2 Symmetrie und Struktur

2.1 Ordnung in Festkorpern

2.1.1 Atomtheorie

Die griechischen Philosophen stellten als erste die
Frage, ob es moglich sei, einen bestimmten Korper
beliebig oft zu teilen. Demokrit von Abdera beant-
wortete diese Frage als erster negativ, in dem er for-
derte, dass alle Materie aus identischen Teilchen auf-
gebaut sein sollte, den Atomen. Diese Ansicht wur-
de dann von Aristoteles widersprochen, und erst im
18 Jh. fanden die aufblithenden Naturwissenschaf-
ten wieder Hinweise darauf, dass es doch solche
Teilchen geben sollte. Dafiir sprachen insbesondere
auch Beobachtungen der Kristallographen. Sie stell-
ten fest, dass Kristalle, wenn sie wachsen oder wenn
sie gespalten werden, beinahe perfekte Oberflichen
bilden, und dass zwischen verschiedenen solchen
Oberflachen nur ganz bestimmte Winkel auftreten.

Abbildung 2.1: NiO Kristall mit Wachstumsebenen.

Dieser Befund konnte relativ leicht erklidrt werden,
wenn man davon ausging, dass diese Kristalle aus
einer Vielzahl von identischen Teilchen zusammen-
gesetzt waren (R.J. Haily, traite de crystallographie,
Paris 1801). Abb. 2.1 zeigt als Beispiel einen NiO
Kristall mit deutlichen Wachstumsebenen, sowie ein
Schema, wie man sich die Bildungs solcher Wachs-
tumsebenen vorstellen kann.

Nicht nur beim Kristallwachstum erhilt man Kri-

Abbildung 2.2: Spaltebenen.

stallflichen mit gleichen Winkeln, man findet auch,
dass bestimmte Flichen beim Spalten von Kristal-
len bevorzugt auftreten. Die Idee, dass Kristalle aus
atomaren Einheiten bestehen, wurde spiter durch
unterschiedliche Methoden betitigt, v.a. natiirlich
durch Beugungsexperimente (Friedrich, Knipping
und Laue, 1912).
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Abbildung 2.3: Prinzip der Raster-
Tunnelmikroskopie = und  damit

gemessene Ni-Atome.

Seit einigen Jahren ist es auch moglich, die atoma-
re Struktur von Festkorpern auch direkt zu beobach-
ten, z.B. mit Hilfe der Tunnelmikroskopie (STM).
Abb. 2.3 zeigt das Funktionsprinzip, sowie das Bild
einer Nickeloberfldche, die mit STM gemssen wur-
de. Heute gehen wir deshalb selbstverstindlich da-
von aus, dass Festkorper aus Atomen oder Molekii-
len aufgebaut sind.
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2 Symmetrie und Struktur

2.1.2 Langreichweitige Ordnung

Die Atome oder Molekiile konnen auf unterschiedli-
che Weise im Festkorper angeordnet sein. Man kann
sie insbesondere auf Grund des Grades an Ordnung
auf unterschiedlichen Lingenskalen klassifizieren.

kristallin polykristallin
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Abbildung 2.4: Kristalline vs. polykristalline Ord-
nung.

e kristallin: periodische, langreichweitige Ord-
nung. Dieses Idealbild ist Ausgangspunkt der
meisten Theorien im Bereich der Festkorper-
physik.

e polykristallin: Auf kurzen Lingenskalen sind
diese Systeme kristallin. Der makroskopische
Korper umfasst jedoch viele einzelne Kristalle.
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Abbildung 2.5: Quasikristalle.

e quasikristallin: Quasikristalle weisen lang-
reichweitige Ordnung auf, sind aber nicht pe-
riodisch. Sie besitzen 5- oder 10-zdhlige Sym-
metrie.

* amorph: In amorphen Materialien ist die direkte
Umgebung eines Atoms oder Molekiils relativ
gut (aber nicht perfekt) definiert.

Auf einer Skala von typischerweise einigen Nano-
metern nimmt der Grad der Ordnung ab und auf ei-
ner Skala von mehr als 10 Nanometern sind amorphe
Materialien homogen und isotrop. Zu den amorphen

Li* (Netzwerk-Moditier)

Abbildung 2.6: Amorphe Materialien: Nahordnung,
aber keine Fernordnung.

Materialien gehoren v.a. Gldser und Polymere, dar-
unter auch viele biologische Materialien. Viele Ei-
genschaften von amorphen Materialien hingen stark
von ihrer Herstellung ab. So kann man Gliser als
“unterkiihlte Fliissigkeiten, welche zu kalt sind zum
einfrieren” betrachten: ihre Viskositit ist zu hoch als
dass sie in den energetisch tiefer liegenden kristal-
linen Zustand tibergehen konnten. Diese Abhédngig-
keit von der Herstellung ist ein wichtiger Grund da-
fiir, dass z.B. die Herstellung von Glédsern lange Zeit
mehr eine Kunst als eine Wissenschaft war.

Abbildung 2.7: Fluissigkristalle und Fliissigkristall-
Polymere.

* fliissigkristallin: Fliissigkristalline Materialien
zeigen langreichweitige Ordnung, wobei z.B.
nur die Orientierung der Molekiile diese Ord-
nung zeigen kann, oder die Position in einer Di-
mension. Sie besitzen jedoch im Gegensatz zu
Festkorpern keine Formbestiandigkeit, d.h. ihr
Schermodul verschwindet. Thre Position besitzt
auch keine Fernordnung (ausser in maximal ei-
ner Dimension). Fliissigkristalle haben inzwi-
schen in verschiedenen Bereichen eine wichtige
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2 Symmetrie und Struktur

Rolle erhalten, nicht nur in Anzeigen, sondern
auch in Polymeren.

Abbildung 2.8: Fliissigkristalline einer

Ordnung
biologischen Membran.

Fliissigkristalle spielen auch in der Biologie eine
wichtige Rolle: Membranen von Zellen sind fliis-
sigkristallin, d.h. die Molekiile sind im Mittel alle
gleich ausgerichtet und befinden sich in einer Ebene.
Diese Ebene ist jedoch leicht verformbar, da die Mo-
lekiile in der Ebene frei beweglich sind. Diese Mem-
branen werden primir aus fettsduredhnlichen Mo-
lekiilen gebildet, dhnlich wie Seifenschaum. Darin
eingelagert “schwimmen” eingelagert Proteine.

Die Physik hat sich vor allem mit der Untersuchung
perfekter Kristalle beschiftigt, wobei Defekte und
Verunreinigungen als Stdrungen betrachtet wurden.
Dieses Vorgehen hat enorme Erfolge gebracht und
z.B. die Grundlagen fiir die Halbleiterindustrie ge-
legt. In den 80er und 90er Jahren des 20. Jahrhun-
derts haben dann einige Physiker auch entdeckt, dass
die Physik auch zur Untersuchung von amorphen
Systemen einiges beitragen kann.

W

; W “For discovering that methodes
developed for studying order

in simple sy

. can be generalized to more
complex forms of matter, in
particular to liquid crystals and
polymers”

The Nobel Prize in
Physics 1991

phe

Abbildung 2.9: Pierre Gilles de Gennes.

Ein wichtiger Schritt war hier die Verleihung des
Nobelpreises 1991 an Pierre Gilles de Gennes. Die

Untersuchung von Materialien ohne langreichweiti-
ge Ordnung diirfte in Zukunft eine zunehmend wich-
tige Rolle spielen, da Polymere und Gliser (z.B. me-
tallische Gléser, amorphes Silizium) auch industriell
zunehmend wichtiger werden. In dieser Vorlesung
werden wir aber auf die detaillierte Diskussion sol-
cher Systeme verzichten und uns auf Systeme mit
Translationssymmetrie beschrinken. Der Grund da-
fiir ist einerseits unser Curriculum, andererseits auch
die Tatsache, dass die Beschreibung von amorphen
Systemen noch nicht so weit ist, dass sie sich fiir
einen Einfiihrungskurs gut eignet.

2.1.3 Translationssymmetrie

Wie bereits erwihnt, betrachtet man in der Festkor-
perphysik zunéchst ideale Kristalle. Darunter stellt
man sich einen unendlich ausgedehnten Koérper mit
periodisch wiederholten Einheiten vor. Es soll hier
aber klar gemacht werden, dass solche Korper in der
Natur nicht existieren, und zwar aus 2 Griinden:

* Bei endlicher Temperatur ist ein System oh-
ne Fehler, welches damit perfekt geordnet wire
und Entropie null hitte, thermodynamisch in-
stabil.

* FEin idealer Kristall ist immer unendlich ausge-
dehnt, da eine Oberflidche einen Bruch der Sym-
metrie bewirkt.

Diese Grundannahme bedeutet auch, dass Oberfld-
cheneffekte (in dieser Nédherung) nicht beriicksich-
tigt werden.

1o 1o %o

Abbildung 2.10: Kristallgitter.

Die Wiederholung der Grundeinheit erfolgt so, dass
die resultierende Anordnung Translationssymmetrie
zeigt. Das bedeutet, dass es moglich ist, diese Anord-
nung um einen bestimmten Betrag zu verschieben,

17



2 Symmetrie und Struktur

und dadurch das System in ein ununterscheidbares
System iiberzufiihren. In Abb. 2.10 sind zwei sol-
che Moglichkeiten dargestellt: Verschiebungen um
d) aund d,. Es gibt aber eine unendliche Zahl von
Translationen, welche diese Bedingung erfiillen. Es
ist allerdings nicht nétig, diese Operationen einzeln
aufzuzihlen, man kann sie nach einer einfachen For-
mel zusammenfassen.

Abbildung 2.11: Basis-Translationsvektoren.

Man benétigt fiir jede Dimension einen Basis-
Translationsvektor, welche wir als d;, d; und d3 be-
zeichnen. Fine allgemeine Translation T in drei Di-
mensionen wird dann definiert als die Operation

-/ - — — - - el
¥ =rF4uid) +udr+uzdas =r+T,

wobei die Indizes u; beliebige ganze Zahlen darstel-
len. Diese Beziehung gilt fiir jeden Punkt des Kri-
stalls, nicht nur fiir die Position der Atome. Die Ge-
samtheit der Translationen 7 definiert das Raumgit-
ter oder Bravais-Gitter.

quadratisch rechteckig hexagonal
e o
e o
°
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Abbildung 2.12: Translationsgitter.

Je nach relativer Linge und Orientierung der erzeu-
genden Translationsvektoren unterscheidet man ver-
schiedene Arten von Translationsgittern. In zwei Di-
mensionen kann man quadratisch (Vektoren senk-
recht aufeinander, gleich lang), hexagonal (gleich
lang, Winkel 60, resp, 120 Grad), und rechteckig
(senkrecht aufeinander unterscheiden.

Die Tatsache, dass die meisten Festkorper, welche
aus wenigen Bauelementen zusammengesetzt sind,

Ga bevorzugt
tetraedrische
Umgebung aus As

= |

As bevorzugt
tetraedrische
Umgebung aus Ga

&

e

Abbildung 2.13: Struktur von GaAs.

A

in periodischen Strukturen erstarren, ldsst sich leicht
als eine Konsequenz der Energieminimierung verste-
hen: Wenn ein Atom, Ion oder Molekiil in einer be-
stimmten Umgebung die geringste Energie besitzt,
so muss dies auch fiir alle anderen Atome, Ionen
oder Molekiile der gleichen Art gelten. Die Nach-
barschaft aller gleichartigen Atome sollte also die
gleiche sein. Dies ist aber identisch mit der Aussa-
ge, dass man die Nachbarschaft eines Atoms auf die
Umgebung eines anderen abbilden kann.

2.1.4 Einheitszelle und Basis

Um eine Kristallstruktur zu definieren, braucht man
offensichtlich zusitzliche Information. Das Gitter
sagt, auf welche Art die Bausteine aneinander gefiigt
werden miissen. Wir brauchen aber noch die Kennt-
nis der Bausteine. Diese werden als Einheitszelle be-
zeichnet, die darin enthaltenen Atome bilden die Ba-
sis. Ihre Position kann geschrieben werden als

rj=xjd) +y;dr +z;a3,

mit j als Index des entsprechenden Atoms.

Wird die Basis jeweils um einen Translationsvektor
des Gitters verschoben, so erhilt man den gesamten
Kristall. In Abb. 2.14 ist das fiir den zweidimensio-
nalen Fall dargestellt. Die Einheitszellen konnen auf
beliebige Weise definiert werden, so lange sie unter
den Translationen des Gitters den Kristall vollstdn-
dig fiillen. Eine nahe liegende Moglichkeit zur De-
finition der Einheitszelle ist deshalb die Menge aller
Punkte, welche durch

F=x1d; +xd,+x3d3 0<x; <1
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2 Symmetrie und Struktur

Gitter

Abbildung 2.14: Gitter und Basis.

bestimmt wird. Dies entspricht dem in Abb. 2.11
gezeigten Parallel-Epiped. Das Volumen der Zelle
kann mit Hilfe der Vektoralgebra bestimmt werden:

V= |671 '672 ><6_i3|.

Abbildung 2.15: Wigner-Seitz Konstruktion (WSZ)
der Einheitszelle.

