameter. Die Elektronen bewegen sich
in einem Potenzial, welches durch die Coulomb-
Wechselwirkung mit den Kernen und den iibrigen
Elektronen gegeben ist. Die Basis dieser Nidherung

ist die sehr viel grolere Masse der Kerne: beim Was-
serstoff sind sie 3 GroBenordnungen schwerer als die
Elektronen, bei schwereren Atomen bis zu 5 Gro-
Benordnungen. Ist die Energie pro Freiheitsgrad fiir
Kerne und Elektronen von der gleichen Gréfenord-
nung (Aquipartitionsprinzip), so bewegen sich somit
die Elektronen sehr viel schneller. Fiir die Wechsel-
wirkung mit den Kernen ist dann in erster Linie der
mittlere Aufenthaltsort relevant.

Die quantenmechanische Beschreibung benétigt in
der Born-Oppenheimer Ndherung nur eine Zustands-
funktion fiir die Elektronen, in denen die Positionen
der Kerne als klassische Parameter auftauchen. Um
die Bewegung der Kerne zu diskutieren, werden wir
umgekehrt die gemittelte Gesamtenergie fiir unter-
schiedliche Kern-Konfigurationen berechnen. In die-
sem Potenzial kann man die Bewegung der Kerne als
harmonische Oszillatoren diskutieren (siche Kap. 4).

Wir schreiben die Wellenfunktionen der beiden
Elektronen als ¥4 und Wg. Sind die beiden Atome
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Yo YPp
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Abbildung 3.3: Uberlapp der Orbitale im H,-
Molekiil.

raumlich gut getrennt, so kann die Zustandsfunktion
des Gesamtsystems in guter Ndherung als das Pro-
dukt W4 (1)Wp(2) der beiden einzelnen Funktionen
geschrieben werden; hier sind die Koordinaten der
beiden Elektronen zum Index (1, 2) zusammenge-
fasst. Wir beriicksichtigen an dieser Stelle nicht das
Pauliprinzip, nach dem der Zustand der beiden Elek-
tronen unter Vertauschung ihrer Koordinaten anti-
symmetrisch sein miisste. Den Hamiltonoperator des
Systems bezeichnen wir mit 5#. Dieser beinhaltet
neben den Hamiltonoperatoren der isolierten Atome
einen Kopplungsterm, der beschreibt, dass das Elek-
tron beide Kerne spiirt.

Eine vollstindige Analyse des molekularen Hamil-
tonoperators ist sehr aufwéndig. Da wir an dieser
Stelle aber nicht ein quantitatives, sondern nur ein
qualitatives Verstindnis anstreben, geniigt uns ei-
ne relativ einfache Beschreibung. Wir suchen die
Eigenfunktion ¥ des gesamten Hamiltonoperators,
wobei wir nicht die explizite Darstellung des Ha-
miltonoperators verwenden, sondern lediglich die
(unbekannten) Matrixelemente in der Basis der
Grundzustands-Eigenfunktionen der einzelnen Ato-
me.

3.1.5 Energie

Als Ansatz fiir die Berechnung des molekularen Zu-
stands eines einzelnen Elektrons schreiben wir die-
sen als Linearkombination der beiden atomaren Zu-

stinde:
Y= CA‘PA + CB‘PB.

Die beiden Basisfunktionen sind fiir endliche Ab-
stande nicht orthogonal sondern besitzen ein endli-
ches Uberlappintegral

S = (W, |Wp).

S ist ein Mal} fiir die Stirke der Wechselwirkung
zwischen den beiden Atomen: je ndher die Atome
zusammen liegen, desto groBer ist der Uberlapp zwi-
schen den beiden Orbitalen. Aufgrund der Normie-
rung ist S < 1. Die Energie von W ist

(P|2|¥)
(|¥)
e Han + g + 2cacpHap
cf‘ + c% +2cscpS

&

3.1

)

wobei wir die Koeffizienten cy4, cg und 7%, als reell
angenommen haben. Hier stellen

Hy = (Yul H|y)

dar und S wurde ebenfalls als reell angenommen.

Wir erweitern Gleichung (3.1) mit dem Nenner der
rechten Seite:

& (i +ch+2cacpS)
A Hp + cx g+ 2cacg Hap.

Diese Gleichung koénnen wir dazu benutzen, die
Energie zu minimieren und so den Eigenzustand zu
finden. Wir suchen zundchst das Minimum beziig-
lich ¢4, indem wir danach ableiten:

ca(Hon — &)+ cp(Hap— ES) = 0.
Die Ableitung nach cp ergibt entsprechend

ca(Hap—ES)+cp(Hpp— &) = 0.
In Matrixschreibweise entspricht das

( It

Hn—&  Hap—ES
Jup—ES  Tn— &

CA
CB

0,

)
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wenn wir benutzen, dass fiir identische Atome
Jan = Hpp. Damit dieses Gleichungssystem 19sbar
ist, muss die Determinante

(Man—E)* — (Hap— ES)* =0

verschwinden. Dies konnen wir als Gleichung fiir
die Energie verwenden,

&E*(1—82) =28 (S + H418S)
+ A — Ay = 0.

Die Losungen dieser quadratischen Gleichung sind

(Haa —HapS) £ /(Haa — HapS)? — (HA, —H2p)(1 - 5?)

€= 1- 52

(Han — HapS) £ /o, + HapS? — 2HanHapS — Ha, + Hap + HA,52 — H3 552
-5

(Haa —HaS) £ (Hap — HanS)
1-62
(Haa FHap)(1£S5)
1- 52

oder

o _ T £ I
s,as — 1£S .

3.1.6 Molekiilorbitale

Die zugehorigen Eigenfunktionen sind

Yi+¥
g o ATTE
2(1+5)
Yy -
Yo = A &

V2(1=58)

d.h. die symmetrische und antisymmetrische Linear-
kombination der beiden Atomorbitale.

Abbildung 3.4: Energie der Orbitale im H,-Molekiil.

