
2 Symmetrie und Struktur

2.1 Ordnung in Festkörpern

2.1.1 Atomtheorie

Die griechischen Philosophen stellten als erste die
Frage, ob es möglich sei, einen bestimmten Körper
beliebig oft zu teilen. Demokrit von Abdera beant-
wortete diese Frage als erster negativ, in dem er for-
derte, dass alle Materie aus identischen Teilchen auf-
gebaut sein sollte, den Atomen. Diese Ansicht wur-
de dann von Aristoteles widersprochen, und erst im
18 Jh. fanden die aufblühenden Naturwissenschaf-
ten wieder Hinweise darauf, dass es doch solche
Teilchen geben sollte. Dafür sprachen insbesondere
auch Beobachtungen der Kristallographen. Sie stell-
ten fest, dass Kristalle, wenn sie wachsen oder wenn
sie gespalten werden, beinahe perfekte Oberflächen
bilden, und dass zwischen verschiedenen solchen
Oberflächen nur ganz bestimmte Winkel auftreten.
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Abbildung 2.1: NiO Kristall mit Wachstumsebenen.

Dieser Befund konnte relativ leicht erklärt werden,
wenn man davon ausging, dass diese Kristalle aus
einer Vielzahl von identischen Teilchen zusammen-
gesetzt waren (R.J. Haüy, traite de crystallographie,
Paris 1801). Abb. 2.1 zeigt als Beispiel einen NiO
Kristall mit deutlichen Wachstumsebenen, sowie ein
Schema, wie man sich die Bildungs solcher Wachs-
tumsebenen vorstellen kann.

Nicht nur beim Kristallwachstum erhält man Kri-

Abbildung 2.2: Spaltebenen.

stallflächen mit gleichen Winkeln, man findet auch,
dass bestimmte Flächen beim Spalten von Kristal-
len bevorzugt auftreten. Die Idee, dass Kristalle aus
atomaren Einheiten bestehen, wurde später durch
unterschiedliche Methoden betätigt, v.a. natürlich
durch Beugungsexperimente (Friedrich, Knipping
und Laue, 1912).
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Abbildung 2.3: Prinzip der Raster-
Tunnelmikroskopie und damit
gemessene Ni-Atome.

Seit einigen Jahren ist es auch möglich, die atoma-
re Struktur von Festkörpern auch direkt zu beobach-
ten, z.B. mit Hilfe der Tunnelmikroskopie (STM).
Abb. 2.3 zeigt das Funktionsprinzip, sowie das Bild
einer Nickeloberfläche, die mit STM gemssen wur-
de. Heute gehen wir deshalb selbstverständlich da-
von aus, dass Festkörper aus Atomen oder Molekü-
len aufgebaut sind.
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2 Symmetrie und Struktur

2.1.2 Langreichweitige Ordnung

Die Atome oder Moleküle können auf unterschiedli-
che Weise im Festkörper angeordnet sein. Man kann
sie insbesondere auf Grund des Grades an Ordnung
auf unterschiedlichen Längenskalen klassifizieren.

kristallin polykristallin

Abbildung 2.4: Kristalline vs. polykristalline Ord-
nung.

• kristallin: periodische, langreichweitige Ord-
nung. Dieses Idealbild ist Ausgangspunkt der
meisten Theorien im Bereich der Festkörper-
physik.

• polykristallin: Auf kurzen Längenskalen sind
diese Systeme kristallin. Der makroskopische
Körper umfasst jedoch viele einzelne Kristalle.

Abbildung 2.5: Quasikristalle.

• quasikristallin: Quasikristalle weisen lang-
reichweitige Ordnung auf, sind aber nicht pe-
riodisch. Sie besitzen 5- oder 10-zählige Sym-
metrie.

• amorph: In amorphen Materialien ist die direkte
Umgebung eines Atoms oder Moleküls relativ
gut (aber nicht perfekt) definiert.

Auf einer Skala von typischerweise einigen Nano-
metern nimmt der Grad der Ordnung ab und auf ei-
ner Skala von mehr als 10 Nanometern sind amorphe
Materialien homogen und isotrop. Zu den amorphen

Abbildung 2.6: Amorphe Materialien: Nahordnung,
aber keine Fernordnung.

Materialien gehören v.a. Gläser und Polymere, dar-
unter auch viele biologische Materialien. Viele Ei-
genschaften von amorphen Materialien hängen stark
von ihrer Herstellung ab. So kann man Gläser als
“unterkühlte Flüssigkeiten, welche zu kalt sind zum
einfrieren” betrachten: ihre Viskosität ist zu hoch als
dass sie in den energetisch tiefer liegenden kristal-
linen Zustand übergehen könnten. Diese Abhängig-
keit von der Herstellung ist ein wichtiger Grund da-
für, dass z.B. die Herstellung von Gläsern lange Zeit
mehr eine Kunst als eine Wissenschaft war.

Abbildung 2.7: Flüssigkristalle und Flüssigkristall-
Polymere.

• flüssigkristallin: Flüssigkristalline Materialien
zeigen langreichweitige Ordnung, wobei z.B.
nur die Orientierung der Moleküle diese Ord-
nung zeigen kann, oder die Position in einer Di-
mension. Sie besitzen jedoch im Gegensatz zu
Festkörpern keine Formbeständigkeit, d.h. ihr
Schermodul verschwindet. Ihre Position besitzt
auch keine Fernordnung (ausser in maximal ei-
ner Dimension). Flüssigkristalle haben inzwi-
schen in verschiedenen Bereichen eine wichtige
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2 Symmetrie und Struktur

Rolle erhalten, nicht nur in Anzeigen, sondern
auch in Polymeren.

Abbildung 2.8: Flüssigkristalline Ordnung einer
biologischen Membran.

Flüssigkristalle spielen auch in der Biologie eine
wichtige Rolle: Membranen von Zellen sind flüs-
sigkristallin, d.h. die Moleküle sind im Mittel alle
gleich ausgerichtet und befinden sich in einer Ebene.
Diese Ebene ist jedoch leicht verformbar, da die Mo-
leküle in der Ebene frei beweglich sind. Diese Mem-
branen werden primär aus fettsäureähnlichen Mo-
lekülen gebildet, ähnlich wie Seifenschaum. Darin
eingelagert “schwimmen” eingelagert Proteine.

Die Physik hat sich vor allem mit der Untersuchung
perfekter Kristalle beschäftigt, wobei Defekte und
Verunreinigungen als Störungen betrachtet wurden.
Dieses Vorgehen hat enorme Erfolge gebracht und
z.B. die Grundlagen für die Halbleiterindustrie ge-
legt. In den 80er und 90er Jahren des 20. Jahrhun-
derts haben dann einige Physiker auch entdeckt, dass
die Physik auch zur Untersuchung von amorphen
Systemen einiges beitragen kann.

Abbildung 2.9: Pierre Gilles de Gennes.

Ein wichtiger Schritt war hier die Verleihung des
Nobelpreises 1991 an Pierre Gilles de Gennes. Die

Untersuchung von Materialien ohne langreichweiti-
ge Ordnung dürfte in Zukunft eine zunehmend wich-
tige Rolle spielen, da Polymere und Gläser (z.B. me-
tallische Gläser, amorphes Silizium) auch industriell
zunehmend wichtiger werden. In dieser Vorlesung
werden wir aber auf die detaillierte Diskussion sol-
cher Systeme verzichten und uns auf Systeme mit
Translationssymmetrie beschränken. Der Grund da-
für ist einerseits unser Curriculum, andererseits auch
die Tatsache, dass die Beschreibung von amorphen
Systemen noch nicht so weit ist, dass sie sich für
einen Einführungskurs gut eignet.

2.1.3 Translationssymmetrie

Wie bereits erwähnt, betrachtet man in der Festkör-
perphysik zunächst ideale Kristalle. Darunter stellt
man sich einen unendlich ausgedehnten Körper mit
periodisch wiederholten Einheiten vor. Es soll hier
aber klar gemacht werden, dass solche Körper in der
Natur nicht existieren, und zwar aus 2 Gründen:

• Bei endlicher Temperatur ist ein System oh-
ne Fehler, welches damit perfekt geordnet wäre
und Entropie null hätte, thermodynamisch in-
stabil.

• Ein idealer Kristall ist immer unendlich ausge-
dehnt, da eine Oberfläche einen Bruch der Sym-
metrie bewirkt.

Diese Grundannahme bedeutet auch, dass Oberflä-
cheneffekte (in dieser Näherung) nicht berücksich-
tigt werden.

Abbildung 2.10: Kristallgitter.

Die Wiederholung der Grundeinheit erfolgt so, dass
die resultierende Anordnung Translationssymmetrie
zeigt. Das bedeutet, dass es möglich ist, diese Anord-
nung um einen bestimmten Betrag zu verschieben,
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2 Symmetrie und Struktur

und dadurch das System in ein ununterscheidbares
System überzuführen. In Abb. 2.10 sind zwei sol-
che Möglichkeiten dargestellt: Verschiebungen um
~a1 aund ~a2. Es gibt aber eine unendliche Zahl von
Translationen, welche diese Bedingung erfüllen. Es
ist allerdings nicht nötig, diese Operationen einzeln
aufzuzählen, man kann sie nach einer einfachen For-
mel zusammenfassen.

Abbildung 2.11: Basis-Translationsvektoren.

Man benötigt für jede Dimension einen Basis-
Translationsvektor, welche wir als ~a1, ~a2 und ~a3 be-
zeichnen. Eine allgemeine Translation ~T in drei Di-
mensionen wird dann definiert als die Operation

~r0 =~r +u1~a1 +u2~a2 +u3~a3 =~r +~T ,

wobei die Indizes ui beliebige ganze Zahlen darstel-
len. Diese Beziehung gilt für jeden Punkt des Kri-
stalls, nicht nur für die Position der Atome. Die Ge-
samtheit der Translationen ~T definiert das Raumgit-
ter oder Bravais-Gitter.

quadratisch rechteckig hexagonal

Abbildung 2.12: Translationsgitter.

Je nach relativer Länge und Orientierung der erzeu-
genden Translationsvektoren unterscheidet man ver-
schiedene Arten von Translationsgittern. In zwei Di-
mensionen kann man quadratisch (Vektoren senk-
recht aufeinander, gleich lang), hexagonal (gleich
lang, Winkel 60, resp, 120 Grad), und rechteckig
(senkrecht aufeinander unterscheiden.

Die Tatsache, dass die meisten Festkörper, welche
aus wenigen Bauelementen zusammengesetzt sind,

Abbildung 2.13: Struktur von GaAs.

in periodischen Strukturen erstarren, lässt sich leicht
als eine Konsequenz der Energieminimierung verste-
hen: Wenn ein Atom, Ion oder Molekül in einer be-
stimmten Umgebung die geringste Energie besitzt,
so muss dies auch für alle anderen Atome, Ionen
oder Moleküle der gleichen Art gelten. Die Nach-
barschaft aller gleichartigen Atome sollte also die
gleiche sein. Dies ist aber identisch mit der Aussa-
ge, dass man die Nachbarschaft eines Atoms auf die
Umgebung eines anderen abbilden kann.

2.1.4 Einheitszelle und Basis

Um eine Kristallstruktur zu definieren, braucht man
offensichtlich zusätzliche Information. Das Gitter
sagt, auf welche Art die Bausteine aneinander gefügt
werden müssen. Wir brauchen aber noch die Kennt-
nis der Bausteine. Diese werden als Einheitszelle be-
zeichnet, die darin enthaltenen Atome bilden die Ba-
sis. Ihre Position kann geschrieben werden als

~r j = x j~a1 + y j~a2 + z j~a3,

mit j als Index des entsprechenden Atoms.

Wird die Basis jeweils um einen Translationsvektor
des Gitters verschoben, so erhält man den gesamten
Kristall. In Abb. 2.14 ist das für den zweidimensio-
nalen Fall dargestellt. Die Einheitszellen können auf
beliebige Weise definiert werden, so lange sie unter
den Translationen des Gitters den Kristall vollstän-
dig füllen. Eine nahe liegende Möglichkeit zur De-
finition der Einheitszelle ist deshalb die Menge aller
Punkte, welche durch

~r = x1~a1 + x2~a2 + x3~a3 0  xi  1

18



2 Symmetrie und Struktur

Abbildung 2.14: Gitter und Basis.

bestimmt wird. Dies entspricht dem in Abb. 2.11
gezeigten Parallel-Epiped. Das Volumen der Zelle
kann mit Hilfe der Vektoralgebra bestimmt werden:

V = |~a1 ·~a2 ⇥~a3|.

WSZ
EZ

Abbildung 2.15: Wigner-Seitz Konstruktion (WSZ)
der Einheitszelle.