Eine andere Methode zur Konstruktion einer Ein-
heitszelle ist die von Wigner und Seitz. Dazu zieht
man von einem Gitterpunkt Verbindungslinien zu al-
len Nachbarn und fillt darauf die mittelhalbierende
Ebene. Die Kombination dieser Linien begrenzt die
Wigner-Seitz Zelle. Bei der Wigner-Seitz Zelle be-
findet sich der Gitterpunkt im Zentrum der Einheits-
zelle, im Gegensatz zur konventionellen Wahl, wo
die Punkte sich auf den Ecken befinden und die Form
eine andere ist.

Auch mit der Wigner-Seitz Einheitszelle kann man
jedoch den Raum fiillen. Abb. 2.16 zeigt ein Beispiel
in zwei Dimensionen.

Ahnlich kann man das Wigner-Seitz Verfahren in 3
Dimensionen anwenden. Man fillt hier jeweils die
mittelhalbierende Ebene. In der linken Hilfte von
Abb. 2.17 wurde die Konstruktion auf ein raumzen-

Abbildung 2.16: Fliachenfiillung mit der Wigner-
Seitz Einheitszelle.

'y

Abbildung 2.17: Links: Wigner-Seitz Einheitszelle
in 3D; rechts: raumfiillende Anord-
nung von WS-Zellen.

triertes Gitter angewendet. Das Zentrum der Ein-
heitszelle ist im Zentrum eines Wiirfels, die ndchsten
Nachbarn sitzen an den Ecken des Wiirfels. Auch
diese Einheizszelle fiillt den gesamten Raum wenn
sie durch die Gitteroperationen verschoben wird. Die
Einheitszelle enthiélt im allgemeinen mehrere Ato-
me, auch bei primitiven Gittern. Einatomige Ein-
heitszellen kommen nur bei Kristallen vor, welche
aus einer einzigen Atomsorte bestehen, und auch
dann nur wenn sdmtliche Atome durch Translatio-
nen ineinander iibergefiihrt werden koénnen.

2.1.5 Rotationssymmetrie

Kristallgitter konnen nicht nur durch Translationen
in sich selbst tibergefiihrt werden, sondern auch
durch andere Symmetrieoperationen, insbesondere
Drehungen und Spiegelungen.

Wir betrachten zundchst den Effekt solcher Opera-
tionen auf einzelne Elemente. Man unterscheidet die
folgenden Symmetrieelemente:

e Drehachsen C; oder A;.
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2 Symmetrie und Struktur

¢ Inversion [ oder i fithrt # — —7 iiber.

* Spiegelebene o: Invertiert die Komponente
senkrecht zur Ebene, z.B. (x,y,z) — (x,y,—2)

¢ Drehinversionsachsen S;

Inversionszentrum und Spiegelebene #ndern die
Hiéndigkeit eines Objektes, sie fithren also eine lin-
ke Hand in eine rechte Hand iiber. Kristalle mit in-
trinsischer Héndigkeit konnen somit keines dieser
Symmetrieelemente enthalten. Ein Kristall, welcher
Molekiile mit entgegengesetzter Héndigkeit enthélt
kann hingegen Spiegelebenen enthalten, welche die
eine Form in die andere iiberfiihren.

eines
durch eine 4-zihlige Rotationsach-
se.

Abbildung 2.18: Transformation Objekts

Abb. 2.18 zeigt als Beispiel eine vierzihlige Rotati-
onsachse, welche die vier L-formigen Objekte inein-
ander iiberfiihrt. Allgemein entspricht eine n-zéhlige
Rotationsachse einer Symmetrieachse, welche Dre-
hungen um ganzzahlige Vielfache von 27 /n bewirkt.
Wie in den Ubungen gezeigt wird, kénnen als mog-
liche Werte fiir n nur n = 1,2, 3,4 und 6 auftreten.

Meistens treten diese Elemente nicht einzeln auf,
sondern in Kombinationen. In diesem Beispiel exi-
stiert auch eine Spiegelebene, welche senkrecht zur
Rotationsachse liegt und durch die vier Elemente
lauft. Wiren die beiden Schenkel dieser Elemente
gleich lang, so wiirden ausserdem vier zweizihlige
Rotationsachsen existieren, welche in der Ebene lie-
gen wiirden.

Es sind nicht beliebige Kombinationen von Symme-
trieelementen moglich, da die Symmetrieelemente
selber unter den Symmetrieoperationen der iibrigen
Elemente auch erhalten bleiben miissen. So kénnen
einzelne Symmetrieachsen nur senkrecht zueinander
oder in einer Ebene liegen. Zwei Symmetrieebenen

konnen nur senkrecht zueinander stehen, aber drei
Ebenen konnen einen Winkel von jeweils 60° unter-
einander einschliessen. Ausserdem erzeugt die Kom-
bination von zwei Elementen hiufig ein drittes Ele-
ment. So erzeugen zwei Symmetrieebenen, die senk-
recht aufeinander stehen, eine zweizihlige Drehach-
se in ihrer Schnittgeraden. Ein wesentlicher Unter-
schied zwischen Punktsymmetrie-Operationen und
Translationen ist, dass bei den Punktymmetrien min-
destens ein Punkt fix bleibt.

2.1.6 Gruppen

Im mathematischen Sinn bildet die Menge der Sym-
metrieoperationen, welche ein Objekt invariant ldsst,
eine Gruppe. Allgemein ist in der Mathematik ei-
ne Gruppe G definiert als eine nicht leere Menge
G = {A;} von Objekten A; und einer biniren Ope-
ration - zwischen den Objekten, welche folgende Ei-
genschaften erfiillt:

* Das Resultat einer Operation A;-A ; = Ay ist sel-
ber ein Mitglied der Gruppe.

* Es existiert eine Einheit e mit der Eigenschaft
e 'Al' :A,‘ -e :A,‘ fiir alle A,’.

* Es existiert zu jedem Element ein inverses Ele-
mentAlT1 mit A; -Alfl :Alf1 Aj=e.

Die verschiedenen Kombinationen von Symmetrie-
elementen erfiillen diese Anforderungen. Die ver-
schiedenen Gruppen werden nach zwei verschiede-
nen Systemen klassiert. Es existieren einerseits die
sog. Schonflies-Symbole, andererseits die Klassifi-
kation nach Hermann-Maugin, welche auch als in-
ternational bezeichnet wird. Fiir die Bezeichnungen
nach Schonflies! verwendet man die folgenden Sym-
bole:

* Drehgruppen: C, (n=2, 3, 4, 6) j-fache Rotati-
onsachse. Die Drehgruppe C, enthilt die Ele-
mente C, = {e,C,,C2,...,C"'}.

* Drehspiegelgruppen: S,; wird durch eine Dreh-
spiegelachse erzeugt.

L Arthur Moritz Schoenflies (1853 - 1928), deutscher Mathe-
matiker
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2 Symmetrie und Struktur

* D;: Diedergruppen. Werden durch eine Ro-
tationsachse C, sowie n dazu senkrechte C,-
Achsen erzeugt.

e T: Tetraedergruppen: vier 3-fache und drei 2-
fache Rotationsachsen in einem Tetraeder.

* O: Ikosaedergruppen: 4 3-fache und 3 4-fache
Rotationsachsen in einem Oktaeder.

Abbildung 2.19: Oktaeder mit 3- und 4-z&hligen Ro-
tationsachsen. Nicht eingezeichnet
sind 6 C>-Achsen und 9 Spiegele-
benen.

Die Gruppen konnen neben den Rotationsachsen
auch Spiegelebenen enthalten. Diese werden durch
die tiefgestellten Symbole % (fiir horizontal, d.h.
senkrecht zu C,), v (fiir vertikal, d.h. C, liegt in der
Ebene) oder d (ebenfalls senkrecht, aber zwischen
den horzontalen C>-Achsen) bezeichnet.

2.2 Ideale Kristalle

2.2.1 Primitive und nichtprimitve Gitter

Die Menge der Translationsvektoren ergibt das Git-
ter. Da sie die Symmetrieoperationen zusammenfas-
sen, sind Kristallgitter ein wichtiges Hilfsmittel zur
Charakterisierung von Kristallen. Das bedeutet aber
nicht, dass ein gegebener Kristall eindeutig zu einem
bestimmten Gitter zugeordnet werden kann. Haufig
gibt es verschiedene Mdoglichkeiten, ein Gitter zu
spezifizieren. Eine gegebene Anordnung von Ato-
men oder Molekiilen kann auf unterschiedliche Wei-

se in eine Einheitszelle und ein Gitter zerlegt wer-
den.

primitiv 1

Qo

primitiv 2 nicht primitiv

_‘WO

Ke)

°.
© 6 ©

Q
Qo

Abbildung 2.20: Unterschiedliche Wahl der Ele-
mentarzelle in einem hexagonalen
Gitter in 2 Dimensionen.

Abb. 2.20 zeigt eine zweidimensionale Anordnung
von Atomen, die in der Natur relativ hdufig vor-
kommt. Offensichtlich gibt es mehrere verschiedene
Moglichkeiten, die Gittervektoren d; und d, zu defi-
nieren. Die ersten beiden Moglichkeiten sind hierbei
gleichwertig. Die dritte hingegen unterscheidet sich
dadurch, dass es mit den hierdurch definierten Trans-
lationen nicht moglich ist, die dunklen Atome auf die
Positionen der hellen zu bringen. Dementsprechend
enthilt die dritte Elementarzelle zwei Atome, wih-
rend bei den ersten beiden Varianten die Elementar-
zelle jeweils nur ein Atom enthélt. Man bezeichnet
die ersten beiden Gitter als primitiv, das dritte als
nicht primitiv.

Bei der Ermittlung der Anzahl Atome pro Ele-
mentarzelle muss beriicksichtigt werden, dass die
Atome am Rand der Zelle zu mehreren Zellen beitra-
gen, aber nur einmal gerechnet werden diirfen. Man
hat die Wahl, entweder die Elementarzelle leicht zu
verschieben, so dass alle Atome nur in einer Zelle
liegen, oder man zihlt bei einem Atom, welches zu n
Zellen beitrigt, jeweils nur 1/n. Offenbar entspricht
bei einem Atom in der Seitenfliche n = 2, auf einer
Kante n = 3 oder 4, und auf der Ecke eines Wiirfels
n=_8.

Die Symmetrie eines Kristalls ergibt sich nun durch
die Kombination der Punktsymmetriegruppen, ange-
wendet auf die Einheitszelle, mit der Translations-
gruppe des Gitters. Nicht alle moglichen Punktsym-

21



2 Symmetrie und Struktur

metriegruppen sind aber mit periodischen Gittern
vertriglich. Insgesamt gibt es 32 Punktsymmetrie-
klassen, die auch in periodischen Systemen vorkom-
men konnen. Diese enthalten Spiegelebenen, sowie
Rotationsachsen mit 2, 3, 4 und 6 zdhliger Symme-
trie. Fiinf oder zehnz#hlige Achsen sind nur moglich,
wenn das Gitter nicht raumlich periodisch ist.

Bei allen Symmetrieoperationen bleibt eine Menge
von Gitterpunkten fest, ndmlich die Punkte, welche
auf das Symmetrieelement fallen.

Tabelle 3.0. Dhe 32 Punktsymmetricklassen, geordnet nach den erzeugende

Symmelricelemendei
1'\‘1‘.1 Sy mbol nach Erzengende Symmetrieele- 12 | Kristall-
| Schinfies) Hermann. | Mente unter “erwendung von gystem
]. Mauguin | Inversionsachsen Spicgel- (Zifer 3.3)
'l sbenen
11y 1 A3 1 | triklin
2|0; | 2 As 2 | monoklin
310 | 3 Az 3 | trigonal
4 |y 4 A% 4 | tetragonal
5 |Us 6 A; 6 | hexagonal
6 {8 =0y 1 L=x 2 Hriklin
T|8:=0s |m I3 T 2 | monoklin
8 |S3=Ca |3 I A5+ 2 & | trigonal
9|8 | 4 74 4 | tetragonal
10 (8g=Cgp | B I: AL+ o | 6 |hexagonal
11 |De = V7 229 A4 AY 4 | orthorhomb,
12 (7xy a2 A3 - Ay i | trigomal
13 | Dy 43 Al Ay 8 | tetragonal
14 (D 622 At AY 12 | hexagonal
15 | C2yp a2 A+ I 4% < oy | 4 |orthorhomb.
16 | Ty Am Aig 1 Ai + oy | B |trigonal
17 | Can 4mm 1t + Jv Al+ay| § |tetragonal
18 | T [iETR A+ 1y A; -+ oy |12 | hexagonal
19 | Daa Im B+l A3+ AL+ 2 12 ltrigonn!
20 Dea=Va| 42m It |- Ay 8 | tetragonal
21 | Dan 52m N+At=I4+ 1 |12 | hexagonal
22 | Coy 2fm Ai 42 Ai+ 0. | 4 | monoklin
23 | Cg 4/m A+ Z Ai+a; | 8 | tetragonal
24 | Can 6fm d:+Z | Ai-l oz {12 | hexagonal
25 | Dap = V| mmm A4 A4+ 2 | 8§ | orthorhomb.
26 | Dan dmmm | Al 4 AY -2 16 | tetragonal
27 | Dgn Gfmmm | A+ Ai+ 2 24 | hexagonal
|R|T 23 AY® L A% 12 |kubisch
29 |0 432 Ak 43 24 | kubisch
30 | Tq | 13m S H 24 | kubisch
31Ty | m3 A As+ 7 |24 { kubisch
32 | Oy, |m Im Ak 4L 7 |48 kuhisch

Symbole: 43, 4% 4%: p-zihlige Deckachsen in z. #, y-Richtung
I:. I3, It: p-sihlige Inversionsachsen in z, z, y-Richtung
Ak dreiziihlige Deckachse in Richtung der Raumdiagonalen
i i Tnversionszentrum

Spiegelebene | 2z

(vertikale) Spiegelebene durch z

-+ p: p-zihlige Deckachse

<e+p: p-zihlige Inversionsachse

m: Spiegelebene

2 p-zishlige Deckachse und Spiegelebene | dazu

Abbildung 2.21: Punktsymmetriegruppen.