Die Wechselwirkung zwischen den beiden Atomen
fiihrt also zu einer Aufspaltung der Energiezustin-
de, die ohne Wechselwirkung entartet sind. Das sym-
metrische Molekiilorbital liegt energetisch unterhalb
der Atomorbitale, die antisymmetrische Linearkom-
bination oberhalb. Wie im Atom kann jedes dieser
Molekiilorbitale mit maximal zwei Elektronen be-
setzt werden. Offensichtlich weist das neutrale Was-
serstoffmolekiil, bei dem das bindende Orbital von
zwei Elektronen besetzt wird, die stabilste Konfigu-
ration auf.

ge
g%

Abbildung 3.5: Molekiilorbitale im Hp-Molekiil.

Beim bindenden Molekiilorbital ¥ werden die bei-
den Atomorbitale mit dem gleichen Vorzeichen ad-
diert. Es entsteht deshalb zwischen den beiden Ato-
men eine positive Interferenz und die Elektronen-
dichte steigt in diesem Gebiet. Das antibindende Or-
bital ¥, hingegen weist zwischen den beiden Kernen
eine Knotenebene auf; in dieser Ebene verschwindet
die Elektronendichte.

Treten mehr als 2 Atome in Wechselwirkung, so er-
geben sich weitere Aufspaltungen. Im Grenzfall ei-
nes unendlich groflen Ensembles von Atomen ent-
steht eine kontinuierliche Verteilung der Energie der
Eigenzustinde. Die Konsequenzen davon werden
wir im Rahmen des Bindermodells genauer disku-
tieren.

3.2 Paarwechselwirkungen

3.2.1 Kovalente Bindung

Das Uberlappintegral und damit die Stirke der
Wechselwirkung nimmt mit abnehmendem Abstand
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Abbildung 3.6: Energie der Molekiilorbitale im Hj-
Molekiil als Funktion des Abstan-
des.

zu. Das antisymmetrische Orbital liegt fiir alle Ab-
stande iiber den Atomorbitalen. Bringt man das Mo-
lekiil in diesen Zustand, so kann es immer Energie
gewinnen, indem seine Kerne sich voneinander ent-
fernen - es fliegt somit auseinander. Man nennt die-
ses Orbital deshalb antibindend, im Gegensatz zum
tiefer liegenden bindenden Orbital. Bringt man ein
Molekiil in diesen Zustand, so ist seine Energie nied-
riger als diejenige der freien Atome, sie bleiben des-
halb aneinander gebunden. Erst wenn der Abstand
unter den Gleichgewichtswert fillt, fiihrt die Absto-
Bung zwischen den Kernen (und ev. zwischen den
geschlossenen Schalen) zu einer zusétzlichen absto-
Benden Wechselwirkung, so dass die Gesamtenergie
wieder ansteigt.

Insgesamt kann das System seine Enregie erniedri-
gen, wenn jedes der beiden Atome in Elektron zur
Bindung beitrdgt. Sind es mehr als 2 Elektronen
(z.B. bei gefiillten Schalen, wie z.B. den Edelgasen),
so miissen auch antibindende Orbitale belegt wer-
den. Dadurch erhoht sich die Gesamtenergie und ei-
ne Bindung findet nicht statt.

Solche Bindungen werden als kovalente Bindungen
bezeichnet. Samtliche Molekiile werden durch ko-
valente Bindungen zusammengehalten. Das prototy-
pische Beispiel eines Kristalls, der in diesem Bin-
dungstyp kristallisiert, ist Diamant. Hier zeigt es
sich, dass diese Bindungsart stark gerichtet ist: jedes

Kohlenstoffatom hat vier ndchste Nachbarn, welche
in tetraedrischer Anordnung angeordnet sind. Die re-
sultierende Kristallstruktur hat eine relativ niedrige
Raumfiillung von 0.34, gegeniiber einer dichtesten
Kugelpackung mit 0.74. Dies zeigt, dass die Anzahl
moglicher Bindungen und damit die Richtung der
Bindungen bei diesem Bindungstyp wichtiger ist als
die Zahl der nédchsten Nachbarn. Diese wird direkt
bestimmt durch die sp® Hybridisierung am Kohlen-
stoff.

Abbildung 3.7: Karte der Elektronendichte in Ger-
manium.

Neben Diamant gibt es auch einige weitere Elemen-
te, welche diese Art von Bindung eingehen, insbe-
sondere die im Periodensystem direkt darunter lie-
genden Silizium und Germanium. Entsprechend ist
auch deren Struktur vom gleichen Typ. Kovalente
Bindungen in diesen Elementen fiihren aber nicht
zu lokalisierten Bindungselektronen wie in Molekii-
len, sondern die Elektronen sind hier zwar zwischen
den Atomen konzentriert, aber iiber den gesamten
Korper delokalisiert, wie die Halbleitereigenschaf-
ten von Si und Ge zeigen. Diamant ist zwar bei
Raumtemperatur ein ausgezeichneter Isolator, bei
hohen Temperaturen stellt er aber auch einen sehr
attraktiven Halbleiter dar.

3.2.2 Polare Bindungen

Bis hierher hatten wir angenommen, dass es sich
um zwei identische Atome handelt. Kovalente Bin-
dungen konnen aber auch bei ungleichen Partnern
entstehen. In diesem Fall sind auch die Koeffizien-
ten der Atomorbitale bei der Kombination zu Mo-
lekiilorbitalen nicht mehr vom gleichen Betrag, wie
Abb. 3.8 zeigt. Das tiefer liegende Orbital ist domi-
niert durch das energetisch nédher liegende Atomor-
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Abbildung 3.8: Energie und Form der Molekiilorbi-
tale in einem polaren Molekiil.

bital und auch die Elektronendichte ist auf diesem
Atom konzentriert.

Abbildung 3.9: Ladungsverteilung im Wassermole-
kiil: negative Ladungsdichte ist blau,
positive griin.

Abb. 3.9 zeigt als Beispiel die Ladungsverteilung in
einem Wassermolekiil. Hier werden die Bindungs-
elektronen ndher zum Sauerstoff verschoben. Die-
ser erhélt dadurch eine partiell negative Ladung, die
Wasserstoffatome eine positive Partialladung.