Eine andere Methode zur Konstruktion einer Ein-
heitszelle ist die von Wigner und Seitz. Dazu zieht
man von einem Gitterpunkt Verbindungslinien zu al-
len Nachbarn und fällt darauf die mittelhalbierende
Ebene. Die Kombination dieser Linien begrenzt die
Wigner-Seitz Zelle. Bei der Wigner-Seitz Zelle be-
findet sich der Gitterpunkt im Zentrum der Einheits-
zelle, im Gegensatz zur konventionellen Wahl, wo
die Punkte sich auf den Ecken befinden und die Form
eine andere ist.

Auch mit der Wigner-Seitz Einheitszelle kann man
jedoch den Raum füllen. Abb. 2.16 zeigt ein Beispiel
in zwei Dimensionen.

Ähnlich kann man das Wigner-Seitz Verfahren in 3
Dimensionen anwenden. Man fällt hier jeweils die
mittelhalbierende Ebene. In der linken Hälfte von
Abb. 2.17 wurde die Konstruktion auf ein raumzen-

Abbildung 2.16: Flächenfüllung mit der Wigner-
Seitz Einheitszelle.

Abbildung 2.17: Links: Wigner-Seitz Einheitszelle
in 3D; rechts: raumfüllende Anord-
nung von WS-Zellen.

triertes Gitter angewendet. Das Zentrum der Ein-
heitszelle ist im Zentrum eines Würfels, die nächsten
Nachbarn sitzen an den Ecken des Würfels. Auch
diese Einheizszelle füllt den gesamten Raum wenn
sie durch die Gitteroperationen verschoben wird. Die
Einheitszelle enthält im allgemeinen mehrere Ato-
me, auch bei primitiven Gittern. Einatomige Ein-
heitszellen kommen nur bei Kristallen vor, welche
aus einer einzigen Atomsorte bestehen, und auch
dann nur wenn sämtliche Atome durch Translatio-
nen ineinander übergeführt werden können.

2.1.5 Rotationssymmetrie

Kristallgitter können nicht nur durch Translationen
in sich selbst übergeführt werden, sondern auch
durch andere Symmetrieoperationen, insbesondere
Drehungen und Spiegelungen.

Wir betrachten zunächst den Effekt solcher Opera-
tionen auf einzelne Elemente. Man unterscheidet die
folgenden Symmetrieelemente:

• Drehachsen Ci oder Ai.
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2 Symmetrie und Struktur

• Inversion I oder i führt~r ! �~r über.

• Spiegelebene s : Invertiert die Komponente
senkrecht zur Ebene, z.B. (x,y,z) ! (x,y,�z)

• Drehinversionsachsen Si

Inversionszentrum und Spiegelebene ändern die
Händigkeit eines Objektes, sie führen also eine lin-
ke Hand in eine rechte Hand über. Kristalle mit in-
trinsischer Händigkeit können somit keines dieser
Symmetrieelemente enthalten. Ein Kristall, welcher
Moleküle mit entgegengesetzter Händigkeit enthält
kann hingegen Spiegelebenen enthalten, welche die
eine Form in die andere überführen.

C4

Abbildung 2.18: Transformation eines Objekts
durch eine 4-zählige Rotationsach-
se.

Abb. 2.18 zeigt als Beispiel eine vierzählige Rotati-
onsachse, welche die vier L-förmigen Objekte inein-
ander überführt. Allgemein entspricht eine n-zählige
Rotationsachse einer Symmetrieachse, welche Dre-
hungen um ganzzahlige Vielfache von 2p/n bewirkt.
Wie in den Übungen gezeigt wird, können als mög-
liche Werte für n nur n = 1,2,3,4 und 6 auftreten.

Meistens treten diese Elemente nicht einzeln auf,
sondern in Kombinationen. In diesem Beispiel exi-
stiert auch eine Spiegelebene, welche senkrecht zur
Rotationsachse liegt und durch die vier Elemente
läuft. Wären die beiden Schenkel dieser Elemente
gleich lang, so würden ausserdem vier zweizählige
Rotationsachsen existieren, welche in der Ebene lie-
gen würden.

Es sind nicht beliebige Kombinationen von Symme-
trieelementen möglich, da die Symmetrieelemente
selber unter den Symmetrieoperationen der übrigen
Elemente auch erhalten bleiben müssen. So können
einzelne Symmetrieachsen nur senkrecht zueinander
oder in einer Ebene liegen. Zwei Symmetrieebenen

können nur senkrecht zueinander stehen, aber drei
Ebenen können einen Winkel von jeweils 60� unter-
einander einschliessen. Ausserdem erzeugt die Kom-
bination von zwei Elementen häufig ein drittes Ele-
ment. So erzeugen zwei Symmetrieebenen, die senk-
recht aufeinander stehen, eine zweizählige Drehach-
se in ihrer Schnittgeraden. Ein wesentlicher Unter-
schied zwischen Punktsymmetrie-Operationen und
Translationen ist, dass bei den Punktymmetrien min-
destens ein Punkt fix bleibt.

2.1.6 Gruppen

Im mathematischen Sinn bildet die Menge der Sym-
metrieoperationen, welche ein Objekt invariant lässt,
eine Gruppe. Allgemein ist in der Mathematik ei-
ne Gruppe G definiert als eine nicht leere Menge
G = {Ai} von Objekten Ai und einer binären Ope-
ration · zwischen den Objekten, welche folgende Ei-
genschaften erfüllt:

• Das Resultat einer Operation Ai ·A j = Ak ist sel-
ber ein Mitglied der Gruppe.

• Es existiert eine Einheit e mit der Eigenschaft
e ·Ai = Ai · e = Ai für alle Ai.

• Es existiert zu jedem Element ein inverses Ele-
ment A�1

i mit Ai ·A�1
i = A�1

i ·Ai = e.

Die verschiedenen Kombinationen von Symmetrie-
elementen erfüllen diese Anforderungen. Die ver-
schiedenen Gruppen werden nach zwei verschiede-
nen Systemen klassiert. Es existieren einerseits die
sog. Schönflies-Symbole, andererseits die Klassifi-
kation nach Hermann-Maugin, welche auch als in-
ternational bezeichnet wird. Für die Bezeichnungen
nach Schönflies1 verwendet man die folgenden Sym-
bole:

• Drehgruppen: Cn (n=2, 3, 4, 6) j-fache Rotati-
onsachse. Die Drehgruppe Cn enthält die Ele-
mente Cn = {e,Cn,C2

n , . . . ,Cn�1
n }.

• Drehspiegelgruppen: Sn; wird durch eine Dreh-
spiegelachse erzeugt.

1Arthur Moritz Schoenflies (1853 - 1928), deutscher Mathe-
matiker
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• D j: Diedergruppen. Werden durch eine Ro-
tationsachse Cn sowie n dazu senkrechte C2-
Achsen erzeugt.

• T : Tetraedergruppen: vier 3-fache und drei 2-
fache Rotationsachsen in einem Tetraeder.

• O: Ikosaedergruppen: 4 3-fache und 3 4-fache
Rotationsachsen in einem Oktaeder.

C4

C4

C4

C3C3
C3

C3

Abbildung 2.19: Oktaeder mit 3- und 4-zähligen Ro-
tationsachsen. Nicht eingezeichnet
sind 6 C2-Achsen und 9 Spiegele-
benen.

Die Gruppen können neben den Rotationsachsen
auch Spiegelebenen enthalten. Diese werden durch
die tiefgestellten Symbole h (für horizontal, d.h.
senkrecht zu Cn), v (für vertikal, d.h. Cn liegt in der
Ebene) oder d (ebenfalls senkrecht, aber zwischen
den horzontalen C2-Achsen) bezeichnet.

2.2 Ideale Kristalle

2.2.1 Primitive und nichtprimitve Gitter

Die Menge der Translationsvektoren ergibt das Git-
ter. Da sie die Symmetrieoperationen zusammenfas-
sen, sind Kristallgitter ein wichtiges Hilfsmittel zur
Charakterisierung von Kristallen. Das bedeutet aber
nicht, dass ein gegebener Kristall eindeutig zu einem
bestimmten Gitter zugeordnet werden kann. Häufig
gibt es verschiedene Möglichkeiten, ein Gitter zu
spezifizieren. Eine gegebene Anordnung von Ato-
men oder Molekülen kann auf unterschiedliche Wei-

se in eine Einheitszelle und ein Gitter zerlegt wer-
den.

a1

a2

primitiv 2

a1

a2

nicht primitiv

a1
a2

primitiv 1

Abbildung 2.20: Unterschiedliche Wahl der Ele-
mentarzelle in einem hexagonalen
Gitter in 2 Dimensionen.

Abb. 2.20 zeigt eine zweidimensionale Anordnung
von Atomen, die in der Natur relativ häufig vor-
kommt. Offensichtlich gibt es mehrere verschiedene
Möglichkeiten, die Gittervektoren~a1 und~a2 zu defi-
nieren. Die ersten beiden Möglichkeiten sind hierbei
gleichwertig. Die dritte hingegen unterscheidet sich
dadurch, dass es mit den hierdurch definierten Trans-
lationen nicht möglich ist, die dunklen Atome auf die
Positionen der hellen zu bringen. Dementsprechend
enthält die dritte Elementarzelle zwei Atome, wäh-
rend bei den ersten beiden Varianten die Elementar-
zelle jeweils nur ein Atom enthält. Man bezeichnet
die ersten beiden Gitter als primitiv, das dritte als
nicht primitiv.

Bei der Ermittlung der Anzahl Atome pro Ele-
mentarzelle muss berücksichtigt werden, dass die
Atome am Rand der Zelle zu mehreren Zellen beitra-
gen, aber nur einmal gerechnet werden dürfen. Man
hat die Wahl, entweder die Elementarzelle leicht zu
verschieben, so dass alle Atome nur in einer Zelle
liegen, oder man zählt bei einem Atom, welches zu n
Zellen beiträgt, jeweils nur 1/n. Offenbar entspricht
bei einem Atom in der Seitenfläche n = 2, auf einer
Kante n = 3 oder 4, und auf der Ecke eines Würfels
n = 8.

Die Symmetrie eines Kristalls ergibt sich nun durch
die Kombination der Punktsymmetriegruppen, ange-
wendet auf die Einheitszelle, mit der Translations-
gruppe des Gitters. Nicht alle möglichen Punktsym-

21



2 Symmetrie und Struktur

metriegruppen sind aber mit periodischen Gittern
verträglich. Insgesamt gibt es 32 Punktsymmetrie-
klassen, die auch in periodischen Systemen vorkom-
men können. Diese enthalten Spiegelebenen, sowie
Rotationsachsen mit 2, 3, 4 und 6 zähliger Symme-
trie. Fünf oder zehnzählige Achsen sind nur möglich,
wenn das Gitter nicht räumlich periodisch ist.

Bei allen Symmetrieoperationen bleibt eine Menge
von Gitterpunkten fest, nämlich die Punkte, welche
auf das Symmetrieelement fallen.

Abbildung 2.21: Punktsymmetriegruppen.

Die Tabelle in Abb. 2.21 fasst alle 32 Punktsymme-
triegruppen zusammen, welche mit Translationsgit-
tern kompatibel sind. Die Bezeichnungen sind nach
Schönflies und nach Herrmann-Maugin angegeben.

Jede dieser Punktsymmetriegruppen kann durch ei-
nes oder mehrere Symmetrieelemente erzeugt wer-
den, wobei teilweise unterschiedliche Möglichkeiten
bestehen, diese Elemente zu wählen. Die Zahl W be-
zeichnet die Anzahl äquivalenter Positionen in allge-
meiner Lage.

2.2.2 Kristallsysteme

a
b

c

Abbildung 2.22: Definition der Achsen und Winkel.

Die Kombination der Punktsymmetriegruppen mit
dem Translationsgitter ergibt insgesamt 230 unter-
schiedliche Raumgitter oder Raumgruppen. Diese
werden eingeteilt in sieben Kristallsysteme, welche
unterschieden werden aufgrund von Bedingungen an
die Achsen a,b,c der Einheitszelle, sowie die Win-
kel a,b ,g .

kubisch

� = � = � = 90�
a = b = c

a 6= b 6= c
� = � = 90� 6= �

monoklin

aa

triklin

a 6= b 6= c
� = � = � = 90�

orthorombisch

rhomboedrisch (trigonal)
a = b = c
� = � = � 6= 90� < 120�

hexagonal

a = b 6= c

� = � = 90�, � = 120�

a = b 6= c

� = � = � = 90�

tetragonal

Abbildung 2.23: Übersicht über die Kristallsysteme.
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2.2.3 Bravais-Gitter

Diese sieben Kristallsysteme werden weiter diffe-
renziert in 14 Bravais-Gitter. Ein primitives Bravais-
Gitter ist definiert als die Menge aller Translations-
vektoren

~T = u1~a1 +u2~a2 +u3~a3, (2.1)

welche die entsprechende, unendlich ausgedehn-
te Kristallstruktur invariant lassen. In einem nicht-
primitiven Gitter werden zustätzliche Punkte eing-
fügt, so dass jede Elementarzelle mehr als einen
Punkt enthält, welche nicht durch die in (2.1) defi-
nierten Gittervektoren erreicht werden. Trotzdem ist
die Umgebung dieser Punkte identisch zur Umge-
bung aller anderen Gitterpunkte.