Die Tabelle in Abb. 2.21 fasst alle 32 Punktsymme-
triegruppen zusammen, welche mit Translationsgit-
tern kompatibel sind. Die Bezeichnungen sind nach
Schonflies und nach Herrmann-Maugin angegeben.

Jede dieser Punktsymmetriegruppen kann durch ei-
nes oder mehrere Symmetrieelemente erzeugt wer-
den, wobei teilweise unterschiedliche Moglichkeiten
bestehen, diese Elemente zu wihlen. Die Zahl Q be-
zeichnet die Anzahl dquivalenter Positionen in allge-
meiner Lage.

2.2.2 Kristallsysteme

Abbildung 2.22: Definition der Achsen und Winkel.

Die Kombination der Punktsymmetriegruppen mit
dem Translationsgitter ergibt insgesamt 230 unter-
schiedliche Raumgitter oder Raumgruppen. Diese
werden eingeteilt in sieben Kristallsysteme, welche
unterschieden werden aufgrund von Bedingungen an
die Achsen a,b,c der Einheitszelle, sowie die Win-
kel o, B3, 7.

triklin hexagonal
atb#c
a=b#c
a# 87 ae o
a=pB=90° v =120
monoklin
b tetragonal
aFb#c . a=b#c
a=v=90°#p3 a=8=ry=90°
orthorombisch )
a#b#ec kubisch
a:/ﬁ:fy:g()o a=b=c

Q:B:W:QOO

rhomboedrisch (trigonal

a=b=c
a=f=n7%#90° < 120°

Abbildung 2.23: Ubersicht iiber die Kristallsysteme.
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2 Symmetrie und Struktur

2.2.3 Bravais-Gitter

Diese sieben Kristallsysteme werden weiter diffe-
renziert in 14 Bravais-Gitter. Ein primitives Bravais-
Gitter ist definiert als die Menge aller Translations-
vektoren

T:u151+u252+u353, (2.1)
welche die entsprechende, unendlich ausgedehn-
te Kristallstruktur invariant lassen. In einem nicht-
primitiven Gitter werden zustétzliche Punkte eing-
fiigt, so dass jede Elementarzelle mehr als einen
Punkt enthilt, welche nicht durch die in (2.1) defi-
nierten Gittervektoren erreicht werden. Trotzdem ist
die Umgebung dieser Punkte identisch zur Umge-
bung aller anderen Gitterpunkte.

Zu jedem Kiristallsystem gibt es ein primitives Gitter.
Beim monoklinen gibt es ausserdem ein basiszen-
triertes, d.h. die Einheitszelle besitzt nicht nur Git-
terpunkte an den Ecken, sondern auch im Zentrum
der durch a und b aufgespannten Flidche. Dieses Git-
ter ist also nicht primitiv. Beim orthorombischen gibt
es ebenfalls ein basiszentriertes Gitter, sowie zusétz-
lich ein raumzentriertes (oder innenzentriertes) und
ein flichenzentriertes. Beim tetragonalen Gitter gibt
es ein raumzentriertes und beim kubischen ein raum-
zentriertes und ein flichenzentriertes.

Abbildung 2.24: Kubisch primitives. innenzentrier-
tes und flichenzentrierte Einheits-
zellen.

Die vielleicht einfachste Kristallstruktur ist das pri-
mitiv kubische Gitter (Abb. 2.24 links). Die Ato-
me sind in diesem Fall auf den Ecken eines Wiir-
fels angeordnet, so dass jede Einheitszelle ein Atom
enthilt. In einem flichenzentrierten kubischen Gitter
(Abb. 2.24 rechts) sind drei weitere Atome pro Ein-
heitszelle vorhanden, zentriert in den Seitenflichen
des Wiirfels.

Abbildung 2.25: fcc Gitter mit einer (alternativen)
primitiven Einheitszelle.

Ein basiszentriertes oder raumzentriertes Gitter be-
sitzen zwei Gitterpunkte pro Einheitszelle, ein fli-
chenzentriertes Gitter vier. Natiirlich wére es bei al-
len nichtprimitiven Gittern ebenfalls moglich, eine
andere Einheitszelle zu wihlen, sodass das Gitter
primitiv wiirde. Abb. zeigt als Beispiel ein fcc Gitter
mit einer alternativen Einheitszelle. Diese entspricht
einem rhomboedrischen Gitter. Diese Einheitszelle
enthélt nur einen Gitterpunkt und ist damit vier mal
kleiner. Hiufig sind aber die Rechnungen einfacher
in einem nichtprimitiven Gitter durchzufiihren, z.B.
wenn man dann ein orthonormiertes Koordinaten-
system verwenden kann. Insgesamt erhalten wir die
folgenden 7 Kristallsysteme und 14 Bravais-Gitter:

1. Triklin: @ # b # ¢, o # B # 7y : keine Symmetrie

2. Monoklin: a #b#c,a=y=90°#B:1Cy;
a) primitiv, b) basiszentriert

3. Orthorombisch: a #b #c,a =B =y =90°:
3 (, a) primitiv, b) basiszentriert, ¢) raumzen-
triert, d) flichenzentriert

4. Hexagonal: a=b #c¢, o= =90°, y=120°
: 1 C primitiv

5. Rhomboedrisch (trigonal): a=b=c,a = =
Y # 90° < 120°; : 1 C5 primitiv

6. Tetragonal: a=b#c,a=B=y=90°:1Cy
a) primitiv, b) raumzentriert

7. Kubisch:a=b=c,a=B=y=90°:4C;s a)
primitiv, b) raumzentriert, ¢) flichenzentriert

2.2.4 Miller Indizes

In der Kristallographie spielen die sog. Netzebenen
eine grofle Rolle. Dabei handelt es sich um (gedach-
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te) Ebenen, die mit Atomen oder Gitterpunkten be-
setzt sind. Wie man sich leicht itiberzeugen kann,
sind die Atome in einer solchen Ebene ebenfalls pe-
riodisch angeordnet, wobei die Periodizitit groBBer
sein kann als die Periodizitit des Kristalls. Diese
Netzebenen konnen durch jeweils drei ganze Zahlen
eindeutig charakterisiert werden.

Q 0 0 O 0 O

Q 0 O O 0 O

Abbildung 2.26: Netzebene mit Achsenabschnitten
3, 1.

Dafiir bestimmt man die Abschnitte, an denen die
Ebene die Achsen schneidet. Die Achsenabschnitte
werden in Vielfachen der Einheitszelle (also nicht
der primitiven Elementarzelle) bestimmt. Im Bei-
spiel von Abb. 2.26 sind dies die Zahlen 3 und 1.
Die Miller Indizes erhilt man, indem man den Kehr-
wert der Achsenabschnitte bildet (hier: 1/3, 1/1) und
das kleinste ganzzahlige Verhiltnis bestimmt (hier:
1, 3). Fiir Achsenabschnitte 6, 2, 3 erhélt man somit
die Kehrwerte 1/6, 1/2 = 3/6, 1/3 = 2/6 und damit
Miller Indizes (132). Liegt die Netzebene parallel zu
einer Achse, so betrigt der entsprechende Achsenab-
schnitt unendlich und der Index 0. Negative Achsen-
abschnitte werden mit einem Querstrich bezeichnet.

z

z z

X X

(100) (110) (111

Abbildung 2.27: Beispiele fiir Netzebenen.

Einige Beispiele von Miller Indizes fiir haufig ver-
wendete Ebenen sind in Abb. 2.27 zusammenge-
stellt. Jede Netzebene entspricht einer Netzebenen-
schar, d.h. einer unendlichen Schar von dquivalenten
Ebenen, welche parallel zueinander in einem festen

Abstand liegen. Diese Netzebenen entsprechen auch
moglichen Spaltflichen oder Wachstumsebenen von
Kristallen.

Meist sind aufgrund der Symmetrie des Gitters meh-
rere Netzebenen #quivalent zueinander. Ein einfa-
ches Beispiel sind die Ebenen (100), (010), und
(001) des einfach kubischen Gitters. Solche Grup-
pen von dquivalenten Netzebenen fasst man zusam-
men, indem man die Indizes in geschweifte Klam-
mern setzt, also z.B. {100}.

2.2.5 Dichteste Kugelpackung

Festkorper bilden sich, weil die darin enthaltenen
Bausteine sich gegenseitig anziehen. Die Energie ei-
nes Kristalls kann deshalb meist optimiert werden,
wenn die Bestandteile moglichst dicht gepackt sind.
Es stellt sich somit die Frage, welche Anordnung den
Raum optimal fiillt. Fiir die meisten Bestandteile ist
die Antwort nicht analytisch, aber fiir den wichtigen
Fall, dass die Bestandteile durch karte Kugeln ange-
nihert werden konne, lisst sich die Frage beantwor-
ten. Kugelformige Bestandteile sind eine gute Néhe-
rung fiir viele Ionenkristalle.

In einer Dimension wird die dichteste Kugelpackung
durch eine Reihe direkt aneinander gelegter Kugeln
realisiert.

Abbildung 2.28: Links: dichteste Kugelpackung in
einer Ebene; rechts: 2 hexagonal
dichtest gepackte Ebenen gestapelt.

In zwei Dimensionen kann man Reihen von Ku-
geln jeweils um eine halbe Gitterkonstante verscho-
ben aneinander fiigen und erhilt eine dichteste Ku-
gelpackung, welche einem hexagonalen Gitter ent-
spricht. Fiigt man zwei solcher Schichten aufeinan-
der, so wird der Schichtabstand minimal, wenn sich
die Kugeln der oberen Lage iiber einer Liicke der un-
teren Lage befinden (siehe Abb. 2.28 rechts).
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Abbildung 2.29: 3 hexagonal dichtest gepackte Ebe-
nen gestapelt.

Fiigt man eine dritte Schicht auf diese beiden, so
kann dies auf zwei Arten optimiert werden: Man legt
die dritte Schicht vertikal iiber die erste oder man
verschiebt sie nochmals in die gleiche Richtung wie
beim ersten Schritt, so dass die dritte liber die ge-
meinsame Liicke der blauen und roten Schicht zu lie-
gen kommt. Die erste Folge wird als ABAB charak-
terisiert, die zweite als ABCABC. Beide Varianten
kommen in der Natur vor, und es sind auch gemisch-
te Fille moglich, d.h. die Stapelfolge kann variie-
ren. In allen Fillen gilt fiir identische Kugeln, dass
das Volumen der Kugeln 74 % des Kristallvolumens
ausmacht. Das Verhiltnis der Kugelvolumina zum
gesamten Volumen wird als Raumfiillung bezeich-
net. Da diese beiden Packungen die maximal mogli-
che Raumfiillung aufweisen, werden sie als ‘dichte-
ste Kugelpackung’ bezeichnet.

!
jnl+%a7+

Abbildung 2.30: Anordnung der Schichten in der he-
xangonal dichtesten Kugelpackung
(links) und in der flicenzentrierten
dichtesten Kugelpackung (rechts).

Ist die Stapelfolge ABAB, so wihlt man normaler-
weise eine hexagonale Einheitszelle, wie in Abb.
2.30 links dargestellt. Diese Struktur wird als hexa-
gonal dichteste Kugelpackung bezeichnet oder kurz

als hcp (=hexagonal close packed). Die Stapelrich-
tung entspricht der c-Achse des hexagonalen Kri-
stallsystems.

Fiir die Beschreibung des Gitters, das durch die Sta-
pelfolge ABCABC erzeugt wird, verwendet man
das kubisch flichenzentrierte Gitter, welches in Abb.
2.30 rechts dargestellt ist. Die Stapelrichtung ent-
spricht der Raumdiagonale des Wiirfels. Dieser Fall
wird kurz als fcc (=face centered cubic) bezeichnet.
Die Raumfiillung betrégt in beiden Fillen (hcp und
fce) 74%. In einem kubisch innenzentrierten Gitter
(bcc = (body centered cubic) ist die Raumfiillung
68%, in einem einfachen kubischen Gitter 52%, und
in einem Diamantgitter 34%.

2.2.6 Diamant-Gitter

o

Abbildung 2.31: Struktur von Diamant als 3D Dar-
stellung und Projektion in die xy-
Ebene mit den z-Koordinaten der
Atome.