Beim antibindenden Orbital ist der grofite Teil der
Elektronendichte auf dem energetisch hoher liegen-
den Atom. Falls beide Atome je ein Elektron zur
Bindung beitragen, findet deshalb ein teilweiser La-
dungstransfer zum Atom mit der hoheren Elektrone-
gativitat statt.

ZJ;:
o
|mmnnnmw'

Abbildung 3.10: Verlauf der Elektronegativitit im
Periodensystem.

Elektronegativitit ist ein relatives Ma8 fiir die Kraft,
mit der ein Atom ein gemeinsames Elektron an sich
bindet. Sie ist fiir kleine Atome auf der rechten Sei-
te des Periodensystems am hochsten, wihrend grof3e
Atome mit nur wenigen Elektronen in der duflersten
Schale diese leichter abgeben. Je nach Energieunter-
schied kann dieser Transfer vollstindig sein. Dies ist
der Fall der ionischen Bindung.

3.2.3 Ionenpaare

Das typische Beispiel fiir ionische Kristalle sind die
Alkali-Halogenide: Hier wird ein Elektron von ei-
nem Alkali-Atom auf ein Halogen-Atom iibertragen,
so dass die beiden einfach geladenen Ionen jeweils
Edelgaskonfiguration erreichen. Aufgrund der Elek-
troneniibertragung besitzen beide Atome eine elek-
trische Ladung und ziehen sich deshalb gegensei-
tig an. Wir diskutieren die Situation zunichst fiir
ein einzelnes lonenpaar. Die Energie des Systems
kann konzeptionell auf verschiedene Prozesse ver-
teilt werden.

+5,14 eV

»+

lonisierung

-3,61eV
+ ©

Elektronenaffinitat -

9

Gas

Kristall

\CI !CI )
/CI

Abbildung 3.11: Energiebillanz bei der Bildung von
NaCl.

-79eV

@9 =

Ionenblndung

Wir betrachten hier nicht die Energie, die bendtigt
wird, um Natrium und Chlor aus ihrer normalen
Form (Metall, resp. molekulares Gas) in atomare
Form iiberzufiihren. In den ersten beiden in Abb.
3.11 dargestellten Schritten wird ein Elektron von
einem Natriumatom auf ein Chloratom iibertragen.
Die gesamte Energie pro Ionenpaar, setzt sich zu-
sammen aus der Ionisierungsenergie des Natriums
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(5.14 eV) und der Elektronenaffinitit des Chlora-
toms (-3.61 eV). Diese Beitrige zur Energie knnen
nur aus einer quantenmechanischen Berechnung er-
halten werden. Die positiven Ionen (Na™) sind je-
weils etwas kleiner als die entsprechenden neutralen
Atome, die negativen (Cl™) etwas groBer.

Der groBite Teil der Bindungsenergie (-7,9 eV im
Beispiel von NaCl) wird bei der Bildung des Kri-
stallgitters aus den gasformigen Ionen frei. Diese
Energie kann in guter Ndherung klassisch iiber die
Coulomb-Wechselwirkung zwischen den Ionen be-
rechnet werden. Je geringer der Abstand zwischen
den Ionen, desto mehr Energie wird frei. Die anzie-
hende Coulomb-Wechselwirkung ist wesentlich stér-
ker als die van der Waals Wechselwirkung, welche
hier vernachléssigt werden kann.

Die Tatsache, dass die entgegengesetzt geladenen lo-
nen sich nur bis auf einen Abstand von etwa 3A ni-
hern, zeigt, dass auch eine abstofende Wechselwir-
kung vorhanden ist, welche offenbar eine deutlich
starkere Abstandsabhingigkeit aufweist. Diese Ab-
stoBung ist im Wesentlichen auf das Pauli-Prinzip
zuriickzufiihren, welches den Uberlapp der Elektro-
nenzustinde verhindert. Man verwendet fiir seine
Beschreibung gerne ein emprisches Potenzial und
schreibt die gesamte Wechselwirkung eines Ionen-
paars als Funktion des Abstandes r;; als

lq2

U:i(ri:) = de Ti/P + ’
U(rlj) ¢ 4rey Tij

wobei g den Betrag der Ladungen bezeichnet. Das +
Zeichen gilt fiir gleiche Ladungen, das - Zeichen fiir
entgegengesetzte Ladungen.

Die hier gewihlte exponentielle Abstandsabhéingig-
keit wird als Born-Meyer Potenzial bezeichnet. Die
genaue Form hat keinen wesentlichen Einfluss auf
die Eigenschaften des Kristalls. Sie deutet aber an,
dass sich die Ionen bei kleinen Abstinden fast wie
harte Kugeln verhalten, d.h. der Uberlapp der Elek-
tronenhiillen bleibt sehr klein. Der Parameter o des
Born-Meyer Potenzials kann experimentell aus Mes-
sungen der Kompressibilitdt bestimmt werden; typi-
sche Werte sind rund 0.3 A.

AbstoBende

10- Energie
>
[J]
£ o e*ﬁ’j/ﬂ
S
X
(]
° o
= Abstand in A
o 0 T T — T >
o} 2 4 6
'&.’, Gesamt- Gleichgewichts-
:cj energie

Coulomb-Energie
-104

Abbildung 3.12: Abstandsabhiingigkeit der Energie
in KCI.

3.2.4 Pauli-Prinzip und
Austauschwechselwirkung

Die AbstoBung kann als eine Folge des Pauli-
Prinzips betrachtet werden: Dieses verlangt, dass
die Wellenfunktion zweier identischer Teilchen
antisymmetrisch sein muss. Fiir zwei Elektro-
nen mit parallelem Spin muss die Zweiteilchen-
Wellenfunktion deshalb antisymmetrisiert werden:

W (ry,ra) = u(ry)v(ry) —u(r)v(ry),

wobei u,v Einelektronenfunktionen darstellen und
r1, > die Koordinaten der Elektronen. Fiir identische
Positionen verschwindet offenbar die Wellenfunkti-
on,

Yo (ri,r1) =u(r)v(r) —u(r)v(r) =0,

d.h. die Wahrscheinlichkeit, zwei Elektronen am
gleichen Ort zu finden ist Null, was einer starken
AbstoBBung entspricht. Die Kraft hangt ab vom Spin-
Zustand der Elektronen; sie existiert nur zwischen
Elektronen in identischen Quatenzustidnden.