Zu jedem Kristallsystem gibt es ein primitives Gitter.
Beim monoklinen gibt es ausserdem ein basiszen-
triertes, d.h. die Einheitszelle besitzt nicht nur Git-
terpunkte an den Ecken, sondern auch im Zentrum
der durch a und b aufgespannten Fläche. Dieses Git-
ter ist also nicht primitiv. Beim orthorombischen gibt
es ebenfalls ein basiszentriertes Gitter, sowie zusätz-
lich ein raumzentriertes (oder innenzentriertes) und
ein flächenzentriertes. Beim tetragonalen Gitter gibt
es ein raumzentriertes und beim kubischen ein raum-
zentriertes und ein flächenzentriertes.

r2 = (1/2, 1/2, 1/2)

Abbildung 2.24: Kubisch primitives. innenzentrier-
tes und flächenzentrierte Einheits-
zellen.

Die vielleicht einfachste Kristallstruktur ist das pri-
mitiv kubische Gitter (Abb. 2.24 links). Die Ato-
me sind in diesem Fall auf den Ecken eines Wür-
fels angeordnet, so dass jede Einheitszelle ein Atom
enthält. In einem flächenzentrierten kubischen Gitter
(Abb. 2.24 rechts) sind drei weitere Atome pro Ein-
heitszelle vorhanden, zentriert in den Seitenflächen
des Würfels.

~a2

~a3

~a1

Abbildung 2.25: fcc Gitter mit einer (alternativen)
primitiven Einheitszelle.

Ein basiszentriertes oder raumzentriertes Gitter be-
sitzen zwei Gitterpunkte pro Einheitszelle, ein flä-
chenzentriertes Gitter vier. Natürlich wäre es bei al-
len nichtprimitiven Gittern ebenfalls möglich, eine
andere Einheitszelle zu wählen, sodass das Gitter
primitiv würde. Abb. zeigt als Beispiel ein fcc Gitter
mit einer alternativen Einheitszelle. Diese entspricht
einem rhomboedrischen Gitter. Diese Einheitszelle
enthält nur einen Gitterpunkt und ist damit vier mal
kleiner. Häufig sind aber die Rechnungen einfacher
in einem nichtprimitiven Gitter durchzuführen, z.B.
wenn man dann ein orthonormiertes Koordinaten-
system verwenden kann. Insgesamt erhalten wir die
folgenden 7 Kristallsysteme und 14 Bravais-Gitter:

1. Triklin: a 6= b 6= c, a 6= b 6= g : keine Symmetrie

2. Monoklin: a 6= b 6= c, a = g = 90� 6= b : 1 C2;
a) primitiv, b) basiszentriert

3. Orthorombisch: a 6= b 6= c, a = b = g = 90� :
3 C2 a) primitiv, b) basiszentriert, c) raumzen-
triert, d) flächenzentriert

4. Hexagonal: a = b 6= c, a = b = 90�, g = 120�

: 1 C6 primitiv

5. Rhomboedrisch (trigonal): a = b = c, a = b =
g 6= 90� < 120�; : 1 C3 primitiv

6. Tetragonal: a = b 6= c, a = b = g = 90�, : 1 C4
a) primitiv, b) raumzentriert

7. Kubisch: a = b = c, a = b = g = 90� : 4 C3 a)
primitiv, b) raumzentriert, c) flächenzentriert

2.2.4 Miller Indizes

In der Kristallographie spielen die sog. Netzebenen
eine große Rolle. Dabei handelt es sich um (gedach-
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te) Ebenen, die mit Atomen oder Gitterpunkten be-
setzt sind. Wie man sich leicht überzeugen kann,
sind die Atome in einer solchen Ebene ebenfalls pe-
riodisch angeordnet, wobei die Periodizität größer
sein kann als die Periodizität des Kristalls. Diese
Netzebenen können durch jeweils drei ganze Zahlen
eindeutig charakterisiert werden.

a

b

Abbildung 2.26: Netzebene mit Achsenabschnitten
3, 1.

Dafür bestimmt man die Abschnitte, an denen die
Ebene die Achsen schneidet. Die Achsenabschnitte
werden in Vielfachen der Einheitszelle (also nicht
der primitiven Elementarzelle) bestimmt. Im Bei-
spiel von Abb. 2.26 sind dies die Zahlen 3 und 1.
Die Miller Indizes erhält man, indem man den Kehr-
wert der Achsenabschnitte bildet (hier: 1/3, 1/1) und
das kleinste ganzzahlige Verhältnis bestimmt (hier:
1, 3). Für Achsenabschnitte 6, 2, 3 erhält man somit
die Kehrwerte 1/6, 1/2 = 3/6, 1/3 = 2/6 und damit
Miller Indizes (132). Liegt die Netzebene parallel zu
einer Achse, so beträgt der entsprechende Achsenab-
schnitt unendlich und der Index 0. Negative Achsen-
abschnitte werden mit einem Querstrich bezeichnet.

z z

x
y

z

x
y

x
y

(100) (110) (111)

Abbildung 2.27: Beispiele für Netzebenen.

Einige Beispiele von Miller Indizes für häufig ver-
wendete Ebenen sind in Abb. 2.27 zusammenge-
stellt. Jede Netzebene entspricht einer Netzebenen-
schar, d.h. einer unendlichen Schar von äquivalenten
Ebenen, welche parallel zueinander in einem festen

Abstand liegen. Diese Netzebenen entsprechen auch
möglichen Spaltflächen oder Wachstumsebenen von
Kristallen.

Meist sind aufgrund der Symmetrie des Gitters meh-
rere Netzebenen äquivalent zueinander. Ein einfa-
ches Beispiel sind die Ebenen (100), (010), und
(001) des einfach kubischen Gitters. Solche Grup-
pen von äquivalenten Netzebenen fasst man zusam-
men, indem man die Indizes in geschweifte Klam-
mern setzt, also z.B. {100}.

2.2.5 Dichteste Kugelpackung

Festkörper bilden sich, weil die darin enthaltenen
Bausteine sich gegenseitig anziehen. Die Energie ei-
nes Kristalls kann deshalb meist optimiert werden,
wenn die Bestandteile möglichst dicht gepackt sind.
Es stellt sich somit die Frage, welche Anordnung den
Raum optimal füllt. Für die meisten Bestandteile ist
die Antwort nicht analytisch, aber für den wichtigen
Fall, dass die Bestandteile durch karte Kugeln ange-
nähert werden könne, lässt sich die Frage beantwor-
ten. Kugelförmige Bestandteile sind eine gute Nähe-
rung für viele Ionenkristalle.

In einer Dimension wird die dichteste Kugelpackung
durch eine Reihe direkt aneinander gelegter Kugeln
realisiert.

Abbildung 2.28: Links: dichteste Kugelpackung in
einer Ebene; rechts: 2 hexagonal
dichtest gepackte Ebenen gestapelt.

In zwei Dimensionen kann man Reihen von Ku-
geln jeweils um eine halbe Gitterkonstante verscho-
ben aneinander fügen und erhält eine dichteste Ku-
gelpackung, welche einem hexagonalen Gitter ent-
spricht. Fügt man zwei solcher Schichten aufeinan-
der, so wird der Schichtabstand minimal, wenn sich
die Kugeln der oberen Lage über einer Lücke der un-
teren Lage befinden (siehe Abb. 2.28 rechts).
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Abbildung 2.29: 3 hexagonal dichtest gepackte Ebe-
nen gestapelt.

Fügt man eine dritte Schicht auf diese beiden, so
kann dies auf zwei Arten optimiert werden: Man legt
die dritte Schicht vertikal über die erste oder man
verschiebt sie nochmals in die gleiche Richtung wie
beim ersten Schritt, so dass die dritte über die ge-
meinsame Lücke der blauen und roten Schicht zu lie-
gen kommt. Die erste Folge wird als ABAB charak-
terisiert, die zweite als ABCABC. Beide Varianten
kommen in der Natur vor, und es sind auch gemisch-
te Fälle möglich, d.h. die Stapelfolge kann variie-
ren. In allen Fällen gilt für identische Kugeln, dass
das Volumen der Kugeln 74 % des Kristallvolumens
ausmacht. Das Verhältnis der Kugelvolumina zum
gesamten Volumen wird als Raumfüllung bezeich-
net. Da diese beiden Packungen die maximal mögli-
che Raumfüllung aufweisen, werden sie als ‘dichte-
ste Kugelpackung’ bezeichnet.

Schicht A

Schicht B
Schicht A

A

B

C
A

Abbildung 2.30: Anordnung der Schichten in der he-
xangonal dichtesten Kugelpackung
(links) und in der fläcenzentrierten
dichtesten Kugelpackung (rechts).

Ist die Stapelfolge ABAB, so wählt man normaler-
weise eine hexagonale Einheitszelle, wie in Abb.
2.30 links dargestellt. Diese Struktur wird als hexa-
gonal dichteste Kugelpackung bezeichnet oder kurz

als hcp (=hexagonal close packed). Die Stapelrich-
tung entspricht der c-Achse des hexagonalen Kri-
stallsystems.

Für die Beschreibung des Gitters, das durch die Sta-
pelfolge ABCABC erzeugt wird, verwendet man
das kubisch flächenzentrierte Gitter, welches in Abb.
2.30 rechts dargestellt ist. Die Stapelrichtung ent-
spricht der Raumdiagonale des Würfels. Dieser Fall
wird kurz als fcc (=face centered cubic) bezeichnet.
Die Raumfüllung beträgt in beiden Fällen (hcp und
fcc) 74%. In einem kubisch innenzentrierten Gitter
(bcc = (body centered cubic) ist die Raumfüllung
68%, in einem einfachen kubischen Gitter 52%, und
in einem Diamantgitter 34%.

2.2.6 Diamant-Gitter

0 0

0 0

01/2 1/2

1/2

1/2

1/4

1/4

3/4

3/4

Abbildung 2.31: Struktur von Diamant als 3D Dar-
stellung und Projektion in die xy-
Ebene mit den z-Koordinaten der
Atome.

Eine relativ wichtige Struktur ist diejenige von Dia-
mant. Zusätzlich zu einem flächenzentrierten kubi-
schen Gitter enthält Diamant jeweils ein Atom an der
Stelle (1/4, 1/4, 1/4) und den entsprechenden äquiva-
lenten Positionen.

Viele Halbleiter, wie z.B. Si oder GaAs kristallisie-
ren in der Diamantstruktur. Bei den binären Halb-
leitern werden die Gitterplätze abwechselnd mit Ga
oder As belegt.
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Abbildung 2.32: Struktur von GaAs.

Abbildung 2.33: Struktur von NaCl (links) und CsCl
(rechts).

Kristalle, die aus mehr als einer Atomsorte beste-
hen, enthalten dementsprechend mehrere Atome pro
Einheitszelle. Ein relativ einfaches Beispiel ist NaCl
(Kochsalz). Da die Na+-Ionen kleiner sind als die
Cl�-Ionen ist in diesem Fall ein kubisch flächenzen-
triertes Gitter energetisch am günstigsten. Dies be-
deutet, dass in einem Untergitter, welches nur die Cl-
, resp. Na-Ionen enthält, jeweils Ecken und Flächen-
mittelpunkte eines Kubus besetzt sind. Man kann
das Gitter aber auch als primitiv kubisches Gitter
(mit der halben Gitterkonstante, d.h. 1/8 Volumen
der Einheitszelle) beschreiben, bei dem die Gitter-
plätze alternierend mit Cl, resp. Na besetzt sind.

2.2.7 Quasikristalle

Wie bereits erwähnt, sind fünfzählige Rotations-
achsen in einem System mit Translationssymme-
trie nicht möglich. Auch in zwei Dimensionen ist
es nicht möglich, die Ebene mit Einheitszellen mit
fünfzähliger Symmetrieabzudecken. Man hat des-
halb lange Zeit geglaubt, dass solche Kristalle nicht

existieren würden. Erst 1984 wurden erstmals in
Beugungsexperimenten 10-zählige Symmetrieach-
sen gefunden, und etwas später konnte man diese
Symmetrie auch makroskopisch nachweisen.

Abbildung 2.34: Morphologie eines Quasikristalls
(links) und zugehöriges Beugungs-
muster (rechts).