Eine relativ wichtige Struktur ist diejenige von Dia-
mant. Zusdtzlich zu einem flachenzentrierten kubi-
schen Gitter enthdlt Diamant jeweils ein Atom an der
Stelle (1/4, 1/4, 1/4) und den entsprechenden dquiva-
lenten Positionen.

Viele Halbleiter, wie z.B. Si oder GaAs kristallisie-
ren in der Diamantstruktur. Bei den binidren Halb-
leitern werden die Gitterpldtze abwechselnd mit Ga
oder As belegt.
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Abbildung 2.33: Struktur von NaCl (links) und CsCl
(rechts).

Kristalle, die aus mehr als einer Atomsorte beste-
hen, enthalten dementsprechend mehrere Atome pro
Einheitszelle. Ein relativ einfaches Beispiel ist NaCl
(Kochsalz). Da die Na™-Ionen kleiner sind als die
Cl1™ -Ionen ist in diesem Fall ein kubisch flichenzen-
triertes Gitter energetisch am giinstigsten. Dies be-
deutet, dass in einem Untergitter, welches nur die Cl-
, resp. Na-Ionen enthilt, jeweils Ecken und Fldchen-
mittelpunkte eines Kubus besetzt sind. Man kann
das Gitter aber auch als primitiv kubisches Gitter
(mit der halben Gitterkonstante, d.h. 1/8 Volumen
der Einheitszelle) beschreiben, bei dem die Gitter-
plitze alternierend mit Cl, resp. Na besetzt sind.

2.2.7 Quasikristalle

Wie bereits erwihnt, sind fiinfzéhlige Rotations-
achsen in einem System mit Translationssymme-
trie nicht moglich. Auch in zwei Dimensionen ist
es nicht moglich, die Ebene mit Einheitszellen mit
fiinfzéhliger Symmetrieabzudecken. Man hat des-
halb lange Zeit geglaubt, dass solche Kristalle nicht

existieren wiirden. Erst 1984 wurden erstmals in
Beugungsexperimenten 10-zdhlige Symmetrieach-
sen gefunden, und etwas spiter konnte man diese
Symmetrie auch makroskopisch nachweisen.

Abbildung 2.34: Morphologie eines Quasikristalls
(links) und zugehoriges Beugungs-
muster (rechts).

Mit Hilfe der Elektronenmikroskopie findet man die
fiinfzihlige Symmetrie sowohl in der Morphologie
der Kristalle wie auch in der atomaren Struktur. Die
gleiche Symmetrie findet man auch in hochauflo-
senden Mikroskopie Bildern, welche direkt die ato-
mare Struktur darstellen. Da diese Materialien zwar
einen hohen Ordnungsgrad, aber keine Translations-
symmetrie aufweisen, werden sie als Quasikristalle
bezeichnet. Die Details dieser Strukturen sind noch
nicht in allen Fillen vollstindig verstanden. Sie ba-
sieren jedoch auf raumlich nichtperiodischen Struk-
turen.

Abbildung 2.35: Zwei Beispiele, wie eine Ebene
mit einem nichtperiodischen Mu-
ster abgedeckt werden kann.

In zwei Dimensionen konnen Kombinationen von
2 Elementen den Raum vollstindig abdecken, ohne
dass sie Translationssymmetrie aufweisen. Bekannt
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dafiir sind vor allem die Elemente von Penrose.

2.3 Strukturbestimmung

Die atomare Struktur eines Korpers kann viele seiner
Eigenschaften erkldren und ist deshalb immer von
grofem Interesse. Um diese Struktur zu bestimmen
bendtigt man ein Werkzeug, welches in atomaren
GroBen arbeiten kann. In erster Linie benutzt man
dafiir elektromagnetische Wellen mit kurzer Wel-
lenldnge, d.h. Rontgenstrahlen. Auch Materiewellen
sind mit Erfolg eingesetzt worden, in erster Linie
Elektronen oder Neutronenstrahlen, aber neuerdings
auch Atomstrahlen.

2.3.1 Feld-Ionen Mikroskopie

He

°

Schirm

Spitze 000
Itz
)

i
e/

Abbildung 2.36: Prinzip der Feldionenmikroskopie.

Die erste Methode, welche Atome direkt sichtbar
machte, war die Feld-Ionen Mikroskopie. Es han-
delt sich dabei um ein relativ einfaches Gerit: im
Wesentlichen benétigt man eine sehr scharfe Spitze,
an die man eine positive elektrische Spannung an-
legt. Dadurch erhilt man an der Spitze ein sehr ho-
hes elektrisches Feld. Ausserhalb der Spitze befin-
det sich mit niedrigem Druck ein Gas, typischerwei-
se Helium. Wenn ein Heliumatom in die Nihe der
Spitze gelangt, wird es durch dieses enorme elek-
trische Feld ionisiert, das heisst diese Metallspitze
zieht eines der Elektronen des Heliumatoms weg.
Dadurch wird das Heliumatom zu einem positiv ge-
ladenen Heliumion und wird nun durch das starke
elektrische Feld sehr rasch von der Spitze weg be-
schleunigt. Nach einer Distanz von etwa 10 cm trifft

es auf einen Schirm, wo es sichtbar gemacht wird.
Da sich die Atome auf dem direktesten Weg von der
Spitze entfernen, entsteht dadurch auf dem Schirm
ein Bild der Spitze. Die Vergroerung kommt durch
das Verhiltnis des Radius der Spitze zur Distanz vom
Schirm zustande und bendtigt keine weiteren abbil-
denden Elemente. Man erhilt also auf diese Weise
auf dem Schirm ein Bild dieser Spitze mit sehr ho-
her Auflosung. Allerdings ist das Bild ziemlich stark
verzerrt.

Abbildung 2.37: Atome, die sich auf einer Metall-
spitze bewegen. Das obere ist ein
Rhenium-, das untere ein Wolfram-
Atom.

Diese Art von Mikroskopie ist inzwischen mehr als
40 Jahre alt, sorgt aber immer noch fiir spektakulire
Bilder, wie z.B. die Serie von Bildern in Abb 2.37,
welche zeigen, dass man damit nicht nur atomare
Auflosung erhilt, also einzelne Atome sehen kann,
sondern auch deren Bewegung tiber die Oberfliche
beobachten kann. In Abb. 2.37 ist die Oberfldche ei-
ner Wolframspitze dargestellt, auf der sich zwei ein-
zelne Atome bewegen, welche durch die dreiecki-
gen Pfeile markiert sind. Beim unteren handelt es
sich um ein Wolfram-Atom, beim oberen um ein
Rhenium-Atom. (Aus T.T. Tsong, Atomprobe field
ion microscopy, Cambridge University Press, Cam-
bridge (1990).)

2.3.2 Elektronenmikroskopie

Um ein weniger verzerrtes Bild einer beliebigen ato-
maren Struktur zu erhalten, bendtigt man eine Ab-
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bildungsoptik, die unabhingig vom abzubildenden
Objekt ist. Die Wellenldnge des abbildenden Feldes
muss dazu kleiner sein als die abzubildenden Struk-
turen. Verwendet man elektromagnetische Wellen
(d.h. Rontgenstrahlen), sind abbildende Linsen prak-
tisch nicht herstellbar.

Elektronen-

quelle
.4 |

Objekt — magnetische:
o Linsen

/

/

>

1
]

-~

Bild auf dem Schirm

Abbildung 2.38: Funktionsprinzip eines Elektronen-
mikroskops.

Verwendet man jedoch Elektronen fiir die Abbil-
dung, so konnen Linsen mit elektromagnetischen
Feldern erzeugt werden.

Abbildung 2.39: Elektronenmikroskopische
nahme eines Molekiilkristalls.

Auf-

Hochgeziichtete Systeme sind in der Lage, Ato-
me direkt abzubilden. Dafiir muss allerdings eine
Vergroflerung um mindestens 7 GréBenordnungen
erreicht werden. Aufgrund der damit verbundenen
technischen Schwierigkeiten ist dies erst seit weni-

gen Jahren moglich und stellt immer noch kein Rou-
tineverfahren dar.

2.3.3 Rastersonden Mikroskopie

Die Methode, mit der man die strukturelle Infor-
mation erhilt, hingt stark davon ab, welches dieser
Werkzeuge man verwendet. Im Falle der Rasterson-
den Mikroskopie ist die Methode sehr direkt: man
tastet den Gegenstand mit der Probe ab und zeichnet
die Position der Probe auf, um so direkt ein Bild der
Oberflidche zu erhalten.

Elektronik

&=

000000

Raster-

der

Abbildung 2.40: Funktionsprinzip
Tunnelmikroskopie.

Diese Methode wurde 1982 von Binnig und Roh-
rer am IBM Forschungslaboratorium in Riischlikon
entwickelt. Dabei wurde eine feine Spitze iiber eine
Oberfliche gefiihrt, wobei der Abstand zwischen der
Spitze und der Oberfliche konstant gehalten wur-
de. Indem man die Position der Spitze aufzeichnete,
konnte man ein Bild der Oberflache erhalten. Man
tastet also die Oberflache mit einer Spitze ab, benutzt
also eine Art verfeinerten Tastsinn, um die Oberfla-
che sichtbar zu machen.

Insbesondere hat man auch gelernt, mit dem Mi-
kroskop Atome zu verschieben, nicht nur zu beob-
achten. Abb. 2.41 zeigt als Beispiel einen Ring aus
48 Eisenatomen, welche mit einer Rastertunnelspit-
ze auf der Oberfldche eingesammelt und an einen Ort
gebracht wurden. Anschliessend wurde das gleiche
Mikroskop dafiir verwendet, sie abzubilden.

Die Raster-Sonden Mikroskope verwendeten die ex-
ponentielle Abhingigkeit des sog. Tunnelstroms, al-
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Abbildung 2.41: STM Bild eines Kreises aus 48 Ei-
senatomen.

so eines elektrischen Stroms durch ein nichtleiten-
des Medium wie das Vakuum, um ein Bild zu er-
halten. Diese Technik wird deshalb als Tunnelmikro-
skopie (STM = scanning tunneling microscopy) be-
zeichnet. Die Notwendigkeit fiir einen elektrischen
Strom beschrinkt diese Technik auf leitende Ober-
flachen. Spéter kamen andere Arten von Sonden da-
zu, wie die Raster-Kraftmikroskopie (AFM = atomic
force microscpy) die magnetische Wechselwirkung
(MFM = magnetic force microscopy) oder die opti-
sche Nahfeld Mirkroskopie (SNOM = scanning near
field optical microscopy). Alle diese Techniken sind
hervorragend fiir die Untersuchung von bestimmten
Oberflachen geeignet, jedoch nicht fiir die Untersu-
chung von Volumenkristallen.

2.3.4 Rontgenbeugung

Vor der Entwicklung der direkten Methoden war
die einzige Moglichkeit, mit atomarer Auflosung
Informationen iiber Kristallstrukturen zu erhalten,
die Verwendung von Beugungsmethoden, also die
Streuung einer Welle an einer periodischen Struk-
tur. Voraussetzung dafiir ist, dass die Wellenlidnge
der verwendeten Strahlung von der gleichen GroBen-
ordnung ist wie die Abstinde zwischen den Atomen,
also weniger als 1 nm.

Die Beugung von Wellen an periodischen Struktu-
ren wurde u.a. von Bragg erklirt. Seine Erkldrung
ist sehr anschaulich und liefert das richtige Resultat.
Man betrachtet dabei eine Reihe von parallelen Ebe-
nen. Im Kiristall sind dies natiirlich keine wirklichen
Ebenen, sondern Netzebenen, also zweidimensiona-
le Anordnungen von Atomen.

Abbildung 2.42: Struktur von NaCl.

Roéntgenstrahl

Abbildung 2.43: Interferenz von Teilstrahlen and be-
nachbarten Netzebenen.

Jede dieser Ebenen reflektiert einen Teil der einfal-
lenden Welle. Wie grof3 dieser Anteil ist, hingt von
der Welle selber ab, sowie von der Netzebene: wie
dicht sind die Atome gepackt, was fiir eine Art von
Atomen sind es etc. Typische Werte fiir die Reflekti-
vitiit einer einzelnen Ebene liegen bei 107>...1073,

Fiir die Herleitung der Bragg-Bedingung bezeichnen
wir den Abstand zwischen diesen Ebenen als d. Falls
der Brechungsindex dieser Ebenen von demjenigen
des iibrigen Materials abweicht, wird an diesen Ebe-
nen jeweils ein Teil der Welle reflektiert. Da es sich
um eine Welle handelt, tritt beim Beobachter Inter-
ferenz ein, d.h. die gesamte reflektierte Welle ergibt
sich durch lineare Superposition der einzelnen Wel-
len.

Damit positive Interferenz entsteht, muss der Lauf-
zeitunterschied zwischen den einzelnen Teilwellen

ein Vielfaches der Wellenlénge sein, d.h.
2dsin @ = nA. (2.2)

Der Winkel 0 ist hier der Winkel zwischen der Ein-
fallsrichtung des Rontgenstrahls und der Netzebe-
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Abbildung 2.44: Berechnung der Bedingung fiir
konstruktive Interferenz.

ne und damit die Hilfte des Ablenkwinkels fiir den
Rontgenstrahl.