Die Stérke dieser effektiven Kraft kann man abschit-
zen, wenn man die elektronischen Zustinde im He-
lium gedanklich aus Zustinden des Wasserstoffa-
toms zusammensetzt: Zwei Elektronen mit paralle-
lem Spin konnen nicht gleichzeitig im 1s Zustand
befinden; eines wird deshalb in den 2s Zustand an-
geregt. Dafiir wird eine Energie von 21 eV benétigt.
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'H 'H ’He
DD =@

Gesamtspin 0
Elektronische Energie -80 eV

Gesamtspin 1
Elektronische Energie -59 eV

Abbildung 3.13: Energiedifferenz und Pauli Prinzip.

Die effektive Energie der Pauli-AbstoBung betrigt
somit mindestens 21 eV.

In ionischen Kristallen kann man die Gleichge-
wichtsabstinde in guter Nidherung bestimmen, wenn
man die Ionen als (beinahe) harte Kugeln betrachtet
und jeder Ionensorte einen entsprechenden lonenra-
dius zuordnet. Die Abstinde werden dann durch die
Bedingung bestimmt, dass sich die Ionen gerade be-
rithren. In Tabelle 3.3 sind Ionenradien fiir Edelgas-
konfigurationen (gefiillte Schalen) gezeigt. Fiir an-
dere Ladungszustdnde findet man andere Radien. Je
hoher die positive Ladungs eines Atoms, desto klei-
ner ist der Ionenradius.

3.2.5 Van der Waals Bindung

Atome oder Molekiile kdnnen aber auch eine bin-
dende Wechselwirkung eingehen, bei der keine
Elektronen transferiert werden. Dies geschieht im-
mer dann, wenn die Bausteine schon gefiillte Elek-
tronenschalen aufweisen, sodass keine Elektronen
zur Verfiigung stehen, welche geteilt werden konn-
ten und dadurch eine Bindung erzeugen konnten.
Von den Elementen gehoren die Edelgasatome in
diese Klasse, aber auch Molekiile kristallisieren auf
diese Weise. In einem Kristall, der durch van der
Waals-Wechselwirkung zusammengehalten wird, ist
die Struktur und die elektronische Verteilung der Be-
standteile sehr dhnlich zu derjenigen der freien Be-
standteile. Dies ist ein wesentlicher Unterschied zu
allen anderen Bindungstypen.

Diese Art der Wechselwirkungen tritt auch in rea-
len (van der Waals-) Gasen auf und wird als van der

Waals Wechselwirkung, London-Wechselwirkung
oder induzierte Dipol-Dipol Wechselwirkung be-
zeichnet. Sie kann so verstanden werden, dass die
beiden Atome gegenseitig Dipole induzieren, wel-
che sich anziehen. Allerdings handelt es sich nicht
um statische Dipole, der Kristall besitzt kein glo-
bales Dipolmoment. In einem klassischen Bild (das
notwendigerweise unvollstindig ist) miissten die
Atome oszillierende Dipolmomente besitzen. Wenn
diese in Phase oszillieren, stellt sich insgesamt eine
anziehende Wechselwirkung ein.

R

X2

X1

Abbildung 3.14: Schwingung benachbarter Atome.

Um zu verstehen, wie die van der Waals Wechsel-
wirkung zustande kommt, betrachten wir ein einfa-
ches elektrostatisches Modell. Zwei Atome beste-
hen aus jeweils einem Kern und einer Elektronenhiil-
le, die sich gegeniiber dem Kern verschieben kann.
Die elektrostatische Anziehung zwischen Kern und
Elektronenhiille stellt eine riicktreibende Kraft dar,
welche zu einer oszillatorischen Bewegung fiihrt.
Die Oszillationsfrequenz entspricht einer optischen
Resonanz mit Frequenz @y. Der Abstand zwischen
den beiden Atomen sei R und die Auslenkungen der
Elektronenhiille aus der Ruhelage seien x| und x,. In
guter Ndherung konnen die Positionen der Kerne als
konstant betrachtet werden.

Ohne die Wechselwirkung zwischen den Atomen ist
der Hamiltonoperator dieses Systems
1 1 1 5, 1
0= P S g, P2t
wobei p; die zur Auslenkung x; konjugierten Impulse
darstellen. Die Kraftkonstante ergibt sich aus der Re-
sonanzfrequenz als C = ma)g, wobei m die reduzierte
Masse (~Elektronenmasse) darstellt. Die zusitzliche
Coulomb Wechselwirkung zwischen den beiden Sy-

stemen ist

7 [1 1 1 1

:471'80 E+R—X1+XQ_R—X1 _R—{—XQ ’

pi+5Cxi+ +-Cx3,

JA
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1.48

1.13

0.93

0.80

0.67

1.26

0.97

H He
2.08
Li Be o
S Einheit: A
1.56 | 1.13
Na Mg Al Si P S Cl Ar
0.97 | 0.65 | < Standardradien fiir lonen mit Edelgaskonfiguration (gefiillte Schale) —

Atomradien in tetraedisch-kovalenten Bindugen
1.91 1.60 | «—— lonenradien firr Metalle in 12er Koordination
K Ca Sc Ti v Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
1.33 | 0.99 | 0.81 | 0.68 0.74 062 J053 |2.22 |]1.98 |1.95 |2.00
238 | 198|164 | 1.46 | 1.35 | 1.28 | 1.26 | 1.27 | 1.25 | 1.25 |1.28 |1.39 |1.41 |1.37 |1.39
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te | Xe

2.17

Cs Ba La Hf Ta w Re Os Ir Pt Au Hg TI Pb Bi Po At Rn
1.67 1.35 | 1.15 1.37 | 1.10 ] 0.95 |0.84

273 | 224|188 | 158 |1.47 | 1.41 | 1.38 J1.35 |1.36 | 1.39 | 1.44 | 157 |1.72 |1.75 | 1.70 | 1.76

Fr Ra Ac

1.75 1.37 | 1.11

Tabelle 3.3: Ionenradien der Elemente.

wobei wir angenommen haben, dass die Ladung
des Kerns +¢ und diejenige der Elektronenhiille —g
sei. Hier stellen die beiden ersten (positiven) Terme
die AbstoBung zwischen den Kernen und zwischen
den Elektronen dar, die beiden negativen Terme die
Anziehung zwischen der Elektronenhiille des einen
Atoms und dem Kern des andern Atoms dar.