Mit Hilfe der Elektronenmikroskopie findet man die
fünfzählige Symmetrie sowohl in der Morphologie
der Kristalle wie auch in der atomaren Struktur. Die
gleiche Symmetrie findet man auch in hochauflö-
senden Mikroskopie Bildern, welche direkt die ato-
mare Struktur darstellen. Da diese Materialien zwar
einen hohen Ordnungsgrad, aber keine Translations-
symmetrie aufweisen, werden sie als Quasikristalle
bezeichnet. Die Details dieser Strukturen sind noch
nicht in allen Fällen vollständig verstanden. Sie ba-
sieren jedoch auf räumlich nichtperiodischen Struk-
turen.

Abbildung 2.35: Zwei Beispiele, wie eine Ebene
mit einem nichtperiodischen Mu-
ster abgedeckt werden kann.

In zwei Dimensionen können Kombinationen von
2 Elementen den Raum vollständig abdecken, ohne
dass sie Translationssymmetrie aufweisen. Bekannt
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dafür sind vor allem die Elemente von Penrose.

2.3 Strukturbestimmung

Die atomare Struktur eines Körpers kann viele seiner
Eigenschaften erklären und ist deshalb immer von
großem Interesse. Um diese Struktur zu bestimmen
benötigt man ein Werkzeug, welches in atomaren
Größen arbeiten kann. In erster Linie benutzt man
dafür elektromagnetische Wellen mit kurzer Wel-
lenlänge, d.h. Röntgenstrahlen. Auch Materiewellen
sind mit Erfolg eingesetzt worden, in erster Linie
Elektronen oder Neutronenstrahlen, aber neuerdings
auch Atomstrahlen.

2.3.1 Feld-Ionen Mikroskopie

+

V

He

Spitze

Schirm

Abbildung 2.36: Prinzip der Feldionenmikroskopie.

Die erste Methode, welche Atome direkt sichtbar
machte, war die Feld-Ionen Mikroskopie. Es han-
delt sich dabei um ein relativ einfaches Gerät: im
Wesentlichen benötigt man eine sehr scharfe Spitze,
an die man eine positive elektrische Spannung an-
legt. Dadurch erhält man an der Spitze ein sehr ho-
hes elektrisches Feld. Ausserhalb der Spitze befin-
det sich mit niedrigem Druck ein Gas, typischerwei-
se Helium. Wenn ein Heliumatom in die Nähe der
Spitze gelangt, wird es durch dieses enorme elek-
trische Feld ionisiert, das heisst diese Metallspitze
zieht eines der Elektronen des Heliumatoms weg.
Dadurch wird das Heliumatom zu einem positiv ge-
ladenen Heliumion und wird nun durch das starke
elektrische Feld sehr rasch von der Spitze weg be-
schleunigt. Nach einer Distanz von etwa 10 cm trifft

es auf einen Schirm, wo es sichtbar gemacht wird.
Da sich die Atome auf dem direktesten Weg von der
Spitze entfernen, entsteht dadurch auf dem Schirm
ein Bild der Spitze. Die Vergrößerung kommt durch
das Verhältnis des Radius der Spitze zur Distanz vom
Schirm zustande und benötigt keine weiteren abbil-
denden Elemente. Man erhält also auf diese Weise
auf dem Schirm ein Bild dieser Spitze mit sehr ho-
her Auflösung. Allerdings ist das Bild ziemlich stark
verzerrt.

Abbildung 2.37: Atome, die sich auf einer Metall-
spitze bewegen. Das obere ist ein
Rhenium-, das untere ein Wolfram-
Atom.

Diese Art von Mikroskopie ist inzwischen mehr als
40 Jahre alt, sorgt aber immer noch für spektakuläre
Bilder, wie z.B. die Serie von Bildern in Abb 2.37,
welche zeigen, dass man damit nicht nur atomare
Auflösung erhält, also einzelne Atome sehen kann,
sondern auch deren Bewegung über die Oberfläche
beobachten kann. In Abb. 2.37 ist die Oberfläche ei-
ner Wolframspitze dargestellt, auf der sich zwei ein-
zelne Atome bewegen, welche durch die dreiecki-
gen Pfeile markiert sind. Beim unteren handelt es
sich um ein Wolfram-Atom, beim oberen um ein
Rhenium-Atom. (Aus T.T. Tsong, Atomprobe field
ion microscopy, Cambridge University Press, Cam-
bridge (1990).)

2.3.2 Elektronenmikroskopie

Um ein weniger verzerrtes Bild einer beliebigen ato-
maren Struktur zu erhalten, benötigt man eine Ab-
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bildungsoptik, die unabhängig vom abzubildenden
Objekt ist. Die Wellenlänge des abbildenden Feldes
muss dazu kleiner sein als die abzubildenden Struk-
turen. Verwendet man elektromagnetische Wellen
(d.h. Röntgenstrahlen), sind abbildende Linsen prak-
tisch nicht herstellbar.

Abbildung 2.38: Funktionsprinzip eines Elektronen-
mikroskops.

Verwendet man jedoch Elektronen für die Abbil-
dung, so können Linsen mit elektromagnetischen
Feldern erzeugt werden.

Abbildung 2.39: Elektronenmikroskopische Auf-
nahme eines Molekülkristalls.

Hochgezüchtete Systeme sind in der Lage, Ato-
me direkt abzubilden. Dafür muss allerdings eine
Vergrößerung um mindestens 7 Größenordnungen
erreicht werden. Aufgrund der damit verbundenen
technischen Schwierigkeiten ist dies erst seit weni-

gen Jahren möglich und stellt immer noch kein Rou-
tineverfahren dar.

2.3.3 Rastersonden Mikroskopie

Die Methode, mit der man die strukturelle Infor-
mation erhält, hängt stark davon ab, welches dieser
Werkzeuge man verwendet. Im Falle der Rasterson-
den Mikroskopie ist die Methode sehr direkt: man
tastet den Gegenstand mit der Probe ab und zeichnet
die Position der Probe auf, um so direkt ein Bild der
Oberfläche zu erhalten.

Elektronik

St
ro
m

Abbildung 2.40: Funktionsprinzip der Raster-
Tunnelmikroskopie.

Diese Methode wurde 1982 von Binnig und Roh-
rer am IBM Forschungslaboratorium in Rüschlikon
entwickelt. Dabei wurde eine feine Spitze über eine
Oberfläche geführt, wobei der Abstand zwischen der
Spitze und der Oberfläche konstant gehalten wur-
de. Indem man die Position der Spitze aufzeichnete,
konnte man ein Bild der Oberfläche erhalten. Man
tastet also die Oberfläche mit einer Spitze ab, benutzt
also eine Art verfeinerten Tastsinn, um die Oberflä-
che sichtbar zu machen.

Insbesondere hat man auch gelernt, mit dem Mi-
kroskop Atome zu verschieben, nicht nur zu beob-
achten. Abb. 2.41 zeigt als Beispiel einen Ring aus
48 Eisenatomen, welche mit einer Rastertunnelspit-
ze auf der Oberfläche eingesammelt und an einen Ort
gebracht wurden. Anschliessend wurde das gleiche
Mikroskop dafür verwendet, sie abzubilden.

Die Raster-Sonden Mikroskope verwendeten die ex-
ponentielle Abhängigkeit des sog. Tunnelstroms, al-
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Abbildung 2.41: STM Bild eines Kreises aus 48 Ei-
senatomen.

so eines elektrischen Stroms durch ein nichtleiten-
des Medium wie das Vakuum, um ein Bild zu er-
halten. Diese Technik wird deshalb als Tunnelmikro-
skopie (STM = scanning tunneling microscopy) be-
zeichnet. Die Notwendigkeit für einen elektrischen
Strom beschränkt diese Technik auf leitende Ober-
flächen. Später kamen andere Arten von Sonden da-
zu, wie die Raster-Kraftmikroskopie (AFM = atomic
force microscpy) die magnetische Wechselwirkung
(MFM = magnetic force microscopy) oder die opti-
sche Nahfeld Mirkroskopie (SNOM = scanning near
field optical microscopy). Alle diese Techniken sind
hervorragend für die Untersuchung von bestimmten
Oberflächen geeignet, jedoch nicht für die Untersu-
chung von Volumenkristallen.

2.3.4 Röntgenbeugung

Vor der Entwicklung der direkten Methoden war
die einzige Möglichkeit, mit atomarer Auflösung
Informationen über Kristallstrukturen zu erhalten,
die Verwendung von Beugungsmethoden, also die
Streuung einer Welle an einer periodischen Struk-
tur. Voraussetzung dafür ist, dass die Wellenlänge
der verwendeten Strahlung von der gleichen Größen-
ordnung ist wie die Abstände zwischen den Atomen,
also weniger als 1 nm.

Die Beugung von Wellen an periodischen Struktu-
ren wurde u.a. von Bragg erklärt. Seine Erklärung
ist sehr anschaulich und liefert das richtige Resultat.
Man betrachtet dabei eine Reihe von parallelen Ebe-
nen. Im Kristall sind dies natürlich keine wirklichen
Ebenen, sondern Netzebenen, also zweidimensiona-
le Anordnungen von Atomen.

Cl- Na+

a0

a0

Abbildung 2.42: Struktur von NaCl.

Röntgenstrahl

d

d

� �

� �

� �

Abbildung 2.43: Interferenz von Teilstrahlen and be-
nachbarten Netzebenen.

Jede dieser Ebenen reflektiert einen Teil der einfal-
lenden Welle. Wie groß dieser Anteil ist, hängt von
der Welle selber ab, sowie von der Netzebene: wie
dicht sind die Atome gepackt, was für eine Art von
Atomen sind es etc. Typische Werte für die Reflekti-
vität einer einzelnen Ebene liegen bei 10�5 . . .10�3.

Für die Herleitung der Bragg-Bedingung bezeichnen
wir den Abstand zwischen diesen Ebenen als d. Falls
der Brechungsindex dieser Ebenen von demjenigen
des übrigen Materials abweicht, wird an diesen Ebe-
nen jeweils ein Teil der Welle reflektiert. Da es sich
um eine Welle handelt, tritt beim Beobachter Inter-
ferenz ein, d.h. die gesamte reflektierte Welle ergibt
sich durch lineare Superposition der einzelnen Wel-
len.

Damit positive Interferenz entsteht, muss der Lauf-
zeitunterschied zwischen den einzelnen Teilwellen
ein Vielfaches der Wellenlänge sein, d.h.

2d sinq = nl . (2.2)

Der Winkel q ist hier der Winkel zwischen der Ein-
fallsrichtung des Röntgenstrahls und der Netzebe-
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Abbildung 2.44: Berechnung der Bedingung für
konstruktive Interferenz.

ne und damit die Hälfte des Ablenkwinkels für den
Röntgenstrahl.

Dies ist die sogenannte Bragg-Bedingung: Beu-
gungsreflexe können nur dann auftreten, wenn der
Einfallswinkel des Röntgenstrahls auf die Netzebe-
ne durch das obige Verhältnis zwischen Netzebe-
nenabstand und Wellenlänge gegeben ist. Die Bedin-
gunge kann offenbar nur dann erfüllt werden, wenn
die Wellenlänge l kleiner ist als der doppelte Ab-
stand, l  2d. Um gut aufgelöste Beugungsbilder
zu erhalten, benötigt man Wellen, deren Wellenlän-
ge vergleichbar ist mit dem Abstand der untersuch-
ten Netzebenen, also im Bereich von ⇡ 1Å . . .1nm.

Wie diese Herleitung zeigt, erzeugt jede Schar von
Netzebenen einen Beugungsreflex. Ein Beugungs-
muster enthält deshalb viele Reflexe, welche jeweils
einer Netzebene zugeordnet werden können. Die
Bragg-Bedingung bestimmt jedoch nur die mögli-
chen Reflexionsrichtungen, sie sagt nichts über die
Intensität des Beugungsmaximums.

2.3.5 Beugung von Materiewellen

Anstelle von Röntgenstrahlen kann man auch Mate-
riewellen für Beugungsuntersuchungen verwenden.
Gemäss de Broglie beträgt die Wellenlänge eines
Teilchens mit Impuls p

l =
h
p

oder k =
p
h̄
.

Für nichtrelativistische Elektronen der Energie E er-
hält man den Impuls als

p =
p

2mE

und daraus die Wellenlänge als

l =
1.2p

E
(
p

eVnm)

oder rund 150 eV für eine Wellenlänge von 0.1 nm.

Röntgen Elektronen

Vergleich der 
Beugungsmuster von 
Röntgen und 
Elektronenstrahlen

Elektronenkanone

Detektor

Abbildung 2.45: Elektronenbeugung.

Elektronenstrahlen ergeben deshalb sehr ähnliche
Beugungsmuster wie Röntgenstrahlen. Die Ein-
dringtiefe von Elektronen dieser Energie ist recht
klein (15 nm), sodass sich Elektronenbeugung in er-
ster Linie für die Untersuchung von Oberflächen eig-
net.