Dies ist die sogenannte Bragg-Bedingung: Beu-
gungsreflexe konnen nur dann auftreten, wenn der
Einfallswinkel des Rontgenstrahls auf die Netzebe-
ne durch das obige Verhiltnis zwischen Netzebe-
nenabstand und Wellenldnge gegeben ist. Die Bedin-
gunge kann offenbar nur dann erfiillt werden, wenn
die Wellenldnge A kleiner ist als der doppelte Ab-
stand, A < 2d. Um gut aufgeloste Beugungsbilder
zu erhalten, benotigt man Wellen, deren Wellenlédn-
ge vergleichbar ist mit dem Abstand der untersuch-
ten Netzebenen, also im Bereich von ~ 1A ... 1nm.

Wie diese Herleitung zeigt, erzeugt jede Schar von
Netzebenen einen Beugungsreflex. Ein Beugungs-
muster enthélt deshalb viele Reflexe, welche jeweils
einer Netzebene zugeordnet werden konnen. Die
Bragg-Bedingung bestimmt jedoch nur die mogli-
chen Reflexionsrichtungen, sie sagt nichts iiber die
Intensitit des Beugungsmaximumes.

2.3.5 Beugung von Materiewellen

Anstelle von Rontgenstrahlen kann man auch Mate-
riewellen fiir Beugungsuntersuchungen verwenden.
Gemaiss de Broglie betrigt die Wellenlidnge eines
Teilchens mit Impuls p

k=2,

A h

= — oder

p

Fiir nichtrelativistische Elektronen der Energie & er-
hilt man den Impuls als

p=V2m&

und daraus die Wellenlénge als

12

A= \/g(\/fﬁnm)

oder rund 150 eV fiir eine Wellenldnge von 0.1 nm.

Elektronenkanone

W
y/4

/ Detektor

&
>

/
&

Vergleich der
Beugungsmuster von
Réntgen und
Elektronenstrahlen

Elektronen

Rontgen

Abbildung 2.45: Elektronenbeugung.

Elektronenstrahlen ergeben deshalb sehr #dhnliche
Beugungsmuster wie Rontgenstrahlen. Die FEin-
dringtiefe von Elektronen dieser Energie ist recht
klein (15 nm), sodass sich Elektronenbeugung in er-
ster Linie fiir die Untersuchung von Oberflichen eig-
net.

Ebenfalls recht hiufig verwendet werden Neutronen.
Da diese rund 1836 mal schwerer sind als Elektro-
nen haben sie eine sehr viel kiirzere Wellenlédnge, re-
sp. eine sehr viel niedrigere Energie bei der gleichen
Wellenldnge: 0.1 nm wird erreicht bei einer Energie
von 80 meV.

Sowohl Neutronen wie auch Elektronen zeigen ei-
ne andere Abhingigkeit zwischen Energie und Wel-
lenldnge als Photonen. Wie in Abb. 2.46 gezeigt ist
die Wellnlinge bei massiven Teilchen o< &~ 1/2, bei
Photonen o &~!. Fiir den relevanten Wellnl:ingen-
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Neutronenenergie in 0,01 eV
Elektronenenergie in 100 eV

Abbildung 2.46: Wellenldnge als Funktion der Ener-
gie fiir Elektronen, Neutronen und
Photonen.

bereich kann man sie ausdriicken als

0 12
Ae(A) = JEEY)
0.28

(2.3)

VE(EV)

2.3.6 Neutronenbeugung

Der wesentliche Unterschied zwischen Elektronen
(oder Rontgenstrahlen) und Neutronen liegt in der
Art ihrer Wechselwirkung: Neutronen wechselwir-
ken in erster Linie mit den Atomkernen, nicht mit
den Elektronen, und die Stirke der Wechselwirkung
hingt nicht von der Ladung ab. Sie kann deshalb fiir
Kerne mit dhnlicher Ordnungszahl oder fiir Isotope
des gleichen Elementes stark variieren. Neutronen
sind attraktive Sonden fiir die Messung an leichten
Kernen, welche mit Rontgenstrahlen fast unsichtbar
sind. Die Eindringtiefe kann sehr stark variieren, von
wenigen um bis zu mehreren Zentimetern.

Neutronen konnen allerdings nicht im Labor-
massstab genutzt werden: Man benétigt als Quelle
einen Reaktor (wie hier am ILL in Grenoble) oder

Guide hall

Reactar hall

Abbildung 2.47: Erzeugung von Neutronen im For-
schungsreaktor (ILL Grenoble).

einen Beschleuniger (wie in der geplanten Neutro-
nenquelle ESS).

Anti-overlap chopper
Fermi chopper & collimator

Monitor 2

Triple monochromator

Monifor 3

Collimator

-2- Neutron Guide

Abbildung 2.48: Neutronen-Flugzeitspektrometer
IN6 am ILL Grenoble.

Auch die eigentlichen Spektrometer sind sehr auf-
windige GroBgerite, welche nur an wenigen For-
schungszentren zur Verfiigung stehen, wie z.B. am
Institut Laue-Langevin (ILL) in Grenoble. Neben
den Reaktoren gibt es als Neutronenquellen Spallati-
onsquellen: Hier werden relativistische Protonen auf
ein Target geschossen, aus dem dadurch Neutronen
austreten.

Beziiglich der reinen Strukturaufkldrung unterschei-
den sich Neutronen von Rontgenstrahlung vor al-
lem durch den Streuquerschnitt: sie bilden nicht die
Elektronendichte ab, sondern die Position der Kerne.
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Deshalb sind sie z.B. niitzlich fiir die Messung der
Position von Wasserstoffatomen, welche wegen ih-
rer geringen Anzahl Elektronen in Rontgenmessun-
gen schlecht sichtbar sind. AuBBerdem konnen sie zur
Messung von Kernbewegungen, magnetischer Ord-
nung und Isotopenverteilung eingesetzt werden.

2.4 Das reziproke Gitter

Die Bragg-Bedingung (2.2) liefert zwar eine Bedin-
gung fiir das Auftreten von Rontgenreflexen, aber es
ist zum einen keine hinreichende Bedingung, zum
zweiten liefert sie keine Intensititen. Wie grof die
Intensitit der gestreuten Welle ist, hingt davon ab,
wie stark die einzelnen Ebenen reflektieren. Im Fal-
le der Rontgenstrahlung ist die Beugungseffizienz
im Wesentlichen proportional zur Elektronendichte.
Fiir die Berechnung der Streuintensitit miissen wir
deshalb die rdumliche Abhingigkeit der Elektronen-
dichte betrachten.

2.4.1 Periodizitiit der Elektronendichte

Aufgrund der Periodizitiat des Kristalls muss die
Elektronendichte n(7) ebenfalls periodisch sein,

= n(7),

wobel T einen Translationsvektor

n(7+ T)

T = ud; + urdp + usds

darstellt.

Daraus folgt, dass man die Elektronendichte als
Fourier-Reihe schreibenkann. In einer Dimension
wird sie dann

27wpx

2r
n(x )—n0+ZC cos px+Spsin

p>0

oder in komplexer Schreibweise

i27px/a
Y nyea,

p=—o0

Harmonische Funktion
f(x) = cos(2mx/a) B

@)= [ e
VANANAN
ATV

Periodische Funktion

AN N e

PV OV VN

3(k-2)

2n/a k

Diskrete Funktion

cﬂ” g(x)dx

Abbildung 2.49: Fourier-Zerlegung einer eindimen-
sionalen Funktion.

Damit die Elektronendichte reell wird, muss gelten
n*, = n,. Geht man nun zu drei Dimensionen, so

erhilt man

F) = anse

pgs

lZﬂpx/aetZqu/besz/c 7

wobei p, ¢ und s iiber alle (positiven und negati-
ven) ganzen Zahlen laufen. Dies kann auch in Vek-
torschreibweise geschrieben werden

G
Der Vektor
- 2
G (ﬂpmm)
a b c

wird definiert durch drei diskrete Zahlen p,q,s. Er
stellt also einen Punkt in einem Gitter dar, dhnlich
wie die Translationsvektoren 7. Dieses Gitter be-
findet sich allerdings nicht im gewdhnlichen dreidi-
mensionalen Raum, sondern hat offenbar die Dimen-
sion einer inversen Linge. Es wird iiblicherweise als
reziprokes Gitter bezeichnet.

2.4.2 Definition des reziproken Gitters

Eine mogliche Definition des reziproken Gitters ist
die folgende:

Das reziproke Gitter besteht aus denjenigen Wel-

lenvektoren 75, die eine Funktion ¢*7 definieren,
welche im direkten Raum die Periodizitit des di-
rekten Gitters aufweist.
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Alternativ konnen wir das reziproke Gitter konstruk-
tiv definieren, indem wir zunéchst seine Basisvekto-
ren definieren:

- Ziz X 53 L_iz X C_i3
by = 2n——
ap-az Xas \%

- 53 X Zil
b, = 2rm

Vv
- L_il X Eiz
b3 = 2r

Vv

Aufgrund dieser Konstruktion steht Z;l senkrecht auf
dr und d3 und entsprechendes gilt fiir die anderen
Vektoren. Sakalarprodukte zwischen Basisvektoren
des direkten und reziproken Gitters werden somit

E,- ‘Zij = 27[6,'.,'.

Diese Konstruktion kann auch in Matrixform ge-
schrieben werden. Wir definieren die Matrix

dix dx Az
A= (d,dd) = aiy ay az
aj; day; asg

der primitiven Gittervektoren.

Abbildung 2.50: Primitive EZ im fcc-Gitter mit den
Basisvektoren des reziproken Git-
ters.

Fiir die primitive Einheitszelle des kubisch flichen-
zentrierten Gitters (siche Abb. 2.50), z.B., erhalten
wir

NSRS

O = =
—_— = O
—_— O =

wobei a wie iiblich die Kantenlidnge des Wiirfels dar-
stellt. Entsprechend konnen wir eine Matrix B fiir die
Basisvektoren des reziproken Gitters definieren. Aus
der Orthogonalititsbeziehung folgt A*B = 27 oder

-1

¥

B=2m(A")

Damit ist es moglich, die Bestimmung des rezipro-
ken Gitters auf eine Matrixinversion zuriickzufiih-
ren. Im obigen Fall erhalten wir

-1

_2717

B —1

a 1

-1

2.4.3 Gitterelemente

Das gesamte Gitter erhilt man wiederum durch Li-
nearkombination der Basisvektoren

G= Vlzl + szz + V3Z3

mit ganzzahligen v;. G wird als Punkt oder Vektor
des reziproken Gitters bezeichnet. Die Dimension
dieser Vektoren betrigt m~!, wie man leicht aus der
Definition der Basisvektoren ersieht. Falls die Vekto-
ren d; die Basisvektoren des primitiven Gitters sind,
so sind auch die Vektoren Bi die Basisvektoren des
primitiven reziproken Gitters.

Die Punkte des reziproken Gitters sind Fourierkom-
ponenten des Kristalls und damit in erster Linie
mathematische Hilfsmittel. Um sie doch etwas zu
veranschaulichen, kann man sich aber vorstellen,
dass sie ein Objekt des direkten Raumes beschrei-
ben, welches eine bestimmte Periodizitit besitzt. Ein
Gitterpunkt, der im zweidimensionalen reziproken
Raum die Koordinaten (r,s) besitzt, entspricht der
Komponente

27sy

. 2;rx
sin sin
a

Abb. 2.51 zeigt zwei Beispiele. Ein Vektor des rezi-
proken Gitters entspricht damit immer einer entspre-
chenden Periodizitit im direkten Raum. Damit ent-
hilt die Wellenfunktion des Kristalls eine Kompo-
nente 7. Aufgrund der Beziehung von de Broglie
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Reziprokes Gitter

Direktes Gitter

Abbildung 2.51: Punkte im reiproken Gitter und ihre
Fouriertransformierten.

kann dies auch so interpretiert werden, dass ein Im-
puls in Richtung k vorhanden ist. Mit anderen Wor-
ten: das reziproke Gitter ist eine Zerlegung des Fest-
korperimpulses.

Aus der Konstruktion der Basisvektoren, resp. der
Orthogonalititsbeziehung b; - d; = 21 J;; folgt fiir be-
liebige Vektoren T des direkten Gitters und G des
reziproken Gitters

G

T (uyvy +upvy +u3v3)2m

(ganzeZahl) 2z

oder

eT6 1. (2.4)

Dies entspricht der ersten Definition des reziproken
Gitters in 2.4.2.

2.4.4 Reziproke Gittervektoren und
Ebenenscharen

Eine wichtige Beziehung besteht auch zu den Netz-
ebenen des direkten Gitters: Ist eine Ebene durch die
Miller Indizes hkl gegeben, so steht der Vektor

h
k
l

éz :h51+k52+153;

des reziproken Gitters senkrecht auf dieser Ebene.
Beweis: wir zeigen, dass dieser Vektor senkrecht auf

zwei linear unabhingigen Vektoren ¥ und v, des di-
rekten Gitters steht, welche die Ebene (hk/) aufspan-
nen. Wir wihlen

. 1, 1, N 1, 1.
Vlzzal—%a27 VZZ%CIZ—YCB
ot T P
1_) Jt U1 ha1 kag
£ ay

T >
"

Abbildung 2.52: Definition von V.