Fir kleine Auslenkungen, xj,x; < R kann dieser
Ausdruck entwickelt werden. Wir schreiben dafiir

A =

7 1 1 1
1+ - - .
4menR 1-3+% 1-3F 1+%

In erster Ordnung, d.h. fir 1/(1+¢€) ~ 1 —¢, ver-
schwindet die Summe. In zweiter Ordnung, d.h. mit

1 2
—~x~1l—€+¢€
1+¢€

erhilt man
2
q 1
A~ 47:801%1?[(’“1_”)2”%”%]
_ 4 am
2TE R3

Offenbar ist der Kopplungsterm proportional zum
Produkt der beiden Auslenkungen, d.h. er wird ma-
ximal wenn beide Elektronenhiillen in die gleiche
Richtung verschoben sind.

3.2.6 Energie

Der gesamte Hamiltonoperator ist die Summe

H = Ao+ A
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des ungestorten Systems 73 und des Kopplungs-
terms 771 . Dieser Operator kann diagonalisiert wer-
den, wenn wir symmetrieangepasste Koordinaten
verwenden

L (i) -
X = —=(x14+x) x,=—=(x1 —x
1) \/i 1 2 a \/i 1 2
und damit
1 1
xlzi(xsﬁan) x2:7(xs*xa)a

V2 V2

wobei s und a fiir symmetrische und antisymmetri-
sche Linearkombination stehen.

In diesen Koordinaten ist

2

271'8()R3

[\

q

XXy = ———+
47[8()R3

= (xf — ).

Analog definieren wir fiir die Impulse der beiden
Elektronenhiillen:
_ L( +p2) — L( )
Ps V2 P1TDP2) PDa V2 pP1— D2
und damit

1

V2 V2

Die kinetische Energie wird somit

1

P (Ps+pa) P2=—7=(Ps—Pa)-

1
5 (P35 +p2)-

1
Hin = ~—(p}+p3) =
kin ) (pl p2)

Fiir den gesamten Hamiltonoperator erhalten wir in
den symmetrieangepassten Koordinaten

H = H+ I =
1, 1 g 2
= |—pty-(Cc—
[%M”SJr 2 < 27reOR3>xS
I, 1 7 2
* [2mp“+2<c 2neOR3)x“ '

Die beiden unabhéngigen Schwingungen haben die
Frequenzen

Mit Hilfe der Taylor-Reihe

x2

—+...

\/H[x:lif—g

2

erhalten wir fiir x = ¢*/(2w&yR>C) die Niherung

2
1 4 1 q*
0~ l+t-——— - | ————— R I
@ [ 2278RC 8 (2neOR3C *

()

k=) R— o 1. Ordnung 2.Ordnung

] —

S [ Aufspaltung Verschiebung

€

) —
Abbildung 3.15: Energieverschiebung durch die
Kopplung.

Offenbar sind die Frequenzen der beiden Eigenmo-
den leicht verschoben. Die Verschiebung erster Ord-
nung ist fiir die beiden Frequenzen entgegengesetzt,
die Verschiebung zweiter Ordnung ist fiir beide zu
kleineren Frequenzen.

Im Schwingungsgrundzustand besitzt das Gesamtsy-
stem die Energie

h
E(wﬁ—a)a).

Diese ist etwas geringer als die Grundzustandsener-
gie iy der beiden getrennten Atome, zwar um

(k) -

Da die Energie mit abnehmendem Abstand kleiner
wird, stellt dies einen bindenden Beitrag zur gesam-
ten Energie des Systems dar. Die anziehende Wech-
selwirkung ist indirekt proportional zur sechsten Po-
tenz des Abstandes. Da es sich um eine Anderung
der Nullpunktenergie handelt, sollte dieser induzier-
te Dipol nicht als schwingender Dipol verstanden
werden. Offensichtlich verschwindet die Wechsel-
wirkung im statischen Grenzfall, wo @y — 0, wie
auch im klassischen Grenzfall (7 — 0).

q2

2meoR3C

|
AU = by~
@3

A
ﬁ.
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3.2.7 Lennard-Jones Potenzial

Wenn sich die Elektronendichteverteilungen zweier
identischer Atome mit gefiillten Elektronenschalen
iberlappen, muss deshalb eines der beiden Elektro-
nen in ein hoher gelegenes Orbital ausweichen. Weil
dafiir eine hohe Energie aufgebracht werden muss,
entspricht dies einer starken abstolenden Wechsel-
wirkung. Empirisch hat man fiir Edelgase ein Poten-
zial gefunden, das etwa mit R'? von der Distanz R
abhingt. Das gesamte Potenzial fiir die Wechselwir-
kung zwischen zwei Atomen kann damit geschrie-
ben werden als
)

(e

U(R) = 4e [(R

Lennard Jones Potenzial

(0/R)12

Abbildung 3.16: Abstandsabhingigkeit der Energi-
en im Lennard-Jones Potenzial.

Dieses Potenzial ist als Lennard-Jones Potenzial be-
kannt. Die genaue Form sollte nicht als Naturgesetz
betrachtet werden. Sie bildet jedoch die folgenden
wichtigen Punkte an:

* Bei grofen Abstidnden variiert ist die Energie
proportional to R~°,

¢ Bei kurzen Distanzen ist das Potenzial stark ab-
stoBend.

¢ Der Parameter o bestimmt die Distanz bei der
das Potenzial zwischen anziehend und absto-
Bend wechselt, wihrend € die Stirke der Wech-
selwirkung skaliert. Beide Parameter konnen in
der Gasphase gemessen werden.

Die folgende Tabelle zeigt diese Parameter fiir die
Edelgaskristalle

’ ‘ Ne ‘ Ar ‘ Kr ‘ Xe ‘
e[meV] | 3,1 10,4 [ 14,0 [ 20,0
o[A] 2,74 3.4 |3,65] 3,98

Die Zunahme der Bindungsenergie mit der Masse
der Atome ist auf die hohere Polarisierbarkeit bei ei-
ner groBeren Zahl von Elektronen zuriickzufiihren.