Ebenfalls recht häufig verwendet werden Neutronen.
Da diese rund 1836 mal schwerer sind als Elektro-
nen haben sie eine sehr viel kürzere Wellenlänge, re-
sp. eine sehr viel niedrigere Energie bei der gleichen
Wellenlänge: 0.1 nm wird erreicht bei einer Energie
von 80 meV.

Sowohl Neutronen wie auch Elektronen zeigen ei-
ne andere Abhängigkeit zwischen Energie und Wel-
lenlänge als Photonen. Wie in Abb. 2.46 gezeigt ist
die Wellnlänge bei massiven Teilchen µ E �1/2, bei
Photonen µ E �1. Für den relevanten Wellnlängen-
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Abbildung 2.46: Wellenlänge als Funktion der Ener-
gie für Elektronen, Neutronen und
Photonen.

bereich kann man sie ausdrücken als

lR(Å) =
12.4

E(keV
)

le(Å) =
12p

E(eV)

lN(Å) =
0.28p
E(eV)

. (2.3)

2.3.6 Neutronenbeugung

Der wesentliche Unterschied zwischen Elektronen
(oder Röntgenstrahlen) und Neutronen liegt in der
Art ihrer Wechselwirkung: Neutronen wechselwir-
ken in erster Linie mit den Atomkernen, nicht mit
den Elektronen, und die Stärke der Wechselwirkung
hängt nicht von der Ladung ab. Sie kann deshalb für
Kerne mit ähnlicher Ordnungszahl oder für Isotope
des gleichen Elementes stark variieren. Neutronen
sind attraktive Sonden für die Messung an leichten
Kernen, welche mit Röntgenstrahlen fast unsichtbar
sind. Die Eindringtiefe kann sehr stark variieren, von
wenigen um bis zu mehreren Zentimetern.

Neutronen können allerdings nicht im Labor-
massstab genutzt werden: Man benötigt als Quelle
einen Reaktor (wie hier am ILL in Grenoble) oder

Abbildung 2.47: Erzeugung von Neutronen im For-
schungsreaktor (ILL Grenoble).

einen Beschleuniger (wie in der geplanten Neutro-
nenquelle ESS).

Abbildung 2.48: Neutronen-Flugzeitspektrometer
IN6 am ILL Grenoble.

Auch die eigentlichen Spektrometer sind sehr auf-
wändige Großgeräte, welche nur an wenigen For-
schungszentren zur Verfügung stehen, wie z.B. am
Institut Laue-Langevin (ILL) in Grenoble. Neben
den Reaktoren gibt es als Neutronenquellen Spallati-
onsquellen: Hier werden relativistische Protonen auf
ein Target geschossen, aus dem dadurch Neutronen
austreten.

Bezüglich der reinen Strukturaufklärung unterschei-
den sich Neutronen von Röntgenstrahlung vor al-
lem durch den Streuquerschnitt: sie bilden nicht die
Elektronendichte ab, sondern die Position der Kerne.
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Deshalb sind sie z.B. nützlich für die Messung der
Position von Wasserstoffatomen, welche wegen ih-
rer geringen Anzahl Elektronen in Röntgenmessun-
gen schlecht sichtbar sind. Außerdem können sie zur
Messung von Kernbewegungen, magnetischer Ord-
nung und Isotopenverteilung eingesetzt werden.

2.4 Das reziproke Gitter

Die Bragg-Bedingung (2.2) liefert zwar eine Bedin-
gung für das Auftreten von Röntgenreflexen, aber es
ist zum einen keine hinreichende Bedingung, zum
zweiten liefert sie keine Intensitäten. Wie groß die
Intensität der gestreuten Welle ist, hängt davon ab,
wie stark die einzelnen Ebenen reflektieren. Im Fal-
le der Röntgenstrahlung ist die Beugungseffizienz
im Wesentlichen proportional zur Elektronendichte.
Für die Berechnung der Streuintensität müssen wir
deshalb die räumliche Abhängigkeit der Elektronen-
dichte betrachten.

2.4.1 Periodizität der Elektronendichte

Aufgrund der Periodizität des Kristalls muss die
Elektronendichte n(~r) ebenfalls periodisch sein,

n(~r +~T ) = n(~r),

wobei ~T einen Translationsvektor

~T = u1~a1 +u2~a2 +u3~a3

darstellt.

Daraus folgt, dass man die Elektronendichte als
Fourier-Reihe schreibenkann. In einer Dimension
wird sie dann

n(x) = n0 + Â
p>0

Cp cos
2p px

a
+Sp sin

2p px
a

oder in komplexer Schreibweise

n(x) =
•

Â
p=�•

npei2p px/a.

k0

b(k-a)

2ʌ/a

k0 2ʌ
a

4ʌ
a

6ʌ
a

x

Harmonische Funktion
f(x) = cos(2πx/a)

x

Periodische Funktion
g(x) Diskrete Funktion

F{f(x)} =

Z ��

��
e�ikxf(x) dx

F{g(x)} =

Z ��

��
e�ikxg(x) dx

Abbildung 2.49: Fourier-Zerlegung einer eindimen-
sionalen Funktion.

Damit die Elektronendichte reell wird, muss gelten
n⇤

�p = np. Geht man nun zu drei Dimensionen, so
erhält man

n(~r) = Â
pqs

npqsei2p px/aei2pqy/bei2psz/c,

wobei p, q und s über alle (positiven und negati-
ven) ganzen Zahlen laufen. Dies kann auch in Vek-
torschreibweise geschrieben werden

n(~r) = Â
G

n~Gei~G·~r,

Der Vektor

~G =

✓
2p p

a
,
2pq

b
,
2ps

c

◆

wird definiert durch drei diskrete Zahlen p,q,s. Er
stellt also einen Punkt in einem Gitter dar, ähnlich
wie die Translationsvektoren ~T . Dieses Gitter be-
findet sich allerdings nicht im gewöhnlichen dreidi-
mensionalen Raum, sondern hat offenbar die Dimen-
sion einer inversen Länge. Es wird üblicherweise als
reziprokes Gitter bezeichnet.

2.4.2 Definition des reziproken Gitters

Eine mögliche Definition des reziproken Gitters ist
die folgende:

Das reziproke Gitter besteht aus denjenigen Wel-
lenvektoren ~k, die eine Funktion ei~k·~r definieren,
welche im direkten Raum die Periodizität des di-
rekten Gitters aufweist.

32



2 Symmetrie und Struktur

Alternativ können wir das reziproke Gitter konstruk-
tiv definieren, indem wir zunächst seine Basisvekto-
ren definieren:

~b1 = 2p

~a2 ⇥~a3

~a1 ·~a2 ⇥~a3
= 2p

~a2 ⇥~a3

V

~b2 = 2p

~a3 ⇥~a1

V
~b3 = 2p

~a1 ⇥~a2

V
.

Aufgrund dieser Konstruktion steht~b1 senkrecht auf
~a2 und ~a3 und entsprechendes gilt für die anderen
Vektoren. Sakalarprodukte zwischen Basisvektoren
des direkten und reziproken Gitters werden somit

~bi ·~a j = 2pdi j.

Diese Konstruktion kann auch in Matrixform ge-
schrieben werden. Wir definieren die Matrix

A = (~a1,~a2,~a3) =

0

@
a1x a2x a3x
a1y a2y a3y
a1z a2z a3z

1

A

der primitiven Gittervektoren.

~a2

~a3

~a1

Abbildung 2.50: Primitive EZ im fcc-Gitter mit den
Basisvektoren des reziproken Git-
ters.

Für die primitive Einheitszelle des kubisch flächen-
zentrierten Gitters (siehe Abb. 2.50), z.B., erhalten
wir

A =
a
2

0

@
1 0 1
1 1 0
0 1 1

1

A ,

wobei a wie üblich die Kantenlänge des Würfels dar-
stellt. Entsprechend können wir eine Matrix B für die
Basisvektoren des reziproken Gitters definieren. Aus
der Orthogonalitätsbeziehung folgt A†B = 2p oder

B = 2p

�
A†��1

.

Damit ist es möglich, die Bestimmung des rezipro-
ken Gitters auf eine Matrixinversion zurückzufüh-
ren. Im obigen Fall erhalten wir

B =
2p

a

0

@
1 �1 1
1 1 �1

�1 1 1

1

A .

2.4.3 Gitterelemente

Das gesamte Gitter erhält man wiederum durch Li-
nearkombination der Basisvektoren

~G = v1~b1 + v2~b2 + v3~b3

mit ganzzahligen vi. ~G wird als Punkt oder Vektor
des reziproken Gitters bezeichnet. Die Dimension
dieser Vektoren beträgt m�1, wie man leicht aus der
Definition der Basisvektoren ersieht. Falls die Vekto-
ren ~ai die Basisvektoren des primitiven Gitters sind,
so sind auch die Vektoren ~bi die Basisvektoren des
primitiven reziproken Gitters.

Die Punkte des reziproken Gitters sind Fourierkom-
ponenten des Kristalls und damit in erster Linie
mathematische Hilfsmittel. Um sie doch etwas zu
veranschaulichen, kann man sich aber vorstellen,
dass sie ein Objekt des direkten Raumes beschrei-
ben, welches eine bestimmte Periodizität besitzt. Ein
Gitterpunkt, der im zweidimensionalen reziproken
Raum die Koordinaten (r,s) besitzt, entspricht der
Komponente

sin
2prx

a
sin

2psy
b

.

Abb. 2.51 zeigt zwei Beispiele. Ein Vektor des rezi-
proken Gitters entspricht damit immer einer entspre-
chenden Periodizität im direkten Raum. Damit ent-
hält die Wellenfunktion des Kristalls eine Kompo-
nente ei~k·~r. Aufgrund der Beziehung von de Broglie
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Abbildung 2.51: Punkte im reiproken Gitter und ihre
Fouriertransformierten.

kann dies auch so interpretiert werden, dass ein Im-
puls in Richtung~k vorhanden ist. Mit anderen Wor-
ten: das reziproke Gitter ist eine Zerlegung des Fest-
körperimpulses.

Aus der Konstruktion der Basisvektoren, resp. der
Orthogonalitätsbeziehung~bi ·~a j = 2pdi j folgt für be-
liebige Vektoren ~T des direkten Gitters und ~G des
reziproken Gitters

~T · ~G = (u1v1 +u2v2 +u3v3)2p

= (ganzeZahl)2p

oder

ei~T ·~G = 1. (2.4)

Dies entspricht der ersten Definition des reziproken
Gitters in 2.4.2.

2.4.4 Reziproke Gittervektoren und
Ebenenscharen

Eine wichtige Beziehung besteht auch zu den Netz-
ebenen des direkten Gitters: Ist eine Ebene durch die
Miller Indizes hkl gegeben, so steht der Vektor

~G =

0

@
h
k
l

1

A = h~b1 + k~b2 + l~b3;

des reziproken Gitters senkrecht auf dieser Ebene.
Beweis: wir zeigen, dass dieser Vektor senkrecht auf

zwei linear unabhängigen Vektoren~v1 und~v2 des di-
rekten Gitters steht, welche die Ebene (hkl) aufspan-
nen. Wir wählen

~v1 =
1
h
~a1 � 1

k
~a2 , ~v2 =

1
k
~a2 � 1

l
~a3.

~v1 =
1

h
~a1 � 1

k
~a2

1

h
~a1

1

k
~a2

~a2

~a1

Abbildung 2.52: Definition von~v1.

Wie in Abb. 2.52 gezeigt, liegt der Vektor ~v1 in der
Schnittgeraden von (hkl) und der Ebene, die von ~a1
und ~a2 aufgespannt wird. Entsprechend liegt ~v2 in
der Schnittgeraden von (hkl) und (~a2,~a3), und ge-
meinsam spannen die beiden Vektoren die Netzebe-
ne auf. Das Skalarprodukt mit dem reziproken Git-
tervektor ~G ist

~G ·~v1 =
⇣

h~b1 + k~b2 + l~b3

⌘
·
✓

1
h
~a1 � 1

k
~a2

◆
.

Die Orthogonalitätsrelation zwischen den Basisvek-
toren des direkten und reziproken Raums ergibt

~G ·~v1 = ~G ·~v2 = 2p (1�1) = 0.

Der kürzeste Vektor ~G des reziproken Gitters, der
senkrecht auf den Netzebenen steht, hat die Länge

|~G| = 2p

d
,

wobei d den Abstand zwischen benachbarten Netze-
benen darstellt. Diese Beziehung folgt aus der Tatsa-
che, dass die Funktion ei~G·~r im direkten Raum eine
Periode von 2p/|~G| hat, welche dem Abstand zwi-
schen Netzebenen entsprechen muss.

Für den Spezialfall eines rechteckigen Gitters in 2
Dimensionen berechnen wir den Abstand d2 zwi-
schen aufeinander folgenden Netzebenen gemäß
Abb. 2.53

d2
a1
h

=
a2
kq

a2
1

h2 +
a2

2
k2

.
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~a2

~a1{a2

k
a1

h

{d2

Abbildung 2.53: Abstand der Netzebenen.