Wie in Abb. 2.52 gezeigt, liegt der Vektor ¥ in der
Schnittgeraden von (hkl) und der Ebene, die von 4
und d, aufgespannt wird. Entsprechend liegt ¥, in
der Schnittgeraden von (hkl) und (d»,ds), und ge-
meinsam spannen die beiden Vektoren die Netzebe-
ne auf. Das Skalarprodukt mit dem reziproken Git-
tervektor G ist

Die Orthogonalititsrelation zwischen den Basisvek-
toren des direkten und reziproken Raums ergibt

1
——a
2

—

. - - - 1
G = (hbl +kb2+lb3) : (hal

G-V =G-¥Hh=2n(1-1)=0.

Der kiirzeste Vektor G des reziproken Gitters, der
senkrecht auf den Netzebenen steht, hat die Linge

21
d b
wobei d den Abstand zwischen benachbarten Netze-

benen darstellt. Diese Beziehung folgt aus der Tatsa-
iG7

Gl =

che, dass die Funktion e im direkten Raum eine
Periode von 27t/|G| hat, welche dem Abstand zwi-
schen Netzebenen entsprechen muss.

Fiir den Spezialfall eines rechteckigen Gitters in 2
Dimensionen berechnen wir den Abstand dp zwi-
schen aufeinander folgenden Netzebenen gemif
Abb. 2.53

ar
h
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Abbildung 2.53: Abstand der Netzebenen.

Daraus erhalten wir den Abstand
ayay _ 1
N
\/a%kz =+ a%hz g + E

21
|Gl

dy =

in zwei Dimensionen.

2.4.5 Brillouin-Zonen

Im reziproken Gitter kann man genau so wie im di-
rekten Gitter Einheitszellen definieren. Eine beson-
ders wichtige Rolle spielt die Wigner-Seitz Zelle des
reziproken Raums. Sie wird als die erste Brillouin-
Zone bezeichnet.

Wir berechnen als Beispiel das reziproke Gitter des
primitv kubischen Gitters. Die Basisvektoren des di-
rekten Gitters sind in diesem Fall die Vektoren d,,
dy und d,. Die Basisvektoren des reziproken Git-
ters sind im Fall des kubischen Gitters in die glei-
che Richtung orientiert und ihre Linge betrigt 27 /a.
Das Volumen der ersten BrillouinZone betrigt da-
mit (277 /a)’. Da bei der iiblichen Wigner-Seitz Kon-
struktion der ersten Brillouin-Zone der Gitterpunkt
im Zentrum liegt, reicht die Zone von —b/2 bis
+b/2, d.h. von —7/a bis +7r/a. Die Form ist, wie
beim direkten Raum, die eines Wiirfels.

2.5 Beugung

2.5.1 Streuung an kontinuierliche Medien

Wir hatten im Kapitel 2.3.4 die Bragg-Bedingung fiir
das Auftreten eines Beugungsreflexes durch Reflexi-
on an Netzebenen diskutiert. Diese Netzebenen sind
niitzliche mathematische Hilfsmittel, aber in Wirk-
lichkeit erfolgt die Streuung der Rontgenstrahlung

nicht an den Netzebenen, sondern an den Elektronen
des Materials, d.h. an einer kontinuierlichen Vertei-
lung. AuBerdem liefert die Bragg-Bedingung fiir die
Netzebenen keine Amplituden fiir die Beugungsre-
flexe.

Den physikalischen Prozess der Rontgenstreuung an
den Elektronen kann man sich am besten so vorstel-
len, dass die einfallende Welle in der Elektronen-
dichteverteilung eine erzwungene Schwingung er-
zeugt, welche ihrerseits eine Welle abstrahlt. Die
Phase dieser gestreuten Welle ist starr an die der ein-
laufenden Welle gekoppelt. Wir nehmen im Folgen-
den an, dass die gestreute Welle selber nicht mehr
gestreut wird. Dies wird als erste Born’sche Néhe-
rung bezeichnet und ist fiir die Streuung von Ront-
genlicht in Kristallen fast immer eine gute Néhe-
rung. Mehrfachstreuung kann nur in wenigen Fil-
len iiberhaupt beobachtet werden. Der Grund dafiir
ist der geringe Streuquerschnitt fiir die Streuung von
Photonen an Elektronen: er ist von der Groflenord-
nung r2 2~ 10~* m?, wobei

62

1
—— ~2,818-107"m

y, == ——
¢ 4dmey mye

den klassischen Elektronenradius darstellt.

Quelle Detektor

Abbildung 2.54: Streuungsbeitrag des Volumenele-
ments dV.

Wir gehen aus von einem einfallenden Rontgen-
strahl, der durch den Wellenvektor k beschrieben
wird, und bestimmen die Intensitéit eines Strahls, der
in Richtung ¥ gestreut wird. Dazu berechnen wir
den Beitrag jedes Volumenelementes des Kristalls.
Ein Element dV an der Stelle 7 erzeugt einen Bei-
trag, der proportional ist zur Elektronendichte n(7)
an diesem Ort. Wir gehen davon aus, dass die ein-
laufende Welle als ebene Welle beschrieben werden
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kann und dass der Detektor so weit vom Kristall ent-
fernt ist, dass die gestreute Welle (welche einer Ku-
gelwelle um dV entspricht) in guter Ndherung beim
Detektor ebenfalls als ebene Welle beschrieben wer-
den kann.

Gegeniiber einer Referenz-Phasenfliche durch den
Ursprung O des Koordinatensystems erhélt die ein-
fallende Welle bis zum Volumenelement dV eine
Phasenverzégerung um k-7 Die gestreute Welle er-
hilt auf dem Weg zum Detektor ebenfalls eine Pha-
senverzogerung, um —K - 7. Somit ergibt sich insge-
samt fiir den Beitrag des Volumenelements bei 7 eine
Phasenverschiebung um den Betrag

-

OF) =k F—F 7= (%—75’) F=AR-T,
mit Ak = k — k' als Anderung des Impulses beim
Streuprozess. Bei elastischer Streuung sind die Be-
trige der beiden Vektoren gleich, |k| = |K/].

2.5.2 Bragg-Bedingung

Die gesamte Amplitude am Detektor erhalten wir
durch Integration iiber das Volumen des Kristalls,
wobei die einzelnen Beitrdge mit der entsprechen-
den Elektronendichte gewichtet werden:

F= / dV n(7)e k7, (2.5)
Das Integral entspricht einer Fouriertransformati-
on. Damit ist die Streuamplitude proportional zur
Fourier-Amplitude der Elektronendichte n(7) bei der
raumlichen Frequenz Ak. Da die Elektronendich-
te periodisch ist, konnen wir sie als Fourier-Reihe
schreiben:

n(7)

= Znéeié'?.

G

Damit erhalten wir fiir die gestreute Amplitude

F = /dVZnéei(afAﬁ)' .

G

(2.6)

Das Integral kann nur dann von Null verschieden
sein, wenn

— A%,

d.h. wenn Ak ein Vektor des reziproken Gitters ist.
Somit findet man nur dann einen Beugungsreflex,
wenn der Streuvektor einem Vektor des reziproken
Gitters entspricht. Dies ist einer der wesentlichsten
Griinde dafiir, dass wir in erster Linie kristalline Ma-
terialien untersuchen.

Abbildung 2.55: Beugungsreflexe von Muskovit
(KAl (AISi3010)(F,OH),).

Die Schirfe dieser Bedingung ist gegeben durch die
GroBe des Kristalls; die Unschirfe nimmt ab mit der
Anzahl der Elementarzellen, welche zur Streuung
beitragen.

Diese Bedingung kann quantenmechanisch auch als
Impulserhaltung verstanden werden: Ak ist der Im-
puls der einfallenden Welle, hk der Impuls der ge-
beugten Welle. Aufgrund der Impulserhaltung kann
Beugung nur auftreten, wenn der entsprechende Im-
pulsunterschied vom Material, d.h. vom Gitter zur
Verfiigung gestellt wird. Diese Moglichkeit ist ge-
nau dann gegeben, wenn ein entsprechender Vektor
im reziproken Gitter existiert.

2.5.3 Ewald-Konstruktion

Mit dieser Bedingung allein konnte fiir jeden einfal-
lenden Rontgenstrahl eine unendliche Zahl von Beu-
gungsmaxima auftreten. Fir die Strukturaufkldrung
ist jedoch vor allem ein Spezialfall wichtig, ndmlich
der Fall der elastischen Streuung, d.h. dass die Wel-
lenlinge der gebeugten Welle gleich derjenigen der
einfallenden Welle ist, k| = [K'|. Mit dieser zusiitzli-
chen Bedingung ist die Bedingung fiir das Auftreten
von Beugung nicht mehr automatisch erfiillt.
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elastische Streuung:
k| = ||

reziprokes Gitter

[ [
K
[

gestreuter Strahl

®
einfallender Strahl

Abbildung 2.56: Ewald-Konstruktion.

Die Bedingung dafiir, dass ein Rontgenreflex auftritt,
kann mit Hilfe der Ewald-Konstruktion dargestellt
werden (siehe Abb. 2.56). Ausgangspunkt sind die
Bedingungen
k|=K| , k-¥=G

fiir das Auftreten eines Reflexes. Man stellt dabei
den einfallenden Rontgenstrahl durch einen Vektor
k dar, wobei seine Spitze auf einem Gitterpunkt des
reziproken Raumes liegt. Der reflektierte Strahl wird
durch einen Vektor K’ dargestellt, dessen Spitze wie-
derum auf einem Gitterpunkt liegen muss und dessen
Ursprung mit demjenigen des einfallenden Strahls
zusammenfillt. Der Streuvektor Ak = G ist dann ein
Vektor des reziproken Gitters. Der Winkel 20 zwi-

schen den beiden Vektoren entspricht der Bragg-
Bedingung.

Die Ewald-Konstruktion zeigt, dass das Auftreten
von Beugung nur fiir wenige spezielle Wellenvekto-
ren auftritt. Man findet diese Vektoren, wenn man
einen Kreis mit Radius k verschiebt, bis er durch
zwei Gitterpunkte lduft. Die Konstruktion zeigt
auch, dass \%y > ]é\min sein muss, d.h. der Betrag des
einfallenden Wellenvektors muss mindestens gleich
der Hilfte des Betrags des kleinsten Gittervektors
sein.

2.5.4 Beugung an Pulvern

Da ein einfallender Rontgenstrahl i.A. keinen Re-
flex erzeugt, sind verschiedene Methoden entwickelt

worden, um Rontgenbeugung zu beobachten. Die
einfachste Methode ist die Pulver- oder Debye-
Scherrer Methode: man bestrahlt ein Pulver.

nach Debye-Scherrer

e NIENE -
Abbildung 2.57: Beugung an Pulvern (Debye-
Scherrer).

Da darin all moglichen Orientierungen vorkommen,
sind immer einige Kristallite richtig orientiert, so
dass Reflexe auftreten. Aus Symmetriegriinden ist
die gebeugte Rontgenstrahlung in diesem Fall ko-
nisch, d.h. die Beugung héngt nur vom Winkel ge-
geniiber der Strahlrichtung ab. Wie in Abb. 2.57 ge-
zeigt wird die Probe in das Zentrum eines Zylinders
gelegt, und die Innenseite des Zylinders mit einem
Film belegt. Auf dem Detektor findet man deshalb
konzentrische Ringe. Offensichtlich eignet sich die-
ses Verfahren nicht fiir eine vollstindige Strukturbe-
stimmung. Es kann aber verwendet werden, um Git-
terkonstanten zu bestimmen.

Intensitat
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2 311
33
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W 533
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A
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A
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1115 2208

50 100

Beugungswinkel (Grad)
Abbildung 2.58: Beugungsmaxima fiir Si-Pulver.

Abb. 2.58 zeigt das Beugungsmuster, welches von
Silizium-Pulver gemessen wurde. Die einzelnen
Beugungsmaxima sind mit den zugehdrigen Miller-
Indizes bezeichnet. Im Bereich 0° < 26 < 180° fin-
det man Reflexe zu allen Gittervektoren, welche kiir-
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zer sind als 2|k|. Wihrend ihre Richtung sich aus
dem Pulvermuster nicht bestimmen lisst, erhilt man
ihre Léange aus der Bedingung

|G| = 2ksin6.

2.5.5 Einkristall-Verfahren

Rontgenstrahl

Kollimatoren

Probenkristall

Monochromator

transmittierter Strahl
(nicht verwendete
Wellenliingen)

\ Detektor

Abbildung 2.59: Drehkristall-Verfahren.

Ein Verfahren, welches vollstindige Strukturanaly-
sen von Einkristallen erlaubt, ist das Bragg- oder
Drehkristallverfahren. Dabei wird der Kristall ge-
dreht. Da das reziproke Gitter starr an das direkte
Gitter gekoppelt ist, wird es dabei mit gedreht. In
einem Koordinatensystem, welches an das rezipro-
ke Gitter gekoppelt ist, wird damit die Ewald-Kugel
gedreht und es treten bei bestimmten Orientierungen
Reflexe auf. Dabei werden alle Reflexe gemessen,
welche im Lauf der Drehung auftreten.