Verschiedene Materialparameter hingen direkt von
diesen Parmetern ab, wie z.B. die Bindungsenergie,
der Abstand zwischen nédchsten Nachbarn, oder der
Schmelzpunkt:

| Ne | Ar | Kr | Xe |

Abstand[A] 3,13 | 3,76 | 4,01 | 4,35
Bindungsen. [A‘ig’m 0,02 | 0,08 | 0,12 | 0,17
Schmelzpunkt [K] 24 84 117 | 161

Der Bindungsabstand liegt dabei immer etwa 10 %
iiber dem Wert von o. Dies liegt daran, dass ©
den Nulldurchgang des Potenzials angibt, das Mini-
mum liegt etwa 12,5 % hoher. Die Bindungsenergie
liegt bei ~ 8¢: jedes Atom hat mehrere Nachbarn,
im Festkroper tragen alle Paarwechselwirkungen zur
Gesamtenergie bei. Dies wird in Kapitel 3.3 disku-
tiert.

3.2.8 Metallische Bindung

In Metallen sind die Valenzelektronen weitgehend
delokalisiert und konnen sich frei durch den gesam-
ten Kristall bewegen; dies wird in Kapitel 5 und 6 ge-
nauer diskutiert. Typische Metalle zeigen deshalb ei-
ne hohe elektrische Leitfdhigkeit. Die Bindung kann
im Wesentlichen so verstanden werden, dass die De-
lokalisierung der Elektronen ihre kinetische Energie
erniedrigt. Die Bindung ist, im Gegensatz zur kova-
lenten Bindung, nicht gerichtet, so dass die Metalle
hiufig in dichtester Kugelpackung kristallisieren.

Die metallische Bindung ist schwicher als die ko-
valente oder ionische Bindung. Alkalimetalle haben
deshalb einen relativ niedrigen Schmelz- und Siede-
punkt, da hier lediglich die metallische Bindung eine

58



3 Bindungen im Festkorper

Van der Waals lonisch

Kovalent

Metallisch

Abbildung 3.17: Schematische Darstellung  von
Atomriimpfen und Valenzelektro-
nen fiir unterschiedliche Bindungs-
typen. Die Zahlen beziehen sich
auf Ar, KCl, Na und Diamant.

Rolle spielt. Bei den Ubergangsmetallen hingegen
tragen auch die nur teilweise gefiillten d-Orbitale zur
Bindung bei. Deren Beitrag ist eher kovalenter Na-
tur und ergibt deshalb eine sehr viel stirkere Bin-
dung und dementsprechend hohere Schmelzpunkte.
Die Eigenschaften von Materialien mit delokalisier-
ten Elektronen, wie Metalle und Halbleiter werden
in den Kapiteln 5-7 im Detail diskutiert; hier wird
deshalb nicht darauf eingegangen.

Die hier diskutierte Klassifizierung von Bindungsty-
pen ist hilfreich. Wirkliche Materialien lassen sich
aber selten exakt einer dieser Kategorien zuordnen.
Stattdessen tragen im allgemeinen unterschiedliche
Bindungsarten bei, wie das Beispiel der Ubergangs-
metalle zeigt: hier spielen kovalente wie auch metal-
lische Bindung eine Rolle.

Auch zwischen kovalenter und ionischer Bindung
findet man alle Ubergangsformen. So kann man bei
biniren Verbindungen einen kontinuierlichen Uber-
gang von kovalenter zu ionischer Bindung beobach-
ten. Der relevante Parameter ist die Differenz der
Elektronegativititen der beiden Partner. Elemente
wie z.B. Si, Ge sind naturgemif nicht ionische ge-
bunden, aber Alkalihalogenide sind praktisch ideale
ionische Verbinungen. Als Beispiel ist RbF 96% io-
nisch.

% ionischer Charakter

)

A (Elektronegativitat)

Abbildung 3.18: Elektronegativitit und ionischer

Charakter.

3.2.9 Wasserstoffbriicken

Wasserstoffatome zeigen bei bestimmten Verbindun-
gen eine besondere Art von Bindungen. Mit seinem
einzelnen Elektron kann es nicht nur mit einem Part-
ner eine kovalente Bindung eingehen. Statt dessen
geht es eine sehr stark polare Bindung ein, bei der
das Elektron grofitenteils an den stirker elektrone-
gativen Partner (F, O oder N) abgegeben wird, wih-
rend das verbleibende Proton sich gleichzeitig an ein
weiteres Atom bindet, welches ein freies Elektronen-
paar ausweist. Diese Art der Bindung wird als Was-
serstoffbriicke bezeichnet. Wasserstoffkerne (=Pro-
tonen) konnen solche Bindungen leichter eingehen
als andere Kerne, da ihr geringes Gewicht sie be-
weglicher macht und da sie keine Rumpfelektronen

besitzen.
% &
L &
,\.‘ 1

» ~

Abbildung 3.19: Wasserstoffbriicken in Eis.

%

H-Briicken sind sehr wichtig fiir die besondere
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Struktur von Eis oder die hohe Verdampfungswir-
me von Wasser. Die Wasserstoffbriicken fiihren da-
zu, dass ein Sauerstoff tetraedrisch von vier Was-
serstoffatomen umgeben ist, wobei zwei der Bin-
dungen lang sind (=H-Briicken), zwei kurz (=kova-
lent). Die Wasserstoffatome befinden sich in einem
(meist asymmetrischen) Doppelminimumpotenzial
und konnen leicht von einem zum anderen Sau-
erstoff wechseln. Wasserstoffbriicken werden dann
gebildet, wenn der Wasserstoff an einen Sauerstoff
oder einen Stickstoff gebunden ist und sich ein wei-
teres Sauerstoff oder Stickstoffatom mit einem freien
Elektronenpaar in der Néhe befindet.