Daraus erhalten wir den Abstand

d2 =
a1a2q

a2
1k2 +a2

2h2
=

1q
k2

a2
2
+ h2

a2
1

=
2p

|G|

in zwei Dimensionen.

2.4.5 Brillouin-Zonen

Im reziproken Gitter kann man genau so wie im di-
rekten Gitter Einheitszellen definieren. Eine beson-
ders wichtige Rolle spielt die Wigner-Seitz Zelle des
reziproken Raums. Sie wird als die erste Brillouin-
Zone bezeichnet.

Wir berechnen als Beispiel das reziproke Gitter des
primitv kubischen Gitters. Die Basisvektoren des di-
rekten Gitters sind in diesem Fall die Vektoren ~ax,
~ay und ~az. Die Basisvektoren des reziproken Git-
ters sind im Fall des kubischen Gitters in die glei-
che Richtung orientiert und ihre Länge beträgt 2p/a.
Das Volumen der ersten BrillouinZone beträgt da-
mit (2p/a)3. Da bei der üblichen Wigner-Seitz Kon-
struktion der ersten Brillouin-Zone der Gitterpunkt
im Zentrum liegt, reicht die Zone von �b/2 bis
+b/2, d.h. von �p/a bis +p/a. Die Form ist, wie
beim direkten Raum, die eines Würfels.

2.5 Beugung

2.5.1 Streuung an kontinuierliche Medien

Wir hatten im Kapitel 2.3.4 die Bragg-Bedingung für
das Auftreten eines Beugungsreflexes durch Reflexi-
on an Netzebenen diskutiert. Diese Netzebenen sind
nützliche mathematische Hilfsmittel, aber in Wirk-
lichkeit erfolgt die Streuung der Röntgenstrahlung

nicht an den Netzebenen, sondern an den Elektronen
des Materials, d.h. an einer kontinuierlichen Vertei-
lung. Außerdem liefert die Bragg-Bedingung für die
Netzebenen keine Amplituden für die Beugungsre-
flexe.

Den physikalischen Prozess der Röntgenstreuung an
den Elektronen kann man sich am besten so vorstel-
len, dass die einfallende Welle in der Elektronen-
dichteverteilung eine erzwungene Schwingung er-
zeugt, welche ihrerseits eine Welle abstrahlt. Die
Phase dieser gestreuten Welle ist starr an die der ein-
laufenden Welle gekoppelt. Wir nehmen im Folgen-
den an, dass die gestreute Welle selber nicht mehr
gestreut wird. Dies wird als erste Born’sche Nähe-
rung bezeichnet und ist für die Streuung von Rönt-
genlicht in Kristallen fast immer eine gute Nähe-
rung. Mehrfachstreuung kann nur in wenigen Fäl-
len überhaupt beobachtet werden. Der Grund dafür
ist der geringe Streuquerschnitt für die Streuung von
Photonen an Elektronen: er ist von der Größenord-
nung r2

e ⇡ 10�29 m2, wobei

re =
1

4pe0

e2

mec2 ⇡ 2,818 ·10�15 m

den klassischen Elektronenradius darstellt.

0

Quelle Detektor

~r

dV

~k
~k�

Abbildung 2.54: Streuungsbeitrag des Volumenele-
ments dV.

Wir gehen aus von einem einfallenden Röntgen-
strahl, der durch den Wellenvektor ~k beschrieben
wird, und bestimmen die Intensität eines Strahls, der
in Richtung ~k0 gestreut wird. Dazu berechnen wir
den Beitrag jedes Volumenelementes des Kristalls.
Ein Element dV an der Stelle ~r erzeugt einen Bei-
trag, der proportional ist zur Elektronendichte n(~r)
an diesem Ort. Wir gehen davon aus, dass die ein-
laufende Welle als ebene Welle beschrieben werden
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kann und dass der Detektor so weit vom Kristall ent-
fernt ist, dass die gestreute Welle (welche einer Ku-
gelwelle um dV entspricht) in guter Näherung beim
Detektor ebenfalls als ebene Welle beschrieben wer-
den kann.

Gegenüber einer Referenz-Phasenfläche durch den
Ursprung O des Koordinatensystems erhält die ein-
fallende Welle bis zum Volumenelement dV eine
Phasenverzögerung um~k ·~r. Die gestreute Welle er-
hält auf dem Weg zum Detektor ebenfalls eine Pha-
senverzögerung, um �~k0 ·~r. Somit ergibt sich insge-
samt für den Beitrag des Volumenelements bei~r eine
Phasenverschiebung um den Betrag

j(~r) =~k ·~r �~k0 ·~r =
⇣
~k �~k0

⌘
·~r = D~k ·~r,

mit D~k =~k �~k0 als Änderung des Impulses beim
Streuprozess. Bei elastischer Streuung sind die Be-
träge der beiden Vektoren gleich, |~k| = |~k0|.

2.5.2 Bragg-Bedingung

Die gesamte Amplitude am Detektor erhalten wir
durch Integration über das Volumen des Kristalls,
wobei die einzelnen Beiträge mit der entsprechen-
den Elektronendichte gewichtet werden:

F =
Z

dV n(~r)e�iD~k·~r. (2.5)

Das Integral entspricht einer Fouriertransformati-
on. Damit ist die Streuamplitude proportional zur
Fourier-Amplitude der Elektronendichte n(~r) bei der
räumlichen Frequenz D~k. Da die Elektronendich-
te periodisch ist, können wir sie als Fourier-Reihe
schreiben:

n(~r) = Â
G

n~Gei~G·~r.

Damit erhalten wir für die gestreute Amplitude

F =
Z

dV Â
G

n~Gei(~G�D~k)·~r. (2.6)

Das Integral kann nur dann von Null verschieden
sein, wenn

~G = D~k,

d.h. wenn D~k ein Vektor des reziproken Gitters ist.
Somit findet man nur dann einen Beugungsreflex,
wenn der Streuvektor einem Vektor des reziproken
Gitters entspricht. Dies ist einer der wesentlichsten
Gründe dafür, dass wir in erster Linie kristalline Ma-
terialien untersuchen.

b1

b2

Text

Abbildung 2.55: Beugungsreflexe von Muskovit
(KAl2(AlSi3O10)(F,OH)2).

Die Schärfe dieser Bedingung ist gegeben durch die
Größe des Kristalls; die Unschärfe nimmt ab mit der
Anzahl der Elementarzellen, welche zur Streuung
beitragen.

Diese Bedingung kann quantenmechanisch auch als
Impulserhaltung verstanden werden: h̄~k ist der Im-
puls der einfallenden Welle, h̄~k0 der Impuls der ge-
beugten Welle. Aufgrund der Impulserhaltung kann
Beugung nur auftreten, wenn der entsprechende Im-
pulsunterschied vom Material, d.h. vom Gitter zur
Verfügung gestellt wird. Diese Möglichkeit ist ge-
nau dann gegeben, wenn ein entsprechender Vektor
im reziproken Gitter existiert.

2.5.3 Ewald-Konstruktion

Mit dieser Bedingung allein könnte für jeden einfal-
lenden Röntgenstrahl eine unendliche Zahl von Beu-
gungsmaxima auftreten. Für die Strukturaufklärung
ist jedoch vor allem ein Spezialfall wichtig, nämlich
der Fall der elastischen Streuung, d.h. dass die Wel-
lenlänge der gebeugten Welle gleich derjenigen der
einfallenden Welle ist, |~k| = |~k0|. Mit dieser zusätzli-
chen Bedingung ist die Bedingung für das Auftreten
von Beugung nicht mehr automatisch erfüllt.
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reziprokes Gitter

k
einfallender Strahl

elastische Streuung:
|k| = |k’|

k’

2e

6k

gestreuter Strahl

Abbildung 2.56: Ewald-Konstruktion.

Die Bedingung dafür, dass ein Röntgenreflex auftritt,
kann mit Hilfe der Ewald-Konstruktion dargestellt
werden (siehe Abb. 2.56). Ausgangspunkt sind die
Bedingungen

|~k| = |~k0| , ~k �~k0 = ~G

für das Auftreten eines Reflexes. Man stellt dabei
den einfallenden Röntgenstrahl durch einen Vektor
~k dar, wobei seine Spitze auf einem Gitterpunkt des
reziproken Raumes liegt. Der reflektierte Strahl wird
durch einen Vektor~k0 dargestellt, dessen Spitze wie-
derum auf einem Gitterpunkt liegen muss und dessen
Ursprung mit demjenigen des einfallenden Strahls
zusammenfällt. Der Streuvektor D~k = ~G ist dann ein
Vektor des reziproken Gitters. Der Winkel 2q zwi-
schen den beiden Vektoren entspricht der Bragg-
Bedingung.

Die Ewald-Konstruktion zeigt, dass das Auftreten
von Beugung nur für wenige spezielle Wellenvekto-
ren auftritt. Man findet diese Vektoren, wenn man
einen Kreis mit Radius k verschiebt, bis er durch
zwei Gitterpunkte läuft. Die Konstruktion zeigt
auch, dass |~k| � |~G|min sein muss, d.h. der Betrag des
einfallenden Wellenvektors muss mindestens gleich
der Hälfte des Betrags des kleinsten Gittervektors
sein.

2.5.4 Beugung an Pulvern

Da ein einfallender Röntgenstrahl i.A. keinen Re-
flex erzeugt, sind verschiedene Methoden entwickelt

worden, um Röntgenbeugung zu beobachten. Die
einfachste Methode ist die Pulver- oder Debye-
Scherrer Methode: man bestrahlt ein Pulver.

nach Debye-Scherrer

Abbildung 2.57: Beugung an Pulvern (Debye-
Scherrer).

Da darin all möglichen Orientierungen vorkommen,
sind immer einige Kristallite richtig orientiert, so
dass Reflexe auftreten. Aus Symmetriegründen ist
die gebeugte Röntgenstrahlung in diesem Fall ko-
nisch, d.h. die Beugung hängt nur vom Winkel ge-
genüber der Strahlrichtung ab. Wie in Abb. 2.57 ge-
zeigt wird die Probe in das Zentrum eines Zylinders
gelegt, und die Innenseite des Zylinders mit einem
Film belegt. Auf dem Detektor findet man deshalb
konzentrische Ringe. Offensichtlich eignet sich die-
ses Verfahren nicht für eine vollständige Strukturbe-
stimmung. Es kann aber verwendet werden, um Git-
terkonstanten zu bestimmen.

Beugungswinkel  (Grad)

In
te

ns
itä

t

50 100

Abbildung 2.58: Beugungsmaxima für Si-Pulver.

Abb. 2.58 zeigt das Beugungsmuster, welches von
Silizium-Pulver gemessen wurde. Die einzelnen
Beugungsmaxima sind mit den zugehörigen Miller-
Indizes bezeichnet. Im Bereich 0� < 2q < 180� fin-
det man Reflexe zu allen Gittervektoren, welche kür-
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zer sind als 2 |k|. Während ihre Richtung sich aus
dem Pulvermuster nicht bestimmen lässt, erhält man
ihre Länge aus der Bedingung

|G| = 2k sinq .

2.5.5 Einkristall-Verfahren

Kollimatoren

Röntgenstrahl

transmittierter Strahl
(nicht verwendete
Wellenlängen)

Probenkristall

Detektor

Monochromator

�

Abbildung 2.59: Drehkristall-Verfahren.

Ein Verfahren, welches vollständige Strukturanaly-
sen von Einkristallen erlaubt, ist das Bragg- oder
Drehkristallverfahren. Dabei wird der Kristall ge-
dreht. Da das reziproke Gitter starr an das direkte
Gitter gekoppelt ist, wird es dabei mit gedreht. In
einem Koordinatensystem, welches an das rezipro-
ke Gitter gekoppelt ist, wird damit die Ewald-Kugel
gedreht und es treten bei bestimmten Orientierungen
Reflexe auf. Dabei werden alle Reflexe gemessen,
welche im Lauf der Drehung auftreten.

Für diese Art von Messungen benötigt man mono-
chromatische Röntgenstrahlung. Ist die verwende-
te Quelle breitbandig, so wird deshalb ein Mono-
chromator benötigt, um die gewünschte Wellenlänge
herauszufiltern. Dafür verwendet man normalerwei-
se ebenfalls Bragg-Beugung an einem Kristall.