Fiir diese Art von Messungen bendtigt man mono-
chromatische Rontgenstrahlung. Ist die verwende-
te Quelle breitbandig, so wird deshalb ein Mono-
chromator benétigt, um die gewiinschte Wellenldnge
herauszufiltern. Dafiir verwendet man normalerwei-
se ebenfalls Bragg-Beugung an einem Kristall.

Eine weitere Moglichkeit fiir Messugen an Einkri-
stallen ist das sogenannte Laue-Verfahren. Dabei
benutzt man kontinuierliche Rontgenstrahlung aus
dem Bremsstrahlungsbereich. Wenn ein breiter Be-
reich von k-Vektoren (und damit Radien der Ewald-
Kugel) vorkommen, gibt es immer die Moglichkeit,
die Bragg-Bedingung zu erfiillen. Dieses Verfahren

reziprokes Gitter

Abbildung 2.60: Ewald-Konstruktion fiir das Laue-
Verfahren.

eignet sich wiederum nicht fiir die Strukturbestim-
mung, da man nicht weiss, welche Wellenldnge wel-
chen Reflex erzeugt hat. Man kann das Verfahren
aber benutzen, um Anderungen von Zellkonstanten
(z.B. mit der Temperatur) zu beobachten, oder um
Kristalle mit bekannter Struktur zu orientieren.

2.5.6 Laue-Bedingung

Unterschiedliche Formen der Bedingung fiir das
Auftreten eines Rontgenreflexes konnen bei der
Analyse von bestimmten Situationen niitzlich sein.
Allgemein gilt die Impulserhaltung, resp. die Bedin-
gung, dass der einfallende und der gestreute Strahl
sich um einen Vektor des reziproken Gitters unter-
scheiden miissen,

¥ =k+G.

Fiir elastische Streuung konnen wir daraus eine Be-
dingung fiir die Langen ableiten:

7 |2 2 7 A 2
k+G’ — & oder 2%-G+G*=0

-

oder, da dies auch fir —G gelten muss, welcher
ebenfalls ein Gittervektor ist,

2%k-G = G2.

Wenn wir beide Seiten dieser Gleichung durch 4 di-
vidieren, erhalten wir

2l 2
k-G = .
0= (5)

Diese Bedingung eignet sich wiederum fiir eine geo-
metrische Konstruktion.

1

5 Q2.7)
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Abbildung 2.61: Laue-Konstruktion der Beugungs-
bedingung.

Ausgangspunkt ist diesmal der Streuvektor Ak =G,
welcher die Punkte O und D im reziproken Gitter
verbinden soll. Um diejenigen einfallenden Wellen-
vektoren k zu finden, welche die Beugungsbedin-
gung erfiillen, fillen wir die Mittelsenkrechte auf
den Vektor G. Jeder Vektor, dessen Ursprung in O
liegt und auf dieser Mittelsenkrechten endet, erfiillt
offenbar die Bedingung (2.7).

Diese Konstruktion entspricht offenbar gerade der
Wigner-Seitz Konstruktion fiir die Einheitszelle, d.h.
der ersten Brillouin-Zone. Streuung findet somit im-
mer dann statt, wenn der Wellenvektor des einfallen-
den Strahls auf der Grenze der Brillouin-Zone liegt.

2.5.7 Streuamplitude und Strukturfaktor

Wir mochten als nichstes die Stirke eines Reflexes
berechnen, also die Streuamplitude in die entspre-
chende Richtung. Wenn ein Reflex auftritt, d.h. wenn
der Streuvektor Ak ein Vektor des reziproken Gitters
ist, wird exp(i(G — Ak) - 7) = 1. Damit vereinfacht
sich die Bragg-Bedingung (2.6) zu F o< ng.

Ak

=G

* ¢=2m

o (p=4n

Abbildung 2.62: Reflexion an der 100 Ebene.

Offenbar ist die rdaumliche Abhéngigkeit im Inte-
granden verschwunden. Dies bedeutet, dass alle Ein-
heitszellen identische Beitrige zur Streuamplitude
liefern, wobei die Amplitude durch die entsprechen-
de Amplitude der Elektronendichte im reziproken
Gitter gegeben ist. Diese ist definiert als

iGF

ng = /an(?)e_

Damit wird die Streuamplitude

F=ngz= /an(?) ~iG7,

(2.8)
Aufgrund der Periodizitit der Elektronendichte kann
das Integral tiber den Kristall auf ein Integral iber ei-
ne Einheitszelle und eine Multiplikation mit der Zahl
der Einheitszellen reduziert werden: Fiir G einen
Vektor des reziproken Gitters und T einen beliebi-
gen Vektor des direkten Gitters gilt gemil (2.4):

Damit kénnen wir das Integral in (2.8) auf eine Ein-
heitszelle reduzieren,

F=N| dvn(®e©"=Nsg,
EZ
wobei N die Anzahl Zellen im Kristall darstellt und

dV n(7) e~iCF
EZ

Sg =
als Strukturfaktor bezeichnet wird. Der Strukturfak-
tor ist also die Fouriertransformierte der Elektronen-
dichte iiber eine Einheitszelle.

2.5.8 Atomare Beitrige

Als nichstes teilen wir die Elektronendichte in Bei-
trige der einzelnen Atome auf. Die Zuordnung ein-
zelner Elektronen zu bestimmten Atomen ist natiir-
lich eine Niherung. Fiir Elektronen in der K-Schale
ist diese Nidherung sehr gut, fiir Valenzelektronen
in kovalent gebundenen Atomen oder Metallen eher
schlecht. Die Mehrheit der Elektronen ist jedoch re-
lativ gut lokalisiert, und die Ndherung hilft sehr gut
beim Verstédndnis fiir die Berechnung der Beugungs-
intensitéten.
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Wir bezeichnen mit 7; die Position eines Atoms.
Dann stellt die Funktion (7 —7;) den Beitrag dieses
Atoms zur Elektronendichte dar. Die gesamte Elek-
tronendichte am Ort 7 ist gegeben durch die Summe
iiber die s Atome der Basis:

n(F) = i]nj(?—?/)-

Dies erlaubt uns, auch den Strukturfaktor in Beitrige
der einzelnen Atome aufzuteilen:

/ dv
EZ

N

Y n(F—F)e

=

] Streuzemtrum

Abbildung 2.63: Relativkoordinaten zur Berech-

nung der Streuampitude.
Wir definieren die Koordinate p = 7 —7; des Elek-

trons bezogen auf die Position 7; des Kerns j. Damit
wird 7 = 7; + p und der Strukturfaktor

Sz :/ av
G Zelle

Damit ist

) = = o
nj(l—)*)e—sz e—lG'r_/.
1

j=

fi= / dVn;(p)e¢P (2.9)
der Beitrag des j-ten Atoms. Er wird als Atom-
formfaktor bezeichnet. Die Integration erstreckt sich
hier iiber den gesamten Raum. Der Atomformfaktor
entspricht also im Wesentlichen der Fouriertransfor-
mierten der Elektronendichte eines Atoms und kann
in erster Nidherung als eine atomare Eigenschaft be-
trachtet werden. Diese Naherung impliziert, dass die
Elektronendichte des Kristalls als Summe der ato-
maren Elektronendichten geschrieben werden kann.

Mit dieser Definition konnen wir den Strukturfaktor
schreiben als

Sg=Y fie 0, (2.10)
j=1

d.h. der Strukturfaktor setzt sich additiv aus den Bei-
tragen der einzelnen Atome zusammen, wobei jeder
Beitrag mit einem Phasenfaktor multipliziert wird,
der seine Position codiert. Die Phase entspricht der-
jenigen, welche eine Welle mit Wellenvektor G auf
dem Weg vom Ursprung des Koordinatensystems
zur Position 7; des Atoms akkumulieren wiirde.

2.5.9 Beispielsrechnung

Wir berechnen zuniichst den Phasenfaktor e ~'C7i ei-
nes Atoms an der Stelle 7;. Dafiir schreiben wir fiir
die Position des Atoms innerhalb der Elementarzelle

?j :xjc_il +yj21’2 +Zjﬁ3.

Damit erhalten wir fiir den Reflex, welcher dem Git-
tervektor

G= (Vlzl + szz + V3B3)
entspricht, das Skalarprodukt

6-7]' (V]Bl +V252+V3B3)
. (xjc_i] +yj&’2 +Zjﬁ3)

21 (vixj+vayj +v3zj).
Damit wird der Strukturfaktor

Sé — if] e—iln(le_,'—ﬁ-vzy_,--‘rwz,-)'
j=1

Der Strukturfaktor ist im Allgemeinen komplex. Ge-
messen wird allerdings nicht direkt die gestreute
Amplitude, sondern die Intensitit, welche gegeben
ist durch |S|? = $*S, und somit immer reell ist.

Wie oben gezeigt, ist die Streuamplitude proportio-
nal zur Anzahl N der Elementarzellen des Kristalls.
Die Intensitit wird damit proportional zu N2. Gleich-
zeitig nimmt aber die Breite eines Reflexes mit 1 /N
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Abbildung 2.64: Einheitszelle des kubisch innen-
zentrierten Gitters.

ab, sodass die integrierte Intensitdt eines Reflexes
nur mit NV ansteigt.

Wir berechnen als Beispiel den Strukturfaktor des
innenzentrierten kubischen Gitters. Die Basis die-
ses Gitters besteht aus zwei identischen Atomen bei
x1 =y1 =z1 =0und x; =y, = 75 = 1/2. Damit wird
der Strukturfaktor

S.—f (1 +e—iﬂ(V|+V2+V3)) .

G
Wir beriicksichtigen, dass v; ganze Zahlen sein miis-
sen. Der Beitrag des zweiten Atoms kann somit —1
oder +1 betragen un der Strukturfaktor kann zwei
mogliche Werte annehmen:

S=0 wenn
S=2f wenn

vl +v2 +v3 = ungerade
v + v, +v3 = gerade.

Offenbar verschwindet die Streuamplitude, wenn die
Summe der drei Indizes ungerade ist. Das Fehlen des
Beugungsreflexes fiir eine ungerade Summe ist eine
direkte Konsequenz davon, dass das bce Gitter nicht
primitiv ist.

¢=0

o=m

¢=2n

p=n

Abbildung 2.65: Destruktive Interferenz im innen-
zentrierten Gitter.

Betrachten wir z.B. die Beugung an den Netzebe-
nen 100. Fiir das primitiv kubische Gitter erhalten
wir einen Reflex der Stirke f, welcher gerade dem
ersten Summanden entspricht. Zwischen jeweils 2
Ebenen, welche die Wiirfelflichen enthalten, liegt
aber auch eine Ebene, welche durch das Zentrum
der Einheitszelle 14uft, und symmetrieéquivalent ist.
Wihrend der Phasenunterschied zwischen zwei Teil-
wellen, welche an der (100) Ebene reflektiert wer-
den, 27 betragt, ist der Wegldngenunterschied fiir
die dazwischen liegenden Ebenen gerade halb so
grof3. Die Phase betrdgt hier somit gerade 7. Damit
entsteht destruktive Interferenz und der Reflex ver-
schwindet.

2.5.10 Symmetriebdingte Ausloschung

ungeordnet

geordnet

Abbildung 2.66: Struktur von FeCo; links : ungeord-
net; rechts : geordnet.

Man kann diesen Effekt z.B. in der Verbindung FeCo
direkt beobachten: Die Intensitdt des 100 Reflexes
ist proportional zu (f4 — f3)?, wobei fi und fp die
Atomformfaktoren der Atome auf den Gitterplitzen
(000) und (%%%) beschrieben. Im reinen Eisen oder
Kobalt verschwindet er deshalb (A = B). In der Ver-
bindung FeCo sind die Ecken der Einheitszelle durch
Fe, das Zentrum durch Co besetzt (resp. umgekehrt,
je nach Wahl der Einheitszelle). Dann sind die bei-
den Formfaktoren leicht unterschiedlich und der Re-
flex tritt auf. Die Zahl der Elektronen ist allerdings
relativ dhmlich fiir die beiden Atome (Z(Fe) = 26,
Z(Co) = 27), so dass diese Reflexe relativ schwach
sind.

Die Verbindung tritt jedoch auch in einer ungeordne-
ten Struktur auf, in der jeder Gitterplatz im Schnitt
gleich hiufig von Fe und Co besetzt ist. In diesem
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o FeCo
= 8 ordered
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Abbildung 2.67: Beugungsreflexe an FeCo.

Fall gilt im Schnitt wiederum f; = fp und der Re-
flex verschwindet wieder, wie im unteren Teil von
Abb. 2.67 gezeigt.

""?‘5‘*‘?7 '
s

"“———sﬁ

Abbildung 2.68: Struktur von NaCl, KCI und KBr.

Man kann den Effekt auch an den beiden Substan-
zen KBr und KCIl beobachten. In beiden Substan-
zen bilden die Kationen und die Anionen jeweils ein
kubisch flaichenzentriertes Gitter, welche gegenein-
ander um eine halbe Kantenldnge verschoben sind.
Unterscheidet man nicht zwischen den Atomen er-
hilt man somit ein kubisch primitives Gitter mit der
halben Kantenlidnge.