Die Wasserstoffbriicken sind auch fiir die hohen
Schmelz- und Siedepunkte von Wasser verantwort-
lich: Bei einem Molekulargewicht von 18 siedet
Wasser bei +100°C. Als Vergleich kann man Ne-
on betrachten, welches ein Atomgewicht von 20 auf-
weist und bei —246°C verdampft.

Abbildung 3.20: Wasserstoffbriicken in DNA Mole-
kiilen.

Wasserstoffbriicken spielen aber auch in der Bio-
logie eine grofe Rolle. So werden z.B. die bei-
den Striange des DNS-Molekiils durch Wasserstoff-
briicken zusammengehalten. Das Basenpaar Gua-
nin/Cytosin kann 3 Wasserstoftbriicken bilden, das
Basenpaar Adenin/Thymin nur zwei. Dies ist ein we-
sentlicher Grund fiir die Ausbildung der Paare. Auch
bei der Proteinfaltung spielen Wasserstoffbriicken
eine wichtige Rolle.

3.3 Gitterenergie

Bisher haben wir nur Paar-Wechselwirkungen be-
trachtet, also Wechselwirkungen zwischen Paaren
von Atomen. Die Struktur eines Kristalls wird je-
doch nicht nur durch die Paar-Wechselwirkung be-
stimmt, sondern durch die Minimierung der Gesam-
tenergie des Systems. Wir miissen deshalb nicht nur
einzelne Paare betrachten, sondern auch das gesamte
Gitter. Zum Gliick findet man, dass sich die Eigen-
schaften des Gitters in vielen Féllen auf die Paar-
wechselwirkungen zuriickfithren lassen. Dies gilt
insbesondere bei der van der Waals und bei der ioni-
schen Bindung. Diese beiden werden im Folgenden
diskutiert.

Bei Metallen kann man die Gitterenergie nicht in
Paarwechselwirkungen zerlegen. Sie werden des-
halb hier nicht diskutiert. Ebenfalls nicht diskutiert
werden hier kovalent gebundene Kristalle. Deren
Gitterenergie ist vom Betrag her vergleichbar mit
derjenigen von ionischen Kristallen. Wihrend die io-
nischen Kristalle méglichst dicht gepackt sind, findet
man bei kovalenten Kristallen offenere Strukturen,
damit die ausgprigte Richtungsabhingigkeit der ko-
valenten Bindung befriedigt werden kann.

3.3.1 Van der Waals

Die Gitterenergie erhédlt man dementsprechend, in-
dem man iiber alle méglichen Paarwechselwirkun-
gen summiert. Im Falle der van der Waals Molekiile
fillt die Stirke der Wechselwirkung

12 6
e[ (5)" (3)
R R
mit der sechsten Potenz des Abstandes ab, sodass

fast nur die Wechselwirkung zwischen néchsten
Nachbarn eine Rolle spielt.

Wir betrachten als Beispiel die fcc Struktur. Hier
besitzt jedes Atom 12 nédchste Nachbarn im Ab-
stand a/+/2. Von der Stelle (0,0,0) aus sind dies
die Positionen (£1/2,4+1/2,0), (+1/2,0,£1/2),
(0,+£1/2,£1/2). In der zweiten Schale mit Ab-
stand a befinden sich 6 Nachbarn an den Positionen
(+100), (0,+1,0), (0,0,+1).

60



3 Bindungen im Festkorper

Abbildung 3.21: Néchste Nachbarn im fcc Gitter.

Fiir die Berechnung der Gitterenergie schreiben wir
fiir R;; = p;i;R, so dass p;; den Abstand in Einheiten
des Abstandes R zwischen nichsten Nachbarn dar-
stellt. Fiir die nidchsten Nachbarn ist damit die anzie-
hende Wechselwirkungsenergie o 12/R® und fiir die
zweitnichsten Nachbarn o 6/(v/2R)® = 6/(8R)°.
Eine Summierung iiber alle Paarwechselwirkungen
ergibt fiir diese Struktur

1 1 1
ZT - TZT
7 Rij R pij
1 12+6_}_24_’_12+8
- RO 8 27 16 216
L4806
343 512
1
= 514,45.
Analog erhilt man
1 1
Johj

Bei der abstoBenden Wechselwirkung spielen so-
mit praktisch nur die nidchsten Nachbarn eine Rol-
le, wihrend bei der anziehenden Wechselwirkung
auch etwas entferntere Schalen eine Rolle spielen.
Die Gesamtenergie wird damit

U(R) %ZUij(Rij)

12 6
2Ne [12, 13 (g) 14,45 (3) ] :
R R

wobel N die Anzahl der Gitteratome darstellt.

Gitterenergie / 2Ne

Abbildung 3.22: Gitterenergie als Funktion des Ab-
standes.

Die Gitterenergie verhilt sich als Funktion des Ab-
standes zwischen néchsten Nachbarn qualitativ iden-
tisch zur Paar-Wechselwirkung. Allerdings sind die
Achsen durch die Gittersumme umskaliert und das
Minimum leicht verschoben worden.

Den Gleichgewichtsabstand Ry erhélt man aus der
Minimierung der Gitterenergie beziiglich des Ab-
standes:

du
hal = 0
dR |5,
12 6
(o2 (e}
= —2Ne [12.12,131313—6-14,45R7
145,566° = 86,7RS.

Daraus folgt, dass der Gleichgewichtsabstand Ry =
1,09 o sein sollte. Da sich der Parameter ¢ aus Mes-
sungen in der Gasphase bestimmen lédsst, kann die-
se Vorhersage experimentell iiberpriift werden. Tat-
sdchlich liegen die Gitterkonstanten fiir alle Edelga-
se im Bereich von 1.09 .. 1.14 ©.

Indem man diesen Gleichgewichtsabstand in das Po-
tenzial einsetzt, erhdlt man die Bindungsenergie U =
—8,6N¢e. Die Energieskala € kann man wiederum
aus Messdaten der Gasphase entnehmen, aber auch
aus Messungen am Festkorper, z.B. tiber die Kom-
pressibilitét

1oV

Vdp

Dabei dndert sich die Energie bei einer Volumenén-
derung um

dU = —pdV.
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Daraus folgt

odp _ U

V. 9V?
und

1 2*U

xVavr

Bei dieser Rechnung ist die Nullpunktsenergie der
Bewegung der Atome noch nicht beriicksichtigt,
welche insbesondere bei den leichten Atomen eine
signifikante Reduktion der Bindungsenergie von bis
zu 28% ergeben.