Eine weitere Möglichkeit für Messugen an Einkri-
stallen ist das sogenannte Laue-Verfahren. Dabei
benutzt man kontinuierliche Röntgenstrahlung aus
dem Bremsstrahlungsbereich. Wenn ein breiter Be-
reich von k-Vektoren (und damit Radien der Ewald-
Kugel) vorkommen, gibt es immer die Möglichkeit,
die Bragg-Bedingung zu erfüllen. Dieses Verfahren

reziprokes Gitter

~k

~k�

Abbildung 2.60: Ewald-Konstruktion für das Laue-
Verfahren.

eignet sich wiederum nicht für die Strukturbestim-
mung, da man nicht weiss, welche Wellenlänge wel-
chen Reflex erzeugt hat. Man kann das Verfahren
aber benutzen, um Änderungen von Zellkonstanten
(z.B. mit der Temperatur) zu beobachten, oder um
Kristalle mit bekannter Struktur zu orientieren.

2.5.6 Laue-Bedingung

Unterschiedliche Formen der Bedingung für das
Auftreten eines Röntgenreflexes können bei der
Analyse von bestimmten Situationen nützlich sein.
Allgemein gilt die Impulserhaltung, resp. die Bedin-
gung, dass der einfallende und der gestreute Strahl
sich um einen Vektor des reziproken Gitters unter-
scheiden müssen,

~k0 =~k + ~G.

Für elastische Streuung können wir daraus eine Be-
dingung für die Längen ableiten:

���~k + ~G
���
2
= k2 oder 2~k · ~G+G2 = 0

oder, da dies auch für �~G gelten muss, welcher
ebenfalls ein Gittervektor ist,

2~k · ~G = G2.

Wenn wir beide Seiten dieser Gleichung durch 4 di-
vidieren, erhalten wir

~k · 1
2
~G =

✓
1
2

G
◆2

. (2.7)

Diese Bedingung eignet sich wiederum für eine geo-
metrische Konstruktion.
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D

G

O

1
2

k

Abbildung 2.61: Laue-Konstruktion der Beugungs-
bedingung.

Ausgangspunkt ist diesmal der Streuvektor D~k = ~G,
welcher die Punkte O und D im reziproken Gitter
verbinden soll. Um diejenigen einfallenden Wellen-
vektoren ~k zu finden, welche die Beugungsbedin-
gung erfüllen, fällen wir die Mittelsenkrechte auf
den Vektor ~G. Jeder Vektor, dessen Ursprung in O
liegt und auf dieser Mittelsenkrechten endet, erfüllt
offenbar die Bedingung (2.7).

Diese Konstruktion entspricht offenbar gerade der
Wigner-Seitz Konstruktion für die Einheitszelle, d.h.
der ersten Brillouin-Zone. Streuung findet somit im-
mer dann statt, wenn der Wellenvektor des einfallen-
den Strahls auf der Grenze der Brillouin-Zone liegt.

2.5.7 Streuamplitude und Strukturfaktor

Wir möchten als nächstes die Stärke eines Reflexes
berechnen, also die Streuamplitude in die entspre-
chende Richtung. Wenn ein Reflex auftritt, d.h. wenn
der Streuvektor D~k ein Vektor des reziproken Gitters
ist, wird exp(i(~G � D~k) ·~r) = 1. Damit vereinfacht
sich die Bragg-Bedingung (2.6) zu F µ n~G.

qq=0

qq=2�

66k = G

qq=4�

Abbildung 2.62: Reflexion an der 100 Ebene.

Offenbar ist die räumliche Abhängigkeit im Inte-
granden verschwunden. Dies bedeutet, dass alle Ein-
heitszellen identische Beiträge zur Streuamplitude
liefern, wobei die Amplitude durch die entsprechen-
de Amplitude der Elektronendichte im reziproken
Gitter gegeben ist. Diese ist definiert als

n~G =
Z

dV n(~r)e�i~G·~r.

Damit wird die Streuamplitude

F = n~G =
Z

dV n(~r)e�i~G·~r. (2.8)

Aufgrund der Periodizität der Elektronendichte kann
das Integral über den Kristall auf ein Integral über ei-
ne Einheitszelle und eine Multiplikation mit der Zahl
der Einheitszellen reduziert werden: Für ~G einen
Vektor des reziproken Gitters und ~T einen beliebi-
gen Vektor des direkten Gitters gilt gemäß (2.4):

e�i~G·(~r+~T ) = e�i~G·~r.

Damit können wir das Integral in (2.8) auf eine Ein-
heitszelle reduzieren,

F = N
Z

EZ
dV n(~r)e�i~G·~r = N S~G,

wobei N die Anzahl Zellen im Kristall darstellt und

S~G =
Z

EZ
dV n(~r)e�i~G·~r

als Strukturfaktor bezeichnet wird. Der Strukturfak-
tor ist also die Fouriertransformierte der Elektronen-
dichte über eine Einheitszelle.

2.5.8 Atomare Beiträge

Als nächstes teilen wir die Elektronendichte in Bei-
träge der einzelnen Atome auf. Die Zuordnung ein-
zelner Elektronen zu bestimmten Atomen ist natür-
lich eine Näherung. Für Elektronen in der K-Schale
ist diese Näherung sehr gut, für Valenzelektronen
in kovalent gebundenen Atomen oder Metallen eher
schlecht. Die Mehrheit der Elektronen ist jedoch re-
lativ gut lokalisiert, und die Näherung hilft sehr gut
beim Verständnis für die Berechnung der Beugungs-
intensitäten.
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Wir bezeichnen mit ~r j die Position eines Atoms.
Dann stellt die Funktion n j(~r�~r j) den Beitrag dieses
Atoms zur Elektronendichte dar. Die gesamte Elek-
tronendichte am Ort~r ist gegeben durch die Summe
über die s Atome der Basis:

n(~r) =
s

Â
j=1

n j(~r �~r j).

Dies erlaubt uns, auch den Strukturfaktor in Beiträge
der einzelnen Atome aufzuteilen:

S~G =
Z

EZ
dV

s

Â
j=1

n j(~r �~r j)e�i~G·~r

dVrj

r

ll

Elektronenhülle 
des Atoms j

Streuzentrum

Abbildung 2.63: Relativkoordinaten zur Berech-
nung der Streuampitude.

Wir definieren die Koordinate r =~r �~r j des Elek-
trons bezogen auf die Position~r j des Kerns j. Damit
wird~r = ~r j +~

r und der Strukturfaktor

S~G =
Z

Zelle
dV

s

Â
j=1

n j(~r)e�i~G·~r e�i~G·~r j .

Damit ist

f j =
Z

dV n j(~r)e�i~G·~r (2.9)

der Beitrag des j-ten Atoms. Er wird als Atom-
formfaktor bezeichnet. Die Integration erstreckt sich
hier über den gesamten Raum. Der Atomformfaktor
entspricht also im Wesentlichen der Fouriertransfor-
mierten der Elektronendichte eines Atoms und kann
in erster Näherung als eine atomare Eigenschaft be-
trachtet werden. Diese Näherung impliziert, dass die
Elektronendichte des Kristalls als Summe der ato-
maren Elektronendichten geschrieben werden kann.

Mit dieser Definition können wir den Strukturfaktor
schreiben als

S~G =
s

Â
j=1

f j e�i~G·~r j . (2.10)

d.h. der Strukturfaktor setzt sich additiv aus den Bei-
trägen der einzelnen Atome zusammen, wobei jeder
Beitrag mit einem Phasenfaktor multipliziert wird,
der seine Position codiert. Die Phase entspricht der-
jenigen, welche eine Welle mit Wellenvektor ~G auf
dem Weg vom Ursprung des Koordinatensystems
zur Position~r j des Atoms akkumulieren würde.

2.5.9 Beispielsrechnung

Wir berechnen zunächst den Phasenfaktor e�i~G·~r j ei-
nes Atoms an der Stelle~r j. Dafür schreiben wir für
die Position des Atoms innerhalb der Elementarzelle

~r j = x j~a1 + y j~a2 + z j~a3.

Damit erhalten wir für den Reflex, welcher dem Git-
tervektor

~G =
⇣

v1~b1 + v2~b2 + v3~b3

⌘

entspricht, das Skalarprodukt

~G ·~r j =
⇣

v1~b1 + v2~b2 + v3~b3

⌘

·(x j~a1 + y j~a2 + z j~a3)

= 2p (v1x j + v2y j + v3z j) .

Damit wird der Strukturfaktor

S~G =
s

Â
j=1

f j e�i2p(v1x j+v2y j+v3z j).

Der Strukturfaktor ist im Allgemeinen komplex. Ge-
messen wird allerdings nicht direkt die gestreute
Amplitude, sondern die Intensität, welche gegeben
ist durch |S|2 = S⇤S, und somit immer reell ist.

Wie oben gezeigt, ist die Streuamplitude proportio-
nal zur Anzahl N der Elementarzellen des Kristalls.
Die Intensität wird damit proportional zu N2. Gleich-
zeitig nimmt aber die Breite eines Reflexes mit 1/N
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r2 = (1/2, 1/2, 1/2)

Abbildung 2.64: Einheitszelle des kubisch innen-
zentrierten Gitters.

ab, sodass die integrierte Intensität eines Reflexes
nur mit N ansteigt.

Wir berechnen als Beispiel den Strukturfaktor des
innenzentrierten kubischen Gitters. Die Basis die-
ses Gitters besteht aus zwei identischen Atomen bei
x1 = y1 = z1 = 0 und x2 = y2 = z2 = 1/2. Damit wird
der Strukturfaktor

S~G = f
⇣

1+ e�ip(v1+v2+v3)
⌘

.

Wir berücksichtigen, dass vi ganze Zahlen sein müs-
sen. Der Beitrag des zweiten Atoms kann somit �1
oder +1 betragen un der Strukturfaktor kann zwei
mögliche Werte annehmen:

S = 0 wenn v1 + v2 + v3 = ungerade
S = 2 f wenn v1 + v2 + v3 = gerade.

Offenbar verschwindet die Streuamplitude, wenn die
Summe der drei Indizes ungerade ist. Das Fehlen des
Beugungsreflexes für eine ungerade Summe ist eine
direkte Konsequenz davon, dass das bcc Gitter nicht
primitiv ist.

qq=0
qq=�
qq=2�
qq=�

Abbildung 2.65: Destruktive Interferenz im innen-
zentrierten Gitter.

Betrachten wir z.B. die Beugung an den Netzebe-
nen 100. Für das primitiv kubische Gitter erhalten
wir einen Reflex der Stärke f , welcher gerade dem
ersten Summanden entspricht. Zwischen jeweils 2
Ebenen, welche die Würfelflächen enthalten, liegt
aber auch eine Ebene, welche durch das Zentrum
der Einheitszelle läuft, und symmetrieäquivalent ist.
Während der Phasenunterschied zwischen zwei Teil-
wellen, welche an der (100) Ebene reflektiert wer-
den, 2p beträgt, ist der Weglängenunterschied für
die dazwischen liegenden Ebenen gerade halb so
groß. Die Phase beträgt hier somit gerade p . Damit
entsteht destruktive Interferenz und der Reflex ver-
schwindet.

2.5.10 Symmetriebdingte Auslöschung

Atom A 
oder B

Atom B

Atom A

ungeordnet geordnet

Abbildung 2.66: Struktur von FeCo; links : ungeord-
net; rechts : geordnet.

Man kann diesen Effekt z.B. in der Verbindung FeCo
direkt beobachten: Die Intensität des 100 Reflexes
ist proportional zu ( fA � fB)2, wobei fA und fB die
Atomformfaktoren der Atome auf den Gitterplätzen
(000) und ( 1

2
1
2

1
2 ) beschrieben. Im reinen Eisen oder

Kobalt verschwindet er deshalb (A = B). In der Ver-
bindung FeCo sind die Ecken der Einheitszelle durch
Fe, das Zentrum durch Co besetzt (resp. umgekehrt,
je nach Wahl der Einheitszelle). Dann sind die bei-
den Formfaktoren leicht unterschiedlich und der Re-
flex tritt auf. Die Zahl der Elektronen ist allerdings
relativ ähmlich für die beiden Atome (Z(Fe) = 26,
Z(Co) = 27), so dass diese Reflexe relativ schwach
sind.

Die Verbindung tritt jedoch auch in einer ungeordne-
ten Struktur auf, in der jeder Gitterplatz im Schnitt
gleich häufig von Fe und Co besetzt ist. In diesem
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FeCo

Abbildung 2.67: Beugungsreflexe an FeCo.

Fall gilt im Schnitt wiederum fA = fB und der Re-
flex verschwindet wieder, wie im unteren Teil von
Abb. 2.67 gezeigt.

Abbildung 2.68: Struktur von NaCl, KCl und KBr.

Man kann den Effekt auch an den beiden Substan-
zen KBr und KCl beobachten. In beiden Substan-
zen bilden die Kationen und die Anionen jeweils ein
kubisch flächenzentriertes Gitter, welche gegenein-
ander um eine halbe Kantenlänge verschoben sind.
Unterscheidet man nicht zwischen den Atomen er-
hält man somit ein kubisch primitives Gitter mit der
halben Kantenlänge.