Im Fall von KCI besitzen K™ und CI~ jeweils 18
Elektronen. Dadurch sind die Elektronendichten der
beiden Ionen fast gleich, so dass auch die Atom-
formfaktoren praktisch gleich sind und Ausloschung
stattfindet. Man findet deshalb praktisch nur Reflexe
mit einer geraden Summe der Indizes. Brom hat ei-
ne doppelt so grofe Zahl von Elektronen (Br : 36), so
dass hier die beiden Atomarten deutlich unterschied-

(200)
KCl
(220)
l (222) (400) (420)
T T T |L JI A T >
20°  (200) 400 60° 80°
Streuwinkel 26
KBr
(220)
(111) (222)  (400) (420)
L AG3DA_ 4
f T T LU - >
200 400 800

60°
Streuwinkel 26

Abbildung 2.69: Vergleich der Beugungsreflexe von
KCl und KBr.

lich zum gestreuten Signal beitragen. Die (gendher-
te) Symmetrie entféllt und man beobachtet auch un-
geradzahlige Reflexe.

2.5.11 Atomformfaktor

Der Atomformfaktor fiir ein Atom mit kugelsymme-
trischer Elektronendichteverteilung kann vereinfacht
werden, wenn wir Kugelkoordinaten p=(r,0,¢)
einfiihren. Wir wihlen G entlang der z-Achse. Da-
mit wird (2.9) zu

fi /drr2 sineded(pnj(r)e*iGrcose

27r/drr2d(cos G)nj(r)e_icrcose.

Integration iiber cos 6 gibt

Gr __ —zGr
o= 2 d
fi 717/ rrn e
sm(Gr)
= 4x [ drn;(r)r? .
71'/ rnj(r)r Cr

Fiir kleine Streuvektoren, G — 0, kann sin(Gr) /(Gr)
iiber den Bereich des Atoms (r < 10~ '°m) nihe-
rungsweise durch eins ersetzt werden. Damit redu-
ziert sich das Integral auf die Anzahl der Elektronen.
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Vorwartsstreuung Rickwartsstreuung
k L G = Ak
— 1G=Ak P
K K’ k

Abbildung 2.70: Streuvektoren bei Vorwirts- und
Riickwirtsstreuung.

Fiir endliche Streuvektoren beriicksichtigt der Atom-
formfaktor die destruktive Interferenz zwischen Tei-
len der Elektronendichteverteilung, die weit ausein-
ander liegen. Bei gegebener Wellenlidnge entspricht
ein kleiner Streuvektor einem kleinen Streuwinkel,
d.h. der Vorwiirtsstreuung, ein grofler Streuvektor ei-
nem groflen Streuwinkel, also Riickwirtsstreuung.
Wird das Produkt Gr gro3 gegen eins, so wird der
Faktor sin(x)/x kleiner als eins und damit die Streu-
amplitude kleiner.

N
T

Beispiel : Eisen A = 0, 709nm

- -y
T ¢ 9

Atomformfaktor fre

w
1
w
w
£

sin@/\
Abbildung 2.71: Atomformfaktor von Eisen.

Wir erwarten deshalb, dass der Atomformfaktor klei-
ner wird, wenn wir Reflexe beobachten, welche
einem grofen Streuwinkel entsprechen. Abb. 2.71
zeigt dies fiir das Beispiel von Eisen. Die einzelnen
Punkte zeigen den Atomformfaktor fiir unterschied-
liche Reflexe, welche unterschiedlichen Streuvekto-
ren G entsprechen. Die Wellenldnge der Rontgen-
strahlug betrdgt 0,709 nm.

Die Situation is anders, wenn anstelle von Ront-
genstrahlen Neutronen gestreut werden: In diesem
Fall findet die Wechselwirkung mit den Atomkernen
statt, welche fiir alle praktischen Belange punktfor-
mige Teilchen sind. Thre Fourier-Transformierte ist

damit eine ausgedehnte, d.h. isotrope Funktion.

2.5.12 Das Phasenproblem

Die Streuamplitude

S= /an(?)eiiG'F

ist nichts anderes als die Fouriertransformierte der
Elektronendichte, welche man eigentlich messen
mochte.

Abbildung 2.72: Elektronendichteverteilung ~ von

NaCl.

Abb. 2.72 zeigt als typisches Beispiel die Elektro-
nendichte in Kochsalz. Die Fouriertransformation
kann relativ einfach und effizient invertiert werden.
Leider wird aber in einem Rontgenbeugungsexperi-
ment nicht die Streuamplitude S gemessen, sondern
die Intensitit I = |S|> = $*S. Bei der Bildung des Ab-
solutquadrates geht die Phaseninformation verloren
und damit ist die Fouriertransformation nicht mehr
umkehrbar. Dieses Problem ist als das Phasenpro-
blem bekannt. In der Optik ist es moglich, die Pha-
se der gestreuten Welle in einem interferometrischen
Experiment zu bestimmen. Im Bereich der Rontgen-
strahlen sind die experimentellen Voraussetzungen
dafiir aber bisher noch nicht erfiillt. Man muss des-
halb wesentlich aufwendigere Verfahren benutzen,
um die Kristallstruktur aus der gemessenen Intensi-
tatsverteilung zu bestimmen.
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Die ‘normale’ Methode besteht darin, aufgrund einer
vermuteten Struktur das entsprechende Beugungs-
muster zu rechnen. Aus den Unterschieden zwi-
schen gemessener und beobachteter Struktur be-
stimmt man anschliessend eine neue Nédherung und
iteriert dieses Vorgehen bis es konvergiert.

Dieses rechnerische Vorgehen kann unterstiitzt wer-
den durch experimentelle “Tricks’. So kann man
schwere Atome in eine Struktur einbauen. Diese ha-
ben so viele Elektronen, dass das Beugungsmuster
durch sie dominiert wird. Man hat dadurch ein we-
sentlich einfacheres Beugungsmuster und bestimmt
zunéchst nur die Anordnung der schweren Atome.
Die Bestimmung der iibrigen Atome in diesem Git-
ter wird danach wesentlich einfacher, da die bekann-
ten Beitrige der schweren Atome gewissermassen
als Phasenreferenz dienen konnen.

Abbildung 2.73: Bauprinzip eines freien Elektro-
nenlasers.

Es ist aber nicht ausgeschlossen, dass diese aufwen-
digen Prozeduren in der Zukunft tiberfliissig wer-
den. So sind seit einigen Jahren relativ kohirente
Rontgenquellen verfiigbar, wie z.B. freie Elektro-
nenlaser oder Rontgenlaser. Deren Kohirenzeigen-
schaften sind allerdings bisher noch ungeniigend, um
die Phase der gestreuten Welle interferometrisch zu
messen.

Eine weitere Limitierung der Strukturmessung durch
Beugungsexperimente ist durch eine Symmetrie ge-
geben: Die Streudichte ist eine reelle Grofe, so-
fern Absorption vernachldssigt werden kann. Da-
durch wird die Streuvamplitude symmetrisch beziig-
lich Inversion:

Sg=5_g

Dadurch enthilt das Beugungsmuster immer ein In-

versionszentrum. Eine dreizdhlige Symmetrieachse
erscheint als eine sechszidhlige Achse und es ist
nicht moglich, aufgrund von Rontgenbeugungsmes-
sungen die Hindigkeit einer Struktur ohne Inversi-
onszentrum zu bestimmen. Dieses Problem kann ge-
16st werden, indem man Rontgenstrahlung verwen-
det, welche in der Néhe einer Absorptionskante liegt.
Allerdings wird dadurch die Analyse des Beugungs-
musters deutlich aufwindiger.

2.5.13 Thermische Bewegung

Bisher sind wir davon ausgegangen, dass die Ato-
me perfekt auf bestimmten Gitterplitzen liegen. In
Wirklichkeit fiihren sie aber thermische Bewegun-
gen um diese Gitterplédtze aus, und sogar am abso-
luten Nullpunkt besteht eine gewisse Ortsunschérfe.
Interessanterweise fiihrt diese Bewegung nicht zu ei-
ner Verbreiterung der Reflexe. Sie fiihrt aber zu ei-
ner Reduktion der Intensitit der Beugungsreflexe, da
ein Teil der einfallenden Strahlung inelastisch ge-
streut wird. Dies erscheint als diffuser Untergrund
zwischen den Reflexen.

Um die Reduktion der Intensitit zu berechnen, be-
schreiben wir die Position des Atoms als

wobei 7; die Ruhelage darstellt und () eine Zufalls-
bewegung um die Ruhelage (d.h. (ii(¢)) = 0. Wenn
wir dies in die Definition (2.10) des Strukturfaktors
einsetzen und tiber die Zufallsbewegung mitteln, er-
halten wir

Sé — ijefiG?j <efiG‘ii(t)>.
J

Wir entwickeln die Exponentialfunktion in eine
Taylor-Reihe und erhalten

<efiG-ﬁ(t)>

1—i(G-ii(r))
1((“-ﬁ(r))2>+....

2

Da G und # statistisch nicht korreliert sind, konnen
wir die Mittelwerte einzeln ausrechnen. Damit folgt
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fiir den linearen Term (G - ii(¢)) = G(ii(t)). Die Aus-
lenkung i ist so definiert, dass ihr Mittelwert ver-
schwindet, (ii(r)) = 0. Der lineare Term in der Tay-
lorreihe verschwindet deshalb.

Fiir die Mittelung des quadratischen Terms setzen
wir

(G-10)") = G* (i eos? B) = G2(u?) (cos B).

wobei B den Winkel zwischen G und ii darstellt und
somit ebenfalls eine ZufallsgroBe ist. Die Mittelung
des Winkelanteils iiber alle moglichen Orientierun-
gen ergibt

1 T
(cos’B) = E/ dp cos® Bsin B
0
1 N\ 1
= 72 _— - ”:7.
an ”( 3>C°S Plo =3

Damit erhalten wir

- 1
<€71G' =1--G?

ﬁ(t)>
6

—0\2
(i(1)?).
Wir betrachten dies als die ersten beiden Terme einer
Taylor-Reihe, so dass wir den Strukturfaktor schrei-
ben konnen als

Gz<uz>
6

S=S8pe”

Hier stellt So den Strukturfaktor fiir statische Ato-
me dar. Gemessen wird allerdings die Streuintensitét
(d.h. das Quadrat der Amplitude)

Gz<uz>
3

I =1Ile

(u?) stellt hier die mittlere quadratische Verschie-
bung des Atoms dar. Dies kann in erster Linie
durch thermische Anregung zustande kommen, aber
auch durch die quantenmechanische Unschirfe im
Schwingungs-Grundzustand.

2.5.14 Debye-Waller Faktor

Wir betrachten zunéchst den Fall der thermischen
Anregung. Dafiir beschreiben wir die Bewegung des
Atoms als harmonischen Oszillator mit der Frequenz

. Dafiir konnen wir die mittlere quadratische Ver-
schiebung aus der mittleren Energie berechnen, wel-
che in drei Dimensionen 3kgT betrdgt. Die mittle-
re kinetische Energie M{(v?)/2 = M(u*)®?*/2 und
die mittlere potenzielle Energie C(u?) /2 betragen im
Mittel jeweils die Hilfte der thermischen Energie,

1 1 3
§C<I/l2> == 5M(1)2<M2> = EkBT
oder
3kgT
2y _ OKp
W) = Yo

Dabei ist M die Masse des Atoms und C eine Kraft-
konstante. Damit wird die Streuintensitét

_ GlgT
I =1le wmo? .
s] - (200)
—
; 3 [ (400)
5 B
600
4 (\)

N

Intensitat / willk. Einheiten

200
Temperatur /K

Abbildung 2.74: Temperaturabhéngigkeit des De-
bye-Waller Faktors von Alumini-
um.

Diese Reduktion der Intensitdt mit steigender Tem-
peratur und Streuvektor wird als Debye-Waller Fak-
tor bezeichnet. Es handelt sich hier um eine klas-
sische Niherung, welche bei hohen Temperaturen
recht gut ist. Offenbar ist die Abnahme dann am
kleinsten, wenn die Masse der Atome grof} ist (d.h.
fiir schwere Kerne) und wenn die Frequenz hoch ist
(d.h. das Gitter starr ist).

Bei niedrigen Temperaturen muss auch die Ortsun-
schirfe aufgrund der Unschirfenrelation beriicksich-
tigt werden. Wir bestimmen sie iiber die Nullpunkts-
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energie des harmonischen Oszillators. In drei Di-
mensionen betrégt diese 3@ /2. Wir teilen sie wie-
der zwischen kinetischer und potenzieller Energie
auf, so dass

1

3
—“Mo*W?) = ho — (u?
2w<u> 4ha) (u”)

_ 3n
 2Mo

und damit fiir die Intensitéit

J— Ioe—th/ZMw.

Typische Zahlenwerte sind G = 10''m~!, M =
10~%kg (entspricht etwa Nickel), @ = 10'4s~!. Un-
ter diesen Bedingungen werden am absoluten Null-
punkt rund 90% der maximalen Streuintensitét er-
reicht.
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