3.3.2 Ionische Bindung

Im Falle der ionischen Bindung gehen wir aus von
der Paarwechselwirkung

I qiqj

U:: = Le PiiRIP )
Y ¢ + 47'[8() p,'jR

Da der AbstoBungsterm exponentiell mit der Di-
stanz abfillt kann er fiir alle Paare au3er den nich-
sten Nachbarn vernachldssigt werden. Dieser Teil
der Gittersumme wird damit fiir das i-te Ion

U, = Z)ue_R/ P s
wobei z die Zahl der nachsten Nachbarn beschreibt.

Beim Coulomb Term schreiben wir die Summe als

_ 1 e
- 4dmey R ’
wobei die Madelung-Konstante'

v 94i
Dij

o=

J

eine Summe {iiber alle Atome des Gitters darstellt.
qi,j sind jetzt die Ladungen in Einheiten der Ele-
mentarladung. Sie hingt nur von den relativen Ko-
ordinaten p;; ab und kann deshalb fiir einen be-
stimmten Gittertyp berechnet werden, unabhingig
davon, durch welche Atome dieses Gitter gebildet

INach Erwin Madelung (1881 - 1972).

wird. Unterschiedliche Substanzen, welche im glei-
chen Gittertyp kristallisieren, besitzen somit die glei-
che Madelung-Konstante. Die Unterschiede in der
Gitterenergie sind (in dieser Niaherung) lediglich auf
die unterschiedlichen Abstinde R zuriickzufiihren.

Die Gitterkonstante a, resp. der Abstand R wird be-
stimmt durch die Minimierung der Energie beziig-
lich R. Der Gleichgewichtsabstand Ry ist bestimmt
durch

ou
IR |y,

1 &2

a PR
+ 4mey R

e Ro/p

P

0=—zA

oder
AdmegRie F0/P = pae®.

Diese Gleichung kann man nach dem Gleichge-
wichtsabstand R auflésen. Wir konnen daraus auch
den exponentiellen Term aus der AbstoBungsenergie
ausrechnen:

pae’
Adme R

P
R’

de Ro/p —

Damit erhalten wir auch die Gesamtenergie:

Naoe?
47[8()R0

_ P
Ry

Utot = )

Die Energie ist somit proportional zur Madelung-
Konstante, und diese muss positiv sein, damit das
Gitter stabil ist.

3.3.3 Berechnung der
Madelung-Konstanten

@ 9 9@ 9 @ 9

a=R

Abbildung 3.23: Berechnung der Madelung-Kon-
stanten.

Im eindimensionalen Fall kann die Madelung-
Konstante relativ einfach berechnet werden. Wir
summieren iiber eine alternierende Kette mit kon-
stantem Abstand und erhalten

1 1 1

(X:2(1—§+§—Z)
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Fiir die Berechnung der Summe kann man die Rei-
henentwicklung

2 X3 x4

In(1 =x——=+—=———+4...
n(l4+x) =x 2+3 Yl

verwenden und erhilt

a=2In2

In drei Dimensionen ist die analytische Berechnung
der Summe im Allgemeinen sehr schwierig. Wir be-
trachten als Beispiel zunichst das Natriumchlorid.
Wir konnen entweder ein Nat oder ein C1~-Ion als
Referenz benutzen und wihlen Na™. Jedes Na™ Ton
ist von 6 C1™ Ionen in oktaedrischer Anordnung um-
geben, wobei der Abstand die Hilfte der Gitterkon-
stante betrégt.

# Nachbarn 5

Schale  +pj;

p]J
1 +1 6 6
2 -2 12 -249
3 +43 8 2.13
4 2 6 -0.87
5 +45 24 9.87
6 -4/6 24 0.07
7 -8 12 -4.17
8 +3 30 5.83

Abbildung 3.24: Beitrage der Schalen zur Made-

lung-Konstanten.

Diese tragen somit einen Beitrag 6 zur Madelung-
Konstante bei. Die zweitndchsten Nachbarn sind
wieder Na® Ionen: 12 sitzen im +/2-fachen Ab-
stand. Bis zu dieser Koordinationshiille gerechnet ist
die Madelung-Konstante deshalb 6-12/v/2 ~ —2,49.
Die nichsten beiden Hiillen bestehen aus 8 Cl~ Io-
nen im Abstand v/3 und 6 Na Ionen im Abstand 2.
Die Konvergenz ist offenbar sehr langsam.

Eine etwas bessere Konvergenz erhidlt man durch
Aufsummieren iiber die Beitrdge von entgegenge-
setzten lonenpaaren. Auch hier muss man jedoch
iber viele Tausend lonenpaare summieren, bis die
Schwankungen gering werden. Generell sind die Ab-
weichungen bei der Berechnung von Energien endli-
cher Kristalle physikalisch leicht interpretierbar: sie
entsprechen der Energie von Oberflichenladungen.

1.7476

10000 20000
# lonenpaare

Abbildung 3.25: Konvergenz bei der Berechnung
der Madelung-Konstanten.

Diese Technik kann man verfeinern und anstelle von
Ionenpaaren andere neutrale Einheiten aufsummie-
ren, welche die Oberflichenladungen verkleinern.
Der Vorteil bei der Verwendung von neutralen Ein-
heiten liegt darin, dass deren Potenzial eine kiirze-
re Reichweite hat, so dass die Konvergenz schneller
ist. Eine weitere Methode ist diejenige von Ewald,
bei der man kurzreichweitige Beitrige im direk-
ten Raum aufsummiert, langreichweitige im rezipro-
ken Raum. Dort erscheinen langreichweitige, d.h.
langsam variierende Beitrige, in der Nihe des Ur-
sprungs, so dass die Integrationsgrenzen eng gesetzt
werden konnen.

Fiir unterschiedliche Gittertypen erhélt man die Wer-
te

| NaCl | ZnS | CsCl | CaF, |
| 1,7476 | 1,6381 | 1,7627 | 5,0388 |
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