Im Fall von KCl besitzen K+ und Cl� jeweils 18
Elektronen. Dadurch sind die Elektronendichten der
beiden Ionen fast gleich, so dass auch die Atom-
formfaktoren praktisch gleich sind und Auslöschung
stattfindet. Man findet deshalb praktisch nur Reflexe
mit einer geraden Summe der Indizes. Brom hat ei-
ne doppelt so große Zahl von Elektronen (Br : 36), so
dass hier die beiden Atomarten deutlich unterschied-

Streuwinkel 2θ
80o60o40o20o

KCl

KBr

Streuwinkel 2θ
80o60o40o20o

(200)

(220)

(222) (400) (420)

(200)

(220)

(222) (400) (420)(111)
(311)

(331)

Abbildung 2.69: Vergleich der Beugungsreflexe von
KCl und KBr.

lich zum gestreuten Signal beitragen. Die (genäher-
te) Symmetrie entfällt und man beobachtet auch un-
geradzahlige Reflexe.

2.5.11 Atomformfaktor

Der Atomformfaktor für ein Atom mit kugelsymme-
trischer Elektronendichteverteilung kann vereinfacht
werden, wenn wir Kugelkoordinaten ~

r =(r,q ,j)
einführen. Wir wählen ~G entlang der z-Achse. Da-
mit wird (2.9) zu

f j =
Z

dr r2 sinq dq dj n j(r)e�iGr cosq

= 2p

Z
dr r2d(cosq)n j(r)e�iGr cosq .

Integration über cosq gibt

f j = 2p

Z
dr r2 n j(r)

eiGr � e�iGr

iGr

= 4p

Z
dr n j(r)r2 sin(Gr)

Gr
.

Für kleine Streuvektoren, G ! 0, kann sin(Gr)/(Gr)
über den Bereich des Atoms (r < 10�10m) nähe-
rungsweise durch eins ersetzt werden. Damit redu-
ziert sich das Integral auf die Anzahl der Elektronen.
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Vorwärtsstreuung Rückwärtsstreuung

~k

~k�
~G = �~k

~k~k�

~G = �~k

Abbildung 2.70: Streuvektoren bei Vorwärts- und
Rückwärtsstreuung.

Für endliche Streuvektoren berücksichtigt der Atom-
formfaktor die destruktive Interferenz zwischen Tei-
len der Elektronendichteverteilung, die weit ausein-
ander liegen. Bei gegebener Wellenlänge entspricht
ein kleiner Streuvektor einem kleinen Streuwinkel,
d.h. der Vorwärtsstreuung, ein großer Streuvektor ei-
nem großen Streuwinkel, also Rückwärtsstreuung.
Wird das Produkt Gr groß gegen eins, so wird der
Faktor sin(x)/x kleiner als eins und damit die Streu-
amplitude kleiner.

Beispiel : Eisen

Fe(110)

(200)
(211)

(220)
(310)

(321)
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Abbildung 2.71: Atomformfaktor von Eisen.

Wir erwarten deshalb, dass der Atomformfaktor klei-
ner wird, wenn wir Reflexe beobachten, welche
einem großen Streuwinkel entsprechen. Abb. 2.71
zeigt dies für das Beispiel von Eisen. Die einzelnen
Punkte zeigen den Atomformfaktor für unterschied-
liche Reflexe, welche unterschiedlichen Streuvekto-
ren ~G entsprechen. Die Wellenlänge der Röntgen-
strahlug beträgt 0,709 nm.

Die Situation is anders, wenn anstelle von Rönt-
genstrahlen Neutronen gestreut werden: In diesem
Fall findet die Wechselwirkung mit den Atomkernen
statt, welche für alle praktischen Belange punktför-
mige Teilchen sind. Ihre Fourier-Transformierte ist

damit eine ausgedehnte, d.h. isotrope Funktion.

2.5.12 Das Phasenproblem

Die Streuamplitude

S =
Z

dV n(~r)e�i~G·~r

ist nichts anderes als die Fouriertransformierte der
Elektronendichte, welche man eigentlich messen
möchte.

Abbildung 2.72: Elektronendichteverteilung von
NaCl.

Abb. 2.72 zeigt als typisches Beispiel die Elektro-
nendichte in Kochsalz. Die Fouriertransformation
kann relativ einfach und effizient invertiert werden.
Leider wird aber in einem Röntgenbeugungsexperi-
ment nicht die Streuamplitude S gemessen, sondern
die Intensität I = |S|2 = S⇤S. Bei der Bildung des Ab-
solutquadrates geht die Phaseninformation verloren
und damit ist die Fouriertransformation nicht mehr
umkehrbar. Dieses Problem ist als das Phasenpro-
blem bekannt. In der Optik ist es möglich, die Pha-
se der gestreuten Welle in einem interferometrischen
Experiment zu bestimmen. Im Bereich der Röntgen-
strahlen sind die experimentellen Voraussetzungen
dafür aber bisher noch nicht erfüllt. Man muss des-
halb wesentlich aufwendigere Verfahren benutzen,
um die Kristallstruktur aus der gemessenen Intensi-
tätsverteilung zu bestimmen.
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Die ‘normale’ Methode besteht darin, aufgrund einer
vermuteten Struktur das entsprechende Beugungs-
muster zu rechnen. Aus den Unterschieden zwi-
schen gemessener und beobachteter Struktur be-
stimmt man anschliessend eine neue Näherung und
iteriert dieses Vorgehen bis es konvergiert.

Dieses rechnerische Vorgehen kann unterstützt wer-
den durch experimentelle ‘Tricks’. So kann man
schwere Atome in eine Struktur einbauen. Diese ha-
ben so viele Elektronen, dass das Beugungsmuster
durch sie dominiert wird. Man hat dadurch ein we-
sentlich einfacheres Beugungsmuster und bestimmt
zunächst nur die Anordnung der schweren Atome.
Die Bestimmung der übrigen Atome in diesem Git-
ter wird danach wesentlich einfacher, da die bekann-
ten Beiträge der schweren Atome gewissermassen
als Phasenreferenz dienen können.

e-Strahl

Röntgen-Strahl

Abbildung 2.73: Bauprinzip eines freien Elektro-
nenlasers.

Es ist aber nicht ausgeschlossen, dass diese aufwen-
digen Prozeduren in der Zukunft überflüssig wer-
den. So sind seit einigen Jahren relativ kohärente
Röntgenquellen verfügbar, wie z.B. freie Elektro-
nenlaser oder Röntgenlaser. Deren Kohärenzeigen-
schaften sind allerdings bisher noch ungenügend, um
die Phase der gestreuten Welle interferometrisch zu
messen.

Eine weitere Limitierung der Strukturmessung durch
Beugungsexperimente ist durch eine Symmetrie ge-
geben: Die Streudichte ist eine reelle Größe, so-
fern Absorption vernachlässigt werden kann. Da-
durch wird die Streuamplitude symmetrisch bezüg-
lich Inversion:

S~G = S�~G.

Dadurch enthält das Beugungsmuster immer ein In-

versionszentrum. Eine dreizählige Symmetrieachse
erscheint als eine sechszählige Achse und es ist
nicht möglich, aufgrund von Röntgenbeugungsmes-
sungen die Händigkeit einer Struktur ohne Inversi-
onszentrum zu bestimmen. Dieses Problem kann ge-
löst werden, indem man Röntgenstrahlung verwen-
det, welche in der Nähe einer Absorptionskante liegt.
Allerdings wird dadurch die Analyse des Beugungs-
musters deutlich aufwändiger.

2.5.13 Thermische Bewegung

Bisher sind wir davon ausgegangen, dass die Ato-
me perfekt auf bestimmten Gitterplätzen liegen. In
Wirklichkeit führen sie aber thermische Bewegun-
gen um diese Gitterplätze aus, und sogar am abso-
luten Nullpunkt besteht eine gewisse Ortsunschärfe.
Interessanterweise führt diese Bewegung nicht zu ei-
ner Verbreiterung der Reflexe. Sie führt aber zu ei-
ner Reduktion der Intensität der Beugungsreflexe, da
ein Teil der einfallenden Strahlung inelastisch ge-
streut wird. Dies erscheint als diffuser Untergrund
zwischen den Reflexen.

Um die Reduktion der Intensität zu berechnen, be-
schreiben wir die Position des Atoms als

~r(t) =~r j +~u(t),

wobei~r j die Ruhelage darstellt und~u(t) eine Zufalls-
bewegung um die Ruhelage (d.h. h~u(t)i = 0. Wenn
wir dies in die Definition (2.10) des Strukturfaktors
einsetzen und über die Zufallsbewegung mitteln, er-
halten wir

S~G = Â
j

f je�i~G·~r jhe�i~G·~u(t)i.

Wir entwickeln die Exponentialfunktion in eine
Taylor-Reihe und erhalten

he�i~G·~u(t)i = 1� ih~G ·~u(t)i

�1
2
h
⇣
~G ·~u(t)

⌘2
i+ . . . .

Da ~G und ~u statistisch nicht korreliert sind, können
wir die Mittelwerte einzeln ausrechnen. Damit folgt
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für den linearen Term h~G ·~u(t)i = ~Gh~u(t)i. Die Aus-
lenkung ~u ist so definiert, dass ihr Mittelwert ver-
schwindet, h~u(t)i = 0. Der lineare Term in der Tay-
lorreihe verschwindet deshalb.

Für die Mittelung des quadratischen Terms setzen
wir

h
⇣
~G ·~u(t)

⌘2
i = G2hu2 cos2

b i = G2hu2ihcos2
b i,

wobei b den Winkel zwischen ~G und ~u darstellt und
somit ebenfalls eine Zufallsgröße ist. Die Mittelung
des Winkelanteils über alle möglichen Orientierun-
gen ergibt

hcos2
b i =

1
4p

Z
p

0
db cos2

b sinb

=
1

4p

2p

✓
�1

3

◆
cos3

b |p0 =
1
3
.

Damit erhalten wir

he�i~G·~u(t)i = 1� 1
6

G2h~u(t)2i.

Wir betrachten dies als die ersten beiden Terme einer
Taylor-Reihe, so dass wir den Strukturfaktor schrei-
ben können als

S = S0e� G2hu2i
6 .

Hier stellt S0 den Strukturfaktor für statische Ato-
me dar. Gemessen wird allerdings die Streuintensität
(d.h. das Quadrat der Amplitude)

I = I0e� G2hu2i
3 .

hu2i stellt hier die mittlere quadratische Verschie-
bung des Atoms dar. Dies kann in erster Linie
durch thermische Anregung zustande kommen, aber
auch durch die quantenmechanische Unschärfe im
Schwingungs-Grundzustand.

2.5.14 Debye-Waller Faktor

Wir betrachten zunächst den Fall der thermischen
Anregung. Dafür beschreiben wir die Bewegung des
Atoms als harmonischen Oszillator mit der Frequenz

w . Dafür können wir die mittlere quadratische Ver-
schiebung aus der mittleren Energie berechnen, wel-
che in drei Dimensionen 3kBT beträgt. Die mittle-
re kinetische Energie Mhv2i/2 = Mhu2iw2/2 und
die mittlere potenzielle Energie Chu2i/2 betragen im
Mittel jeweils die Hälfte der thermischen Energie,

1
2

Chu2i =
1
2

Mw

2hu2i =
3
2

kBT

oder

hu2i =
3kBT
Mw

2 .

Dabei ist M die Masse des Atoms und C eine Kraft-
konstante. Damit wird die Streuintensität

I = I0e� G2kBT
Mw

2 .
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Abbildung 2.74: Temperaturabhängigkeit des De-
bye-Waller Faktors von Alumini-
um.

Diese Reduktion der Intensität mit steigender Tem-
peratur und Streuvektor wird als Debye-Waller Fak-
tor bezeichnet. Es handelt sich hier um eine klas-
sische Näherung, welche bei hohen Temperaturen
recht gut ist. Offenbar ist die Abnahme dann am
kleinsten, wenn die Masse der Atome groß ist (d.h.
für schwere Kerne) und wenn die Frequenz hoch ist
(d.h. das Gitter starr ist).

Bei niedrigen Temperaturen muss auch die Ortsun-
schärfe aufgrund der Unschärfenrelation berücksich-
tigt werden. Wir bestimmen sie über die Nullpunkts-
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energie des harmonischen Oszillators. In drei Di-
mensionen beträgt diese 3h̄w/2. Wir teilen sie wie-
der zwischen kinetischer und potenzieller Energie
auf, so dass

1
2

Mw

2hu2i =
3
4

h̄w ! hu2i =
3h̄

2Mw

und damit für die Intensität

I = I0e�h̄G2/2Mw .

Typische Zahlenwerte sind G = 1011m�1, M =
10�25kg (entspricht etwa Nickel), w = 1014s�1. Un-
ter diesen Bedingungen werden am absoluten Null-
punkt rund 90% der maximalen Streuintensität er-
reicht.
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